WorldWideScience

Sample records for protein production electronic

  1. Electron transfer in proteins

    DEFF Research Database (Denmark)

    Farver, O; Pecht, I

    1991-01-01

    Electron migration between and within proteins is one of the most prevalent forms of biological energy conversion processes. Electron transfer reactions take place between active centers such as transition metal ions or organic cofactors over considerable distances at fast rates and with remarkable...... specificity. The electron transfer is attained through weak electronic interaction between the active sites, so that considerable research efforts are centered on resolving the factors that control the rates of long-distance electron transfer reactions in proteins. These factors include (in addition......-containing proteins. These proteins serve almost exclusively in electron transfer reactions, and as it turns out, their metal coordination sites are endowed with properties uniquely optimized for their function....

  2. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  3. Tunneling explains efficient electron transport via protein junctions.

    Science.gov (United States)

    Fereiro, Jerry A; Yu, Xi; Pecht, Israel; Sheves, Mordechai; Cuevas, Juan Carlos; Cahen, David

    2018-05-15

    Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.

  4. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Cryo-electron microscopy of membrane proteins.

    Science.gov (United States)

    Goldie, Kenneth N; Abeyrathne, Priyanka; Kebbel, Fabian; Chami, Mohamed; Ringler, Philippe; Stahlberg, Henning

    2014-01-01

    Electron crystallography is used to study membrane proteins in the form of planar, two-dimensional (2D) crystals, or other crystalline arrays such as tubular crystals. This method has been used to determine the atomic resolution structures of bacteriorhodopsin, tubulin, aquaporins, and several other membrane proteins. In addition, a large number of membrane protein structures were studied at a slightly lower resolution, whereby at least secondary structure motifs could be identified.In order to conserve the structural details of delicate crystalline arrays, cryo-electron microscopy (cryo-EM) allows imaging and/or electron diffraction of membrane proteins in their close-to-native state within a lipid bilayer membrane.To achieve ultimate high-resolution structural information of 2D crystals, meticulous sample preparation for electron crystallography is of outmost importance. Beam-induced specimen drift and lack of specimen flatness can severely affect the attainable resolution of images for tilted samples. Sample preparations that sandwich the 2D crystals between symmetrical carbon films reduce the beam-induced specimen drift, and the flatness of the preparations can be optimized by the choice of the grid material and the preparation protocol.Data collection in the cryo-electron microscope using either the imaging or the electron diffraction mode has to be performed applying low-dose procedures. Spot-scanning further reduces the effects of beam-induced drift. Data collection using automated acquisition schemes, along with improved and user-friendlier data processing software, is increasingly being used and is likely to bring the technique to a wider user base.

  6. Electron microscopy of cyanobacterial membrane proteins

    NARCIS (Netherlands)

    Folea, Ioana Mihaela

    2008-01-01

    The main focus of this thesis is photosynthetic protein complexes, and their organization within the membrane of cyanobacteria. In cyanobacteria large proteins catalyze the light reactions of photosynthesis. One of the key proteins is photosystem II. We have found for the first time by electron

  7. Radioisotope production with electron accelerators

    International Nuclear Information System (INIS)

    Brinkman, G.A.

    1978-01-01

    The production of radio isotopes with electron accelerators proceeds mainly by secondary photons (bremsstrahlung), produced in an interaction between the electrons and the Coulomb field of the nuclei of a converter. The production yields depend on: the initial electron energy, the Z and thickness of the bremsstrahlung-converter, the Z, A and the thickness of the target, the geometric set up and the cross section for a particular reaction. In this article the production is only considered for thin bremsstrahlung converters in combination with an electron 'sweep' magnet. Simple formulae are given for the calculations of production yields under standard conditions with only sigmasub(q) (the cross section per equivalent quantum) and f (the fraction of the photons that hit the target) as variables and for the calculations of the dose rate at the production point. The units in which the yields are expressed in the literature (units of sigmasub(q) dose, electron beam intensity, monitor response) are discussed. (Auth.)

  8. Carbon footprinting of electronic products

    International Nuclear Information System (INIS)

    Vasan, Arvind; Sood, Bhanu; Pecht, Michael

    2014-01-01

    Highlights: • Challenges in adopting existing CF standards for electronic products are discussed. • Carbon footprint of electronic products is underestimated using existing standards. • Multipronged approach is presented to overcome the identified challenges. • Multipronged approach demonstrated on commercial and military grade DC–DC converter system. - Abstract: In order to mitigate the effects of global warming, companies are being compelled by governments, investors, and customers to control their greenhouse gas (GHG) emissions. Similar to the European Union’s legislation on the airline industry, legislation is expected to require the electronics industry to assess their product’s carbon footprint before sale or use, as the electronics industry’s contribution to global GHG emissions is comparable to the airline industry’s contribution. Thus, it is necessary for members of the electronics industry to assess their current GHG emission rates and identify methods to reduce environmental impacts. Organizations use Carbon Footprint (CF) analysis methods to identify and quantify the GHG emissions associated with the life cycle stages of their product or services. This paper discusses the prevailing methods used by organizations to estimate the CF of their electronics products and identifies the challenges faced by the electronics industry when adopting these methods in an environment of decreasing product development cycles with complex and diffuse supply chains. We find that, as a result of the inconsistencies arising from the system boundary selection methods and databases, the use of outdated LCA approaches, and the lack of supplier’s emissions-related data, the CFs of electronic products are typically underestimated. To address these challenges, we present a comprehensive approach to the carbon footprinting of electronic products that involves the use of product-group-oriented standards, hybrid life cycle assessment techniques, and the

  9. Setting MEPS for electronic products

    International Nuclear Information System (INIS)

    Siderius, Hans-Paul

    2014-01-01

    When analysing price, performance and efficiency data for 15 consumer electronic and information and communication technology products, we found that in general price did not relate to the efficiency of the product. Prices of electronic products with comparable performance decreased over time. For products where the data allowed fitting the relationship, we found an exponential decrease in price with an average time constant of −0.30 [1/year], meaning that every year the product became 26% cheaper on average. The results imply that the classical approach of setting minimum efficiency performance standards (MEPS) by means of life cycle cost calculations cannot be applied to electronic products. Therefore, an alternative approach based on the improvement of efficiency over time and the variation in efficiency of products on the market, is presented. The concept of a policy action window can provide guidance for the decision on whether setting MEPS for a certain product is appropriate. If the (formal) procedure for setting MEPS takes longer than the policy action window, this means that the efficiency improvement will also be achieved without setting MEPS. We found short, i.e. less than three years, policy action windows for graphic cards, network attached storage products, network switches and televisions. - Highlights: • For electronic consumer products price does not relate to efficiency. • Average price decrease of selected electronic products is 26 % per year. • We give an alternative approach to life cycle cost calculations for setting MEPS. • The policy action window indicates whether setting MEPS is appropriate

  10. Electron tunneling in proteins program.

    Science.gov (United States)

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-05

    We developed a unique integrated software package (called Electron Tunneling in Proteins Program or ETP) which provides an environment with different capabilities such as tunneling current calculation, semi-empirical quantum mechanical calculation, and molecular modeling simulation for calculation and analysis of electron transfer reactions in proteins. ETP program is developed as a cross-platform client-server program in which all the different calculations are conducted at the server side while only the client terminal displays the resulting calculation outputs in the different supported representations. ETP program is integrated with a set of well-known computational software packages including Gaussian, BALLVIEW, Dowser, pKip, and APBS. In addition, ETP program supports various visualization methods for the tunneling calculation results that assist in a more comprehensive understanding of the tunneling process. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  12. Are neutral loss and internal product ions useful for top-down protein identification?

    Science.gov (United States)

    Xiao, Kaijie; Yu, Fan; Fang, Houqin; Xue, Bingbing; Liu, Yan; Li, Yunhui; Tian, Zhixin

    2017-05-08

    Neutral loss and internal product ions have been found to be significant in both peptide and protein tandem mass spectra and they have been proposed to be included in database search and for protein identification. In addition to common canonical b/y ions in collision-based dissociation or c/z ions in electron-based dissociation, inclusion of neutral loss and internal product ions would certainly make better use of tandem mass spectra data; however, their ultimate utility for protein identification with false discovery rate control remains unclear. Here we report our proteome-level utility benchmarking of neutral loss and internal product ions with tandem mass spectra of intact E. coli proteome. Utility of internal product ions was further evaluated at the protein level using selected tandem mass spectra of individual E. coli proteins. We found that both neutral loss and internal products ions do not have direct utility for protein identification when they were used for scoring of P Score; but they do have indirect utility for provision of more canonical b/y ions when they are included in the database search and overlapping ions between different ion types are resolved. Tandem mass spectrometry has evolved to be a state-of-the-art method for characterization of protein primary structures (including amino acid sequence, post-translational modifications (PTMs) as well as their site location), where full study and utilization tandem mass spectra and product ions are indispensable. This primary structure information is essential for higher order structure and eventual function study of proteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Electron transfer reactions in structural units of copper proteins

    International Nuclear Information System (INIS)

    Faraggi, M.

    1975-01-01

    In previous pulse radiolysis studies it was suggested that the reduction of the Cu(II) ions in copper proteins by the hydrated electron is a multi-step electron migration process. The technique has been extended to investigate the reduction of some structural units of these proteins. These studies include: the reaction of the hydrated electron with peptides, the reaction of the disulphide bridge with formate radical ion and radicals produced by the reduction of peptides, and the reaction of Cu(II)-peptide complex with esub(aq)sup(-) and CO 2 - . Using these results the reduction mechanism of copper and other proteins will be discussed. (author)

  14. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  15. Electronic Animal Drug Product Listing Directory

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Electronic Animal Drug Product Listing Directory is a directory of all animal drug products that have been listed electronically since June 1, 2009, to comply...

  16. Protein-carbohydrate supplements in the production of meat products

    Directory of Open Access Journals (Sweden)

    I. N. Tolpigina

    2013-01-01

    Full Text Available Rationality of the use of protein-carbohydrate additive in the technology of meat products was justified. The capability of the fiber to stabilizate properties of meat systems was investigated. There was established permissible limits of the use of additives in prescription solutions in the production of sausage products of a various price level according to the criterion of biological values. The trial production of sausage products was held. By the methods of mathematical statistics were optimized compositions of protein-polysaccharide additives.

  17. Dynamics in electron transfer protein complexes

    OpenAIRE

    Bashir, Qamar

    2010-01-01

    Recent studies have provided experimental evidence for the existence of an encounter complex, a transient intermediate in the formation of protein complexes. We have used paramagnetic relaxation enhancement NMR spectroscopy in combination with Monte Carlo simulations to characterize and visualize the ensemble of encounter orientations in the short-lived electron transfer complex of yeast Cc and CcP. The complete conformational space sampled by the protein molecules during the dynamic part of ...

  18. Quantum-Chemical Electron Densities of Proteins and of Selected Protein Sites from Subsystem Density Functional Theory

    NARCIS (Netherlands)

    Kiewisch, K.; Jacob, C.R.; Visscher, L.

    2013-01-01

    The ability to calculate accurate electron densities of full proteins or of selected sites in proteins is a prerequisite for a fully quantum-mechanical calculation of protein-protein and protein-ligand interaction energies. Quantum-chemical subsystem methods capable of treating proteins and other

  19. Scalar electron production in e+e- annihilation

    International Nuclear Information System (INIS)

    Kuroda, M.; Kobayashi, T.; Yamada, S.; Ishikawa, K.

    1983-05-01

    The single scalar electron production process e + e - -> esup(+-) + Photino + scalar electron (scalar electron -> esup(-+) + Photino), with the detection of e + as well as e - , provides a clean method to detect scalar electrons when their masses are not lighter than the beam energy. We made a complete calculation of the process and evaluated the production cross sections. (orig.)

  20. Monitoring and control of protein production in fungi

    DEFF Research Database (Denmark)

    Schalén, Martin

    : • How is protein production affected on a single cell level due to environmental stress factors? • How can we improve heterologous protein production in filamentous fungi, and how does production in Aspergillus nidulans compare to protein production in the industrially exploited Aspergillus niger...... stress elements on the production of heterologous proteins in S. cerevisiae is investigated. A fluorescent reporter strain, producing an intracellular protein linked to tagRFP from the glycolytic PGK1 promoter is constructed. This strain is used to monitor the level of production in each cell when...... exposed to environmental stress. The cells are grown in shake flasks as well as bioreactors and protein levels are analyzed by flow cytometry. It is demonstrated that the fluorescent reporter can be used to study the effects on stress elements on a population basis. Production of the protein was affected...

  1. Dynamic, electronically switchable surfaces for membrane protein microarrays.

    Science.gov (United States)

    Tang, C S; Dusseiller, M; Makohliso, S; Heuschkel, M; Sharma, S; Keller, B; Vörös, J

    2006-02-01

    Microarray technology is a powerful tool that provides a high throughput of bioanalytical information within a single experiment. These miniaturized and parallelized binding assays are highly sensitive and have found widespread popularity especially during the genomic era. However, as drug diagnostics studies are often targeted at membrane proteins, the current arraying technologies are ill-equipped to handle the fragile nature of the protein molecules. In addition, to understand the complex structure and functions of proteins, different strategies to immobilize the probe molecules selectively onto a platform for protein microarray are required. We propose a novel approach to create a (membrane) protein microarray by using an indium tin oxide (ITO) microelectrode array with an electronic multiplexing capability. A polycationic, protein- and vesicle-resistant copolymer, poly(l-lysine)-grafted-poly(ethylene glycol) (PLL-g-PEG), is exposed to and adsorbed uniformly onto the microelectrode array, as a passivating adlayer. An electronic stimulation is then applied onto the individual ITO microelectrodes resulting in the localized release of the polymer thus revealing a bare ITO surface. Different polymer and biological moieties are specifically immobilized onto the activated ITO microelectrodes while the other regions remain protein-resistant as they are unaffected by the induced electrical potential. The desorption process of the PLL-g-PEG is observed to be highly selective, rapid, and reversible without compromising on the integrity and performance of the conductive ITO microelectrodes. As such, we have successfully created a stable and heterogeneous microarray of biomolecules by using selective electronic addressing on ITO microelectrodes. Both pharmaceutical diagnostics and biomedical technology are expected to benefit directly from this unique method.

  2. Electron image reconstruction of helical protein assemblies

    International Nuclear Information System (INIS)

    Cremers, A.F.M.

    1980-01-01

    The analysis of projections of large ordered biological systems obtained by electron microscopy of negatively stained specimens is described. The biological structures amenable to this approach are constructed from a large number of identical protein molecules, which are arranged according to helical symmetry. Electron images of these structures generally contain sufficient information in order to calculate a three-dimensional density map. (Auth.)

  3. Electron-mediating Cu(A) centers in proteins

    DEFF Research Database (Denmark)

    Epel, Boris; Slutter, Claire S; Neese, Frank

    2002-01-01

    High field (W-band, 95 GHz) pulsed electron-nuclear double resonance (ENDOR) measurements were carried out on a number of proteins that contain the mixed-valence, binuclear electron-mediating Cu(A) center. These include nitrous oxide reductase (N(2)OR), the recombinant water-soluble fragment...... of subunit II of Thermus thermophilus cytochrome c oxidase (COX) ba(3) (M160T9), its M160QT0 mutant, where the weak axial methionine ligand has been replaced by a glutamine, and the engineered "purple" azurin (purpAz). The three-dimensional (3-D) structures of these proteins, apart from the mutant, are known...... indicates differences in the positions of the imidazole rings relative to the Cu(2)S(2) core. Comparison of the spectral features of the weakly coupled protons of M160QT0 with those of the other investigated proteins shows that they are very similar to those of purpAz, where the Cu(A) center is the most...

  4. Participation of Low Molecular Weight Electron Carriers in Oxidative Protein Folding

    Directory of Open Access Journals (Sweden)

    József Mandl

    2009-03-01

    Full Text Available Oxidative protein folding is mediated by a proteinaceous electron relay system, in which the concerted action of protein disulfide isomerase and Ero1 delivers the electrons from thiol groups to the final acceptor. Oxygen appears to be the final oxidant in aerobic living organisms, although the existence of alternative electron acceptors, e.g. fumarate or nitrate, cannot be excluded. Whilst the protein components of the system are well-known, less attention has been turned to the role of low molecular weight electron carriers in the process. The function of ascorbate, tocopherol and vitamin K has been raised recently. In vitro and in vivo evidence suggests that these redox-active compounds can contribute to the functioning of oxidative folding. This review focuses on the participation of small molecular weight redox compounds in oxidative protein folding.

  5. Anaerobic α-Amylase Production and Secretion with Fumarate as the Final Electron Acceptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Österlund, Tobias; Hou, Jin

    2013-01-01

    In this study, we focus on production of heterologous α-amylase in the yeast Saccharomyces cerevisiae under anaerobic conditions. We compare the metabolic fluxes and transcriptional regulation under aerobic and anaerobic conditions, with the objective of identifying the final electron acceptor...... reticulum are transferred to fumarate as the final electron acceptor. This model is supported by findings that the addition of fumarate under anaerobic (but not aerobic) conditions improves cell growth, specifically in the α-amylase-producing strain, in which it is not used as a carbon source. Our results...... provide a model for the molecular mechanism of anaerobic protein secretion using fumarate as the final electron acceptor, which may allow for further engineering of yeast for improved protein secretion under anaerobic growth conditions....

  6. Upgrading protein products using bioprocessing on agricultural crops

    DEFF Research Database (Denmark)

    Sulewska, Anna Maria; Sørensen, Jens Christian; Markedal, Keld Ejdrup

    to sustainability leads to a demand for plant protein products made from locally grown crops. Novel bioprocessing methods have been developed to generate protein products which are nutritious, readily available and do not generate hazardous waste. The processing focus has therefore been on developing protein......Due to increasing world population, higher average income, and changes in food preferences, there is a growing demand for proteins, especially novel plant-based protein sources, that can substitute animal proteins and supplement currently used soya proteins. Increased customer awareness......-enriched products with minimized content of antinutritional compounds. For every crop it is a challenge to obtain protein fractions with sufficient added value to make processing economically feasible. In this work we present the characterization of protein products developed in pilot scale using the novel...

  7. 21 CFR 1003.2 - Defect in an electronic product.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Defect in an electronic product. 1003.2 Section... electronic product. For the purpose of this part, an electronic product shall be considered to have a defect which relates to the safety of use by reason of the emission of electronic product radiation if: (a) It...

  8. ProteinTracker: an application for managing protein production and purification.

    Science.gov (United States)

    Ponko, Stefan C; Bienvenue, David

    2012-05-10

    Laboratories that produce protein reagents for research and development face the challenge of deciding whether to track batch-related data using simple file based storage mechanisms (e.g. spreadsheets and notebooks), or commit the time and effort to install, configure and maintain a more complex laboratory information management system (LIMS). Managing reagent data stored in files is challenging because files are often copied, moved, and reformatted. Furthermore, there is no simple way to query the data if/when questions arise. Commercial LIMS often include additional modules that may be paid for but not actually used, and often require software expertise to truly customize them for a given environment. This web-application allows small to medium-sized protein production groups to track data related to plasmid DNA, conditioned media samples (supes), cell lines used for expression, and purified protein information, including method of purification and quality control results. In addition, a request system was added that includes a means of prioritizing requests to help manage the high demand of protein production resources at most organizations. ProteinTracker makes extensive use of existing open-source libraries and is designed to track essential data related to the production and purification of proteins. ProteinTracker is an open-source web-based application that provides organizations with the ability to track key data involved in the production and purification of proteins and may be modified to meet the specific needs of an organization. The source code and database setup script can be downloaded from http://sourceforge.net/projects/proteintracker. This site also contains installation instructions and a user guide. A demonstration version of the application can be viewed at http://www.proteintracker.org.

  9. Green electronics manufacturing creating environmental sensible products

    CERN Document Server

    Wang, John X

    2012-01-01

    Going ""green"" is becoming a major component of the mission for electronics manufacturers worldwide. While this goal seems simplistic, it poses daunting dilemmas. Yet, to compete effectively in the global economy, manufacturers must take the initiative to drive this crucial movement. Green Electronics Manufacturing: Creating Environmental Sensible Products provides you with a complete reference to design, develop, build, and install an electronic product with special consideration for the product's environmental impacts during its whole life cycle. The author discusses how to integrate the st

  10. Crystallization and preliminary electron diffraction study to 3. 7 A of DNA helix-destabilizing protein gp32*I

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, W; Hosoda, J

    1978-01-01

    A two-dimensionally large and thin crystal has been obtained from gp32*I, a proteolytically digested product of a DNA helix-destabilizing protein coded by gene 32 in bacteriophage T4. High-resolution electron diffraction patterns (approx. 3.7 A) are recorded from both unstained and stained protein crystals embedded in glucose. The crystal is of orthorhombic space group with a = 62.9 A and b = 47.3 A.

  11. ProteinTracker: an application for managing protein production and purification

    Directory of Open Access Journals (Sweden)

    Ponko Stefan C

    2012-05-01

    Full Text Available Abstract Background Laboratories that produce protein reagents for research and development face the challenge of deciding whether to track batch-related data using simple file based storage mechanisms (e.g. spreadsheets and notebooks, or commit the time and effort to install, configure and maintain a more complex laboratory information management system (LIMS. Managing reagent data stored in files is challenging because files are often copied, moved, and reformatted. Furthermore, there is no simple way to query the data if/when questions arise. Commercial LIMS often include additional modules that may be paid for but not actually used, and often require software expertise to truly customize them for a given environment. Findings This web-application allows small to medium-sized protein production groups to track data related to plasmid DNA, conditioned media samples (supes, cell lines used for expression, and purified protein information, including method of purification and quality control results. In addition, a request system was added that includes a means of prioritizing requests to help manage the high demand of protein production resources at most organizations. ProteinTracker makes extensive use of existing open-source libraries and is designed to track essential data related to the production and purification of proteins. Conclusions ProteinTracker is an open-source web-based application that provides organizations with the ability to track key data involved in the production and purification of proteins and may be modified to meet the specific needs of an organization. The source code and database setup script can be downloaded from http://sourceforge.net/projects/proteintracker. This site also contains installation instructions and a user guide. A demonstration version of the application can be viewed at http://www.proteintracker.org.

  12. ProteinTracker: an application for managing protein production and purification

    Science.gov (United States)

    2012-01-01

    Background Laboratories that produce protein reagents for research and development face the challenge of deciding whether to track batch-related data using simple file based storage mechanisms (e.g. spreadsheets and notebooks), or commit the time and effort to install, configure and maintain a more complex laboratory information management system (LIMS). Managing reagent data stored in files is challenging because files are often copied, moved, and reformatted. Furthermore, there is no simple way to query the data if/when questions arise. Commercial LIMS often include additional modules that may be paid for but not actually used, and often require software expertise to truly customize them for a given environment. Findings This web-application allows small to medium-sized protein production groups to track data related to plasmid DNA, conditioned media samples (supes), cell lines used for expression, and purified protein information, including method of purification and quality control results. In addition, a request system was added that includes a means of prioritizing requests to help manage the high demand of protein production resources at most organizations. ProteinTracker makes extensive use of existing open-source libraries and is designed to track essential data related to the production and purification of proteins. Conclusions ProteinTracker is an open-source web-based application that provides organizations with the ability to track key data involved in the production and purification of proteins and may be modified to meet the specific needs of an organization. The source code and database setup script can be downloaded from http://sourceforge.net/projects/proteintracker. This site also contains installation instructions and a user guide. A demonstration version of the application can be viewed at http://www.proteintracker.org. PMID:22574679

  13. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  14. Enrichment of extruded snack products with whey protein

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-08-01

    Full Text Available Highest share in products with whey proteins addition belongs to aromatised drinks, aromatised protein bars and various dietetic preparations. In the last few years, there is increased use of the extrusion process for production of food products. This process is, besides other things, used for obtaining directly expanded products, which are immediately packed and sent on market after mechanical and thermal treatment in extruder, or after drying for a short time. One of these food products is “snack” food. Snack food is made with twin corotating screw extruders, in which raw materials are submitted to high temperatures and short time, with intensive expansion and rapid pressure drop. For the production of this category of food products, basic ingredients like corn, wheat, rye and rice, with the maximum of 9 % of proteins, are used. With the development of extrusion technology, special attention is focused on the enrichment of extruded products with different types of proteins, including proteins. In this paper, review of the newest research and achievements in embedding various types of whey concentrates in snack food will be represented. This category of food products for direct consummation is constantly increasing, and addition of whey protein concentrate adds better nutritional value and increased functionality.

  15. First principles design of a core bioenergetic transmembrane electron-transfer protein

    Energy Technology Data Exchange (ETDEWEB)

    Goparaju, Geetha; Fry, Bryan A.; Chobot, Sarah E.; Wiedman, Gregory; Moser, Christopher C.; Leslie Dutton, P.; Discher, Bohdana M.

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics — the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  16. Immunofluorescence detection of pea protein in meat products.

    Science.gov (United States)

    Petrášová, Michaela; Pospiech, Matej; Tremlová, Bohuslava; Javůrková, Zdeňka

    2016-08-01

    In this study we developed an immunofluorescence method to detect pea protein in meat products. Pea protein has a high nutritional value but in sensitive individuals it may be responsible for causing allergic reactions. We produced model meat products with various additions of pea protein and flour; the detection limit (LOD) of the method for pea flour was 0.5% addition, and for pea protein it was 0.001% addition. The repeatabilities and reproducibilities for samples both positive and negative for pea protein were all 100%. In a blind test with model products and commercial samples, there was no statistically significant difference (p > 0.05) between the declared concentrations of pea protein and flour and the immunofluorescence method results. Sensitivity was 1.06 and specificity was 1.00. These results show that the immunofluorescence method is suitable for the detection of pea protein in meat products.

  17. Binary encounter electron production in ion-atom collisions

    International Nuclear Information System (INIS)

    Grabbe, S.; Bhalla, C.P.; Shingal, R.

    1993-01-01

    The binary encounter electrons are produced by hard collisions between the target electrons and the energetic projectiles. Richard et al. found the measured double differential cross section for BEe production at zero degree laboratory scattering angle, in collisions of F q+ with H 2 and He targets, to increase as the charge state of the projectile was decreased. The binary encounter electron production has recently been a subject of detailed investigations. We have calculated the differential elastic scattering cross sections of electrons from several ions incorporating the exchange contribution of the continuum and the bound orbitals in addition to the static potential. The double differential binary encounter electron production cross sections are presented using the impulse approximation

  18. PROTEOTRONICS: The emerging science of protein-based electronic devices

    International Nuclear Information System (INIS)

    Alfinito, Eleonora; Pousset, Jeremy; Reggiani, Lino

    2015-01-01

    Protein-mediated charge transport is of relevant importance in the design of protein based electronics and in attaining an adequate level of understanding of protein functioning. This is particularly true for the case of transmembrane proteins, like those pertaining to the G protein coupled receptors (GPCRs). These proteins are involved in a broad range of biological processes like catalysis, substance transport, etc., thus being the target of a large number of clinically used drugs. This paper briefly reviews a variety of experiments devoted to investigate charge transport in proteins and present a unified theoretical model able to relate macroscopic experimental results with the conformations of the amino acids backbone of the single protein. (paper)

  19. Electronic tagging and integrated product intelligence

    Science.gov (United States)

    Swerdlow, Martin; Weeks, Brian

    1996-03-01

    The advent of 'intelligent,' electronic data bearing tags is set to revolutionize the way industrial and retail products are identified and tracked throughout their life cycles. The dominant system for unique identification today is the bar code, which is based on printed symbology and regulated by the International Article Numbering Association. Bar codes provide users with significant operational advantages and generate considerable added value to packaging companies, product manufacturers, distributors and retailers, across supply chains in many different sectors, from retailing, to baggage handling and industrial components, e.g., for vehicles or aircraft. Electronic tags offer the potential to: (1) record and store more complex data about the product or any modifications which occur during its life cycle; (2) access (and up-date) stored data in real time in a way which does not involve contact with the product or article; (3) overcome the limitations imposed by systems which rely on line-of-sight access to stored data. Companies are now beginning to consider how electronic data tags can be used, not only to improve the efficiency of their supply chain processes, but also to revolutionize the way they do business. This paper reviews the applications and business opportunities for electronic tags and outlines CEST's strategy for achieving an 'open' standard which will ensure that tags from different vendors can co-exist on an international basis.

  20. Looking for Guidelines for the Production of Electronic Textbooks.

    Science.gov (United States)

    Landoni, M.; Wilson, R.; Gibb, F.

    2001-01-01

    Reports the results of two studies of electronic book production, including production on the World Wide Web, and explains EBONI (Electronic Books On-screen Interface) that focuses on the evaluation of electronic resources and compiling guidelines for publishing electronic materials on the Internet for the United Kingdom higher education…

  1. Extractable proteins from electron beam (EB) irradiated natural rubber (NR) latex

    International Nuclear Information System (INIS)

    Feroza Akhtar; Fumio Yoshii; Keizo Makuuchi

    1996-01-01

    The protein assay of natural rubber latex (NRL) vulcanized by low energy electron beam (EB, 300 keV, 30 mA) has been carried out using Bicinchoninic acid (BCA) reagent. Extractable protein in irradiated latex film was determined by measuring the absorption of colored solution at 562 nm using UV spectrometer. The effect of various radiation doses on the extractable protein content of NRL was investigated. It was ,found that the quantities of extractable protein increases with radiation dose. When compared with ,gamma-ray irradiated samples the same trend was observed. Electron beam irradiated latex films are leached in 1% (ammonia water for various lengths of time. From the results it was established that within 2 hours of leaching in ammonia water most of the extractable protein (96%) were removed from rubber film

  2. Protein electron transfer: is biology (thermo)dynamic?

    International Nuclear Information System (INIS)

    Matyushov, Dmitry V

    2015-01-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic

  3. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Liu, Lifang; Petranovic, Dina

    2012-01-01

    Since the approval of recombinant insulin from Escherichia coli for its clinical use in the early 1980s, the amount of recombinant pharmaceutical proteins obtained by microbial fermentations has significantly increased. The recent advances in genomics together with high throughput analysis...... of recombinant therapeutics using yeast Saccharomyces cerevisiae as a model platform, and discusses the future potential of this platform for production of blood proteins and substitutes....

  4. Metal-like transport in proteins: A new paradigm for biological electron transfer

    Science.gov (United States)

    Malvankar, Nikhil; Vargas, Madeline; Tuominen, Mark; Lovley, Derek

    2012-02-01

    Electron flow in biologically proteins generally occurs via tunneling or hopping and the possibility of electron delocalization has long been discounted. Here we report metal-like transport in protein nanofilaments, pili, of bacteria Geobacter sulfurreducens that challenges this long-standing belief [1]. Pili exhibit conductivities comparable to synthetic organic metallic nanostructures. The temperature, magnetic field and gate-voltage dependence of pili conductivity is akin to that of quasi-1D disordered metals, suggesting a metal-insulator transition. Magnetoresistance (MR) data provide evidence for quantum interference and weak localization at room temperature, as well as a temperature and field-induced crossover from negative to positive MR. Furthermore, pili can be doped with protons. Structural studies suggest the possibility of molecular pi stacking in pili, causing electron delocalization. Reducing the disorder increases the metallic nature of pili. These electronically functional proteins are a new class of electrically conductive biological proteins that can be used to generate future generation of inexpensive and environmentally-sustainable nanomaterials and nanolectronic devices such as transistors and supercapacitors. [1] Malvankar et al. Nature Nanotechnology, 6, 573-579 (2011)

  5. Economic issues with follow-on protein products.

    Science.gov (United States)

    Lanthier, Michael; Behrman, Rachel; Nardinelli, Clark

    2008-09-01

    The economic effects of the possible introduction of 'follow-on' protein products have been the subject of recent debate. Here, we aim to explore the economic issues surrounding this debate using three measures: total sales, product complexity and patent expiry. Our analysis shows that the sales of therapeutic protein products are concentrated in a relatively small number of branded products, which may be the most attractive targets for follow-on development. For the years 2013-2015, we estimate that products representing US$20 billion in annual sales--approximately half of all sales in 2006--can be expected to lose patent protection.

  6. Immunofluorescence detection of milk protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2015-05-01

    Full Text Available Nowadays there are various vegetable protein additives intended for the manufacture of meat products in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. The most common vegetable additives include various types of flour, starch, fiber and plant protein. Among animal proteins, the most commonly used are plasma, collagen or milk protein. Milk protein is added to meat products due to its functional properties, such as emulsifying fats, improving the holding capacity of meat, improving juiciness, gel-forming capacity and affecting the taste of the product. Usage of these proteins, however, is currently limited by the effective legislation, not only in order to prevent consumer deception, but also because of their potential impact on consumers' health of. Thus, this issue has received considerable attention not only in the Czech Republic, but also globally. The main risk is the impossibility of selecting a suitable foodstuff for individuals with potential allergic reactions. The only option for allergic consumers to protect themselves is to strictly exclude the given allergen from their diet. Although the number of studies dealing with the reduction or loss of allergenicity is increasing, yet these practices are not common. Most of the population suffering from food allergies is thus still dependent on strict exclusion of foodstuffs causing adverse allergic reactions from their diet. Detection of allergens in foodstuffs is unfortunately quite difficult due to the fact that they occur in trace amounts and are often masked by different parts of the foodstuff. This research dealt with the detection of milk protein in meat products purchased in the market network of the Czech Republic, whereas declaration given by the manufacturer on the packaging for the small meat products purchased from the market was used to verify the detection of milk protein by the immunofluorescence method. 20 products were

  7. First principles studies of electron tunneling in proteins

    Science.gov (United States)

    Hayashi, Tomoyuki; Stuchebrukhov, Alexei A.

    2014-01-01

    A first principles study of electronic tunneling along the chain of seven Fe/S clusters in respiratory complex I, a key enzyme in the respiratory electron transport chain, is described. The broken-symmetry states of the Fe/S metal clusters calculated at both DFT and semi-empirical ZINDO levels were utilized to examine both the extremely weak electronic couplings between Fe/S clusters and the tunneling pathways, which provide a detailed atomistic-level description of the charge transfer process in the protein. One-electron tunneling approximation was found to hold within a reasonable accuracy, with only a moderate induced polarization of the core electrons. The method is demonstrated to be able to calculate accurately the coupling matrix elements as small as 10−4 cm−1. A distinct signature of the wave properties of electrons is observed as quantum interferences of multiple tunneling pathways. PMID:25383312

  8. Electronic transport on the spatial structure of the protein: Three-dimensional lattice model

    International Nuclear Information System (INIS)

    Sarmento, R.G.; Frazão, N.F.; Macedo-Filho, A.

    2017-01-01

    Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.

  9. Electronic transport on the spatial structure of the protein: Three-dimensional lattice model

    Energy Technology Data Exchange (ETDEWEB)

    Sarmento, R.G. [Departamento de Ciências Biológicas, Universidade Federal do Piauí, 64800-000 Floriano, PI (Brazil); Frazão, N.F. [Centro de Educação e Saúde, Universidade Federal de Campina Grande, 581750-000 Cuité, PB (Brazil); Macedo-Filho, A., E-mail: amfilho@gmail.com [Campus Prof. Antonio Geovanne Alves de Sousa, Universidade Estadual do Piauí, 64260-000 Piripiri, PI (Brazil)

    2017-01-30

    Highlights: • The electronic transport on the structure of the three-dimensional lattice model of the protein is studied. • The signing of the current–voltage is directly affected by permutations of the weak bonds in the structure. • Semiconductor behave of the proteins suggest a potential application in the development of novel biosensors. - Abstract: We report a numerical analysis of the electronic transport in protein chain consisting of thirty-six standard amino acids. The protein chains studied have three-dimensional structure, which can present itself in three distinct conformations and the difference consist in the presence or absence of thirteen hydrogen-bondings. Our theoretical method uses an electronic tight-binding Hamiltonian model, appropriate to describe the protein segments modeled by the amino acid chain. We note that the presence and the permutations between weak bonds in the structure of proteins are directly related to the signing of the current–voltage. Furthermore, the electronic transport depends on the effect of temperature. In addition, we have found a semiconductor behave in the models investigated and it suggest a potential application in the development of novel biosensors for molecular diagnostics.

  10. US-Total Electron Content Product (USTEC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The US Total Electron Content (US-TEC) product is designed to specify TEC over the Continental US (CONUS) in near real-time. The product uses a Kalman Filter data...

  11. Production of Medical Isotopes with Electron Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Rotsch, D A; Alford, K.; Bailey, J. L.; Bowers, D. L.; Brossard, T.; Brown, M. A.; Chemerisov, S. D.; Ehst, D.; Greene, J.; Gromov, R. G.; Grudzinski, J.J.; Hafenrichter, L.; Hebden, A. S.; Henning, W.; Heltemes, T. A.; Jerden, J.; Jonah, C. D.; Kalensky, M.; Krebs, J. F.; Makarashvili, V.; Micklich, B.; Nolen, J.; Quigley, K. J.; Schneider, J. F.; Smith, N. A.; Stepinski, D. C.; Sun, Z.; Tkac, P.; Vandegrift, G. F.; Virgo, M J; Wesolowski, K. A.; Youker, A. J.

    2017-06-01

    Radioisotopes play important roles in numerous areas ranging from medical treatments to national security and basic research. Radionuclide production technology for medical applications has been pursued since the early 1900s both commercially and in nuclear science centers. Many medical isotopes are now in routine production and are used in day-to-day medical procedures. Despite these advancements, research is accelerating around the world to improve the existing production methodologies as well as to develop novel radionuclides for new medical appli-cations. Electron linear accelerators (linacs) represent a unique method for the production of radioisotopes. Even though the basic technology has been around for decades, only recently have electron linacs capable of producing photons with sufficient energy and flux for radioisotope production become available. Housed in Argonne Nation-al Laboratory’s Low Energy Accelerator Facility (LEAF) is a newly upgraded 55 MeV/25-kW electron linear ac-celerator, capable of producing a wide range of radioiso-topes. This talk will focus on the work being performed for the production of the medical isotopes 99Mo (99Mo/99mTc generator), 67Cu, and 47Sc.

  12. ELISA for Detection of Soya Proteins in Meat Products

    Directory of Open Access Journals (Sweden)

    Eva Renčová

    2009-01-01

    Full Text Available Indirect competitive ELISA method for the detection of soya proteins in meat products was developed. The detection limit of the method is 0.5% of the weight of added soya protein. A total of 131 meat product samples such as salamis or sausages from the Czech Republic market were investigated for the presence of soya proteins. Soya proteins were detected in 84% of the investigated samples without any declaration on the package of the product. The use of vegetable additives, namely soya in meat products in the market of the Czech Republic is very frequent and the restriction of its usage by legislation relates only to some kinds of durable products and ham (Act 264/2003 Coll.. The need for sensitive inspecting methods for soya protein detection is not only associated with the economic aspect (adulteration, but mainly with consumer health protection in case of allergy to soya proteins.

  13. Can microbes compete with cows for sustainable protein production - A feasibility study on high quality protein.

    Science.gov (United States)

    Vestergaard, Mike; Chan, Siu Hung Joshua; Jensen, Peter Ruhdal

    2016-11-08

    An increasing population and their increased demand for high-protein diets will require dramatic changes in the food industry, as limited resources and environmental issues will make animal derived foods and proteins, gradually more unsustainable to produce. To explore alternatives to animal derived proteins, an economic model was built around the genome-scale metabolic network of E. coli to study the feasibility of recombinant protein production as a food source. Using a novel model, we predicted which microbial production strategies are optimal for economic return, by capturing the tradeoff between the market prices of substrates, product output and the efficiency of microbial production. A case study with the food protein, Bovine Alpha Lactalbumin was made to evaluate the upstream economic feasibilities. Simulations with different substrate profiles at maximum productivity were used to explore the feasibility of recombinant Bovine Alpha Lactalbumin production coupled with market prices of utilized materials. We found that recombinant protein production could be a feasible food source and an alternative to traditional sources.

  14. Can microbes compete with cows for sustainable protein production - A feasibility study on high quality protein

    Science.gov (United States)

    Vestergaard, Mike; Chan, Siu Hung Joshua; Jensen, Peter Ruhdal

    2016-11-01

    An increasing population and their increased demand for high-protein diets will require dramatic changes in the food industry, as limited resources and environmental issues will make animal derived foods and proteins, gradually more unsustainable to produce. To explore alternatives to animal derived proteins, an economic model was built around the genome-scale metabolic network of E. coli to study the feasibility of recombinant protein production as a food source. Using a novel model, we predicted which microbial production strategies are optimal for economic return, by capturing the tradeoff between the market prices of substrates, product output and the efficiency of microbial production. A case study with the food protein, Bovine Alpha Lactalbumin was made to evaluate the upstream economic feasibilities. Simulations with different substrate profiles at maximum productivity were used to explore the feasibility of recombinant Bovine Alpha Lactalbumin production coupled with market prices of utilized materials. We found that recombinant protein production could be a feasible food source and an alternative to traditional sources.

  15. Trial production of low protein irradiated natural rubber latex by low energy electron beam in pilot scale

    International Nuclear Information System (INIS)

    Utama, Marga; Yoshii, F.; Kume, T.

    2006-01-01

    Three importance factors for producing low protein by low energy electron beam (250 keV/10 mA) irradiation in pilot scale (20 liters per bath) with 1,9-nonediol diacrylate (NDA) namely: maturation time of natural rubber latex before irradiation, treatment of irradiated natural rubber latex (INRL) before and after centrifugation, and standard irradiation method has been carried out. The results showed that the optimum irradiation time for producing INRL with 5 phr (part hundred ratio of rubber) of NDA as sensitize agent, and with the rotation speed of agitation 210 rpm (rotation per minutes) was between 20-30 minutes. By using this condition tensile strength of the INRL film was 26 MPa. The maturation of natural rubber latex before irradiation is the key for driving the quality of INRL. Water extractable protein content of INRL after leaching in 1% ammonia solution for 30 minutes at room temperature was around 47 μ/g, and after adding with 1 phr of PVA (poly vinyl alcohol) or 0.1 phr CMC (carboxy methyl cellulose) the water extractable protein content decrease less than 6 μ/g. (author)

  16. Fast electron transfer through a single molecule natively structured redox protein

    DEFF Research Database (Denmark)

    Della Pia, Eduardo Antonio; Chi, Qijin; Macdonald, J. Emyr

    2012-01-01

    The electron transfer properties of proteins are normally measured as molecularly averaged ensembles. Through these and related measurements, proteins are widely regarded as macroscopically insulating materials. Using scanning tunnelling microscopy (STM), we present new measurements of the conduc...

  17. Customer Buying Behavior : - Online shopping towards electronic product

    OpenAIRE

    Wang, Dan; Yang, Liuzi

    2010-01-01

    ABSTRACT Online shopping in EU has been shown to a good potential market. The electronic equipment takes a high percent of the individuals shopping. Compared with other goods, online shopping of electronic goods adds great convenience to the life of the people. Buying electronic gadgets online gives customers an opportunity to find a great variety of product online, and customers can review a wide selection of products and find special offers and discount with the best deals online. In the co...

  18. USE OF MEAT-BONE PASTE AS A PROTEIN SOURCE IN MEAT PRODUCT PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. K. Kakimov

    2016-01-01

    Full Text Available In this paper, the results of the experimental research on developing the technology of a protein complex based on the meat-bone paste and protein-fat-blood emulsion are shown. The technological scheme of meat-bone paste production on the basis of complex grinding meat-bone raw material to bone particle size of 100 ∙10–6 m and further processing of bone particles using reagent, cheese whey, with pH 4,3 is presented. When studying the nutritive and biological value of the protein complex, it was established that the protein complex consisting of the food component from bone and protein-fat-blood emulsion could be used instead of the basic raw material in meat product production. The comparative analysis of the nutritive value of the protein complex and horse meat demonstrated the following results: the amino acid composition of the protein complex showed a balance of the essential amino acids and the high content of the essential amino acids which limit the biological value: lysine, leucine and threonine. The high content of polyunsaturated fatty acids was observed, which justified the biological value of the protein complex.

  19. Can microbes compete with cows for sustainable protein production - A feasibility study on high quality protein

    DEFF Research Database (Denmark)

    Vestergaard, Mike; Chan, Siu Hung Joshua; Jensen, Peter Ruhdal

    2016-01-01

    An increasing population and their increased demand for high-protein diets will require dramatic changes in the food industry, as limited resources and environmental issues will make animal derived foods and proteins, gradually more unsustainable to produce. To explore alternatives to animal...... derived proteins, an economic model was built around the genome-scale metabolic network of E. coli to study the feasibility of recombinant protein production as a food source. Using a novel model, we predicted which microbial production strategies are optimal for economic return, by capturing the tradeoff...... between the market prices of substrates, product output and the efficiency of microbial production. A case study with the food protein, Bovine Alpha Lactalbumin was made to evaluate the upstream economic feasibilities. Simulations with different substrate profiles at maximum productivity were used...

  20. Relations between protein production, protein quality and environmental factors in Pisum mutants

    International Nuclear Information System (INIS)

    Gottschalk, W.; Mueller, H.P.; Wolff, G.

    1975-01-01

    The seed protein content of 138 radiation-induced Pisum mutants was determined. The variability of this genetically well-defined material agrees approximately with that of the world collection of Pisum sativum. Some environmental factors to a great extent influence the protein production of the mutants and the initial line. Therefore, it is necessary to consider the relations between the genetically controlled protein production and its dependence upon the environmental factors. This is especially evident if the protein situation of the same genotypes cultivated under the moderate climatic conditions of middle Europe is compared with the subtropical conditions of India. A generally firm correlation between seed size and protein content could not be found in material regarding 148 different mutants of our assortment. Therefore, the selection of small-grained mutants does not result in a selection of protein-rich genotypes in Pisum sativum. Considering all the criteria positively and negatively influencing the protein production, a positive situation could be found in some mutants, especially in the fasciated ones. Furthermore, an improvement of the protein quality could be reached by a genetically conditioned alteration of the globulin-albumin ratio leading to an increase of some essential amino acids such as methionine and lysine. The combined action of mutant genes results in unexpected changes of the protein quantity as well as the quality of the recombinants in relation to their parental mutants. The comparison of some essential amino acids of our useful mutants with those of the varieties of other genera of the Leguminosae shows certain trends of biochemical alterations realized during evolutionary development of the family. (author)

  1. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen

    2016-07-30

    Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron

  2. Finding the "bio" in biobased products: electrophoretic identification of wheat proteins in processed products.

    Science.gov (United States)

    Robertson, George H; Hurkman, William J; Cao, Trung K; Tanaka, Charlene K; Orts, William J

    2010-04-14

    Verification of the biocontent in biobased or "green" products identifies genuine products, exposes counterfeit copies, supports or refutes content claims, and ensures consumer confidence. When the biocontent includes protein, elemental nitrogen analysis is insufficient for verification since non-protein, but nitrogen-rich, content also may be present. However, the proteins can be extracted, separated by electrophoretic methods, and detected by UV absorption, protein stain, or immunoblotting. We utilized capillary zone electrophoresis (CZE) to separate proteins in a gliadin fraction that had been dissolved in aqueous ethanol (70%) and polyacrylamide gel electrophoresis (PAGE) to separate proteins in a gliadin-plus-glutenin fraction that had been dissolved in water containing both sodium dodecyl sulfate (SDS) and a reducing agent, dithiothreitol (DTT). We sought to verify the presence of these wheat grain proteins in wheat bread, a wheat flake cereal, wheat beer, and an enclosure for an antique automobile ignition coil reputed to contain wheat gluten. Proteins extracted from commercial wheat, corn, and soy flours served as standards, and proteins from heat-altered wheat served as process condition references. This approach successfully identified wheat proteins in these products especially if the process temperature did not exceed 120 degrees C. Above this temperature attenuation was nearly complete for proteins analyzed by CZE, but wheat-like patterns could still be recognized by one- and two-dimensional PAGE. Immunoblots reacted with grain-specific antibodies confirmed the identities of the cereal component especially when the protein pattern was greatly altered by thermal modification, specific protein adsorption, or protein digestion. In addition to verifying that wheat proteins are present, the complementary use of these methods can reveal whether whole wheat gluten or merely an alcohol-soluble fraction had been used in the specific product and indicate the

  3. Protein production: Planet, profit plus people?

    NARCIS (Netherlands)

    Aiking, H.

    2014-01-01

    Food sustainability and food security are increasingly in the spotlight and increasingly intertwined. According to some projections we will need to nearly double food production in the next 4 decades. This article argues that protein production and consumption are pivotal to sustainability, because

  4. Spectral-Product Methods for Electronic Structure Calculations (Preprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Mills, J. E; Boatz, J. A

    2006-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  5. Spectral-Product Methods for Electronic Structure Calculations (Postprint)

    National Research Council Canada - National Science Library

    Langhoff, P. W; Hinde, R. J; Mills, J. D; Boatz, J. A

    2007-01-01

    .... The spectral-product approach to molecular electronic structure avoids the repeated evaluations of the one- and two-electron integrals required in construction of polyatomic Hamiltonian matrices...

  6. Research of the internal electron-positron pair production

    International Nuclear Information System (INIS)

    Fenyes, Tibor

    1985-01-01

    The phenomenon of internal electron-positron pair production by excited nuclei is briefly reviewed. The advantages of this phenomenon in nuclear structure investigations are pointed. The new Si(Li)-Si(Li) electron spectrometer with superconducting magnetic transporter (SMS) built at ATOMKI, Hungary, was tested for detection of internal electron-positron pair production events. Proton beam of a Van de Graaff accelerator of 5 MV was used to excite the target nuclei of sup(27)Al, sup(42)Ca and sup(19)F. The internal pair production coefficients were measured and compared with the data of literature. The detection efficiency of SMS is calculated to be (37+-7)%. The test proved that the SMS is suitable for nuclear structure investigations producing electron-positron pairs. The SMS of ATOMKI is recently the top instrument all over the world in this field: its detection efficiency, energy resolution and applicability for multipolarity identification are much better than these properties of other detectors. (D.Gy.)

  7. Automation of specimen selection and data acquisition for protein electron crystallography

    NARCIS (Netherlands)

    Oostergetel, G.T.; Keegstra, W.; Brisson, A.D R

    A system is presented for semi-automatic specimen selection and data acquisition for protein electron crystallography, based on a slow-scan CCD camera connected to a transmission electron microscope and control from an external computer. Areas of interest on the specimen are localised at low

  8. Functionality of alternative protein in gluten-free product development.

    Science.gov (United States)

    Deora, Navneet Singh; Deswal, Aastha; Mishra, Hari Niwas

    2015-07-01

    Celiac disease is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. The current treatment for celiac disease is life-long adherence to a strict gluten-exclusion diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. A major limitation in the production of gluten-free products is the lack of protein functionality in non-wheat cereals. Additionally, commercial gluten-free mixes usually contain only carbohydrates, which may significantly limit the amount of protein in the diet. In the recent past, various approaches are attempted to incorporate protein-based ingredients and to modify the functional properties for gluten-free product development. This review aims to the highlight functionality of the alternative protein-based ingredients, which can be utilized for gluten-free product development both functionally as well as nutritionally. © The Author(s) 2014.

