WorldWideScience

Sample records for protein phosphatase-1 downregulation

  1. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Zheng, Long-Yi; Zhou, Dong-Xun; Lu, Jin; Zhang, Wen-Jun; Zou, Da-Jin

    2012-01-01

    Highlights: ► PTP1B protein showed decreased expression in 67.79% of the HCC patients. ► Low PTP1B expression predicts poor prognosis of HCC. ► Low PTP1B expression is correlated with expansion of OV6 + tumor-initiating cells. ► Down-regulation of PTP1B is associated with activation of Wnt/β-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6 + tumor-initiating cells (T-ICs) and high frequency of nuclear β-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/β-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  2. Down-regulated expression of the protein-tyrosine phosphatase 1B (PTP1B) is associated with aggressive clinicopathologic features and poor prognosis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Long-Yi [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhou, Dong-Xun [Department of Comprehensive Treatment II, Eastern Hepatobiliary Surgery Hospital, 225 Changhai Road, Shanghai 200438 (China); Lu, Jin [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zhang, Wen-Jun [Department of Emergency, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China); Zou, Da-Jin, E-mail: dajinzou@hotmail.com [Department of Endocrinology, Changhai Hospital, 168 Changhai Road, Shanghai 200433 (China)

    2012-04-13

    Highlights: Black-Right-Pointing-Pointer PTP1B protein showed decreased expression in 67.79% of the HCC patients. Black-Right-Pointing-Pointer Low PTP1B expression predicts poor prognosis of HCC. Black-Right-Pointing-Pointer Low PTP1B expression is correlated with expansion of OV6{sup +} tumor-initiating cells. Black-Right-Pointing-Pointer Down-regulation of PTP1B is associated with activation of Wnt/{beta}-Catenin signaling. -- Abstract: The protein-tyrosine phosphatase 1B (PTP1B) is a classical non-transmembrane protein tyrosine phosphatase that plays a key role in metabolic signaling and can exert both tumor suppressing and tumor promoting effects in different cancers depending on the substrate involved and the cellular context. However, the expression level and function of PTP1B in hepatocellular carcinoma (HCC) remain unclear. In this study, PTP1B expression was detected by immunohistochemistry in normal liver tissue (n = 16) and hepatocellular carcinoma (n = 169). The correlations between PTP1B expression level and clinicopathologic features and patient survival were also analyzed. One hundred and eleven of 169 HCC patients (65.7%) had negative or low PTP1B expression in tumorous tissues, whereas normal tissues always expressed strong PTP1B. Decreased PTP1B expression was significantly associated with aggressive clinicopathologic features and poor prognosis. Immunohistochemistry also showed that low PTP1B expression level was correlated with high percentage of OV6{sup +} tumor-initiating cells (T-ICs) and high frequency of nuclear {beta}-Catenin expression in HCC specimens. Our findings demonstrate for the first time that the loss of inhibitory effect of PTP1B may contribute to progression and invasion of HCC through activation of Wnt/{beta}-Catenin signaling and expansion of liver T-ICs. PTP1B may serve as a valuable prognostic biomarker and potential therapeutic target in HCC.

  3. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B

    International Nuclear Information System (INIS)

    Brown-Shimer, S.; Johnson, K.A.; Bruskin, A.; Green, N.R.; Hill, D.E.; Lawrence, J.B.; Johnson, C.

    1990-01-01

    The inactivation of growth suppressor genes appears to play a major role in the malignant process. To assess whether protein phosphotyrosyl phosphatases function as growth suppressors, the authors have isolated a cDNA clone encoding human protein phosphotyrosyl phosphatase 1B for structural and functional characterization. The translation product deduced from the 1,305-nucleotide open reading frame predicts a protein containing 435 amino acids and having a molecular mass of 49,966 Da. The amino-terminal 321 amino acids deduced from the cDNA sequence are identical to the empirically determined sequence of protein phosphotyrosyl phosphatase 1B. A genomic clone has been isolated and used in an in situ hybridization to banded metaphase chromosomes to determine that the gene encoding protein phosphotyrosyl phosphatase 1B maps as a single-copy gene to the long arm of chromosome 20 in the region q13.1-q13.2

  4. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    International Nuclear Information System (INIS)

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-01-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to β-adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of [ 32 P]C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of 32 [P]. Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein

  5. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics

    NARCIS (Netherlands)

    Groves, M R; Yao, Z J; Roller, P P; Burke, T R; Barford, D

    1998-01-01

    Protein tyrosine phosphatases regulate diverse cellular processes and represent important targets for therapeutic intervention in a number of diseases. The crystal structures of protein tyrosine phosphatase 1B (PTP1B) in complex with small molecule inhibitors based upon two classes of

  6. Water molecule network and active site flexibility of apo protein tyrosine phosphatase 1B

    DEFF Research Database (Denmark)

    Pedersen, A.K.; Peters, Günther H.J.; Møller, K.B.

    2004-01-01

    Protein tyrosine phosphatase 1B (PTP1B) plays a key role as a negative regulator of insulin and leptin signalling and is therefore considered to be an important molecular target for the treatment of type 2 diabetes and obesity. Detailed structural information about the structure of PTP1B, including...

  7. Pterocarpans with inhibitory effects on protein tyrosine phosphatase 1B from Erythrina lysistemon Hutch

    DEFF Research Database (Denmark)

    Dao, Trong Tuan; Nguyen, Phi Hung; Thuong, Phuong Thien

    2009-01-01

    ',5':3,4]-2'',2''-dimethyldihydropyrano[6'',5'':9,10]pterocarpan (1), furano[5',4':3,4]-9-hydroxy-10-prenylpterocarpan (2), and 8-formyl-3,9-dihydroxy-4,10-diprenylpterocarpan (3), based on spectroscopic analyses. All the isolates, with the exception of 3, 6, and 11, strongly inhibited protein tyrosine phosphatase 1B (PTP1B) activity...

  8. Protection against gamma-radiation injury by protein tyrosine phosphatase 1B

    Directory of Open Access Journals (Sweden)

    Marina Mojena

    2018-07-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is widely expressed in mammalian tissues, in particular in immune cells, and plays a pleiotropic role in dephosphorylating many substrates. Moreover, PTP1B expression is enhanced in response to pro-inflammatory stimuli and to different cell stressors. Taking advantage of the use of mice deficient in PTP1B we have investigated the effect of γ-radiation in these animals and found enhanced lethality and decreased respiratory exchange ratio vs. the corresponding wild type animals. Using bone-marrow derived macrophages and mouse embryonic fibroblasts (MEFs from wild-type and PTP1B-deficient mice, we observed a differential response to various cell stressors. PTP1B-deficient macrophages exhibited an enhanced response to γ-radiation, UV-light, LPS and S-nitroso-glutathione. Macrophages exposed to γ-radiation show DNA damage and fragmentation, increased ROS production, a lack in GSH elevation and enhanced acidic β-galactosidase activity. Interestingly, these differences were not observed in MEFs. Differential gene expression analysis of WT and KO macrophages revealed that the main pathways affected after irradiation were an up-regulation of protein secretion, TGF-β signaling and angiogenesis among other, and downregulation of Myc targets and Hedgehog signaling. These results demonstrate a key role for PTP1B in the protection against the cytotoxicity of irradiation in intact animal and in macrophages, which might be therapeutically relevant. Keywords: Protein tyrosine phosphatase, Cell viability, Irradiation sensitivity, Lethality, p53

  9. Caged xanthones displaying protein tyrosine phosphatase 1B (PTP1B) inhibition from Cratoxylum cochinchinense.

    Science.gov (United States)

    Li, Zuo Peng; Lee, Hyeong-Hwan; Uddin, Zia; Song, Yeong Hun; Park, Ki Hun

    2018-08-01

    Four new caged xanthones (1-4) and two known compounds (5, 6) were isolated from the roots of Cratoxylum cochinchinense, a polyphenol rich plant, collected in China. The structures of the isolated compounds (1-6) were characterized by obtaining their detailed spectroscopic data. In particular, compounds 1 and 6 were fully identified by X-ray crystallographic data. The isolated compounds (1-6) were evaluated against protein tyrosine phosphatase 1B (PTP1B), which plays an important role in diabetes, obesity, and cancer. Among these compounds, 3, 4, and 6 displayed significant inhibition with IC 50 values of 76.3, 43.2, and 6.6 µM, respectively. A detailed kinetic study was conducted by determining K m , V max , and the ratio of K ik and K iv , which revealed that all the compounds behaved as competitive inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Asperentin B, a New Inhibitor of the Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Wiese, Jutta; Aldemir, Hülya; Schmaljohann, Rolf; Gulder, Tobias A M; Imhoff, Johannes F

    2017-06-21

    In the frame of studies on secondary metabolites produced by fungi from deep-sea environments we have investigated inhibitors of enzymes playing key roles in signaling cascades of biochemical pathways relevant for the treatment of diseases. Here we report on a new inhibitor of the human protein tyrosine phosphatase 1B (PTP1B), a target in the signaling pathway of insulin. A new asperentin analog is produced by an Aspergillus sydowii strain isolated from the sediment of the deep Mediterranean Sea. Asperentin B ( 1 ) contains an additional phenolic hydroxy function at C-6 and exhibits an IC 50 value against PTP1B of 2 μM in vitro, which is six times stronger than the positive control, suramin. Interestingly, asperentin ( 2 ) did not show any inhibition of this enzymatic activity. Asperentin B ( 1 ) is discussed as possible therapeutic agents for type 2 diabetes and sleeping sickness.

  11. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  12. Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells.

    Science.gov (United States)

    Borges, L G; Seifert, R A; Grant, F J; Hart, C E; Disteche, C M; Edelhoff, S; Solca, F F; Lieberman, M A; Lindner, V; Fischer, E H; Lok, S; Bowen-Pope, D F

    1996-09-01

    We have cloned from cultured vascular smooth muscle cells a protein tyrosine phosphatase, rat density-enhanced phosphatase-1 (rDEP-1), which is a probable rat homologue of DEP-1/HPTP eta. rDEP-1 is encoded by an 8.7-kb transcript and is expressed as a 180- to 220-kD protein. The rDEP-1 gene is located on human chromosome 11 (region p11.2) and on mouse chromosome 2 (region 2E). The cDNA sequence predicts a transmembrane protein consisting of a single phosphatase catalytic domain in the intracellular region, a single transmembrane domain, and eight fibronectin type III repeats in the extracellular region (GenBank accession number U40790). In situ hybridization analysis demonstrates that rDEP-1 is widely expressed in vivo but that expression is highest in cells that form epithelioid monolayers. In cultured cells with epitheliod morphology, including endothelial cells and newborn smooth muscle cells, but not in fibroblast-like cells, rDEP-1 transcript levels are dramatically upregulated as population density increases. In vivo, quiescent endothelial cells in normal arteries express relatively high levels of rDEP-1. During repair of vascular injury, expression of rDEP-1 is downregulated in migrating and proliferating endothelial cells. In vivo, rDEP-1 transcript levels are present in very high levels in megakaryocytes, and circulating plates have high levels of the rDEP-1 protein. In vitro, initiation of differentiation of the human megakaryoblastic cell line CHRF-288-11 with phorbol 12-myristate 13-acetate leads to a very strong upregulation of rDEP-1 transcripts. The deduced structure and the regulation of expression of rDEP-1 suggest that it may play a role in adhesion and/or signaling events involving cell-cell and cell-matrix contact.

  13. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer's Therapy?

    Science.gov (United States)

    Vieira, Marcelo N N; Lyra E Silva, Natalia M; Ferreira, Sergio T; De Felice, Fernanda G

    2017-01-01

    Despite significant advances in current understanding of mechanisms of pathogenesis in Alzheimer's disease (AD), attempts at drug development based on those discoveries have failed to translate into effective, disease-modifying therapies. AD is a complex and multifactorial disease comprising a range of aberrant cellular/molecular processes taking part in different cell types and brain regions. As a consequence, therapeutics for AD should be able to block or compensate multiple abnormal pathological events. Here, we examine recent evidence that inhibition of protein tyrosine phosphatase 1B (PTP1B) may represent a promising strategy to combat a variety of AD-related detrimental processes. Besides its well described role as a negative regulator of insulin and leptin signaling, PTB1B recently emerged as a modulator of various other processes in the central nervous system (CNS) that are also implicated in AD. These include signaling pathways germane to learning and memory, regulation of synapse dynamics, endoplasmic reticulum (ER) stress and microglia-mediated neuroinflammation. We propose that PTP1B inhibition may represent an attractive and yet unexplored therapeutic approach to correct aberrant signaling pathways linked to AD.

  14. Inhibition of Protein Tyrosine Phosphatase 1B by Aurintricarboxylic Acid and Methylenedisalicylic Acid: Polymer versus Monomer

    International Nuclear Information System (INIS)

    Shrestha, Suja; Lee, Keun Hyeung; Cho, Hyeong Jin

    2004-01-01

    In this study, we examined whether the in vitro inhibitory activity of ATA against PTPases resides in the monomer or high molecular weight components. Not to mention commercial ATA, the ATA sample synthesized according to the method previously reported to produce monomer was also found to contain polymeric materials as described below. Therefore, monomeric component of ATA was prepared absolutely free of polymer. Also synthesized in a pure form was methylenedisalicylic acid (MDSA), one of the low molecular weight components formed in the conventional preparation of ATA. Commercial MDSA was also proved to contain polymeric substances. The inhibitory potency of ATA and MDSA synthesized in a polymer-free form was evaluated against human protein tyrosine phosphatase 1B (PTP1B). Commercial ATA, however, contains significant amounts of polymeric materials schematically represented as. In general, ATA is prepared by condensation of salicylic acid with formaldehyde and the branching reaction results in the formation of polymers of molecular weights up to several thousands Dalton

  15. Discovery and study of novel protein tyrosine phosphatase 1B inhibitors

    Science.gov (United States)

    Zhang, Qian; Chen, Xi; Feng, Changgen

    2017-10-01

    Protein tyrosine phosphatase 1B (PTP1B) is considered to be a target for therapy of type II diabetes and obesity. So it is of great significance to take advantage of a computer aided drug design protocol involving the structured-based virtual screening with docking simulations for fast searching small molecule PTP1B inhibitors. Based on optimized complex structure of PTP1B bound with specific inhibitor of IX1, structured-based virtual screening against a library of natural products containing 35308 molecules, which was constructed based on Traditional Chinese Medicine database@ Taiwan (TCM database@ Taiwan), was conducted to determine the occurrence of PTP1B inhibitors using the Lubbock module and CDOCKER module from Discovery Studio 3.1 software package. The results were further filtered by predictive ADME simulation and predictive toxic simulation. As a result, 2 good drug-like molecules, namely para-benzoquinone compound 1 and Clavepictine analogue 2 were identified ultimately with the dock score of original inhibitor (IX1) and the receptor as a threshold. Binding model analyses revealed that these two candidate compounds have good interactions with PTP1B. The PTP1B inhibitory activity of compound 2 hasn't been reported before. The optimized compound 2 has higher scores and deserves further study.

  16. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation.

    Science.gov (United States)

    Koshibu, K; Gräff, J; Mansuy, I M

    2011-01-26

    Complex brain diseases and neurological disorders in human generally result from the disturbance of multiple genes and signaling pathways. These disturbances may derive from mutations, deletions, translocations or rearrangements of specific gene(s). However, over the past years, it has become clear that such disturbances may also derive from alterations in the epigenome affecting several genes simultaneously. Our work recently demonstrated that epigenetic mechanisms in the adult brain are in part regulated by protein phosphatase 1 (PP1), a protein Ser/Thr phosphatase that negatively regulates hippocampus-dependent long-term memory (LTM) and synaptic plasticity. PP1 is abundant in brain structures involved in emotional processing like the amygdala, it may therefore be involved in the regulation of fear memory, a form of memory related to post-traumatic stress disorder (PTSD) in human. Here, we demonstrate that PP1 is a molecular suppressor of fear memory and synaptic plasticity in the amygdala that can control chromatin remodeling in neurons. We show that the selective inhibition of the nuclear pool of PP1 in amygdala neurons significantly alters posttranslational modifications (PTMs) of histones and the expression of several memory-associated genes. These alterations correlate with enhanced fear memory, and with an increase in long-term potentiation (LTP) that is transcription-dependent. Our results underscore the importance of nuclear PP1 in the amygdala as an epigenetic regulator of emotional memory, and the relevance of protein phosphatases as potential targets for therapeutic treatment of brain disorders like PTSD. © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Differential regulation of protein phosphatase 1 (PP1) isoforms in human heart failure and atrial fibrillation.

    Science.gov (United States)

    Meyer-Roxlau, Stefanie; Lämmle, Simon; Opitz, Annett; Künzel, Stephan; Joos, Julius P; Neef, Stefan; Sekeres, Karolina; Sossalla, Samuel; Schöndube, Friedrich; Alexiou, Konstantin; Maier, Lars S; Dobrev, Dobromir; Guan, Kaomei; Weber, Silvio; El-Armouche, Ali

    2017-07-01

    Protein phosphatase 1 (PP1) is a key regulator of important cardiac signaling pathways. Dysregulation of PP1 has been heavily implicated in cardiac dysfunctions. Accordingly, pharmacological targeting of PP1 activity is considered for therapeutic intervention in human cardiomyopathies. Recent evidence from animal models implicated previously unrecognized, isoform-specific activities of PP1 in the healthy and diseased heart. Therefore, this study examined the expression of the distinct PP1 isoforms PP1α, β, and γ in human heart failure (HF) and atrial fibrillation (AF) and addressed the consequences of β-adrenoceptor blocker (beta-blocker) therapy for HF patients with reduced ejection fraction on PP1 isoform expression. Using western blot analysis, we found greater abundance of PP1 isoforms α and γ but unaltered PP1β levels in left ventricular myocardial tissues from HF patients as compared to non-failing controls. However, expression of all three PP1 isoforms was higher in atrial appendages from patients with AF compared to patients with sinus rhythm. Moreover, we found that in human failing ventricles, beta-blocker therapy was associated with lower PP1α abundance and activity, as indicated by higher phosphorylation of the PP1α-specific substrate eIF2α. Greater eIF2α phosphorylation is a known repressor of protein translation, and accordingly, we found lower levels of the endoplasmic reticulum (ER) stress marker Grp78 in the very same samples. We propose that isoform-specific targeting of PP1α activity may be a novel and innovative therapeutic strategy for the treatment of human cardiac diseases by reducing ER stress conditions.