  9. Electric fields, electron production, and electron motion at the stripper foil in the Los Alamos Proton Storage Ring

    International Nuclear Information System (INIS)

    Plum, M.

    1995-01-01

    The beam instability at the Los Alamos Proton Storage Ring (PSR) most likely involves coupled oscillations between electrons and protons. For this instability to occur, there must be a strong source of electrons. Investigation of the various sources of electrons in the PSR had begun. Copious electron production is expected in the injection section because this section contains the stripper foil. This foil is mounted near the center of the beam pipe, and both circulating and injected protons pass through it, thus allowing ample opportunity for electron production. This paper discusses various mechanisms for electron production, beam-induced electric fields, and electron motion in the vicinity of the foil

  10. Specialized protein products in broiler chicken nutrition: A review

    Directory of Open Access Journals (Sweden)

    Sleman S.M. Beski

    2015-06-01

    Full Text Available In poultry nutrition, most attention is given to protein products, due to the importance of protein as a major constituent of the biologically active compounds in the body. It also assists in the synthesis of body tissue, for that renovation and growth of the body. Furthermore, protein exists in form of enzymes and hormones which play important roles in the physiology of any living organism. Broilers have high dietary protein requirements, so identification of the optimum protein concentration in broiler diets, for either maximizing broiler performance or profit, requires more knowledge about birds' requirements for protein and amino acids and their effects on the birds' growth performance and development. It also requires knowledge about the protein sources available that can be used in poultry diets. The broad aim of this review is to highlight the importance of some of the available high-quality specialized protein products of both animal and plant origins which can be explored for feeding broiler chickens. Minimization of the concentration of anti-nutritional factors (ANFs and supplementation with immunologically active compounds are the main focus of gut health-promoting broiler diets. These diet characteristics are influenced by feed ingredient composition and feed processing. The general hypothesis is that these protein products are highly digestible and devoid of or contain less ANFs. Feeding these products to broiler chicks, especially at an earlier age, can assist early gut development and digestive physiology, and improve broiler growth performance and immunity.

  11. Immunofluorescent determination of wheat protein in meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2014-02-01

    Full Text Available In food industry nowadays, there are various plant-origin protein additives which are meant for production of meat products. Among the most frequent additives of this type there are different kinds of flour, starch, fiber, and plant-origin proteins. Their usage at present is limited by the existing legislation not to prevent consumer deception but also for reasons of possible influence on consumer health. Therefore, this problem is paid a lot of attention not only in the Czech Republic but also all over the world. The main risk is seen in the impossibility to choose a suitable foodstuff for an individual prone to allergic reactions. Potential allergens are also often plant-origin raw materials which are added into foodstuffs for their technological qualities and low price. Wheat is widely cultivated cereal as well as an important source of proteins. After ingestion or inhalation, wheat proteins may cause adverse reactions. These adverse effects include a wide range of disorders which are dependent on the method of contact with wheat protein. These adverse effects can then take the form of various clinical manifestations, such as celiac disease, T-cell mediated inflammatory bowel disease, dermatitis, skin rash, breathing difficulties, allergy to pollen or to wheat flour or food allergy to foodstuffs containing gluten. The only possible protection against adverse immune reactions for those with food allergies is strictly excluding the allergen from their diet. Although the number of studies dealing with the reduction or loss of allergenicity is increasing, yet these practices are not common. Most of the population suffering from food allergies is thus still dependent on strict exclusion of foodstuffs causing adverse allergic reactions from their diet. In order to avoid misleading consumers and also to protect allergic consumers, analytical methods applicable to all types of foodstuffs have been developed. Unfortunately, detection of allergens in

  12. Host cell proteins in biotechnology-derived products: A risk assessment framework.

    Science.gov (United States)

    de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith

    2015-11-01

    To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.

  13. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    Science.gov (United States)

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  14. An electronic channel switching-based aptasensor for ultrasensitive protein detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongbo; Wang Cui [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Wu Zaisheng, E-mail: wuzaisheng@163.com [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Lu Limin; Qiu Liping; Zhou Hui; Shen Guoli [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Yu Ruqin, E-mail: rqyu@hnu.edu.cn [State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-01-03

    Highlights: Black-Right-Pointing-Pointer Target IgE is successfully designed to serve as a barrier to separate enzyme from its substrate. Black-Right-Pointing-Pointer This sensing platform of electronic channel switching-based aptasensor can be simply manipulated. Black-Right-Pointing-Pointer The stable hairpin structure of anti-IgE aptamer is utilized to detect target IgE. Black-Right-Pointing-Pointer The sensor is ultrasensitive sensitivity, excellent selectivity and small volume of sample. Black-Right-Pointing-Pointer It is a powerful platform to be further expanded to detect more kinds of proteins and even cells. - Abstract: Due to the ubiquity and essential of the proteins in all living organisms, the identification and quantification of disease-specific proteins are particularly important. Because the conformational change of aptamer upon its target or probe/target/probe sandwich often is the primary prerequisite for the design of an electrochemical aptameric assay system, it is extremely difficult to construct the electrochemical aptasensor for protein assay because the corresponding aptamers cannot often meet the requirement. To circumvent the obstacles mentioned, an electronic channel switching-based (ECS) aptasensor for ultrasensitive protein detection is developed. The essential achievement made is that an innovative sensing concept is proposed: the hairpin structure of aptamer is designed to pull electroactive species toward electrode surface and makes the surface-immobilized IgE serve as a barrier that separates enzyme from its substrate. It seemingly ensures that the ECS aptasensor exhibits most excellent assay features, such as, a detection limit of 4.44 Multiplication-Sign 10{sup -6} {mu}g mL{sup -1} (22.7 fM, 220 zmol in 10-{mu}L sample) (demonstrating a 5 orders of magnitude improvement in detection sensitivity compared with classical electronic aptasensors) and dynamic response range from 4.44 Multiplication-Sign 10{sup -6} to 4.44 Multiplication

  15. Enhanced Bio-hydrogen Production from Protein Wastewater by Altering Protein Structure and Amino Acids Acidification Type

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-01-01

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control. PMID:24495932

  16. Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type.

    Science.gov (United States)

    Xiao, Naidong; Chen, Yinguang; Chen, Aihui; Feng, Leiyu

    2014-02-05

    Enhanced bio-hydrogen production from protein wastewater by altering protein structure and amino acids acidification type via pH control was investigated. The hydrogen production reached 205.2 mL/g-protein when protein wastewater was pretreated at pH 12 and then fermented at pH 10. The mechanism studies showed that pH 12 pretreatment significantly enhanced protein bio-hydrolysis during the subsequent fermentation stage as it caused the unfolding of protein, damaged the protein hydrogen bonding networks, and destroyed the disulfide bridges, which increased the susceptibility of protein to protease. Moreover, pH 10 fermentation produced more acetic but less propionic acid during the anaerobic fermentation of amino acids, which was consistent with the theory of fermentation type affecting hydrogen production. Further analyses of the critical enzymes, genes, and microorganisms indicated that the activity and abundance of hydrogen producing bacteria in the pH 10 fermentation reactor were greater than those in the control.

  17. Single-particle electron microscopy in the study of membrane protein structure.

    Science.gov (United States)

    De Zorzi, Rita; Mi, Wei; Liao, Maofu; Walz, Thomas

    2016-02-01

    Single-particle electron microscopy (EM) provides the great advantage that protein structure can be studied without the need to grow crystals. However, due to technical limitations, this approach played only a minor role in the study of membrane protein structure. This situation has recently changed dramatically with the introduction of direct electron detection device cameras, which allow images of unprecedented quality to be recorded, also making software algorithms, such as three-dimensional classification and structure refinement, much more powerful. The enhanced potential of single-particle EM was impressively demonstrated by delivering the first long-sought atomic model of a member of the biomedically important transient receptor potential channel family. Structures of several more membrane proteins followed in short order. This review recounts the history of single-particle EM in the study of membrane proteins, describes the technical advances that now allow this approach to generate atomic models of membrane proteins and provides a brief overview of some of the membrane protein structures that have been studied by single-particle EM to date. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Heterologous production of peptides in plants: fusion proteins and beyond.

    Science.gov (United States)

    Viana, Juliane Flávia Cançado; Dias, Simoni Campos; Franco, Octávio Luiz; Lacorte, Cristiano

    2013-11-01

    Recombinant DNA technology has allowed the ectopic production of proteins and peptides of different organisms leading to biopharmaceutical production in large cultures of bacterial, yeasts and mammalian cells. Otherwise, the expression of recombinant proteins and peptides in plants is an attractive alternative presenting several advantages over the commonly used expression systems including reduced production costs, easy scale-up and reduced risks of pathogen contamination. Different types of proteins and peptides have been expressed in plants, including antibodies, antigens, and proteins and peptides of medical, veterinary and industrial applications. However, apart from providing a proof of concept, the use of plants as platforms for heterologous protein and peptide production still depends on key steps towards optimization including the enhancement of expression levels, manipulation of post-transcriptional modifications and improvements in purification methods. In this review, strategies to increase heterologous protein and peptide stability and accumulation are discussed, focusing on the expression of peptides through the use of gene fusions.

  19. Methods for production of proteins in host cells

    Science.gov (United States)

    Donnelly, Mark; Joachimiak, Andrzej

    2004-01-13

    The present invention provides methods for the production of proteins, particularly toxic proteins, in host cells. The invention provides methods which use a fusion protein comprising a chaperonin binding domain in host cells induced or regulated to have increased levels of chaperonin which binds the chaperonin binding domain.

  20. Production of Pharmaceutical Proteins in Solanaceae Food Crops

    Directory of Open Access Journals (Sweden)

    Giorgio De Guzman

    2013-01-01

    Full Text Available The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins.

  1. Possibilities of microscopic detection of isolated porcine proteins in model meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2016-05-01

    Full Text Available In recent years, various protein additives intended for manufacture of meat products have increasing importance in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. Among animal proteins, blood plasma, milk protein or collagen are used most commonly. Collagen is obtained from pork, beef, and poultry or fish skin. Collagen does not contain all the essential amino acids, thus it is not a full protein in terms of essential amino acids supply for one's organism. However, it is rather rich in amino acids of glycine, hydroxyproline and proline which are almost absent in other proteins and their synthesis is very energy intensive. Collagen, which is added to the soft and small meat products in the form of isolated porcine protein, significantly affects the organoleptic properties of these products. This work focused on detection of isolated porcine protein in model meat products where detection of isolated porcine protein was verified by histological staining and light microscopy. Seven model meat products from poultry meat and 7 model meat products from beef and pork in the ratio of 1:1, which contained 2.5% concentration of various commercially produced isolated porcine proteins, were examined. These model meat products were histologically processed by means of cryosections and stained with hematoxylin-eosin staining, toluidine blue staining and Calleja. For the validation phase, Calleja was utilized. To determine the sensitivity and specificity, five model meat products containing the addition of isolated porcine protein and five model meat products free of it were used. The sensitivity was determined for isolated porcine protein at 1.00 and specificity was determined at 1.00. The detection limit of the method was at the level of 0.001% addition. Repeatability of the method was carried out using products with addition as well as without addition of isolated porcine protein and detection was repeated

  2. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  3. Production of functional protein hydrolysates from Egyptian breeds ...

    African Journals Online (AJOL)

    Production of functional protein hydrolysates from Egyptian breeds of soybean and lupin seeds. AA khalil, SS Mohamed, FS Taha, EN Karlsson. Abstract. Enzymatic hydrolysis is an agro-processing aid that can be utilized in order to improve nutritional quality of protein extracts from many sources. In this study, protein ...

  4. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. 21 CFR 184.1498 - Microparticulated protein product.

    Science.gov (United States)

    2010-04-01

    ... ingredient statement on both bulk and packaged food must include the source of the protein (e.g., “microparticulated egg white protein”), followed by a parenthetical listing of each of the ingredients in the... preparation of the microparticulated protein product must be used in compliance with the limitations of the...

  6. Utilizing protein-lean coproducts from corn containing recombinant pharmaceutical proteins for ethanol production.

    Science.gov (United States)

    Paraman, Ilankovan; Moeller, Lorena; Scott, M Paul; Wang, Kan; Glatz, Charles E; Johnson, Lawrence A

    2010-10-13

    Protein-lean fractions of corn (maize) containing recombinant (r) pharmaceutical proteins were evaluated as a potential feedstock to produce fuel ethanol. The levels of residual r-proteins in the coproduct, distillers dry grains with solubles (DDGS), were determined. Transgenic corn lines containing recombinant green fluorescence protein (r-GFP) and a recombinant subunit vaccine of Escherichia coli enterotoxin (r-LTB), primarily expressed in endosperm, and another two corn lines containing recombinant human collagen (r-CIα1) and r-GFP, primarily expressed in germ, were used as model systems. The kernels were either ground and used for fermentation or dry fractionated to recover germ-rich fractions prior to grinding for fermentation. The finished beers of whole ground kernels and r-protein-spent endosperm solids contained 127-139 and 138-155 g/L ethanol concentrations, respectively. The ethanol levels did not differ among transgenic and normal corn feedstocks, indicating the residual r-proteins did not negatively affect ethanol production. r-Protein extraction and germ removal also did not negatively affect fermentation of the remaining mass. Most r-proteins were inactivated during the mashing process used to prepare corn for fermentation. No functionally active r-GFP or r-LTB proteins were found after fermentation of the r-protein-spent solids; however, a small quantity of residual r-CIα1 was detected in DDGS, indicating that the safety of DDGS produced from transgenic grain for r-protein production needs to be evaluated for each event. Protease treatment during fermentation completely hydrolyzed the residual r-CIα1, and no residual r-proteins were detectable in DDGS.

  7. Direct and Indirect Electron Emission from the Green Fluorescent Protein Chromophore

    Science.gov (United States)

    Toker, Y.; Rahbek, D. B.; Klærke, B.; Bochenkova, A. V.; Andersen, L. H.

    2012-09-01

    Photoelectron spectra of the deprotonated green fluorescent protein chromophore have been measured in the gas phase at several wavelengths within and beyond the S0-S1 photoabsorption band of the molecule. The vertical detachment energy (VDE) was determined to be 2.68±0.1eV. The data show that the first electronically excited state is bound in the Franck-Condon region, and that electron emission proceeds through an indirect (resonant) electron-emission channel within the corresponding absorption band.

  8. Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Zihe; Hou, Jin; Martinez Ruiz, José Luis

    2013-01-01

    .g., metabolic and cellular stresses have a strong impact on recombinant protein production. In this work, we investigated the effect of the specific growth rate on the production of two different recombinant proteins. Our results show that human insulin precursor is produced in a growth-associated manner...... turnover, cell cycle, and global stress response. We also found that there is a shift at a specific growth rate of 0.1 h−1 that influences protein production. Thus, for lower specific growth rates, the α-amylase and insulin precursor-producing strains present similar cell responses and phenotypes, whereas......With the increasing demand for biopharmaceutical proteins and industrial enzymes, it is necessary to optimize the production by microbial fermentation or cell cultures. Yeasts are well established for the production of a wide range of recombinant proteins, but there are also some limitations; e...

  9. Production and Decay of Excited Electrons at the LHC

    CERN Document Server

    Cakir, O; Mehdiyev, R; Belyaev, A

    2004-01-01

    We study single production of excited electrons at the CERN LHC through contact interactions of fermions. Subsequent decays of excited electrons to ordinary electrons and light fermions via gauge and contact interactions are examined. The mass range accessible with the ATLAS detector is obtained.

  10. Limiting factors in Escherichia colifed-batch production of recombinant proteins

    DEFF Research Database (Denmark)

    Sanden, A.M.; Prytz, I.; Tubelekas, I.

    2003-01-01

    recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation......recombinant protein production, fed-batch, specific growth rate, feed profile, induction, mRNA, transcription, translation, acetic acid formation...

  11. Efficient protein production by yeast requires global tuning of metabolism

    DEFF Research Database (Denmark)

    Huang, Mingtao; Bao, Jichen; Hallstrom, Bjorn M.

    2017-01-01

    The biotech industry relies on cell factories for production of pharmaceutical proteins, of which several are among the top-selling medicines. There is, therefore, considerable interest in improving the efficiency of protein production by cell factories. Protein secretion involves numerous...... intracellular processes with many underlying mechanisms still remaining unclear. Here, we use RNA-seq to study the genome-wide transcriptional response to protein secretion in mutant yeast strains. We find that many cellular processes have to be attuned to support efficient protein secretion. In particular...... that by tuning metabolism cells are able to efficiently secrete recombinant proteins. Our findings provide increased understanding of which cellular regulations and pathways are associated with efficient protein secretion....

  12. Hydrolyzed Vegetable Protein Containing Products Recalls

    Data.gov (United States)

    U.S. Department of Health & Human Services — This list includes products subject to recall in the United States since February 2010 related to hydrolyzed vegetable protein (HVP) paste and powder distributed by...

  13. First high-temperature electronics products survey 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy Allen

    2006-04-01

    On April 4-5, 2005, a High-Temperature Electronics Products Workshop was held. This workshop engaged a number of governmental and private industry organizations sharing a common interest in the development of commercially available, high-temperature electronics. One of the outcomes of this meeting was an agreement to conduct an industry survey of high-temperature applications. This report covers the basic results of this survey.

  14. Future opportunities in production of disposable optics and electronics

    Science.gov (United States)

    Korhonen, Raimo

    2001-05-01

    The several production methods of paper processing chain can be used, by analogy, to generate novel ideas for production of optics and electronics. Paper processing is a very fast reel-to-reel process: In the beginning of the paper web production the process is running at the speed of over thousand meters per minute and the web width can be 10 meters, and still at the later stages the speed is several hundreds of meters per minute with the web width of a couple of meters. There are several potential reel-to-reel production methods like embossing, printing, laminating and different kinds of vacuum coating, for example evaporation and sputtering. End products are complex multi-layer composite structures. The benefits from this analogy for optics and electronics would be ideas for ultra fast production, paper-like disposable and recyclable products and the integration of optics and electronics into ordinary things like books, wallpapers, tissue papers and packages. Two experiments are presented to demonstrate the possibilities. In the first experiment optical patterns are embossed directly on paper. In the second one conductive polymers are printed on paper and plastic webs. In future, a wide network of cooperation will be needed to realize all the opportunities.

  15. Managing Product Usability: How companies deal with usability in the development of electronic consumer products

    OpenAIRE

    Van Kuijk, J.I.

    2010-01-01

    Problem statement: Even though there is a large amount of methods for user-centred design, the usability of electronic consumer products (e.g., portable music players, washing machines and mobile phones) is under pressure. Usability is the extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use. That the usability of electronic consumer products is under pressure is attributed to an incre...

  16. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana.

    Science.gov (United States)

    Shamloul, Moneim; Trusa, Jason; Mett, Vadim; Yusibov, Vidadi

    2014-04-19

    Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).

  17. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production

    DEFF Research Database (Denmark)

    Wang, Guokun; Huang, Mingtao; Nielsen, Jens

    2017-01-01

    Production of recombinant proteins by yeast plays a vital role in the biopharmaceutical industry. It is therefore desirable to develop yeast platform strains for over-production of various biopharmaceutical proteins, but this requires fundamental knowledge of the cellular machinery, especially th...

  18. Production of fungal protein from cellulosic plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Sitaram, N; Kunhi, A A.M.; Geethadevi, B R; Rao, T N.R.

    1979-01-01

    The ability of 5 Aspergillus niger strains, a Penicillium chrysogenum strain, a Pestalotia strain, and a basidiomycete to produce microbial protein on 3 alkali-treated cellulosic substrates (rice straw, bagasse, and peanut shells) was evaluated. Most strains grew better on rice straw than on the other 2 substrates. Penicillium chrysogenum St-F3B produced more protein on all 3 substrates than did any of the other strains with a maximum production on rice straw of 85 mg/g substrate after 72 h incubation on a rotary shaker at pH 3.5 to 6.0. An inverse relation between substrate concentration and protein production per g substrate was observed with this organism.

  19. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins....

  20. Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Leitner, Alexander; Castro-Rubio, Florentina; Marina, Maria Luisa; Lindner, Wolfgang

    2006-09-01

    Soybean proteins are frequently added to processed meat products for economic reasons and to improve their functional properties. Monitoring of the addition of soybean protein to meat products is of high interest due to the existence of regulations forbidding or limiting the amount of soybean proteins that can be added during the processing of meat products. We have used chromatographic prefractionation on the protein level by perfusion liquid chromatography to isolate peaks of interest from extracts of soybean protein isolate (SPI) and of meat products containing SPI. After enzymatic digestion using trypsin, the collected fractions were analyzed by nanoflow liquid chromatography-tandem mass spectrometry. Several variants and subunits of the major seed proteins, glycinin and beta-conglycinin, were identified in SPI, along with two other proteins. In soybean-protein-containing meat samples, different glycinin A subunits could be identified from the peak discriminating between samples with and without soybean proteins added. Among those, glycinin G4 subunit A4 was consistently found in all samples. Consequently, this protein (subunit) can be used as a target for new analytical techniques in the course of identifying the addition of soybean protein to meat products.

  1. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  2. Manipulating the glycosylation pathway in bacterial and lower eukaryotes for production of therapeutic proteins

    DEFF Research Database (Denmark)

    Anyaogu, Diana Chinyere; Mortensen, Uffe Hasbro

    2015-01-01

    The medical use of pharmaceutical proteins is rapidly increasing and cheap, fast and efficient production is therefore attractive. Microbial production hosts are promising candidates for development and production of pharmaceutical proteins. However, as most therapeutic proteins are secreted...... to produce proteins with humanlike glycan structures setting the stage for production of pharmaceutical proteins in bacteria, yeasts and algae....

  3. Protein Engineering: Case Studies of Commercialized Engineered Products

    Science.gov (United States)

    Walsh, Gary

    2007-01-01

    Programs in biochemistry invariably encompass the principles of protein engineering. Students often display increased understanding and enthusiasm when theoretical concepts are underpinned by practical example. Herein are presented five case studies, each focusing upon a commercial protein product engineered to enhance its application-relevant…

  4. Energy and environmental implications of novel protein production systems

    Energy Technology Data Exchange (ETDEWEB)

    Edwardson, W; Lewis, C W; Slesser, M

    1981-04-01

    The energy requirements of many novel protein production systems are compared with an examination of the relevant environmental implications of these systems. The prospects for single cell protein, leaf protein, fish farming, fish protein concentrate, algal cultivation, and hydroponic plant growth systems are investigated. Single cell protein from carbohydrate substrates, algal protein, and fish protein seem to hold much promise, as they are technologically feasible for near-term implementation and do not require major energy inputs. (2 diagrams, 1 graph, 47 references, 6 tables)

  5. End-of-life resource recovery from emerging electronic products

    DEFF Research Database (Denmark)

    Parajuly, Keshav; Habib, Komal; Cimpan, Ciprian

    2016-01-01

    Integrating product design with appropriate end-of-life (EoL) processing is widely recognized to have huge potentials in improving resource recovery from electronic products. In this study, we investigate both the product characteristics and EoL processing of robotic vacuum cleaner (RVC), as a case...... of emerging electronic product, in order to understand the recovery fate of different materials and its linkage to product design. Ten different brands of RVC were dismantled and their material composition and design profiles were studied. Another 125 RVCs (349 kg) were used for an experimental trial...... at a conventional ‘shred-and-separate’ type preprocessing plant in Denmark. A detailed material flow analysis was performed throughout the recycling chain. The results show a mismatch between product design and EoL processing, and the lack of practical implementation of ‘Design for EoL’ thinking. In the best...

  6. Nanoscale charge transfer in redox proteins and DNA: Towards biomolecular electronics

    International Nuclear Information System (INIS)

    Artés, Juan Manuel; López-Martínez, Montserrat; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau

    2014-01-01

    Understanding how charges move through and between biomolecules is a fundamental question that constitutes the basis for many biological processes. On the other hand, it has potential applications in the design of sensors based on biomolecules and single molecule devices. In this review we introduce the study of the electron transfer (ET) process in biomolecules, providing an overview of the fundamental theory behind it and the different experimental approaches. The ET in proteins is introduced by reviewing a complete electronic characterization of a redox protein (azurin) using electrochemical scanning tunnelling microscopy (ECSTM). The ET process in DNA is overviewed and results from different experimental approaches are discussed. Finally, future directions in the study of the ET process in biomolecules are introduced as well as examples of possible technological applications

  7. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    Science.gov (United States)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  8. Correlation of gene expression and protein production rate - a system wide study

    Directory of Open Access Journals (Sweden)

    Arvas Mikko

    2011-12-01

    Full Text Available Abstract Background Growth rate is a major determinant of intracellular function. However its effects can only be properly dissected with technically demanding chemostat cultivations in which it can be controlled. Recent work on Saccharomyces cerevisiae chemostat cultivations provided the first analysis on genome wide effects of growth rate. In this work we study the filamentous fungus Trichoderma reesei (Hypocrea jecorina that is an industrial protein production host known for its exceptional protein secretion capability. Interestingly, it exhibits a low growth rate protein production phenotype. Results We have used transcriptomics and proteomics to study the effect of growth rate and cell density on protein production in chemostat cultivations of T. reesei. Use of chemostat allowed control of growth rate and exact estimation of the extracellular specific protein production rate (SPPR. We find that major biosynthetic activities are all negatively correlated with SPPR. We also find that expression of many genes of secreted proteins and secondary metabolism, as well as various lineage specific, mostly unknown genes are positively correlated with SPPR. Finally, we enumerate possible regulators and regulatory mechanisms, arising from the data, for this response. Conclusions Based on these results it appears that in low growth rate protein production energy is very efficiently used primarly for protein production. Also, we propose that flux through early glycolysis or the TCA cycle is a more fundamental determining factor than growth rate for low growth rate protein production and we propose a novel eukaryotic response to this i.e. the lineage specific response (LSR.

  9. Redox activity distinguishes solid-state electron transport from solution-based electron transfer in a natural and artificial protein: cytochrome C and hemin-doped human serum albumin.

    Science.gov (United States)

    Amdursky, Nadav; Ferber, Doron; Pecht, Israel; Sheves, Mordechai; Cahen, David

    2013-10-28

    Integrating proteins in molecular electronic devices requires control over their solid-state electronic transport behavior. Unlike "traditional" electron transfer (ET) measurements of proteins that involve liquid environments and a redox cycle, no redox cofactor is needed for solid-state electron transport (ETp) across the protein. Here we show the fundamental difference between these two approaches by macroscopic area measurements, which allow measuring ETp temperature dependence down to cryogenic temperatures, via cytochrome C (Cyt C), an ET protein with a heme (Fe-porphyrin) prosthetic group as a redox centre. We compare the ETp to electrochemical ET measurements, and do so also for the protein without the Fe (with metal-free porphyrin) and without porphyrin. As removing the porphyrin irreversibly alters the protein's conformation, we repeat these measurements with human serum albumin (HSA), 'doped' (by non-covalent binding) with a single hemin equivalent, i.e., these natural and artificial proteins share a common prosthetic group. ETp via Cyt C and HSA-hemin are very similar in terms of current magnitude and temperature dependence, which suggests similar ETp mechanisms via these two systems, thermally activated hopping (with ~0.1 eV activation energy) >190 K and tunneling by superexchange Fe(3+) + e(-)), measured by electrochemistry of HSA-hemin are only 4 times lower than those for Cyt C. However, while removing the Fe redox centre from the porphyrin ring markedly affects the ET rate, it hardly changes the ETp currents through these proteins, while removing the macrocycle (from HSA, which retains its conformation) significantly reduces ETp efficiency. These results show that solid-state ETp across proteins does not require the presence of a redox cofactor, and that while for ET the Fe ion is the main electron mediator, for ETp the porphyrin ring has this function.

  10. Smart sustainable bottle (SSB) system for E. coli based recombinant protein production.

    Science.gov (United States)

    Li, Zhaopeng; Carstensen, Bettina; Rinas, Ursula

    2014-11-05

    Recombinant proteins are usually required in laboratories interested in the protein but not in the production process itself. Thus, technical equipment which is easy to handle and straight forward protein production procedures are of great benefit to those laboratories. Companies selling single use cultivation bags and bioreactors are trying to satisfy at least part of these needs. However, single-use systems can contribute to major costs which might be acceptable when "good manufacturing practices" are required but not acceptable for most laboratories facing tight funding. The assembly and application of a simple self-made "smart sustainable bottle" (SSB) system for E. coli based protein production is presented. The core of the SSB system is a 2-L glass bottle which is operated at constant temperature, air flow, and stirrer speed without measurement and control of pH and dissolved oxygen. Oxygen transfer capacities are in the range as in conventional bioreactors operated at intermediate aeration rates and by far exceed those found in conventional shaking flasks and disposable bioreactors. The SSB system was applied for the production of various recombinant proteins using T7-based expression systems and a defined autoinduction medium. The production performance regarding amount and solubility of proteins with robust and delicate properties was as good as in state-of-the-art stirred tank commercial bioreactors. The SSB system represents a low cost protein production device applicable for easy, effective, and reproducible recombinant protein production.

  11. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  12. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    International Nuclear Information System (INIS)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e − Å −2 ), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins

  13. A search for single electron production in electron positron annihilation at E = 29 GeV

    International Nuclear Information System (INIS)

    Steele, T.R.

    1989-09-01

    This thesis presents experimental results from the ASP detector which took data on e + e - interactions in the PEP storage ring at SLAC. Its design was particularly suitable for searching for production of supersymmetric particles. The motivations for and phenomenology of Supersymmetry are discussed. In particular, the production of a single supersymmetric electron (''selectron'', e) in combination with a supersymmetric photon (''photino'', γ) would result in events in which a single electron and no other particles are observed in the detector at an e + e - collider such as PEP, provided the masses of these particles are not too large. Such events would also result from the production of a single supersymmetric W-boson (''wino'', W) in combination with a supersymmetric neutrino (''sneutrino'', ν). These processes make it possible to search for electrons and winos with masses greater than the beam energy. Observation of these unusual events would distinctly indicate the production of new particles. The ASP detector was designed to be hermetic and to provide efficient event reconstruction for low multiplicity events. The detector is described and its performance is evaluated; it is found to be well-suited to this study. The data sample collected with the detector was thoroughly analyzed for evidence of single-electron events. The various possible background processes are considered and Monte Carlo calculations of the distributions from single selectron and single wino production are presented. Using this information an efficient off-line event selection process was developed, and it is described in detail. 82 refs., 41 figs., 4 tabs

  14. Optimization of Protein Hydrolysate Production Process from Jatropha curcas Cake

    OpenAIRE

    Waraporn Apiwatanapiwat; Pilanee Vaithanomsat; Phanu Somkliang; Taweesiri Malapant

    2009-01-01

    This was the first document revealing the investigation of protein hydrolysate production optimization from J. curcas cake. Proximate analysis of raw material showed 18.98% protein, 5.31% ash, 8.52% moisture and 12.18% lipid. The appropriate protein hydrolysate production process began with grinding the J. curcas cake into small pieces. Then it was suspended in 2.5% sodium hydroxide solution with ratio between solution/ J. curcas cake at 80:1 (v/w). The hydrolysis reactio...

  15. Cusp electron production in 75--300 keV He+ + Ar collisions

    International Nuclear Information System (INIS)

    Plano, V.L.; Sarkadi, L.; Zavodszky, P.; Berenyi, D.; Palinkas, J.; Gulyas, L.; Takacs, E.; Toth, L.; Tanis, J.A.

    1992-01-01

    Cusp-electron production has been investigated in collisions of 75--300 keV He + with Ar. The relative contributions from electron capture to the continuum (ECC), transfer ionization (TI), and electron loss to the continuum (ELC) to the total cusp electron production were measured. Over the energy range investigated, ECC was found to decrease from about 86% to 80%, TI decreased from about 12% to 1%, and ELC increased from about 2% to 20%. The present results are consistent with earlier work for He + and O q+ projectiles

  16. Survey on neutron production by electron beam from high power CW electron linear accelerator

    International Nuclear Information System (INIS)

    Toyama, S.

    1999-04-01

    In Japan Nuclear Cycle Development Institute, the development of high current CW electron linear accelerator is in progress. It is possible for an accelerator to produce neutrons by means of a spallation and photo nuclear reactions. Application of neutron beam produced by bremsstrahlung is one of ways of the utilization for high current electron accelerator. It is actual that many electron linear accelerators which maximum energy is higher than a few hundreds MeV are used as neutron sources. In this report, an estimate of neutron production is evaluated for high current CW electron linear accelerator. The estimate is carried out by 10 MeV beam which is maximum energy limited from the regulation and rather low for neutron production. Therefore, the estimate is also done by 17 and 35 MeV beam which is possible to be accelerated. Beryllium is considered as a target for lower electron energy in addition to Lead target for higher energy, because Beryllium has low threshold energy for neutron production. The evaluation is carried out in account of the target thickness optimized by the radiation length and neutron cross section reducing the energy loss for both of electron and neutron, so as to get the maximum number of neutrons. The result of the calculations shows neutron numbers 1.9 x 10 10 , 6.1 x 10 13 and 4.8 x 10 13 (n/s), respectively, for 10, 17, and 35 MeV with low duty. The thermal removal from the target is one of critical points. The additional shielding and cooling system is necessary in order to endure radiation. A comparison with other facilities are also carried out. The estimate of neutron numbers suggests the possibility to be applied for neutron radiography and measurement of nuclear data by means of Lead spectrometer, for example. (author)

  17. Exploring Sequence Characteristics Related to High- Level Production of Secreted Proteins in Aspergillus niger

    NARCIS (Netherlands)

    Van den Berg, B.A.; Reinders, M.J.T.; Hulsman, M.; Wu, L.; Pel, H.J.; Roubos, J.A.; De Ridder, D.

    2012-01-01

    Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large

  18. Electronic cigarettes: product characterisation and design considerations

    OpenAIRE

    Brown, Christopher J; Cheng, James M

    2014-01-01

    Objective To review the available evidence regarding electronic cigarette (e-cigarette) product characterisation and design features in order to understand their potential impact on individual users and on public health. Methods Systematic literature searches in 10 reference databases were conducted through October 2013. A total of 14 articles and documents and 16 patents were included in this analysis. Results Numerous disposable and reusable e-cigarette product options exist, representing w...

  19. Lignocellulose degradation, enzyme production and protein ...

    African Journals Online (AJOL)

    Microbial conversion of corn stover by white rot fungi has the potential to increase its ligninolysis and nutritional value, thereby transforming it into protein-enriched animal feed. Response surface methodology was applied to optimize conditions for the production of lignocellulolytic enzymes by Trametes versicolor during ...

  20. Increasing the productivity of glycopeptides analysis by using higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation.

    Science.gov (United States)

    Saba, Julian; Dutta, Sucharita; Hemenway, Eric; Viner, Rosa

    2012-01-01

    Currently, glycans are attracting attention from the scientific community as potential biomarkers or as posttranslational modifications (PTMs) of therapeutic proteins. However, structural characterization of glycoproteins and glycopeptides remains analytically challenging. Here, we report on the implementation of a novel acquisition strategy termed higher-energy collision dissociation-accurate mass-product-dependent electron transfer dissociation (HCD-PD-ETD) on a hybrid linear ion trap-orbitrap mass spectrometer. This acquisition strategy uses the complementary fragmentations of ETD and HCD for glycopeptides analysis in an intelligent fashion. Furthermore, the approach minimizes user input for optimizing instrumental parameters and enables straightforward detection of glycopeptides. ETD spectra are only acquired when glycan oxonium ions from MS/MS HCD are detected. The advantage of this approach is that it streamlines data analysis and improves dynamic range and duty cycle. Here, we present the benefits of HCD-PD-ETD relative to the traditional alternating HCD/ETD for a trainer set containing twelve-protein mixture with two glycoproteins: human serotransferrin, ovalbumin and contaminations of two other: bovine alpha 1 acid glycoprotein (bAGP) and bovine fetuin.

  1. Model test on the relationship feed energy and protein ratio to the production and quality of milk protein

    Science.gov (United States)

    Hartanto, R.; Jantra, M. A. C.; Santosa, S. A. B.; Purnomoadi, A.

    2018-01-01

    The purpose of this research was to find an appropriate relationship model between the feed energy and protein ratio with the amount of production and quality of milk proteins. This research was conducted at Getasan Sub-district, Semarang Regency, Central Java Province, Indonesia using 40 samples (Holstein Friesian cattle, lactation period II-III and lactation month 3-4). Data were analyzed using linear and quadratic regressions, to predict the production and quality of milk protein from feed energy and protein ratio that describe the diet. The significance of model was tested using analysis of variance. Coefficient of determination (R2), residual variance (RV) and root mean square prediction error (RMSPE) were reported for the developed equations as an indicator of the goodness of model fit. The results showed no relationship in milk protein (kg), milk casein (%), milk casein (kg) and milk urea N (mg/dl) as function of CP/TDN. The significant relationship was observed in milk production (L or kg) and milk protein (%) as function of CP/TDN, both in linear and quadratic models. In addition, a quadratic change in milk production (L) (P = 0.003), milk production (kg) (P = 0.003) and milk protein concentration (%) (P = 0.026) were observed with increase of CP/TDN. It can be concluded that quadratic equation was the good fitting model for this research, because quadratic equation has larger R2, smaller RV and smaller RMSPE than those of linear equation.

  2. Nitrate as a probe of cytochrome c surface: crystallographic identification of crucial "hot spots" for protein-protein recognition.

    Science.gov (United States)

    De March, Matteo; Demitri, Nicola; De Zorzi, Rita; Casini, Angela; Gabbiani, Chiara; Guerri, Annalisa; Messori, Luigi; Geremia, Silvano

    2014-06-01

    The electrostatic surface of cytochrome c and its changes with the iron oxidation state are involved in the docking and undocking processes of this protein to its biological partners in the mitochondrial respiratory pathway. To investigate the subtle mechanisms of formation of productive macromolecular complexes and of their breakage following the electron transfer process, the X-ray structures of horse heart ferri-cytochrome c (trigonal form) and ferro-cytochrome c (monoclinic form) were obtained using nitrate ions both as a crystallizing agent and an anionic probe for mapping the electrostatic surface changes. Both crystal forms contain three protein molecules in the asymmetric unit. In addition, a total of 21.5 and 18 crystallographically independent nitrate ions were identified for the trigonal and monoclinic forms, respectively. By matching all the six crystallographically independent protein molecules, 26 different anion-protein interaction sites were identified on the surfaces of cytochrome c, 10 of which were found in both forms, 8 present only in the oxidized and 8 only in the reduced form. The structural analysis of the electron transfer complexes, based on this new information, suggests a specific exit strategy for cytochrome c after formation of productive protein-protein complexes: a directional sliding mechanism for the electron shuttle on the surface of the redox partner is proposed to take place after the electron transfer process has occurred. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter, E-mail: abrahams@chem.leidenuniv.nl [Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands)

    2013-07-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e{sup −} Å{sup −2}), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.

  4. Prospects of the "VT-Pro" series beef protein using in the sausages products technology

    Directory of Open Access Journals (Sweden)

    O. P. Dvoryaninova

    2017-01-01

    Full Text Available Recently, the negative attitude of consumers towards soy protein has been formed. Therefore, to increase the mass fraction of protein in the finished product, it is advisable to use animal proteins, the main advantage of which is multipurpose designation, easy use and the ability to ensure an increase in the finished products yield and high production profitability due to their use . The application of beef proteins from collagen-containing raw materials makes it possible to enrich meat products with dietary fiber, to improve the rheological properties of food products significantly, especially their consistency. High functional properties of animal proteins are manifested in their water-retaining capacity. The company "TRUMP Food Technologies" introduced several new positions into its assortment - beef proteins of the "VT-Pro" trade mark (fibrillar fraction collagen, the manufacturer of which is JSC "Verkhnevolzhsky tannery" (Tver region. Proteins of the "VT-Pro" trademark are unique in their characteristics and are natural, environmentally friendly products. Beef protein "VT-Pro" is suitable for the production of cooked sausage and ham products, semi-smoked and boiled-smoked sausages, canned goods, chopped semi-finished products and other meat products. It is used as a full-fledged stabilizing additive for the preparation of meat products with a specified yield and certain organoleptic characteristics (hydration 1: 10-15. It is determined that it is possible to use this protein in dry form, as a protein-fat emulsion, in the form of gel and granules. According to the pilot-industrial approbation under the conditions of AIC "PROMAGRO" LLC, it is possible to underline a number of advantages of beef protein "VT-Pro" using: it possesses high water-retaining and emulsifying ability; allows to process low-grade and fired raw materials and to replace expensive meat raw materials; it reduces the risk of broth-fat swelling; it improves the structure of

  5. Replacement of fish meal protein by surimi by-product protein in the diet of blue gourami Trichogaster trichopterus fingerlings.

    Science.gov (United States)

    Mohanta, K N; Subramanian, S; Korikanthimath, V S

    2013-02-01

    Based on the nutrient requirement of Trichogaster trichopterus, a fish meal-based basal diet with 350 g/kg diet crude protein and 16.7 MJ/kg energy was formulated, in which the fish meal protein was replaced by surimi by-product protein at 0.0 (control), 12.5, 25, 50, 75 and 100% levels. The formulated diets were fed ad libitum to T. trichopterus fingerlings (4.80 ± 0.03 g) in triplicate groups for 45 days in a closed water system. Eighteen fibre-reinforced plastic tanks with 200 l of water were used for rearing the fish. Weight gain, specific growth rate, feed/gain ratio, protein efficiency ratio, nutrient retention and digestibility (protein and energy) of fish were not affected (p > 0.05) up to 50% fish meal protein replacement level by surimi by-product protein. While whole-body protein content of fish was marginally decreased, the lipid content was increased with increase in surumi by-product incorporation level in the diet. The study results suggest that the fish meal protein, which is scarce and costly nowadays, could be replaced up to 50% by surimi by-product protein in the diet of blue gourami without hampering the growth and nutrient utilization of fish. © 2011 Blackwell Verlag GmbH.

  6. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Hoffmann, Ralf

    2017-04-15

    Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Trends in recombinant protein use in animal production.

    Science.gov (United States)

    Gifre, Laia; Arís, Anna; Bach, Àlex; Garcia-Fruitós, Elena

    2017-03-04

    Recombinant technologies have made possible the production of a broad catalogue of proteins of interest, including those used for animal production. The most widely studied proteins for the animal sector are those with an important role in reproduction, feed efficiency, and health. Nowadays, mammalian cells and fungi are the preferred choice for recombinant production of hormones for reproductive purposes and fibrolytic enzymes to enhance animal performance, respectively. However, the development of low-cost products is a priority, particularly in livestock. The study of cell factories such as yeast and bacteria has notably increased in the last decades to make the new developed reproductive hormones and fibrolytic enzymes a real alternative to the marketed ones. Important efforts have also been invested to developing new recombinant strategies for prevention and therapy, including passive immunization and modulation of the immune system. This offers the possibility to reduce the use of antibiotics by controlling physiological processes and improve the efficacy of preventing infections. Thus, nowadays different recombinant fibrolytic enzymes, hormones, and therapeutic molecules with optimized properties have been successfully produced through cost-effective processes using microbial cell factories. However, despite the important achievements for reducing protein production expenses, alternative strategies to further reduce these costs are still required. In this context, it is necessary to make a giant leap towards the use of novel strategies, such as nanotechnology, that combined with recombinant technology would make recombinant molecules affordable for animal industry.

  8. Modification of quinone electrochemistry by the proteins in the biological electron transfer chains: examples from photosynthetic reaction centers

    Science.gov (United States)

    Gunner, M. R.; Madeo, Jennifer; Zhu, Zhenyu

    2009-01-01

    Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed. PMID:18979192

  9. Production processes of multiply charged ions by electron impact

    International Nuclear Information System (INIS)

    Oda, Nobuo

    1980-02-01

    First, are compared the foil or gas stripper and the ion sources utilizing electron-atom ionizing collisions, which are practically used or are under development to produce multiply charged ions. A review is made of the fundamental physical parameters such as successive ionization potentials and various ionization cross sections by electron impact, as well as the primary processes in multiply charged ion production. Multiply charged ion production processes are described for the different existing ion sources such as high temperature plasma type, ion-trapping type and discharge type. (author)

  10. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    Science.gov (United States)

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  11. Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions.

    Science.gov (United States)

    Ben-Nun, M; Mills, J D; Hinde, R J; Winstead, C L; Boatz, J A; Gallup, G A; Langhoff, P W

    2009-07-02

    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H(2), CH) and triatomic (H(3), CH(2)) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or

  12. Production of membrane proteins without cells or detergents.

    Science.gov (United States)

    Rajesh, Sundaresan; Knowles, Timothy; Overduin, Michael

    2011-04-30

    The production of membrane proteins in cellular systems is besieged by several problems due to their hydrophobic nature which often causes misfolding, protein aggregation and cytotoxicity, resulting in poor yields of stable proteins. Cell-free expression has emerged as one of the most versatile alternatives for circumventing these obstacles by producing membrane proteins directly into designed hydrophobic environments. Efficient optimisation of expression and solubilisation conditions using a variety of detergents, membrane mimetics and lipids has yielded structurally and functionally intact membrane proteins, with yields several fold above the levels possible from cell-based systems. Here we review recently developed techniques available to produce functional membrane proteins, and discuss amphipols, nanodisc and styrene maleic acid lipid particle (SMALP) technologies that can be exploited alongside cell-free expression of membrane proteins. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Lysine-Derived Protein-Bound Heyns Compounds in Bakery Products.

    Science.gov (United States)

    Treibmann, Stephanie; Hellwig, Anne; Hellwig, Michael; Henle, Thomas

    2017-12-06

    Fructose and dicarbonyl compounds resulting from fructose in heated foods have been linked to pathophysiological pathways of several metabolic disorders. Up to now, very little has been known about the Maillard reaction of fructose in food. Heyns rearrangement compounds (HRCs), the first stable intermediates of the Maillard reaction between amino components and fructose, have not yet been quantitated as protein-bound products in food. Therefore, the HRCs glucosyllysine and mannosyllysine were synthesized and characterized by NMR. Protein-bound HRCs in cookies containing various sugars and in commercial bakery products were quantitated after enzymatic hydrolysis by RP-HPLC-ESI-MS/MS in the multiple reaction monitoring mode through application of the standard addition method. Protein-bound HRCs were quantitated for the first time in model cookies and in commercial bakery products containing honey, banana, and invert sugar syrup. Concentrations of HRCs from 19 to 287 mg/kg were found, which were similar to or exceeded the content of other frequently analyzed Maillard reaction products, such as N-ε-carboxymethyllysine (10-76 mg/kg), N-ε-carboxyethyllysine (2.5-53 mg/kg), and methylglyoxal-derived hydroimidazolone 1 (10-218 mg/kg) in the analyzed cookies. These results show that substantial amounts of HRCs form during food processing. Analysis of protein-bound HRCs in cookies is therefore useful to evaluate the Maillard reaction of fructose.

  14. Fish Protein Concentrate Fortification Siam Patin on Amplang Snack Products and Mi Sago Instant Product as a Leading Regional Riau

    Directory of Open Access Journals (Sweden)

    Dewita Buchari

    2014-11-01

    Full Text Available To enhance fish consumption in the community especially children, fortification on processed fish product is conducted. The processed fish products are developed to fill the requirements as the fish based food products that own characterizations such as ready to eat, easy to carry, and less time to cook. Amplang snacks and instant sagoo noodles are defined as the products that fills the requirements. The research was aimed to process catfish into fish protein concentrate to become amplang snack and instant sagoo noodles. These products were designed as the effort to develop the local priority products in Riau by using diversification and fortification methods. Experimental method with fortification treatments on Fish Protein Concentrate (FPC extract from Catfish that generate products of amplang snacks and instant sagoo noodles and fish tofu were carried out. The fortified products were examined by organoleptics test that involved panelists. The results showed that the proximate analysis on fortified Catfish Protein Concentrate products were presented as following :1. water contents of 3,13 %, ash of 2,85 %, protein content of 16,13 % and fat content of 18, 66 % for ampang snacks; and 2. water contents of 11,77 %, ash of 1,30 %, protein content of 12,35 % and fat content of 1,86 % for instant sagoo nodles. All fortified FPC products filled the Indonesian Nasional Standard (SNI.Keywords: Fortification, Catfish, and Fish Protein Concentrate

  15. Peptides from Fish By-product Protein Hydrolysates and Its Functional Properties: an Overview.

    Science.gov (United States)

    Zamora-Sillero, Juan; Gharsallaoui, Adem; Prentice, Carlos

    2018-04-01

    The inadequate management of fish processing waste or by-products is one of the major problems that fish industry has to face nowadays. The mismanagement of this raw material leads to economic loss and environmental problems. The demand for the use of these by-products has led to the development of several processes in order to recover biomolecules from fish by-products. An efficient way to add value to fish waste protein is protein hydrolysis. Protein hydrolysates improve the functional properties and allow the release of peptides of different sizes with several bioactivities such as antioxidant, antimicrobial, antihypertensive, anti-inflammatory, or antihyperglycemic among others. This paper reviews different methods for the production of protein hydrolysates as well as current research about several fish by-products protein hydrolysates bioactive properties, aiming the dual objective: adding value to these underutilized by-products and minimizing their negative impact on the environment.

  16. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  17. Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.

    Science.gov (United States)

    Ishara Silva, K; Jagannathan, Bharat; Golbeck, John H; Lakshmi, K V

    2016-05-01

    Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. Copyright © 2016. Published by Elsevier B.V.

  18. A novel bi-protein bio-interphase of cytochrome c and glucose oxidase: Electron transfer and electrocatalysis

    International Nuclear Information System (INIS)

    Song, Yonghai; Liu, Hongyu; Wang, Yu; Wang, Li

    2013-01-01

    Graphical abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) nanocomposites modified glassy carbon electrode. Electron transfer and electrocatalysis of the novel bi-protein bio-interphase were investigated. The bio-interphase developed here not only successfully achieved DET of GOD, but also showed great potential for the fabrication of novel glucose biosensors with linear response up to 18 mM. Highlights: ► A bio-interphase composed of cytochrome c and glucose oxidase was developed. ► The electron transfer in the bio-interphase was investigated. ► Electrocatalytic performances of bio-interphase were explored. ► The bio-interphase exhibited good electrocatalytic response glucose. - Abstract: Glucose oxidase (GOD) and cytochrome c (Cyt c) were co-entrapped in the poly(diallyldimethylammonium chloride)–graphene nanosheets–gold nanoparticles (PDDA–Gp–AuNPs) hybrid nanocomposites modified glassy carbon electrode to prepare a novel bi-protein bio-interphase. Electron transfer and electrocatalysis of the bi-protein bio-interphase were investigated in detail. The results showed that the PDDA–Gp–AuNPs nanocomposites accelerated the electron transfer between proteins and electrode. The bi-protein exhibited effective direct electron transfer (DET) reaction with an apparent rate constant (k s ) of 2.36 s −1 . The optimal molar ratio and total amount of Cyt c and GOD in the bio-interphase for DET of GOD was estimated to be about 3:1 and 1.40 nmol, respectively. The bi-protein bio-interphase could be used to detect glucose based on the consumption of O 2 with the oxidation of glucose catalyzed by GOD. The resulted biosensor exhibits wide linear range from 2.0 to 18.0 mM. Thus, this study not only successfully achieved DET of GOD, but also constructed a novel biosensor for glucose detection

  19. Microscale to manufacturing scale-up of cell-free cytokine production--a new approach for shortening protein production development timelines.

    Science.gov (United States)

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-07-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Copyright © 2011 Wiley Periodicals, Inc.

  20. Protein co-products and by-products of the biodiesel industry for ruminants feeding

    Directory of Open Access Journals (Sweden)

    Ricardo Andrés Botero Carrera

    2012-05-01

    Full Text Available The objective of the experiment was to classify 20 protein co-products and by-products of the biodiesel industry with potential to use in ruminant feeding. The meals evaluated were: cottonseed, canudo-de-pito, crambe, sunflower, castor-oil seeds detoxified with calcium, non-detoxified castor-oil seeds and soybean; and the cakes were: cottonseed, peanut, babassu, crambe, palm oil, sunflower, licuri, macauba seeds, non-detoxified castor-oil seeds, turnip and jatropha. The samples were quantified to determine dry matter (DM, organic matter (OM, crude protein (CP, ether extract (EE, neutral detergent fiber corrected for ash and protein (NDFap, non-fiber carbohydrates (NFC, acid detergent fiber corrected for ash and protein (ADFap, lignin, cutin and starch levels. The CP profile was characterized in fractions A, B1, B2, B3 and C. The in vitro dry matter digestibility (IVDMD, in vitro neutral detergent fiber digestibility (IVNDFD, rumen degradable and undegradable protein, intestinal digestibility, indigestible neutral detergent fiber and undegradable neutral detergent insoluble protein were evaluated. The OM, CP, EE, NDFap, NFC, ADFap, lignin, cutin and starch contents varied from 81.95 to 95.41%, 18.92 to 57.75%, 0.56 to 18.40%, 10.13 to 62.30%, 3.89 to 27.88%, 6.15 to 36.86%, 1.19 to 5.04%, 0 to 17.87% and 0.68 to 14.50%, respectively. The values of fractions A, B1, B2, B3 and C ranged from 5.40 to 43.31%, 0.08 to 37.63%, 16.75 to 79.39%, 1.86 to 59.15% and 0.60 to 11.47%, respectively. Concentrations of IVDMD, IVNDFD, rumen-degradable and undegradable protein, intestinal digestibility, indigestible NDF and undegradable neutral detergent insoluble protein ranged from 31.00 to 95.92%, 55.04 to 97.74%, 41.06 to 97.61%, 2.39 to 58.94, 9.27 to 94.26%, 1.05 to 40.80% and 0.29 to 2.92%, respectively. Some of these products can replace soybean meal, specially the Macauba seeds cake, cottonseed meal and peanut and turnip cakes based on digestive

  1. Ultrafast quenching of tryptophan fluorescence in proteins: Interresidue and intrahelical electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Weihong; Li Tanping; Zhang Luyuan; Yang Yi; Kao Yating; Wang Lijuan [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States); Zhong Dongping [Department of Physics, Chemistry, and Biochemistry, Program of Biophysics, Chemical Physics, and Biochemistry, Ohio State University, Columbus, OH 43210 (United States)], E-mail: dongping@mps.ohio-state.edu

    2008-06-23

    Quenching of tryptophan fluorescence in proteins has been critical to the understanding of protein dynamics and enzyme reactions using tryptophan as a molecular optical probe. We report here our systematic examinations of potential quenching residues with more than 40 proteins. With site-directed mutation, we placed tryptophan to desired positions or altered its neighboring residues to screen quenching groups among 20 amino acid residues and of peptide backbones. With femtosecond resolution, we observed the ultrafast quenching dynamics within 100 ps and identified two ultrafast quenching groups, the carbonyl- and sulfur-containing residues. The former is glutamine and glutamate residues and the later is disulfide bond and cysteine residue. The quenching by the peptide-bond carbonyl group as well as other potential residues mostly occurs in longer than 100 ps. These ultrafast quenching dynamics occur at van der Waals distances through intraprotein electron transfer with high directionality. Following optimal molecular orbital overlap, electron jumps from the benzene ring of the indole moiety in a vertical orientation to the LUMO of acceptor quenching residues. Molecular dynamics simulations were invoked to elucidate various correlations of quenching dynamics with separation distances, relative orientations, local fluctuations and reaction heterogeneity. These unique ultrafast quenching pairs, as recently found to extensively occur in high-resolution protein structures, may have significant biological implications.

  2. Investigation of 123I production using electron accelerator

    International Nuclear Information System (INIS)

    Avetisyan, Albert; Avagyan, Robert; Dallakyan, Ruben; Avdalyan, Gohar; Dobrovolsky, Nikolay; Gavalyan, Vasak; Kerobyan, Ivetta; Harutyunyan, Gevorg

    2017-01-01

    The possibility of 123 I isotope production with the help of the high-intensity bremsstrahlung photons produced by the electron beam of the LUE50 linear electron accelerator at the A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute [YerPhI]) is considered. The production method has been established and shown to be successful. The 124 Xe(γ,n) 123 Xe → 123 I nuclear reaction has been investigated and the cross-section was calculated by nuclear codes TALYS 1.6 and EMPIRE 3.2. The optimum parameter of the thickness of the target was determined by GEANT4 code. For the normalized yield of 123 I, the value of 143 Bq/(mg·μA·h) has been achieved.

  3. Associations between milk protein polymorphisms and milk production traits.

    NARCIS (Netherlands)

    Bovenhuis, H.; Arendonk, van J.A.M.; Korver, S.

    1992-01-01

    Associations between milk protein genotypes and milk production traits were estimated from 6803 first lactation records. Exact tests of associated hypotheses and unbiased estimates of genotype effects were from an animal model. Milk protein genotype effects were estimated using a model in which each

  4. A secretory system for bacterial production of high-profile protein targets

    DEFF Research Database (Denmark)

    Kotzsch, Alexander; Vernet, Erik; Hammarström, Martin

    2011-01-01

    Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli. To impr......Escherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli...... membrane protein F (OmpF) and osmotically inducible protein Y (OsmY). Based on the results of this initial study, we carried out an extended expression screen employing the OsmY fusion and multiple constructs of a more diverse set of human proteins. Using this high-throughput compatible system, we clearly...

  5. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  6. Study on Effects of Electron Donors on Phosphine Production from Anaerobic Activated Sludge

    Directory of Open Access Journals (Sweden)

    Jianping Cao

    2017-07-01

    Full Text Available The effects of different types and concentrations of electron donors (glucose, starch, methanol and sodium acetate on the formation of phosphine from anaerobic activated sludge that has been domesticated for a prolonged period were studied in small batch experiments. The results show that types and concentrations of electron donor have significant effects on the production of phosphine from anaerobic activated sludge. Among them, glucose was the most favourable electron donor, whereas sodium acetate was the least favourable electron donor for the removal of phosphorus and the production of phosphine. Higher concentrations of electron donors were more favourable for the reduction of phosphate into phosphine, and supplying more than nine times the amount of electron donor as theoretically required for the reduction of phosphate into phosphine was favourable for the production of phosphine.

  7. Production of Fungal Mycelial Protein in Submerged Culture of Soybean Whey

    Science.gov (United States)

    Falanghe, Helcio; Smith, A. K.; Rackis, J. J.

    1964-01-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content. PMID:14199023

  8. PRODUCTION OF FUNGAL MYCELIAL PROTEIN IN SUBMERGED CULTURE OF SOYBEAN WHEY.

    Science.gov (United States)

    FALANGHE, H; SMITH, A K; RACKIS, J J

    1964-07-01

    Various soybean whey media were tested as substrate for seven species of fungi in submerged culture. Very little mycelial growth was obtained with Morchella hybrida, Collybia velutipes, Cantharellus cibarius, and Xylaria polymorpha. Agaricus campestris failed to grow. Tricholoma nudum and Boletus indecisus showed the greatest rate of growth and production of mycelial protein and the best utilization of soybean whey solids, with much shorter incubation times compared with those of the other species. T. nudum developed as spheres having diameters of about 5 to 8 mm, instead of the usual slurry or yeastlike form, in the presence of added ammonium acetate. B. indecisus always developed as spheres. Mycelial yields and production of protein by T. nudum greatly decreased with the addition of more than 1% glucose to soybean whey, whereas with B. indecisus the yield of protein almost doubled when up to 3% glucose was added. The effect of minerals on mycelial growth was determined. With soybean whey concentrated to 50%, the rate of mycelial growth of T. nudum was nearly doubled, but protein content of mycelia was greatly reduced. Mycelial growth and yield of protein of B. indecisus grown in concentrated whey were increased greatly. About 4 to 6 g of mycelial protein per liter can be obtained from fermentation in soybean whey, depending upon the medium used. Utilization of soybean whey by fungal fermentation may have economic value in whey disposal and in the production of products of high protein content.

  9. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    Science.gov (United States)

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant

  10. Single cell protein production from mandarin orange peel

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N.; Nagai, S.

    1981-01-01

    As the hydrolysis of mandarin orange peel with macerating enzyme (40/sup 0/C,24 h)produced 0.59 g g/sup -1/ reducing sugar per dry peel compared to 0.36 by acid-hydrolysis (15 min at 120/sup 0/C with 0.8 N H/sub 2/SO/sub 4/), the production of single cell protein (SCP) from orange peel was studied mostly using enzymatically hydrolyzed orange peel. When the enzymatically hydrolyzed peel media were used, the utilization efficiency of reducing sugars (%) and the growth yield from reducing sugars (gg/sup -1/)were: 63 and 0.51 for Saccharomyces cerevisiae; 56 and 0.48 for Candida utilis; 74 and 0.69 for Debaryomyces hansenii and 64 and 0.70 for Rhodotorula glutinis. SCP production from orange peel by D. hansenii and R. glutinis were further studied. Batch cultures for 24 h at 30/sup 0/C using 100 g dried orange peel produced 45 g of dried cultivated peel (protein content, 33%) with D. hansenii and 34 g (protein content, 50%) with R. glutinis, and 38 g (protein content, 44%) with a mixture of both yeasts.

  11. Exploring sequence characteristics related to high-level production of secreted proteins in Aspergillus niger.

    Directory of Open Access Journals (Sweden)

    Bastiaan A van den Berg

    Full Text Available Protein sequence features are explored in relation to the production of over-expressed extracellular proteins by fungi. Knowledge on features influencing protein production and secretion could be employed to improve enzyme production levels in industrial bioprocesses via protein engineering. A large set, over 600 homologous and nearly 2,000 heterologous fungal genes, were overexpressed in Aspergillus niger using a standardized expression cassette and scored for high versus no production. Subsequently, sequence-based machine learning techniques were applied for identifying relevant DNA and protein sequence features. The amino-acid composition of the protein sequence was found to be most predictive and interpretation revealed that, for both homologous and heterologous gene expression, the same features are important: tyrosine and asparagine composition was found to have a positive correlation with high-level production, whereas for unsuccessful production, contributions were found for methionine and lysine composition. The predictor is available online at http://bioinformatics.tudelft.nl/hipsec. Subsequent work aims at validating these findings by protein engineering as a method for increasing expression levels per gene copy.

  12. Production of slow-positron beams with an electron linac

    International Nuclear Information System (INIS)

    Howell, R.H.; Alvarez, R.A.; Stanek, M.

    1982-01-01

    Intense, pulsed beams of low-energy positrons have been produced by a high-energy beam from an electron linac. The production efficiency for low-energy positrons has been determined for electrons with 60 to 120 MeV energy, low-energy positron beams from a linac can be of much higher intensity than those beams currently derived from radioactive sources

  13. Probing Protein Structure and Folding in the Gas Phase by Electron Capture Dissociation

    Science.gov (United States)

    Schennach, Moritz; Breuker, Kathrin

    2015-07-01

    The established methods for the study of atom-detailed protein structure in the condensed phases, X-ray crystallography and nuclear magnetic resonance spectroscopy, have recently been complemented by new techniques by which nearly or fully desolvated protein structures are probed in gas-phase experiments. Electron capture dissociation (ECD) is unique among these as it provides residue-specific, although indirect, structural information. In this Critical Insight article, we discuss the development of ECD for the structural probing of gaseous protein ions, its potential, and limitations.

  14. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    Energy Technology Data Exchange (ETDEWEB)

    Chacon Velasco, A.J. [Universidad de Pamplona, Pamplona (Colombia); Dougar-Jabon, V.D. [Universidad Industrial de Santander, Bucaramanga (Colombia)

    2004-07-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H{sup -} and D{sup -} ion production involves the process of high Rydberg state excitation. (authors)

  15. Electron cyclotron resonance discharge as a source for hydrogen and deuterium ions production

    International Nuclear Information System (INIS)

    Chacon Velasco, A.J.; Dougar-Jabon, V.D.

    2004-01-01

    In this report, we describe characteristics of a ring-structure hydrogen plasma heated in electron cyclotron resonance conditions and confined in a mirror magnetic trap and discuss the relative efficiency of secondary electrons and thermo-electrons in negative hydrogen and deuterium ion production. The obtained data and calculations of the balance equations for possible reactions demonstrate that the negative ion production is realized in two stages. First, the hydrogen and deuterium molecules are excited in collisions with the plasma electrons to high-laying Rydberg or vibrational levels in the plasma volume. The second stage leads to the negative ion production through the process of dissociative attachment of low energy electrons. The low energy electrons are originated due to a bombardment of the plasma electrode by ions of one of the driven rings and thermo-emission from heated tungsten filaments. Experiments seem to indicate that the negative ion generation occurs predominantly in the limited volume filled with thermo-electrons. Estimation of the negative ion generation rate shows that the main channel of H - and D - ion production involves the process of high Rydberg state excitation. (authors)

  16. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  17. Carboxymethyl cellulose (CMC whey product as protein source for growing pigs 

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1982-12-01

    Full Text Available A digestibility and balance trial was performed with three growing pigs to evaluate the nutritive value and protein utilization of a carboxymethyl cellulose(CMC whey product used to replace 50 % or 100 % of the dried skim supplement in a barley-based diet. The effect of CMC whey on clinical chemical blood parameters was also investigated. The CMC whey protein contained 39.6 % crude protein and 36.0 % true protein in DM. The proportion of CMC in the product was 18.3% of DM. CMC whey had high contents of lysine, cystine, methionine and threonine: 10.3, 2.9, 2.1 and 5.6 g/16 g N, respectively. NFE digestibility was lower on the CMC whey diet than on the skim milk diet (P < 0.05. Faecal excretion of CMC averaged 59.0 %. Protein utilization was effective on the CMC whey diet: 69.9 % of absorbed N was retained. Judging from the blood analyses, the CMC whey product did not have any detrimental effect on the metabolism or health of the pigs. The CMC whey product is well suited as a protein supplement in pig feeding because of its high contents of essential amino acids.

  18. Membrane Protein Production in Lactococcus lactis for Functional Studies.

    Science.gov (United States)

    Seigneurin-Berny, Daphne; King, Martin S; Sautron, Emiline; Moyet, Lucas; Catty, Patrice; André, François; Rolland, Norbert; Kunji, Edmund R S; Frelet-Barrand, Annie

    2016-01-01

    Due to their unique properties, expression and study of membrane proteins in heterologous systems remains difficult. Among the bacterial systems available, the Gram-positive lactic bacterium, Lactococcus lactis, traditionally used in food fermentations, is nowadays widely used for large-scale production and functional characterization of bacterial and eukaryotic membrane proteins. The aim of this chapter is to describe the different possibilities for the functional characterization of peripheral or intrinsic membrane proteins expressed in Lactococcus lactis.

  19. Production of recombinant proteins in Escherichia coli tagged with the fusion protein CusF3H.

    Science.gov (United States)

    Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Zarate, Xristo

    2017-04-01

    Recombinant protein expression in the bacterium Escherichia coli still is the number one choice for large-scale protein production. Nevertheless, many complications can arise using this microorganism, such as low yields, the formation of inclusion bodies, and the requirement for difficult purification steps. Most of these problems can be solved with the use of fusion proteins. Here, the use of the metal-binding protein CusF3H+ is described as a new fusion protein for recombinant protein expression and purification in E. coli. We have previously shown that CusF produces large amounts of soluble protein, with low levels of formation of inclusion bodies, and that proteins can be purified using IMAC resins charged with Cu(II) ions. CusF3H+ is an enhanced variant of CusF, formed by the addition of three histidine residues at the N-terminus. These residues then can bind Ni(II) ions allowing improved purity after affinity chromatography. Expression and purification of Green Fluorescent Protein tagged with CusF3H+ showed that the mutation did not alter the capacity of the fusion protein to increase protein expression, and purity improved considerably after affinity chromatography with immobilized nickel ions; high yields are obtained after tag-removal since CusF3H+ is a small protein of just 10 kDa. Furthermore, the results of experiments involving expression of tagged proteins having medium to large molecular weights indicate that the presence of the CusF3H+ tag improves protein solubility, as compared to a His-tag. We therefore endorse CusF3H+ as a useful alternative fusion protein/affinity tag for production of recombinant proteins in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. A study on γ-ray radiation decontamination of soybean protein product

    International Nuclear Information System (INIS)

    Zhu Jun; Chen Haijun; Li Aimei; Yang Mingcheng; Zhengzhou Univ., Zhengzhou

    2006-01-01

    Dose distribution of soybean protein product irradiated by 60 Co γ-ray with a pile-up irradiation technology was studied. The product bags were irradiated to half dose by the γ-ray source at two positions (low and high), and the second half dose was delivered in the same way to the product after position-change of the bags. Effects of the γ-ray irradiation, which included hygiene quality, physical and chemical index, functions and appearance of the soybean protein product, were investigated. The results show that decontamination of the product can be achieved by 3-5 kGy of the irradiation, with improved utilization efficiency of irradiation source and high quality of the product. (authors)

  1. 75 FR 65293 - Draft Guidelines on Pharmacovigilance of Veterinary Medicinal Products: Electronic Standards for...

    Science.gov (United States)

    2010-10-22

    ...] Draft Guidelines on Pharmacovigilance of Veterinary Medicinal Products: Electronic Standards for... Requirements for the Registration of Veterinary Medicinal Products (VICH) has developed a draft guideline titled ``Pharmacovigilance of Veterinary Medicinal Products: Electronic Standards for Transfer of Data...

  2. Biochemistry and pathology of radical-mediated protein oxidation

    DEFF Research Database (Denmark)

    Dean, R T; Fu, S; Stocker, R

    1997-01-01

    Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several catego...

  3. Electron irradiation of dry food products

    Energy Technology Data Exchange (ETDEWEB)

    Gruenewald, Th [Bundesbahn-Zentralamt, Minden (Germany, F.R.)

    1983-01-01

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10**4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50 deg C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the irradiation field in a closed conveyor system.

  4. Electron irradiation of dry food products

    International Nuclear Information System (INIS)

    Gruenewald, Th.

    1983-01-01

    The interest of the industrial food producer is increasing in having the irradiation facility installed in the food processing chain. The throughput of the irradiator should be high and the residence time of the product in the facility should be short. These conditions can be accomplished by electron irradiators. To clarify the irradiation conditions spices taken out of the industrial process, food grade salt, sugar, and gums as models of dry food products were irradiated. With a radiation dose of 10 kGy microbial load can be reduced on 10**4 microorganisms/g. The sensory properties of the spices were not changed in an atypical way. For food grade salt and sugar changes of colour were observed which are due to lattice defects or initiated browning. The irradiation of several gums led only in some cases to an improvement of the thickness properties in the application below 50 deg C, in most cases the thickness effect was reduced. The products were packaged before irradiation. But it would be possible also to irradiate the products without packaging moving the product through the irradiation field in a closed conveyor system. (author)

  5. Study of cerenkov radiation. Production of {gamma} rays by electron accelerators; Etude du rayonnement de freinage. Production de rayons {gamma} par des accelerateurs d'electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    This study is a critical comparison of the theories of Bremsstrahlung. Experimental results obtained by the production of {gamma} radiation with electron accelerators are compared to the theoretical results in order to estimate the extent to which the various theories are valid. (author) [French] Cette etude est une synthese des theories du rayonnement de freinage. Des resultats experimentaux, obtenus par la production de rayonnements {gamma} avec des accelerateurs d'electrons, sont compares aux resultats theoriques afin d'evaluer les domaines de validite des diverses theories. (auteur)

  6. Multiplexed expression and screening for recombinant protein production in mammalian cells

    Directory of Open Access Journals (Sweden)

    McCafferty John

    2006-12-01

    Full Text Available Abstract Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell

  7. Transport equation theory of electron backscattering and x-ray production

    International Nuclear Information System (INIS)

    Fathers, D.J.; Rez, P.

    1978-02-01

    A transport equation theory of electron backscattering and x ray production is derived and applied to energy dissipation of 30-KeV electrons for copper as a function of depth and to the energy distribution of backscattered electrons for copper, aluminum, and gold. These results are plotted and compared with experiment. Plots for variations of backscattering with atomic number and with angle of incidence, and polar plots of backscattering for 30-keV electrons at normal incidence are also presented. 10 references, seven figures

  8. Production of an electron-positron plasma in a pulsar magnetosphere

    International Nuclear Information System (INIS)

    Gurevich, A.V.; Istomin, Y.N.

    1985-01-01

    A study is made of the production of electron-positron plasma in the vacuum state (''breakdown'' of the vacuum) in the presence of an inhomogeneous electric field and a strong curvilinear magnetic field. Such conditions are encountered in the magnetosphere of a rotating neutron star. A general system of kinetic equations is derived for the electrons, positrons, and γ photons in the curvilinear magnetic field with allowance for the production of electron-positron pairs and the emission of curvature and synchrotron photons. The conditions of occurrence of ''breakdown'' are determined, and the threshold value of the jump in the value of the electric field at the surface of the star is found. The process of multiplication of particles in the magnetosphere is investigated, and the distribution functions of the electrons, positrons, and photons are found. The extinction limit of pulsars is determined. It is shown that the theory is in agreement with observational data

  9. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    Science.gov (United States)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ˜0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  10. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    International Nuclear Information System (INIS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-01-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc 1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins

  11. Maillard reaction products of rice protein hydrolysates with mono-, oligo- and polysaccharides

    Science.gov (United States)

    Rice protein, a byproduct of rice syrup production, is abundant but, its lack of functionality prevents its wide use as a food ingredient. Maillard reaction products of (MRPs) hydrolysates from the limited hydrolysis of rice protein (LHRP) and various mono-, oligo- and polysaccharides were evaluat...

  12. Protein crop production at the northern margin of farming: to boost or not to boost

    Directory of Open Access Journals (Sweden)

    Pirjo Peltonen-Sainio

    2012-12-01

    Full Text Available Global changes in food demand resulting from population growth and more meat-intensive diets require an increase in global protein crop production, not least as climate change and increasing scarcity of fresh water could restrict future production. In contrast to many other regions, in Finland climate change could open new opportunities through enabling more diverse cropping systems. It is justified to re-enquire whether the extent and intensity of protein crop production are optimized, resources are used efficiently and sustainably, cropping systems are built to be resilient and whether ecological services that protein crops provide are utilized appropriately. This paper aims to analyze in a descriptive manner the biological grounds for sustainable intensification of protein crop production in Finland. Production security is considered by evaluating the effects of and likelihood for constraints typical for northern conditions, examining historical and recent crop failures and estimating ecosystem services that more extensive introduction of protein crops potentially provide for northern cropping systems now and in a changing climate. There is an evident potential to expand protein crop production sustainably to a couple of times its current area. In general, variability in protein yields tends to be higher for protein crops than spring cereals. Nevertheless, protein yield variability was not necessarily systematically higher for Finland, when compared with other European regions, as it was for cereals. Protein crops provide significant ecological services that further support their expanded production. By this means protein self-sufficiency remains unrealistic, but increased production of protein crops can be achieved. The expansion of rapeseed and legumes areas also seems to be economically feasible. From the economic viewpoint, an increase in domestic protein supply requires that farmers have economic incentives to a cultivate protein

  13. Stimulated Raman scattering and hot-electron production

    International Nuclear Information System (INIS)

    Drake, R.P.; Turner, R.E.; Lasinski, B.F.; Estabrook, K.G.; Campbell, E.M.; Wang, C.L.; Phillion, D.W.; Williams, E.A.; Kruer, W.L.

    1985-01-01

    High-intensity laser light can excite parametric instabilities that scatter or absorb it. One instability that can arise when laser light penetrates a plasma is sub-quarter-critical stimulated Raman (SQSR) scattering. It occurs below the quarter-critical density of the incident light and involves the decay of the incident light wave into a scattered light wave and electron plasma wave. The scattered-light wavelength ranges from 1 to 2 times that of the incident light, depending on the plasma density and temperature. This article reports studies of SQSR scattering and hot-electron production in plasmas produced by irradiating thick gold targets with up to 4 kJ of 0.53-μm light in 1-ns (FWHM) pulses. These studies have important implications for laser fusion. Hot electrons attributed to the SQSR instability can increase the difficulty of achieving high-gain implosions by penetrating and preheating the fusion fuel

  14. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M

    1992-01-01

    -6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine...... the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism....

  15. Production of solid lipid submicron particles for protein delivery using a novel supercritical gas-assisted melting atomization process.

    Science.gov (United States)

    Salmaso, Stefano; Elvassore, Nicola; Bertucco, Alberto; Caliceti, Paolo

    2009-02-01

    A supercritical carbon dioxide micronization technique based on gas-assisted melting atomization has been designed to prepare protein-loaded solid lipid submicron particles. The supercritical process was applied to homogeneous dispersions of insulin in lipid mixtures: (1) tristearin, Tween-80, phosphatidylcholine and 5 kDa PEG (1:0.1:0.9:1 and 1:0.1:0.9:2 weight ratio); and (2) tristearin, dioctyl sulfosuccinate and phosphatidylcholine (1:1:0.5 weight ratio). Optimized process conditions yielded dry nonagglomerated powders with high product recovery (70%, w/w). Dynamic light scattering and transmission electron microscopy showed that two size fractions of particles, with 80-120 and 200-400 nm diameters, were produced. In all final products, dimethylsulfoxide used to prepare the insulin/lipid mixture was below 20 ppm. Protein encapsulation efficiency increased up to 80% as the DMSO content in the insulin/lipid mixture increased. Compared to the particles without PEG, the polymer-containing particles dispersed rapidly in water, and the dispersions were more stable under centrifugation as less than 20% of suspended particles precipitated after extensive centrifugation. In vitro, the protein was slowly released from the formulation without PEG, while a burst and faster release were obtained from the formulations containing PEG. Subcutaneous injection to diabetic mice of insulin extracted from the particles showed that the supercritical process did not impair the protein hypoglycemic activity.

  16. Gene Delivery into Plant Cells for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Qiang Chen

    2015-01-01

    Full Text Available Recombinant proteins are primarily produced from cultures of mammalian, insect, and bacteria cells. In recent years, the development of deconstructed virus-based vectors has allowed plants to become a viable platform for recombinant protein production, with advantages in versatility, speed, cost, scalability, and safety over the current production paradigms. In this paper, we review the recent progress in the methodology of agroinfiltration, a solution to overcome the challenge of transgene delivery into plant cells for large-scale manufacturing of recombinant proteins. General gene delivery methodologies in plants are first summarized, followed by extensive discussion on the application and scalability of each agroinfiltration method. New development of a spray-based agroinfiltration and its application on field-grown plants is highlighted. The discussion of agroinfiltration vectors focuses on their applications for producing complex and heteromultimeric proteins and is updated with the development of bridge vectors. Progress on agroinfiltration in Nicotiana and non-Nicotiana plant hosts is subsequently showcased in context of their applications for producing high-value human biologics and low-cost and high-volume industrial enzymes. These new advancements in agroinfiltration greatly enhance the robustness and scalability of transgene delivery in plants, facilitating the adoption of plant transient expression systems for manufacturing recombinant proteins with a broad range of applications.

  17. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins.

    Science.gov (United States)

    Hoffmann, Daniel; Ebrahimi, Mehrdad; Gerlach, Doreen; Salzig, Denise; Czermak, Peter

    2017-11-10

    The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.

  18. Production of fungal biomass protein using microfungi from winery wastewater treatment.

    Science.gov (United States)

    Zhang, Zhan Ying; Jin, Bo; Bai, Zhi Hui; Wang, Xiao Yi

    2008-06-01

    This study was carried out to investigate the production of fungal biomass protein (FBP) in treatment of winery wastewater using microfungi. Three fungal strains, Trichoderma viride WEBL0702, Aspergillus niger WEBL0901 and Aspergillus oryzae WEBL0401, were selected in terms of microbial capability for FBP production and COD reduction. T. viride appeared to be the best strain for FBP production due to high productivity and less nitrogen requirement. More than 5 g/L of fungal biomass was produced in shake fermentation using T. viride without nitrogen addition, and by A. oryzae and A. niger with addition of 0.5-1.0 g/L (NH4)2SO4. The FBP production process corresponded to 84-90% COD reduction of winery wastewater. Fungal biomass contained approximately 36% protein produced by two Aspergillus strains, while biomass produced by T. viride consisted of 19.8% protein. Kinetic study indicated that maximum fungal cell growth could be achieved in 24h for T. viride and 48 h for A. oryzae and A. niger. Current results indicated that it could be feasible to develop a biotechnological treatment process integrated with FBP production from the winery waste streams.

  19. Managing Product Usability : How companies deal with usability in the development of electronic consumer products

    NARCIS (Netherlands)

    Van Kuijk, J.I.

    2010-01-01

    Problem statement: Even though there is a large amount of methods for user-centred design, the usability of electronic consumer products (e.g., portable music players, washing machines and mobile phones) is under pressure. Usability is the extent to which a product can be used by specified users to

  20. Production of new particles in electron-positron annihilation

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1977-02-01

    A number of areas are reviewed where there is important progress in the production of new particles in electron--positron annihilation, but of a more detailed quantitative nature. Charmonium states, charmed mesons, and evidence for a charged heavy lepton are covered. 50 references

  1. Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves

    NARCIS (Netherlands)

    Tsuprun, V.L.; Boekema, E.J.; Samsonidze, T.G.; Pushkin, A.V.

    1991-01-01

    The structure of ribulose-1,5-bisphosphate carboxylase (Rubisco) subunit-binding protein and its interaction with pea leaf chloroplast Rubisco were studied by electron microscopy and image analysis. Electron-microscopic evidence for the association of Rubisco subunit-binding protein, consisting of

  2. Production of Recombinant and Tagged Proteins in the Hyperthermophilic Archaeon Sulfolobus solfataricus

    NARCIS (Netherlands)

    Albers, S.-V.; Jonuscheit, M.; Dinkelaker, S.; Urich, T.; Kletzin, A.; Tampé, R.; Driessen, A.J.M.; Schleper, C.

    Many systems are available for the production of recombinant proteins in bacterial and eukaryotic model organisms, which allow us to study proteins in their native hosts and to identify protein-protein interaction partners. In contrast, only a few transformation systems have been developed for

  3. Theoretical description of protein field effects on electronic excitations of biological chromophores

    International Nuclear Information System (INIS)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  4. Theoretical description of protein field effects on electronic excitations of biological chromophores

    Science.gov (United States)

    Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele

    2017-01-01

    Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show

  5. Viral vectors for production of recombinant proteins in plants.

    Science.gov (United States)

    Lico, Chiara; Chen, Qiang; Santi, Luca

    2008-08-01

    Global demand for recombinant proteins has steadily accelerated for the last 20 years. These recombinant proteins have a wide range of important applications, including vaccines and therapeutics for human and animal health, industrial enzymes, new materials and components of novel nano-particles for various applications. The majority of recombinant proteins are produced by traditional biological "factories," that is, predominantly mammalian and microbial cell cultures along with yeast and insect cells. However, these traditional technologies cannot satisfy the increasing market demand due to prohibitive capital investment requirements. During the last two decades, plants have been under intensive investigation to provide an alternative system for cost-effective, highly scalable, and safe production of recombinant proteins. Although the genetic engineering of plant viral vectors for heterologous gene expression can be dated back to the early 1980s, recent understanding of plant virology and technical progress in molecular biology have allowed for significant improvements and fine tuning of these vectors. These breakthroughs enable the flourishing of a variety of new viral-based expression systems and their wide application by academic and industry groups. In this review, we describe the principal plant viral-based production strategies and the latest plant viral expression systems, with a particular focus on the variety of proteins produced and their applications. We will summarize the recent progress in the downstream processing of plant materials for efficient extraction and purification of recombinant proteins. (c) 2008 Wiley-Liss, Inc.

  6. Single Production of Excited Neutrino at Clic based Electron Photon Colliders

    International Nuclear Information System (INIS)

    Kirca, Z.

    2004-01-01

    The discovery of excited quarks and leptons, as predicted by composite models, would supply convincing evidence for substructure of fermions. Electron-photon interactions at very high energies provide ideal conditions to look for excited states of first generations offermions. In particular, in magnetic- transition coupling the electron to a gauge bo son would allow for single production of excited neutrinos (ν * ) through t-channel W boson exchange. In this work, (ν * ) production followed by the electroweak radiative decays ν * →νγ, ν * →eW, ν * →νZ is presented. The production cross sections and P T distributions of excited neutrino are studied for CLlC

  7. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    International Nuclear Information System (INIS)

    Khunchai, Sasiprapa; Junking, Mutita; Suttitheptumrong, Aroonroong; Yasamut, Umpa; Sawasdee, Nunghathai; Netsawang, Janjuree; Morchang, Atthapan; Chaowalit, Prapaipit; Noisakran, Sansanee; Yenchitsomanus, Pa-thai

    2012-01-01

    Highlights: ► For the first time how DENV NS5 increases RANTES production. ► DENV NS5 physically interacts with human Daxx. ► Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called ‘cytokine storm’, is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  8. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    Energy Technology Data Exchange (ETDEWEB)

    Torizawa, Takuya; Shimizu, Masato [Crest, Jst (Japan); Taoka, Masato [Tokyo Metropolitan University, Graduate School of Science (Japan); Miyano, Hiroshi [Ajinomoto Co., Inc. Institute of Life Sciences (Japan); Kainosho, Masatsune [Crest, Jst (Japan)], E-mail: kainosho@nmr.chem.metro-u.ac.jp

    2004-11-15

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis.

  9. Efficient production of isotopically labeled proteins by cell-free synthesis: A practical protocol

    International Nuclear Information System (INIS)

    Torizawa, Takuya; Shimizu, Masato; Taoka, Masato; Miyano, Hiroshi; Kainosho, Masatsune

    2004-01-01

    We provide detailed descriptions of our refined protocols for the cell-free production of labeled protein samples for NMR spectroscopy. These methods are efficient and overcome two critical problems associated with the use of conventional Escherichia coli extract systems. Endogenous amino acids normally present in E. coli S30 extracts dilute the added labeled amino acids and degrade the quality of NMR spectra of the target protein. This problem was solved by altering the protocol used in preparing the S30 extract so as to minimize the content of endogenous amino acids. The second problem encountered in conventional E. coli cell-free protein production is non-uniformity in the N-terminus of the target protein, which can complicate the NMR spectra. This problem was solved by adding a DNA sequence to the construct that codes for a cleavable N-terminal peptide tag. Addition of the tag serves to increase the yield of the protein as well as to ensure a homogeneous protein product following tag cleavage. We illustrate the method by describing its stepwise application to the production of calmodulin samples with different stable isotope labeling patterns for NMR analysis

  10. Importance of dispersion and electron correlation in ab initio protein folding.

    Science.gov (United States)

    He, Xiao; Fusti-Molnar, Laszlo; Cui, Guanglei; Merz, Kenneth M

    2009-04-16

    Dispersion is well-known to be important in biological systems, but the effect of electron correlation in such systems remains unclear. In order to assess the relationship between the structure of a protein and its electron correlation energy, we employed both full system Hartree-Fock (HF) and second-order Møller-Plesset perturbation (MP2) calculations in conjunction with the Polarizable Continuum Model (PCM) on the native structures of two proteins and their corresponding computer-generated decoy sets. Because of the expense of the MP2 calculation, we have utilized the fragment molecular orbital method (FMO) in this study. We show that the sum of the Hartree-Fock (HF) energy and force field (LJ6)-derived dispersion energy (HF + LJ6) is well correlated with the energies obtained using second-order Møller-Plesset perturbation (MP2) theory. In one of the two examples studied, the correlation energy as well as the empirical dispersive energy term was able to discriminate between native and decoy structures. On the other hand, for the second protein we studied, neither the correlation energy nor dispersion energy showed discrimination capabilities; however, the ab initio MP2 energy and the HF+LJ6 both ranked the native structure correctly. Furthermore, when we randomly scrambled the Lennard-Jones parameters, the correlation between the MP2 energy and the sum of the HF energy and dispersive energy (HF+LJ6) significantly drops, which indicates that the choice of Lennard-Jones parameters is important.

  11. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Daniel R.; Matyushov, Dmitry V., E-mail: dmitrym@asu.edu [Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287 (United States)

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  12. PML tumor suppressor protein is required for HCV production

    International Nuclear Information System (INIS)

    Kuroki, Misao; Ariumi, Yasuo; Hijikata, Makoto; Ikeda, Masanori; Dansako, Hiromichi; Wakita, Takaji; Shimotohno, Kunitada; Kato, Nobuyuki

    2013-01-01

    Highlights: ► PML tumor suppressor protein is required for HCV production. ► PML is dispensable for HCV RNA replication. ► HCV could not alter formation of PML-NBs. ► INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  13. Isolation and characterization of the E. coli membrane protein production strain Mutant56(DE3)

    DEFF Research Database (Denmark)

    Baumgarten, Thomas; Schlegel, Susan; Wagner, Samuel

    2017-01-01

    Membrane protein production is usually toxic to E. coli. However, using genetic screens strains can be isolated in which the toxicity of membrane protein production is reduced, thereby improving production yields. Best known examples are the C41(DE3) and C43(DE3) strains, which are both derived...... from the T7 RNA polymerase (P)-based BL21(DE3) protein production strain. In C41(DE3) and C43(DE3) mutations lowering t7rnap expression levels result in strongly reduced T7 RNAP accumulation levels. As a consequence membrane protein production stress is alleviated in the C41(DE3) and C43(DE3) strains......, thereby increasing membrane protein yields. Here, we isolated Mutant56(DE3) from BL21(DE3) using a genetic screen designed to isolate BL21(DE3)-derived strains with mutations alleviating membrane protein production stress other than the ones in C41(DE3) and C43(DE3). The defining mutation of Mutant56(DE3...

  14. A set of ligation-independent in vitro translation vectors for eukaryotic protein production

    Directory of Open Access Journals (Sweden)

    Endo Yaeta

    2008-03-01

    Full Text Available Abstract Background The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. Results We designed four ligation independent cloning (LIC vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Conclusion Four newly

  15. Tobacco BY-2 Media Component Optimization for a Cost-Efficient Recombinant Protein Production.

    Science.gov (United States)

    Häkkinen, Suvi T; Reuter, Lauri; Nuorti, Ninni; Joensuu, Jussi J; Rischer, Heiko; Ritala, Anneli

    2018-01-01

    Plant cells constitute an attractive platform for production of recombinant proteins as more and more animal-free products and processes are desired. One of the challenges in using plant cells as production hosts has been the costs deriving from expensive culture medium components. In this work, the aim was to optimize the levels of most expensive components in the nutrient medium without compromising the accumulation of biomass and recombinant protein yields. Wild-type BY-2 culture and transgenic tobacco BY-2 expressing green fluorescent protein-Hydrophobin I (GFP-HFBI) fusion protein were used to determine the most inexpensive medium composition. One particularly high-accumulating BY-2 clone, named 'Hulk,' produced 1.1 ± 0.2 g/l GFP-HFBI in suspension and kept its high performance during prolonged subculturing. In addition, both cultures were successfully cryopreserved enabling truly industrial application of this plant cell host. With the optimized culture medium, 43-55% cost reduction with regard to biomass and up to 69% reduction with regard to recombinant protein production was achieved.

  16. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cross, R C; Liu, J R; Giannone, L. (Sydney Univ. (Australia). School of Physics)

    1983-06-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned.

  17. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  18. Reversible assembly of protein-DNA nanostructures triggered by mediated electron transfer

    International Nuclear Information System (INIS)

    Vogt, Stephan; Wenderhold-Reeb, Sabine; Nöll, Gilbert

    2017-01-01

    Stable protein-DNA nanostructures have been assembled by reconstitution of the multi-ligand binding flavoprotein dodecin on top of flavin-terminated dsDNA monolayers on gold electrodes. These structures could be disassembled by electrochemical flavin reduction via mediated electron transfer. For this purpose a negative potential was applied at the Au working electrode in the presence of the redox mediator bis-(ammoniumethyl)-4,4′-bipyridinium tetrabromide. The stepwise formation of the flavin-terminated dsDNA monolayers as well as the binding and electrochemically triggered release of apododecin were monitored by surface plasmon resonance (SPR) and quartz crystal microbalance (QCM) measurements. The assembly and disassembly of the protein-DNA nanostructures were fully reversible processes, which could be carried out multiple times at the same flavin-dsDNA modified surface. When a negative potential was applied in the absence of a redox mediator apododecin could not be released, i.e. direct electron transfer was not possible. As alternative redox mediators also methylene blue and phenosafranine were studied, but in the presence of these molecules apododecin was released without applying a potential, probably because the tricyclic aromatic compounds are able to replace the flavins at the binding sites.

  19. Poly(lactic-co-glycolic acid) devices: Production and applications for sustained protein delivery.

    Science.gov (United States)

    Lee, Parker W; Pokorski, Jonathan K

    2018-03-13

    Injectable or implantable poly(lactic-co-glycolic acid) (PLGA) devices for the sustained delivery of proteins have been widely studied and utilized to overcome the necessity of repeated administrations for therapeutic proteins due to poor pharmacokinetic profiles of macromolecular therapies. These devices can come in the form of microparticles, implants, or patches depending on the disease state and route of administration. Furthermore, the release rate can be tuned from weeks to months by controlling the polymer composition, geometry of the device, or introducing additives during device fabrication. Slow-release devices have become a very powerful tool for modern medicine. Production of these devices has initially focused on emulsion-based methods, relying on phase separation to encapsulate proteins within polymeric microparticles. Process parameters and the effect of additives have been thoroughly researched to ensure protein stability during device manufacturing and to control the release profile. Continuous fluidic production methods have also been utilized to create protein-laden PLGA devices through spray drying and electrospray production. Thermal processing of PLGA with solid proteins is an emerging production method that allows for continuous, high-throughput manufacturing of PLGA/protein devices. Overall, polymeric materials for protein delivery remain an emerging field of research for the creation of single administration treatments for a wide variety of disease. This review describes, in detail, methods to make PLGA devices, comparing traditional emulsion-based methods to emerging methods to fabricate protein-laden devices. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Peptide-Based Structures. © 2018 Wiley Periodicals, Inc.

  20. Interaction of dengue virus nonstructural protein 5 with Daxx modulates RANTES production

    Energy Technology Data Exchange (ETDEWEB)

    Khunchai, Sasiprapa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Junking, Mutita [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Suttitheptumrong, Aroonroong; Yasamut, Umpa [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Sawasdee, Nunghathai [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Netsawang, Janjuree [Faculty of Medical Technology, Rangsit University, Bangkok (Thailand); Morchang, Atthapan [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Chaowalit, Prapaipit [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); Noisakran, Sansanee [Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok (Thailand); Yenchitsomanus, Pa-thai, E-mail: grpye@mahidol.ac.th [Division of Molecular Medicine, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok (Thailand); and others

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer For the first time how DENV NS5 increases RANTES production. Black-Right-Pointing-Pointer DENV NS5 physically interacts with human Daxx. Black-Right-Pointing-Pointer Nuclear localization of NS5 is required for Daxx interaction and RANTES production. -- Abstract: Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS), caused by dengue virus (DENV) infection, are important public health problems in the tropical and subtropical regions. Abnormal hemostasis and plasma leakage are the main patho-physiological changes in DHF/DSS. A remarkably increased production of cytokines, the so called 'cytokine storm', is observed in the patients with DHF/DSS. A complex interaction between DENV proteins and the host immune response contributes to cytokine production. However, the molecular mechanism(s) by which DENV nonstructural protein 5 (NS5) mediates these responses has not been fully elucidated. In the present study, yeast two-hybrid assay was performed to identify host proteins interacting with DENV NS5 and a death-domain-associate protein (Daxx) was identified. The in vivo relevance of this interaction was suggested by co-immunoprecipitation and nuclear co-localization of these two proteins in HEK293 cells expressing DENV NS5. HEK293 cells expressing DENV NS5-K/A, which were mutated at the nuclear localization sequences (NLS), were created to assess its functional roles in nuclear translocation, Daxx interaction, and cytokine production. In the absence of NLS, DENV NS5 could neither translocate into the nucleus nor interact with Daxx to increase the DHF-associated cytokine, RANTES (CCL5) production. This work demonstrates the interaction between DENV NS5 and Daxx and the role of the interaction on the modulation of RANTES production.

  1. The fundament of food, crop protein production, is threatened by climate change

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Gislum, René; Jørgensen, Johannes Ravn

    2016-01-01

    Income growth, urbanization, and changes in lifestyles and food preferences combined with continuing population growth lead to increasing demand for plant protein production worldwide. All the proteins we eat are produced by crops, including the proteins we get from animals, which initially come...

  2. Protein and starch digestibilities and mineral availability of products developed from potato, soy and corn flour.

    Science.gov (United States)

    Gahlawat, P; Sehgal, S

    1998-01-01

    A technique for development of potato flour was standardized. Five products viz. cake, biscuit, weaning food, panjiri and ladoo were prepared incorporating potato flour, defatted soy flour and corn flour. Baking and roasting were the major processing techniques employed for the development of these products. Protein, ash and fat contents of potato flour were almost similar to those of raw potatoes. Significant differences in protein, ash and fat contents of all the products were observed. Protein and starch digestibility of potato flour was significantly higher than that of raw potatoes. Protein digestibility increased by 12 to 17 percent on baking or roasting of products. Processed products had significantly higher starch digestibility and mineral availability compared to raw products. Thus, it can be concluded that roasting and baking are effective means of improving starch and protein digestibility and mineral availability of products.

  3. Strategies for production of active eukaryotic proteins in bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    Orawan Khow; Sunutcha Suntrarachun

    2012-01-01

    Bacteria have long been the favorite expression system for recombinant protein production. However, the flaw of the system is that insoluble and inactive proteins are co-produced due to codon bias, protein folding, phosphorylation, glycosylation, mRNA stability and promoter strength. Factors are cited and the methods to convert to soluble and active proteins are described, for example a tight control of Escherichia coli milieu, refolding from inclusion body and through fusion technology.

  4. Trichoderma Reesei single cell protein production from rice straw pulp in solid state fermentation

    Science.gov (United States)

    Zaki, M.; Said, S. D.

    2018-04-01

    The dependency on fish meal as a major protein source for animal feed can lead toit priceinstability in line with the increasing in meat production and consumption in Indonesia. In order todeal with this problem, an effort to produce an alternative protein sources production is needed. This scenario is possible due to the abundantavailability of agricultural residues such as rice straw whichcould be utilized as substrate for production of single cell proteins as an alternative proteinsource. This work investigated the potential utilization of rice straw pulp and urea mixture as substrate for the production of local Trichoderma reesei single cell protein in solid state fermentation system. Some parameters have been analyzed to evaluate the effect of ratio of rice straw pulp to urea on mixed single cell protein biomass (mixed SCP biomass) composition, such as total crude protein (analyzed by kjedhal method) and lignin content (TAPPI method).The results showed that crude protein content in mixed SCP biomassincreases with the increasing in fermentation time, otherwise it decreases with the increasing insubstrate carbon to nitrogen (C/N) ratio. Residual lignin content in mixed SCP biomass decreases from 7% to 0.63% during fermentationproceeded of 21 days. The highest crude protein content in mixed SCP biomasswas obtained at substrate C/N ratio 20:1 of 25%.

  5. Developing Novel Protein-based Materials using Ultrabithorax: Production, Characterization, and Functionalization

    Science.gov (United States)

    Huang, Zhao

    2011-12-01

    Compared to 'conventional' materials made from metal, glass, or ceramics, protein-based materials have unique mechanical properties. Furthermore, the morphology, mechanical properties, and functionality of protein-based materials may be optimized via sequence engineering for use in a variety of applications, including textile materials, biosensors, and tissue engineering scaffolds. The development of recombinant DNA technology has enabled the production and engineering of protein-based materials ex vivo. However, harsh production conditions can compromise the mechanical properties of protein-based materials and diminish their ability to incorporate functional proteins. Developing a new generation of protein-based materials is crucial to (i) improve materials assembly conditions, (ii) create novel mechanical properties, and (iii) expand the capacity to carry functional protein/peptide sequences. This thesis describes development of novel protein-based materials using Ultrabithorax, a member of the Hox family of proteins that regulate developmental pathways in Drosophila melanogaster. The experiments presented (i) establish the conditions required for the assembly of Ubx-based materials, (ii) generate a wide range of Ubx morphologies, (iii) examine the mechanical properties of Ubx fibers, (iv) incorporate protein functions to Ubx-based materials via gene fusion, (v) pattern protein functions within the Ubx materials, and (vi) examine the biocompatibility of Ubx materials in vitro. Ubx-based materials assemble at mild conditions compatible with protein folding and activity, which enables Ubx chimeric materials to retain the function of appended proteins in spatial patterns determined by materials assembly. Ubx-based materials also display mechanical properties comparable to existing protein-based materials and demonstrate good biocompatibility with living cells in vitro. Taken together, this research demonstrates the unique features and future potential of novel Ubx

  6. Integrated methodology for production related risk management of vehicle electronics (IMPROVE)

    OpenAIRE

    Geis, Stefan Rafael

    2006-01-01

    This scientific work is designated to provide an innovative and integrated conceptional approach to improve the assembly quality of automotive electronics. This is achieved by the reduction and elimination of production related risks of automotive electronics and the implementation of a sustainable solution process. The focus is the development and implementation of an integrated technical risk management approach for automotive electronics throughout the vehicle life cycle and the vehicle pr...

  7. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  8. Specific, sensitive, high-resolution detection of protein molecules in eukaryotic cells using metal-tagging transmission electron microscopy

    Science.gov (United States)

    Risco, Cristina; Sanmartín-Conesa, Eva; Tzeng, Wen-Pin; Frey, Teryl K.; Seybold, Volker; de Groot, Raoul J.