  18. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B.

    Directory of Open Access Journals (Sweden)

    Kosuke Matsuo

    2011-01-01

    Full Text Available Protein-tyrosine phosphatase 1B (PTP1B is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A and sumoylation-resistant (K/R PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR and insulin receptor substrate 1 (IRS1 tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.

  19. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors.

    Science.gov (United States)

    Feng, Yunjiang; Carroll, Anthony R; Addepalli, Rama; Fechner, Gregory A; Avery, Vicky M; Quinn, Ronald J

    2007-11-01

    A novel vanillic acid derivative (1) and its sulfate adduct (2) were isolated from a green algae, Cladophora socialis. The structures of 1 and 2 were elucidated from NMR and HRESIMS experiments. Both compounds showed potent inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), an enzyme involved in the regulation of insulin cell signaling. Compounds 1 and 2 had IC50 values of 3.7 and 1.7 microM, respectively.

  20. Down-regulation of Wild-type p53-induced Phosphatase 1 (Wip1) Plays a Critical Role in Regulating Several p53-dependent Functions in Premature Senescent Tumor Cells*

    Science.gov (United States)

    Crescenzi, Elvira; Raia, Zelinda; Pacifico, Francesco; Mellone, Stefano; Moscato, Fortunato; Palumbo, Giuseppe; Leonardi, Antonio

    2013-01-01

    Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. PMID:23612976

  1. Protein Phosphatase 1 Down Regulates ZYG-1 Levels to Limit Centriole Duplication.

    Directory of Open Access Journals (Sweden)

    Nina Peel

    2017-01-01

    Full Text Available In humans perturbations of centriole number are associated with tumorigenesis and microcephaly, therefore appropriate regulation of centriole duplication is critical. The C. elegans homolog of Plk4, ZYG-1, is required for centriole duplication, but our understanding of how ZYG-1 levels are regulated remains incomplete. We have identified the two PP1 orthologs, GSP-1 and GSP-2, and their regulators I-2SZY-2 and SDS-22 as key regulators of ZYG-1 protein levels. We find that down-regulation of PP1 activity either directly, or by mutation of szy-2 or sds-22 can rescue the loss of centriole duplication associated with a zyg-1 hypomorphic allele. Suppression is achieved through an increase in ZYG-1 levels, and our data indicate that PP1 normally regulates ZYG-1 through a post-translational mechanism. While moderate inhibition of PP1 activity can restore centriole duplication to a zyg-1 mutant, strong inhibition of PP1 in a wild-type background leads to centriole amplification via the production of more than one daughter centriole. Our results thus define a new pathway that limits the number of daughter centrioles produced each cycle.

  2. Protein Phosphatase 1 Recruitment by Rif1 Regulates DNA Replication Origin Firing by Counteracting DDK Activity

    Directory of Open Access Journals (Sweden)

    Anoushka Davé

    2014-04-01

    Full Text Available The firing of eukaryotic origins of DNA replication requires CDK and DDK kinase activities. DDK, in particular, is involved in setting the temporal program of origin activation, a conserved feature of eukaryotes. Rif1, originally identified as a telomeric protein, was recently implicated in specifying replication timing in yeast and mammals. We show that this function of Rif1 depends on its interaction with PP1 phosphatases. Mutations of two PP1 docking motifs in Rif1 lead to early replication of telomeres in budding yeast and misregulation of origin firing in fission yeast. Several lines of evidence indicate that Rif1/PP1 counteract DDK activity on the replicative MCM helicase. Our data suggest that the PP1/Rif1 interaction is downregulated by the phosphorylation of Rif1, most likely by CDK/DDK. These findings elucidate the mechanism of action of Rif1 in the control of DNA replication and demonstrate a role of PP1 phosphatases in the regulation of origin firing.

  3. Molecular dynamics simulations of protein-tyrosine phosphatase 1B: II. Substrate-enzyme interactions and dynamics

    DEFF Research Database (Denmark)

    Peters, Günther H.j.; Frimurer, T. M.; Andersen, J. N.

    2000-01-01

    Molecular dynamics simulations of protein tyrosine phosphatase 1B (PTP1B) complexed with the phosphorylated peptide substrate DADEpYL and the free substrate have been conducted to investigate 1) the physical forces involved in substrate-protein interactions, 2) the importance of enzyme...... to substrate binding. Based on essential dynamics analysis of the PTP1B/DADEpYL trajectory, it is shown that internal motions in the binding pocket occur in a subspace of only a few degrees of freedom. in particular, relatively large flexibilities are observed along several eigenvectors in the segments: Arg(24...... for catalysis. Analysis of the individual enzyme-substrate interaction energies revealed that mainly electrostatic forces contribute to binding. Indeed, calculation of the electrostatic field of the enzyme reveals that only the field surrounding the binding pocket is positive, while the remaining protein...

  4. Functional analysis of the glycogen binding subunit CG9238/Gbs-70E of protein phosphatase 1 in Drosophila melanogaster.

    Science.gov (United States)

    Kerekes, Éva; Kókai, Endre; Páldy, Ferenc Sándor; Dombrádi, Viktor

    2014-06-01

    The product of the CG9238 gene that we termed glycogen binding subunit 70E (Gbs-70E) was characterized by biochemical and molecular genetics methods. The interaction between Gbs-70E and all catalytic subunits of protein phosphatase 1 (Pp1-87B, Pp1-9C, Pp1-96A and Pp1-13C) of Drosophila melanogaster was confirmed by pairwise yeast two-hybrid tests, co-immunoprecipitation and pull down experiments. The binding of Gbs-70E to glycogen was demonstrated by sedimentation analysis. With RT-PCR we found that the mRNAs coding for the longer Gbs-70E PB/PC protein were expressed in all developmental stages of the fruit flies while the mRNA for the shorter Gbs-70E PA was restricted to the eggs and the ovaries of the adult females. The development specific expression of the shorter splice variant was not conserved in different Drosophila species. The expression level of the gene was manipulated by P-element insertions and gene deletion to analyze the functions of the gene product. A small or moderate reduction in the gene expression resulted in no significant changes, however, a deletion mutant expressing very low level of the transcript lived shorter and exhibited reduced glycogen content in the imagos. In addition, the gene deletion decreased the fertility of the fruit flies. Our results prove that Gbs-70E functions as the glycogen binding subunit of protein phosphatase 1 that regulates glycogen content and plays a role in the development of eggs in D. melanogaster. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Protein Phosphatase 1-Dependent Transcriptional Programs for Long-Term Memory and Plasticity

    Science.gov (United States)

    Graff, Johannes; Koshibu, Kyoko; Jouvenceau, Anne; Dutar, Patrick; Mansuy, Isabelle M.

    2010-01-01

    Gene transcription is essential for the establishment and the maintenance of long-term memory (LTM) and for long-lasting forms of synaptic plasticity. The molecular mechanisms that control gene transcription in neuronal cells are complex and recruit multiple signaling pathways in the cytoplasm and the nucleus. Protein kinases (PKs) and…

  6. Interaction of Protein Phosphatase 1δ with Nucleophosmin in Human Osteoblastic Cells

    International Nuclear Information System (INIS)

    Haneji, Tatsuji; Teramachi, Jumpei; Hirashima, Kanji; Kimura, Koji; Morimoto, Hiroyuki

    2012-01-01

    Protein phosphorylation and dephosphorylation has been recognized as an essential mechanism in the regulation of cellular metabolism and function in various tissues. Serine and threonine protein phosphatases (PP) are divided into four categories: PP1, PP2A, PP2B, and PP2C. At least four isoforms of PP1 catalytic subunit in rat, PP1α, PP1γ1, PP1γ2, and PP1δ, were isolated. In the present study, we examined the localization and expression of PP1δ in human osteoblastic Saos-2 cells. Anti-PP1δ antibody recognized a protein present in the nucleolar regions in Saos-2 cells. Cellular fractionation revealed that PP1δ is a 37 kDa protein localized in the nucleolus. Nucleophosmin is a nucleolar phosphoprotein and located mainly in the nucleolus. Staining pattern of nucleophosmin in Saos-2 cells was similar to that of PP1δ. PP1δ and nucleophosmin were specifically stained as dots in the nucleus. Dual fluorescence images revealed that PP1δ and nucleophosmin were localized in the same regions in the nucleolus. Similar distribution patterns of PP1δ and nucleophosmin were observed in osteoblastic MG63 cells. The interaction of PP1δ and nucleophosmin was also shown by immunoprecipitation and Western analysis. These results indicated that PP1δ associate with nucleophosmin directly in the nucleolus and suggested that nucleophosmin is one of the candidate substrate for PP1δ

  7. Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling

    DEFF Research Database (Denmark)

    Lund, I K; Hansen, J A; Andersen, H S

    2005-01-01

    Upon leptin binding, the leptin receptor is activated, leading to stimulation of the JAK/STAT signal transduction cascade. The transient character of the tyrosine phosphorylation of JAK2 and STAT3 suggests the involvement of protein tyrosine phosphatases (PTPs) as negative regulators...

  8. Isolation and Characterization of Protein Tyrosine Phosphatase 1B (PTP1B Inhibitory Polyphenolic Compounds From Dodonaea viscosa and Their Kinetic Analysis

    Directory of Open Access Journals (Sweden)

    Zia Uddin

    2018-03-01

    Full Text Available Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95% of Dodonaea viscosa aerial parts afforded nine (1-9 polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5–57.9 μM. Among them, viscosol (4 was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7, and 9 were found to be the most abundant metabolites in D. viscosa extract.

  9. Isolation and characterization of protein tyrosine phosphatase 1B (PTP1B) inhibitory polyphenolic compounds from Dodonaea viscosa and their kinetic analysis

    Science.gov (United States)

    Uddin, Zia; Song, Yeong Hun; Ullah, Mahboob; Li, Zuopeng; Kim, Jeong Yoon; Park, Ki Hun

    2018-03-01

    Diabetes mellitus is one of a major worldwide concerns, regulated by either defects in secretion or action of insulin, or both. Insulin signaling down-regulation has been related with over activity of protein tyrosine phosphatase 1B (PTP1B) enzyme, which has been a promising target for the treatment of diabetes mellitus. Herein, activity guided separation of methanol extract (95%) of Dodonaea viscosa aerial parts afforded nine (1-9) polyphenolic compounds, all of them were identified through spectroscopic data including 2D NMR and HREIMS. Subsequently, their PTP1B inhibitory potentials were evaluated, in which all of the isolates exhibited significant dose-dependent inhibition with IC50 13.5-57.9 μM. Among them, viscosol (4) was found to be the most potent compound having IC50 13.5 μM. In order to unveil the mechanistic behavior, detailed kinetic study was carried out, in which compound 4 was observed as a reversible, and mixed type I inhibitor of PTP1B with inhibitory constant (Ki) value of 4.6 μM. Furthermore, we annotated the major metabolites through HPLC-DAD-ESI/MS analysis, in which compounds 3, 6, 7 and 9 were found to be the most abundant metabolites in D.viscosa extract.

  10. Rif1 controls DNA replication by directing Protein Phosphatase 1 to reverse Cdc7-mediated phosphorylation of the MCM complex.

    Science.gov (United States)

    Hiraga, Shin-Ichiro; Alvino, Gina M; Chang, Fujung; Lian, Hui-Yong; Sridhar, Akila; Kubota, Takashi; Brewer, Bonita J; Weinreich, Michael; Raghuraman, M K; Donaldson, Anne D

    2014-02-15

    Initiation of eukaryotic DNA replication requires phosphorylation of the MCM complex by Dbf4-dependent kinase (DDK), composed of Cdc7 kinase and its activator, Dbf4. We report here that budding yeast Rif1 (Rap1-interacting factor 1) controls DNA replication genome-wide and describe how Rif1 opposes DDK function by directing Protein Phosphatase 1 (PP1)-mediated dephosphorylation of the MCM complex. Deleting RIF1 partially compensates for the limited DDK activity in a cdc7-1 mutant strain by allowing increased, premature phosphorylation of Mcm4. PP1 interaction motifs within the Rif1 N-terminal domain are critical for its repressive effect on replication. We confirm that Rif1 interacts with PP1 and that PP1 prevents premature Mcm4 phosphorylation. Remarkably, our results suggest that replication repression by Rif1 is itself also DDK-regulated through phosphorylation near the PP1-interacting motifs. Based on our findings, we propose that Rif1 is a novel PP1 substrate targeting subunit that counteracts DDK-mediated phosphorylation during replication. Fission yeast and mammalian Rif1 proteins have also been implicated in regulating DNA replication. Since PP1 interaction sites are evolutionarily conserved within the Rif1 sequence, it is likely that replication control by Rif1 through PP1 is a conserved mechanism.

  11. Implication of protein tyrosine phosphatase 1B in MCF-7 cell proliferation and resistance to 4-OH tamoxifen

    International Nuclear Information System (INIS)

    Blanquart, Christophe; Karouri, Salah-Eddine; Issad, Tarik

    2009-01-01

    The protein tyrosine phosphatase 1B (PTP1B) and the T-cell protein tyrosine phosphatase (TC-PTP) were initially thought to be mainly anti-oncogenic. However, overexpression of PTP1B and TC-PTP has been observed in human tumors, and recent studies have demonstrated that PTP1B contributes to the appearance of breast tumors by modulating ERK pathway. In the present work, we observed that decreasing the expression of TC-PTP or PTP1B in MCF-7 cells using siRNA reduced cell proliferation without affecting cell death. This reduction in proliferation was associated with decreased ERK phosphorylation. Moreover, selection of tamoxifen-resistant MCF-7 cells, by long-term culture in presence of 4-OH tamoxifen, resulted in cells that display overexpression of PTP1B and TC-PTP, and concomitant increase in ERK and STAT3 phosphorylation. siRNA experiments showed that PTP1B, but not TC-PTP, is necessary for resistance to 4-OH tamoxifen. Therefore, our work indicates that PTP1B could be a relevant therapeutic target for treatment of tamoxifen-resistant breast cancers.

  12. Protein tyrosine phosphatase 1B (PTP1B) is required for cardiac lineage differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Eshkiki, Zahra Shokati; Ghahremani, Mohammad Hossein; Shabani, Parisa; Firuzjaee, Sattar Gorgani; Sadeghi, Asie; Ghanbarian, Hossein; Meshkani, Reza

    2017-01-01

    Protein tyrosine phosphatase 1B (PTP1B) has been shown to regulate multiple cellular events such as differentiation, cell growth, and proliferation; however, the role of PTP1B in differentiation of embryonic stem (ES) cells into cardiomyocytes remains unexplored. In the present study, we investigated the effects of PTP1B inhibition on differentiation of ES cells into cardiomyocytes. PTP1B mRNA and protein levels were increased during the differentiation of ES cells into cardiomyocytes. Accordingly, a stable ES cell line expressing PTP1B shRNA was established. In vitro, the number and size of spontaneously beating embryoid bodies were significantly decreased in PTP1B-knockdown cells, compared with the control cells. Decreased expression of cardiac-specific markers Nkx2-5, MHC-α, cTnT, and CX43, as assessed by real-time PCR analysis, was further confirmed by immunocytochemistry of the markers. The results also showed that PTP1B inhibition induced apoptosis in both differentiated and undifferentiated ES cells, as presented by increasing the level of cleaved caspase-3, cytochrome C, and cleaved PARP. Further analyses revealed that PTP1B inhibition did not change proliferation and pluripotency of undifferentiated ES cells. Taken together, the data presented here suggest that PTP1B is essential for proper differentiation of ES cells into cardiomyocytes.

  13. Role of Zinc and Magnesium Ions in the Modulation of Phosphoryl Transfer in Protein Tyrosine Phosphatase 1B.

    Science.gov (United States)

    Bellomo, Elisa; Abro, Asma; Hogstrand, Christer; Maret, Wolfgang; Domene, Carmen

    2018-03-28

    While the majority of phosphatases are metalloenzymes, the prevailing model for the reactions catalyzed by protein tyrosine phosphatases does not involve any metal ion, yet both metal cations and oxoanions affect their enzymatic activity. Mg 2+ and Zn 2+ activate and inhibit, respectively, protein tyrosine phosphatase 1B (PTP1B). Molecular dynamics simulations, metadynamics, and quantum chemical calculations in combination with experimental investigations demonstrate that Mg 2+ and Zn 2+ compete for the same binding site in the active site only in the closed conformation of the enzyme in its phosphorylated state. The two cations have different effects on the arrangements and activities of water molecules that are necessary for the hydrolysis of the phosphocysteine intermediate in the second catalytic step of the reaction. Remarkable differences between the established structural enzymology of PTP1B investigated ex vivo and the function of PTP1B in vivo become evident. Different reaction pathways are viable when the presence of metal ions and their cellular concentrations are considered. The findings suggest that the substrate delivers the inhibitory Zn 2+ ion to the active site. The inhibition and activation can be ascribed to the different coordination chemistries of Zn 2+ and Mg 2+ ions and the orientation of the metal-coordinated water molecules. Metallochemistry adds an additional dimension to the regulation of PTP1B and presumably other members of this enzyme family.

  14. Rif1 acts through Protein Phosphatase 1 but independent of replication timing to suppress telomere extension in budding yeast.

    Science.gov (United States)

    Kedziora, Sylwia; Gali, Vamsi K; Wilson, Rosemary H C; Clark, Kate R M; Nieduszynski, Conrad A; Hiraga, Shin-Ichiro; Donaldson, Anne D

    2018-05-04

    The Rif1 protein negatively regulates telomeric TG repeat length in the budding yeast Saccharomyces cerevisiae, but how it prevents telomere over-extension is unknown. Rif1 was recently shown to control DNA replication by acting as a Protein Phosphatase 1 (PP1)-targeting subunit. Therefore, we investigated whether Rif1 controls telomere length by targeting PP1 activity. We find that a Rif1 mutant defective for PP1 interaction causes a long-telomere phenotype, similar to that of rif1Δ cells. Tethering PP1 at a specific telomere partially substitutes for Rif1 in limiting TG repeat length, confirming the importance of PP1 in telomere length control. Ablating Rif1-PP1 interaction is known to cause precocious activation of telomere-proximal replication origins and aberrantly early telomere replication. However, we find that Rif1 still limits telomere length even if late replication is forced through deletion of nearby replication origins, indicating that Rif1 can control telomere length independent of replication timing. Moreover we find that, even at a de novo telomere created after DNA synthesis during a mitotic block, Rif1-PP1 interaction is required to suppress telomere lengthening and prevent inappropriate recruitment of Tel1 kinase. Overall, our results show that Rif1 controls telomere length by recruiting PP1 to directly suppress telomerase-mediated TG repeat lengthening.

  15. A widespread amino acid polymorphism at codon 905 of the glycogen-associated regulatory subunit of protein phosphatase-1 is associated with insulin resistance and hypersecretion of insulin

    DEFF Research Database (Denmark)

    Hansen, L; Hansen, T; Vestergaard, H

    1995-01-01

    The regulatory G-subunit of the glycogen-associated form of protein phosphatase 1 (PP1) plays a crucial part in muscle tissue glycogen synthesis and breakdown. As impaired insulin stimulated glycogen synthesis in peripheral tissues is considered to be a pathogenic factor in subsets of non-insulin...

  16. Computational revelation of binding mechanisms of inhibitors to endocellular protein tyrosine phosphatase 1B using molecular dynamics simulations.

    Science.gov (United States)

    Yan, Fangfang; Liu, Xinguo; Zhang, Shaolong; Su, Jing; Zhang, Qinggang; Chen, Jianzhong

    2017-11-06

    Endocellular protein tyrosine phosphatase 1B (PTP1B) is one of the most promising target for designing and developing drugs to cure type-II diabetes and obesity. Molecular dynamics (MD) simulations combined with molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy methods were applied to study binding differences of three inhibitors (ID: 901, 941, and 968) to PTP1B, the calculated results show that the inhibitor 901 has the strongest binding ability to PTP1B among the current inhibitors. Principal component (PC) analysis was also carried out to investigate the conformational change of PTP1B, and the results indicate that the associations of inhibitors with PTP1B generate a significant effect on the motion of the WPD-loop. Free energy decomposition method was applied to study the contributions of individual residues to inhibitor bindings, it is found that three inhibitors can generate hydrogen bonding interactions and hydrophobic interactions with different residues of PTP1B, which provide important forces for associations of inhibitors with PTP1B. This research is expected to give a meaningfully theoretical guidance to design and develop of effective drugs curing type-II diabetes and obesity.

  17. Protein tyrosine phosphatase 1B (PTP1B) is dispensable for IgE-mediated cutaneous reaction in vivo.

    Science.gov (United States)

    Yang, Ting; Xie, Zhongping; Li, Hua; Yue, Lei; Pang, Zheng; MacNeil, Adam J; Tremblay, Michel L; Tang, Jin-Tian; Lin, Tong-Jun

    2016-01-01

    Mast cells play a critical role in allergic reactions. The cross-linking of FcεRI-bound IgE with multivalent antigen initiates a cascade of signaling events leading to mast cell activation. It has been well-recognized that cross linking of FcεRI mediates tyrosine phosphorylation. However, the mechanism involved in tyrosine dephosphorylation in mast cells is less clear. Here we demonstrated that protein tyrosine phosphatase 1B (PTP1B)-deficient mast cells showed increased IgE-mediated phosphorylation of the signal transducer and activator of transcription 5 (STAT5) and enhanced production of CCL9 (MIP-1γ) and IL-6 in IgE-mediated mast cells activation in vitro. However, IgE-mediated calcium mobilization, β-hexaosaminidase release (degranulation), and phosphorylation of IκB and MAP kinases were not affected by PTP1B deficiency. Furthermore, PTP1B deficient mice showed normal IgE-dependent passive cutaneous anaphylaxis and late phase cutaneous reactions in vivo. Thus, PTP1B specifically regulates IgE-mediated STAT5 pathway, but is redundant in influencing mast cell function in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor-Electrophile Conjugate.

    Science.gov (United States)

    Punthasee, Puminan; Laciak, Adrian R; Cummings, Andrea H; Ruddraraju, Kasi Viswanatharaju; Lewis, Sarah M; Hillebrand, Roman; Singh, Harkewal; Tanner, John J; Gates, Kent S

    2017-04-11

    Protein tyrosine phosphatase 1B (PTP1B) is a validated drug target, but it has proven difficult to develop medicinally useful, reversible inhibitors of this enzyme. Here we explored covalent strategies for the inactivation of PTP1B using a conjugate composed of an active site-directed 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxide inhibitor connected via a short linker to an electrophilic α-bromoacetamide moiety. Inhibitor-electrophile conjugate 5a caused time-dependent loss of PTP1B activity consistent with a covalent inactivation mechanism. The inactivation occurred with a second-order rate constant of (1.7 ± 0.3) × 10 2 M -1 min -1 . Mass spectrometric analysis of the inactivated enzyme indicated that the primary site of modification was C121, a residue distant from the active site. Previous work provided evidence that covalent modification of the allosteric residue C121 can cause inactivation of PTP1B [Hansen, S. K., Cancilla, M. T., Shiau, T. P., Kung, J., Chen, T., and Erlanson, D. A. (2005) Biochemistry 44, 7704-7712]. Overall, our results are consistent with an unusual enzyme inactivation process in which noncovalent binding of the inhibitor-electrophile conjugate to the active site of PTP1B protects the nucleophilic catalytic C215 residue from covalent modification, thus allowing inactivation of the enzyme via selective modification of allosteric residue C121.

  19. Toward the identification of a reliable 3D-QSAR model for the protein tyrosine phosphatase 1B inhibitors

    Science.gov (United States)

    Wang, Fangfang; Zhou, Bo

    2018-04-01

    Protein tyrosine phosphatase 1B (PTP1B) is an intracellular non-receptor phosphatase that is implicated in signal transduction of insulin and leptin pathways, thus PTP1B is considered as potential target for treating type II diabetes and obesity. The present article is an attempt to formulate the three-dimensional quantitative structure-activity relationship (3D-QSAR) modeling of a series of compounds possessing PTP1B inhibitory activities using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The optimum template ligand-based models are statistically significant with great CoMFA (R2cv = 0.600, R2pred = 0.6760) and CoMSIA (R2cv = 0.624, R2pred = 0.8068) values. Molecular docking was employed to elucidate the inhibitory mechanisms of this series of compounds against PTP1B. In addition, the CoMFA and CoMSIA field contour maps agree well with the structural characteristics of the binding pocket of PTP1B active site. The knowledge of structure-activity relationship and ligand-receptor interactions from 3D-QSAR model and molecular docking will be useful for better understanding the mechanism of ligand-receptor interaction and facilitating development of novel compounds as potent PTP1B inhibitors.

  20. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    Science.gov (United States)

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  1. Competitive protein tyrosine phosphatase 1B (PTP1B) inhibitors, prenylated caged xanthones from Garcinia hanburyi and their inhibitory mechanism.

    Science.gov (United States)

    Tan, Xue Fei; Uddin, Zia; Park, Chanin; Song, Yeong Hun; Son, Minky; Lee, Keun Woo; Park, Ki Hun

    2017-04-15

    Protein tyrosine phosphatase 1B (PTP1B) plays important role in diabetes, obesity and cancer. The methanol extract of the gum resin of Garcinia hanburyi (G. hanburyi) showed potent PTP1B inhibition at 10µg/ml. The active compounds were identified as prenylated caged xanthones (1-9) which inhibited PTP1B in dose-dependent manner. Carboxybutenyl group within caged motif (A ring) was found to play a critical role in enzyme inhibition such as 1-6 (IC 50 s=0.47-4.69µM), whereas compounds having hydroxymethylbutenyl 7 (IC 50 =70.25µM) and methylbutenyl 8 (IC 50 >200µM) showed less activity. The most potent inhibitor, gambogic acid 1 (IC 50 =0.47µM) showed 30-fold more potency than ursolic acid (IC 50 =15.5µM), a positive control. In kinetic study, all isolated xanthones behaved as competitive inhibitors which were fully demonstrated with K m , V max and K ik /K iv ratio. It was also proved that inhibitor 1 operated under the enzyme isomerization model having k 5 =0.0751µM - 1 S - 1 , k 6 =0.0249µM - 1 S - 1 and K i app =0.499µM. To develop a pharmacophore model, we explored the binding sites of compound 1 and 7 in PTP1B. These modeling results were in agreement with our findings, which revealed that the inhibitory activities are tightly related to caged motif and prenyl group in A ring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  3. Protein-Tyrosine Phosphatase-1B Mediates Sleep Fragmentation-Induced Insulin Resistance and Visceral Adipose Tissue Inflammation in Mice.

    Science.gov (United States)

    Gozal, David; Khalyfa, Abdelnaby; Qiao, Zhuanghong; Akbarpour, Mahzad; Maccari, Rosanna; Ottanà, Rosaria

    2017-09-01

    Sleep fragmentation (SF) is highly prevalent and has emerged as an important contributing factor to obesity and metabolic syndrome. We hypothesized that SF-induced increases in protein tyrosine phosphatase-1B (PTP-1B) expression and activity underlie increased food intake, inflammation, and leptin and insulin resistance. Wild-type (WT) and ObR-PTP-1b-/- mice (Tg) were exposed to SF and control sleep (SC), and food intake was monitored. WT mice received a PTP-1B inhibitor (RO-7d; Tx) or vehicle (Veh). Upon completion of exposures, systemic insulin and leptin sensitivity tests were performed as well as assessment of visceral white adipose tissue (vWAT) insulin receptor sensitivity and macrophages (ATM) polarity. SF increased food intake in either untreated or Veh-treated WT mice. Leptin-induced hypothalamic STAT3 phosphorylation was decreased, PTP-1B activity was increased, and reduced insulin sensitivity emerged both systemic and in vWAT, with the latter displaying proinflammatory ATM polarity changes. All of the SF-induced effects were abrogated following PTP-1B inhibitor treatment and in Tg mice. SF induces increased food intake, reduced leptin signaling in hypothalamus, systemic insulin resistance, and reduced vWAT insulin sensitivity and inflammation that are mediated by increased PTP-1B activity. Thus, PTP-1B may represent a viable therapeutic target in the context of SF-induced weight gain and metabolic dysfunction. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  4. Dual role of protein tyrosine phosphatase 1B in the progression and reversion of non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Águeda González-Rodríguez

    2018-01-01

    Full Text Available Objectives: Non-alcoholic fatty liver disease (NAFLD is the most common chronic liver disease in Western countries. Protein tyrosine phosphatase 1B (PTP1B, a negative modulator of insulin and cytokine signaling, is a therapeutic target for type 2 diabetes and obesity. We investigated the impact of PTP1B deficiency during NAFLD, particularly in non-alcoholic steatohepatitis (NASH. Methods: NASH features were evaluated in livers from wild-type (PTP1BWT and PTP1B-deficient (PTP1BKO mice fed methionine/choline-deficient diet (MCD for 8 weeks. A recovery model was established by replacing MCD to chow diet (CHD for 2–7 days. Non-parenchymal liver cells (NPCs were analyzed by flow cytometry. Oval cells markers were measured in human and mouse livers with NASH, and in oval cells from PTP1BWT and PTP1BKO mice. Results: PTP1BWT mice fed MCD for 8 weeks exhibited NASH, NPCs infiltration, and elevated Fgf21, Il6 and Il1b mRNAs. These parameters decreased after switching to CHD. PTP1B deficiency accelerated MCD-induced NASH. Conversely, after switching to CHD, PTP1BKO mice rapidly reverted NASH compared to PTP1BWT mice in parallel to the normalization of serum triglycerides (TG levels. Among NPCs, a drop in cytotoxic natural killer T (NKT subpopulation was detected in PTP1BKO livers during recovery, and in these conditions M2 macrophage markers were up-regulated. Oval cells markers (EpCAM and cytokeratin 19 significantly increased during NASH only in PTP1B-deficient livers. HGF-mediated signaling and proliferative capacity were enhanced in PTP1BKO oval cells. In NASH patients, oval cells markers were also elevated. Conclusions: PTP1B elicits a dual role in NASH progression and reversion. Additionally, our results support a new role for PTP1B in oval cell proliferation during NAFLD. Keywords: PTP1B, Steatosis, Steatohepatitis, Inflammation, Oval cells

  5. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium

    Directory of Open Access Journals (Sweden)

    Md. Yousof Ali

    2017-12-01

    Full Text Available Sargassum serratifolium C. Agardh (Phaeophyceae, Fucales is a marine brown alga that belongs to the family Sargassaceae. It is widely distributed throughout coastal areas of Korea and Japan. S. serratifolium has been found to contain high concentrations of plastoquinones, which have strong anti-cancer, anti-inflammatory, antioxidant, and neuroprotective activity. This study aims to investigate the anti-diabetic activity of S. serratifolium and its major constituents through inhibition of protein tyrosine phosphatase 1B (PTP1B, α-glucosidase, and ONOO−-mediated albumin nitration. S. serratifolium ethanolic extract and fractions exhibited broad PTP1B and α-glucosidase inhibitory activity (IC50, 1.83~7.04 and 3.16~24.16 µg/mL for PTP1B and α-glucosidase, respectively. In an attempt to identify bioactive compounds, three plastoquinones (sargahydroquinoic acid, sargachromenol and sargaquinoic acid were isolated from the active n-hexane fraction of S. serratifolium. All three plastoquinones exhibited dose-dependent inhibitory activity against PTP1B in the IC50 range of 5.14–14.15 µM, while sargachromenol and sargaquinoic acid showed dose-dependent inhibitory activity against α-glucosidase (IC50 42.41 ± 3.09 and 96.17 ± 3.48 µM, respectively. In the kinetic study of PTP1B enzyme inhibition, sargahydroquinoic acid and sargaquinoic acid led to mixed-type inhibition, whereas sargachromenol displayed noncompetitive-type inhibition. Moreover, plastoquinones dose-dependently inhibited ONOO−-mediated albumin nitration. Docking simulations of these plastoquinones demonstrated negative binding energies and close proximity to residues in the binding pocket of PTP1B and α-glucosidase, indicating that these plastoquinones have high affinity and tight binding capacity towards the active site of the enzymes. These results demonstrate that S. serratifolium and its major plastoquinones may have the potential as functional food ingredients for the

  6. The heterotrimeric G protein Gβ1 interacts with the catalytic subunit of protein phosphatase 1 and modulates G protein-coupled receptor signaling in platelets.

    Science.gov (United States)

    Pradhan, Subhashree; Khatlani, Tanvir; Nairn, Angus C; Vijayan, K Vinod

    2017-08-11

    Thrombosis is caused by the activation of platelets at the site of ruptured atherosclerotic plaques. This activation involves engagement of G protein-coupled receptors (GPCR) on platelets that promote their aggregation. Although it is known that protein kinases and phosphatases modulate GPCR signaling, how serine/threonine phosphatases integrate with G protein signaling pathways is less understood. Because the subcellular localization and substrate specificity of the catalytic subunit of protein phosphatase 1 (PP1c) is dictated by PP1c-interacting proteins, here we sought to identify new PP1c interactors. GPCRs signal via the canonical heterotrimeric Gα and Gβγ subunits. Using a yeast two-hybrid screen, we discovered an interaction between PP1cα and the heterotrimeric G protein Gβ 1 subunit. Co-immunoprecipitation studies with epitope-tagged PP1c and Gβ 1 revealed that Gβ 1 interacts with the PP1c α, β, and γ1 isoforms. Purified PP1c bound to recombinant Gβ 1 -GST protein, and PP1c co-immunoprecipitated with Gβ 1 in unstimulated platelets. Thrombin stimulation of platelets induced the dissociation of the PP1c-Gβ 1 complex, which correlated with an association of PP1c with phospholipase C β3 (PLCβ3), along with a concomitant dephosphorylation of the inhibitory Ser 1105 residue in PLCβ3. siRNA-mediated depletion of GNB1 (encoding Gβ 1 ) in murine megakaryocytes reduced protease-activated receptor 4, activating peptide-induced soluble fibrinogen binding. Thrombin-induced aggregation was decreased in PP1cα -/- murine platelets and in human platelets treated with a small-molecule inhibitor of Gβγ. Finally, disruption of PP1c-Gβ 1 complexes with myristoylated Gβ 1 peptides containing the PP1c binding site moderately decreased thrombin-induced human platelet aggregation. These findings suggest that Gβ 1 protein enlists PP1c to modulate GPCR signaling in platelets.

  7. Molecular dynamics simulations of protein-tyrosine phosphatase 1B. I. Ligand-induced changes in the protein motions

    DEFF Research Database (Denmark)

    Peters, Günther H. J.; Frimurer, T.M.; Andersen, J.N.

    1999-01-01

    Activity of enzymes, such as protein tyrosine phosphatases (PTPs), is often associated with structural changes in the enzyme, resulting in selective and stereospecific reactions with the substrate. To investigate the effect of a substrate on the motions occurring in PTPs, we have performed...... molecular dynamics simulations of PTP1B and PTP1B complexed with a high-affinity peptide DADEpYL, where pY stands for phosphorylated tyrosine. The peptide sequence is derived from the epidermal growth factor receptor (EGFR(988-993)). Simulations were performed in water for 1 ns, and the concerted motions...... in the protein were analyzed using the essential dynamics technique. Our results indicate that the predominately internal motions in PTP1B occur in a subspace of only a few degrees of freedom. Upon substrate binding, the flexibility of the protein is reduced by similar to 10%. The largest effect is found...