    2012-01-01

    Summary More than any other methodology, transmission electron microscopy (TEM) has contributed to our understanding of the architecture and organization of cells. With current detection limits approaching atomic resolution, it will ultimately become possible to ultrastructurally image intracellular macromolecular assemblies in situ. Presently, however, methods to unambiguously identify proteins within the crowded environment of the cell’s interior are lagging behind. We describe a novel approach, metal-tagging TEM (METTEM) that allows detection of intracellular proteins in mammalian cells with high specificity, exceptional sensitivity and at molecular scale resolution. In live cells treated with gold salts, proteins bearing a small metal-binding tag will form 1-nm gold nanoclusters, readily detectable in electron micrographs. The applicability and strength of METTEM is demonstrated by a study of Rubella virus replicase and capsid proteins, which revealed virus-induced cell structures not seen before. PMID:22579245

  9. Whey utilization for single-cell protein production

    Energy Technology Data Exchange (ETDEWEB)

    Barraquio, V; Silverio, L G; Revilleza, R P; Fernadez, W L

    1980-01-01

    The production of single-cell protein by yeast assimilation of lactose in soft cheese whey was studied using Candida pseudotropicalis as a test organism. Under shake-flask cultivation conditions with deproteinized whey as the medium, lactose (initially 4.20%) was completely assimilated in 48h; cell mass was 5.56 mg/mL after 72h; and average protein content of the dried mass was approximately 11.8%. Batch cultivation using undeproteinized whey resulted in a faster lactose utilization rate from an initial 3.93% to a residual 0.56% in 12 h; cell mass was 8.41 mg/mL in 10 h; and average protein was approximately 37.7%. In a semicontinuous culture with 10 to the power of 7 viable cells/mL as initial cell concentration, 15.69 mg/mL cell mass with a mean protein content of approximately 21.4% could be produced and lactose could be considerably consumed (from an initial 4.75% to a residual 0.42%) within 13-14 h. Supplementation with (NH/sub 4/)/sub 2/S0/sub 4/ and KH/sub 2/P0/sub 4/ did not increase cell mass (12.47 mg/mL in 12 h) and hasten lactose assimulation (from initial 4.49% to residual 0.3% in 12 h). Average protein content was approximately 31%. Cell mass yield was established as 0.29 mg yeast cell/mg lactose consumed. Factors that might have affected protein content are also discussed.

  10. Recombinant protein production from stable mammalian cell lines and pools.

    Science.gov (United States)

    Hacker, David L; Balasubramanian, Sowmya

    2016-06-01

    We highlight recent developments for the production of recombinant proteins from suspension-adapted mammalian cell lines. We discuss the generation of stable cell lines using transposons and lentivirus vectors (non-targeted transgene integration) and site-specific recombinases (targeted transgene integration). Each of these methods results in the generation of cell lines with protein yields that are generally superior to those achievable through classical plasmid transfection that depends on the integration of the transfected DNA by non-homologous DNA end-joining. This is the main reason why these techniques can also be used for the generation of stable cell pools, heterogenous populations of recombinant cells generated by gene delivery and genetic selection without resorting to single cell cloning. This allows the time line from gene transfer to protein production to be reduced. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Production of surgical gloves from low extractable protein RVNRL

    Energy Technology Data Exchange (ETDEWEB)

    Marga, Utama; Yanti, S.; Made, Sumarti; Marsongko; Tita, Puspitasari; Dian, Iramani [Center for Research and Development of Isotopes and Radiation Technology, National Nuclear Energy Agency, Jakarta (Indonesia); Makuuchi, K. [EB System Cooperation, Takasaki, Gunma (Japan); Yoshii, F. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Siswanto [Research Unit for Biotechnology of Estate Crop (Indonesia)

    2001-03-01

    Study on the production of surgical gloves from low extractable protein PVNRL (Radiation Vulcanization of Natural Rubber Latex) in home industry scale with normal butyl acrylate as sensitizer has been carried out. The variation of dipping speed, concentration of coagulant agent and selection of antioxidant for producing good quality of surgical gloves were evaluated. The water-extractable protein and PBS (Phosphate Buffer Saline) - extractable protein content, the physical and mechanical properties of gloves were measured. The results show that for producing a good quality of surgical gloves from low extractable protein RVNRL, the concentration of latex is 50% with calcium nitrate as coagulant agent between 15-20%. By using this condition the physical and mechanical properties of surgical gloves is required to ASTM standard such as tensile strength more than 24 MPa, PBS-extractable protein is around 41-68 ug/g and water-extractable protein contents is around 23-35 ug/g. (author)

  12. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    International Nuclear Information System (INIS)

    Cross, R.C.; Liu, J.R.; Giannone, L.

    1983-01-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned. (author)

  13. NirN Protein from Pseudomonas aeruginosa is a Novel Electron-bifurcating Dehydrogenase Catalyzing the Last Step of Heme d1 Biosynthesis*

    Science.gov (United States)

    Adamczack, Julia; Hoffmann, Martin; Papke, Ulrich; Haufschildt, Kristin; Nicke, Tristan; Bröring, Martin; Sezer, Murat; Weimar, Rebecca; Kuhlmann, Uwe; Hildebrandt, Peter; Layer, Gunhild

    2014-01-01

    Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1. PMID:25204657

  14. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kokoro [Fujifilm Corporation, Analysis Technology Center (Japan); Kojima, Chojiro, E-mail: kojima@protein.osaka-u.ac.j [Nara Institute of Science and Technology (NAIST), Graduate School of Biological Sciences (Japan)

    2010-11-15

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in {sup 1}H-{sup 15}N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  15. Advances in Mammalian Cell Line Development Technologies for Recombinant Protein Production

    Directory of Open Access Journals (Sweden)

    Say Kong Ng

    2013-04-01

    Full Text Available From 2006 to 2011, an average of 15 novel recombinant protein therapeutics have been approved by US Food and Drug Administration (FDA annually. In addition, the expiration of blockbuster biologics has also spurred the emergence of biosimilars. The increasing numbers of innovator biologic products and biosimilars have thus fuelled the demand of production cell lines with high productivity. Currently, mammalian cell line development technologies used by most biopharmaceutical companies are based on either the methotrexate (MTX amplification technology or the glutamine synthetase (GS system. With both systems, the cell clones obtained are highly heterogeneous, as a result of random genome integration by the gene of interest and the gene amplification process. Consequently, large numbers of cell clones have to be screened to identify rare stable high producer cell clones. As such, the cell line development process typically requires 6 to 12 months and is a time, capital and labour intensive process. This article reviews established advances in protein expression and clone screening which are the core technologies in mammalian cell line development. Advancements in these component technologies are vital to improve the speed and efficiency of generating robust and highly productive cell line for large scale production of protein therapeutics.

  16. Multi-Electron Production at High Transverse Momenta in ep Collisions at HERA

    CERN Document Server

    Aktas, A.; Anthonis, T.; Asmone, A.; Babaev, A.; Backovic, S.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Gregori, M.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Jacquet, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Kropivnitskaya, A.; Kroseberg, J.; Kueckens, J.; Kuhr, T.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lueders, H.; Luders, S.; Luke, D.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nikitin, D.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Pitzl, D.; Poschl, R.; Povh, B.; Raicevic, N.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wessling, B.; Winde, M.; Winter, G.G.; Wissing, C.; Woehrling, E.E.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.

    2003-01-01

    Multi-electron production is studied at high electron transverse momentum in positron- and electron-proton collisions using the H1 detector at HERA. The data correspond to an integrated luminosity of 115 pb-1. Di-electron and tri-electron event yields are measured. Cross sections are derived in a restricted phase space region dominated by photon-photon collisions. In general good agreement is found with the Standard Model predictions. However, for electron pair invariant masses above 100 GeV, three di-electron events and three tri-electron events are observed, compared to Standard Model expectations of 0.30 pm 0.04 and 0.23 pm 0.04, respectively.

  17. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  18. Printing versus coating - What will be the future production technology for printed electronics?

    Energy Technology Data Exchange (ETDEWEB)

    Glawe, Andrea; Eggerath, Daniel; Schäfer, Frank [KROENERT GmbH and Co KG, Schuetzenstrasse 105, 22761 Hamburg (Germany)

    2015-02-17

    The market of Large Area Organic Printed Electronics is developing rapidly to increase efficiency and quality as well as to lower costs further. Applications for OPV, OLED, RFID and compact Printed Electronic systems are increasing. In order to make the final products more affordable, but at the same time highly accurate, Roll to Roll (R2R) production on flexible transparent polymer substrates is the way forward. There are numerous printing and coating technologies suitable depending on the design, the product application and the chemical process technology. Mainly the product design (size, pattern, repeatability) defines the application technology.

  19. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

    Science.gov (United States)

    Mamat, Uwe; Wilke, Kathleen; Bramhill, David; Schromm, Andra Beate; Lindner, Buko; Kohl, Thomas Andreas; Corchero, José Luis; Villaverde, Antonio; Schaffer, Lana; Head, Steven Robert; Souvignier, Chad; Meredith, Timothy Charles; Woodard, Ronald Wesley

    2015-04-16

    Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.

  20. Optimal Consumer Electronics Product Take-Back Time with Consideration of Consumer Value

    Directory of Open Access Journals (Sweden)

    Yi-Tse Fang

    2017-03-01

    Full Text Available Rapid economic growth in recent years has transformed our lifestyle to massively produce, consume, and dispose of products, especially for consumer electronics. This change has put great threat to our environment and caused natural resource depletion. Moreover, short product life cycles and quick replacements of consumer electronics create enormous electronic wastes (e-wastes. Without proper waste management, immense environmental damage is expected. In this empirical study, we notice that lots of valuable materials that can still be recycled from these used consumer electronics are left unused at home instead of being recycled at the appropriate time, which causes a low collection rate and a decrease in residual value for the used products. Therefore, it is important for the government and the recyclers to handle them efficiently by increasing the used product take-back rate. Our study develops an assessment model for customer value based on the idea of value engineering and the perspective of product life cycle. We also explore the relationship between product value and the total cost of ownership with an evaluation of their time variation, considering different usage modes for various consumer groups and different recycling award schemes (fixed and variable recycling awards. Proper take-back management is likely to create a win-win situation both for consumers and environmental protection. This study regards the notebook computer as an example to determine the optimal time for recycling laptops based on usage patterns and provides consumers a reference for when to replace their used product. The results from our modeling firstly clearly indicate that consumers with higher frequency of usage have shorter take back times and higher maximum consumer value. Secondly, a variable recycling award scheme with higher maximum consumer value is more practical than a fixed recycling award scheme.

  1. Product conveying system for 10 MeV electron beam accelerator for electron beam centre, Kharghar, Navi Mumbai

    International Nuclear Information System (INIS)

    Bandi, L.N.; Lavale, D.S.; Sarma, K.S.S.; Khader, S.A.; Assadullah, M.; Sabharwal, S.

    2003-01-01

    In industrial radiation processing applications using accelerators, product conveying system plays a vital role in exposing the product to high energy electron beam for imparting specified dose to the product and delivering required through puts. The speed of the conveyor corresponds to a definite time of exposure of the product in the radiation zone. Design of suitable conveyor system for a variety of products with differing dose requirements call for a conveyor with wide speed range. This paper discusses the design features of a suitable under beam conveyor system for 10 MeV, 10 kW accelerator for processing a range of products including medical and food products

  2. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Anamitra

    2007-06-01

    Full Text Available Abstract Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1 enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of

  3. Protein 3D Structure and Electron Microscopy Map Retrieval Using 3D-SURFER2.0 and EM-SURFER.

    Science.gov (United States)

    Han, Xusi; Wei, Qing; Kihara, Daisuke

    2017-12-08

    With the rapid growth in the number of solved protein structures stored in the Protein Data Bank (PDB) and the Electron Microscopy Data Bank (EMDB), it is essential to develop tools to perform real-time structure similarity searches against the entire structure database. Since conventional structure alignment methods need to sample different orientations of proteins in the three-dimensional space, they are time consuming and unsuitable for rapid, real-time database searches. To this end, we have developed 3D-SURFER and EM-SURFER, which utilize 3D Zernike descriptors (3DZD) to conduct high-throughput protein structure comparison, visualization, and analysis. Taking an atomic structure or an electron microscopy map of a protein or a protein complex as input, the 3DZD of a query protein is computed and compared with the 3DZD of all other proteins in PDB or EMDB. In addition, local geometrical characteristics of a query protein can be analyzed using VisGrid and LIGSITE CSC in 3D-SURFER. This article describes how to use 3D-SURFER and EM-SURFER to carry out protein surface shape similarity searches, local geometric feature analysis, and interpretation of the search results. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  4. N-epsilon-(carboxyethyl)lysine, a product of the chemical modification of proteins by methylglyoxal, increases with age in human lens proteins.

    OpenAIRE

    Ahmed, M U; Brinkmann Frye, E; Degenhardt, T P; Thorpe, S R; Baynes, J W

    1997-01-01

    Advanced glycation end-products and glycoxidation products, such as Nepsilon-(carboxymethyl)lysine (CML) and pentosidine, accumulate in long-lived tissue proteins with age and are implicated in the aging of tissue proteins and in the development of pathology in diabetes, atherosclerosis and other diseases. In this paper we describe a new advanced glycation end-product, Nepsilon-(carboxyethyl)lysine (CEL), which is formed during the reaction of methylglyoxal with lysine residues in model compo...

  5. PML tumor suppressor protein is required for HCV production

    Energy Technology Data Exchange (ETDEWEB)

    Kuroki, Misao [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Research Fellow of the Japan Society for the Promotion of Science (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Ariumi, Yasuo, E-mail: ariumi@kumamoto-u.ac.jp [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Center for AIDS Research, Kumamoto University, Kumamoto 860-0811 (Japan); Hijikata, Makoto [Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507 (Japan); Ikeda, Masanori; Dansako, Hiromichi [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan); Wakita, Takaji [Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640 (Japan); Shimotohno, Kunitada [Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba 272-8516 (Japan); Kato, Nobuyuki [Department of Tumor Virology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Okayama 700-8558 (Japan)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer PML tumor suppressor protein is required for HCV production. Black-Right-Pointing-Pointer PML is dispensable for HCV RNA replication. Black-Right-Pointing-Pointer HCV could not alter formation of PML-NBs. Black-Right-Pointing-Pointer INI1 and DDX5, PML-related proteins, are involved in HCV life cycle. -- Abstract: PML tumor suppressor protein, which forms discrete nuclear structures termed PML-nuclear bodies, has been associated with several cellular functions, including cell proliferation, apoptosis and antiviral defense. Recently, it was reported that the HCV core protein colocalizes with PML in PML-NBs and abrogates the PML function through interaction with PML. However, role(s) of PML in HCV life cycle is unknown. To test whether or not PML affects HCV life cycle, we examined the level of secreted HCV core and the infectivity of HCV in the culture supernatants as well as the level of HCV RNA in HuH-7-derived RSc cells, in which HCV-JFH1 can infect and efficiently replicate, stably expressing short hairpin RNA targeted to PML. In this context, the level of secreted HCV core and the infectivity in the supernatants from PML knockdown cells was remarkably reduced, whereas the level of HCV RNA in the PML knockdown cells was not significantly affected in spite of very effective knockdown of PML. In fact, we showed that PML is unrelated to HCV RNA replication using the subgenomic HCV-JFH1 replicon RNA, JRN/3-5B. Furthermore, the infectivity of HCV-like particle in the culture supernatants was significantly reduced in PML knockdown JRN/3-5B cells expressing core to NS2 coding region of HCV-JFH1 genome using the trans-packaging system. Finally, we also demonstrated that INI1 and DDX5, the PML-related proteins, are involved in HCV production. Taken together, these findings suggest that PML is required for HCV production.

  6. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  7. Sequential Proton Loss Electron Transfer in Deactivation of Iron(IV) Binding Protein by Tyrosine Based Food Components

    DEFF Research Database (Denmark)

    Tang, Ning; Skibsted, Leif Horsfelt

    2017-01-01

    The iron(IV) binding protein ferrylmyoglobin, MbFe(IV)=O, was found to be reduced by tyrosine based food components in aqueous solution through a sequential proton loss electron transfer reaction mechanism without binding to the protein as confirmed by isothermal titration calorimetry. Dopamine a...

  8. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    . To accomplish tight binding of both proteins the PS1 subunit PsaE was genetically fused to the C-terminal end of the small subunit of MBH, i.e. close to the electron acceptor site of MBH. This fusion protein spontaneously assembled with the PsaE-deletion mutant of PS1. Crucial for a high hydrogen evolution rate of the system is an efficient electron transfer between both proteins. To allow this measurement, the PsaE-deletion mutant of PS1 was immobilized on a Ni-NTAterminated monolayer via a genetically introduced His-tag. The specificity of the assembly of fusion protein and deletion mutant was verified by SEIRAS. Surface plasmon resonance, gas chromatography and electrochemistry complemented this measurement and yielded the specific activity of the functional hybrid complex: 4500 mol H{sub 2} min{sup -1} mol{sup -1}. The investigated complex allowed hydrogen evolution at potentials up to 85 mV, i.e. hydrogen production at a lower energy level than on a platinum electrode. In addition, the hydrogen production rate was higher than for hydrogenase-modified electrodes without PS1. Beyond these specific results, the experimental setup can be used to quantify the hydrogen evolution rate on a molecular level for variable hydrogenases and hybrid complexes. This information will be used to choose the most efficient catalysts for introduction into the native system for in vivo hydrogen production. (orig.)

  9. Detection of Egg Production of Tegal Duck by Blood Protein Polymorphism

    Directory of Open Access Journals (Sweden)

    Ismoyowati Ismoyowati

    2008-05-01

    Full Text Available The aim of this research was to study the effect of transfferine, albumine, and haemoglobine loci to egg production characteristic of Tegal duck.  100 lying of Tegal ducks keeping by batteray-pen were used in this study.  Individual egg production was recorded until period of 120 days. Blood protein polymorphism analysed by electrophoresis method, and blood sample taken from each ducks.. Egg production and transfferine albumine, and haemoglobine phenotipe on electrophoresis gel were observed in this study.  Genotipe and gene frequencies and genetic variant were applied in data analysis. The result showed that (1 in the transferine locus were identified 3 aleles forming 4 genotipes (TfAA,TfAB, TfBB, and TfBC, (2 in albumine were identified 3 aleles forming 5 genotipes (AlbAA, AlbAB, AlbAC, AlbBB and AlbBC and (3 haemoglobine locus were identified 6 aleles forming 4 genotipes ((HbAA, HbAB, HbAC, HbBB, HbBC dan HbCC.  This study demostrated that B gene frequenci in transfferine, albumine and haemoglonine loci was highest than A and C gene frequency.  Tegal Duck with AA genotipe on all loci had higher egg production than BB and CC homozigote.  This research revealed that the most efective of selection method by haemoglobine protein polymorphism. (Animal Production 10(2: 122-128 (2008   Key Words: Tegal duck, egg production, selection, blood protein polymorphism

  10. Measurements of absolute M-subshell X-ray production cross sections of Th by electron impact

    Energy Technology Data Exchange (ETDEWEB)

    Moy, A., E-mail: aurelien.moy@cea.fr [GM, CNRS, Université de Montpellier II, Place E. Bataillon, F-34095 Montpellier (France); CEA, DEN, DTEC, SGCS, LMAC, F-30207 Bagnols-sur-Cèze (France); Merlet, C. [GM, CNRS, Université de Montpellier II, Place E. Bataillon, F-34095 Montpellier (France); Dugne, O. [CEA, DEN, DTEC, SGCS, LMAC, F-30207 Bagnols-sur-Cèze (France)

    2014-08-31

    Highlights: • The M X-ray production cross sections of Th were measured by electron impact. • The M-subshell ionization cross sections of Th were determined from 3 to 38 keV. • Theoretical ionization cross-sections are in agreement with our experimental results. - Abstract: Measurements of absolute M-subshell X-ray production cross sections for element Th were made by electron impact for energies ranging from the ionization threshold up to 38 keV. Experimental data were obtained by measuring the X-ray intensity emitted from ultrathin Th films deposited onto self-supporting C backing films. The measurements were conducted with an electron microprobe using high-resolution wavelength dispersive spectrometers. Recorded intensities were converted into absolute X-ray production cross sections by means of atomic data and estimation of the number of primary electrons, target thickness, and detector efficiency. Our experimental X-ray production cross sections, the first to be reported for the M subshells of Th, are compared with X-ray production cross sections calculated with the mean of ionization cross sections obtained from the distorted-wave Born approximation. The Mα X-ray production cross section calculated is in excellent agreement with the measurements, allowing future use for standardless quantification in electron probe microanalysis.

  11. Electron microscopy of hydrocarbon production in parthenium argentatum (guayule)

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas E. [Univ. of California, Berkeley, CA (United States)

    1977-11-01

    The electron microscope was used to study the biological processes involved in hydrocarbon production. The little desert shrub Guayule (Parthenium argentatum) was selected for study. This shrub can produce hydrocarbons (rubber) in concentrations up to 1/4 of its dry weight. It grows on semi-arid land and has been extensively studied. The potential of Guayule is described in detail. Results of an investigation into the morphology of Guayule at the electron microscope level are given. Experiments, which would allow the biosynthesis of hydrocarbon in Guayule to be followed, were designed. In order to do this, knowledge of the biochemistry of rubber formation was used to select a tracer, mevalonic acid. Mevalonic acid is the precursor of all the terpenoids, a large class of hydrocarbons which includes rubber. It was found that when high enough concentrations of mevalonic acid are administered to seedling Guayule plants, build-ups of metabolized products are found within the chloroplasts of the seedlings. Also, tritium labeled mevalonic acid was used as a precursor, and its metabolic progress was followed by using the technique of electron microscope autoradiography. The results of these experiments also implicated chloroplasts of the Guayule plant in hydrocarbon production. The final task was the development of a system to produce three-dimensional stereo reconstructions of organelles suspected of involvement in hydrocarbon biosynthesis in Guayule. The techniques are designed to reconstruct an object from serial sections of that object. The techniques use stereo imaging both to abstract information for computer processing, and also in the computer produced reconstruction.

  12. Identification of Degradation Products of Lincomycin and Iopromide by Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Cha, Yongbyoung; Ham, Hyunsun; Myung, Seungwoon

    2013-01-01

    Lincomycin and Iopromide are major species among the Pharmaceuticals and Personal Care Products (PPCPs) from four major rivers in Korea. The structure characterization of six lincomycin's and two iopromide's degradation products formed under the irradiation of electron beam was performed, and the degradation efficiency as a function of the various irradiation dose and sample concentration was investigated. Electron beam (10 MeV, 0.5 mA and 5 kW) experiments for the structural characterization of the degradation products, which is fortified with lincomycin, were performed at the dose of 10 kGy. The separation of its degradation products and lincomycin was carried by C18 column (2.1 Χ 100 mm, 3.5 μm), using gradient elution with 20 mM ammonium acetate and acetonitrile. The structures of degradation products of lincomycin and iopromide were proposed by interpretation of mass spectra and chromatograms by LC/MS/MS, and also the mass fragmentation pathways of mass spectra in tandem mass spectrometry were proposed. The experiments of the degradation efficiency as a function of the irradiation dose intensity and the initial concentration of lincomycin in aqueous environment were performed, and higher dose of electron beam and lower concentration was observed the increased degradation efficiency

  13. Valorization of Proteins from Co- and By-Products from the Fish and Meat Industry.

    Science.gov (United States)

    Aspevik, Tone; Oterhals, Åge; Rønning, Sissel Beate; Altintzoglou, Themistoklis; Wubshet, Sileshi Gizachew; Gildberg, Asbjørn; Afseth, Nils Kristian; Whitaker, Ragnhild Dragøy; Lindberg, Diana

    2017-06-01

    Large volumes of protein-rich residual raw materials, such as heads, bones, carcasses, blood, skin, viscera, hooves and feathers, are created as a result of processing of animals from fisheries, aquaculture, livestock and poultry sectors. These residuals contain proteins and other essential nutrients with potentially bioactive properties, eligible for recycling and upgrading for higher-value products, e.g. for human, pet food and feed purposes. Here, we aim to cover all the important aspects of achieving optimal utilization of proteins in such residual raw materials, identifying those eligible for human consumption as co-products and for feed applications as by-products. Strict legislation regulates the utilization of various animal-based co- and by-products, representing a major hurdle if not addressed properly. Thorough understanding and optimization of all parts of the production chain, including conservation and processing, are important prerequisites for successful upgrading and industrial implementation of such products. This review includes industrially applied technologies such as freezing/cooling, acid preservation, salting, rendering and protein hydrolysis. In this regard, it is important to achieve stable production and quality through all the steps in the manufacturing chain, preferably supported by at- or online quality control points in the actual processing step. If aiming for the human market, knowledge of consumer trends and awareness are important for production and successful introduction of new products and ingredients.

  14. Production and Detection of Spin-Entangled Electrons in Mesoscopic Conductors

    Science.gov (United States)

    Burkard, Guido

    2006-03-01

    Electron spins are an extremely versatile form of quantum bits. When localized in quantum dots, they can form a register for quantum computation. Moreover, being attached to a charge in a mesoscopic conductor allows the electron spin to play the role of a mobile carrier of quantum information similarly to photons in optical quantum communication. Since entanglement is a basic resource in quantum communication, the production and detection of spin-entangled Einstein-Podolsky-Rosen (EPR) pairs of electrons are of great interest. Besides the practical importance, it is of fundamental interest to test quantum non-locality for electrons. I review the theoretical schemes for the entanglement production in superconductor-normal junctions [1] and other systems. The electron spin entanglement can be detected and quantified from measurements of the fluctuations (shot noise) of the charge current after the electrons have passed through an electronic beam splitter [2,3]. This two-particle interference effect is related to the Hanbury-Brown and Twiss experiment and leads to a doubling of the shot noise SI=φ=0 for spin-entangled states, allowing their differentiation from unentangled pairs. I report on the role of spin-orbit coupling (Rashba and Dresselhaus) in a complete characterization of the spin entanglement [4]. Finally, I address the effects of a discrete level spectrum in the mesoscopic leads and of backscattering and decoherence.[1] P. Recher, E. V. Sukhorukov, D. Loss, Phys. Rev. B 63, 165314 (2001)[2] G. Burkard, D. Loss, E. V. Sukhorukov, Phys. Rev. B 61, R16303 (2000)[3] G. Burkard and D. Loss, Phys. Rev. Lett.91, 087903 (2003)[4] J. C. Egues, G. Burkard, D. Saraga, J. Schliemann, D. Loss, cond-mat/0509038, to appear in Phys.Rev.B (2005).

  15. Digital HCAL Electronics: Status of Production

    Energy Technology Data Exchange (ETDEWEB)

    Drake, Gary; Repond, Jose, E-mail: drake@hep.anl.gov [Argonne National Laboratory (United States)

    2011-04-01

    This is a status report of the production of the readout electronics for the Digital Hadron Calorimeter (DHCAL) prototype. The prototype will be equipped with Resistive Plate Chambers (RPCs), read out with 1 x 1 cm{sup 2} pads. The readout of each channel is simplified to provide a yes or no (digital readout) within a time bin of 100 ns. Each detector layer with an area of 96 x 96 cm{sup 2} contains close to 10,000 readout channels. The total channel count for the entire prototype calorimeter with 38 active layers is approximately 350,000.

  16. WDM production with intense relativistic electrons

    Science.gov (United States)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to 1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  17. Electronic cigarettes: product characterisation and design considerations.

    Science.gov (United States)

    Brown, Christopher J; Cheng, James M

    2014-05-01

    To review the available evidence regarding electronic cigarette (e-cigarette) product characterisation and design features in order to understand their potential impact on individual users and on public health. Systematic literature searches in 10 reference databases were conducted through October 2013. A total of 14 articles and documents and 16 patents were included in this analysis. Numerous disposable and reusable e-cigarette product options exist, representing wide variation in product configuration and component functionality. Common e-cigarette components include an aerosol generator, a flow sensor, a battery and a nicotine-containing solution storage area. e-cigarettes currently include many interchangeable parts, enabling users to modify the character of the delivered aerosol and, therefore, the product's 'effectiveness' as a nicotine delivery product. Materials in e-cigarettes may include metals, rubber and ceramics. Some materials may be aerosolised and have adverse health effects. Several studies have described significant performance variability across and within e-cigarette brands. Patent applications include novel product features designed to influence aerosol properties and e-cigarette efficiency at delivering nicotine. Although e-cigarettes share a basic design, engineering variations and user modifications result in differences in nicotine delivery and potential product risks. e-cigarette aerosols may include harmful and potentially harmful constituents. Battery explosions and the risks of exposure to the e-liquid (especially for children) are also concerns. Additional research will enhance the current understanding of basic e-cigarette design and operation, aerosol production and processing, and functionality. A standardised e-cigarette testing regime should be developed to allow product comparisons.

  18. Electron-positron pair production by two identical photons in the nuclear field

    International Nuclear Information System (INIS)

    Smirnov, A.I.

    1977-01-01

    In the Born approximation of the perturbation theory considered is a nonlinear effect of the electron-positron pair production by two identical photons in the Coulomb field of an atomic nucleus. The kinematic version of identical photons is studied. All the particles are considered to be nonpolarized. The calculation of the differential probability of the effect has been carried out earlier by the Feynman method. The total probability of the effect in limiting energy ranges is determined by integrating the formulas of the pair component distribution over energies. The probabilities of the electron-positron pair production and fusion of two photons into one in the nucleus field have been compared for the case of identical quanta. From the comparison of the results of analyzing both the nonlinear effects it follows that in the high-energy range the electron-positron pair production by two identical photons in the nucleus field extremely predominates over the fusion of two photons into one photon in the same field

  19. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    Science.gov (United States)

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Photo-production of (99)Mo/(99m)Tc with electron linear accelerator beam.

    Science.gov (United States)

    Avagyan, R; Avetisyan, A; Kerobyan, I; Dallakyan, R

    2014-09-01

    We report on the development of a relatively new method for the production of (99)Mo/(99m)Tc. The method involves the irradiation of natural molybdenum using high-intensity bremsstrahlung photons from the electron beam of the LUE50 linear electron accelerator located at the Yerevan Physics Institute (YerPhi). The production method has been developed and shown to be successful. The linear electron accelerator at YerPhi was upgraded to allow for significant increases of the beam intensity and spatial density. The LUE50 was also instrumented by a remote control system for ease of operation. We have developed and tested the (99m)Tc extraction from the irradiation of natural MoO3. This paper reports on the optimal conditions of our method of (99)Mo production. We show the success of this method with the production and separation of the first usable amounts of (99m)Tc. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hydrogen production by using Rhodobacter capsulatus mutants with genetically modified electron transfer chains

    Energy Technology Data Exchange (ETDEWEB)

    OEztuerk, Yavuz; Yuecel, Meral; Guenduez, Ufuk [Department of Biology, Middle East Technical University, Ankara (Turkey); Daldal, Fevzi [Department of Biology, Plant Science Institute, University of Pennsylvania, Philadelphia, PA 19104-6018 (United States); Mandaci, Sevnur [TUEBITAK Research Institute for Genetic Engineering and Biotechnology, Gebze Kocaeli 41470 (Turkey); Tuerker, Lemi [Department of Chemistry, Middle East Technical University, Ankara (Turkey); Eroglu, Inci [Department of Chemical Engineering, Middle East Technical University, Ankara (Turkey)

    2006-09-15

    In Rhodobacter capsulatus excess reducing equivalents generated by organic acid oxidation is consumed to reduce protons into hydrogen by the activity of nitrogenase. Nitrogenase serves as a redox-balancing tool and is activated by the RegB/RegA global regulatory system during photosynthetic growth. The terminal cytochrome cbb{sub 3} oxidase and the redox state of the cyclic photosynthetic electron transfer chain serve redox signaling to the RegB/RegA regulatory systems in Rhodobacter. In this study, hydrogen production of various R. capsulatus strains harboring the genetically modified electron carrier cytochromes or lacking the cyt cbb{sub 3} oxidase or the quinol oxidase were compared with the wild type. The results indicated that hydrogen production of mutant strains with modified electron carrier cytochromes decreased 3- to 4-fold, but the rate of hydrogen production increased significantly in a cbb{sub 3}{sup -} mutant. Moreover, hydrogen production efficiency of various R. capsulatus strains further increased by inactivation of uptake hydrogenase genes. (author)

  2. Improvement of heterologous protein production in Aspergillus oryzae by RNA interference with alpha-amylase genes.

    Science.gov (United States)

    Nemoto, Takashi; Maruyama, Jun-ichi; Kitamoto, Katsuhiko

    2009-11-01

    Aspergillus oryzae RIB40 has three alpha-amylase genes (amyA, amyB, and amyC), and secretes alpha-amylase abundantly. However, large amounts of endogenous secretory proteins such as alpha-amylase can compete with heterologous protein in the secretory pathway and decrease its production yields. In this study, we examined the effects of suppression of alpha-amylase on heterologous protein production in A. oryzae, using the bovine chymosin (CHY) as a reporter heterologous protein. The three alpha-amylase genes in A. oryzae have nearly identical DNA sequences from those promoters to the coding regions. Hence we performed silencing of alpha-amylase genes by RNA interference (RNAi) in the A. oryzae CHY producing strain. The silenced strains exhibited a reduction in alpha-amylase activity and an increase in CHY production in the culture medium. This result suggests that suppression of alpha-amylase is effective in heterologous protein production in A. oryzae.

  3. Protein-based underwater adhesives and the prospects for their biotechnological production.

    Science.gov (United States)

    Stewart, Russell J

    2011-01-01

    Biotechnological approaches to practical production of biological protein-based adhesives have had limited success over the last several decades. Broader efforts to produce recombinant adhesive proteins may have been limited by early disappointments. More recent synthetic polymer approaches have successfully replicated some aspects of natural underwater adhesives. For example, synthetic polymers, inspired by mussels, containing the catecholic functional group of 3,4-L-dihydroxyphenylalanine adhere strongly to wet metal oxide surfaces. Synthetic complex coacervates inspired by the Sandcastle worm are water-borne adhesives that can be delivered underwater without dispersing. Synthetic approaches offer several advantages, including versatile chemistries and scalable production. In the future, more sophisticated mimetic adhesives may combine synthetic copolymers with recombinant or agriculture-derived proteins to better replicate the structural and functional organization of natural adhesives.

  4. Expression and Production of SH2 Domain Proteins.

    Science.gov (United States)

    Liu, Bernard A; Ogiue-Ikeda, Mari; Machida, Kazuya

    2017-01-01

    The Src Homology 2 (SH2) domain lies at the heart of phosphotyrosine signaling, coordinating signaling events downstream of receptor tyrosine kinases (RTKs), adaptors, and scaffolds. Over a hundred SH2 domains are present in mammals, each having a unique specificity which determines its interactions with multiple binding partners. One of the essential tools necessary for studying and determining the role of SH2 domains in phosphotyrosine signaling is a set of soluble recombinant SH2 proteins. Here we describe methods, based on a broad experience with purification of all SH2 domains, for the production of SH2 domain proteins needed for proteomic and biochemical-based studies such as peptide arrays, mass-spectrometry, protein microarrays, reverse-phase microarrays, and high-throughput fluorescence polarization (HTP-FP). We describe stepwise protocols for expression and purification of SH2 domains using GST or poly His-tags, two widely adopted affinity tags. In addition, we address alternative approaches, challenges, and validation studies for assessing protein quality and provide general characteristics of purified human SH2 domains.

  5. Recombinant proteins from plants: production and isolation of clinically useful compounds

    National Research Council Canada - National Science Library

    Cunningham, Charles; Porter, Andrew J. R

    1998-01-01

    ... of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide comprehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many laboratories, coverage is also given to some of the more "...

  6. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  7. Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment.

    Science.gov (United States)

    Oonincx, Dennis G A B; de Boer, Imke J M

    2012-01-01

    The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein.

  8. Environmental impact of the production of mealworms as a protein source for humans - a life cycle assessment.

    Directory of Open Access Journals (Sweden)

    Dennis G A B Oonincx

    Full Text Available The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein.

  9. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  10. EFFECT OF PROTEIN UNDEGRADED SUPPLEMENTATION ON PRODUCTION AND COMPOSITION OF MILK IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    B.P. Widyobroto

    2014-10-01

    Full Text Available This research was aimed to examine the effect of undegraded protein supplementation on nutrientsintake, production and milk composition in dairy cows. The purpose of this research was to provideinformation on the undegraded protein supplementation to increase milk production and composition indairy cows. The research was conducted for 3 months in Boyolali-Central Java. The study used 20lactation cows (<3 months of lactation, aged 3 to 3.5 years with body weight from 350 to 400 kg. Thecows were then randomly divided into 2 groups of ten based on their body weight, milk production,lactation period and age. The first group (control and the second group (treated, both were fed dietbased on NRC (1987. The second group was added undegraded protein (UDP of 30 g/l milk that mixedby concentrate. The observed variables were dry matter intake (DM, organic matter (OM, crudeprotein (CP, neutral detergent fiber (NDF, milk production and milk composition including fat, proteinand solid non fat (SNF. Data obtained were examined by t-test.The results showed that intake of DM, OM, and the NDF of treated and control groups were notdifferent (9.57; 8.49; 4.98 vs 9.44; 8.38; 5.40 kg/cow/d, respectively; however, protein intake of treatedgroup was higher (P<0.01 than that of the control group (1097 vs. 1210g/cow/d. Milk production ofcows receiving UDP supplementation tended to be higher than that in the control group (+ 1:45kg/cow/d. Although they tended to be lower in fat (4.13 vs. 3.88%, protein (2.45 vs. 2.27% and SNF(7.26 vs. 6.94%, but protein and fat production were higher for cows receiving UDP supplementation(366 each; 214 vs. 330; 196g/cow/d. It can be concluded that UDP supplementation increased milk, fatproduction and milk protein but it tended to reduce the level of fat, protein and SNF milk.

  11. Excited-atom production by electron and ion bombardment of alkali halides

    International Nuclear Information System (INIS)

    Walkup, R.E.; Avouris, P.; Ghosh, A.P.

    1987-01-01

    We present experimental results on the production of excited atoms by electron and ion bombardment of alkali halides. For the case of electron bombardment, Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the systematic dependence on incident electron current and sample temperature support a model in which the excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. In contrast, for the case of ion bombardment, the excited atoms are directly sputtered from the surface, with velocity distributions characteristic of a collision cascade, and with typical energies of --10 eV

  12. Systematic high-yield production of human secreted proteins in Escherichia coli

    International Nuclear Information System (INIS)

    Dai Xueyu; Chen Qiang; Lian Min; Zhou Yanfeng; Zhou Mo; Lu Shanyun; Chen Yunjia; Luo Jingchu; Gu Xiaocheng; Jiang Ying; Luo Ming; Zheng Xiaofeng

    2005-01-01

    Human secreted proteins play a very important role in signal transduction. In order to study all potential secreted proteins identified from the human genome sequence, systematic production of large amounts of biologically active secreted proteins is a prerequisite. We selected 25 novel genes as a trial case for establishing a reliable expression system to produce active human secreted proteins in Escherichia coli. Expression of proteins with or without signal peptides was examined and compared in E. coli strains. The results indicated that deletion of signal peptides, to a certain extent, can improve the expression of these proteins and their solubilities. More importantly, under expression conditions such as induction temperature, N-terminus fusion peptides need to be optimized in order to express adequate amounts of soluble proteins. These recombinant proteins were characterized as well-folded proteins. This system enables us to rapidly obtain soluble and highly purified human secreted proteins for further functional studies

  13. Electron-positron pair production in inhomogeneous electromagnetic fields

    International Nuclear Information System (INIS)

    Kohlfürst, C.

    2015-01-01

    The process of electron-positron pair production is investigated within the phase-space Wigner formalism. The similarities between atomic ionization and pair production for homogeneous, but time-dependent linearly polarized electric fields are examined mainly in the regime of multiphoton absorption (field-dependent threshold, above-threshold pair production). Characteristic signatures in the particle spectra are identified (effective mass, channel closing). The non-monotonic dependence of the particle yield on the carrier frequency is discussed as well. The investigations are then extended to spatially inhomogeneous electric fields. New effects arising due to the spatial dependence of the effective mass are discussed in terms of a semi-classical interpretation. An increase in the normalized particle yield is found for various field configurations.Pair production in inhomogeneous electric and magnetic fields is also studied. The influence of a time-dependent spatially inhomogeneous magnetic field on the momentum spectrum and the particle yield is investigated. The Lorentz invariants are identified to be crucial in order to understand pair production by strong electric fields in the presence of strong magnetic fields. (author) [de

  14. Application of electron-chemical curing in the production of thin composite materials

    International Nuclear Information System (INIS)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V.

    1993-01-01

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author)

  15. Guide for preparing annual reports on radiation-safety testing of electronic products (general)

    International Nuclear Information System (INIS)

    1987-10-01

    For manufacturers of electronic products other than those for which a specific guide has been issued, the guide replaces the Guide for the Filing of Annual Reports (21 CFR Subchapter J, Section 1002.11), HHS Publication FDA 82-8127. The electronic product (general) annual reporting guide is applicable to the following products: products intended to produce x radiation (accelerators, analytical devices, therapy x-ray machines); microwave diathermy machines; cold-cathode discharge tubes; and vacuum switches and tubes operating at or above 15,000 volts. To carry out its responsibilities under Public Law 90-602, the Food and Drug Administration's Center for Devices and Radiological Health (CDRH) has issued a series of regulations contained in Title 21 of the Code of Federal Regulations (CFR). Part 1002 of 21 CFR deals with records and reports. Section 1002.61 categorizes electronic products into Groups A through C. Section 1002.30 requires manufacturers of products in Groups B and C to establish and maintain certain records, while Section 1002.11 requires such manufacturers to submit an Annual Report summarizing the contents of the required records. Section 1002.7 requires that reports conform to reporting guides issued by CDRH unless an acceptable justification for an alternate format is provided

  16. Development of Electronic Nose and Near Infrared Spectroscopy Analysis Techniques to Monitor the Critical Time in SSF Process of Feed Protein

    Directory of Open Access Journals (Sweden)

    Hui Jiang

    2014-10-01

    Full Text Available In order to assure the consistency of the final product quality, a fast and effective process monitoring is a growing need in solid state fermentation (SSF industry. This work investigated the potential of non-invasive techniques combined with the chemometrics method, to monitor time-related changes that occur during SSF process of feed protein. Four fermentation trials conducted were monitored by an electronic nose device and a near infrared spectroscopy (NIRS spectrometer. Firstly, principal component analysis (PCA and independent component analysis (ICA were respectively applied to the feature extraction and information fusion. Then, the BP_AdaBoost algorithm was used to develop the fused model for monitoring of the critical time in SSF process of feed protein. Experimental results showed that the identified results of the fusion model are much better than those of the single technique model both in the training and validation sets, and the complexity of the fusion model was also less than that of the single technique model. The overall results demonstrate that it has a high potential in online monitoring of the critical moment in SSF process by use of integrating electronic nose and NIRS techniques, and data fusion from multi-technique could significantly improve the monitoring performance of SSF process.

  17. 77 FR 31876 - Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not...

    Science.gov (United States)

    2012-05-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-836] Certain Consumer Electronics and Display Devices and Products Containing Same Determination Not To Review Initial Determination To Amend... electronics and display devices and products containing the same by reason of infringement of U.S. Patent Nos...

  18. Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2012-06-14

    A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.

  19. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors.

    Science.gov (United States)

    Guijarro-Pardo, Eva; Gómez-Sebastián, Silvia; Escribano, José M

    2017-12-01

    Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a

  20. Spectral methods for study of the G-protein-coupled receptor rhodopsin: I. Vibrational and electronic spectroscopy

    Science.gov (United States)

    Struts, A. V.; Barmasov, A. V.; Brown, M. F.

    2015-05-01

    Here we review the application of modern spectral methods for the study of G-protein-coupled receptors (GPCRs) using rhodopsin as a prototype. Because X-ray analysis gives us immobile snapshots of protein conformations, it is imperative to apply spectroscopic methods for elucidating their function: vibrational (Raman, FTIR), electronic (UV-visible absorption, fluorescence) spectroscopies, and magnetic resonance (electron paramagnetic resonance, EPR), and nuclear magnetic resonance (NMR). In the first of the two companion articles, we discuss the application of optical spectroscopy for studying rhodopsin in a membrane environment. Information is obtained regarding the time-ordered sequence of events in rhodopsin activation. Isomerization of the chromophore and deprotonation of the retinal Schiff base leads to a structural change of the protein involving the motion of helices H5 and H6 in a pH-dependent process. Information is obtained that is unavailable from X-ray crystallography, which can be combined with spectroscopic studies to achieve a more complete understanding of GPCR function.

  1. In-silico assessment of protein-protein electron transfer. a case study: cytochrome c peroxidase--cytochrome c.

    Directory of Open Access Journals (Sweden)

    Frank H Wallrapp

    Full Text Available The fast development of software and hardware is notably helping in closing the gap between macroscopic and microscopic data. Using a novel theoretical strategy combining molecular dynamics simulations, conformational clustering, ab-initio quantum mechanics and electronic coupling calculations, we show how computational methodologies are mature enough to provide accurate atomistic details into the mechanism of electron transfer (ET processes in complex protein systems, known to be a significant challenge. We performed a quantitative study of the ET between Cytochrome c Peroxidase and its redox partner Cytochrome c. Our results confirm the ET mechanism as hole transfer (HT through residues Ala194, Ala193, Gly192 and Trp191 of CcP. Furthermore, our findings indicate the fine evolution of the enzyme to approach an elevated turnover rate of 5.47 × 10(6 s(-1 for the ET between Cytc and CcP through establishment of a localized bridge state in Trp191.

  2. Assessment of a Standardized ROS Production Profile in Humans by Electron Paramagnetic Resonance

    Directory of Open Access Journals (Sweden)

    Simona Mrakic-Sposta

    2012-01-01

    Full Text Available Despite the growing interest in the role of reactive oxygen species (ROS in health and disease, reliable quantitative noninvasive methods for the assessment of oxidative stress in humans are still lacking. EPR technique, coupled to a specific spin probe (CMH: 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine is here presented as the method of choice to gain a direct measurement of ROS in biological fluids and tissues. The study aimed at demonstrating that, differently from currently available “a posteriori” assays of ROS-induced damage by means of biomolecules (e.g., proteins and lipids spin-trapping EPR provides direct evidence of the “instantaneous” presence of radical species in the sample and, as signal areas are proportional to the number of excited electron spins, lead to absolute concentration levels. Using a recently developed bench top continuous wave system (e-scan EPR scanner, Bruker dealing with very low ROS concentration levels in small (50 μL samples, we successfully monitored rapid ROS production changes in peripheral blood of athletes after controlled exercise and sedentary subjects after antioxidant supplementation. The correlation between EPR results and data obtained by various enzymatic assays (e.g., protein carbonyls and thiobarbituric acid reactive substances was determined too. Synthetically, our method allows reliable, quick, noninvasive quantitative determination of ROS in human peripheral blood.

  3. 78 FR 9702 - Draft Guidance for Industry on Immunogenicity Assessment for Therapeutic Protein Products...

    Science.gov (United States)

    2013-02-11

    ... approach in both the preclinical and clinical phases of the development of therapeutic protein products to... you can comment on any guidance at any time (see 21 CFR 10.115(g)(5)), to ensure that the Agency... entitled ``Immunogenicity Assessment for Therapeutic Protein Products.'' The purpose of this document is to...

  4. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells

    International Nuclear Information System (INIS)

    Nordlund, Henri R.; Laitinen, Olli H.; Uotila, Sanna T.H.; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S.

    2005-01-01

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches

  5. Production of Hev b5 as a fluorescent biotin-binding tripartite fusion protein in insect cells.

    Science.gov (United States)

    Nordlund, Henri R; Laitinen, Olli H; Uotila, Sanna T H; Kulmala, Minna; Kalkkinen, Nisse; Kulomaa, Markku S

    2005-10-14

    The presented green fluorescent protein and streptavidin core-based tripartite fusion system provides a simple and efficient way for the production of proteins fused to it in insect cells. This fusion protein forms a unique tag, which serves as a multipurpose device enabling easy optimization of production, one-step purification via streptavidin-biotin interaction, and visualization of the fusion protein during downstream processing and in applications. In the present study, we demonstrate the successful production, purification, and detection of a natural rubber latex allergen Hev b5 with this system. We also describe the production of another NRL allergen with the system, Hev b1, which formed large aggregates and gave small yields in purification. The aggregates were detected at early steps by microscopical inspection of the infected insect cells producing this protein. Therefore, this fusion system can also be utilized as a fast indicator of the solubility of the expressed fusion proteins and may therefore be extremely useful in high-throughput expression approaches.

  6. Production of arapaima protein hydrolysate using Aspergillus flavo-furcatis protease and pancreatin

    Directory of Open Access Journals (Sweden)

    Flávia de Carvalho Paiva

    2015-03-01

    Full Text Available The processing of arapaima (Arapaima gigas generates a lot of residues that can be used for the development of new products of industrial interest. This study aimed at evaluating the production of protein hydrolysates from arapaima residues using Aspergillus flavo-furcatis protease and commercial pancreatin, as well as characterizing their nutritional and microbiological qualities. The raw material used was meat mechanically separated from arapaima carcasses (MMSA. Two products were developed: a protein hydrolysate of arapaima using a commercial enzyme (PHACE and another one using microbial enzyme (PHAME. The MMSA and the hydrolysates were analyzed for chemical composition, microbiological quality, degree of hydrolysis, digestibility and amino acid profile. The results showed that the PHACE protein content was 73.47 %. This value was significantly higher, when compared to the PHAME (58.03 %. However, both products showed high digestibility values, absence of microbial contaminants and reduced lipid content. Among the enzymes used, pancreatin was the most efficient one in the preparation of the final product, which showed essential amino acids content higher than the requirements for human adults. The hydrolysate developed using A. flavo-furcatis enzymes presented essential amino acids score lower than 1.0, being tryptophan the most limiting one.

  7. Anticipating Soft Problems with Consumer Electronic Products : How do soft problems interact with user characteristics and product properties?

    NARCIS (Netherlands)

    Kim, C.

    2012-01-01

    Over the last decade consumer electronic product industries have been confronted with an increase in consumer complaints. Interestingly about half of the reasons for product return are based on so called ‘soft problems’, consumer complaints that cannot be traced back to technical problems. Probably

  8. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  9. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  10. Electron-positron pair production in Coulomb collisions at ultrarelativistic energies

    International Nuclear Information System (INIS)

    Vane, C.R.; Datz, S.; Dittner, P.F.; Krause, H.F.; Bottcher, C.; Strayer, M.; Schuch, R.; Gao, H.; Hutton, R.