  8. The protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation and increases sarcoplasmic/endoplasmic reticulum calcium ATPase 2 levels

    International Nuclear Information System (INIS)

    King, Taj D.; Gandy, Johanna C.; Bijur, Gautam N.

    2006-01-01

    The ubiquitously expressed protein glycogen synthase kinase-3 (GSK3) is constitutively active, however its activity is markedly diminished following phosphorylation of Ser21 of GSK3α and Ser9 of GSK3β. Although several kinases are known to phosphorylate Ser21/9 of GSK3, for example Akt, relatively much less is known about the mechanisms that cause the dephosphorylation of GSK3 at Ser21/9. In the present study KCl-induced plasma membrane depolarization of SH-SY5Y cells, which increases intracellular calcium concentrations caused a transient decrease in the phosphorylation of Akt at Thr308 and Ser473, and GSK3 at Ser21/9. Overexpression of the selective protein phosphatase-1 inhibitor protein, inhibitor-2, increased basal GSK3 phosphorylation at Ser21/9 and significantly blocked the KCl-induced dephosphorylation of GSK3β, but not GSK3α. The phosphorylation of Akt was not affected by the overexpression of inhibitor-2. GSK3 activity is known to affect sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) levels. Overexpression of inhibitor-2 or treatment of cells with the GSK3 inhibitors lithium and SB216763 increased the levels of SERCA2. These results indicate that the protein phosphatase-1/inhibitor-2 complex differentially regulates GSK3 dephosphorylation induced by KCl and that GSK3 activity regulates SERCA2 levels

  9. Xanthium strumarium as an Inhibitor of α-Glucosidase, Protein Tyrosine Phosphatase 1β, Protein Glycation and ABTS⁺ for Diabetic and Its Complication.

    Science.gov (United States)

    Hwang, Seung Hwan; Wang, Zhiqiang; Yoon, Ha Na; Lim, Soon Sung

    2016-09-16

    Phytochemical investigation of the natural products from Xanthium strumarium led to the isolation of fourteen compounds including seven caffeoylquinic acid (CQA) derivatives. The individual compounds were screened for inhibition of α-glucosidase, protein tyrosine phosphatase 1β (PTP1β), advanced glycation end products (AGEs), and ABTS⁺ radical scavenging activity using in vitro assays. Among the isolated compounds, methyl-3,5-di-caffeoyquinic acid exhibited significant inhibitory activity against α-glucosidase (18.42 μM), PTP1β (1.88 μM), AGEs (82.79 μM), and ABTS⁺ (6.03 μM). This effect was marked compared to that of the positive controls (acarbose 584.79 μM, sumarin 5.51 μM, aminoguanidine 1410.00 μM, and trolox 29.72 μM respectively). In addition, 3,5-di-O-CQA (88.14 μM) and protocatechuic acid (32.93 μM) had a considerable inhibitory effect against α-glucosidase and ABTS⁺. Based on these findings, methyl-3,5-di-caffeoyquinic acid was assumed to be potentially responsible for the anti-diabetic actions of X. strumarium.

  10. Xanthium strumarium as an Inhibitor of α-Glucosidase, Protein Tyrosine Phosphatase 1β, Protein Glycation and ABTS+ for Diabetic and Its Complication

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2016-09-01

    Full Text Available Phytochemical investigation of the natural products from Xanthium strumarium led to the isolation of fourteen compounds including seven caffeoylquinic acid (CQA derivatives. The individual compounds were screened for inhibition of α-glucosidase, protein tyrosine phosphatase 1β (PTP1β, advanced glycation end products (AGEs, and ABTS+ radical scavenging activity using in vitro assays. Among the isolated compounds, methyl-3,5-di-caffeoyquinic acid exhibited significant inhibitory activity against α-glucosidase (18.42 μM, PTP1β (1.88 μM, AGEs (82.79 μM, and ABTS+ (6.03 μM. This effect was marked compared to that of the positive controls (acarbose 584.79 μM, sumarin 5.51 μM, aminoguanidine 1410.00 μM, and trolox 29.72 μM respectively. In addition, 3,5-di-O-CQA (88.14 μM and protocatechuic acid (32.93 μM had a considerable inhibitory effect against α-glucosidase and ABTS+. Based on these findings, methyl-3,5-di-caffeoyquinic acid was assumed to be potentially responsible for the anti-diabetic actions of X. strumarium.

  11. Penostatin Derivatives, a Novel Kind of Protein Phosphatase 1B Inhibitors Isolated from Solid Cultures of the Entomogenous Fungus Isaria tenuipes

    Directory of Open Access Journals (Sweden)

    Yu-Peng Chen

    2014-01-01

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is implicated as a negative regulator of insulin receptor (IR signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. Therefore, small molecular inhibitors of PTP1B can be considered as an attractive approach for the design of new therapeutic agents of type II diabetes diseases. In a continuing search for new protein phosphatase inhibitors from fungi, we have isolated a new compound, named penostatin J (1, together with three known ones, penostatin C (2, penostatin A (3, and penostatin B (4, from cultures of the entomogenous fungus Isaria tenuipes. The structure of penostatin J (1 was elucidated by extensive spectroscopic analysis. We also demonstrate for the first time that penostatin derivatives exhibit the best PTP1B inhibitory action. These findings suggest that penostatin derivatives are a potential novel kind of PTP1B inhibitors.

  12. Nuclear localization of CPI-17, a protein phosphatase-1 inhibitor protein, affects histone H3 phosphorylation and corresponds to proliferation of cancer and smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Eto, Masumi, E-mail: masumi.eto@jefferson.edu [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kirkbride, Jason A.; Chugh, Rishika; Karikari, Nana Kofi [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Kim, Jee In [Department of Molecular Physiology and Biophysics, and Kimmel Cancer Center, Thomas Jefferson University, 1020 Locust Street, PA 19107 (United States); Cardiovascular Research Institute, Kyungpook National University School of Medicine, Daegu 700-422 (Korea, Republic of)

    2013-04-26

    Highlights: •Non-canonical roles of the myosin phosphatase inhibitor (CPI-17) were studied. •CPI-17 is localized in the nucleus of hyperplastic cancer and smooth muscle cells. •CPI-17 Ser12 phosphorylation may regulate the nuclear import. •CPI-17 regulates histone H3 phosphorylation and cell proliferation. •The nuclear CPI-17-PP1 axis plays a proliferative role in cells. -- Abstract: CPI-17 (C-kinase-activated protein phosphatase-1 (PP1) inhibitor, 17 kDa) is a cytoplasmic protein predominantly expressed in mature smooth muscle (SM) that regulates the myosin-associated PP1 holoenzyme (MLCP). Here, we show CPI-17 expression in proliferating cells, such as pancreatic cancer and hyperplastic SM cells. Immunofluorescence showed that CPI-17 was concentrated in nuclei of human pancreatic cancer (Panc1) cells. Nuclear accumulation of CPI-17 was also detected in the proliferating vascular SM cell culture and cells at neointima of rat vascular injury model. The N-terminal 21-residue tail domain of CPI-17 was necessary for the nuclear localization. Phospho-mimetic Asp-substitution of CPI-17 at Ser12 attenuated the nuclear import. CPI-17 phosphorylated at Ser12 was not localized at nuclei, suggesting a suppressive role of Ser12 phosphorylation in the nuclear import. Activated CPI-17 bound to all three isoforms of PP1 catalytic subunit in Panc1 nuclear extracts. CPI-17 knockdown in Panc1 resulted in dephosphorylation of histone H3 at Thr3, Ser10 and Thr11, whereas it had no effects on the phosphorylation of myosin light chain and merlin, the known targets of MLCP. In parallel, CPI-17 knockdown suppressed Panc1 proliferation. We propose that CPI-17 accumulated in the nucleus through the N-terminal tail targets multiple PP1 signaling pathways regulating cell proliferation.

  13. Role of protein phosphatase 1 in dephosphorylation of Ebola virus VP30 protein and its targeting for the inhibition of viral transcription.

    Science.gov (United States)

    Ilinykh, Philipp A; Tigabu, Bersabeh; Ivanov, Andrey; Ammosova, Tatiana; Obukhov, Yuri; Garron, Tania; Kumari, Namita; Kovalskyy, Dmytro; Platonov, Maxim O; Naumchik, Vasiliy S; Freiberg, Alexander N; Nekhai, Sergei; Bukreyev, Alexander

    2014-08-15

    The filovirus Ebola (EBOV) causes the most severe hemorrhagic fever known. The EBOV RNA-dependent polymerase complex includes a filovirus-specific VP30, which is critical for the transcriptional but not replication activity of EBOV polymerase; to support transcription, VP30 must be in a dephosphorylated form. Here we show that EBOV VP30 is phosphorylated not only at the N-terminal serine clusters identified previously but also at the threonine residues at positions 143 and 146. We also show that host cell protein phosphatase 1 (PP1) controls VP30 dephosphorylation because expression of a PP1-binding peptide cdNIPP1 increased VP30 phosphorylation. Moreover, targeting PP1 mRNA by shRNA resulted in the overexpression of SIPP1, a cytoplasm-shuttling regulatory subunit of PP1, and increased EBOV transcription, suggesting that cytoplasmic accumulation of PP1 induces EBOV transcription. Furthermore, we developed a small molecule compound, 1E7-03, that targeted a non-catalytic site of PP1 and increased VP30 dephosphorylation. The compound inhibited the transcription but increased replication of the viral genome and completely suppressed replication of EBOV in cultured cells. Finally, mutations of Thr(143) and Thr(146) of VP30 significantly inhibited EBOV transcription and strongly induced VP30 phosphorylation in the N-terminal Ser residues 29-46, suggesting a novel mechanism of regulation of VP30 phosphorylation. Our findings suggest that targeting PP1 with small molecules is a feasible approach to achieve dysregulation of the EBOV polymerase activity. This novel approach may be used for the development of antivirals against EBOV and other filovirus species. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Serine/threonine-protein phosphatase 1 α levels are paralleling olfactory memory formation in the CD1 mouse.

    Science.gov (United States)

    Winding, Christiana; Sun, Yanwei; Höger, Harald; Bubna-Littitz, Hermann; Pollak, Arnold; Schmidt, Peter; Lubec, Gert

    2011-06-01

    Although olfactory discrimination has already been studied in several mouse strains, data on protein levels linked to olfactory memory are limited. Wild mouse strains Mus musculus musculus, Mus musculus domesticus and CD1 laboratory outbred mice were tested in a conditioned odor preference task and trained to discriminate between two odors, Rose and Lemon, by pairing one odor with a sugar reward. Six hours following the final test, mice were sacrificed and olfactory bulbs (OB) were taken for gel-based proteomics analyses and immunoblotting. OB proteins were extracted, separated by 2-DE and quantified using specific software (Proteomweaver). Odor-trained mice showed a preference for the previously rewarded odor suggesting that conditioned odor preference occurred. In CD1 mice levels, one out of 482 protein spots was significantly increased in odor-trained mice as compared with the control group; it was in-gel digested by trypsin and chymotrypsin and analyzed by tandem mass spectrometry (nano-ESI-LC-MS/MS). The spot was unambiguously identified as serine/threonine-protein phosphatase PP1-α catalytic subunit (PP-1A) and differential levels observed in gel-based proteomic studies were verified by immunoblotting. PP-1A is a key signalling element in synaptic plasticity and memory processes and is herein shown to be paralleling olfactory discrimination representing olfactory memory. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    Science.gov (United States)

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  16. Mitogen-activated protein kinase phosphatase-1 modulates regional effects of injurious mechanical ventilation in rodent lungs.

    Science.gov (United States)

    Park, Moo Suk; He, Qianbin; Edwards, Michael G; Sergew, Amen; Riches, David W H; Albert, Richard K; Douglas, Ivor S

    2012-07-01

    Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H(2)O; 3 h) in supine or prone position. Dorsal-caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1(-/-) or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6-7 ml/kg; PEEP 3 cm H(2)O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1(-/-) mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Injurious ventilation induces MAPK in an MKP-1-dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB-dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation.

  17. Mitogen activated protein kinase phosphatase-1 prevents the development of tactile sensitivity in a rodent model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Ndong Christian

    2012-04-01

    Full Text Available Abstract Background Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of spinal MKP-1 will prevent the development of peripheral nerve-injury-induced hypersensitivity and p-p38 overexpression. Results We cloned rat spinal cord MKP-1 and optimize MKP-1 cDNA in vitro using transfections to BV-2 cells. We observed that in vitro overexpression of MKP-1 blocked lipopolysaccharide-induced phosphorylation of p38 (and other MAPKs as well as release of pro-algesic effectors (i.e., cytokines, chemokines, nitric oxide. Using this cDNA MKP-1 and a non-viral, in vivo nanoparticle transfection approach, we found that spinal cord overexpression of MKP-1 prevented development of peripheral nerve-injury-induced tactile hypersensitivity and reduced pro-inflammatory cytokines and chemokines and the phosphorylated form of p38. Conclusions Our results indicate that MKP-1, the natural regulator of p-p38, mediates resolution of the spinal cord pro-inflammatory milieu induced by peripheral nerve injury, resulting in prevention of chronic mechanical hypersensitivity. We propose that MKP-1 is a potential therapeutic target for pain treatment or prevention.

  18. Pharmacological inhibition of protein tyrosine phosphatase 1B: a promising strategy for the treatment of obesity and type 2 diabetes mellitus.

    Science.gov (United States)

    Panzhinskiy, E; Ren, J; Nair, S

    2013-01-01

    Obesity and metabolic syndrome represent major public health problems, and are the biggest preventable causes of death worldwide. Obesity is the leading risk factor for type 2 diabetes mellitus (T2DM), cardiovascular diseases and non-alcoholic fatty liver disease. Obesity-associated insulin resistance, which is characterized by reduced uptake and utilization of glucose in muscle, adipose and liver tissues, is a key predictor of metabolic syndrome and T2DM. With increasing prevalence of obesity in adults and children, the need to identify and characterize potential targets for treating metabolic syndrome is imminent. Emerging evidence from animal models, clinical studies and cell lines studies suggest that protein tyrosine phosphatase 1B (PTP1B), an enzyme that negatively regulates insulin signaling, is likely to be involved in the pathways leading to insulin resistance. PTP1B is tethered to the cytosolic surface of endoplasmic reticulum (ER), an organelle that is responsible for folding, modification, and trafficking of proteins. Recent evidence links the disruption of ER homeostasis, referred to as ER stress, to the pathogenesis of obesity and T2DM. PTP1B has been recognized as an important player linking ER stress and insulin resistance in obese subjects. This review highlights recent advances in the research related to the role of PTP1B in signal transduction processes implicated in pathophysiology of obesity and type 2 diabetes, and focuses on the potential therapeutic exploitation of PTP1B inhibitors for the management of these conditions.

  19. PDGF activates K-Cl cotransport through phosphoinositide 3-kinase and protein phosphatase-1 in primary cultures of vascular smooth muscle cells.

    Science.gov (United States)

    Zhang, Jing; Lauf, Peter K; Adragna, Norma C

    2005-07-15

    K-Cl cotransport (K-Cl COT, KCC) is an electroneutrally coupled movement of K and Cl present in most cells. In this work, we studied the pathways of regulation of K-Cl COT by platelet-derived growth factor (PDGF) in primary cultures of vascular smooth muscle cells (VSMCs). Wortmannin and LY 294002 blocked the PDGF-induced K-Cl COT activation, indicating that the phosphoinositide 3-kinase (PI 3-K) pathway is involved. However, PD 98059 had no effect on K-Cl COT activation by PDGF, suggesting that the mitogen-activated protein kinase pathway is not involved under the experimental conditions tested. Involvement of phosphatases was also examined. Sodium orthovanadate, cyclosporin A and okadaic acid had no effect on PDGF-stimulated K-Cl COT. Calyculin A blocked the PDGF-stimulated K-Cl COT by 60%, suggesting that protein phosphatase-1 (PP-1) is a mediator in the PDGF signaling pathway/s. In conclusion, our results indicate that the PDGF-mediated pathways of K-Cl COT regulation involve the signaling molecules PI 3-K and PP-1.

  20. Sulfone-stabilized carbanions for the reversible covalent capture of a posttranslationally-generated cysteine oxoform found in protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Parsons, Zachary D; Ruddraraju, Kasi Viswanatharaju; Santo, Nicholas; Gates, Kent S

    2016-06-15

    Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Geranylated 2-arylbenzofurans from Morus alba var. tatarica and their α-glucosidase and protein tyrosine phosphatase 1B inhibitory activities.

    Science.gov (United States)

    Zhang, Ya-Long; Luo, Jian-Guang; Wan, Chuan-Xing; Zhou, Zhong-Bo; Kong, Ling-Yi

    2014-01-01

    Ten new geranylated 2-arylbenzofuran derivatives, including two monoterpenoid 2-arylbenzofurans (1 and 2), two geranylated 2-arylbenzofuran enantiomers (3a and 3b), and six geranylated 2-arylbenzofurans (4-9), along with four known 2-arylbenzofurans (10-13) were isolated from the root bark of Morus alba var. tatarica. Their structures and relative configurations were established on the basis of spectroscopic data analysis. Compounds 3-7 with one asymmetric carbon at C-7″ were supposed to be enantiomeric mixtures confirmed by chiral HPLC analysis, and the absolute configurations of each enantiomer in 3-7 were determined by Rh2(OCOCF3)4-induced CD and Snatzke's method. The enantiomers with the substituting group at C-2' exhibited better resolutions on a Chiralpak AD-H column than those with the substituting group at C-4'. Compounds 1-7, 10, 11 and 13, showed α-glucosidase inhibitory activities with IC50 values of 11.9-131.9 μM, and compounds 1 and 9-13 inhibited protein tyrosine phosphatase 1B (PTP1B) with IC50 values of 7.9-38.1 μM. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Optimization of extraction parameters of PTP1β (protein tyrosine phosphatase 1β), inhibitory polyphenols, and anthocyanins from Zea mays L. using response surface methodology (RSM).