    1993-01-01

    We have measured angular and momentum distributions for electrons and positrons created as pairs in peripheral collisions of 6.4 TeV bare sulfur ions with fixed targets of Al, Pd, and Au. Singly- and doubly-differential cross sections have been determined for 1--17 MeV/c electrons and positrons detected independently and in coincidence as pairs. Integrated yields for pair production are found to vary as the square of the target nuclear charge. Relative angular and momentum differential cross sections are effectively target independent. Probability distributions for the pair total momentum, the positron fraction of the pair momentum, and the pair traverse momentum have been derived from the coincident electron-positron data

  11. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    International Nuclear Information System (INIS)

    Aquila, Andrew; Hunter, Mark S.; Fromme, Petra; Fromme, Raimund; Grotjohann, Ingo; Doak, R. Bruce; Kirian, Richard A.; Schmidt, Kevin E.; Wang, Xiaoyu; Weierstall, Uwe; Spence, John C.H.; White, Thomas A.; Caleman, Carl; DePonte, Daniel P.; Fleckenstein, Holger; Gumprecht, Lars; Liang, Mengning; Martin, Andrew V.; Schulz, Joachim; Stellato, Francesco; Stern, Stephan; Barty, Anton; Andreasson, Jakob; Davidsson, Jan; Hajdu, Janos; Maia, Filipe R.N.C.; Seibert, M. Marvin; Timneanu, Nicusor; Arnlund, David; Johansson, Linda; Malmerberg, Erik; Neutze, Richard; Bajt, Sasa; Barthelmess, Miriam; Graafsma, Heinz; Hirsemann, Helmut; Wunderer, Cornelia; Barends, Thomas R.M.; Foucar, Lutz; Krasniqi, Faton; Lomb, Lukas; Rolles, Daniel; Schlichting, Ilme; Schmidt, Carlo; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond; Starodub, Dmitri; Bostedt, Christoph; Bozek, John D.; Messerschmidt, Marc; Williams, Garth J.; Bottin, Herve

    2012-01-01

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  12. Measurements of Pair Production and Electron Capture from the Continuum in Heavy Particle Collisions

    CERN Multimedia

    2002-01-01

    Large transient Coulomb fields, which are generated in collisions of high-Z systems at sufficiently high energies, lead to copious production of electron-positron pairs. It has been suggested that these lepton pairs might mask signals arising from plasma phase interaction. Pair-production cross sections have been calculated by several authors with results which differ significantly from each other. Some of the electrons produced may be captured into bound states of the ion, thereby, reducing its charge state by one unit. This process which has been termed ``Electron Capture from Pair Production``, represents the only electron capture pro which increases with energy, and as such, will dominate all others in the ultrarelativistic energy regime. Ions having undergone this process would be lost from storage-type accelerators. The absolute cross sections for capture have been calculated with results which differ by as much as an order of magnitude. If as large as some of the calculations predict, Relativistic Heav...

  13. Measurements of Pair Production and Electron Capture from the Continuum in Heavy Particle Collisions

    CERN Multimedia

    2002-01-01

    % WA99 \\\\ \\\\ Large transient Coulomb fields, which are generated in collisions of high-Z systems at sufficiently high energies, lead to copious production of electron-positron pairs. It has been suggested that these lepton pairs might mask signals arising from plasma phase interaction. Pair-production cross-sections have been calculated by several authors with results that differ significantly from each other. For very heavy ions and high energies, multiple pairs are expected to be formed even in single peripheral collisions. Perturbative and nonperturbative treatments lead to various predictions for the fractions of multiple pair formation out of the total cross-sections. Some of the electrons produced will be captured into bound states of the ion, thereby, reducing its charge state by one unit. This process which has been termed $^{\\prime\\prime}$Electron Capture from Pair Production$^{\\prime\\prime}$, represents the only electron capture process which increases with energy, and as such, will dominate all oth...

  14. A New View at the Planning Marketing Popular Products: Exploratory Study Electronics Sector with Companies in Brazil.

    Directory of Open Access Journals (Sweden)

    Evange Elias Assis

    2015-06-01

    Full Text Available The increased consumption of appliance and electronic products by lower-income population represented a growth opportunity for companies in the sector. The overall objective of this paper is to investigate how appliance and electronic product manufacturers draw up their marketing planning for low-end products. An exploratory approach was taken in this study, comprising the literature review and the empirical research which was conducted in two stages by combining the qualitative and quantitative approaches. The study group comprised companies affiliated with National Association of Appliance and Electronic Product Manufacturers (ELETROS. Results indicate that in 87.5% of cases the marketing planning focuses on the product. The companies are concerned to differentiate the low-end products on the market mainly by design (87.5% and innovation (62.5%. Within this context, it seems that the opportunity for growth of the appliance and electronic product companies can be boosted when implementing specific marketing planning for low-end products. Innovation is needed in all processes from project design of the product to its distribution. 

  15. An automatic refolding apparatus for preparative-scale protein production.

    Directory of Open Access Journals (Sweden)

    Yanye Feng

    flexible strategy may provide a powerful tool for preparative scale protein production.

  16. Short-Range Electron Transfer in Reduced Flavodoxin: Ultrafast Nonequilibrium Dynamics Coupled with Protein Fluctuations.

    Science.gov (United States)

    Kundu, Mainak; He, Ting-Fang; Lu, Yangyi; Wang, Lijuan; Zhong, Dongping

    2018-05-03

    Short-range electron transfer (ET) in proteins is an ultrafast process on the similar timescales as local protein-solvent fluctuations thus the two dynamics are coupled. Here, we use semiquinone flavodoxin and systematically characterized the photoinduced redox cycle with eleven mutations of different aromatic electron donors (tryptophan and tyrosine) and local residues to change redox properties. We observed the forward and backward ET dynamics in a few picoseconds, strongly following a stretched behavior resulting from a coupling between local environment relaxations and these ET processes. We further observed the hot vibrational-state formation through charge recombination and the subsequent cooling dynamics also in a few picoseconds. Combined with the ET studies in oxidized flavodoxin, these results coherently reveal the evolution of the ET dynamics from single to stretched exponential behaviors and thus elucidate critical timescales for the coupling. The observed hot vibration-state formation is robust and should be considered in all photoinduced back ET processes in flavoproteins.

  17. Production of microbial biomass protein by sequential culture fermentation of Arachniotus sp., and Candida utilis

    International Nuclear Information System (INIS)

    Ahmed, S.; Ahmad, F.; Hashmi, A.S.

    2010-01-01

    Sequential culture fermentation by Arachniotus sp. at 35 deg. C for 72 h and followed by Candida utilis fermentation at 35 deg. C for 72 h more resulted in higher production of microbial biomass protein. 6% (w/v) corn stover, 0.0075% CaCl/sub 2/.2H/sub 2/O, 0.005% MgSO/sub 4/.7H/sub 2/O, 0.01% KH/sub 2/PO/sub 4/, C:N ratio of 30:1 and 1% molasses gave higher microbial biomass protein production by the sequential culture fermentation of Arachniotus sp., and C. utilis. The mixed microbial biomass protein produced in the 75-L fermentor contained 16.41%, 23.51%, 10.9%, 12.11% and 0.12% true protein, crude protein, crude fiber, ash and RNA content, respectively. The amino acid profile of final mixed microbial biomass protein showed that it was enriched with essential amino acids. Thus, the potential utilization of corn stover can minimize the cost for growth of these microorganisms and enhance microbial biomass protein production by sequential culture fermentation. (author)

  18. Characterization of a Lactococcus lactis promoter for heterologous protein production

    Directory of Open Access Journals (Sweden)

    Christian E. Ogaugwu

    2018-03-01

    Full Text Available Constitutively active promoter elements for heterologous protein production in Lactococcus lactis are scarce. Here, the promoter of the PTS-IIC gene cluster from L. lactis NZ3900 is described. This promoter was cloned upstream of an enhanced green fluorescent protein, GFPmut3a, and transformed into L. lactis. Transformants produced up to 13.5 μg of GFPmut3a per milliliter of log phase cells. Addition of cellobiose further increased the production of GFPmut3a by up to two-fold when compared to glucose. Analysis of mutations at two specific positions in the PTS-IIC promoter showed that a ‘T’ to ‘G’ mutation within the −35 element resulted in constitutive expression in glucose, while a ‘C’ at nucleotide 7 in the putative cre site enhanced promoter activity in cellobiose. Finally, this PTS-IIC promoter is capable of mediating protein expression in Bacillus subtilis and Escherichia coli Nissle 1917, suggesting the potential for future biotechnological applications of this element and its derivatives.

  19. Application of electron-chemical curing in the production of thin composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Kopetchenov, V.; Shik, V.; Konev, V.; Kurapov, A.; Misin, I.; Gavrilov, V.; Malik, V. (Polyrad Research and Production Co., Moscow (Russian Federation))

    Thousands of tons of various thin composite materials in rolls for electrotechnical and domestic application including a whole range of electrical insulating materials, such as varnished and polymer fabrics, glass-micatapes, prepregs, thin laminated plastics and clad laminates, materials for decorative and domestic purposes - pressure sensitive adhesive tape and laminates, covering and finishing compositions based on fabrics, films and papers are produced. An important advantage of the electron-chemical processing in the production of composite materials is an essential energy saving (reduction of energy consumption 3-5 times). Absence of the organic diluents in binders decreases fire and explosion hazards of the production and sufficiently decreases danger for the environment of the technology used. Research and Production Company ''Polyrad'' is engaged in the development of technologies and equipment for the production of thin composite materials by the Electron-Chemical Method. (author).

  20. Effect of Electron Beam Irradiation on Degradability Coefficients and Ruminalpostruminal Digestibility of Dry Matter and Crude Protein of some Plant Protein Sources

    Directory of Open Access Journals (Sweden)

    gasem tahan

    2016-06-01

    Full Text Available Effect of electron beam irradiation on degradability coefficients and ruminal- postruminal digestibility of dry matter and crude protein of soybean meal, canola meal and Lathyrus sativus seed, irradiated at doses of 50, 100 and 150 kGy was investigated. Ruminal degradability of dry matter and crude protein was determined by in situ method using two cannulated Holstein heifers. Ruminal- postruminal digestibility of dry matter and crude protein was determined by in situ (nylon bag-in vitro (daisy digestor techniques. Data analyzed using SAS software as randomized completely design and the treatment means were compared using Tukey test. The results indicated that irradiation had no effect on dry matter, ether extract and ash content of feeds. In soybean meal, washout fraction and potentially degradable fraction of dry matter and crude protein was higher and lower at dose of 150 kGy irradiation than other treatments, respectively, and degradation rate constant and ruminal effective degradability of dry matter and crude protein was lower at all doses of irradiation than untreated soybean meal. In canola meal, irradiation at doses of 50 and 100 kGy decreased washout fraction and increased potentially degradable fraction of crude protein compared with untreated canola meal. In Lathyrus sativus seed, only potentially degradable fraction of dry matter and crude protein was lower at dose of 150 kGy irradiation than untreated Lathyrus sativus seed. Ruminal digestibility of crude protein decreased in soybean meal at doses of 100 and 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. Total tract digestibility of crude protein decreased in soybean meal at dose of 150 kGy irradiation and for canola meal at all doses of irradiation than untreated samples. In Lathyrus sativus seed, ruminal-postruminal digestibility and total tract digestibility of dry matter increased at doses of 100 and 150 kGy irradiation than untreated

  1. Final technical brief / DOE grant DE-FG03-96 ER 62219. Computational study of electron tunneling in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey J. Regan

    1999-03-03

    Electron transfer (ET) processes in proteins are characterized by the motion of a single electron between centers of localization (such as the chlorophyll dimer in photosynthetic reaction centers). An electronic donor state D is created by the injection of an electron or by photo-excitation, after which the system makes a radiationless transition to an acceptor state A., resulting in the effective transfer of an electron over several angstroms. The experimental and theoretical understanding of the rate of this process has been the focus of much attention in physics, chemistry and biology.

  2. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  3. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Electronic damage in S atoms in a native protein crystal induced by an intense X-ray free-electron laser pulse

    Directory of Open Access Journals (Sweden)

    L. Galli

    2015-07-01

    Full Text Available Current hard X-ray free-electron laser (XFEL sources can deliver doses to biological macromolecules well exceeding 1 GGy, in timescales of a few tens of femtoseconds. During the pulse, photoionization can reach the point of saturation in which certain atomic species in the sample lose most of their electrons. This electronic radiation damage causes the atomic scattering factors to change, affecting, in particular, the heavy atoms, due to their higher photoabsorption cross sections. Here, it is shown that experimental serial femtosecond crystallography data collected with an extremely bright XFEL source exhibit a reduction of the effective scattering power of the sulfur atoms in a native protein. Quantitative methods are developed to retrieve information on the effective ionization of the damaged atomic species from experimental data, and the implications of utilizing new phasing methods which can take advantage of this localized radiation damage are discussed.

  5. Consumer Innovativeness Model of Indonesian Young People in Adopting Electronic Products

    Directory of Open Access Journals (Sweden)

    Reza Ashari Nasution

    2012-06-01

    Full Text Available It is important for marketers to understand how innovators respond to the introduction of new products. This paper investigates consumer innovativeness (CI from meta-analysis study as suggested by Nasution and Garnida [2011] and examines the simultaneous impacts of CI on new product adoption. Nasution and Garnida [2010] proposed three different perspectives in conceptualizing the CI model. First, the generalist stream that represents a generalized personality trait that engenders consumers to adopt new product. Second, the particularist stream that focuses on product adoption behavior within a specific domain of interest. Third, the integrator perspective that proposes to integrate these two streams by putting domain-specific innovativeness as a mediating factor in relationship between general innovativeness trait and new product adoption.A structural equation model is used to test hypotheses using empirical data from 607 respondents in electronic products adoption. The result shows that the integrator perspective provides the best model in representing the empirical data. The finding of the integrator perspective reveals that domain specific CI mediates the relationship between general innovativeness trait and new product adoption. Specifically, subjective knowledge and hedonic idea shopping enhances the actuality of new products.The findings provide an explanation to the less than consistent relationship between consumer innovativeness and new product adoption. However, a single research context of electronic products and student sample may become one of the limitations and future studies needed to replicate the perspective of CI in different research contexts for greater generalizability and the use of non-student sample. The findings have implications for the innovation adoption theory, for managers involved in the introduction of new products, and for future research on innovation adoption.

  6. Comparing the photophysics of the two forms of the Orange Carotenoid Protein using 2D electronic spectroscopy

    Directory of Open Access Journals (Sweden)

    Mathies R.A.

    2013-03-01

    Full Text Available Broadband two-dimensional electronic spectroscopy is applied to investigate the photophysics of the photoactive orange carotenoid protein, which is involved in nonphotochemical quenching in cyanobacteria. Differences in dynamics between the light and dark forms arise from the different structure of the carotenoid in the protein pocket, with consequences for the biological role of the two forms.

  7. RESEARCH ON THE QUALITY INDICATORS OF CURD PRODUCTS BASED ON PROTEIN-HERBAL CLOTS

    Directory of Open Access Journals (Sweden)

    Olena GREK

    2017-12-01

    Full Text Available The article presents the research of qualitative indicators of curd products with different nutritional ingredients based on protein-herbal clots. The effect of the number of Rumex juice and the duration of thermoacid processing on the process of precipitation of milk proteins was determined. It was established that the introduction of vegetative coagulant in the amount (9 ± 0.5% at a temperature (93 ... 95 °C and endurance (3 ... 5 min - provides the optimal yield of protein-herbal clot taking into account restrictions according to organoleptic parameters. The effect of white sugar and apple pectin in fiber on the organoleptic, physico-chemical and rheological indicators curd products was investigated. The dietary fibers increase moisture-proof ability and effective viscosity of samples, and white sugar reduces these indexes due to dehydrating properties. The optimal option is to add to the protein-herbal bunch at the same time two components when mixing - white sugar and apple pectin in fiber in quantities of 15% and 2% respectively. Taking into account the influence of individual non-dairy ingredients - Rumex juice of white sugar and apple pectin in fiber on curd products, the performance of the finished product can purposefully be affected.

  8. Dengue Virus Non-structural Protein 1 Modulates Infectious Particle Production via Interaction with the Structural Proteins.

    Directory of Open Access Journals (Sweden)

    Pietro Scaturro

    Full Text Available Non-structural protein 1 (NS1 is one of the most enigmatic proteins of the Dengue virus (DENV, playing distinct functions in immune evasion, pathogenesis and viral replication. The recently reported crystal structure of DENV NS1 revealed its peculiar three-dimensional fold; however, detailed information on NS1 function at different steps of the viral replication cycle is still missing. By using the recently reported crystal structure, as well as amino acid sequence conservation, as a guide for a comprehensive site-directed mutagenesis study, we discovered that in addition to being essential for RNA replication, DENV NS1 is also critically required for the production of infectious virus particles. Taking advantage of a trans-complementation approach based on fully functional epitope-tagged NS1 variants, we identified previously unreported interactions between NS1 and the structural proteins Envelope (E and precursor Membrane (prM. Interestingly, coimmunoprecipitation revealed an additional association with capsid, arguing that NS1 interacts via the structural glycoproteins with DENV particles. Results obtained with mutations residing either in the NS1 Wing domain or in the β-ladder domain suggest that NS1 might have two distinct functions in the assembly of DENV particles. By using a trans-complementation approach with a C-terminally KDEL-tagged ER-resident NS1, we demonstrate that the secretion of NS1 is dispensable for both RNA replication and infectious particle production. In conclusion, our results provide an extensive genetic map of NS1 determinants essential for viral RNA replication and identify a novel role of NS1 in virion production that is mediated via interaction with the structural proteins. These studies extend the list of NS1 functions and argue for a central role in coordinating replication and assembly/release of infectious DENV particles.

  9. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    Olga Rybak

    2015-04-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence of fat globules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions. It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  10. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    Olga Rybak

    2014-09-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence of fat globules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions. It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  11. The role of milk proteins in the structure formation of dairy products

    Directory of Open Access Journals (Sweden)

    O. Rybak

    2015-05-01

    Full Text Available Introduction. The structure of dairy products is a complex of proteins, fat, minerals and water that determines the texture and sensory properties of the product. Material and methods. The fermented milks (using the example of yogurt, cheese, ice cream, aerated milk and frozen fruit desserts have been researched. Scientific articles, published during 2000 and 2014 years, as well as theses and monographs of dairy science have been analysed too. Methodology of the investigation is based upon the use of the methods of analysis, comparison and synthesis. Results and discussion. The scientific understanding of the milk proteins’ role in the structure formation of dairy product has been summarized. Negligible changes of structure as a result of compositional or technological changes can lead to shifts in the stability, texture and rheology of products, which are closely related to each other. The allowance of these properties has significant influence on the manufacturing. Acid coagulation is a major functional property of milk proteins, which used in the structure formation of cheese and fermented dairy products. However, the form and properties of milk curd depend on the heat treatment of milk before fermentation. Milk proteins exhibit other functional properties (emulsification and partial coalescence o f fatglobules, aeration and foam stability during a churning, viscosity increasing of external phase in the development of structure in the ice cream, aerated milk and frozen fruit desserts. Conclusions.It is expedient to use results into a further study of the structure formation mechanism of dairy products and the development of recommendations in order to an efficient production.

  12. Defect production and annihilation in metals through electronic excitation by energetic heavy ion bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Iwase, Akihiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    Defect production, radiation annealing and defect recovery are studied in Ni and Cu irradiated with low-energy ({approx}1-MeV) and high-energy ({approx}100-MeV) ions. Irradiation of Ni with {approx}100-MeV ions causes an anomalous reduction, or even a complete disappearance of the stage-I recovery. This result shows that the energy transferred from excited electrons to lattice atoms through the electron-lattice interaction contributes to the annihilation of the stage-I interstitials. This effect is also observed in Ni as a large radiation annealing during 100-MeV heavy ion irradiation. On the other hand, in Cu thin foils, we find the defect production process strongly associated with electron excitation, where the defect production cross section is nearly proportional to S{sub e}{sup 2}. (author)

  13. Effect of Hydrolysis Products of Different Proteins of Wheat on Antioxidant Enzymes

    Directory of Open Access Journals (Sweden)

    Hasan Hasanov

    2011-05-01

    Full Text Available This paper presents a study of the effect of products of enzymatic hydrolysis of various proteins of wheat with a neutral proteinase (neutrase “Novozymes”, Denmark on the activity of peroxidase from horseradish. It is shown that the hydrolysis products of albumin activate peroxidase activity, the constant of activation being 2.3 micromoles. At the same time with increasing the depth of hydrolysis of albumin the activating effect of peptides disappears. Peptides derived from the salt-soluble, alcohol-soluble alkali-soluble proteins had no effect on the activity of peroxidase.

  14. Deep proton tunneling in the electronically adiabatic and non-adiabatic limits: Comparison of the quantum and classical treatment of donor-acceptor motion in a protein environment

    Energy Technology Data Exchange (ETDEWEB)

    Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M., E-mail: champ@neu.edu [Department of Physics and Center for Interdisciplinary Research on Complex Systems,Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-03-21

    Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working

  15. Scale-up of hydrophobin-assisted recombinant protein production in tobacco BY-2 suspension cells.

    Science.gov (United States)

    Reuter, Lauri J; Bailey, Michael J; Joensuu, Jussi J; Ritala, Anneli

    2014-05-01

    Plant suspension cell cultures are emerging as an alternative to mammalian cells for production of complex recombinant proteins. Plant cell cultures provide low production cost, intrinsic safety and adherence to current regulations, but low yields and costly purification technology hinder their commercialization. Fungal hydrophobins have been utilized as fusion tags to improve yields and facilitate efficient low-cost purification by surfactant-based aqueous two-phase separation (ATPS) in plant, fungal and insect cells. In this work, we report the utilization of hydrophobin fusion technology in tobacco bright yellow 2 (BY-2) suspension cell platform and the establishment of pilot-scale propagation and downstream processing including first-step purification by ATPS. Green fluorescent protein-hydrophobin fusion (GFP-HFBI) induced the formation of protein bodies in tobacco suspension cells, thus encapsulating the fusion protein into discrete compartments. Cultivation of the BY-2 suspension cells was scaled up in standard stirred tank bioreactors up to 600 L production volume, with no apparent change in growth kinetics. Subsequently, ATPS was applied to selectively capture the GFP-HFBI product from crude cell lysate, resulting in threefold concentration, good purity and up to 60% recovery. The ATPS was scaled up to 20 L volume, without loss off efficiency. This study provides the first proof of concept for large-scale hydrophobin-assisted production of recombinant proteins in tobacco BY-2 cell suspensions. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana provides insights into its product specificity.

    Science.gov (United States)

    Zhang, Weiwei; Wang, Wenhe; Liu, Zihe; Xie, Yongchao; Wang, Hao; Mu, Yajuan; Huang, Yao; Feng, Yue

    2016-09-16

    Specifier proteins are important components of the glucosinolate-myrosinase system, which mediate plant defense against herbivory and pathogen attacks. Upon tissue disruption, glucosinolates are hydrolyzed to instable aglucones by myrosinases, and then aglucones will rearrange to form defensive isothiocyanates. Specifier proteins can redirect this reaction to form other products, such as simple nitriles, epithionitriles and organic thiocyanates instead of isothiocyanates based on the side chain structure of glucosinolate and the type of the specifier proteins. Nevertheless, the molecular mechanism underlying the different product spectrums of various specifier proteins was not fully understood. Here in this study, we solved the crystal structure of the Epithiospecifier Protein, ESP from Arabidopsis thaliana (AtESP) at 2.3 Å resolution. Structural comparisons with the previously solved structure of thiocyanate forming protein, TFP from Thlaspi arvense (TaTFP) reveal that AtESP shows a dimerization pattern different from TaTFP. Moreover, AtESP harbors a slightly larger active site pocket than TaTFP and several residues around the active site are different between the two proteins, which might account for the different product spectrums of the two proteins. Together, our structural study provides important insights into the molecular mechanisms of specifier proteins and shed light on the basis of their different product spectrums. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Environmental Impact of the Production of Mealworms as a Protein Source for Humans – A Life Cycle Assessment

    Science.gov (United States)

    Oonincx, Dennis G. A. B.; de Boer, Imke J. M.

    2012-01-01

    The demand for animal protein is expected to rise by 70–80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified and compared to conventional sources of animal protein. Production of one kg of edible protein from milk, chicken, pork or beef result in higher greenhouse gas emissions, require similar amounts of energy and require much more land. This study demonstrates that mealworms should be considered a more sustainable source of edible protein. PMID:23284661

  18. Identification of a multi-protein reductive dehalogenase complex in Dehalococcoides mccartyi strain CBDB1 suggests a protein-dependent respiratory electron transport chain obviating quinone involvement

    DEFF Research Database (Denmark)

    Kublik, Anja; Deobald, Darja; Hartwig, Stefanie

    2016-01-01

    electrophoresis (BN-PAGE), gel filtration and ultrafiltration an active dehalogenating protein complex with a molecular mass of 250–270 kDa was identified. The active subunit of reductive dehalogenase (RdhA) colocalised with a complex iron-sulfur molybdoenzyme (CISM) subunit (CbdbA195) and an iron-sulfur cluster...... of the dehalogenating complex prior to membrane solubilisation. Taken together, the identification of the respiratory dehalogenase protein complex and the absence of indications for quinone participation in the respiration suggest a quinone-independent protein-based respiratory electron transfer chain in D. mccartyi....

  19. Effect of protein degradability on milk production of dairy ewes.

    Science.gov (United States)

    Mikolayunas-Sandrock, C; Armentano, L E; Thomas, D L; Berger, Y M

    2009-09-01

    The objective of this experiment was to determine the effect of protein degradability of dairy sheep diets on milk yield and protein utilization across 2 levels of milk production. Three diets were formulated to provide similar energy concentrations and varying concentrations of rumen-degradable protein (RDP) and rumen-undegradable protein (RUP): 12% RDP and 4% RUP (12-4) included basal levels of RDP and RUP, 12% RDP and 6% RUP (12-6) included additional RUP, and 14% RDP and 4% RUP (14-4) included additional RDP. Diets were composed of alfalfa-timothy cubes, whole and ground corn, whole oats, dehulled soybean meal, and expeller soybean meal (SoyPlus, West Central, Ralston, IA). Estimates of RDP and RUP were based on the Small Ruminant Nutrition System model (2008) and feed and orts were analyzed for Cornell N fractions. Eighteen multiparous dairy ewes in midlactation were divided by milk yield (low and high) into 2 blocks of 9 ewes each and were randomly assigned within block (low and high) to 3 pens of 3 ewes each. Dietary treatments were arranged in a 3 x 3 Latin square within each block and applied to pens for 14-d periods. We hypothesized that pens consuming high-RUP diets (12-6) would produce more milk and milk protein than the basal diet (12-4) and pens consuming high-RDP diets (14-4) would not produce more milk than the basal diet (12-4). Ewes in the high-milk-yield square consumed more dry matter and produced more milk, milk fat, and milk protein than ewes in the low-milk-yield square. There was no effect of dietary treatment on dry matter intake. Across both levels of milk production, the 12-6 diet increased milk yield by 14%, increased milk fat yield by 14%, and increased milk protein yield by 13% compared with the 14-4 and 12-4 diets. Gross N efficiency (milk protein N/intake protein N) was 11 and 15% greater in the 12-6 and 12-4 diets, respectively, compared with the 14-4 diet. Milk urea N concentration was greater in the 12-6 diet and tended to be

  20. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  1. Application of electron beam curing technology for paper products

    International Nuclear Information System (INIS)

    Takaharu Miura

    1999-01-01

    The electron beam (EB) curing technology has rapidly advanced in recent years. However there were few examples applying this technology to paper products. One reason comes from the high price of EB equipment and the other comes from the difficulty of controlling the irradiation which gives damages to paper. In spite of these problems, the EB cured coating layer shows remarkable features, such as solvent-resistance, water-resistance, heat-resistance and high smoothness using the drum casting technique. Concentrating on application of this technology to paper, we have already developed some products. For example, paper for printings (Super Mirror PN) and for white boards (Super Mirror WB) have been manufactured. In this presentation, we are going to introduce this EB curing technique and the products

  2. A positive feedback-based gene circuit to increase the production of a membrane protein

    Directory of Open Access Journals (Sweden)

    Gennis Robert B

    2010-05-01

    Full Text Available Abstract Background Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. Results In this paper, we demonstrate that synthetic gene circuits designed specifically to overexpress certain genes can be applied to manipulate the expression kinetics of a model membrane protein, cytochrome bd quinol oxidase in E. coli, resulting in increased expression rates. The synthetic circuit involved is an engineered, autoinducer-independent variant of the lux operon activator LuxR from V. fischeri in an autoregulatory, positive feedback configuration. Conclusions Our proof-of-concept experiments indicate a statistically significant increase in the rate of production of the bd oxidase membrane protein. Synthetic gene networks provide a feasible solution for the problem of membrane protein production.

  3. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production

    DEFF Research Database (Denmark)

    Rennig, Maja; Martinez, Virginia; Mirzadeh, Kiavash

    2018-01-01

    Evolution can be harnessed to optimize synthetic biology designs. A prominent example is recombinant protein production-a dominating theme in biotechnology for more than three decades. Typically, a protein coding sequence (cds) is recombined with genetic elements, such as promoters, ribosome...... and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple......-level expression-an example of synthetic evolution. However, manual screening limits the ability to assay expression levels of all putative sequences in the libraries. Here we have solved this bottleneck by designing a collection of translational coupling devices based on a RNA secondary structure. Exchange...

  4. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  5. Fungal Biomass Protein Production from Trichoderma harzianum Using Rice Polishing.

    Science.gov (United States)

    Ahmed, Sibtain; Mustafa, Ghulam; Arshad, Muhammad; Rajoka, Muhammad Ibrahim

    2017-01-01

    Industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. High levels of crude protein as much as 45% are present in fungal biomass with balanced essential amino acids. The aim of this study was to access the potential of Trichoderma harzianum to produce fungal biomass protein from rice polishings. Maximum biomass yield was obtained at 5% (w/v) rice polishings after 72 h of incubation at 28°C at pH 4. Carbon and nitrogen ratio of 20 : 1 gave significantly higher production of fungal biomass protein. The FBP in the 75 L fermenter contained 49.50% crude protein, 32.00% true protein, 19.45% crude fiber, 9.62% ash, 11.5% cellulose content, and 0.325% RNA content. The profile of amino acids of final FBP exhibited that all essential amino acids were present in great quantities. The FBP produced by this fungus has been shown to be of good nutritional value for supplementation to poultry. The results presented in this study have practical implications in that the fungus T. harzianum could be used successfully to produce fungal biomass protein using rice polishings.

  6. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  7. Visualizing a protein quake with time-resolved X-ray scattering at a free-electron laser

    DEFF Research Database (Denmark)

    Arnlund, David; Johansson, Linda C.; Wickstrand, Cecilia

    2014-01-01

    We describe a method to measure ultrafast protein structural changes using time-resolved wide-angle X-ray scattering at an X-ray free-electron laser. We demonstrated this approach using multiphoton excitation of the Blastochloris viridis photosynthetic reaction center, observing an ultrafast glob...

  8. 12 CFR 7.5004 - Sale of excess electronic capacity and by-products.

    Science.gov (United States)

    2010-01-01

    ... bank's needs for banking purposes include: (1) Data processing services; (2) Production and... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Sale of excess electronic capacity and by-products. 7.5004 Section 7.5004 Banks and Banking COMPTROLLER OF THE CURRENCY, DEPARTMENT OF THE TREASURY...

  9. The commoditization of consumer electronics products and its influence on packaging design

    NARCIS (Netherlands)

    Wever, R.; Boks, C.; Stevels, A.

    2008-01-01

    The traditional purpose of packaging for consumer electronics (CE) products was to get them in one piece from the factory to the consumers home. It was purely focused on the physical distribution. In that time, buying a CE product could be considered a major family investment. However, times have

  10. 2006 China Machinery and Electronical Products Trade Fair:Ample Fruits Shown

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ 2006 Malaysia China Machinery and Electronical Products Trade Fair, organized by China Council for the Promotion of International Trade(CCPIT), was held in August in Prince World Trade Center(PWTC), Kuala Lumpur.

  11. Does environmental friendliness equal healthiness? Swiss consumers' perception of protein products.

    Science.gov (United States)

    Lazzarini, Gianna A; Zimmermann, Jasmin; Visschers, Vivianne H M; Siegrist, Michael

    2016-10-01

    Food production and consumption have major impacts on the environment. At the same time, changes in human diets worldwide are increasingly leading to health problems. Both issues are highly influenced by consumers' everyday food choices and could be addressed by reducing consumption of meat and other animal products. To promote sustainable food consumption, we need to know how consumers perceive the environmental friendliness and healthiness of food products, on which criteria they base their evaluations of environmental friendliness and healthiness, and how their estimations relate to life cycle assessments and nutrient profiling. We presented 30 protein products, which varied in provenance, production methods, and processing, to 85 participants from Switzerland. They were asked to sort the products once according to their perceived environmental friendliness and once according to their perceived healthiness. The mean distances between the products were compared to the products' life cycle assessments and nutrient profiles. The results showed that perceived environmental friendliness and healthiness are highly correlated. The main predictors of the products' perceived environmental friendliness were product category, presence of an organic label, and provenance; and for perceived healthiness, these predictors were product category, fat content, processing, and presence of an organic label. Environmental friendliness and healthiness estimations were significantly correlated to the life cycle assessments and the nutrient profiles of the products, respectively. Hence, to promote healthy and environmentally friendly food choices, motivators related to environmental friendliness and healthiness could be used in synergy. Awareness about meat's environmental impact should be increased and better information is needed for consumers to make an accurate environmental impact and healthiness assessments of protein products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Optically pumped electron spin polarized targets for use in the production of polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1979-01-01

    The production of relatively dense electron spin polarized alkali metal vapor targets by optical pumping with intense cw dye lasers is discussed. The target density and electron spin polarization depend on the dye laser intensity and bandwidth, the magnetic field at the target, and the electron spin depolarization time. For example in a magnetic field of 1.5 x 10 3 G, and using 1 W dye laser with a bandwidth of 10 10 Hz one can construct an electron spin polarized Na vapor target with a target thickness of 1.6 x 10 13 atoms/cm 2 and an average electron spin polarization of about 90% even though the Na atoms are completely depolarized at every wall collision. Possible uses of the electron spin polarized targets for the production of intense beams of polarized H - or 3 He - ions are discussed. (orig.)

  13. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    Science.gov (United States)

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Measurement of the incorporation rates of four amino acids into proteins for estimating bacterial production.

    Science.gov (United States)

    Servais, P

    1995-03-01

    In aquatic ecosystems, [(3)H]thymidine incorporation into bacterial DNA and [(3)H]leucine incorporation into proteins are usually used to estimate bacterial production. The incorporation rates of four amino acids (leucine, tyrosine, lysine, alanine) into proteins of bacteria were measured in parallel on natural freshwater samples from the basin of the river Meuse (Belgium). Comparison of the incorporation into proteins and into the total macromolecular fraction showed that these different amino acids were incorporated at more than 90% into proteins. From incorporation measurements at four subsaturated concentrations (range, 2-77 nm), the maximum incorporation rates were determined. Strong correlations (r > 0.91 for all the calculated correlations) were found between the maximum incorporation rates of the different tested amino acids over a range of two orders of magnitude of bacterial activity. Bacterial production estimates were calculated using theoretical and experimental conversion factors. The productions calculated from the incorporation rates of the four amino acids were in good concordance, especially when the experimental conversion factors were used (slope range, 0.91-1.11, and r > 0.91). This study suggests that the incorporation of various amino acids into proteins can be used to estimate bacterial production.

  15. Utilization of agriculture wastes. part I. production of fungal protein from rice and wheat straws

    International Nuclear Information System (INIS)

    Murtaza, N.; Hussain, S.A.

    2000-01-01

    Agricultural Agricultural waste of rice and wheat straws were studied for the production of protein and biomass. As these wastes have low protein contents as attempt is made to increase the protein and biomass content of these wastes so as to produce a better product for consumption as food. The studies were conducted using various media and various incubation periods. Some inorganic salts and molasses were added to improve the cultivation of fungi. Aspergillus oryzae produced the results due to its rapid growth which minimized the chance of contamination. Seven days incubation gave the most favourable results in both the agricultural wastes. The maximum production of biomass (33.33%) with a protein value of 20% was obtained with 450 g of rice straw in media no. 2 whereas 400 g of wheat straw on 6 litres of medium produced the best results with 20% biomass and a protein value of 20%. (author)

  16. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...... with that of cyt c in the absence of AuNPs is observed. AuNPs appear to serve as excellent ET relays, most likely by facilitating the electronic coupling between the protein redox center and the electrode surface....

  17. Bioreactor scale up and protein product quality characterization of piggyBac transposon derived CHO pools.

    Science.gov (United States)

    Rajendra, Yashas; Balasubramanian, Sowmya; Peery, Robert B; Swartling, James R; McCracken, Neil A; Norris, Dawn L; Frye, Christopher C; Barnard, Gavin C

    2017-03-01

    Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc-fusion proteins. Creating and characterizing the stable CHO clonally-derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development. We recently described the generation of CHO pools yielding mAb titers as high as 7.6 g/L in a 16 day bioprocess using piggyBac transposon-mediated gene integration. In this study, we wanted to understand why the piggyBac pool titers were significantly higher (2-10 fold) than the control CHO pools. Higher titers were the result of a combination of increased average gene copy number, significantly higher messenger RNA levels and the homogeneity (i.e. less diverse population distribution) of the piggyBac pools, relative to the control pools. In order to validate the use of piggyBac pools to support preclinical drug development, we then performed an in-depth product quality analysis of purified protein. The product quality of protein obtained from the piggyBac pools was very similar to the product quality profile of protein obtained from the control pools. Finally, we demonstrated the scalability of these pools from shake flasks to 36L bioreactors. Overall, these results suggest that gram quantities of therapeutic protein can be rapidly obtained from piggyBac CHO pools without significantly changing product quality attributes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:534-540, 2017. © 2017 American Institute of Chemical Engineers.

  18. Initial Assessment of Electron and X-Ray Production and Charge Exchange in the NDCX-II Accelerator

    International Nuclear Information System (INIS)

    Cohen, R.H.

    2010-01-01

    The purpose of this note is to provide initial assessments of some atomic physics effects for the accelerator section of NDCX-II. There are several effects we address: the production of electrons associated with loss of beam ions to the walls, the production of electrons associated with ionization of background gas, the possibly resultant production of X-rays when these electrons hit bounding surfaces, and charge exchange of beam ions on background gas. The results presented here are based on a number of caveats that will be stated below, which we will attempt to remove in the near future.

  19. Front-End Electron Transfer Dissociation Coupled to a 21 Tesla FT-ICR Mass Spectrometer for Intact Protein Sequence Analysis

    Science.gov (United States)

    Weisbrod, Chad R.; Kaiser, Nathan K.; Syka, John E. P.; Early, Lee; Mullen, Christopher; Dunyach, Jean-Jacques; English, A. Michelle; Anderson, Lissa C.; Blakney, Greg T.; Shabanowitz, Jeffrey; Hendrickson, Christopher L.; Marshall, Alan G.; Hunt, Donald F.

    2017-09-01

    High resolution mass spectrometry is a key technology for in-depth protein characterization. High-field Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) enables high-level interrogation of intact proteins in the most detail to date. However, an appropriate complement of fragmentation technologies must be paired with FTMS to provide comprehensive sequence coverage, as well as characterization of sequence variants, and post-translational modifications. Here we describe the integration of front-end electron transfer dissociation (FETD) with a custom-built 21 tesla FT-ICR mass spectrometer, which yields unprecedented sequence coverage for proteins ranging from 2.8 to 29 kDa, without the need for extensive spectral averaging (e.g., 60% sequence coverage for apo-myoglobin with four averaged acquisitions). The system is equipped with a multipole storage device separate from the ETD reaction device, which allows accumulation of multiple ETD fragment ion fills. Consequently, an optimally large product ion population is accumulated prior to transfer to the ICR cell for mass analysis, which improves mass spectral signal-to-noise ratio, dynamic range, and scan rate. We find a linear relationship between protein molecular weight and minimum number of ETD reaction fills to achieve optimum sequence coverage, thereby enabling more efficient use of instrument data acquisition time. Finally, real-time scaling of the number of ETD reactions fills during method-based acquisition is shown, and the implications for LC-MS/MS top-down analysis are discussed. [Figure not available: see fulltext.

  20. Construction of a biodynamic model for Cry protein production studies.

    Science.gov (United States)

    Navarro-Mtz, Ana Karin; Pérez-Guevara, Fermín

    2014-12-01

    Mathematical models have been used from growth kinetic simulation to gen regulatory networks prediction for B. thuringiensis culture. However, this culture is a time dependent dynamic process where cells physiology suffers several changes depending on the changes in the cell environment. Therefore, through its culture, B. thuringiensis presents three phases related with the predominance of three major metabolic pathways: vegetative growth (Embded-Meyerhof-Parnas pathway), transition (γ-aminobutiric cycle) and sporulation (tricarboxylic acid cycle). There is not available a mathematical model that relates the different stages of cultivation with the metabolic pathway active on each one of them. Therefore, in the present study, and based on published data, a biodynamic model was generated to describe the dynamic of the three different phases based on their major metabolic pathways. The biodynamic model is used to study the interrelation between the different culture phases and their relationship with the Cry protein production. The model consists of three interconnected modules where each module represents one culture phase and its principal metabolic pathway. For model validation four new fermentations were done showing that the model constructed describes reasonably well the dynamic of the three phases. The main results of this model imply that poly-β-hydroxybutyrate is crucial for endospore and Cry protein production. According to the yields of dipicolinic acid and Cry from poly-β-hydroxybutyrate, calculated with the model, the endospore and Cry protein production are not just simultaneous and parallel processes they are also competitive processes.

  1. New electron-ion-plasma equipment for modification of materials and products surface

    International Nuclear Information System (INIS)

    Koval', N.N.

    2013-01-01

    Electron-ion-plasma treatment of materials and products, including surface clearing and activation, formation surface layers with changed chemical and phase structure, increased hardness and corrosion resistance; deposition of various functional coatings, has received a wide distribution in a science and industry. Widespread methods of ion-plasma modification of material and product surfaces are ion etching and activation, ion-plasma nitriding, arc or magnetron deposition of functional coatings, including nanostructured. The combination of above methods of surface modification allows essentially to improve exploitation properties of treated products and to optimize the characteristics of modified surfaces for concrete final requirements. For the purpose of a combination of various methods of ion-plasma treatment in a single work cycle at Institute of High Current Electronics of SB RAS (IHCE SB RAS) specialized technological equipment 'DUET', 'TRIO' and 'QUADRO' and 'KVINTA' have been developed. This equipment allow generating uniform low-temperature gas plasma at pressures of (0.1-1) Pa with concentration of (10 9 -10 11 ) cm -3 in volume of (0.1-1) m 3 . In the installations consistent realization of several various operations of materials and products treatment in a single work cycle is possible. The operations are preliminary heating and degassing, ion clearing, etching and activation of materials and products surface by plasma of arc discharges; chemicothermal treatment (nitriding) for formation of diffusion layer on a surface of treated sample using plasma of nonself-sustained low-pressure arc discharge; deposition of single- or multilayered superhard (≥40 GPa) nanocrystalline coatings on the basis of pure metals or their compounds (nitrides, carbides, carbonitrides) by the arc plasma-assisted method. For realization of the modes all installations are equipped by original sources of gas and metal plasma. Besides, in

  2. 76 FR 72439 - Certain Consumer Electronics and Display Devices and Products Containing Same; Receipt of...

    Science.gov (United States)

    2011-11-23

    ... INTERNATIONAL TRADE COMMISSION [DN 2858] Certain Consumer Electronics and Display Devices and.... International Trade Commission has received a complaint entitled In Re Certain Consumer Electronics and Display... importation of certain consumer electronics and display devices and products containing same. The complaint...

  3. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  4. Effects of heat on meat proteins - Implications on structure and quality of meat products.

    Science.gov (United States)

    Tornberg, E

    2005-07-01

    Globular and fibrous proteins are compared with regard to structural behaviour on heating, where the former expands and the latter contracts. The meat protein composition and structure is briefly described. The behaviour of the different meat proteins on heating is discussed. Most of the sarcoplasmic proteins aggregate between 40 and 60 °C, but for some of them the coagulation can extend up to 90°C. For myofibrillar proteins in solution unfolding starts at 30-32°C, followed by protein-protein association at 36-40°C and subsequent gelation at 45-50°C (conc.>0.5% by weight). At temperatures between 53 and 63°C the collagen denaturation occurs, followed by collagen fibre shrinkage. If the collagen fibres are not stabilised by heat-resistant intermolecular bonds, it dissolves and forms gelatine on further heating. The structural changes on cooking in whole meat and comminuted meat products, and the alterations in water-holding and texture of the meat product that it leads to, are then discussed.

  5. Extracellular peptidase hunting for improvement of protein production in plant cells and roots

    Directory of Open Access Journals (Sweden)

    Jérôme eLallemand

    2015-02-01

    Full Text Available Plant-based recombinant protein production systems have gained an extensive interest over the past few years, because of their reduced cost and relative safety. Although the first products are now reaching the market, progress are still needed to improve plant hosts and strategies for biopharming. Targeting recombinant proteins toward the extracellular space offers several advantages in terms of protein folding and purification, but degradation events are observed, due to endogenous peptidases. This paper focuses on the analysis of extracellular proteolytic activities in two production systems: cell cultures and root-secretion (rhizosecretion, in Arabidopsis thaliana and Nicotiana tabacum. Proteolytic activities of extracellular proteomes (secretomes were evaluated in vitro against two substrate proteins: bovine serum albumin (BSA and human serum immunoglobulins G (hIgGs. Both targets were found to be degraded by the secretomes, BSA being more prone to proteolysis than hIgGs. The analysis of the proteolysis pH-dependence showed that target degradation was mainly dependent upon the production system: rhizosecretomes contained more peptidase activity than extracellular medium of cell suspensions, whereas variations due to plant species were smaller. Using class-specific peptidase inhibitors, serine and metallopeptidases were found to be responsible for degradation of both substrates. An in-depth in silico analysis of genomic and transcriptomic data from Arabidopsis was then performed and led to the identification of a limited number of serine and metallo-peptidases that are consistently expressed in both production systems. These peptidases should be prime candidates for further improvement of plant hosts by targeted silencing.

  6. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour.

    Science.gov (United States)

    Sayed Ahmad, Bouchra; Talou, Thierry; Straumite, Evita; Sabovics, Martins; Kruma, Zanda; Saad, Zeinab; Hijazi, Akram; Merah, Othmane

    2018-02-25

    Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people's access to food. Cumin ( Cuminum cyminum L.) and caraway ( Carum carvi L.) oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6%) of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread.

  7. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour

    Science.gov (United States)

    Sayed Ahmad, Bouchra; Talou, Thierry; Straumite, Evita; Sabovics, Martins; Kruma, Zanda; Saad, Zeinab; Hijazi, Akram

    2018-01-01

    Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people’s access to food. Cumin (Cuminum cyminum L.) and caraway (Carum carvi L.) oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6%) of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread. PMID:29495324

  8. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour

    Directory of Open Access Journals (Sweden)

    Bouchra Sayed Ahmad

    2018-02-01

    Full Text Available Malnutrition continues to be a key health problem in developing regions. The valorization of food waste appears as an ideal way to prevent malnutrition and improve people’s access to food. Cumin (Cuminum cyminum L. and caraway (Carum carvi L. oilseeds are commonly used for cuisine and medicinal purposes. However, remaining cakes after oil extraction are usually underutilized. In order to assess the usefulness of these by-products in food applications, this study investigated the effect of their addition to protein bread formulations. Different levels (2, 4 and 6% of whole seeds and cakes flour were used in the study. Fortified protein bread samples were compared to control protein bread and evaluated for their sensory, color, moisture, hardness properties, nutritional values as well as their biological activity. Results indicated that bread fortification shows a significant effect on bread properties depending on fortification level. A higher acceptability was observed specially for bread fortified with by-products flour. Increased tendencies of color darkness, moisture content, bread hardness, nutritional values as well as total phenolic content and radical scavenging activity compared to control bread were observed as the percentage of fortification increased in both cases. The overall results showed that the addition of cumin and caraway seeds and by-product flour can improve the antioxidant potential and overall quality of protein bread.

  9. Radiation processing of silk protein (Bilateral research cooperation OAEP and JAERI. December 1998 - December 2002)

    International Nuclear Information System (INIS)

    2003-01-01

    Thailand's production of silk, about 1,200 ton per year, also gives about 10% of silk waste which is expected to be recycled into new material (non-textile application) and to avoid environmental pollution. For this purpose, cooperative program 'radiation processing of silk protein' was conducted between OAEP (Thailand) and JAERI. Among the results already obtained are: radiation degradation of silk protein (fibroin) with gamma rays at 160 kGy, production of fine silk milled powder (<90 microns) by electron beam irradiation at 250-1000 kGy (dry method) using electron accelerator (1 MeV, 1 mA), use of antioxidant effect of silk protein on lipid peroxidation and antibacterial activity of irradiated silk protein powder, and wound dressing hydrogel mixed with silk protein and use of antibacterial activity of cross-linked silk protein/PVA hydrogel. Other topics of interest are gamma irradiation of anionic natural polymer solution for use as latex protein scavenger and gamma radiation degradation of chitosan for use as plant growth promoter and fungicide. (S. Ohno)

  10. Sequencing Larger Intact Proteins (30-70 kDa) with Activated Ion Electron Transfer Dissociation

    Science.gov (United States)

    Riley, Nicholas M.; Westphall, Michael S.; Coon, Joshua J.

    2018-01-01

    The analysis of intact proteins via mass spectrometry can offer several benefits to proteome characterization, although the majority of top-down experiments focus on proteoforms in a relatively low mass range (AI-ETD) to proteins in the 30-70 kDa range. AI-ETD leverages infrared photo-activation concurrent to ETD reactions to improve sequence-informative product ion generation. This method generates more product ions and greater sequence coverage than conventional ETD, higher-energy collisional dissociation (HCD), and ETD combined with supplemental HCD activation (EThcD). Importantly, AI-ETD provides the most thorough protein characterization for every precursor ion charge state investigated in this study, making it suitable as a universal fragmentation method in top-down experiments. Additionally, we highlight several acquisition strategies that can benefit characterization of larger proteins with AI-ETD, including combination of spectra from multiple ETD reaction times for a given precursor ion, multiple spectral acquisitions of the same precursor ion, and combination of spectra from two different dissociation methods (e.g., AI-ETD and HCD). In all, AI-ETD shows great promise as a method for dissociating larger intact protein ions as top-down proteomics continues to advance into larger mass ranges. [Figure not available: see fulltext.

  11. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques

    DEFF Research Database (Denmark)

    Woods, Alan A; Linton, Stuart M; Davies, Michael Jonathan

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has...... been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly...... for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions...