    Science.gov (United States)

    Hwang, Seung Hwan; Kwon, Shin Hwa; Wang, Zhiqiang; Kim, Tae Hyun; Kang, Young-Hee; Lee, Jae-Yong; Lim, Soon Sung

    2016-08-26

    Protein tyrosine phosphatase expressed in insulin-sensitive tissues (such as liver, muscle, and adipose tissue) has a key role in the regulation of insulin signaling and pathway activation, making protein tyrosine phosphatase a promising target for the treatment of type 2 diabetes mellitus and obesity and response surface methodology (RSM) is an effective statistical technique for optimizing complex processes using a multi-variant approach. In this study, Zea mays L. (Purple corn kernel, PCK) and its constituents were investigated for protein tyrosine phosphatase 1β (PTP1β) inhibitory activity including enzyme kinetic study and to improve total yields of anthocyanins and polyphenols, four extraction parameters, including temperature, time, solid-liquid ratio, and solvent volume, were optimized by RSM. Isolation of seven polyphenols and five anthocyanins was achieved by PTP1β assay. Among them, cyanidin-3-(6"malonylglucoside) and 3'-methoxyhirsutrin showed the highest PTP1β inhibition with IC50 values of 54.06 and 64.04 μM, respectively and 4.52 mg gallic acid equivalent/g (GAE/g) of total polyphenol content (TPC) and 43.02 mg cyanidin-3-glucoside equivalent/100 g (C3GE/100g) of total anthocyanin content (TAC) were extracted at 40 °C for 8 h with a 33 % solid-liquid ratio and a 1:15 solvent volume. Yields were similar to predictions of 4.58 mg GAE/g of TPC and 42.28 mg C3GE/100 g of TAC. These results indicated that PCK and 3'-methoxyhirsutrin and cyanidin-3-(6"malonylglucoside) might be active natural compounds and could be apply by optimizing of extraction process using response surface methodology.

  3. Deletion of protein tyrosine phosphatase 1b in proopiomelanocortin neurons reduces neurogenic control of blood pressure and protects mice from leptin- and sympatho-mediated hypertension.

    Science.gov (United States)

    Bruder-Nascimento, Thiago; Butler, Benjamin R; Herren, David J; Brands, Michael W; Bence, Kendra K; Belin de Chantemèle, Eric J

    2015-12-01

    Protein tyrosine phosphatase 1b (Ptp1b), which represses leptin signaling, is a promising therapeutic target for obesity. Genome wide deletion of Ptp1b, increases leptin sensitivity, protects mice from obesity and diabetes, but alters cardiovascular function by increasing blood pressure (BP). Leptin-control of metabolism is centrally mediated and involves proopiomelanocortin (POMC) neurons. Whether these neurons contribute to leptin-mediated increases in BP remain unclear. We hypothesized that increasing leptin signaling in POMC neurons with Ptp1b deletion will sensitize the cardiovascular system to leptin and enhance neurogenic control of BP. We analyzed the cardiovascular phenotype of Ptp1b+/+ and POMC-Ptp1b-/- mice, at baseline and after 7 days of leptin infusion or sympatho-activation with phenylephrine. POMCPtp1b deletion did not alter baseline cardiovascular hemodynamics (BP, heart rate) but reduced BP response to ganglionic blockade and plasma catecholamine levels that suggests a decreased neurogenic control of BP. In contrast, POMC-Ptp1b deletion increased vascular adrenergic reactivity and aortic α-adrenergic receptors expression. Chronic leptin treatment reduced vascular adrenergic reactivity and blunted diastolic and mean BP increases in POMC-Ptp1b-/- mice only. Similarly POMC-Ptp1b-/- mice exhibited a blunted increased in diastolic and mean BP accompanied by a gradual reduction in adrenergic reactivity in response to chronic vascular sympatho-activation with phenylephrine. Together these data rule out our hypothesis but suggest that deletion of Ptp1b in POMC neurons protects from leptin- and sympatho-mediated increases in BP. Vascular adrenergic desensitization appears as a protective mechanism against hypertension, and POMC-Ptp1b as a key therapeutic target for the treatment of metabolic and cardiovascular dysfunctions associated with obesity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  5. Inhibition of protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase by xanthones from Cratoxylum cochinchinense, and their kinetic characterization.

    Science.gov (United States)

    Li, Zuo Peng; Song, Yeong Hun; Uddin, Zia; Wang, Yan; Park, Ki Hun

    2018-02-01

    Cratoxylum cochinchinense displayed significant inhibition against protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase, both of which are key target enzymes to attenuate diabetes and obesity. The compounds responsible for both enzymes inhibition were identified as twelve xanthones (1-12) among which compounds 1 and 2 were found to be new ones. All of them simultaneously inhibited PTP1B with IC 50 s of (2.4-52.5 µM), and α-glucosidase with IC 50 values of (1.7-72.7 µM), respectively. Cratoxanthone A (3) and γ-mangostin (7) were estimated to be most active inhibitors against both PTP1B (IC 50  = 2.4 µM for 3, 2.8 µM for 7) and α-glucosidase (IC 50  = 4.8 µM for 3, 1.7 µM for 7). In kinetic studies, all isolated xanthones emerged to be mixed inhibitors of α-glucosidase, whereas they behaved as competitive inhibitors of PTP1B. In time dependent experiments, compound 3 showed isomerization inhibitory behavior with following kinetic parameters: K i app  = 2.4 µM; k 5  = 0.05001 µM -1  S -1 and k 6  = 0.02076 µM -1  S -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Therapeutic effects of the allosteric protein tyrosine phosphatase 1B inhibitor KY-226 on experimental diabetes and obesity via enhancements in insulin and leptin signaling in mice

    Directory of Open Access Journals (Sweden)

    Yuma Ito

    2018-05-01

    Full Text Available The anti-diabetic and anti-obesity effects of the allosteric protein tyrosine phosphatase 1B (PTP1B inhibitor 4-(biphenyl-4-ylmethylsulfanylmethyl-N-(hexane-1-sulfonylbenzoylamide (KY-226 were pharmacologically evaluated. KY-226 inhibited human PTP1B activity (IC50 = 0.28 μM, but did not exhibit peroxisome proliferator-activated receptor γ (PPARγ agonist activity. In rodent preadipocytes (3T3-L1, KY-226 up to 10 μM had no effects on adipocyte differentiation, whereas pioglitazone, a PPARγ agonist, markedly promoted it. In human hepatoma-derived cells (HepG2, KY-226 (0.3–10 μM increased the phosphorylated insulin receptor (pIR produced by insulin. In db/db mice, the oral administration of KY-226 (10 and 30 mg/kg/day, 4 weeks significantly reduced plasma glucose and triglyceride levels as well as hemoglobin A1c values without increasing body weight gain, while pioglitazone exerted similar effects with increases in body weight gain. KY-226 attenuated plasma glucose elevations in the oral glucose tolerance test. KY-226 also increased pIR and phosphorylated Akt in the liver and femoral muscle. In high-fat diet-induced obese mice, the oral administration of KY-226 (30 and 60 mg/kg/day, 4 weeks decreased body weight gain, food consumption, and fat volume gain with increases in phosphorylated STAT3 in the hypothalamus. In conclusion, KY-226 exerted anti-diabetic and anti-obesity effects by enhancing insulin and leptin signaling, respectively. Keywords: PTP1B inhibitor, Diabetes, Obesity, Allosteric inhibitor, db/db mouse

  7. Molecular mechanism of serine/threonine protein phosphatase 1 (PP1cα-PP1r7) in spermatogenesis of Toxocara canis.

    Science.gov (United States)

    Ma, Guang Xu; Zhou, Rong Qiong; Song, Zhen Hui; Zhu, Hong Hong; Zhou, Zuo Yong; Zeng, Yuan Qin

    2015-09-01

    Toxocariasis is one of the most important, but neglected, zoonoses, which is mainly caused by Toxocara canis. To better understand the role of serine/threonine protein phosphatase 1 (PP1) in reproductive processes of male adult T. canis, differential expression analysis was used to reveal the profiles of PP1 catalytic subunit α (PP1cα) gene Tc-stp-1 and PP1 regulatory subunit 7 (PP1r7) gene TcM-1309. Indirect fluorescence immunocytochemistry was carried out to determine the subcellular distribution of PP1cα. Double-stranded RNA interference (RNAi) assays were employed to illustrate the function and mechanism of PP1cα in male adult reproduction. Real-time quantitative PCR (qPCR) showed transcriptional consistency of Tc-stp-1 and TcM-1309 in sperm-producing germline tissues and localization research showed cytoplasmic distribution of PP1cα in sf9 cells, which indicated relevant involvements of PP1cα and PP1r7 in spermatogenesis. Moreover, spatiotemporal transcriptional differences of Tc-stp-1 were determined by gene knockdown analysis, which revealed abnormal morphologies and blocked meiotic divisions of spermatocytes by phenotypic aberration scanning, thereby highlighting the crucial involvement of PP1cα in spermatogenesis. These results revealed a PP1cα-PP1r7 mechanism by which PP1 regulates kinetochore-microtubule interactions in spermatogenesis and provided important clues to identify novel drug or vaccine targets for toxocariasis control. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Hepatic protein phosphatase 1 regulatory subunit 3B (Ppp1r3b) promotes hepatic glycogen synthesis and thereby regulates fasting energy homeostasis.

    Science.gov (United States)

    Mehta, Minal B; Shewale, Swapnil V; Sequeira, Raymond N; Millar, John S; Hand, Nicholas J; Rader, Daniel J

    2017-06-23

    Maintenance of whole-body glucose homeostasis is critical to glycemic function. Genetic variants mapping to chromosome 8p23.1 in genome-wide association studies have been linked to glycemic traits in humans. The gene of known function closest to the mapped region, PPP1R3B (protein phosphatase 1 regulatory subunit 3B), encodes a protein (G L ) that regulates glycogen metabolism in the liver. We therefore sought to test the hypothesis that hepatic PPP1R3B is associated with glycemic traits. We generated mice with either liver-specific deletion ( Ppp1r3b Δ hep ) or liver-specific overexpression of Ppp1r3b The Ppp1r3b deletion significantly reduced glycogen synthase protein abundance, and the remaining protein was predominantly phosphorylated and inactive. As a consequence, glucose incorporation into hepatic glycogen was significantly impaired, total hepatic glycogen content was substantially decreased, and mice lacking hepatic Ppp1r3b had lower fasting plasma glucose than controls. The concomitant loss of liver glycogen impaired whole-body glucose homeostasis and increased hepatic expression of glycolytic enzymes in Ppp1r3b Δ hep mice relative to controls in the postprandial state. Eight hours of fasting significantly increased the expression of two critical gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, above the levels in control livers. Conversely, the liver-specific overexpression of Ppp1r3b enhanced hepatic glycogen storage above that of controls and, as a result, delayed the onset of fasting-induced hypoglycemia. Moreover, mice overexpressing hepatic Ppp1r3b upon long-term fasting (12-36 h) were protected from blood ketone-body accumulation, unlike control and Ppp1r3b Δ hep mice. These findings indicate a major role for Ppp1r3b in regulating hepatic glycogen stores and whole-body glucose/energy homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.

    Science.gov (United States)

    Kandadi, Machender R; Panzhinskiy, Evgeniy; Roe, Nathan D; Nair, Sreejayan; Hu, Dahai; Sun, Aijun

    2015-02-01

    Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled

  10. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-01

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. PMID:27872190

  11. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  12. Chimeric design, synthesis, and biological assays of a new nonpeptide insulin-mimetic vanadium compound to inhibit protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Scior, Thomas; Guevara-García, José Antonio; Melendez, F J; Abdallah, Hassan H; Do, Quoc-Tuan; Bernard, Philippe

    2010-09-24

    Prior to its total synthesis, a new vanadium coordination compound, called TSAG0101, was computationally designed to inhibit the enzyme protein tyrosine phosphatase 1B (PTP1B). The PTP1B acts as a negative regulator of insulin signaling by blocking the active site where phosphate hydrolysis of the insulin receptor takes place. TSAG001, [V(V)O(2)(OH)(picolinamide)], was characterized by infrared (IR) and nuclear magnetic resonance (NMR) spectroscopy; IR: ν/cm(-1) 3,570 (NH), 1,627 (C=O, coordinated), 1,417 (C-N), 970/842 (O=V=O), 727 δ̣ (pyridine ring); (13)C NMR: 5 bands between 122 and 151 ppm and carbonyl C shifted to 180 ppm; and (1)H NMR: 4 broad bands from 7.6 to 8.2 ppm and NH(2) shifted to 8.8 ppm. In aqueous solution, in presence or absence of sodium citrate as a biologically relevant and ubiquitous chelator, TSAG0101 undergoes neither ligand exchange nor reduction of its central vanadium atom during 24 hours. TSAG0101 shows blood glucose lowering effects in rats but it produced no alteration of basal- or glucose-induced insulin secretion on β cells during in vitro tests, all of which excludes a direct mechanism evidencing the extrapancreatic nature of its activity. The lethal dose (LD(50)) of TSAG0101 was determined in Wistar mice yielding a value of 412 mg/kg. This value is one of the highest among vanadium compounds and classifies it as a mild toxicity agent when compared with literature data. Due to its nonsubstituted, small-sized scaffold design, its remarkable complex stability, and low toxicity; TSAG0101 should be considered as an innovative insulin-mimetic principle with promising properties and, therefore, could become a new lead compound for potential nonpeptide PTP1B inhibitors in antidiabetic drug research. In view of the present work, the inhibitory concentration (IC(50)) and extended solution stability will be tested.

  13. Mitogen-activated protein kinase phosphatase 1 (MKP-1) in macrophage biology and cardiovascular disease. A redox-regulated master controller of monocyte function and macrophage phenotype.

    Science.gov (United States)

    Kim, Hong Seok; Asmis, Reto

    2017-08-01

    MAPK pathways play a critical role in the activation of monocytes and macrophages by pathogens, signaling molecules and environmental cues and in the regulation of macrophage function and plasticity. MAPK phosphatase 1 (MKP-1) has emerged as the main counter-regulator of MAPK signaling in monocytes and macrophages. Loss of MKP-1 in monocytes and macrophages in response to metabolic stress leads to dysregulation of monocyte adhesion and migration, and gives rise to dysfunctional, proatherogenic monocyte-derived macrophages. Here we review the properties of this redox-regulated dual-specificity MAPK phosphatase and the role of MKP-1 in monocyte and macrophage biology and cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A P387L variant in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro

    DEFF Research Database (Denmark)

    Echwald, Søren M; Riis, Helle Bach; Vestergaard, Henrik

    2002-01-01

    In the present study, we tested the hypothesis that variability in the protein tyrosine phosphatase-1B (PTP-1B) gene is associated with type 2 diabetes. Using single-strand conformational polymorphism analysis, we examined cDNA of PTP-1B from 56 insulin-resistant patients with type 2 diabetes.......0012). In summary, a rare P387L variant of the PTP-1B gene is associated with a 3.7 (CI 1.26-10.93, P = 0.02) genotype relative risk of type 2 diabetes in the examined population of Danish Caucasian subjects and results in impaired in vitro serine phosphorylation of the PTP-1B peptide....

  15. Src homology domain 2-containing protein-tyrosine phosphatase-1 (SHP-1) binds and dephosphorylates G(alpha)-interacting, vesicle-associated protein (GIV)/Girdin and attenuates the GIV-phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway.

    Science.gov (United States)

    Mittal, Yash; Pavlova, Yelena; Garcia-Marcos, Mikel; Ghosh, Pradipta

    2011-09-16

    GIV (Gα-interacting vesicle-associated protein, also known as Girdin) is a bona fide enhancer of PI3K-Akt signals during a diverse set of biological processes, e.g. wound healing, macrophage chemotaxis, tumor angiogenesis, and cancer invasion/metastasis. We recently demonstrated that tyrosine phosphorylation of GIV by receptor and non-receptor-tyrosine kinases is a key step that is required for GIV to directly bind and enhance PI3K activity. Here we report the discovery that Src homology 2-containing phosphatase-1 (SHP-1) is the major protein-tyrosine phosphatase that targets two critical phosphotyrosines within GIV and antagonizes phospho-GIV-dependent PI3K enhancement in mammalian cells. Using phosphorylation-dephosphorylation assays, we demonstrate that SHP-1 is the major and specific protein-tyrosine phosphatase that catalyzes the dephosphorylation of tyrosine-phosphorylated GIV in vitro and inhibits ligand-dependent tyrosine phosphorylation of GIV downstream of both growth factor receptors and GPCRs in cells. In vitro binding and co-immunoprecipitation assays demonstrate that SHP-1 and GIV interact directly and constitutively and that this interaction occurs between the SH2 domain of SHP-1 and the C terminus of GIV. Overexpression of SHP-1 inhibits tyrosine phosphorylation of GIV and formation of phospho-GIV-PI3K complexes, and specifically suppresses GIV-dependent activation of Akt. Consistently, depletion of SHP-1 enhances peak tyrosine phosphorylation of GIV, which coincides with an increase in peak Akt activity. We conclude that SHP-1 antagonizes the action of receptor and non-receptor-tyrosine kinases on GIV and down-regulates the phospho-GIV-PI3K-Akt axis of signaling.

  16. Phactr3/scapinin, a member of protein phosphatase 1 and actin regulator (phactr family, interacts with the plasma membrane via basic and hydrophobic residues in the N-terminus.

    Directory of Open Access Journals (Sweden)

    Akihiro Itoh

    Full Text Available Proteins that belong to the protein phosphatase 1 and actin regulator (phactr family are involved in cell motility and morphogenesis. However, the mechanisms that regulate the actin cytoskeleton are poorly understood. We have previously shown that phactr3, also known as scapinin, localizes to the plasma membrane, including lamellipodia and membrane ruffles. In the present study, experiments using deletion and point mutants showed that the basic and hydrophobic residues in the N-terminus play crucial roles in the localization to the plasma membrane. A BH analysis (http://helixweb.nih.gov/bhsearch is a program developed to identify membrane-binding domains that comprise basic and hydrophobic residues in membrane proteins. We applied this program to phactr3. The results of the BH plot analysis agreed with the experimentally determined region that is responsible for the localization of phactr3 to the plasma membrane. In vitro experiments showed that the N-terminal itself binds to liposomes and acidic phospholipids. In addition, we showed that the interaction with the plasma membrane via the N-terminal membrane-binding sequence is required for phactr3-induced morphological changes in Cos7 cells. The membrane-binding sequence in the N-terminus is highly conserved in all members of the phactr family. Our findings may provide a molecular basis for understanding the mechanisms that allow phactr proteins to regulate cell morphogenesis.

  17. Effects of Src Kinase Inhibition on Expression of Protein Tyrosine Phosphatase 1B after Brain Hypoxia in a Piglet Animal Model

    Directory of Open Access Journals (Sweden)

    Dimitrios Angelis

    2017-01-01

    Full Text Available Background. Protein tyrosine phosphatases (PTPs in conjunction with protein tyrosine kinases (PTKs regulate cellular processes by posttranslational modifications of signal transduction proteins. PTP nonreceptor type 1B (PTP-1B is an enzyme of the PTP family. We have previously shown that hypoxia induces an increase in activation of a class of nonreceptor PTK, the Src kinases. In the present study, we investigated the changes that occur in the expression of PTP-1B in the cytosolic component of the brain of newborn piglets acutely after hypoxia as well as long term for up to 2 weeks. Methods. Newborn piglets were divided into groups: normoxia, hypoxia, hypoxia followed by 1 day and 15 days in FiO2 0.21, and hypoxia pretreated with Src kinase inhibitor PP2, prior to hypoxia followed by 1 day and 15 days. Hypoxia was achieved by providing 7% FiO2 for 1 hour and PTP-1B expression was measured via immunoblotting. Results. PTP-1B increased posthypoxia by about 30% and persisted for 2 weeks while Src kinase inhibition attenuated the expected PTP-1B-increased expression. Conclusions. Our study suggests that Src kinase mediates a hypoxia-induced increased PTP-1B expression.

  18. A plant small polypeptide is a novel component of DNA-binding protein phosphatase 1-mediated resistance to plum pox virus in Arabidopsis.

    Science.gov (United States)

    Castelló, María José; Carrasco, Jose Luis; Navarrete-Gómez, Marisa; Daniel, Jacques; Granot, David; Vera, Pablo

    2011-12-01

    DNA-binding protein phosphatases (DBPs) have been identified as a novel class of plant-specific regulatory factors playing a role in plant-virus interactions. NtDBP1 from tobacco (Nicotiana tabacum) was shown to participate in transcriptional regulation of gene expression in response to virus infection in compatible interactions, and AtDBP1, its closest relative in the model plant Arabidopsis (Arabidopsis thaliana), has recently been found to mediate susceptibility to potyvirus, one of the most speciose taxa of plant viruses. Here, we report on the identification of a novel family of highly conserved small polypeptides that interact with DBP1 proteins both in tobacco and Arabidopsis, which we have designated DBP-interacting protein 2 (DIP2). The interaction of AtDIP2 with AtDBP1 was demonstrated in vivo by bimolecular fluorescence complementation, and AtDIP2 was shown to functionally interfere with AtDBP1 in yeast. Furthermore, reducing AtDIP2 gene expression leads to increased susceptibility to the potyvirus Plum pox virus and to a lesser extent also to Turnip mosaic virus, whereas overexpression results in enhanced resistance. Therefore, we describe a novel family of conserved small polypeptides in plants and identify AtDIP2 as a novel host factor contributing to resistance to potyvirus in Arabidopsis.

  19. Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress

    Science.gov (United States)

    Delibegovic, Mirela; Zimmer, Derek; Kauffman, Caitlin; Rak, Kimberly; Hong, Eun-Gyoung; Cho, You-Ree; Kim, Jason K.; Kahn, Barbara B.; Neel, Benjamin G.; Bence, Kendra K.

    2009-01-01

    OBJECTIVE—The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B−/− mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B−/− mice are protected against high-fat diet–induced obesity and glucose intolerance, whereas muscle-specific PTP1B−/− mice have increased insulin sensitivity independent of changes in adiposity. Here we studied the role of liver PTP1B in glucose homeostasis and lipid metabolism. RESEARCH DESIGN AND METHODS—We analyzed body mass/adiposity, insulin sensitivity, glucose tolerance, and lipid metabolism in liver-specific PTP1B−/− and PTP1Bfl/fl control mice, fed a chow or high-fat diet. RESULTS—Compared with normal littermates, liver-specific PTP1B−/− mice exhibit improved glucose homeostasis and lipid profiles, independent of changes in adiposity. Liver-specific PTP1B−/− mice have increased hepatic insulin signaling, decreased expression of gluconeogenic genes PEPCK and G-6-Pase, enhanced insulin-induced suppression of hepatic glucose production, and improved glucose tolerance. Liver-specific PTP1B−/− mice exhibit decreased triglyceride and cholesterol levels and diminished expression of lipogenic genes SREBPs, FAS, and ACC. Liver-specific PTP1B deletion also protects against high-fat diet–induced endoplasmic reticulum stress response in vivo, as evidenced by decreased phosphorylation of p38MAPK, JNK, PERK, and eIF2α and lower expression of the transcription factors C/EBP homologous protein and spliced X box-binding protein 1. CONCLUSIONS—Liver PTP1B plays an important role in glucose and lipid metabolism, independent of alterations in adiposity. Inhibition of PTP1B in peripheral tissues may be useful for the treatment of metabolic syndrome and reduction of cardiovascular risk in addition to

  20. Protein tyrosine phosphatase-1B (PTP1B) helps regulate EGF-induced stimulation of S-phase entry in human corneal endothelial cells

    Science.gov (United States)

    Ishino, Yutaka; Zhu, Cheng; Harris, Deshea L.

    2008-01-01

    Purpose Human corneal endothelial cells (HCEC), particularly from older donors, only proliferate weakly in response to EGF. The protein tyrosine phosphatase, PTP1B, is known to negatively regulate EGF-induced signaling in several cell types by dephosphorylating the epidermal growth factor receptor (EGFR). The current studies were conducted to determine whether PTP1B plays a role in regulating cell cycle entry in HCEC in response to EGF stimulation. Methods Donor corneas were obtained from the National Disease Research Interchange and accepted for study based on established exclusion criteria. PTP1B was localized in the endothelium of ex vivo corneas and in cultured cells by immunocytochemistry. Western blot analysis verified PTP1B protein expression in HCEC and then compared the relative expression of EGFR and PTP1B in HCEC from young (60 years old). The effect of inhibiting the activity of PTP1B on S-phase entry was tested by comparing time-dependent BrdU incorporation in subconfluent HCEC incubated in the presence or absence of the PTP1B inhibitor, CinnGEL 2Me, before EGF stimulation. Results PTP1B was localized in a punctate pattern mainly within the cytoplasm of HCEC in ex vivo corneas and cultured cells. Western blots revealed the presence of three PTP1B-positive bands in HCEC and the control. Further western blot analysis showed no significant age-related difference in expression of EGFR (p=0.444>0.05); however, PTP1B expression was significantly higher in HCEC from older donors (p=0.024<0.05). Pre-incubation of HCEC with the PTP1B inhibitor significantly increased (p=0.019<0.05) the number of BrdU positive cells by 48 h after EGF stimulation. Conclusions Both immunolocalization and western blot studies confirmed that PTP1B is expressed in HCEC. Staining patterns strongly suggest that at least a subset of PTP1B is localized to the cytoplasm and most likely to the endoplasmic reticulum, the known site of EGFR/PTP1B interaction following EGF stimulation. PTP1B

  1. Mitogen activated protein kinase 6 and MAP kinase phosphatase 1 are involved in the response of Arabidopsis roots to L-glutamate.

    Science.gov (United States)

    López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo

    2018-03-01

    The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.

  2. The protein kinase SIK downregulates the polarity protein Par3

    DEFF Research Database (Denmark)

    Vanlandewijck, Michael; Dadras, Mahsa Shahidi; Lomnytska, Marta

    2018-01-01

    on Par3. Functionally, this mechanism impacts on tight junction downregulation. Furthermore, SIK contributes to the loss of epithelial polarity and examination of advanced and invasive human cancers of diverse origin displayed high levels of SIK expression and a corresponding low expression of Par3...

  3. Myeloid protein tyrosine phosphatase 1B (PTP1B) deficiency protects against atherosclerotic plaque formation in the ApoE-/- mouse model of atherosclerosis with alterations in IL10/AMPKα pathway.

    Science.gov (United States)

    Thompson, D; Morrice, N; Grant, L; Le Sommer, S; Ziegler, K; Whitfield, P; Mody, N; Wilson, H M; Delibegović, M

    2017-08-01

    Cardiovascular disease (CVD) is the most prevalent cause of mortality among patients with Type 1 or Type 2 diabetes, due to accelerated atherosclerosis. Recent evidence suggests a strong link between atherosclerosis and insulin resistance due to impaired insulin receptor (IR) signaling. Moreover, inflammatory cells, in particular macrophages, play a key role in pathogenesis of atherosclerosis and insulin resistance in humans. We hypothesized that inhibiting the activity of protein tyrosine phosphatase 1B (PTP1B), the major negative regulator of the IR, specifically in macrophages, would have beneficial anti-inflammatory effects and lead to protection against atherosclerosis and CVD. We generated novel macrophage-specific PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B). Mice were fed standard or pro-atherogenic diet, and body weight, adiposity (echoMRI), glucose homeostasis, atherosclerotic plaque development, and molecular, biochemical and targeted lipidomic eicosanoid analyses were performed. Myeloid-PTP1B knockout mice on atherogenic background (ApoE -/- /LysM-PTP1B) exhibited a striking improvement in glucose homeostasis, decreased circulating lipids and decreased atherosclerotic plaque lesions, in the absence of body weight/adiposity differences. This was associated with enhanced phosphorylation of aortic Akt, AMPKα and increased secretion of circulating anti-inflammatory cytokine interleukin-10 (IL-10) and prostaglandin E2 (PGE 2 ), without measurable alterations in IR phosphorylation, suggesting a direct beneficial effect of myeloid-PTP1B targeting. Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE -/- mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  4. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    Science.gov (United States)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  5. The investigation of Mitogen-Activated Protein kinase Phosphatase-1 as a potential pharmacological target in non-small cell lung carcinomas, assisted by non-invasive molecular imaging

    International Nuclear Information System (INIS)

    Tai, Cheng-Jeng; Lee, Horng-Mo; Deng, Win-Ping; Wu, Alexander TH; Chiou, Jeng-Feng; Jan, Hsun-Jin; Wei, Hon-Jian; Hsu, Chung-Huei; Lin, Che-Tong; Chiu, Wen-Ta; Wu, Cheng-Wen

    2010-01-01

    Invasiveness and metastasis are the most common characteristics of non small cell lung cancer (NSCLC) and causes of tumour-related morbidity and mortality. Mitogen-activated protein kinases (MAPKs) signalling pathways have been shown to play critical roles in tumorigenesis. However, the precise pathological role(s) of mitogen-activated protein kinase phosphatase-1 (MKP-1) in different cancers has been controversial such that the up-regulation of MKP-1 in different cancers does not always correlate to a better prognosis. In this study, we showed that the induction of MKP-1 lead to a significant retardation of proliferation and metastasis in NSCLC cells. We also established that rosiglitazone (a PPARγ agonist) elevated MKP-1 expression level in NSCLC cells and inhibited tumour metastasis. Both wildtype and dominant negative forms of MKP-1 were constitutively expressed in NSCLC cell line H441GL. The migration and invasion abilities of these cells were examined in vitro. MKP-1 modulating agents such as rosiglitazone and triptolide were used to demonstrate MKP-1's role in tumorigenesis. Bioluminescent imaging was utilized to study tumorigenesis of MKP-1 over-expressing H441GL cells and anti-metastatic effect of rosiglitazone. Over-expression of MKP-1 reduced NSCLC cell proliferation rate as well as cell invasive and migratory abilities, evident by the reduced expression levels of MMP-2 and CXCR4. Mice inoculated with MKP-1 over-expressing H441 cells did not develop NSCLC while their control wildtype H441 inoculated littermates developed NSCLC and bone metastasis. Pharmacologically, rosiglitazone, a peroxisome proliferator activated receptor-γ (PPARγ) agonist appeared to induce MKP-1 expression while reduce MMP-2 and CXCR4 expression. H441GL-inoculated mice receiving daily oral rosiglitazone treatment demonstrated a significant inhibition of bone metastasis when compared to mice receiving sham treatment. We found that rosiglitazone treatment impeded the ability

  6. Protein Phosphotyrosine Phosphatase 1B (PTP1B) in Calpain-dependent Feedback Regulation of Vascular Endothelial Growth Factor Receptor (VEGFR2) in Endothelial Cells: IMPLICATIONS IN VEGF-DEPENDENT ANGIOGENESIS AND DIABETIC WOUND HEALING.

    Science.gov (United States)

    Zhang, Yixuan; Li, Qiang; Youn, Ji Youn; Cai, Hua

    2017-01-13

    The VEGF/VEGFR2/Akt/eNOS/NO pathway is essential to VEGF-induced angiogenesis. We have previously discovered a novel role of calpain in mediating VEGF-induced PI3K/AMPK/Akt/eNOS activation through Ezrin. Here, we sought to identify possible feedback regulation of VEGFR2 by calpain via its substrate protein phosphotyrosine phosphatase 1B (PTP1B), and the relevance of this pathway to VEGF-induced angiogenesis, especially in diabetic wound healing. Overexpression of PTP1B inhibited VEGF-induced VEGFR2 and Akt phosphorylation in bovine aortic endothelial cells, while PTP1B siRNA increased both, implicating negative regulation of VEGFR2 by PTP1B. Calpain inhibitor ALLN induced VEGFR2 activation, which can be completely blocked by PTP1B overexpression. Calpain activation induced by overexpression or Ca/A23187 resulted in PTP1B cleavage, which can be blocked by ALLN. Moreover, calpain activation inhibited VEGF-induced VEGFR2 phosphorylation, which can be restored by PTP1B siRNA. These data implicate calpain/PTP1B negative feedback regulation of VEGFR2, in addition to the primary signaling pathway of VEGF/VEGFR2/calpain/PI3K/AMPK/Akt/eNOS. We next examined a potential role of PTP1B in VEGF-induced angiogenesis. Endothelial cells transfected with PTP1B siRNA showed faster wound closure in response to VEGF. Aortic discs isolated from PTP1B siRNA-transfected mice also had augmented endothelial outgrowth. Importantly, PTP1B inhibition and/or calpain overexpression significantly accelerated wound healing in STZ-induced diabetic mice. In conclusion, our data for the first time demonstrate a calpain/PTP1B/VEGFR2 negative feedback loop in the regulation of VEGF-induced angiogenesis. Modulation of local PTP1B and/or calpain activities may prove beneficial in the treatment of impaired wound healing in diabetes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. SH2-inositol phosphatase 1 negatively influences early megakaryocyte progenitors.

    Directory of Open Access Journals (Sweden)

    Lia E Perez

    Full Text Available The SH2-containing-5'inositol phosphatase-1 (SHIP influences signals downstream of cytokine/chemokine receptors that play a role in megakaryocytopoiesis, including thrombopoietin, stromal-cell-derived-Factor-1/CXCL-12 and interleukin-3. We hypothesize that SHIP might control megakaryocytopoiesis through effects on proliferation of megakaryocyte progenitors (MKP and megakaryocytes (MK.Herein, we report the megakaryocytic phenotype and MK functional assays of hematopoietic organs of two strains of SHIP deficient mice with deletion of the SHIP promoter/first exon or the inositol phosphatase domain. Both SHIP deficient strains exhibit a profound increase in MKP numbers in bone marrow (BM, spleen and blood as analyzed by flow cytometry (Lin(-c-Kit+CD41+ and functional assays (CFU-MK. SHIP deficient MKP display increased phosphorylation of Signal Transducers and Activators of Transcription 3 (STAT-3, protein kinase B (PKB/AKT and extracellular signal-regulated kinases (ERKs. Despite increased MKP content, total body number of mature MK (Lin(-c-kit(-CD41+ are not significantly changed as SHIP deficient BM contains reduced MK while spleen MK numbers are increased. Reduction of CXCR-4 expression in SHIP deficient MK may influence MK localization to the spleen instead of the BM. Endomitosis, process involved in MK maturation, was preserved in SHIP deficient MK. Circulating platelets and red blood cells are also reduced in SHIP deficient mice.SHIP may play an important role in regulation of essential signaling pathways that control early megakaryocytopoiesis in vivo.

  8. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  9. Role of amphipathic helix of a herpesviral protein in membrane deformation and T cell receptor downregulation.

    Directory of Open Access Journals (Sweden)

    Chan-Ki Min

    2008-11-01

    Full Text Available Lipid rafts are membrane microdomains that function as platforms for signal transduction and membrane trafficking. Tyrosine kinase interacting protein (Tip of T lymphotropic Herpesvirus saimiri (HVS is targeted to lipid rafts in T cells and downregulates TCR and CD4 surface expression. Here, we report that the membrane-proximal amphipathic helix preceding Tip's transmembrane (TM domain mediates lipid raft localization and membrane deformation. In turn, this motif directs Tip's lysosomal trafficking and selective TCR downregulation. The amphipathic helix binds to the negatively charged lipids and induces liposome tubulation, the TM domain mediates oligomerization, and cooperation of the membrane-proximal helix with the TM domain is sufficient for localization to lipid rafts and lysosomal compartments, especially the mutivesicular bodies. These findings suggest that the membrane-proximal amphipathic helix and TM domain provide HVS Tip with the unique ability to deform the cellular membranes in lipid rafts and to downregulate TCRs potentially through MVB formation.