  12. Software product line engineering for consumer electronics : Keeping up with the speed of innovation

    NARCIS (Netherlands)

    Hartmann, Herman

    2015-01-01

    During the last decade consumer electronics products have changed radically. Traditionally these products were used for a few dedicated tasks, and were implemented through hardware. Nowadays, these products are used for a variety of tasks and are largely implemented through software. Furthermore

  13. Small angle X-ray scattering and transmission electron microscopy study of the Lactobacillus brevis S-layer protein

    Energy Technology Data Exchange (ETDEWEB)

    Jaeaeskelaeinen, Pentti [Department of Biomedical Engineering and Computational Science, PO Box 2200, FI-02015 Aalto University School of Science and Technology (Finland); Engelhardt, Peter [Haartman Institute, Department of Pathology, PO Box 21, FIN-00014 University of Helsinki (Finland); Hynoenen, Ulla; Palva, Airi [Department of Basic Veterinary Sciences, Division of Microbiology, FIN-00014 University of Helsinki (Finland); Torkkeli, Mika; Serimaa, Ritva, E-mail: ritva.serimaa@helsinki.f [Department of Physics, POB 64, 00014 University of Helsinki (Finland)

    2010-10-01

    The structure of self-assembly domain containing recombinant truncation mutants of Lactobacillus brevis surface layer protein SlpA in aqueous solution was studied using small-angle X-ray scattering and transmission electron microscopy. The proteins were found out to interact with each other forming stable globular oligomers of about 10 monomers. The maximum diameter of the oligomers varied between 75 A and 435 A.

  14. Difficulties in applying pure Kohn-Sham density functional theory electronic structure methods to protein molecules

    Science.gov (United States)

    Rudberg, Elias

    2012-02-01

    Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals.

  15. Difficulties in applying pure Kohn-Sham density functional theory electronic structure methods to protein molecules

    International Nuclear Information System (INIS)

    Rudberg, Elias

    2012-01-01

    Self-consistency-based Kohn-Sham density functional theory (KS-DFT) electronic structure calculations with Gaussian basis sets are reported for a set of 17 protein-like molecules with geometries obtained from the Protein Data Bank. It is found that in many cases such calculations do not converge due to vanishing HOMO-LUMO gaps. A sequence of polyproline I helix molecules is also studied and it is found that self-consistency calculations using pure functionals fail to converge for helices longer than six proline units. Since the computed gap is strongly correlated to the fraction of Hartree-Fock exchange, test calculations using both pure and hybrid density functionals are reported. The tested methods include the pure functionals BLYP, PBE and LDA, as well as Hartree-Fock and the hybrid functionals BHandHLYP, B3LYP and PBE0. The effect of including solvent molecules in the calculations is studied, and it is found that the inclusion of explicit solvent molecules around the protein fragment in many cases gives a larger gap, but that convergence problems due to vanishing gaps still occur in calculations with pure functionals. In order to achieve converged results, some modeling of the charge distribution of solvent water molecules outside the electronic structure calculation is needed. Representing solvent water molecules by a simple point charge distribution is found to give non-vanishing HOMO-LUMO gaps for the tested protein-like systems also for pure functionals. (fast track communication)

  16. Protein production from whey using Penicillium cyclopium; growth parameters and cellular composition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Lebeault, J M

    1981-01-01

    The growth parameters of Penicillium cyclopium were evaluated in a continuous culture system for the production of fungal protein from whey. Dilution rates were 0.05-0.20/h under constant conditions of temperature (28 degrees) and pH (3.5). The saturation coefficients in the Monod equation were 0.74 g/l for lactose and 0.14 mg/l for O/sub 2/. For a wide range of dilution rates, the yield was 0.68 g biomass/g lactose and the maintenance coefficient 0.005 g lactose/g biomass-h. The maximum biomass productivity achieved was 2 g biomass/l-h at dilution rates of 0.16-0.17/h with a lactose concentration of 20 g/l in the feed. The crude protein and total nucleic acid contents increased with a dilution rate, crude protein content was 43-54%, and total nucleic acids were 6-9% at dilution rates of 0.05-0.2/h, while the Lowry protein content was almost constant at 37.5% of dry matter.

  17. Production of large quantities of isotopically labeled protein in Pichia pastoris by fermentation

    International Nuclear Information System (INIS)

    Wood, Matthew J.; Komives, Elizabeth A.

    1999-01-01

    Heterologous expression in Pichia pastoris has many of the advantages of eukaryotic expression, proper folding and disulfide bond formation, glycosylation, and secretion. Contrary to other eukaryotic systems, protein production from P.pastoris occurs in simple minimal defined media making this system attractive for production of labeled proteins for NMR analysis. P.pastoris is therefore the expression system of choice for NMR of proteins that cannot be refolded from inclusion bodies or that require post-translational modifications for proper folding or function. The yield of expressed proteins from P.pastoris depends critically on growth conditions, and attainment of high cell densities by fermentation has been shown to improve protein yields by 10-100-fold. Unfortunately, the cost of the isotopically enriched fermentation media components, particularly 15NH4OH, is prohibitively high. We report fermentation methods that allow for both 15N- labeling from (15NH4)2SO4 and 13C-labeling from 13C-glucose or 13C-glycerol of proteins produced in Pichia pastoris. Expression of an 83 amino acid fragment of thrombomodulin with two N-linked glycosylation sites shows that fermentation is more cost effective than shake flask growth for isotopic enrichment

  18. Novel production techniques of radioisotopes using electron accelerators

    Science.gov (United States)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  19. Structure analysis of OmpC, one of the major proteins in the outer membrane of E. coli, by high resolution electron microscopy

    International Nuclear Information System (INIS)

    Chang, C.F.

    1983-07-01

    This dissertation is concerned with the structure analysis of a pore-forming membrane protein, OmpC, which is one of the major proteins in the outer membrane of Escherichia coli. In order to obtain structural information it was necessary to develop a suitable technique for preparing two-dimensional crystalline arrays of this membrane protein in an unfixed, unstained and hydrated condition. Electron micrographs were recorded at exposures of less than 5 electrons/A 2 in order to avoid severe radiation damage. The resulting images were crystallographically averaged, in order to overcome the statistical limitations associated with the low electron exposures. The resulting images, which extend to a resolution of approx. 13.5 A, lend themselves to a natural interpretation that is consistent with the mass density of protein, water and lipid, prior data from 2-D and 3-D structure studies of negatively stained specimens at approx. = 20 A resolution, and published spectroscopic data on the peptide chain secondary structure

  20. 77 FR 21584 - Certain Consumer Electronics and Display Devices and Products Containing Same; Institution of...

    Science.gov (United States)

    2012-04-10

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-836] Certain Consumer Electronics and Display... electronics and display devices and products containing same by reason of infringement of certain claims of U... importation, or the sale within the United States after importation of certain consumer electronics and...

  1. Neutron production in the interaction of electrons with a dispersing lamella

    International Nuclear Information System (INIS)

    Soto B, T. G.; Baltazar R, A.; Medina C, D.; Vega C, H. R.

    2017-10-01

    When a Linac for radiotherapy operates with acceleration voltages greater than 8 MV, neutrons are produced as secondary radiation. They deposit an undesirable and not negligible dose in the patient. Depending on the type of tumor, its location in the body and the characteristics of the patient, cancer treatment with a Linac is done with photon or electron beams, which produce neutrons through reactions (γ, n) and e, e n) respectively. Because the effective section of the reaction (n, γ) is 137 times greater than the reaction (e, e n), most studies have focused on photo neutrons. When a Linac operates with electron beams, the beam that leaves the magnetic baffle is incised in the dispersion foil in order to cause quasi-elastic interactions and expand the spatial distribution of the electrons; in their interaction with the lamella the electrons produce photons and these in turn produce neutrons. Due to the radiobiological efficiency of neutrons and the ways in which they interact with matter, is important to determine the neutrons production in Linacs operating in electron mode. The objective of this work is to determine the characteristics of photons and neutrons that occur when a beam of mono-energetic electrons of 2 mm in diameter (pencil beam) is made to impinge on a tungsten lamella of 1 cm in diameter and 0.5 mm thick located in the center of a 10 cm thick tungsten shell, used to represent the accelerator head. The study was carried out using the Monte Carlo method with the MCNP6 code for electron beams of 12 and 18 MeV. The spectra of photons and neutrons were estimated in 6 point detectors, four were placed in different points equidistant from the center of the lamella and the other two were located at 50 cm and 1 m from the electron beam, simulating the totally closed head. In this work it was found that when a Linac operates with an electron beam of 12 or 18 MeV there is neutron production mainly in the head and in the direction of the beam. (Author)

  2. 78 FR 52211 - Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing...

    Science.gov (United States)

    2013-08-22

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-878] Certain Electronic Devices Having Placeshifting or Display Replication and Products Containing Same; Commission Determination Not To Review an... States after importation of certain electronic devices having placeshifting or display replication...

  3. Identification of the G13 (cAMP-response-element-binding protein-related protein) gene product related to activating transcription factor 6 as a transcriptional activator of the mammalian unfolded protein response.

    Science.gov (United States)

    Haze, K; Okada, T; Yoshida, H; Yanagi, H; Yura, T; Negishi, M; Mori, K

    2001-04-01

    Eukaryotic cells control the levels of molecular chaperones and folding enzymes in the endoplasmic reticulum (ER) by a transcriptional induction process termed the unfolded protein response (UPR). The mammalian UPR is mediated by the cis-acting ER stress response element consisting of 19 nt (CCAATN(9)CCACG), the CCACG part of which is considered to provide specificity. We recently identified the basic leucine zipper (bZIP) protein ATF6 as a mammalian UPR-specific transcription factor; ATF6 is activated by ER stress-induced proteolysis and binds directly to CCACG. Here we report that eukaryotic cells express another bZIP protein closely related to ATF6 in both structure and function. This protein encoded by the G13 (cAMP response element binding protein-related protein) gene is constitutively synthesized as a type II transmembrane glycoprotein anchored in the ER membrane and processed into a soluble form upon ER stress as occurs with ATF6. The proteolytic processing of ATF6 and the G13 gene product is accompanied by their relocation from the ER to the nucleus; their basic regions seem to function as a nuclear localization signal. Overexpression of the soluble form of the G13 product constitutively activates the UPR, whereas overexpression of a mutant lacking the activation domain exhibits a strong dominant-negative effect. Furthermore, the soluble forms of ATF6 and the G13 gene product are unable to bind to several point mutants of the cis-acting ER stress response element in vitro that hardly respond to ER stress in vivo. We thus concluded that the two related bZIP proteins are crucial transcriptional regulators of the mammalian UPR, and propose calling the ATF6 gene product ATF6alpha and the G13 gene product ATF6beta.

  4. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    Science.gov (United States)

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C

  5. Serum Advanced Oxidation Protein Products in Oral Squamous Cell Carcinoma: Possible Markers of Diagnostic Significance

    Directory of Open Access Journals (Sweden)

    Abhishek Singh Nayyar

    2013-07-01

    Full Text Available Background: The aim of this study was to measure the concentrations (levels ofserum total proteins and advanced oxidation protein products as markers of oxidantmediated protein damage in the sera of patients with oral cancers.Methods: The study consisted of the sera analyses of serum total protein andadvanced oxidation protein products’ levels in 30 age and sex matched controls, 60patients with reported pre-cancerous lesions and/or conditions and 60 patients withhistologically proven oral squamous cell carcinoma. One way analyses of variance wereused to test the difference between groups. To determine which of the two groups’ meanswere significantly different, the post-hoc test of Bonferroni was used. The results wereaveraged as mean ± standard deviation. In the above test, P values less than 0.05 weretaken to be statistically significant. The normality of data was checked before thestatistical analysis was performed.Results: The study revealed statistically significant variations in serum levels ofadvanced oxidation protein products (P<0.001. Serum levels of total protein showedextensive variations; therefore the results were largely inconclusive and statisticallyinsignificant.Conclusion: The results emphasize the need for more studies with larger samplesizes to be conducted before a conclusive role can be determined for sera levels of totalprotein and advanced oxidation protein products as markers both for diagnosticsignificance and the transition from the various oral pre-cancerous lesions and conditionsinto frank oral cancers.

  6. Thermal Management of Software Changes in Product Lifecycle of Consumer Electronics

    OpenAIRE

    Muraoka , Yoshio; Seki , Kenichi; Nishimura , Hidekazu

    2014-01-01

    Part 6: Industry and Consumer Products; International audience; Because the power consumption of consumer electronic products varies according to processor execution, which depends on software, thermal risk may be increased by software changes, including software updates or the installation of new applications, even after hardware development has been completed. In this paper, we first introduce a typical system-level thermal simulation model, coupling the activities within modules related to...

  7. Tailoring Escherichia coli for the L-rhamnose PBAD promoter-based production of membrane and secretory proteins

    NARCIS (Netherlands)

    Hjelm, Anna; Karyolaimos, Alexandros; Zhang, Zhe; Rujas, Edurne; Vikström, David; Slotboom, Dirk Jan; de Gier, Jan-Willem

    Membrane and secretory protein production in Escherichia coli requires precisely controlled production rates to avoid the deleterious saturation of their biogenesis pathways. Based on this requirement, the E. coli L-rhamnose PBAD promoter (PrhaBAD) is often used for membrane and secretory protein

  8. Recombinant DNA production of spider silk proteins.

    Science.gov (United States)

    Tokareva, Olena; Michalczechen-Lacerda, Valquíria A; Rech, Elíbio L; Kaplan, David L

    2013-11-01

    Spider dragline silk is considered to be the toughest biopolymer on Earth due to an extraordinary combination of strength and elasticity. Moreover, silks are biocompatible and biodegradable protein-based materials. Recent advances in genetic engineering make it possible to produce recombinant silks in heterologous hosts, opening up opportunities for large-scale production of recombinant silks for various biomedical and material science applications. We review the current strategies to produce recombinant spider silks. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    Science.gov (United States)

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  10. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  11. Production of annular electron beams by foilless diodes

    International Nuclear Information System (INIS)

    Miller, R.B.; Prestwich, K.R.; Poukey, J.W.; Shope, S.L.

    1980-01-01

    A number of important aspects of the production of annular electron beams by foilless diodes are examined, both theoretically and experimentally. The theories of Ott, Antonsen, and Lovelace (OAL) and Chen and Lovelace (CL) are compared, and the CL theory is extended to include the effect of an axial gap in an approximate fashion. For the case of finite magnetic field strengths, Larmor orbits are examined and radial oscillations of the beam profile are predicted from a beam envelope analysis. Experimental results obtained with both low- and high-impedance sources have been compared with the theory, and based on such studies, the design and construction of an intense hollow beam generator are described. Experimental results obtained with the new diode compare favorably with both the analytic theory and the results of numerical simulations. The device currently produces 2-MeV electrons at beam currents of 65--70 kA

  12. Use of galerina marginata genes and proteins for peptide production

    Science.gov (United States)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2018-04-03

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  13. Use of Galerina marginata genes and proteins for peptide production

    Energy Technology Data Exchange (ETDEWEB)

    Hallen-Adams, Heather E.; Scott-Craig, John S.; Walton, Jonathan D.; Luo, Hong

    2017-03-21

    The present invention relates to compositions and methods comprising genes and peptides associated with cyclic peptides and cyclic peptide production in mushrooms. In particular, the present invention relates to using genes and proteins from Galerina species encoding peptides specifically relating to amatoxins in addition to proteins involved with processing cyclic peptide toxins. In a preferred embodiment, the present invention also relates to methods for making small peptides and small cyclic peptides including peptides similar to amanitin. Further, the present inventions relate to providing kits for making small peptides.

  14. Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami.

    Science.gov (United States)

    Mallik, Leena; Dhakal, Soma; Nichols, Joseph; Mahoney, Jacob; Dosey, Anne M; Jiang, Shuoxing; Sunahara, Roger K; Skiniotis, Georgios; Walter, Nils G

    2015-07-28

    DNA provides an ideal substrate for the engineering of versatile nanostructures due to its reliable Watson-Crick base pairing and well-characterized conformation. One of the most promising applications of DNA nanostructures arises from the site-directed spatial arrangement with nanometer precision of guest components such as proteins, metal nanoparticles, and small molecules. Two-dimensional DNA origami architectures, in particular, offer a simple design, high yield of assembly, and large surface area for use as a nanoplatform. However, such single-layer DNA origami were recently found to be structurally polymorphous due to their high flexibility, leading to the development of conformationally restrained multilayered origami that lack some of the advantages of the single-layer designs. Here we monitored single-layer DNA origami by transmission electron microscopy (EM) and discovered that their conformational heterogeneity is dramatically reduced in the presence of a low concentration of dimethyl sulfoxide, allowing for an efficient flattening onto the carbon support of an EM grid. We further demonstrated that streptavidin and a biotinylated target protein (cocaine esterase, CocE) can be captured at predesignated sites on these flattened origami while maintaining their functional integrity. Our demonstration that protein assemblies can be constructed with high spatial precision (within ∼2 nm of their predicted position on the platforms) by using strategically flattened single-layer origami paves the way for exploiting well-defined guest molecule assemblies for biochemistry and nanotechnology applications.

  15. Two transcription products of the vesicular stomatitis virus genome may control L-cell protein synthesis

    International Nuclear Information System (INIS)

    Dunigan, D.D.; Lucas-Lenard, J.M.

    1983-01-01

    When mouse L-cells are infected with vesicular stomatitis virus, there is a decrease in the rate of protein synthesis ranging from 20 to 85% of that in mock-infected cells. Vesicular stomatitis virus, irradiated with increasing doses of UV light, eventually loses this capacity to inhibit protein synthesis. The UV inactivation curve was biphasic, suggesting that transcription of two regions of the viral genome is necessary for the virus to become inactivated in this capacity. The first transcription produced corresponded to about 373 nucleotides, and the second corresponded to about 42 nucleotides. Inhibition of transcription of the larger product by irradiating the virus with low doses of UV light left a residual inhibition of protein synthesis consisting of approximately 60 to 65% of the total inhibition. This residual inhibition could be obviated by irradiating the virus with a UV dose of greater than 20,000 ergs/mm 2 and was thus considered to represent the effect of the smaller transcription product. In the R1 mutant of another author, the inhibition of transcription of the larger product sufficed to restore protein synthesis to the mock-infected level, suggesting that the smaller transcription product is nonfunctional with respect to protein synthesis inhibition. Extracts from cells infected with virus irradiated with low doses of UV light showed a protein synthesis capacity quite similar to that of their in vivo counterparts, indicating that these extracts closely reflect the in vivo effects of virus infection

  16. Increasing the production yield of recombinant protein in transgenic seeds by expanding the deposition space within the intracellular compartment

    OpenAIRE

    Takaiwa, Fumio

    2013-01-01

    Seeds must maintain a constant level of nitrogen in order to germinate. When recombinant proteins are produced while endogenous seed protein expression is suppressed, the production levels of the foreign proteins increase to compensate for the decreased synthesis of endogenous proteins. Thus, exchanging the production of endogenous seed proteins for that of foreign proteins is a promising approach to increase the yield of foreign recombinant proteins. Providing a space for the deposition of r...

  17. 75 FR 38127 - Visteon Systems, LLC North Penn Plant Electronics Products Group Including On-Site Leased Workers...

    Science.gov (United States)

    2010-07-01

    ..., North Penn Plant, Electronics Products Group to be covered by this certification. The intent of the... North Penn Plant Electronics Products Group Including On-Site Leased Workers From Ryder Integrated... Certification Regarding Eligibility To Apply for Worker Adjustment Assistance and Alternative Trade Adjustment...

  18. Efficacy of using a combination of rendered protein products as an undegradable intake protein supplement for lactating, winter-calving, beef cows fed bromegrass hay.

    Science.gov (United States)

    Encinias, A M; Lardy, G P; Leupp, J L; Encinias, H B; Reynolds, L P; Caton, J S

    2005-01-01

    Seventy-two (36 in each of two consecutive years) lactating, British-crossbred cows (609 +/- 19 kg) were used to evaluate effects of feeding a feather meal-blood meal combination on performance by beef cows fed grass hay. Bromegrass hay (9.6% CP, DM basis) was offered ad libitum and intake was measured daily in individual Calan electronic headgates. Acclimation to Calan gates began approximately 20 d after parturition, and treatments were initiated 21 d later. Cows were assigned randomly to one of four treatments (DM basis) for 60 d: 1) nonsupplemented control (CON), 2) energy control (ENG; 790 g/d; 100% beet pulp), 3) degradable intake protein (DIP; 870 g/d; 22% beet pulp and 78% sunflower meal), or 4) undegradable intake protein (UIP; 800 g/d; 62.5% sunflower meal, 30% hydrolyzed feather meal, and 7.5% blood meal). Net energy concentrations of supplements were formulated to provide similar NE(m) intakes (1.36 Mcal/d). The DIP and UIP supplements were calculated to supply similar amounts of DIP (168 g/d) and to supply 64 and 224 g/d of UIP, respectively. Forage DMI (kg/d) decreased in supplemented vs. nonsupplemented (P = 0.03) and DIP vs. UIP (P = 0.001); however, when expressed as a percentage of BW, forage DMI was not different (P = 0.23). Supplemented cows tended (P = 0.17) to lose less BW than CON. Body condition change was not affected (P = 0.60) by postpartum supplementation. No differences were noted in milk production (P = 0.29) or in calf gain during the supplementation period (P = 0.74). Circulating insulin concentrations were not affected by treatment (P = 0.42). In addition, supplementation did not affect circulating concentrations of NEFA (P = 0.18) or plasma urea nitrogen (P = 0.38). Results of the current study indicate that supplementation had little effect on BW, BCS, milk production, or calf BW when a moderate-quality forage (9.6% CP) was fed to postpartum, winter-calving cows in optimal body condition (BCS > 5). Supplemental UIP did not enhance

  19. Modifications of proteins by polyunsaturated fatty acid peroxidation products

    DEFF Research Database (Denmark)

    Refsgaard, Hanne; Tsai, Lin; Stadtman, Earl

    2000-01-01

    The ability of unsaturated fatty acid methyl esters to modify amino acid residues in bovine serum albumin (BSA), glutamine synthetase, and insulin in the presence of a metal-catalyzed oxidation system [ascorbate/Fe(lll)/O-2] depends on the degree of unsaturation of the fatty acid. The fatty acid......-dependent generation of carbonyl groups and loss of lysine residues increased in the order methyl linoleate fatty acids were oxidized in the presence...... in the formation of protein carbonyls, These results are consistent with the proposition that metal-catalyzed oxidation of polyunsaturated fatty acids can contribute to the generation of protein carbonyls by direct interaction of lipid oxidation products (alpha,beta-unsaturated aldehydes) with lysine residues...

  20. Sales of Nicotine-Containing Electronic Cigarette Products: United States, 2015.

    Science.gov (United States)

    Marynak, Kristy L; Gammon, Doris G; Rogers, Todd; Coats, Ellen M; Singh, Tushar; King, Brian A

    2017-05-01

    To assess the proportion of electronic cigarette (e-cigarette) products sold in the United States that contain nicotine according to retail scanner data. We obtained unit sales data from January 11, 2015, to December 12, 2015, from The Nielsen Company for convenience stores; supermarkets; mass merchandisers; drug, club, and dollar stores; and Department of Defense commissaries. The data did not include purchases from tobacco specialty shops, "vape shops," or online sources. Nicotine content was assessed by product type (disposables, rechargeables, and refills), region, and flavor status based on nicotine strength listed in the Universal Product Codes. For the 36.7% of entries lacking nicotine content information, we conducted Internet searches by brand, product, and flavor. In 2015, 99.0% of e-cigarette products sold contained nicotine, including 99.0% of disposables, 99.7% of rechargeables, and 98.8% of refills. Overall, 98.7% of flavored e-cigarette products and 99.4% of nonflavored e-cigarette products contained nicotine. In 2015, almost all e-cigarette products sold in US convenience stores and other assessed channels contained nicotine. Public Health Implications. Findings reinforce the importance of warning labels for nicotine-containing products, ingredient reporting, and restrictions on sales to minors.

  1. Shallow irradiation of vienna sausage by electron beams in preventation of the slime production

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Kume, Tamikazu; Ito, Hitoshi; Aoki, Shohei; Sato, Tomotaro

    1975-01-01

    Vienna sausages get spoiled by slime production or putrefaction due to the propagation of microorganisms when stored for 3 to 5 days at 10 deg C. The radiation pasteurization of vienna sausages has mainly been studied with gamma irradiation. The slime of sausages is believed to be microorganisms themselves growing on the surface of the sausages. Pasteurization of the surface of vienna sausages with electron irradiation was thus investigated. The results obtained are as follows: The vienna sausages irradiated with a dose of 0.8 to approximately 1.0 Mrad by 0.5 MeV electrons could be stored without slime production or putrefaction for more than a week at 11 deg C. The effect of pasteurization increased with energy and dose of electrons. However, the changes in the organoleptic qualities of vienna sausages were detected when irradiated with a dose of over 0.7 Mrad by 2.0 MeV electrons. Consequently, the irradiation with a dose of 1.0 Mrad by 1.0 MeV electrons was effectual in lengthening their shelf-life without deterioration of the organoleptic qualities. (author)

  2. Influence of aeration and lighting on biomass production and protein ...

    African Journals Online (AJOL)

    The influence aeration and light intensity could have on biomass production and protein biosynthesis in a Spirulina sp. isolated from an oil-polluted brackish water marsh is examined. Biomass, proximal composition and amino acid composition obtained from aerated cultures of the organism were compared with ...

  3. Production of Mg and Al Auger electrons by noble gas ion bombardment of Mg and Al surfaces. [3 KeV, electron promotion

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, J; Pepper, S V [National Aeronautics and Space Administration, Cleveland, Ohio (USA). Lewis Research Center

    1976-08-01

    In this letter the relative production efficiency of Mg and Al Auger electrons by He, Ne, Ar, Kr and Xe ion bombardment as a function of ion energy (<=3 keV) is reported. Some comments on the interpretation of the results in terms of electron promotion are also given.

  4. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2014-05-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  5. Virtual target screening to rapidly identify potential protein targets of natural products in drug discovery

    Directory of Open Access Journals (Sweden)

    Yuri Pevzner

    2015-08-01

    Full Text Available Inherent biological viability and diversity of natural products make them a potentially rich source for new therapeutics. However, identification of bioactive compounds with desired therapeutic effects and identification of their protein targets is a laborious, expensive process. Extracts from organism samples may show desired activity in phenotypic assays but specific bioactive compounds must be isolated through further separation methods and protein targets must be identified by more specific phenotypic and in vitro experimental assays. Still, questions remain as to whether all relevant protein targets for a compound have been identified. The desire is to understand breadth of purposing for the compound to maximize its use and intellectual property, and to avoid further development of compounds with insurmountable adverse effects. Previously we developed a Virtual Target Screening system that computationally screens one or more compounds against a collection of virtual protein structures. By scoring each compound-protein interaction, we can compare against averaged scores of synthetic drug-like compounds to determine if a particular protein would be a potential target of a compound of interest. Here we provide examples of natural products screened through our system as we assess advantages and shortcomings of our current system in regards to natural product drug discovery.

  6. 77 FR 14422 - Certain Consumer Electronics and Display Devices and Products Containing Same; Notice of Receipt...

    Science.gov (United States)

    2012-03-09

    ... INTERNATIONAL TRADE COMMISSION [DN 2882] Certain Consumer Electronics and Display Devices and... the U.S. International Trade Commission has received a complaint entitled Certain Consumer Electronics... importation of certain consumer electronics and display devices and products containing same. The complaint...

  7. Design and application of natural product derived probes for activity based protein profiling

    OpenAIRE

    Battenberg, Oliver Alexander

    2015-01-01

    The identification of new antibacterial protein targets by activity based protein profiling (ABPP) is an important approach to face the increasing emergence of resistant bacteria. The scope of this work focuses on three new strategies for the labeling of antibacterial protein-targets with natural product derived ABPP-probes: A.) Evaluation of the intrinsic photo-reactivity of α-pyrones and pyrimidones for use as photo-crosslinkers. B.) Synthesis of a benzophenone-tag that combines photo-cross...

  8. Economic Optimizing Control for Single-Cell Protein Production in a U-Loop Reactor

    DEFF Research Database (Denmark)

    Drejer, André; Ritschel, Tobias Kasper Skovborg; Jørgensen, Sten Bay

    2017-01-01

    The production of single-cell protein (SCP) in a U-loop reactor by a methanotroph is a cost efficient sustainable alternative to protein from fish meal obtained by over-fishing the oceans. SCP serves as animal feed. In this paper, we present a mathematical model that describes the dynamics of SCP...

  9. Enhanced heterologous protein productivity by genome reduction in Lactococcus lactis NZ9000.

    Science.gov (United States)

    Zhu, Duolong; Fu, Yuxin; Liu, Fulu; Xu, Haijin; Saris, Per Erik Joakim; Qiao, Mingqiang

    2017-01-03

    The implementation of novel chassis organisms to be used as microbial cell factories in industrial applications is an intensive research field. Lactococcus lactis, which is one of the most extensively studied model organisms, exhibits superior ability to be used as engineered host for fermentation of desirable products. However, few studies have reported about genome reduction of L. lactis as a clean background for functional genomic studies and a model chassis for desirable product fermentation. Four large nonessential DNA regions accounting for 2.83% in L. lactis NZ9000 (L. lactis 9 k) genome (2,530,294 bp) were deleted using the Cre-loxP deletion system as the first steps toward a minimized genome in this study. The mutants were compared with the parental strain in several physiological traits and evaluated as microbial cell factories for heterologous protein production (intracellular and secretory expression) with the red fluorescent protein (RFP) and the bacteriocin leucocin C (LecC) as reporters. The four mutants grew faster, yielded enhanced biomass, achieved increased adenosine triphosphate content, and diminished maintenance demands compared with the wild strain in the two media tested. In particular, L. lactis 9 k-4 with the largest deletion was identified as the optimum candidate host for recombinant protein production. With nisin induction, not only the transcriptional efficiency but also the production levels of the expressed reporters were approximately three- to fourfold improved compared with the wild strain. The expression of lecC gene controlled with strong constitutive promoters P5 and P8 in L. lactis 9 k-4 was also improved significantly. The genome-streamlined L. lactis 9 k-4 outcompeted the parental strain in several physiological traits assessed. Moreover, L. lactis 9 k-4 exhibited good properties as platform organism for protein production. In future works, the genome of L. lactis will be maximally reduced by using our specific design

  10. Protein carbonylation sites in bovine raw milk and processed milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Mnatsakanyan, Ruzanna; Hoffmann, Ralf

    2017-08-15

    During thermal treatment of milk, proteins are oxidized, which may reduce the nutritional value of milk, abolish protein functions supporting human health, especially important for newborns, and yield potentially harmful products. The side chains of several amino acids can be oxidized to reactive carbonyls, which are often used to monitor oxidative stress in organisms. Here we mapped protein carbonylation sites in raw milk and different brands of pasteurized, ultra high temperature (UHT) treated milk, and infant formulas (IFs) after digesting the precipitated proteins with trypsin. Reactive carbonyls were derivatized with O-(biotinylcarbazoylmethyl)hydroxylamine to enrich the modified peptides by avidin-biotin affinity chromatography and analyze them by nanoRP-UPLC-ESI-MS. Overall, 53 unique carbonylated peptides (37 carbonylation sites, 15 proteins) were identified. Most carbonyls were derived from dicarbonyls (mainly glyoxal). The number of carbonylation sites increased with the harsher processing from raw milk (4) to pasteurized (16) and UHT milk (16) and to IF (24). Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The System Dynamics Model in Electronic Products Closed-Loop Supply Chain Distribution Network with Three-Way Recovery and the Old-for-New Policy

    Directory of Open Access Journals (Sweden)

    Xiao-qing Zhang

    2016-01-01

    Full Text Available With the technological developments and rapid changes in demand pattern, diverse varieties of electronic products are entering into the market with reduced lifecycle which leads to the environmental problems. The awareness of electronic products take-back and recovery has been increasing in electronic products supply chains. In this paper, we build a system dynamics model for electronic products closed-loop supply chain distribution network with the old-for-new policy and three electronic products recovery ways, namely, electronic products remanufacturing, electronic component reuse and remanufacturing, and electronic raw material recovery. In the simulation study, we investigate the significance of various factors including the old-for-new policy, collection and remanufacturing, their interactions and the type of their impact on bullwhip, and profitability through sensitivity analysis. Our results instruct that the old-for-new policy and three electronic products recovery ways can reduce the bullwhip effect in the retailers and the distributors and increases the profitability in the closed-loop supply chain distribution network.

  12. Proteomic analysis identifies insulin-like growth factor-binding protein-related protein-1 as a podocyte product.

    Science.gov (United States)

    Matsumoto, Takayuki; Hess, Sonja; Kajiyama, Hiroshi; Sakairi, Toru; Saleem, Moin A; Mathieson, Peter W; Nojima, Yoshihisa; Kopp, Jeffrey B

    2010-10-01

    The podocyte secretory proteome may influence the phenotype of adjacent podocytes, endothelial cells, parietal epithelial cells, and tubular epithelial cells but has not been systematically characterized. We have initiated studies to characterize this proteome, with the goal of further understanding the podocyte cell biology. We cultured differentiated conditionally immortalized human podocytes and subjected the proteins in conditioned medium to mass spectrometry. At a false discovery rate of factor-binding protein-related protein-1 (IGFBP-rP1), was expressed in mRNA and protein of cultured podocytes. In addition, transforming growth factor-β1 stimulation increased IGFBP-rP1 in conditioned medium. We analyzed IGFBP-rP1 glomerular expression in a mouse model of human immunodeficiency virus-associated nephropathy. IGFBP-rP1 was absent from podocytes of normal mice and was expressed in podocytes and pseudocrescents of transgenic mice, where it was coexpressed with desmin, a podocyte injury marker. We conclude that IGFBP-rP1 may be a product of injured podocytes. Further analysis of the podocyte secretory proteome may identify biomarkers of podocyte injury.

  13. Product Innovation in High-tech SMEs: A Case Study of Weili Electronics Co.,Ltd

    Institute of Scientific and Technical Information of China (English)

    HE Zheng; LI Shi-ming

    2006-01-01

    Product innovation is an important strategy for high-tech firms, especially for small and medium enterprises. This paper proposes that the technological strategies for SMEs are dynamic and during different phase, there is different innovation strategy which leads to various market performances. In particular, through the case study of Weili Electronics Co., Ltd, we find that organizational learning abilities play a fundamental role in strategic decision. In addition, the frameworks for the determinants of technological strategies in three stages are established to illustrate the evolutionary processes of product innovation in Weili Electronics Co., Ltd.

  14. Selectron production in quasi-elastic electron-proton scattering

    International Nuclear Information System (INIS)

    Bartels, J.; Hollik, W.

    1985-08-01

    We calculate the cross section for the production of selectrons in quasi-elastic electron proton scattering at HERA energies. In the region of very small momentum transfer the cross section turns out to be large: e.g. sigma=36 pb for a selectron mass of 60 GeV, tsub(min) 2 ), and photino mass small compared to the selectron mass. Together with the clean experimental signature, this large cross section makes the reaction e+P->e+γ tilde+P one of the most promising HERA-processes in connection with the search for supersymmetric particles. (orig.)

  15. Towards Sustainable Production of Protein-Rich Foods: Appraisal of Eight Crops for Western Europe. Part II: Analysis of the Technological Aspects of the Production Chain

    NARCIS (Netherlands)

    Swaving Dijkstra, D.; Linnemann, A.R.; Boekel, van M.A.J.S.

    2003-01-01

    Increased production of plant protein is required to support the production of protein-rich foods which can replace meat in the human diet to reduce the strain that intensive animal husbandry poses on the environment. The suitability of lupin (Lupinus spp.), pea (Pisum sativum), quinoa (Chenopodium

  16. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  17. Bioactive Properties of Maillard Reaction Products Generated From Food Protein-derived Peptides.

    Science.gov (United States)

    Arihara, K; Zhou, L; Ohata, M

    Food protein-derived peptides are promising food ingredients for developing functional foods, since various bioactive peptides are released from food proteins. The Maillard reaction, which plays an important role in most processed foods, generates various chemical components during processing. Although changes of amino acids or proteins and reduced sugars by the Maillard reaction have been studied extensively, such changes of peptides by the Maillard reaction are still not resolved enough. Since food protein-derived peptides are widely utilized in many processed foods, it deserves concern and research on the changes of peptides by the Maillard reaction in foods during processing or storage. This chapter initially overviewed food protein-derived bioactive peptides. Then, Maillard reaction products generated from peptides are discussed. We focused particularly on their bioactivities. © 2017 Elsevier Inc. All rights reserved.

  18. Two tools for environmentally conscious designers and product developers of electrical & electronic equipment (EEE)

    DEFF Research Database (Denmark)

    Poll, Christian; Hauschild, Michael Zwicky; Olsen, Stig Irving

    2002-01-01

    The paper presents the two tools 1)"Product families - short cuts to environmental knowledge" and 2)"Eco-conscious design of electrical & electronic equipment (EEE)". Tool 1) comes in form of a handbook. The purpose of this handbook is to ease the work with developing more environmentally sound...... products, thus giving guidelines for development of new products without the companies themselves having to perform an LCA. The handbook describes 5 productfamilies: mobile phones, vacuum cleaners, industrial valves with electronic controls, lighting, ventilation. Tool 2) comes in form of a software tool...... with built in training, guidance, references, calculator and database. The tool provides the basic understanding of how EEE-products in general interact with the environment. The tool gives an overview of the tasks and responsibilities involved in Eco-Desing, and examples of how to choose and quantify...

  19. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  20. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol

    Directory of Open Access Journals (Sweden)

    Shohreh Fahimirad

    2017-05-01

    Full Text Available Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3, and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.

  1. Environmental Impact of the Production of Mealworms as a Protein Source for Humans ? A Life Cycle Assessment

    OpenAIRE

    Oonincx, Dennis G. A. B.; de Boer, Imke J. M.

    2012-01-01

    The demand for animal protein is expected to rise by 70-80% between 2012 and 2050, while the current animal production sector already causes major environmental degradation. Edible insects are suggested as a more sustainable source of animal protein. However, few experimental data regarding environmental impact of insect production are available. Therefore, a lifecycle assessment for mealworm production was conducted, in which greenhouse gas production, energy use and land use were quantified...

  2. 78 FR 19182 - Electronic Filing of Import Inspection Applications for Meat, Poultry, and Egg Products...

    Science.gov (United States)

    2013-03-29

    ...] Electronic Filing of Import Inspection Applications for Meat, Poultry, and Egg Products: Availability of..., and egg products through the Automated Commercial Environment (ACE). ACE is the Web- based portal for... products (21 U.S.C. 620, 466). The Egg Products Inspection Act (EPIA) (21 U.S.C. 1031 et seq.) prohibits...

  3. Building biochips: a protein production pipeline

    Science.gov (United States)

    de Carvalho-Kavanagh, Marianne G. S.; Albala, Joanna S.

    2004-06-01

    Protein arrays are emerging as a practical format in which to study proteins in high-throughput using many of the same techniques as that of the DNA microarray. The key advantage to array-based methods for protein study is the potential for parallel analysis of thousands of samples in an automated, high-throughput fashion. Building protein arrays capable of this analysis capacity requires a robust expression and purification system capable of generating hundreds to thousands of purified recombinant proteins. We have developed a method to utilize LLNL-I.M.A.G.E. cDNAs to generate recombinant protein libraries using a baculovirus-insect cell expression system. We have used this strategy to produce proteins for analysis of protein/DNA and protein/protein interactions using protein microarrays in order to understand the complex interactions of proteins involved in homologous recombination and DNA repair. Using protein array techniques, a novel interaction between the DNA repair protein, Rad51B, and histones has been identified.

  4. Highly active promoters and native secretion signals for protein production during extremely low growth rates in Aspergillus niger.

    Science.gov (United States)

    Wanka, Franziska; Arentshorst, Mark; Cairns, Timothy C; Jørgensen, Thomas; Ram, Arthur F J; Meyer, Vera

    2016-08-20

    The filamentous ascomycete Aspergillus niger is used in many industrial processes for the production of enzymes and organic acids by batch and fed-batch cultivation. An alternative technique is continuous cultivation, which promises improved yield and optimized pipeline efficiency. In this work, we have used perfusion (retentostat) cultivation to validate two promoters that are suitable for A. niger continuous cultivation of industrially relevant products. Firstly, promoters of genes encoding either an antifungal protein (Panafp) or putative hydrophobin (PhfbD) were confirmed as active throughout retentostat culture by assessing mRNA and protein levels using a luciferase (mluc) reporter system. This demonstrated the anafp promoter mediates a high but temporally variable expression profile, whereas the hfbD promoter mediates a semi-constant, moderate-to-high protein expression during retentostat culture. In order to assess whether these promoters were suitable to produce heterologous proteins during retentostat cultivation, the secreted antifungal protein (AFP) from Aspergillus giganteus, which has many potential biotechnological applications, was expressed in A. niger during retentostat cultivation. Additionally, this assay was used to concomitantly validate that native secretion signals encoded in anafp and hfbD genes can be harnessed for secretion of heterologous proteins. Afp mRNA and protein abundance were comparable to luciferase measurements throughout retentostat cultivation, validating the use of Panafp and PhfbD for perfusion cultivation. Finally, a gene encoding the highly commercially relevant thermal hysteresis protein (THP) was expressed in this system, which did not yield detectable protein. Both hfbD and anafp promoters are suitable for production of useful products in A. niger during perfusion cultivation. These findings provide a platform for further optimisations for high production of heterologous proteins with industrial relevance.

  5. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  6. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki [System Instruments Co., Ltd., 776-2 Komiya-cho, Hachioji, Tokyo 192-0031 (Japan); Noda, Mamoru; Igimi, Shizunobu [Division of Biomedical Food Research, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Ikebukuro, Kazunori, E-mail: ikebu@cc.tuat.ac.jp [Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2013-11-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10{sup 6} copies.

  7. Automatic polymerase chain reaction product detection system for food safety monitoring using zinc finger protein fused to luciferase

    International Nuclear Information System (INIS)

    Yoshida, Wataru; Kezuka, Aki; Murakami, Yoshiyuki; Lee, Jinhee; Abe, Koichi; Motoki, Hiroaki; Matsuo, Takafumi; Shimura, Nobuaki; Noda, Mamoru; Igimi, Shizunobu; Ikebukuro, Kazunori

    2013-01-01

    Graphical abstract: -- Highlights: •Zif268 fused to luciferase was used for E. coli O157, Salmonella and coliform detection. •Artificial zinc finger protein fused to luciferase was constructed for Norovirus detection. •An analyzer that automatically detects PCR products by zinc finger protein fused to luciferase was developed. •Target pathogens were specifically detected by the automatic analyzer with zinc finger protein fused to luciferase. -- Abstract: An automatic polymerase chain reaction (PCR) product detection system for food safety monitoring using zinc finger (ZF) protein fused to luciferase was developed. ZF protein fused to luciferase specifically binds to target double stranded DNA sequence and has luciferase enzymatic activity. Therefore, PCR products that comprise ZF protein recognition sequence can be detected by measuring the luciferase activity of the fusion protein. We previously reported that PCR products from Legionella pneumophila and Escherichia coli (E. coli) O157 genomic DNA were detected by Zif268, a natural ZF protein, fused to luciferase. In this study, Zif268–luciferase was applied to detect the presence of Salmonella and coliforms. Moreover, an artificial zinc finger protein (B2) fused to luciferase was constructed for a Norovirus detection system. In the luciferase activity detection assay, several bound/free separation process is required. Therefore, an analyzer that automatically performed the bound/free separation process was developed to detect PCR products using the ZF–luciferase fusion protein. By means of the automatic analyzer with ZF–luciferase fusion protein, target pathogenic genomes were specifically detected in the presence of other pathogenic genomes. Moreover, we succeeded in the detection of 10 copies of E. coli BL21 without extraction of genomic DNA by the automatic analyzer and E. coli was detected with a logarithmic dependency in the range of 1.0 × 10 to 1.0 × 10 6 copies

  8. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  9. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  10. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    Energy Technology Data Exchange (ETDEWEB)

    Dougar-Jabon, V.D. [Industrial Univ. of Santander, Bucaramanga (Colombia)

    2001-04-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D{sup -}, is close to the production of negative ions of light hydrogen isotope, H{sup -}. The comparison of the experimental data with the calculated ones shows that the most probable process of the H{sup -} and D{sup -} ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  11. Production of hydrogen and deuterium negative ions in an electron cyclotron resonance driven plasma

    International Nuclear Information System (INIS)

    Dougar-Jabon, V.D.

    2001-01-01

    An electron cyclotron resonance source with driven plasma rings for hydrogen isotope ion production is studied. Extracted currents of positive and negative ions depending on gas pressure, microwave power value and extraction voltage are obtained. The study shows that the negative ion yield is an order of magnitude higher than the yield of positive particles when a driven ring is in contact with the surface of the plasma electrode. The production of negative ions of deuterium, D - , is close to the production of negative ions of light hydrogen isotope, H - . The comparison of the experimental data with the calculated ones shows that the most probable process of the H - and D - ion formation in the electron cyclotron driven plasma is dissociative attachment of electrons to molecules in high Rydberg states. For hydrogen ions and ions of deuterium, the negative current at a microwave power of 200 W through a 3-mm aperture and 8 kV extraction voltage are 4.7 mA and 3.1 mA respectively. (orig.)

  12. Heterogeneous electron transfer of a two-centered heme protein: redox and electrocatalytic properties of surface-immobilized cytochrome C(4).

    Science.gov (United States)

    Monari, Stefano; Battistuzzi, Gianantonio; Borsari, Marco; Di Rocco, Giulia; Martini, Laura; Ranieri, Antonio; Sola, Marco

    2009-10-15

    The recombinant diheme cytochrome c(4) from the psycrophilic bacterium Pseudoalteromonas haloplanktis TAC 125 and its Met64Ala and Met164Ala variants, which feature a hydroxide ion axially bound to the heme iron at the N- and C-terminal domains, respectively, were found to exchange electrons efficiently with a gold electrode coated with a SAM of 11-mercapto-1-undecanoic acid. The mutation-induced removal of the redox equivalence of the two heme groups and changes in the net charge of the protein lobes yield two-centered protein systems with unprecedented properties in the electrode-immobilized state. The heterogeneous and intraheme electron transfer processes were characterized for these species in which the high- and low-potential heme groups are swapped over in the bilobal protein framework and experience a constrained (M64A) and unconstrained (M164A) orientation toward the electrode. The reduction thermodynamics for the native and mutated hemes were measured for the first time for a diheme cytochrome c. In the diffusing regime, they reproduce closely those for the corresponding centers in single-heme class-I cytochromes c, despite the low sequence identity. Larger differences are observed in the thermodynamics of the immobilized species and in the heterogeneous electron transfer rate constants. T-dependent kinetic measurements show that the proteins are positioned approximately 7 A from the HOOC-terminated SAM-coated electrode. Protein-electrode orientation and efficient intraheme ET enable the His,OH(-)-ligated heme A of the immobilized Met64Ala variant to carry out the reductive electrocatalysis of molecular oxygen. This system therefore constitutes a novel two-centered heme-based biocatalytic interface to be exploited for "third-generation" amperometric biosensing.

  13. A New View at the Planning Marketing Popular Products: Exploratory Study Electronics Sector with Companies in Brazil.

    OpenAIRE

    Evange Elias Assis; Francisco Antonio Serralvo; Karen Perrotta Lopes de Almeida Prado

    2015-01-01

    The increased consumption of appliance and electronic products by lower-income population represented a growth opportunity for companies in the sector. The overall objective of this paper is to investigate how appliance and electronic product manufacturers draw up their marketing planning for low-end products. An exploratory approach was taken in this study, comprising the literature review and the empirical research which was conducted in two stages by combining the qualitative and quantitat...

  14. Physicochemical and functional properties of protein concentrate from by-product of coconut processing.

    Science.gov (United States)

    Rodsamran, Pattrathip; Sothornvit, Rungsinee

    2018-02-15

    Coconut cake, a by-product from milk and oil extractions, contains a high amount of protein. Protein extraction from coconut milk cake and coconut oil cake was investigated. The supernatant and precipitate protein powders from both coconut milk and oil cakes were compared based on their physicochemical and functional properties. Glutelin was the predominant protein fraction in both coconut cakes. Protein powders from milk cake presented higher water and oil absorption capacities than those from oil cake. Both protein powders from oil cake exhibited better foaming capacity and a better emulsifying activity index than those from milk cake. Coconut proteins were mostly solubilized in strong acidic and alkaline solutions. Minimum solubility was observed at pH 4, confirming the isoelectric point of coconut protein. Therefore, the coconut residues after extractions might be a potential alternative renewable plant protein source to use asa food ingredient to enhance food nutrition and quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Advanced Oxidation Protein Products and Carbonylated Proteins as Biomarkers of Oxidative Stress in Selected Atherosclerosis-Mediated Diseases

    Directory of Open Access Journals (Sweden)

    Bogna Gryszczyńska

    2017-01-01

    Full Text Available Objectives. The main question of this study was to evaluate the intensity of oxidative protein modification shown as advanced oxidation protein products (AOPP and carbonylated proteins, expressed as protein carbonyl content (C=O in abdominal aortic aneurysms (AAA, aortoiliac occlusive disease (AIOD, and chronic kidney disease (CKD. Design and Methods. The study was carried out in a group of 35 AAA patients and 13 AIOD patients. However, CKD patients were divided into two groups: predialysis (PRE included 50 patients or hemodialysis (HD consisted of 34 patients. AOPP and C=O were measured using colorimetric assay kit, while C-reactive protein concentration was measured by high-sensitivity assay (hsCRP. Results. The concentration of AOPP in both AAA and AIOD groups was higher than in PRE and HD groups according to descending order: AAA~AIOD > HD > PRE. The content of C=O was higher in the PRE group in comparison to AIOD and AAA according to the descending order: PRE~HD > AAA~AIOD. Conclusions. AAA, AIOD, and CKD-related atherosclerosis (PRE and HD contribute to the changes in the formation of AOPP and C=O. They may promote modification of proteins in a different way, probably due to the various factors that influence oxidative stress here.

  16. Electron hopping through proteins

    Czech Academy of Sciences Publication Activity Database

    Warren, J. J.; Ener, M. E.; Vlček, Antonín; Winkler, J. R.; Gray, H. B.

    2012-01-01

    Roč. 256, 21-22 (2012), s. 2478-2487 ISSN 0010-8545 R&D Projects: GA MŠk(CZ) ME10124 Institutional support: RVO:61388955 Keywords : electron transfer * multistep tunneling * hopping maps Subject RIV: CG - Electrochemistry Impact factor: 11.016, year: 2012

  17. Utilization of solid coffee waste as a substrate for microbial protein production

    Energy Technology Data Exchange (ETDEWEB)

    Arue, C; Bahar, S

    1986-01-01

    The feasibility of using the solid waste from the instant coffee processing industry (NESCAFE) as a substrate for the production of protein from fungi imperfecti in order to be used as an animal feed supplement was studied. Studies on the selected fungi, Paecilomyces elegans, Aspergillus oryzae and Fusarium oxysporum showed that F. oxysporum produces significantly higher protein levels than the other fungi studied. The fungus was grown in batch on the acid hydrolyzed coffee medium. Maximal values for sugar utilization and mycelium production (3-4 mg/ml) were obtained on 0.5% (w/v) acid hydrolyzed substrate (4% w/v) supplemented with 0.05% (w/v) potassium phosphate and 0.2% (w/v) yeast extract. Supplementary nitrogen was not necessary. The fungus was found to require pyridoxine and inositol. Addition of 1.5% (w/v) glucose to the medium increased the biomass production, indicating that the carbon source may be a limiting factor. 37 references.