  10. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  11. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  12. HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Lin Jie

    2010-04-01

    Full Text Available Abstract Background In our previous study, it was well defined that IGFBP7 was an important tumor suppressor gene in colorectal cancer (CRC. We aimed to uncover the downstream molecules responsible for IGFBP7's behaviour in this study. Methods Differentially expressed protein profiles between PcDNA3.1(IGFBP7-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE and mass spectrometry (MS identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay. Results Six unique proteins were found differentially expressed in PcDNA3.1(IGFBP7-transfected RKO cells, including albumin (ALB, 60 kDa heat shock protein(HSP60, Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2, beta subunit of phenylalanyl-tRNA synthetase(FARSB and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(IGFBP7-RKO cells. Conclusion HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC.

  13. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  14. Downregulation of bone morphogenetic protein receptor 2 promotes the development of neuroblastoma

    International Nuclear Information System (INIS)

    Cui, Ximao; Yang, Yili; Jia, Deshui; Jing, Ying; Zhang, Shouhua; Zheng, Shan; Cui, Long; Dong, Rui; Dong, Kuiran

    2017-01-01

    Neuroblastoma (NB) is the most common extracranial solid tumor of childhood. In this study, we examined the expression of bone morphogenetic protein receptor 2 (BMPR2) in primary NB and adjacent non-tumor samples (adrenal gland). BMPR2 expression was significantly downregulated in NB tissues, particularly in high-grade NB, and was inversely related to the expression of the NB differentiation markers ferritin and enolase. The significance of the downregulation was further explored in cultured NB cells. While enforced expression of BMPR2 decreased cell proliferation and colony-forming activity, shRNA-mediated knockdown of BMPR2 led to increased cell growth and clonogenicity. In mice, NB cells harboring BMPR2 shRNA showed significantly increased tumorigenicity compared with control cells. We also performed a retrospective analysis of NB patients and identified a significant positive correlation between tumor BMPR2 expression and overall survival. These findings suggest that BMPR2 may play an important role in the development of NB. - Highlights: • BMPR2 expression was downregulated in primary NB and was more signifcant in high grade NB. • BMPR2 expression was accompanied by the decrease of NB markers ferritin and enolase. • Enforced expression of BMPR2 decreased proliferation and colony formation ability of cultured NB cells. • Knockdown of BMPR2 led to increased cell growth, clonality and tumorigenicity in mice. • Patients with NB expressing higher level of BMPR2 had significant better overall survival than those with low level.

  15. Protein kinase B/Akt1 inhibits autophagy by down-regulating UVRAG expression

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wonseok; Ju, Ji-hyun; Lee, Kyung-min; Nam, KeeSoo; Oh, Sunhwa [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Shin, Incheol, E-mail: incheol@hanyang.ac.kr [Department of Life Science, College of Natural Science, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2013-02-01

    Autophagy, or autophagocytosis, is a selective intracellular degradative process involving the cell's own lysosomal apparatus. An essential component in cell development, homeostasis, repair and resistance to stress, autophagy may result in either cell death or survival. The targeted region of the cell is sequestered within a membrane structure, the autophagosome, for regulation of the catabolic process. A key factor in both autophagosome formation and autophagosome maturation is a protein encoded by the ultraviolet irradiation resistance-associated gene (UVRAG). Conversely, the serine/threonine-specific protein kinase B (PKB, also known as Akt), which regulates survival in various cancers, inhibits autophagy through mTOR activation. We found that Akt1 may also directly inhibit autophagy by down-regulating UVRAG both in a 293T transient transfection system and breast cancer cells stably expressing Akt1. The UVRAG with mutations at putative Akt1-phosphorylation sites were still inhibited by Akt1, and dominant-negative Akt1 also inhibited UVRAG expression, suggesting that Akt1 down-regulates UVRAG by a kinase activity-independent mechanism. We showed that Akt1 overexpression in MDA-MB-231 breast cancer cells down-regulated UVRAG transcription. Cells over-expressing Akt1 were more resistant than control cells to ultraviolet light-induced autophagy and exhibited the associated reduction in cell viability. Levels of the autophagosome indicator protein LC3B-II and mRFP-GFP-LC3 were reduced in cells that over-expressing Akt1. Inhibiting Akt1 by siRNA or reintroducing UVRAG gene rescued the level of LC3B-II in UV-irradiation. Altogether, these data suggest that Akt1 may inhibit autophagy by decreasing UVRAG expression, which also sensitizes cancer cells to UV irradiation.

  16. NSs protein of rift valley fever virus promotes posttranslational downregulation of the TFIIH subunit p62.

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-07-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.

  17. FSHD myoblasts fail to downregulate intermediate filament protein vimentin during myogenic differentiation.

    Directory of Open Access Journals (Sweden)

    Lipinski M.

    2011-10-01

    Full Text Available Facioscapulohumeral muscular dystrophy (FSHD is an autosomal dominant hereditary neuromuscular disorder. The clinical features of FSHD include weakness of the facial and shoulder girdle muscles followed by wasting of skeletal muscles of the pelvic girdle and lower extremities. Although FSHD myoblasts grown in vitro can be induced to differentiate into myotubes by serum starvation, the resulting FSHD myotubes have been shown previously to be morphologically abnormal. Aim. In order to find the cause of morphological anomalies of FSHD myotubes we compared in vitro myogenic differentiation of normal and FSHD myoblasts at the protein level. Methods. We induced myogenic differentiation of normal and FSHD myoblasts by serum starvation. We then compared protein extracts from proliferating myoblasts and differentiated myotubes using SDS-PAGE followed by mass spectrometry identification of differentially expressed proteins. Results. We demonstrated that the expression of vimentin was elevated at the protein and mRNA levels in FSHD myotubes as compared to normal myotubes. Conclusions. We demonstrate for the first time that in contrast to normal myoblasts, FSHD myoblasts fail to downregulate vimentin after induction of in vitro myogenic differentiation. We suggest that vimentin could be an easily detectable marker of FSHD myotubes

  18. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decrease in Rb protein levels. These results indicate that nutlin-3 can effectively inhibit muscle cell differentiation. - Highlights: • Nutlin-3 inhibits myoblast proliferation and prevents differentiation into myotubes. • Nutlin-3 increases MDM2 expression and down-regulates Rb protein levels. • This study has implication in nutlin-3 treatment of rhabdomyosarcomas.

  19. Natural polyphenols down-regulate universal stress protein in Mycobacterium tuberculosis: An in-silico approach

    Directory of Open Access Journals (Sweden)

    M Vijey Aanandhi

    2014-01-01

    Full Text Available Universal stress protein (USP is a novel target to overcome the tuberculosis resistance. Our present study enlightens the possibilities of some natural polyphenols as an antioxidant for USP. The study has shown some molecular simulations of some selected natural antioxidants with USP. We have considered USP (Rv1636 strain for homology modeling and the selected template was taken for the docking study. Curcumin, catechin, reservetrol has shown ARG 136 (1.8Ε hydrogen bonding and two ionic bonding with carboxyl group of curcumin with LEU 130 (3.3Ε and ASN 144 (3.4Ε respectively. INH was taken for the standard molecule to perform molecular simulation. It showed poor binding interaction with the target, that is, −5.18 kcal, and two hydrogen bonding with SER 140 (1.887Ε, ARG 147 (2.064Ε respectively. The study indicates possible new generation curcumin analogue for future therapy to down-regulate USP.

  20. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  1. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    Energy Technology Data Exchange (ETDEWEB)

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  2. Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance

    DEFF Research Database (Denmark)

    Fuentes, T; Ara, I; Guadalupe-Grau, A

    2010-01-01

    To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin...

  3. AMP-activated protein kinase phosphorylates CtBP1 and down-regulates its activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan; Choi, Soo-Youn; Kang, Byung-Hee; Lee, Soon-Min [National Creative Research Center for Epigenome Reprogramming Network, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Park, Hyung Soon; Kang, Gum-Yong; Bang, Joo Young [Center for Biomedical Mass Spectrometry, Diatech Korea Co., Ltd., Seoul (Korea, Republic of); Cho, Eun-Jung [National Research Laboratory for Chromatin Dynamics, College of Pharmacy, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Youn, Hong-Duk, E-mail: hdyoun@snu.ac.kr [National Creative Research Center for Epigenome Reprogramming Network, Departments of Biomedical Sciences and Biochemistry and Molecular Biology, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence and Technology, Seoul National University, Seoul (Korea, Republic of)

    2013-02-01

    Highlights: ► AMPK phosphorylates CtBP1 on serine 158. ► AMPK-mediated phosphorylation of CtBP1 causes the ubiquitination and nuclear export of CtBP1. ► AMPK downregulates the CtBP1-mediated repression of Bax transcription. -- Abstract: CtBP is a transcriptional repressor which plays a significant role in the regulation of cell proliferation and tumor progression. It was reported that glucose withdrawal causes induction of Bax due to the dissociation of CtBP from the Bax promoter. However, the precise mechanism involved in the regulation of CtBP still remains unclear. In this study, we found that an activated AMP-activated protein kinase (AMPK) phosphorylates CtBP1 on Ser-158 upon metabolic stresses. Moreover, AMPK-mediated phosphorylation of CtBP1 (S158) attenuates the repressive function of CtBP1. We also confirmed that triggering activation of AMPK by various factors resulted in an increase of Bax gene expression. These findings provide connections of AMPK with CtBP1-mediated regulation of Bax expression for cell death under metabolic stresses.

  4. Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells.

    Science.gov (United States)

    Nishimura, Yuri; Kitagishi, Yasuko; Yoshida, Hitomi; Okumura, Naoko; Matsuda, Satoru

    2011-01-01

    SIRT1 is a mammalian candidate molecule involved in longevity and diverse metabolic processes. The present study aimed to determine the effects of certain herbs and spices on SIRT1 expression. Human cell lines Daudi, Jurkat, U937 and K562 were cultured in RPMI-1640. Herb and spice powders were prepared and the supernatants were collected. RT-PCR was used to quantify the expression level of the gene. Protein samples were then analyzed by Western blotting. Western blotting revealed the down-regulation of SIRT1 protein expression in Daudi cells treated with extracts of black pepper or turmeric. On the other hand, the effect on the SIRT1 gene expression examined by reverse transcription polymerase chain reaction was unaltered. In conclusion, component(s) of certain herbs and spices may induce the down-regulation of SIRT1 protein.

  5. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells.

    Science.gov (United States)

    Subauste, M Cecilia; Ventura-Holman, Tereza; Du, Liqin; Subauste, Jose S; Chan, Shing-Leng; Yu, Victor C; Maher, Joseph F

    2009-12-01

    Evasion of apoptosis plays an important role in colon cancer progression. Following loss of the Apc tumor suppressor gene in mice, the gene encoding Fem1b is upregulated early in neoplastic intestinal epithelium. Fem1b is a pro-apoptotic protein that interacts with Fas, TNFR1 and Apaf-1, and increased expression of Fem1b induces apoptosis of cancer cells. Fem1b is a homolog of FEM-1, a protein in Caenorhabditis elegans that is negatively regulated by ubiquitination and proteasomal degradation. To study Fem1b regulation in colon cancer progression, we used apoptotis-sensitive SW480 cells, derived from a primary colon cancer, and their isogenic, apoptosis-resistant counterparts SW620 cells, derived from a subsequent metastatic lesion in the same patient. Treatment with proteasome inhibitor increased Fem1b protein levels in SW620 cells, but not in SW480 cells. In SW620 cells we found that endogenous Fem1b co-immunoprecipitates in complexes with RACK1, a protein known to mediate ubiquitination and proteasomal degradation of other pro-apoptotic proteins and to be upregulated in colon cancer. Full-length Fem1b, or the N-terminal region of Fem1b, associated with RACK1 when co-expressed in HEK293T cells, and RACK1 stimulated ubiquitination of Fem1b. RACK1 overexpression in SW620 cells led to downregulation of Fem1b protein levels. Conversely, downregulation of RACK1 led to upregulation of Fem1b protein levels, associated with induction of apoptosis, and this apoptosis was inhibited by blocking Fem1b protein upregulation. In conclusion, RACK1 downregulates levels of the pro-apoptotic protein Fem1b in metastatic, apoptosis-resistant colon cancer cells, which may promote apoptosis-resistance during progression of colon cancer.

  6. Downregulation of Checkpoint Protein Kinase 2 in the Urothelium of Healthy Male Tobacco Smokers.

    Science.gov (United States)

    Breyer, Johannes; Denzinger, Stefan; Hartmann, Arndt; Otto, Wolfgang

    2016-01-01

    With this letter to the editor we present for the first time a study on CHEK2 expression in normal urothelium of healthy male smokers, former smokers and non-smokers. We could show a statistically significant downregulation of this DNA repair gene in current smokers compared to non-smokers, suggesting that smoking downregulates CHEK2 in normal urothelium, probably associated with an early step in carcinogenesis of urothelial bladder carcinoma. © 2016 S. Karger AG, Basel.

  7. Agitation down-regulates immunoglobulin binding protein EibG expression in Shiga toxin-producing Escherichia coli (STEC.

    Directory of Open Access Journals (Sweden)

    Thorsten Kuczius

    Full Text Available Shiga toxin (Stx-producing Escherichia coli (STEC carrying eibG synthesize Escherichia coli immunoglobulin binding protein (EibG. EibG nonspecifically binds to immunoglobulins and tends to aggregate in multimers but is poorly expressed in wild-type strains. To study synthesis of the proteins and their regulation in the pathogens, we identified natural growth conditions that increased EibG synthesis. EibG proteins as well as corresponding mRNA were highly expressed under static growth conditions while shearing stress created by agitation during growth repressed protein synthesis. Further regulation effects were driven by reduced oxygen tension, and pH up-regulated EibG expression, but to a lesser extent than growth conditions while decreased temperature down-regulated EibG. Bacteria with increased EibG expression during static growth conditions showed a distinct phenotype with chain formation and biofilm generation, which disappeared with motion. High and low EibG expression was reversible indicating a process with up- and down-regulation of the protein expression. Our findings indicate that shear stress represses EibG expression and might reduce bacterial attachments to cells and surfaces.

  8. A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients

    Directory of Open Access Journals (Sweden)

    Marzia Vezzalini

    2017-06-01

    Full Text Available Abstract Background Protein tyrosine phosphatase receptor gamma (PTPRG is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML have been reported, only one polyclonal antibody (named chPTPRG has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2 to better define PTPRG protein downregulation in CML patients. Methods TPγ B9-2 specifically recognizes PTPRG (both human and murine by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells. After effective tyrosine kinase inhibitor (TKI treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the

  9. MAPK Phosphatase-1 Deficiency Exacerbates the Severity of Imiquimod-Induced Psoriasiform Skin Disease

    Directory of Open Access Journals (Sweden)

    Weiheng Zhao

    2018-03-01

    Full Text Available Persistent activation of mitogen-activated protein kinase (MAPK is believed to be involved in psoriasis pathogenesis. MAPK phosphatase-1 (MKP-1 is an important negative regulator of MAPK activity, but the cellular and molecular mechanisms of MKP-1 in psoriasis development are largely unknown. In this study, we found that the expression of MKP-1 was decreased in the imiquimod (IMQ-induced psoriasiform mouse skin. MKP-1-deficient (MKP-1−/− mice were highly susceptible to IMQ-induced skin inflammation, which was associated with increased production of inflammatory cytokines and chemokines. MKP-1 acted on both hematopoietic and non-hematopoietic cells to regulate psoriasis pathogenesis. MKP-1 deficiency in macrophages led to enhanced p38 activation and higher expression of interleukin (IL-1β, CXCL2, and S100a8 upon R848 stimulation. Moreover, MKP-1 deficiency in the non-hematopoietic compartments led to an enhanced IL-22 receptor signaling and higher expression of CXCL1 and CXCL2 upon IMQ treatment. Collectively, our data suggest a critical role for MKP-1 in the regulation of skin inflammation.

  10. SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma.

    Science.gov (United States)

    Tai, Wei-Tien; Hung, Man-Hsin; Chu, Pei-Yi; Chen, Yao-Li; Chen, Li-Ju; Tsai, Ming-Hsien; Chen, Min-Husan; Shiau, Chung-Wai; Boo, Yin-Pin; Chen, Kuen-Feng

    2016-04-19

    Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.

  11. Downregulation of protein kinase CK2 activity facilitates tumor necrosis factor-α-mediated chondrocyte death through apoptosis and autophagy.

    Directory of Open Access Journals (Sweden)

    Sung Won Lee

    Full Text Available Despite the numerous studies of protein kinase CK2, little progress has been made in understanding its function in chondrocyte death. Our previous study first demonstrated that CK2 is involved in apoptosis of rat articular chondrocytes. Recent studies have suggested that CK2 downregulation is associated with aging. Thus examining the involvement of CK2 downregulation in chondrocyte death is an urgently required task. We undertook this study to examine whether CK2 downregulation modulates chondrocyte death. We first measured CK2 activity in articular chondrocytes of 6-, 21- and 30-month-old rats. Noticeably, CK2 activity was downregulated in chondrocytes with advancing age. To build an in vitro experimental system for simulating tumor necrosis factor (TNF-α-induced cell death in aged chondrocytes with decreased CK2 activity, chondrocytes were co-treated with CK2 inhibitors and TNF-α. Viability assay demonstrated that CK2 inhibitors facilitated TNF-α-mediated chondrocyte death. Pulsed-field gel electrophoresis, nuclear staining, flow cytometry, TUNEL staining, confocal microscopy, western blot and transmission electron microscopy were conducted to assess cell death modes. The results of multiple assays showed that this cell death was mediated by apoptosis. Importantly, autophagy was also involved in this process, as supported by the appearance of a punctuate LC3 pattern and autophagic vacuoles. The inhibition of autophagy by silencing of autophage-related genes 5 and 7 as well as by 3-methyladenine treatment protected chondrocytes against cell death and caspase activation, indicating that autophagy led to the induction of apoptosis. Autophagic cells were observed in cartilage obtained from osteoarthritis (OA model rats and human OA patients. Our findings indicate that CK2 down regulation facilitates TNF-α-mediated chondrocyte death through apoptosis and autophagy. It should be clarified in the future if autophagy observed is a consequence

  12. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  13. Obstructive sleep apnea and intermittent hypoxia increase expression of dual specificity phosphatase 1.