  18. Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator

    International Nuclear Information System (INIS)

    Chang, C.-L.; Hsieh, C.-T.; Ho, Y.-C.; Chen, Y.-S.; Lin, J.-Y.; Wang, J.; Chen, S.-Y.

    2007-01-01

    Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator is investigated with a tomographic method which resolves the electron injection and acceleration processes. It is found that all the electrons in the monoenergetic electron bunch are injected at the same location in the plasma column and then accelerated with an acceleration gradient exceeding 2 GeV/cm. The injection position shifts with the position of pump-pulse focus, and no significant deceleration is observed for the monoenergetic electron bunch after it reaches the maximum energy. The results are consistent with the model of transverse wave breaking and beam loading for the injection of monoenergetic electrons. The tomographic method adds a crucial dimension to the whole array of existing diagnostics for laser beams, plasma waves, and electron beams. With this method the details of the underlying physical processes in laser-plasma interactions can be resolved and compared directly to particle-in-cell simulations

  19. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    Science.gov (United States)

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  20. Shewanella oneidensis MR-1 chemotaxis proteins and electron-transport chain components essential for congregation near insoluble electron acceptors.

    Science.gov (United States)

    Harris, H Wayne; El-Naggar, Mohamed Y; Nealson, Kenneth H

    2012-12-01

    Shewanella oneidensis MR-1 cells utilize a behaviour response called electrokinesis to increase their speed in the vicinity of IEAs (insoluble electron acceptors), including manganese oxides, iron oxides and poised electrodes [Harris, El-Naggar, Bretschger, Ward, Romine, Obraztsova and Nealson (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 326-331]. However, it is not currently understood how bacteria remain in the vicinity of the IEA and accumulate both on the surface and in the surrounding medium. In the present paper, we provide results indicating that cells that have contacted the IEAs swim faster than those that have not recently made contact. In addition, fast-swimming cells exhibit an enhancement of swimming reversals leading to rapid non-random accumulation of cells on, and adjacent to, mineral particles. We call the observed accumulation near IEAs 'congregation'. Congregation is eliminated by the loss of a critical gene involved with EET (extracellular electron transport) (cymA, SO_4591) and is altered or eliminated in several deletion mutants of homologues of genes that are involved with chemotaxis or energy taxis in Escherichia coli. These genes include chemotactic signal transduction protein (cheA-3, SO_3207), methyl-accepting chemotaxis proteins with the Cache domain (mcp_cache, SO_2240) or the PAS (Per/Arnt/Sim) domain (mcp_pas, SO_1385). In the present paper, we report studies of S. oneidensis MR-1 that lend some insight into how microbes in this group can 'sense' the presence of a solid substrate such as a mineral surface, and maintain themselves in the vicinity of the mineral (i.e. via congregation), which may ultimately lead to attachment and biofilm formation.

  1. Altered expression of mitochondrial electron transport chain proteins and improved myocardial energetic state during late ischemic preconditioning

    NARCIS (Netherlands)

    J.A. Cabrera (Jesús); E.A. Ziemba (Elizabeth); L.H. Colbert (Lisa); L.B. Anderson (Lorraine); W.J. Sluiter (Wim); D.J.G.M. Duncker (Dirk); T.A. Butterick (Tammy); J. Sikora (Joseph); H.B. Ward (Herbert B.); R.F. Kelly (Rosemary); E.O. McFalls (Edward)

    2012-01-01

    textabstractAltered expression of mitochondrial electron transport proteins has been shown in early preconditioned myocardial tissue. We wished to determine whether these alterations persist in the Second Window of Protection (SWOP) and if so, whether a favorable energetic state is facilitated

  2. Prospects for utilization of Electron Beam Accelerators (EBAs) for processing of food products

    International Nuclear Information System (INIS)

    Sarma, K.S.

    2014-01-01

    Radiation processing using gamma radiation and high energy electron beams has been in practice for more than three decades in the industry. Since gamma radiation has the ability of higher penetration in the material, large scale irradiators (mainly based on mega curies of 60 Co radioactive source) are successfully employed for treating bulk products in sterilization and food preservation applications. Electron beam, due to its low penetration, has been exploited exclusively for applications involving polymer modifications to irradiate thin finished end products like electrical cable insulations, heat shrinkable sheets, tubes, automobile tyres etc using high power EBAs (energies 0.5 MeV-4 MeV and powers around ∼100 kW). Out of around 2500 industrial EB units currently employed worldwide (with total installed power above 150 MWL 90% are in the low to medium energy range (0.5 MeV to 4 MeV) being used for polymer modifications. However, recent technological advances in the manufacturing sector of industrial high energy EBAs and product handling systems resulted in widening utilization of EB technology for applications involving bulk product irradiation

  3. Electron paramagnetic resonance of globin proteins - a successful match between spectroscopic development and protein research

    Science.gov (United States)

    Van Doorslaer, Sabine; Cuypers, Bert

    2018-02-01

    At the start of the twenty-first century, the research into the haem-containing globins got a considerable impetus with the discovery of three new mammalian globins: neuroglobin, cytoglobin and androglobin. Globins are by now found in all kingdoms of life and, in many cases, their functions are still under debate. This revival in globin research increased the demand for adequate physico-chemical research tools to determine the structure-function relationships of these proteins. From early days onwards, electron paramagnetic resonance (EPR) has been used in globin research. In recent decades, the field of EPR has been revolutionised with the introduction of many new pulsed and high-field EPR techniques. In this review, we highlight how EPR has become an essential tool in globin research, and how globins equally provide ideal model systems to push technical developments in EPR.

  4. The replacement of fishmeal by plant proteins in piglet production

    Directory of Open Access Journals (Sweden)

    G. Martelli

    2010-01-01

    Full Text Available According to EC Commission Decision 9/2001 on BSE protection (OJEC, 2001, feedstuffs containing fishmeal can be produced only in establishments manufacturing animal feed which do not prepare feedstuffs for ruminant animals and which are authorised for this purpose by the competent authority. This fact, leading to a reduction of the productive capacity of small establishments, and the increasing aversion of consumers towards the use of animal protein in feedstuffs justify the studies about the possibility of excluding fishmeal from young animal formulations. The aim of the present work was to evaluate the effect of the total replacement of fishmeal by some vegetable protein sources in piglet diets.

  5. Allergenic potential of novel proteins - What can we learn from animal production?

    Science.gov (United States)

    Ekmay, Ricardo D; Coon, Craig N; Ladics, Gregory S; Herman, Rod A

    2017-10-01

    Currently, risk assessment of the allergenic potential of novel proteins relies heavily on evaluating protein digestibility under normal conditions based on the theory that allergens are more resistant to gastrointestinal digestion than non-allergens. There is also proposed guidance for expanded in vitro digestibility assay conditions to include vulnerable sub-populations. One of the underlying rationales for the expanded guidance is that current in vitro assays do not accurately replicate the range of physiological conditions. Animal scientists have long sought to predict protein and amino acid digestibility for precision nutrition. Monogastric production animals, especially swine, have gastrointestinal systems similar to humans, and evaluating potential allergen digestibility in this context may be beneficial. Currently, there is no compelling evidence that the mechanisms sometimes postulated to be associated with allergenic sensitization, e.g. antacid modification of stomach pH, are valid among production animals. Furthermore, examples are provided where non-biologically representative assays are better at predicting protein and amino acid digestibility compared with those designed to mimic in vivo conditions. Greater emphasis should be made to align in vitro assessments with in vivo data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Measures for Administration of the Import of Mechanical and Electronic Products

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Measures for the Administration of the Import of Mechanical and Electronic Products co-formulated by the Ministry of Commerce,the General Administration of Customs and the General Administration of Quality Supervision,Inspection and Quarantine,was hereby promul-gated,which entered into force as of May 1,2008.

  7. Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralized bone matrix products.

    Science.gov (United States)

    Bae, Hyun W; Zhao, Li; Kanim, Linda E A; Wong, Pamela; Delamarter, Rick B; Dawson, Edgar G

    2006-05-20

    Enzyme-linked immunosorbent assay was used to detect bone morphogenetic proteins (BMPs) 2, 4, and 7 in 9 commercially available ("off the shelf") demineralized bone matrix (DBM) product formulations using 3 different manufacturer's production lots of each DBM formulation. To evaluate and compare the quantity of BMPs among several different DBM formulations (inter-product variability), as well as examine the variability of these proteins in different production lots within the same DBM formulation (intra-product variability). DBMs are commonly used to augment available bone graft in spinal fusion procedures. Surgeons are presented with an ever-increasing variety of commercially available human DBMs from which to choose. Yet, there is limited information on a specific DBM product's osteoinductive efficacy, potency, and constancy. There were protein extracts from each DBM sample separately dialyzed 4 times against distilled water at 4 degrees C for 48 hours. The amount of BMP-2, BMP-4, and BMP-7 was determined using enzyme-linked immunosorbent assay. RESULTS.: The concentrations of detected BMP-2 and BMP-7 were low for all DBM formulations, only nanograms of BMP were extracted from each gram of DBM (20.2-120.6 ng BMP-2/g DBM product; 54.2-226.8 ng BMP-7/g DBM). The variability of BMP concentrations among different lots of the same DBM formulation, intra-product variability, was higher than the variability of concentrations among different DBM formulations, inter-product variability (coefficient of variation range BMP-2 [16.34% to 76.01%], P DBMs are low, in the order of 1 x 10(-9) g of BMP/g of DBM. There is higher variability in concentration of BMPs among 3 different lots of the same DBM formulation than among different DBM formulations. This variability questions DBM products' reliability and, possibly, efficacy in providing consistent osteoinduction.

  8. Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch.

    Science.gov (United States)

    Poulain, Adeline; Perret, Sylvie; Malenfant, Félix; Mullick, Alaka; Massie, Bernard; Durocher, Yves

    2017-08-10

    To rapidly produce large amounts of recombinant proteins, the generation of stable Chinese Hamster Ovary (CHO) cell pools represents a useful alternative to large-scale transient gene expression (TGE). We have developed a cell line (CHO BRI/rcTA ) allowing the inducible expression of recombinant proteins, based on the cumate gene switch. After the identification of optimal plasmid DNA topology (supercoiled vs linearized plasmid) for PEIpro™ mediated transfection and of optimal conditions for methionine sulfoximine (MSX) selection, we were able to generate CHO BRI/rcTA pools producing high levels of recombinant proteins. Volumetric productivities of up to 900mg/L were reproducibly achieved for a Fc fusion protein and up to 350mg/L for an antibody after 14days post-induction in non-optimized fed-batch cultures. In addition, we show that CHO pool volumetric productivities are not affected by a freeze-thaw cycle or following maintenance in culture for over one month in the presence of MSX. Finally, we demonstrate that volumetric protein production with the CR5 cumate-inducible promoter is three- to four-fold higher than with the human CMV or hybrid EF1α-HTLV constitutive promoters. These results suggest that the cumate-inducible CHO BRI/rcTA stable pool platform is a powerful and robust system for the rapid production of gram amounts of recombinant proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. Quantitative physiology of Penicillium cyclopium grown on whey for production of microbial protein

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J H; Libuchi, S; Lebeault, J M

    1981-01-01

    A filamentous fungus, Penicillium cyclopium, capable of growing on deproteinized whey was isolated and characterized for the purpose of production of microbial protein. This organism has a maximum specific growth rate of 0.2/hour at pH 3.0 to 4.5 and 28 degrees C in a medium containing only ammonium nitrogen and deproteinized whey. The yield coefficients are 0.68 g biomass/g lactose, 12.0 g biomass/g nitrogen, and 2.10 g biomass/g oxygen respectively. Crude protein and total nucleic acid contents of this organism are 47.5% and 7.4% (dry cell weight basis), respectively. The profile of essential amino acids show that it could be a good source of animal feed or food protein. However there are several advantages in using fungal cells (Spicer 1971); their amino acid profile is better, the recovery of biomass from the culture broth is much easier, their filamentous structure facilitates production of texturized foodstuffs without extraction and spinning, and they are already accepted as foods in many parts of the world. The authors have selected a filamentous fungus, Penicillium cyclopium which grows fast on deproteinized whey and has a high protein content. This paper describes the quantitative physiology of this organism and the amino acid profile of its protein. (Refs. 19).

  10. A recyclable protein resource derived from cauliflower by-products: Potential biological activities of protein hydrolysates.

    Science.gov (United States)

    Xu, Yang; Li, Yuting; Bao, Tao; Zheng, Xiaodong; Chen, Wei; Wang, Jianxu

    2017-04-15

    Cauliflower by-products (CBP) are rich in leaf protein. Every year tons of CBP will lead to environmental pollution. Therefore, this study was conducted to extract leaf protein from CBP and investigate its biological activities. Our results showed that the optimal extraction parameters were: a liquid to solid ratio of 4mL/g, a pH of 11, an ultrasonic extraction lasting 15min, and at an applied power of 175W. Under these optimized conditions, 12.066g of soluble leaf protein (SLP) was obtained from 1000g of CBP and its extraction yield was 53.07%. The obtained SLP was further hydrolysed by Alcalase and the SLP hydrolysate (SLPH) showed a potent angiotensin I-converting enzyme (ACE) inhibitory activity with an IC 50 value of 138.545μg/mL in vitro. In addition, SLPH promoted the glucose consumption and enhanced the glycogen content in HepG2 cells. Overall, our results suggested that CBP may be recycled for designing future functional foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....

  13. Electron beam production and characterization for the PLEIADES Thomson X-ray source

    International Nuclear Information System (INIS)

    Brown, W.J.; Hartemann, F.V.; Tremaine, A.M.; Springer, P.T.; Le Sage, G.P.; Barty, C.P.J.; Crane, J.K.; Cross, R.R.; Fittinghoff, D.N.; Slaughter, D.R.; Rosenzweig, J.B.; Anderson, S.; Gibson, D.J.

    2002-01-01

    We report on the performance of an S-band RF photocathode electron gun and accelerator for operation with the PLEIADES Thomson x-ray source at LLNL. Simulations of beam production, transport, and focus are presented. It is shown that a 1 ps, 500 pC electron bunch with a normalized emittance of less than 5 πmm-mrad can be delivered to the interaction point. Initial electron measurements are presented. Calculations of expected x-ray flux are also performed, demonstrating an expected peak spectral brightness of 1020 photons/s/mm2/mrad2/0.1% bandwidth. Effects of RF phase jitter are also presented, and planned phase measurements and control methods are discussed

  14. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors

    Science.gov (United States)

    Kozlova, E. A.; Parmon, V. N.

    2017-09-01

    Current views on heterogeneous photocatalysts for visible- and near-UV-light-driven production of molecular hydrogen from water and aqueous solutions of inorganic and organic electron donors are analyzed and summarized. Main types of such photocatalysts and methods for their preparation are considered. Particular attention is paid to semiconductor photocatalysts based on sulfides that are known to be sensitive to visible light. The known methods for increasing the quantum efficiency of the target process are discussed, including design of the structure, composition and texture of semiconductor photocatalysts and variation of the medium pH and the substrate and photocatalyst concentrations. Some important aspects of the activation and deactivation of sulfide photocatalysts and the evolution of their properties in the course of hydrogen production processes in the presence of various types of electron donors are analyzed. The bibliography includes 276 references.

  15. Development of an antibiotic marker-free platform for heterologous protein production in Streptomyces.

    Science.gov (United States)

    Sevillano, Laura; Díaz, Margarita; Santamaría, Ramón I

    2017-09-26

    The industrial use of enzymes produced by microorganisms is continuously growing due to the need for sustainable solutions. Nevertheless, many of the plasmids used for recombinant production of proteins in bacteria are based on the use of antibiotic resistance genes as selection markers. The safety concerns and legal requirements surrounding the increased use of antibiotic resistance genes have made the development of new antibiotic-free approaches essential. In this work, a system completely free of antibiotic resistance genes and useful for the production of high yields of proteins in Streptomyces is described. This system is based on the separation of the two components of the yefM/yoeBsl (antitoxin/toxin) operon; the toxin (yoeBsl) gene, responsible for host death, is integrated into the genome and the antitoxin gene (yefMsl), which inactivates the toxin, is located in the expression plasmid. To develop this system, the toxin gene was integrated into the genome of a strain lacking the complete operon, and the antibiotic resistance gene integrated along with the toxin was eliminated by Cre recombinase to generate a final host strain free of any antibiotic resistance marker. In the same way, the antibiotic resistance gene from the final expression plasmid was removed by Dre recombinase. The usefulness of this system was analysed by checking the production of two hydrolases from different Streptomyces. Production of both proteins, with potential industrial use, was high and stable over time after strain storage and after serial subcultures. These results support the robustness and stability of the positive selection system developed. The total absence of antibiotic resistance genes makes this system a powerful tool for using Streptomyces as a host to produce proteins at the industrial level. This work is the first Streptomyces antibiotic marker-free system to be described. Graphical abstract Antibiotic marker-free platform for protein expression in Streptomyces

  16. Arf6 controls beta-amyloid production by regulating macropinocytosis of the Amyloid Precursor Protein to lysosomes.

    Science.gov (United States)

    Tang, Weihao; Tam, Joshua H K; Seah, Claudia; Chiu, Justin; Tyrer, Andrea; Cregan, Sean P; Meakin, Susan O; Pasternak, Stephen H

    2015-07-14

    Alzheimer's disease (AD) is characterized by the deposition of Beta-Amyloid (Aβ) peptides in the brain. Aβ peptides are generated by cleavage of the Amyloid Precursor Protein (APP) by the β - and γ - secretase enzymes. Although this process is tightly linked to the internalization of cell surface APP, the compartments responsible are not well defined. We have found that APP can be rapidly internalized from the cell surface to lysosomes, bypassing early and late endosomes. Here we show by confocal microscopy and electron microscopy that this pathway is mediated by macropinocytosis. APP internalization is enhanced by antibody binding/crosslinking of APP suggesting that APP may function as a receptor. Furthermore, a dominant negative mutant of Arf6 blocks direct transport of APP to lysosomes, but does not affect classical endocytosis to endosomes. Arf6 expression increases through the hippocampus with the development of Alzheimer's disease, being expressed mostly in the CA1 and CA2 regions in normal individuals but spreading through the CA3 and CA4 regions in individuals with pathologically diagnosed AD. Disruption of lysosomal transport of APP reduces both Aβ40 and Aβ42 production by more than 30 %. Our findings suggest that the lysosome is an important site for Aβ production and that altering APP trafficking represents a viable strategy to reduce Aβ production.

  17. Evaluation of some selected blood parameters and histopathology of liver and kidney of rats fed protein-substituted mucuna flour and derived protein rich product.

    Science.gov (United States)

    Ngatchic, Josiane Therese Metsagang; Sokeng, Selestion Dongmo; Njintang, Nicolas Yanou; Maoundombaye, Theophile; Oben, Julius; Mbofung, Carl Moses F

    2013-07-01

    This comparative study reports the nutritional and toxicological characteristics of Mucuna pruriens flour and a protein-rich product developed from it. The protein-rich mucuna product (PRMP) was obtained by the three steps procedure: protein solubilization, heat-coagulation and sieving. Three weeks rats (n=6 per group) were fed for 28 days on standard protein-substituted rat feed with mucuna flour or PRMP. The experimental design was a factorial design with three mucuna accessions (Velvet, Black and White) and two treatments (flour and PRMP). The protein content ranged 27.2-31.5 g/100 g for flour and 58.8-61.1% for PRMP. Processing flour into PRMP led to a significant (pmucuna flour lost weight. The levels of total cholesterol, HDL-cholesterol and LDL-cholesterol observed in animals groups fed mucuna flour and PRMP were significantly lower (pmucuna flour were significantly (pmucuna flour. PRMP then represents a good alternative of using mucuna proteins for human nutrition. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  18. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    Bermúdez-Humarán Luis G

    2009-08-01

    Full Text Available Abstract Background The expression of vaccine antigens in lactic acid bacteria (LAB is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i the expression of Human papillomavirus type 16 (HPV-16 L1 major capsid protein in the model LAB Lactococcus lactis and ii the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs. Results and conclusion HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.

  19. Microbial Protein Production from Candida tropicalis ATCC13803 in a Submerged Batch Fermentation Process

    Directory of Open Access Journals (Sweden)

    Sahar Golaghaiee

    2017-01-01

    Full Text Available Background and Objective: Microbial protein production can resolve one of the major world challenges, i.e. lack of protein sources. Candida tropicalis growth was investigated to specify a medium to reach the highest cell proliferation and protein production.Material and Methods: Fractional factorial design and the index of signal to noise ratio were applied for optimization of microbial protein production. Optimization process was conducted based on the experimental results of Taguchi approach designs. Fermentationwas performed at 25oC and the agitation speed of 300 rpm for 70 h. Ammonium sulfate, iron sulfate, glycine and glucose concentrations were considered as process variables. Optimization of the culture medium composition was conducted in order to obtain the highest cell biomass concentration and protein content. Experiment design was performed based on the Taguchi approach and L-16 orthogonal arrays using Qualitek-4 software.Results and Conclusion: Maximum biomass of 8.72 log (CFU ml-1 was obtained using the optimized medium with 0.3, 0.15, 2 and 80 g l-1 of ammonium sulfate, iron sulfate, glycine and glucose, respectively. Iron sulfate and ammonium sulfate with 41.76% (w w-1 and 35.27% (w w-1 contributions, respectively, were recognized as the main components for cell growth. Glucose and glycine with 17.12% and 5.86% (w w-1 contributions,respectively, also affected cell production. The highest interaction severity index of +54.16% was observed between glycine and glucose while the least one of +0.43% was recorded for ammonium sulfate and glycine. A deviation of 7% between the highestpredicted cell numbers and the experimented count confirms the suitability of the applied statistical method. High protein content of 52.16% (w w-1 as well as low fat and nucleic acids content suggest that Candida tropicalis is a suitable case for commercial processes.Conflict of interest: The authors declare that there is no conflict of interest.

  20. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow.

    Science.gov (United States)

    Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean

    2016-09-01

    Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.

  1. Production of Fish Hydrolysates Protein From Waste of Fish Carp (Cyprinus Carpio) by Enzymatic Hydrolysis

    OpenAIRE

    Saputra, Dede; Nurhayati, Tati

    2016-01-01

    Fish Protein Hydrolysates (FPH) is the mixed products of polypeptide, dipeptides, and amino acid. It can be produced from materials that contained of protein by acid reaction, base reaction or enzymatic hydrolysis. The objectives of this study were to study the production of FPH from fish carp meat at post rigor phase and viscera by enzymatic hydrolysis, to determine the specific activity of papain enzyme, and to determine the solubility of FPH. Capacity of fish hydrolyzing can be identified ...

  2. Inactivation of cellular enzymes by carbonyls and protein-bound glycation/glycoxidation products

    DEFF Research Database (Denmark)

    Morgan, Philip E; Dean, Roger T; Davies, Michael Jonathan

    2002-01-01

    products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate...... dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited...... by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide...

  3. Beauty production in pp collisions at s=2.76 TeV measured via semi-electronic decays

    NARCIS (Netherlands)

    Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anticic, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielcík, J.; Bielcíková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A R; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; De, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; De Caro, A.; de Cataldo, G.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Di Bari, D.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Djuvsland, O.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A S; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J. Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, O.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hanratty, L. D.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hippolyte, B.; Hladky, J.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Innocenti, G. M.; Ionita, C.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Jacholkowski, A.; Jacobs, P. M.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H S Y; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kadyshevskiy, V.; Kalcher, S.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L D; Khan, M. M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Konevskikh, A.; Kovalenko, V.; Kowalski, M.; Kox, S.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravcáková, A.; Krelina, M.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kucera, V.; Kucheriaev, Y.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kulakov, I.; Kumar, J.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; La Pointe, S. L.; La Rocca, P.; Lea, R.; Leardini, L.; Lee, G. R.; Legrand, I.; Lehnert, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; Leoncino, M.; León Monzón, I.; Lévai, P.; Li, S.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loggins, V. R.; Loginov, V.; Lohner, D.; Loizides, C.; Lopez, X.; López Torres, E.; Lu, X. G.; Luettig, P.; Lunardon, M.; Luparello, G.; Ma, R.; Maevskaya, A.; Mager, M.; Mahapatra, D. P.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manceau, L.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marín, A.; Markert, C.; Marquard, M.; Martashvili, I.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martin Blanco, J.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Meddi, F.; Menchaca-Rocha, A.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mlynarz, J.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira De Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Müller, H.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nicassio, M.; Niculescu, M.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nilsen, B. S.; Noferini, F.; Nomokonov, P.; Nooren, G.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Okatan, A.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Onderwaater, J.; Oppedisano, C.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Sahoo, P.; Pachmayer, Y.; Pachr, M.; Pagano, P.; Paic, G.; Painke, F.; Pajares, C.; Pal, S. K.; Palmeri, A.; Pant, D.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Patalakha, D. I.; Paticchio, V.; Paul, B.; Pawlak, T.; Peitzmann, T.; Pereira Da Costa, H.; Pereira De Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Pesci, A.; Peskov, V.; Pestov, Y.; Petrácek, V.; Petran, M.; Petris, M.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L M; Poghosyan, M. G.; Pohjoisaho, E. H O; Polichtchouk, B.; Poljak, N.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Potukuchi, B.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Rauf, A. W.; Razazi, V.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reicher, M.; Reidt, F.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J. P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohni, S.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafarík, K.; Sahlmuller, B.; Sahoo, R.; Sahu, P. K.; Saini, J.; Sakai, S.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Sánchez Rodríguez, F. J.; Šándor, L.; Sandoval, A.; Sano, M.; Santagati, G.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Segato, G.; Seger, J. E.; Sekiguchi, Y.; Selyuzhenkov, I.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabetai, A.; Shabratova, G.; Shahoyan, R.; Shangaraev, A.; Sharma, N.; Sharma, S.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Skjerdal, K.; Slupecki, M.; Smirnov, N.; Snellings, R. J M; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Stolpovskiy, M.; Strmen, P.; Suaide, A. A P; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Susa, T.; Symons, T. J M; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Takahashi, J.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarazona Martinez, A.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terrevoli, C.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; Vande Vyvre, P.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vechernin, V.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wagner, V.; Wang, M.; Wang, Y.; Watanabe, D.; Weber, M.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C S; Windelband, B.; Winn, M.; Yaldo, C. G.; Yamaguchi, Y.; Yang, H.; Yang, P.; Yang, S.; Yano, S.; Yasnopolskiy, S.; Yi, J.; Yin, Z.; Yoo, I. K.; Yushmanov, I.; Zaccolo, V.; Zach, C.; Zaman, A.; Zampolli, C.; Zaporozhets, S.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, F.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zoccarato, Y.; Zyzak, M.

    2014-01-01

    The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1Electrons not originating from semi-electronic decay

  4. Hepatitis C Virus E2 Protein Induces Upregulation of IL-8 Pathways and Production of Heat Shock Proteins in Human Thyroid Cells.

    Science.gov (United States)

    Hammerstad, Sara Salehi; Stefan, Mihaela; Blackard, Jason; Owen, Randall P; Lee, Hanna J; Concepcion, Erlinda; Yi, Zhengzi; Zhang, Weijia; Tomer, Yaron

    2017-02-01

    Thyroiditis is one of the most common extrahepatic manifestations of hepatitis C virus (HCV) infection. By binding to surface cell receptor CD81, HCV envelope glycoprotein E2 mediates entry of HCV into cells. Studies have shown that different viral proteins may individually induce host responses to infection. We hypothesized that HCV E2 protein binding to CD81 expressed on thyroid cells activates a cascade of inflammatory responses that can trigger autoimmune thyroiditis in susceptible individuals. Human thyroid cell lines ML-1 and human thyrocytes in primary cell culture were treated with HCV recombinant E2 protein. The expression of major proinflammatory cytokines was measured at the messenger RNA and protein levels. Next-generation transcriptome analysis was used to identify early changes in gene expression in thyroid cells induced by E2. HCV envelope protein E2 induced strong inflammatory responses in human thyrocytes, resulting in production of interleukin (IL)-8, IL-6, and tumor necrosis factor-α. Furthermore, the E2 protein induced production of several heat shock proteins including HSP60, HSP70p12A, and HSP10, in human primary thyrocytes. In thyroid cell line ML-1, RNA sequencing identified upregulation of molecules involved in innate immune pathways with high levels of proinflammatory cytokines and chemokines and increased expression of costimulatory molecules, specifically CD40, known to be a major thyroid autoimmunity gene. Our data support a key role for HCV envelope protein E2 in triggering thyroid autoimmunity through activation of cytokine pathways by bystander mechanisms. Copyright © 2017 by the Endocrine Society

  5. Heterologous protein production in Streptomyces lividans

    DEFF Research Database (Denmark)

    Rattleff, Stig

    an exceptionally low protease activity, ensuring good product stability. Despite the fact that S. lividans has already seen industrial application studies on quantitative physiology are still lacking. It will greatly benefit the use as a common host to elucidate how S. lividans behaves in submerged cultivations....... Industrially this is very useful due to the reduction of downstream processing. Streptomycetes have long been studied, and a great amount of knowledge has been gained on genetic tools and metabolism. A most promising candidate as host among the Streptomycetes is S. lividans, since this strain exhibits......, as well as how it is affected by expressing a foreign protein. In this thesis methods have been established for the study of quantitative physiology and a method for screening large amounts of carbon/nitrogen/phosphorus sources have been tested. Further, parallel to the project that is the basis...

  6. Volatile profile, lipid oxidation and protein oxidation of irradiated ready-to-eat cured turkey meat products

    International Nuclear Information System (INIS)

    Feng, Xi; Ahn, Dong Uk

    2016-01-01

    Irradiation had little effects on the thiobarbituric acid reactive substances (TBARS) values in ready-to-eat (RTE) turkey meat products, while it increased protein oxidation at 4.5 kGy. The volatile profile analyses indicated that the amount of sulfur compounds increased linearly as doses increased in RTE turkey meat products. By correlation analysis, a positive correlation was found between benzene/ benzene derivatives and alcohols with lipid oxidation, while aldehydes, ketones and alkane, alkenes and alkynes were positively correlated with protein oxidation. Principle component analysis showed that irradiated meat samples can be discriminated by two categories of volatile compounds: Strecker degradation products and radiolytic degradation products. The cluster analysis of volatile data demonstrated that low-dose irradiation had minor effects on the volatile profile of turkey sausages (<1.5 kGy). However, as the doses increased, the differences between the irradiated and non-irradiated cured turkey products became significant. - Highlights: • Irradiation had little effects on lipid oxidation of ready-to-eat cured turkey. • 4.5 kGy irradiation increased protein oxidation. • Irradiated samples were isolated due to Strecker/radiolytic degradation products. • 1.5 kGy irradiation had limited effects on the volatile profile of turkey sausages. • Dimethyl disulfide can be used as a potential marker for irradiated meat products.

  7. Versatile microscale screening platform for improving recombinant protein productivity in Chinese hamster ovary cells

    DEFF Research Database (Denmark)

    Hansen, Henning Gram; Nilsson, Claes Nymand; Lund, Anne Mathilde

    2015-01-01

    to reduce production costs significantly. The aim of this study was to establish a versatile target gene screening platform for improving productivity for primarily non-mAb glycoproteins with complete interchangeability of model proteins and target genes using transient expression. The platform consists...

  8. Design of compound libraries based on natural product scaffolds and protein structure similarity clustering (PSSC)

    NARCIS (Netherlands)

    Balamurugan, Rengarajan; Dekker, Frank J; Waldmann, Herbert; Dekker, Frans

    Recent advances in structural biology, bioinformatics and combinatorial chemistry have significantly impacted the discovery of small molecules that modulate protein functions. Natural products which have evolved to bind to proteins may serve as biologically validated starting points for the design

  9. The effect of flavin electron shuttles in microbial fuel cells current production

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Orta, Sharon B. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Head, Ian M.; Curtis, Thomas P. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Scott, Keith [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Lloyd, Jonathan R.; Canstein, Harald von [Manchester Univ. (United Kingdom). School of Earth, Atmospheric and Environmental Sciences

    2010-02-15

    The effect of electron shuttles on electron transfer to microbial fuel cell (MFC) anodes was studied in systems where direct contact with the anode was precluded. MFCs were inoculated with Shewanella cells, and flavins used as the electron shuttling compound. In MFCs with no added electron shuttles, flavin concentrations monitored in the MFCs' bulk liquid increased continuously with FMN as the predominant flavin. The maximum concentrations were 0.6 {mu}M for flavin mononucleotide and 0.2 {mu}M for riboflavin. In MFCs with added flavins, micro-molar concentrations were shown to increase current and power output. The peak current was at least four times higher in MFCs with high concentrations of flavins (4.5-5.5 {mu}M) than in MFCs with low concentrations (0.2-0.6 {mu}M). Although high power outputs (around 150 mW/m{sup 2}) were achieved in MFCs with high concentrations of flavins, a Clostridium-like bacterium along with other reactor limitations affected overall coulombic efficiencies (CE) obtained, achieving a maximum CE of 13%. Electron shuttle compounds (flavins) permitted bacteria to utilise a remote electron acceptor (anode) that was not accessible to the cells allowing current production until the electron donor (lactate) was consumed. (orig.)

  10. Effects of balanced dietary protein levels on egg production and egg quality parameters of individual commercial layers.

    Science.gov (United States)

    Shim, M Y; Song, E; Billard, L; Aggrey, S E; Pesti, G M; Sodsee, P

    2013-10-01

    The effects of a series of balanced dietary protein levels on egg production and egg quality parameters of laying hens from 18 through 74 wk of age were investigated. One hundred forty-four pullets (Bovans) were randomly assigned to individual cages with separate feeders including 3 different protein level series of isocaloric diets. Diets were separated into 4 phases of 18-22, 23-32, 33-44, and 45-74 wk of age. The high protein (H) series contained 21.62, 19.05, 16.32, and 16.05% CP, respectively. Medium protein (M) and low protein (L) series were 2 and 4% lower in balanced dietary protein. The results clearly demonstrated that the balanced dietary protein level was a limiting factor for BW, ADFI, egg weight, hen day egg production (HDEP), and feed per kilogram of eggs. Feeding with the L series resulted in lower ADFI and HDEP (90.33% peak production) and more feed per kilogram of eggs compared with the H or M series (HDEP; 93.23 and 95.68% peak production, monthly basis). Egg weight responded in a linear manner to balanced dietary protein level (58.78, 55.94, and 52.73 g for H, M, and L, respectively). Feed intake of all hens, but especially those in the L series, increased considerably after wk 54 when the temperature of the house decreased due to winter conditions. Thus, hens fed the L series seemed particularly dependent on house temperature to maintain BW, ADFI, and HDEP. For egg quality parameters, percent yolk, Haugh units, and egg specific gravity were similar regardless of diets. Haugh units were found to be greatly affected by the variation of housing temperature (P = 0.025). Maximum performance cannot always be expected to lead to maximum profits. Contrary to the idea of a daily amino acid requirement for maximum performance, these results may be used to determine profit-maximizing levels of balanced dietary protein based on the cost of protein and returns from different possible protein levels that may be fed.

  11. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae.

    Science.gov (United States)

    Bátori, Veronika; Ferreira, Jorge A; Taherzadeh, Mohammad J; Lennartsson, Patrik R

    2015-01-01

    Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w) crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v) were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m(3) of ethanol (22% improvement), around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m(3) ethanol/year.

  12. A spherical electron cloud hopping model for studying product branching ratios of dissociative recombination.

    Science.gov (United States)

    Yu, Hua-Gen

    2008-05-21

    A spherical electron cloud hopping (SECH) model is proposed to study the product branching ratios of dissociative recombination (DR) of polyatomic systems. In this model, the fast electron-captured process is treated as an instantaneous hopping of a cloud of uniform spherical fractional point charges onto a target M+q ion (or molecule). The sum of point charges (-1) simulates the incident electron. The sphere radius is determined by a critical distance (Rc eM) between the incoming electron (e-) and the target, at which the potential energy of the e(-)-M+q system is equal to that of the electron-captured molecule M+q(-1) in a symmetry-allowed electronic state with the same structure as M(+q). During the hopping procedure, the excess energies of electron association reaction are dispersed in the kinetic energies of M+q(-1) atoms to conserve total energy. The kinetic energies are adjusted by linearly adding atomic momenta in the direction of driving forces induced by the scattering electron. The nuclear dynamics of the resultant M+q(-1) molecule are studied by using a direct ab initio dynamics method on the adiabatic potential energy surface of M+q(-1), or together with extra adiabatic surface(s) of M+q(-1). For the latter case, the "fewest switches" surface hopping algorithm of Tully was adapted to deal with the nonadiabaticity in trajectory propagations. The SECH model has been applied to study the DR of both CH+ and H3O+(H2O)2. The theoretical results are consistent with the experiment. It was found that water molecules play an important role in determining the product branching ratios of the molecular cluster ion.

  13. Production of iodine-123 radiobiological specimen on 25 MeV electron beam

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Starodub, G.Ya.; Buklanov, G.V.; Korotkin, Yu.S.; Belov, A.G.

    1988-01-01

    The technique is described and experimental results are presented for production of radioactive specimen-iodine-123 for medical biological investigations. It is shown that in ten hour irradiation of 124 Xe enriched target of 10 g weight by the 25 MeV electron beam at MT-25 microtron short lived 123 I with activity of about 200 mCl can be accumulated. The procedure was developed for extraction of radioactive atoms and preparing the solution that permits to obtain during 1-1.5 h after the end of irradiation the specimen which satisfies all pharmacopeia requirements. It follows from the results that using small-size electron accelerators with the beam energy up to 25 MeV permits to organize economical and large-scale production of high quality radioactive specimen of 123 I for servicing a large region of this country. 14 refs.; 4 figs.; 1 tab

  14. Bicistronic expression plasmid for the rapid production of recombinant fused proteins in Escherichia coli.

    Science.gov (United States)

    Yero, Daniel; Pajón, Rolando; Niebla, Olivia; Sardiñas, Gretel; Vivar, Isbel; Perera, Yasser; García, Darien; Delgado, Maité; Cobas, Karem

    2006-04-01

    In the post-genomic era, every aspect of the production of proteins must be accelerated. In this way, several vectors are currently exploited for rapid production of recombinant proteins in Escherichia coli. N-terminal fusions to the first 47 amino acids of the LpdA (dihydrolipoamide dehydrogenase A) protein of Neisseria meningitidis have been shown to increase the expression of recombinant proteins. Consequently, we have constructed a modified N-terminal LpdA fusion vector, introducing the blue/white colony selection by exploiting a bicistronic gene organization. In the new vector, the sequence encoding the first 47 amino acids of meningococcal LpdA and the alpha-peptide sequence of beta-galactosidase were connected via a ribosome-binding site, and two MCSs (multiple cloning sites) were located surrounding the latter, allowing efficient cloning by colour selection of recombinants. The vector was also improved with the addition of a C-terminal polyhistidine tag, and an EKS (enterokinase recognition sequence) immediately after the LpdA fusion sequence. The new plasmid was employed in the expression and purification of six different bacterial polypeptides. One of these recombinant proteins, P6 protein from Haemophilus influenzae, was used as a model and its N-terminal fusion sequence was totally removed from the recombinant version after incubation with the enterokinase protease, while the polyhistidine tail successfully allowed the purification of the unfused protein from the protease reaction. Two completely new neisserial vaccine candidates, NMB0088 and NMB1126 proteins, were cloned, expressed and purified using this system. To our knowledge, this constitutes the first report of the cloning and expression of these proteins in E. coli.

  15. Production of the Allergenic Protein Alt a 1 by Alternaria Isolates from Working Environments

    Directory of Open Access Journals (Sweden)

    Justyna Skóra

    2015-02-01

    Full Text Available The aim of the study was to evaluate the ability of Alternaria isolates from workplaces to produce Alt a 1 allergenic protein, and to analyze whether technical materials (cellulose, compost, leather present within the working environment stimulate or inhibit Alt a 1 production (ELISA test. Studies included identification of the isolated molds by nucleotide sequences analyzing of the ITS1/ITS2 regions, actin, calmodulin and Alt a 1 genes. It has been shown that Alternaria molds are significant part of microbiocenosis in the archive, museum, library, composting plant and tannery (14%–16% frequency in the air. The presence of the gene encoding the Alt a 1 protein has been detected for the strains: Alternaria alternata, A. lini, A. limoniasperae A. nobilis and A. tenuissima. Environmental strains produced Alt a 1 at higher concentrations (1.103–6.528 ng/mL than a ATCC strain (0.551–0.975 ng/mL. It has been shown that the homogenization of the mycelium and the use of ultrafiltration allow a considerable increase of Alt a 1 concentration. Variations in the production of Alt a 1 protein, depend on the strain and extraction methods. These studies revealed no impact of the technical material from the workplaces on the production of Alt a 1 protein.

  16. Site-Specific Protein Labeling Utilizing Lipoic Acid Ligase (LplA) and Bioorthogonal Inverse Electron Demand Diels-Alder Reaction.

    Science.gov (United States)

    Baalmann, Mathis; Best, Marcel; Wombacher, Richard

    2018-01-01

    Here, we describe a two-step protocol for selective protein labeling based on enzyme-mediated peptide labeling utilizing lipoic acid ligase (LplA) and bioorthogonal chemistry. The method can be applied to purified proteins, protein in cell lysates, as well as living cells. In a first step a W37V mutant of the lipoic acid ligase (LplA W37V ) from Escherichia coli is utilized to ligate a synthetic chemical handle site-specifically to a lysine residue in a 13 amino acid peptide motif-a short sequence that can be genetically expressed as a fusion with any protein of interest. In a second step, a molecular probe can be attached to the chemical handle in a bioorthogonal Diels-Alder reaction with inverse electron demand (DA inv ). This method is a complementary approach to protein labeling using genetic code expansion and circumvents larger protein tags while maintaining label specificity, providing experimental flexibility and straightforwardness.

  17. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    Science.gov (United States)

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  18. Multi-omic profiling of EPO-producing Chinese hamster ovary cell panel reveals metabolic adaptation to heterologous protein production

    DEFF Research Database (Denmark)

    Ley, Daniel; Kazemi Seresht, Ali; Engmark, Mikael

    2015-01-01

    Chinese hamster ovary (CHO) cells are the preferred production host for many therapeutic proteins. The production of heterologous proteins in CHO cells imposes a burden on the host cell metabolism and impact cellular physiology on a global scale. In this work, a multi-omics approach was applied...

  19. Production and characterisation of whey protein hydrolysate having antioxidant activity from cheese whey.

    Science.gov (United States)

    Athira, Syamala; Mann, Bimlesh; Saini, Prerna; Sharma, Rajan; Kumar, Rajesh; Singh, Ashish Kumar

    2015-11-01

    Cheese whey is a rich by-product in nutritional terms, possessing components with high biological value, excellent functional properties, and an inert flavour profile. In the present study, mozzarella cheese whey was ultra-filtrated to remove lactose and mineral. The retentate was hydrolysed with food-grade enzyme alcalase and the hydrolysis conditions (pH, temperature and time) were optimised for maximum antioxidant activity using response surface methodology. Whey protein hydrolysed for 8 h at pH 9 and 55 °C showed a maximum antioxidant activity of 1.18 ± 0.015 µmol Trolox mg(-1) protein. The antioxidant peptides were further enriched by ultra-filtration through a 3 kDa membrane. Seven peptides - β-Lg f(123-131), β-Lg f(122-131), β-Lg f(124-131), β-Lg f(123-134), β-Lg f(122-131), β-Lg f(96-100) and β-Lg f(94-100) - were identified by LC-MS/MS in the 3 kDa permeate of the hydrolysate. The incorporation of whey protein hydrolysate (WPH) in lemon whey drink (5-10 g L(-1)) increased the antioxidant activity from 76% to 90% as compared to control. Hydrolysis of ultra-filtrated retentate of whey can be an energy- and cost-effective method for the direct production of WPH from whey compared to the industrial production of WPH from whey protein concentrate. This study suggests that WPH with good nutritional and biological properties can be effectively used in health-promoting foods as a biofunctional ingredient. © 2014 Society of Chemical Industry.

  20. Soybean Protein Fibres Part 1: Structure, Production and Environmental Effects of Soybean Protein Fibres

    Directory of Open Access Journals (Sweden)

    Fatma Filiz YILDIRIM

    2014-12-01

    Full Text Available Soybean fiber (SPF is a protein based botanic fibre. These fibers exhibit very good physical properties such as brightness, softness and drape. Moreover, SPF has a variety of health functionalities and anti-bacterial properties. Fibers were first produced in the 20th mid-century. However due to the significant challenges encountered during the production of SPF, interest for these fibers was decreased. At the end of the 20 th century, SPF re-captured attention due to an increased awakening on ecological, renewable and sustainable fiber concept. Soybean is cheap and abundant. Tenacity of SPF was improved by including polyvinyl alcohol (PVA. Therefore, the production and the usage of SPF are increasing rapidly because of these key advantages. Soybean fibers usually is used in blends with other fibers. In Turkey, a variety of different products are produced from this special fiber. This review, about SPF, is divided into two sections. In the first part; structure and production stages of SPF and its enviromental effects have been described. In the second part of this review, properties and application areas of SPF have been described. The purpose of this review is to fill a gap in the Turkish literature about this bio-degradable, renewable and sustainable SPF. 

  1. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    Science.gov (United States)

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Lamoolphak, Wiwat [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Goto, Motonobu [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Sasaki, Mitsuru [Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto 850-8555 (Japan); Suphantharika, Manop [Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Muangnapoh, Chirakarn [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Prommuag, Chattip [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand); Shotipruk, Artiwan [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Payathai Road, Bangkok 10330 (Thailand)]. E-mail: artiwan.s@chula.ac.th

    2006-10-11

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products.

  3. Hydrothermal decomposition of yeast cells for production of proteins and amino acids

    International Nuclear Information System (INIS)

    Lamoolphak, Wiwat; Goto, Motonobu; Sasaki, Mitsuru; Suphantharika, Manop; Muangnapoh, Chirakarn; Prommuag, Chattip; Shotipruk, Artiwan

    2006-01-01

    This study examines hydrothermal decomposition of Baker's yeast cells, used as a model for spent Brewer's yeast waste, into protein and amino acids. The reaction was carried out in a closed batch reactor at various temperatures between 100 and 250 deg. C. The reaction products were separated into water-soluble and solid residue. The results demonstrated that the amount of yeast residue decreased with increasing hydrolysis temperature. After 20 min reaction in water at 250 deg. C, 78% of yeast was decomposed. The highest amount of protein produced was also obtained at this condition and was found to be 0.16 mg/mg dry yeast. The highest amount of amino acids (0.063 mg/mg dry yeast) was found at the lowest temperature tested after 15 min. The hydrolysis product obtained at 200 deg. C was tested as a nutrient source for yeast growth. The growth of yeast cells in the culture medium containing 2 w/v% of this product was comparable to that of the cells grown in the medium containing commercial yeast extract at the same concentration. These results demonstrated the feasibility of using subcritical water to potentially decompose proteinaceous waste such as spent Brewer's yeast while recovering more useful products

  4. Insect proteins as a potential source of antimicrobial peptides in livestock production

    DEFF Research Database (Denmark)

    Józefiak, A; Engberg, Ricarda Margarete

    2017-01-01

    in the nutrition of different livestock. The great potential for the use of AMPs in animal production is primarily associated with the growing problem of antibiotics resistance, which has triggered the search for alternatives to antibiotics in livestock production. The review presents the current knowledge...... been identified in different organisms, including plants, fungi, bacteria and animals. Insects are a primary source of AMPs which are considered as not resulting in the development of natural bacterial resistance. In general, they are characterized as heat-stable with no adverse effects on eukaryotic...... cells. These characteristics contribute to the potential use of these proteins in human and veterinary medicine and in animal nutrition. Depending on their mode of action, insect AMPs may be applied as single peptides, as a complex of different AMPs and as an active fraction of insect proteins...

  5. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ginkel, Paul R. van; Yan, Michael B. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Bhattacharya, Saswati [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Pediatrics, University of Wisconsin, Madison, WI 53792 (United States); Polans, Arthur S., E-mail: aspolans@wisc.edu [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Kenealey, Jason D. [UW Carbone Cancer Center, University of Wisconsin, Madison, WI 53792 (United States); Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53792 (United States); Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602 (United States)

    2015-11-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP{sub 3} pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca{sup 2+}-dependent pro-apoptotic pathways inhibit cancer cell growth.

  6. Natural products induce a G protein-mediated calcium pathway activating p53 in cancer cells

    International Nuclear Information System (INIS)

    Ginkel, Paul R. van; Yan, Michael B.; Bhattacharya, Saswati; Polans, Arthur S.; Kenealey, Jason D.

    2015-01-01

    Paclitaxel, etoposide, vincristine and doxorubicin are examples of natural products being used as chemotherapeutics but with adverse side effects that limit their therapeutic window. Natural products derived from plants and having low toxicity, such as quercetin, resveratrol, epigallocatechin gallate and piceatannol, have been shown to inhibit tumor cell growth both in vitro and in pre-clinical models of cancer, but their mechanisms of action have not been fully elucidated, thus restricting their use as prototypes for developing synthetic analogs with improved anti-cancer properties. We and others have demonstrated that one of the earliest and consistent events upon exposure of tumor cells to these less toxic natural products is a rise in cytoplasmic calcium, activating several pro-apoptotic pathways. We describe here a G protein/inositol 1,4,5-trisphosphate pathway (InsP3) in MDA-MB-231 human breast cancer cells that mediates between these less toxic natural products and the release of calcium from the endoplasmic reticulum. Further, we demonstrate that this elevation of intracellular calcium modulates p53 activity and the subsequent transcription of several pro-apoptotic genes encoding PIG8, CD95, PIDD, TP53INP, RRM2B, Noxa, p21 and PUMA. We conclude from our findings that less toxic natural products likely bind to a G protein coupled receptor that activates a G protein-mediated and calcium-dependent pathway resulting selectively in tumor cell death. - Highlights: • Natural products having low toxicity increase cytoplasmic calcium in cancer cells. • A G-protein/IP 3 pathway mediates the release of calcium from the ER. • The elevation of intracellular calcium modulates p53 activity. • p53 and other Ca 2+ -dependent pro-apoptotic pathways inhibit cancer cell growth.

  7. Protein N-glycosylation in eukaryotic microalgae and its impact on the production of nuclear expressed biopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Elodie eMathieu-Rivet

    2014-07-01

    Full Text Available Microalgae are currently used for the production of food compounds. Recently, few microalgae species have been investigated as potential biofactories for the production of biopharmaceuticals. Indeed in this context, microalgae are cheap, classified as Generally Recognized As Safe (GRAS organisms and can be grown easily. However, problems remain to be solved before any industrial production of microalgae-made biopharmaceuticals. Among them, post-translational modifications of the proteins need to be considered. Especially, N-glycosylation acquired by the secreted recombinant proteins is of major concern since most of the biopharmaceuticals are N-glycosylated and it is well recognized that glycosylation represent one of their critical quality attribute. Therefore, the evaluation of microalgae as alternative cell factory for biopharmaceutical productions thus requires to investigate their N-glycosylation capability in order to determine to what extend it differs from their human counterpart and to determine appropriate strategies for remodelling the microalgae glycosylation into human-compatible oligosaccharides. Here, we review the secreted recombinant proteins which have been successfully produced in microalgae. We also report on recent bioinformatics and biochemical data concerning the structure of glycans N-linked to proteins from various microalgae phyla and comment the consequences on the glycan engineering strategies that may be necessary to render those microalgae-made biopharmaceuticals compatible with human therapy.

  8. Potential application of electronic nose in processed animal proteins (PAP detection in feedstuffs

    Directory of Open Access Journals (Sweden)

    Dell'Orto V.

    2004-01-01

    Full Text Available Electronic nose and olfactometry techniques represent a modern analytical approach in food industry since they could potentially improve quality and safety of food processing. The aim of this study was to evaluate possible application of electronic nose in PA P detection and recognition in feed. For this purpose 6 reference feedstuffs (CRA-W / UE STRAT F E E D Project were used. The basis of the test samples was a compound feed for bovine fortified with processed animal proteins ( PAP consisting of meat and bone meal (MBM and/or fish meal at different concentrations. Each feed sample was tested in glass vials and the odour profile was determined by the ten MOS (metal oxide semi-conductor sensors of the electronic nose. Ten different descriptors, representing each ten sensors of electronic nose, were used to characterise the odour of each sample. In the present study, electronic nose was able to discriminate the blank sample from all other samples containing PA P ( M B M , fish meal or both. Samples containing either 0.5% of MBM or 5% of fish meal were identified, while samples containing a high fish meal content (5% associated with a low MBM content (0.5% were not discriminated from samples containing solely fish meal at that same high level (5%. This latter indicates that probably the high fish meal level, in samples containing both MBM and fish meal, tended to mask MBM odour. It was also evident that two odour descriptors were enough to explain 72.12% of total variability in odour pattern. In view of these results, it could be suggested that electronic nose and olfactometry techniques can provide an interesting approach for screening raw materials in feed industry, even though further studies using a wider set of samples are needed.

  9. 77 FR 5275 - Used Electronic Products: An Examination of U.S. Exports; Institution of Investigation and...

    Science.gov (United States)

    2012-02-02

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-528] Used Electronic Products: An... itself, and (4) disposed of by the exporter itself; and The factors affecting trade in used electronic... International Trade Commission. ACTION: Institution of investigation and scheduling of public hearing. SUMMARY...

  10. A novel Geobacteraceae-specific outer membrane protein J (OmpJ is essential for electron transport to Fe (III and Mn (IV oxides in Geobacter sulfurreducens

    Directory of Open Access Journals (Sweden)

    Schiffer Marianne

    2005-07-01

    Full Text Available Abstract Background Metal reduction is thought to take place at or near the bacterial outer membrane and, thus, outer membrane proteins in the model dissimilatory metal-reducing organism Geobacter sulfurreducens are of interest to understand the mechanisms of Fe(III reduction in the Geobacter species that are the predominant Fe(III reducers in many environments. Previous studies have implicated periplasmic and outer membrane cytochromes in electron transfer to metals. Here we show that the most abundant outer membrane protein of G. sulfurreducens, OmpJ, is not a cytochrome yet it is required for metal respiration. Results When outer membrane proteins of G. sulfurreducens were separated via SDS-PAGE, one protein, designated OmpJ (outer membrane protein J, was particularly abundant. The encoding gene, which was identified from mass spectrometry analysis of peptide fragments, is present in other Geobacteraceae, but not in organisms outside this family. The predicted localization and structure of the OmpJ protein suggested that it was a porin. Deletion of the ompJ gene in G. sulfurreducens produced a strain that grew as well as the wild-type strain with fumarate as the electron acceptor but could not grow with metals, such as soluble or insoluble Fe (III and insoluble Mn (IV oxide, as the electron acceptor. The heme c content in the mutant strain was ca. 50% of the wild-type and there was a widespread loss of multiple cytochromes from soluble and membrane fractions. Transmission electron microscopy analyses of mutant cells revealed an unusually enlarged periplasm, which is likely to trigger extracytoplasmic stress response mechanisms leading to the degradation of periplasmic and/or outer membrane proteins, such as cytochromes, required for metal reduction. Thus, the loss of the capacity for extracellular electron transport in the mutant could be due to the missing c-type cytochromes, or some more direct, but as yet unknown, role of OmpJ in metal

  11. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    Science.gov (United States)

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  12. Proteomic analysis of processing by-products from canned and fresh tuna: identification of potentially functional food proteins.

    Science.gov (United States)

    Sanmartín, Esther; Arboleya, Juan Carlos; Iloro, Ibon; Escuredo, Kepa; Elortza, Felix; Moreno, F Javier

    2012-09-15

    Proteomic approaches have been used to identify the main proteins present in processing by-products generated by the canning tuna-industry, as well as in by-products derived from filleting of skeletal red muscle of fresh tuna. Following fractionation by using an ammonium sulphate precipitation method, three proteins (tropomyosin, haemoglobin and the stress-shock protein ubiquitin) were identified in the highly heterogeneous and heat-treated material discarded by the canning-industry. Additionally, this fractionation method was successful to obtain tropomyosin of high purity from the heterogeneous starting material. By-products from skeletal red muscle of fresh tuna were efficiently fractionated to sarcoplasmic and myofibrillar fractions, prior to the identification based mainly on the combined searching of the peptide mass fingerprint (MALDI-TOF) and peptide fragment fingerprinting (MALDI LIFT-TOF/TOF) spectra of fifteen bands separated by 1D SDS-PAGE. Thus, the sarcoplasmic fraction contained myoglobin and several enzymes that are essential for efficient energy production, whereas the myofibrillar fraction had important contractile proteins, such as actin, tropomyosin, myosin or an isoform of the enzyme creatine kinase. Application of proteomic technologies has revealed new knowledge on the composition of important by-products from tuna species, enabling a better evaluation of their potential applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Biomass and protein production of Chlorella vulgarisBeyerinck (Chlorellales : Chlorellaceae via the design of selective culture media

    Directory of Open Access Journals (Sweden)

    Ángel Darío González-Delgado

    2017-09-01

    Full Text Available In recent years, it has become more frequent the use of alternative culture media that use phosphorus and nitrogen sources as well as microelements, instead of using the more traditional ones. Therefore, in this study two mixotrophic culture media were designed with different sodium nitrate, potassium phosphate and sodium acetate/ammonium carbonate concentrations as carbon source, to evaluate the biomass and protein production of the microalgae Chlorella vulgaris Beyerinck. A Pareto diagram and a response surface plot were generated in order to know the significant influence that the study variables have on protein production. The results showed that higher biomass production (3.72 g/L for the culture with acetate and 2.17 g/L for the one with carbonate are directly related to sodium nitrate (1.96 mM and potassium phosphate (2.11 mM. In addition, the maximum protein values obtained were 60% and 34% for acetate and carbonate cultures, respectively, both with 2.94 mM of sodium nitrate. Finally, the Pareto diagram showed that for the culture based on acetate there was no significant variables that influenced protein production; whereas the culture with carbonate, sodium nitrate and potassium phosphate influenced significantly the production of this metabolite.

  14. Nutrient digestibility and evaluation of protein and carbohydrate fractionation of citrus by-products

    DEFF Research Database (Denmark)

    Lashkari, Saman; Taghizadeh, Akbar

    2013-01-01

    The protein and carbohydrate fractionation and nutrient digestibility of citrus by‐products were determined. Ruminal, intestinal and total tract CP disappearance values were measured by a modified three‐step (MTSP) method and in vitro CP disappearance method (IVCP). Test feeds were orange pulp (OP...... to the results, it could be concluded that citrus by‐products have high nutritive value and also, the in vitro techniques can be easily used to determine of the nutritive value of citrus by‐products....

  15. Production of Remedial Proteins through Genetically Modified Bacteria

    Directory of Open Access Journals (Sweden)

    Fatima Tariq

    2018-02-01

    Full Text Available Recombinant DNA technology has created biological organisms with advanced genetic sequences and has been extensively used to express multiple genes for therapeutic purposes when expressed in a suitable host. Microbial systems such as prokaryotic bacteria has been successfully utilized as a heterologous systems showing high therapeutic potency for various human diseases. Bioengineered bacteria have been successfully utilized for producing therapeutic proteins, treating infectious diseases, and disease arise due to increasing resistance to antibiotics. Prominently E. coli found to be the most widely used expression system for recombinant therapeutic protein production i.e. hormones, enzymes and antibodies. Besides E. coli, non-pathogenic lactic acid bacteria has also been considered as an excellent candidate for live mucosal vaccine. Likewise, S. typhimurium has been deployed as attenuated type of vaccination as well as in treatment strategy of various cancers due to its ability of wide progression in tumors. The present article is a summarized view of the main achievements and current developments in the field of recombinant therapeutics using bacterial strains focusing on their usability in therapeutics and future potential.

  16. Electron beam irradiation of poly(perfluoro ethers): Identification of gaseous products as a result of main chain scission

    International Nuclear Information System (INIS)

    Pacansky, J.; Waltman, R.J.

    1991-01-01

    Several poly(perfluoro ethers) are exposed to electron beams to study the mechanism for main chain scission. Electron beam exposures were performed with the viscous poly(perfluoro ethers) under argon gas, and also at 9 K under vacuum, to determine mechanistic details for the chemical degradation. Here the authors report that, after main chain scission of the bulk poly(perfluoro ethers), sample weight loss is observed concomitant with evolution of gaseous products. Since this suggests that some unzipping of the polymer chain occurs, the products were identified and, most importantly, the efficiency for their formation was determined in terms of G values, and compared to known G values for main chain scission. The results show that COF 2 is the major gaseous product produced from unbranched ethers while CF 4 and COF 2 are the major products from branched polymers. The gaseous products were also exposed to the high-energy electron beam and the G values for decomposition are given

  17. A new software routine that automates the fitting of protein X-ray crystallographic electron-density maps.

    Science.gov (United States)

    Levitt, D G

    2001-07-01

    The classical approach to building the amino-acid residues into the initial electron-density map requires days to weeks of a skilled investigator's time. Automating this procedure should not only save time, but has the potential to provide a more accurate starting model for input to refinement programs. The new software routine MAID builds the protein structure into the electron-density map in a series of sequential steps. The first step is the fitting of the secondary alpha-helix and beta-sheet structures. These 'fits' are then used to determine the local amino-acid sequence assignment. These assigned fits are then extended through the loop regions and fused with the neighboring sheet or helix. The program was tested on the unaveraged 2.5 A selenomethionine multiple-wavelength anomalous dispersion (SMAD) electron-density map that was originally used to solve the structure of the 291-residue protein human heart short-chain L-3-hydroxyacyl-CoA dehydrogenase (SHAD). Inputting just the map density and the amino-acid sequence, MAID fitted 80% of the residues with an r.m.s.d. error of 0.43 A for the main-chain atoms and 1.0 A for all atoms without any user intervention. When tested on a higher quality 1.9 A SMAD map, MAID correctly fitted 100% (418) of the residues. A major advantage of the MAID fitting procedure is that it maintains ideal bond lengths and angles and constrains phi/psi angles to the appropriate Ramachandran regions. Recycling the output of this new routine through a partial structure-refinement program may have the potential to completely automate the fitting of electron-density maps.

  18. Protein-protein association and cellular localization of four essential gene products encoded by tellurite resistance-conferring cluster "ter" from pathogenic Escherichia coli.

    Science.gov (United States)

    Valkovicova, Lenka; Vavrova, Silvia Minarikova; Mravec, Jozef; Grones, Jozef; Turna, Jan

    2013-12-01

    Gene cluster "ter" conferring high tellurite resistance has been identified in various pathogenic bacteria including Escherichia coli O157:H7. However, the precise mechanism as well as the molecular function of the respective gene products is unclear. Here we describe protein-protein association and localization analyses of four essential Ter proteins encoded by minimal resistance-conferring fragment (terBCDE) by means of recombinant expression. By using a two-plasmid complementation system we show that the overproduced single Ter proteins are not able to mediate tellurite resistance, but all Ter members play an irreplaceable role within the cluster. We identified several types of homotypic and heterotypic protein-protein associations among the Ter proteins by in vitro and in vivo pull-down assays and determined their cellular localization by cytosol/membrane fractionation. Our results strongly suggest that Ter proteins function involves their mutual association, which probably happens at the interface of the inner plasma membrane and the cytosol.

  19. Particle size distribution of selected electronic nicotine delivery system products.

    Science.gov (United States)

    Oldham, Michael J; Zhang, Jingjie; Rusyniak, Mark J; Kane, David B; Gardner, William P

    2018-03-01

    Dosimetry models can be used to predict the dose of inhaled material, but they require several parameters including particle size distribution. The reported particle size distributions for aerosols from electronic nicotine delivery system (ENDS) products vary widely and don't always identify a specific product. A low-flow cascade impactor was used to determine the particle size distribution [mass median aerodynamic diameter (MMAD); geometric standard deviation (GSD)] from 20 different cartridge based ENDS products. To assess losses and vapor phase amount, collection efficiency of the system was measured by comparing the collected mass in the impactor to the difference in ENDS product mass. The levels of nicotine, glycerin, propylene glycol, water, and menthol in the formulations of each product were also measured. Regardless of the ENDS product formulation, the MMAD of all tested products was similar and ranged from 0.9 to 1.2 μm with a GSD ranging from 1.7 to 2.2. There was no consistent pattern of change in the MMAD and GSD as a function of number of puffs (cartridge life). The collection efficiency indicated that 9%-26% of the generated mass was deposited in the collection system or was in the vapor phase. The particle size distribution data are suitable for use in aerosol dosimetry programs. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Improving protein production of indigenous microalga Chlorella vulgaris FSP-E by photobioreactor design and cultivation strategies.

    Science.gov (United States)

    Chen, Chun-Yen; Lee, Po-Jen; Tan, Chung Hong; Lo, Yung-Chung; Huang, Chieh-Chen; Show, Pau Loke; Lin, Chih-Hung; Chang, Jo-Shu

    2015-06-01

    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION

    Science.gov (United States)

    Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.

    1947-01-01

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  2. Balancing Environmental Performance with Sales Functionalities in Packaging for Consumer Electronic Products

    NARCIS (Netherlands)

    Wever, R.; Boks, C.; Stevels, A.

    2006-01-01

    Two major changes are currently taking place in the world of Consumer Electronics. They are, first, the relocation of production to low-wage countries, in particularly China. This results in longer distribution distances, which lead to a higher relative importance of this phase in the entire life

  3. Effect of Appropriate Marketing Mix Strategies on Iranian Protein Products Export Performance

    OpenAIRE

    Hossein Rezaie Dolatabadi; Mohammad Hossein Forghani; Seyed Mehdi Tabatabaee; Fatemeh Faghani

    2013-01-01

    The purpose of the present paper is to examine effect of effect of appropriate marketing mix strategies on Iranian protein products export performance. 4P (Price, Product, Place, Promotion) were selected as marketing strategies. The data used to test the hypotheses were collected through an online standard questionnaire. The respondents were asked to rate on the scale between strongly agree and strongly Disagree. Reliability of questionnaire was measured using Cronbach Coefficient Alpha. The ...

  4. The Effect of Crude Protein Content on Meat and Fat Production in Sheep

    Science.gov (United States)

    Mawati, S.; Restitrisnani, V.; Soedarsono

    2018-02-01

    This study was undertaken to evaluate the effect of crude protein (CP) content on meat protein and fat production in sheep. Twenty four male thin tail sheep aged 6-7 months with average body weight of 13±1.56 kg were used in this study. The sheep were fed 10-14% CP. Sheep with the average body weight amount 16.75 kg were slaughter after 4 months rising. Parameters observed in this study were carcass weight, meat weight and fat weight of thin tail sheep. The data were analyzed using correlation analysis. The result of this study showed that CP content on diet had weak and negative correlation with meat production (r = -0.06) (y = -0.148x + 62.54) but had weak and possitive correlation with fat production (r = 0.3) (y = 0.807x2 -18.40x + 119.1). Based on the result, it can be concluded that the optimum CP content for sheep is 12.5% CP.

  5. Inhibition of the vitamin B12 binding capacity of proteins by the hydrolysis product of cyclophosphamide

    International Nuclear Information System (INIS)

    Fenrych, W.; Ignatowicz, E.; Szczodrowska, E.

    1993-01-01

    The inhibitory effect of cyclophosphamide hydrolysis product (CPHP) on vitamin B 12 binding ability to proteins has been established. The ester N-(2-chloroethyl)-N'-(3-phosphopropyl)-etheylenediamine hydrochloride is probably responsible, in vitro, for blocking the protein binding sites. Preincubation of proteins with vitamin B 12 prevents the inhibitory effect of CPHP. (au)

  6. 78 FR 27303 - Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron...

    Science.gov (United States)

    2013-05-10

    ...-0178] Irradiation in the Production, Processing, and Handling of Animal Feed and Pet Food; Electron... electron beam and x-ray sources for irradiation of poultry feed and poultry feed ingredients. This action... CFR part 579) to provide for the safe use of electron beam and x-ray sources for irradiation of...

  7. Ethanol and Protein from Ethanol Plant By-Products Using Edible Fungi Neurospora intermedia and Aspergillus oryzae

    Directory of Open Access Journals (Sweden)

    Veronika Bátori

    2015-01-01

    Full Text Available Feasible biorefineries for production of second-generation ethanol are difficult to establish due to the process complexity. An alternative is to partially include the process in the first-generation plants. Whole stillage, a by-product from dry-mill ethanol processes from grains, is mostly composed of undegraded bran and lignocelluloses can be used as a potential substrate for production of ethanol and feed proteins. Ethanol production and the proteins from the stillage were investigated using the edible fungi Neurospora intermedia and Aspergillus oryzae, respectively. N. intermedia produced 4.7 g/L ethanol from the stillage and increased to 8.7 g/L by adding 1 FPU of cellulase/g suspended solids. Saccharomyces cerevisiae produced 0.4 and 5.1 g/L ethanol, respectively. Under a two-stage cultivation with both fungi, up to 7.6 g/L of ethanol and 5.8 g/L of biomass containing 42% (w/w crude protein were obtained. Both fungi degraded complex substrates including arabinan, glucan, mannan, and xylan where reductions of 91, 73, 38, and 89% (w/v were achieved, respectively. The inclusion of the current process can lead to the production of 44,000 m3 of ethanol (22% improvement, around 12,000 tons of protein-rich biomass for animal feed, and energy savings considering a typical facility producing 200,000 m3 ethanol/year.

  8. Current and future industrial application of electron accelerators in Thailand

    International Nuclear Information System (INIS)

    Siri-Upathum, Chyagrit

    2003-01-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  9. Current and future industrial application of electron accelerators in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Siri-Upathum, Chyagrit [Chulalongkorn Univ., Faculty of Engineering, Bangkok (Thailand)

    2003-02-01

    Industrial applications of electron accelerators in Thailand, first introduced in 1997 for radiation sterilized products such as doctor gown, pampas, feminine napkin etc followed by installation of accelerators, one with energies at 20 MV and the other at 5 MV to produce new value added products like gem stones, topaz, tourmaline and zircon. The machines operate in pulse mode and is also used for irradiation services for food and sterilized products treatment. The need for low and medium energy accelerators in radiation technology is stressed. They are to be used for crosslinking of electrical wire and cable, heat shrinkable materials, low protein concentrated rubber latex, rubber wood furniture and parts, and silk protein degradation. The role of governmental organizations like Nuclear Research Institute (OAEP) and universities in stimulating the utilization of radiation processing in Thailand is strengthened. (S. Ohno)

  10. Escherichia coli PII protein: purification, crystallization and oligomeric structure.

    Science.gov (United States)

    Vasudevan, S G; Gedye, C; Dixon, N E; Cheah, E; Carr, P D; Suffolk, P M; Jeffrey, P D; Ollis, D L

    1994-01-17

    The Escherichia coli signal transduction protein PII, product of the glnB gene, was overproduced and purified. The predicted molecular weight of the protein based on the correct nucleotide sequence is 12,427 and is very close to the value 12,435 obtained by matrix-assisted laser desorption mass spectrometry. Hexagonal crystals of the unuridylylated form of PII with dimensions 0.2 x 0.2 x 0.3 mm were grown and analysed by X-ray diffraction. The crystals belong to space group P6(3) with a = b = 61.6 A, c = 56.3 A and Vm of 2.5 for one subunit in the asymmetric unit. A low-resolution electron density map showed electron density concentrated around a three-fold axis, suggesting the molecule to be a trimer. A sedimentation equilibrium experiment of the meniscus depletion type was used to estimate a molecular weight of 35,000 +/- 1,000 for PII in solution. This result is consistent with the native protein being a homotrimer.

  11. Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain

    Science.gov (United States)

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2011-01-01

    Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC. PMID:21483483

  12. The production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi

    NARCIS (Netherlands)

    Joosten, V.; Lokman, C.; Hondel, C.A.M.J.J. van den; Punt, P.J.

    2003-01-01

    In this review we will focus on the current status and views concerning the production of antibody fragments and antibody fusion proteins by yeasts and filamentous fungi. We will focus on single-chain antibody fragment production (scFv and VHH) by these lower eukaryotes and the possible applications

  13. Advanced glycation end product (AGE) modified proteins in tears of diabetic patients.

    Science.gov (United States)

    Zhao, Zhenjun; Liu, Jingfang; Shi, Bingyin; He, Shuixiang; Yao, Xiaoli; Willcox, Mark D P

    2010-08-11

    High glucose level in diabetic patients may lead to advanced glycation end product (AGE) modified proteins. This study investigated AGE modified proteins in tears and compared their levels in diabetic patients (DM) with non-diabetic controls (CTL). Basal tears were collected from DM with (DR) or without (DNR) retinopathy and CTL. Total AGE modified proteins were detected quantitatively by a dot immunobinding assay. The AGE modified proteins were separated in 1D- and 2D-SDS gels and detected by western-blotting. The individual AGE modified proteins were also compared between groups using densitometry. Compared with the CTL group, tear concentrations of AGE modified proteins were significantly elevated in DR and DNR groups. The concentration of AGE modified proteins in diabetic tears were positively correlated with AGE modified hemoglobin (HbA1c) and postprandial blood glucose level (PBG). Western blotting of AGE modified proteins from 1D-SDS gels showed several bands, the major one at around 60 kDa. The intensities of AGE modified protein bands were higher in DM tears than in CTL tears. Western blotting from 2D-SDS gels showed a strongly stained horizontal strip, which corresponded to the major band in 1D-SDS gels. Most of the other AGE modified protein species were within molecular weight of 30-60 kDa, PI 5.2-7.0. Densitometry analysis demonstrated several AGE modified proteins were elevated in DR or DNR tears. Total and some individual AGE modified proteins were elevated in DM tears. AGE modified proteins in tears may be used as biomarkers to diagnose diabetes and/or diabetic retinopathy.

  14. Process for the production of protein enriched fractions from vegetable materials

    NARCIS (Netherlands)

    Dijkink, B.H.; Willemsen, J.H.A.

    2006-01-01

    The present invention provides a method for the production of a protein enriched fraction and a fibre enriched fraction from a vegetable material, wherein the vegetable material comprises a total fat content of 0.1 to 22.0 % by dry weight of the total vegetable material and a total starch content of

  15. A practical method for extending the biuret assay to protein determination of corn-based products.

    Science.gov (United States)

    Liu, Zelong; Pan, Junhui

    2017-06-01

    A modified biuret method suitable for protein determination of corn-based products was developed by introducing a combination of an alkaline reagent with sodium dodecyl sulfate (reagent A) and heat treatments. The method was tested on seven corn-based samples. The results showed mostly good agreement (P>0.05) as compared to the Kjeldahl values. The proposed method was found to enhance the accuracy of prediction on zein content using bovine serum albumin as standard. Reagent A and sample treatment were proved to effectively improve protein solubilization for the thermally-dried corn-based products, e.g. corn gluten meal. The absorbance was stable for at least 1-h. Moreover, the whole measurement of protein content only needs 15-20min more than the traditional biuret assay, and can be performed in batches. The findings suggest that the proposed method could be a timesaving alternative for routine protein analyses in corn processing factories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.

    Science.gov (United States)

    Liang, Yi; Garcia, Rafael A; Piazza, George J; Wen, Zhiyou

    2011-11-23

    Rendered animal proteins are well suited for animal nutrition applications, but the market is maturing, and there is a need to develop new uses for these products. The objective of this study is to explore the possibility of using animal proteins as a nutrient source for microbial production of omega-3 polyunsaturated fatty acids by the microalga Schizochytrium limacinum and the fungus Pythium irregulare. To be absorbed by the microorganisms, the proteins needed to be hydrolyzed into small peptides and free amino acids. The utility of the protein hydrolysates for microorganisms depended on the hydrolysis method used and the type of microorganism. The enzymatic hydrolysates supported better cell growth performance than the alkali hydrolysates did. P. irregulare displayed better overall growth performance on the experimental hydrolysates compared to S. limacinum. When P. irregulare was grown in medium containing 10 g/L enzymatic hydrolysate derived from meat and bone meal or feather meal, the performance of cell growth, lipid synthesis, and omega-3 fatty acid production was comparable to the that of culture using commercial yeast extract. The fungal biomass derived from the animal proteins had 26-29% lipid, 32-34% protein, 34-39% carbohydrate, and industrial microorganisms which can produce omega-3 fatty acids for making omega-3-fortified foods or feeds.

  17. Inclusive production of electrons and muons in multihadronic events at PETRA

    International Nuclear Information System (INIS)

    D'Agostini, G.; Apel, W.D.; Engler, J.; Fluegge, G.; Fries, D.C.; Fues, W.; Gamerdinger, K.; Hopp, G.; Kuester, H.; Mueller, H.; Randoll, H.; Schmidt, G.; Schneider, H.; De Boer, W.; Buschhorn, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Gunderson, B.; Kiesling, C.; Kotthaus, R.; Kruse, U.; Lierl, H.; Lueers, D.; Oberlack, H.; Schacht, P.; Colas, P.; Cordier, A.; Davier, M.; Fournier, D.; Grivaz, J.F.; Haissinski, J.; Journe, V.; Laplanche, F.; Mallik, U.; Veillet, J.J.; Behrend, H.J.; Fenner, H.; Schachter, M.J.; Schroeder, V.; Sindt, H.

    1983-05-01

    The production of prompt leptons at PETRA has been measured for c.m. energies of 14, 22 and 34 GeV. The rate of prompt electrons and muons is presented, including a determination of the semileptonic branching ratio of the c and b quarks. Systematic effects due to changes in fragmentation and other model parameters have been studied. (orig./HSI)

  18. Specific interaction of capsid protein and importin-α/β influences West Nile virus production

    International Nuclear Information System (INIS)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee

    2009-01-01

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-α. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-α/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-α/C protein interaction in the context of flavivirus life-cycle.

  19. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore); Ng, Mah-Lee, E-mail: micngml@nus.edu.sg [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore)

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  20. Perceived harm, addictiveness, and social acceptability of tobacco products and marijuana among young adults: marijuana, hookah, and electronic cigarettes win.

    Science.gov (United States)

    Berg, Carla J; Stratton, Erin; Schauer, Gillian L; Lewis, Michael; Wang, Yanwen; Windle, Michael; Kegler, Michelle

    2015-01-01

    There has been an increase in non-daily smoking, alternative tobacco product and marijuana use among young adults in recent years. This study examined perceptions of health risks, addictiveness, and social acceptability of cigarettes, cigar products, smokeless tobacco, hookah, electronic cigarettes, and marijuana among young adults and correlates of such perceptions. In Spring 2013, 10,000 students at two universities in the Southeastern United States were recruited to complete an online survey (2,002 respondents), assessing personal, parental, and peer use of each product; and perceptions of health risks, addictiveness, and social acceptability of each of these products. Marijuana was the most commonly used product in the past month (19.2%), with hookah being the second most commonly used (16.4%). The least commonly used were smokeless tobacco products (2.6%) and electronic cigarettes (4.5%). There were high rates of concurrent product use, particularly among electronic cigarette users. The most positively perceived was marijuana, with hookah and electronic cigarettes being second. While tobacco use and related social factors, related positively, influenced perceptions of marijuana, marijuana use and related social factors were not associated with perceptions of any tobacco product. Conclusions/Importance: Marketing efforts to promote electronic cigarettes and hookah to be safe and socially acceptable seem to be effective, while policy changes seem to be altering perceptions of marijuana and related social norms. Research is needed to document the health risks and addictive nature of emerging tobacco products and marijuana and evaluate efforts to communicate such risks to youth.

  1. Correlation analysis of electronic products with myopia in preschool and school aged children

    Directory of Open Access Journals (Sweden)

    Li-Li Sun

    2016-02-01

    Full Text Available AIM: To explore the influence of electronic products on myopia in preschool and school aged children, and the development regularities of myopia, to formulate reasonable guidelines for using eyes healthily, and lay a solid foundation for the prevention and control work. METHODS: This retrospective analysis enrolled 900 3~12 years old children from outpatients department, and all of them were established individualized archives, recording: uncorrected visual acuity, optometry, slit lamp, ophthalmoscopy, strabismus inspection results; recording eye usage condition on TVs, computers, mobile phones, iPad, homework, extra-curricular books. Statistical analyze the refractive status of each age group, the use of electronic products of different age groups and their correlation with refractive status. RESULTS: The number of preschool children with normal uncorrected visual acuity was more than that of early school-age children, and the difference was statistically significant(PP>0.05; the number of children aged 7~12(early school aged childrenwith myopia was more than that of children aged 3~6(preschool childrenand the difference was statistically significant(PCONCLUSION: For preschool children, it is necessary to conduct early screening, health guidance, the establishment of personalized medical records and one-to-one personalized guidance; it is also needed to avoid the arduous learning task with the stacking usage of eyes, to fight for myopia and to control the development of myopia. Therefore, to reduce the use of electronic products has become a topic worthy of further study.

  2. Comparative LC-MS/MS profiling of free and protein-bound early and advanced glycation-induced lysine modifications in dairy products

    International Nuclear Information System (INIS)

    Hegele, Joerg; Buetler, Timo; Delatour, Thierry

    2008-01-01

    Free and protein-bound forms of early and advanced glycation-induced lysine (Lys) modifications were quantified in dairy products by LC-MS/MS using a stable isotope dilution assay. The glycation profiles for N ε -fructoselysine (FL), N ε -carboxymethyllysine (CML) and pyrraline (Pyr) were monitored in raw and processed cow milk to investigate whether free glycation products could serve as fast and simple markers to assess the extent of protein glycation in dairy products. In all milk samples, the fraction of free glycation adducts was predominantly composed of advanced modifications, e.g. 8.34 ± 3.81 nmol CML per μmol of free Lys (Lys free ) and 81.5 ± 87.8 nmol Pyr μmol -1 Lys free -1 vs. 3.72 ± 1.29 nmol FL μmol -1 Lys free -1 . In contrast, the protein-bound early glycation product FL considerably outweighed the content of CML and Pyr in milk proteins of raw and processed cow milk, whereas severely heat treated milk products, e.g. condensed milk, contained a higher amount of protein-bound advanced glycation adducts. Typical values recorded for milk samples processed under mild conditions were 0.47 ± 0.08 nmol FL μmol -1 of protein-bound Lys (Lys p-b ), 0.04 ± 0.03 nmol CML μmol -1 Lys p-b -1 and 0.06 ± 0.02 nmol Pyr μmol -1 Lys p-b -1 . It was particularly noticeable, however, that mild heat treatment of raw milk, i.e. pasteurization and UHT treatment, did not significantly increase the amount of both free and protein-bound Lys modifications. In conclusion, the profiles of free and protein-bound glycation-induced Lys modifications were found to be different and a screening of free glycation adducts does, therefore, not allow for a conclusion about the protein glycation status of dairy products

  3. The dipole moment of the electron carrier adrenodoxin is not critical for redox partner interaction and electron transfer.

    Science.gov (United States)

    Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita

    2009-07-01

    Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.

  4. A Novel Method for the Discrimination of Semen Arecae and Its Processed Products by Using Computer Vision, Electronic Nose, and Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Min Xu

    2015-01-01

    Full Text Available Areca nut, commonly known locally as Semen Arecae (SA in China, has been used as an important Chinese herbal medicine for thousands of years. The raw SA (RAW is commonly processed by stir-baking to yellow (SBY, stir-baking to dark brown (SBD, and stir-baking to carbon dark (SBC for different clinical uses. In our present investigation, intelligent sensory technologies consisting of computer vision (CV, electronic nose (E-nose, and electronic tongue (E-tongue were employed in order to develop a novel and accurate method for discrimination of SA and its processed products. Firstly, the color parameters and electronic sensory responses of E-nose and E-tongue of the samples were determined, respectively. Then, indicative components including 5-hydroxymethyl furfural (5-HMF and arecoline (ARE were determined by HPLC. Finally, principal component analysis (PCA and discriminant factor analysis (DFA were performed. The results demonstrated that these three instruments can effectively discriminate SA and its processed products. 5-HMF and ARE can reflect the stir-baking degree of SA. Interestingly, the two components showed close correlations to the color parameters and sensory responses of E-nose and E-tongue. In conclusion, this novel method based on CV, E-nose, and E-tongue can be successfully used to discriminate SA and its processed products.

  5. Beauty production in pp collisions at √(s)=2.76 TeV measured via semi-electronic decays

    Energy Technology Data Exchange (ETDEWEB)

    Abelev, B. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Adam, J. [Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Adamová, D. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy (Czech Republic); Aggarwal, M.M. [Physics Department, Panjab University, Chandigarh (India); Aglieri Rinella, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Agnello, M. [Sezione INFN, Turin (Italy); Politecnico di Torino, Turin (Italy); Agostinelli, A. [Dipartimento di Fisica e Astronomia dell' Università and Sezione INFN, Bologna (Italy); Agrawal, N. [Indian Institute of Technology Bombay (IIT), Mumbai (India); Ahammed, Z. [Variable Energy Cyclotron Centre, Kolkata (India); Ahmad, N. [Department of Physics, Aligarh Muslim University, Aligarh (India); Ahmed, I. [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Ahn, S.U.; Ahn, S.A. [Korea Institute of Science and Technology Information, Daejeon (Korea, Republic of); Aimo, I. [Sezione INFN, Turin (Italy); Politecnico di Torino, Turin (Italy); Aiola, S. [Yale University, New Haven, CT (United States); Ajaz, M. [COMSATS Institute of Information Technology (CIIT), Islamabad (Pakistan); Akindinov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Alam, S.N. [Variable Energy Cyclotron Centre, Kolkata (India); Aleksandrov, D. [Russian Research Centre Kurchatov Institute, Moscow (Russian Federation); Alessandro, B. [Sezione INFN, Turin (Italy); and others

    2014-11-10

    The ALICE Collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity |y|<0.8 and transverse momentum 1Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD predictions agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, σ{sub b→e}=3.47±0.40(stat){sub −1.33}{sup +1.12}(sys)±0.07(norm) μb, was extrapolated to full phase space using Fixed Order plus Next-to-Leading Log (FONLL) calculations to obtain the total bb{sup ¯} production cross section, σ{sub bb{sup ¯}}=130±15.1(stat){sub −49.8}{sup +42.1}(sys){sub −3.1}{sup +3.4}(extr)±2.5(norm)±4.4(BR) μb.

  6. Possibility of some radionuclides production using high energy electron Bremsstrahlung

    International Nuclear Information System (INIS)

    Balzhinnyam, N.; Belov, A.G.; Gehrbish, Sh; Maslov, O.D.; Shvetsov, V.N.; Ganbold, G.

    2008-01-01

    The method of some radionuclides production using high energy Bremsstrahlung of electron accelerators and determination of photonuclear reaction yield and specific activities for some radionuclides is described. Photonuclear reaction yield and specific activities for some radionuclides are determined for 117m Sn, 111 In and 195m Pt. Based on the experimental data obtained at low energy (E e- e- = 75 MeV) of the IREN facility (FLNR, JINR) at irradiation of high purity platinum and tin metals

  7. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.

    Science.gov (United States)

    Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel

    2017-03-14

    Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.

  8. Effect of Gamma Radiation and Electron Beam on Microbiological Quality and Protein Patterns of 4 Selected Beans

    International Nuclear Information System (INIS)

    Chookaew, S.; Eamsir, J.; Pewlong, W.; Sajjabut, S.

    2014-01-01

    The aim of the present study was to evaluate the effect of gamma ray and electron beam on microbiological quality and protein pattern of four selected beans: mung beans, soy beans, peanuts and black beans. All beans samples were exposed to irradiation at doses of 0, 0.5, 1, and 2 kGy before evaluated for their microbiological quality using AOAC method and protein analysis by gel electrophoresis. Results showed that the amount of bacteria, yeast and mold of irradiated mung beans and peanuts were reduced, whereas these microbiological quality values remained relatively the same for irradiated soy beans and black beans compared to non-irradiated samples. In terms of protein analysis, the protein patterns of the irradiated beans were of the same quality as the non-irradiated samples. To further tested the effect of irradiation on the bean's protein at higher doses, all four selected beans were exposed to gamma ray at 10, 50, 100, 150 and 200 kGy. We found that the protein patterns of mung beans, peanuts and black beans were altered at doses above 50 kGy.

  9. Rational engineering of Geobacter sulfurreducens electron transfer components: a foundation for building improved Geobacter-based bioelectrochemical technologies

    Directory of Open Access Journals (Sweden)

    Joana M Dantas

    2015-07-01

    Full Text Available Multiheme cytochromes have been implicated in Geobacter sulfurreducens (Gs extracellular electron transfer (EET. These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by Gs. However, the functional characterization of multiheme cytochromes is particularly complex due to the co-existence of several microstates in solution, connecting the fully reduced and fully oxidized states. Over the last decade, new strategies have been developed to characterize multiheme redox proteins functionally and structurally. These strategies were used to reveal the functional mechanism of Gs multiheme cytochromes and also to identify key residues in these proteins for EET. In previous studies, we set the foundations for enhancement of the EET abilities of Gs by characterizing a family of five triheme cytochromes (PpcA-E. These periplasmic cytochromes are implicated in electron transfer between the oxidative reactions of metabolism in the cytoplasm and the reduction of extracellular terminal electron acceptors at the cell’s outer surface. The results obtained suggested that PpcA can couple e-/H+ transfer, a property that might contribute to the proton electrochemical gradient across the cytoplasmic membrane for metabolic energy production. The structural and functional properties of PpcA were characterized in detail and used for rational design of a family of 23 single site PpcA mutants. In this review, we summarize the functional characterization of the native and mutant proteins. Mutants that retain the mechanistic features of PpcA and adopt preferential e-/H+ transfer pathways at lower reduction potential values compared to the wild-type protein were selected for in vivo studies as the best candidates to increase the electron transfer rate of Gs. For the first time Gs strains have been manipulated by the introduction of mutant forms of essential proteins with the aim to develop and improve

  10. Beauty production in pp collisions at $\\sqrt{s}$ = 2.76 TeV measured via semi-electronic decays

    CERN Document Server

    Abelev, Betty Bezverkhny; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agostinelli, Andrea; Agrawal, Neelima; Ahammed, Zubayer; Ahmad, Nazeer; Ahmed, Ijaz; Ahn, Sang Un; Ahn, Sul-Ah; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont Moreno, Ernesto; Belmont Iii, Ronald John; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Berger, Martin Emanuel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Bogolyubskiy, Mikhail; Boehmer, Felix Valentin; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Casula, Ester Anna Rita; Catanescu, Vasile Ioan; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Kushal; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; Delagrange, Hugues; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Di Bari, Domenico; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dorheim, Sverre; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutt Mazumder, Abhee Kanti; Hilden, Timo Eero; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Esposito, Marco; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigory; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanouil; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gumbo, Mervyn; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Khan, Kamal; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hippolyte, Boris; Hladky, Jan; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kadyshevskiy, Vladimir; Kalcher, Sebastian; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Konevskikh, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; Ladron De Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; La Pointe, Sarah Louise; La Rocca, Paola; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ma, Rongrong; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martin Blanco, Javier; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Okatan, Ali; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Sahoo, Pragati; Pachmayer, Yvonne Chiara; Pachr, Milos; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares Vales, Carlos; Pal, Susanta Kumar; Palmeri, Armando; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Patalakha, Dmitry; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Pohjoisaho, Esko Heikki Oskari; Polishchuk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Sharma, Rohni; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sanchez Rodriguez, Fernando Javier; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Segato, Gianfranco; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wagner, Vladimir; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yang, Shiming; Yano, Satoshi; Yasnopolskiy, Stanislav; Yi, Jungyu; Yin, Zhongbao; Yoo, In-Kwon; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zaman, Ali; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, Fengchu; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zyzak, Maksym

    2014-11-10

    The ALICE collaboration at the LHC reports measurement of the inclusive production cross section of electrons from semi-leptonic decays of beauty hadrons with rapidity $|y|<0.8$ and transverse momentum $1Electrons not originating from semi-electronic decay of beauty hadrons are suppressed using the impact parameter of the corresponding tracks. The production cross section of beauty decay electrons is compared to the result obtained with an alternative method which uses the distribution of the azimuthal angle between heavy-flavour decay electrons and charged hadrons. Perturbative QCD calculations agree with the measured cross section within the experimental and theoretical uncertainties. The integrated visible cross section, $\\sigma_{\\mathrm{b} \\rightarrow \\mathrm{e}} = 3.47\\pm0.40(\\mathrm{stat})^{+1.12}_{-1.33}(\\mathrm{sys})\\pm0.07(\\mathrm{norm}) \\mu$b, was extrapolated to full phase space using Fixed Order plus Next-to-Leading ...

  11. Single cell protein production of Chlorella sp. using food processing waste as a cultivation medium

    Science.gov (United States)

    Putri, D.; Ulhidayati, A.; Musthofa, I. A.; Wardani, A. K.

    2018-03-01

    The aim of this study was to investigate the effect of various food processing wastes on the production of single cell protein by Chlorella sp. Three various food processing wastes i.e. tofu waste, tempeh waste and cheese whey waste were used as cultivation medium for Chlorella sp. growth. Sea water was used as a control of cultivation medium. The addition of waste into cultivation medium was 10%, 20%, 30%, 40%, and 50%. The result showed that the highest yield of cell mass and protein content was found in 50% tofu waste cultivation medium was 47.8 × 106 cell/ml with protein content was 52.24%. The 50% tofu waste medium showed improved cell yield as nearly as 30% than tempeh waste medium. The yield of biomass and protein content when 30% tempeh waste was used as cultivation medium was 37.1 × 106 cell/ml and 52%, respectively. Thus, food processing waste especially tofu waste would be a promising candidate for cultivation medium for single cell production from Chlorella sp. Moreover, the utilization of waste can reduce environmental pollution and increase protein supply for food supplement or animal feed.

  12. Efficient large-scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system

    International Nuclear Information System (INIS)

    Motohashi, Tomoko; Shimojima, Tsukasa; Fukagawa, Tatsuo; Maenaka, Katsumi; Park, Enoch Y.

    2005-01-01

    Silkworm is one of the most attractive hosts for large-scale production of eukaryotic proteins as well as recombinant baculoviruses for gene transfer to mammalian cells. The bacmid system of Autographa californica nuclear polyhedrosis virus (AcNPV) has already been established and widely used. However, the AcNPV does not have a potential to infect silkworm. We developed the first practical Bombyx mori nuclear polyhedrosis virus bacmid system directly applicable for the protein expression of silkworm. By using this system, the green fluorescence protein was successfully expressed in silkworm larvae and pupae not only by infection of its recombinant virus but also by direct injection of its bacmid DNA. This method provides the rapid protein production in silkworm as long as 10 days, is free from biohazard, thus will be a powerful tool for the future production factory of recombinant eukaryotic proteins and baculoviruses

  13. Production of functional proteins: balance of shear stress and gravity

    Science.gov (United States)

    Goodwin, Thomas John (Inventor); Hammond, Timothy Grant (Inventor); Kaysen, James Howard (Inventor)

    2011-01-01

    A method for the production of functional proteins including hormones by renal cells in a three dimensional culturing process responsive to shear stress uses a rotating wall vessel. Natural mixture of renal cells expresses the enzyme 1-.alpha.-hydroxylase which can be used to generate the active form of vitamin D: 1,25-diOH vitamin D.sub.3. The fibroblast cultures and co-culture of renal cortical cells express the gene for erythropoietin and secrete erythropoietin into the culture supernatant. Other shear stress response genes are also modulated by shear stress, such as toxin receptors megalin and cubulin (gp280). Also provided is a method of treating an in-need individual with the functional proteins produced in a three dimensional co-culture process responsive to shear stress using a rotating wall vessel.

  14. Yields of primary products from chloroethylenes in air under electron beam irradiation

    International Nuclear Information System (INIS)

    Hakoda, Teruyuki; Hashimoto, Shoji; Kojima, Takuji

    2003-01-01

    The quantitative analysis of toxic primary irradiation products was carried out for the development of the purification technology of chloroethylenes/air mixtures using an electron beam (EB). Degradation of chloroethylenes in humid air proceeded through the formation of primary products retaining a carbon-carbon (C-C) bond such as chloroacetyl chlorides and chloroacetyl aldehyde as well as that of primary products of COCl 2 and HCOCl through C-C bond cleavage. Chloroethylenes having one carbon bonded to two Cl atoms was decomposed into the primary products retaining a C-C bond prior to breaking a C-C bond. The number of Cl atoms of a chloroethylene molecule enhanced the formation ratio of primary products retaining a C-C bond. On the other hand, chloroethylene having two carbons bonded to one Cl atom was degraded thought the scission of a C-C bond predominantly C-C bond maintenance. (author)

  15. Mechanism and function of the chaperonin from Methanococcus maripaludis: implications for archaeal protein homeostasis and energy production

    Energy Technology Data Exchange (ETDEWEB)

    frydman, judith

    2018-03-23

    Archaea offer a potentially cost effective and renewable source of energy. The methanogen M. maripaludis, a fast growing archaea that obtains energy by sequestering H2 and reducing CO2 to methane by the methanogenic pathway, is an attractive source for biofuel production. More recently, it has also been suggested that the methanogenesis pathway could be run in reverse, to produce H2 growing the organism in formate. A multi-level understanding of archaeal protein homeostasis, should be instrumental for improving the functionality and design of the enzyme pathways and complexes involved in energy production and storage. One additional importance consequence of a better understanding of archaeal protein homeostasis will be to increase their stress resistance, since their utilization for the efficient large-scale production of methane (and eventually also of H2) requires that the organisms are resistance to a range of growth conditions. This proposal was focused on understanding how archaea achieve protein folding and assembly and maintain protein homeostasis, which are essential for function and viability. We hypothesize that the homo-oligomeric ring shaped chaperonin from M. maripaludis, Mm-Cpn, is central to achaeal protein homeostasis and assists folding of a wide spectrum of metabolic, structural and regulatory archaeal proteins. Through a combination of biochemistry, systems biology, computational and structural biology, we have been testing this hypothesis through two complementary efforts: (i) identify the archaeal substrate repertoire of Mm-Cpn, and (ii) define mechanistic and structural principles of Mm-Cpn mediated protein folding.

  16. Electron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange

    DEFF Research Database (Denmark)

    Register, JC; Christiansen, Gunna; Griffith, J

    1987-01-01

    examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally...

  17. Production of high-quality electron bunches by dephasing and beam loading in channeled and unchanneled laser plasma accelerators

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2005-01-01

    High-quality electron beams, with a few 10 9 electrons within a few percent of the same energy above 80 MeV, were produced in a laser wakefield accelerator by matching the acceleration length to the length over which electrons were accelerated and outran (dephased from) the wake. A plasma channel guided the drive laser over long distances, resulting in production of the high-energy, high-quality beams. Unchanneled experiments varying the length of the target plasma indicated that the high-quality bunches are produced near the dephasing length and demonstrated that channel guiding was more stable and efficient than relativistic self-guiding. Consistent with these data, particle-in-cell simulations indicate production of high-quality electron beams when trapping of an initial bunch of electrons suppresses further injection by loading the wake. The injected electron bunch is then compressed in energy by dephasing, when the front of the bunch begins to decelerate while the tail is still accelerated

  18. Electron Microscopic, Genetic and Protein Expression Analyses of Helicobacter acinonychis Strains from a Bengal Tiger

    Science.gov (United States)

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A.; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L.; Fox, James G.; Berg, Douglas E.; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5–6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections. PMID:23940723

  19. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger.

    Directory of Open Access Journals (Sweden)

    Nicole Tegtmeyer

    Full Text Available Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.

  20. Electron microscopic, genetic and protein expression analyses of Helicobacter acinonychis strains from a Bengal tiger.

    Science.gov (United States)

    Tegtmeyer, Nicole; Rivas Traverso, Francisco; Rohde, Manfred; Oyarzabal, Omar A; Lehn, Norbert; Schneider-Brachert, Wulf; Ferrero, Richard L; Fox, James G; Berg, Douglas E; Backert, Steffen

    2013-01-01

    Colonization by Helicobacter species is commonly noted in many mammals. These infections often remain unrecognized, but can cause severe health complications or more subtle host immune perturbations. The aim of this study was to isolate and characterize putative novel Helicobacter spp. from Bengal tigers in Thailand. Morphological investigation (Gram-staining and electron microscopy) and genetic studies (16SrRNA, 23SrRNA, flagellin, urease and prophage gene analyses, RAPD DNA fingerprinting and restriction fragment polymorphisms) as well as Western blotting were used to characterize the isolated Helicobacters. Electron microscopy revealed spiral-shaped bacteria, which varied in length (2.5-6 µm) and contained up to four monopolar sheathed flagella. The 16SrRNA, 23SrRNA, sequencing and protein expression analyses identified novel H. acinonychis isolates closely related to H. pylori. These Asian isolates are genetically very similar to H. acinonychis strains of other big cats (cheetahs, lions, lion-tiger hybrid and other tigers) from North America and Europe, which is remarkable in the context of the great genetic diversity among worldwide H. pylori strains. We also found by immunoblotting that the Bengal tiger isolates express UreaseA/B, flagellin, BabA adhesin, neutrophil-activating protein NapA, HtrA protease, γ-glutamyl-transpeptidase GGT, Slt lytic transglycosylase and two DNA transfer relaxase orthologs that were known from H. pylori, but not the cag pathogenicity island, nor CagA, VacA, SabA, DupA or OipA proteins. These results give fresh insights into H. acinonychis genetics and the expression of potential pathogenicity-associated factors and their possible pathophysiological relevance in related gastric infections.