    Science.gov (United States)

    Hoffmann, Michal S; Singh, Prachi; Wolk, Robert; Narkiewicz, Krzysztof; Somers, Virend K

    2013-12-01

    Dual specificity phosphatase 1 (DUSP1) inhibits mitogen activated protein kinase activity, and is activated by several stimuli such as sustained hypoxia, oxidative stress, and hormones. However, the effect of intermittent hypoxia is not known. The aim of this study was to evaluate the role of intermittent hypoxia on DUSP1 expression, and to validate its role in a human model of intermittent hypoxia, as seen in obstructive sleep apnea (OSA). OSA is characterized by recurrent episodes of hypoxemia/reoxygenation and is a known risk factor for cardiovascular morbidity. In-vitro studies using human coronary artery endothelial cells (HCAEC) and ex-vivo studies using white blood cells isolated from healthy and OSA subjects. Intermittent hypoxia induced DUSP1 expression in human coronary artery endothelial cells (HCAEC), and in granulocytes isolated from healthy human subjects. Functionally, DUSP1 increased the expression and activity of manganese superoxide dismutase (MnSOD) in HCAEC. Further, significant increases in DUSP1 mRNA from total blood, and in DUSP1 protein in mononuclear cells and granulocytes isolated from OSA subjects, were observed in the early morning hours after one night of intermittent hypoxemia due to untreated OSA. This early-morning OSA-induced augmentation of DUSP1 gene expression was attenuated by continuous positive airway pressure (CPAP) treatment of OSA. Intermittent hypoxia increases MnSOD activity via increased DUSP1 expression in HCAEC. Similarly, overnight intermittent hypoxemia in patients with OSA induces expression of DUSP1, which may mediate increases of MnSOD expression and activity. This may contribute significantly to neutralizing the effects of reactive oxygen species, a consequence of the intermittent hypoxemia/reperfusion elicited by OSA. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein.

    LENUS (Irish Health Repository)

    Elzinga, Baukje M

    2013-06-01

    Chronic Myeloid Leukemia (CML) is a disease of hematopoietic stem cells which harbor the chimeric gene Bcr-Abl. Expression levels of this constitutively active tyrosine kinase are critical for response to tyrosine kinase inhibitor treatment and also disease progression, yet the regulation of protein stability is poorly understood. We have previously demonstrated that imatinib can induce autophagy in Bcr-Abl expressing cells. Autophagy has been associated with the clearance of large macromolecular signaling complexes and abnormal proteins, however, the contribution of autophagy to the turnover of Bcr-Abl protein in imatinib treated cells is unknown. In this study, we show that following imatinib treatment, Bcr-Abl is sequestered into vesicular structures that co-localize with the autophagy marker LC3 or GABARAP. This association is inhibited by siRNA mediated knockdown of autophagy regulators (Beclin 1\\/ATG7). Pharmacological inhibition of autophagy also reduced Bcr-Abl\\/LC3 co-localization in both K562 and CML patient cells. Bcr-Abl protein expression was reduced with imatinib treatment. Inhibition of both autophagy and proteasome activity in imatinib treated cells was required to restore Bcr-Abl protein levels to those of untreated cells. This ability to down-regulate Bcr-Abl protein levels through the induction of autophagy may be an additional and important feature of the activity of imatinib.

  15. Sex-lethal enables germline stem cell differentiation by down-regulating Nanos protein levels during Drosophila oogenesis.

    Science.gov (United States)

    Chau, Johnnie; Kulnane, Laura Shapiro; Salz, Helen K

    2012-06-12

    Drosophila ovarian germ cells require Sex-lethal (Sxl) to exit from the stem cell state and to enter the differentiation pathway. Sxl encodes a female-specific RNA binding protein and in somatic cells serves as the developmental switch gene for somatic sex determination and X-chromosome dosage compensation. None of the known Sxl target genes are required for germline differentiation, leaving open the question of how Sxl promotes the transition from stem cell to committed daughter cell. We address the mechanism by which Sxl regulates this transition through the identification of nanos as one of its target genes. Previous studies have shown that Nanos protein is necessary for GSC self-renewal and is rapidly down-regulated in the daughter cells fated to differentiate in the adult ovary. We find that this dynamic expression pattern is limited to female germ cells and is under Sxl control. In the absence of Sxl, or in male germ cells, Nanos protein is continuously expressed. Furthermore, this female-specific expression pattern is dependent on the presence of canonical Sxl binding sites located in the nanos 3' untranslated region. These results, combined with the observation that nanos RNA associates with the Sxl protein in ovarian extracts and loss and gain of function studies, suggest that Sxl enables the switch from germline stem cell to committed daughter cell by posttranscriptional down-regulation of nanos expression. These findings connect sexual identity to the stem cell self-renewal/differentiation decision and highlight the importance of posttranscriptional gene regulatory networks in controlling stem cell behavior.

  16. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-02-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD) or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR)-mediated eukaryotic initiation factor (eIF)2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  17. Rift Valley fever virus NSs protein promotes post-transcriptional downregulation of protein kinase PKR and inhibits eIF2alpha phosphorylation.

    Directory of Open Access Journals (Sweden)

    Tetsuro Ikegami

    2009-02-01

    Full Text Available Rift Valley fever virus (RVFV (genus Phlebovirus, family Bunyaviridae is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, and fever and high rates of abortions in livestock. A nonstructural RVFV NSs protein inhibits the transcription of host mRNAs, including interferon-beta mRNA, and is a major virulence factor. The present study explored a novel function of the RVFV NSs protein by testing the replication of RVFV lacking the NSs gene in the presence of actinomycin D (ActD or alpha-amanitin, both of which served as a surrogate of the host mRNA synthesis suppression function of the NSs. In the presence of the host-transcriptional inhibitors, the replication of RVFV lacking the NSs protein, but not that carrying NSs, induced double-stranded RNA-dependent protein kinase (PKR-mediated eukaryotic initiation factor (eIF2alpha phosphorylation, leading to the suppression of host and viral protein translation. RVFV NSs promoted post-transcriptional downregulation of PKR early in the course of the infection and suppressed the phosphorylated eIF2alpha accumulation. These data suggested that a combination of RVFV replication and NSs-induced host transcriptional suppression induces PKR-mediated eIF2alpha phosphorylation, while the NSs facilitates efficient viral translation by downregulating PKR and inhibiting PKR-mediated eIF2alpha phosphorylation. Thus, the two distinct functions of the NSs, i.e., the suppression of host transcription, including that of type I interferon mRNAs, and the downregulation of PKR, work together to prevent host innate antiviral functions, allowing efficient replication and survival of RVFV in infected mammalian hosts.

  18. Unc-51 controls active zone density and protein composition by downregulating ERK signaling

    OpenAIRE

    Wairkar, Yogesh P.; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; DiAntonio, Aaron

    2009-01-01

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosoph...

  19. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats

    Science.gov (United States)

    The purpose of this investigation was to assess the influence of calorie restriction (CR) alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL), and intrahepatic triglycerides. Twelve-...

  20. NSs Protein of Rift Valley Fever Virus Promotes Posttranslational Downregulation of the TFIIH Subunit p62▿

    Science.gov (United States)

    Kalveram, Birte; Lihoradova, Olga; Ikegami, Tetsuro

    2011-01-01

    Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-β) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus. PMID:21543505

  1. Dual functions of Rift Valley fever virus NSs protein: inhibition of host mRNA transcription and post-transcriptional downregulation of protein kinase PKR.

    Science.gov (United States)

    Ikegami, Tetsuro; Narayanan, Krishna; Won, Sungyong; Kamitani, Wataru; Peters, C J; Makino, Shinji

    2009-09-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, is a negative-stranded RNA virus carrying a single-stranded, tripartite RNA genome. RVFV is an important zoonotic pathogen transmitted by mosquitoes and causes large outbreaks among ruminants and humans in Africa and the Arabian Peninsula. Human patients develop an acute febrile illness, followed by a fatal hemorrhagic fever, encephalitis, or ocular diseases. A viral nonstructural protein, NSs, is a major viral virulence factor. Past studies showed that NSs suppresses the transcription of host mRNAs, including interferon-beta mRNAs. Here we demonstrated that the NSs protein induced post-transcriptional downregulation of dsRNA-dependent protein kinase (PKR), to prevent phosphorylation of eIF2alpha and promoted viral translation in infected cells. These two biological activities of the NSs most probably have a synergistic effect in suppressing host innate immune functions and facilitate efficient viral replication in infected mammalian hosts.

  2. Lycopene Inhibits Metastasis of Human Liver Adenocarcinoma SK-Hep-1 Cells by Downregulation of NADPH Oxidase 4 Protein Expression.

    Science.gov (United States)

    Jhou, Bo-Yi; Song, Tuzz-Ying; Lee, Inn; Hu, Miao-Lin; Yang, Nae-Cherng

    2017-08-16

    NADPH oxidase 4 (NOX4), with the sole function to produce reactive oxygen species (ROS), can be a molecular target for disrupting cancer metastasis. Several studies have indicated that lycopene exhibited anti-metastatic actions in vitro and in vivo. However, the role of NOX4 in the anti-metastatic action of lycopene remains unknown. Herein, we first confirmed the anti-metastatic effect of lycopene (0.1-5 μM) on human liver adenocarcinoma SK-Hep-1 cells. We showed that lycopene significantly inhibited NOX4 protein expression, with the strongest inhibition of 64.3 ± 10.2% (P lycopene. Lycopene also significantly inhibited NOX4 mRNA expression, NOX activity, and intracellular ROS levels in SK-Hep-1 cells. We then determined the effects of lycopene on transforming growth factor β (TGF-β)-induced metastasis. We found that TGF-β (5 ng/mL) significantly increased migration, invasion, and adhesion activity, the intracellular ROS level, matrix metalloproteinase 9 (MMP-9) and MMP-2 activities, the level of NOX4 protein expression, and NOX activity. All these TGF-β-induced effects were antagonized by the incubation of SK-Hep-1 cells with lycopene (2.5 μM). Using transient transfection of siRNA against NOX4, we found that the downregulation of NOX4 could mimic lycopene by inhibiting cell migration and the activities of MMP-9 and MMP-2 during the incubation with or without TGF-β on SK-Hep-1 cells. The results demonstrate that the downregulation of NOX4 plays a crucial role in the anti-metastatic action of lycopene in SK-Hep-1 cells.

  3. Calorie Restricted High Protein Diets Downregulate Lipogenesis and Lower Intrahepatic Triglyceride Concentrations in Male Rats

    Directory of Open Access Journals (Sweden)

    Lee M. Margolis

    2016-09-01

    Full Text Available The purpose of this investigation was to assess the influence of calorie restriction (CR alone, higher-protein/lower-carbohydrate intake alone, and combined CR higher-protein/lower-carbohydrate intake on glucose homeostasis, hepatic de novo lipogenesis (DNL, and intrahepatic triglycerides. Twelve-week old male Sprague Dawley rats consumed ad libitum (AL or CR (40% restriction, adequate (10%, or high (32% protein (PRO milk-based diets for 16 weeks. Metabolic profiles were assessed in serum, and intrahepatic triglyceride concentrations and molecular markers of de novo lipogenesis were determined in liver. Independent of calorie intake, 32% PRO tended to result in lower homeostatic model assessment of insulin resistance (HOMA-IR values compared to 10% PRO, while insulin and homeostatic model assessment of β-cell function (HOMA-β values were lower in CR than AL, regardless of protein intake. Intrahepatic triglyceride concentrations were 27.4 ± 4.5 and 11.7 ± 4.5 µmol·g−1 lower (p < 0.05 in CR and 32% PRO compared to AL and 10% PRO, respectively. Gene expression of fatty acid synthase (FASN, stearoyl-CoA destaurase-1 (SCD1 and pyruvate dehydrogenase kinase, isozyme 4 (PDK4 were 45% ± 1%, 23% ± 1%, and 57% ± 1% lower (p < 0.05, respectively, in CR than AL, regardless of protein intake. Total protein of FASN and SCD were 50% ± 1% and 26% ± 1% lower (p < 0.05 in 32% PRO compared to 10% PRO, independent of calorie intake. Results from this investigation provide evidence that the metabolic health benefits associated with CR—specifically reduction in intrahepatic triglyceride content—may be enhanced by consuming a higher-protein/lower-carbohydrate diet.

  4. Podoplanin, novel 43-kd membrane protein of glomerular epithelial cells, is down-regulated in puromycin nephrosis.

    Science.gov (United States)

    Breiteneder-Geleff, S.; Matsui, K.; Soleiman, A.; Meraner, P.; Poczewski, H.; Kalt, R.; Schaffner, G.; Kerjaschki, D.

    1997-01-01

    Puromycin aminonucleoside nephrosis (PAN), a rat model of human minimal change nephropathy, is characterized by extensive flattening of glomerular epithelial cell (podocyte) foot processes and by severe proteinuria. For comparison of expression of glomerular membrane proteins of normal and PAN rats, a membrane protein fraction of isolated rat glomeruli was prepared and monoclonal antibodies were raised against it. An IgG-secreting clone designated LF3 was selected that specifically immunolabeled podocytes of normal but not of PAN rats. The antigen of LF3 IgG was identified as a 43-kd glycoprotein. Molecular cloning of its cDNA was performed in a delta gt11 expression library prepared from mRNA of isolated rat glomeruli. The predicted amino acid sequence indicated a 166-amino-acid integral membrane protein with a single membrane-spanning domain, two potential phosphorylation sites in its short cytoplasmic tail, and six potential O-glycosylation sites in the large ectodomain. High amino acid sequence identities were found to membrane glycoproteins of rat lung and bone and mouse thymus epithelial cells as well as to a phorbol-ester-induced protein in a mouse osteoblast cell line and to a canine influenza C virus receptor. In PAN, expression of this 43-kd protein was selectively reduced to < 30%, as determined by quantitative immunogold electron microscopy, immunoblotting, and Northern blotting. These data provide evidence that transcription of the 43-kd transmembrane podocyte glycoprotein is specifically down-regulated in PAN. To indicate that this protein could be associated with transformation of arborized foot processes to flat feet (Latin, pes planus) we have called it podoplanin. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 10 Figure 12 Figure 13 Figure 14 Figure 15 PMID:9327748

  5. Unc-51 controls active zone density and protein composition by downregulating ERK signaling.

    Science.gov (United States)

    Wairkar, Yogesh P; Toda, Hirofumi; Mochizuki, Hiroaki; Furukubo-Tokunaga, Katsuo; Tomoda, Toshifumi; Diantonio, Aaron

    2009-01-14

    Efficient synaptic transmission requires the apposition of neurotransmitter release sites opposite clusters of postsynaptic neurotransmitter receptors. Transmitter is released at active zones, which are composed of a large complex of proteins necessary for synaptic development and function. Many active zone proteins have been identified, but little is known of the mechanisms that ensure that each active zone receives the proper complement of proteins. Here we use a genetic analysis in Drosophila to demonstrate that the serine threonine kinase Unc-51 acts in the presynaptic motoneuron to regulate the localization of the active zone protein Bruchpilot opposite to glutamate receptors at each synapse. In the absence of Unc-51, many glutamate receptor clusters are unapposed to Bruchpilot, and ultrastructural analysis demonstrates that fewer active zones contain dense body T-bars. In addition to the presence of these aberrant synapses, there is also a decrease in the density of all synapses. This decrease in synaptic density and abnormal active zone composition is associated with impaired evoked transmitter release. Mechanistically, Unc-51 inhibits the activity of the MAP kinase ERK to promote synaptic development. In the unc-51 mutant, increased ERK activity leads to the decrease in synaptic density and the absence of Bruchpilot from many synapses. Hence, activated ERK negatively regulates synapse formation, resulting in either the absence of active zones or the formation of active zones without their proper complement of proteins. The Unc-51-dependent inhibition of ERK activity provides a potential mechanism for synapse-specific control of active zone protein composition and release probability.

  6. AMP-activated protein kinase downregulates Kv7.1 cell surface expression

    DEFF Research Database (Denmark)

    Andersen, Martin N; Krzystanek, Katarzyna; Jespersen, Thomas

    2012-01-01

    in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal...... microscopy that Kv7.1 is endocytosed upon initiation of the polarization process and sent for degradation by the lysosomal pathway. The internalization could be mimicked by pharmacological activation of the AMP-activated protein kinase (AMPK) using three different AMPK activators. We demonstrate...

  7. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  8. Antimicrobial activity of apple cider vinegar against Escherichia coli, Staphylococcus aureus and Candida albicans; downregulating cytokine and microbial protein expression.

    Science.gov (United States)

    Yagnik, Darshna; Serafin, Vlad; J Shah, Ajit

    2018-01-29

    The global escalation in antibiotic resistance cases means alternative antimicrobials are essential. The aim of this study was to investigate the antimicrobial capacity of apple cider vinegar (ACV) against E. coli, S. aureus and C. albicans. The minimum dilution of ACV required for growth inhibition varied for each microbial species. For C. albicans, a 1/2 ACV had the strongest effect, S. aureus, a 1/25 dilution ACV was required, whereas for E-coli cultures, a 1/50 ACV dilution was required (p < 0.05). Monocyte co-culture with microbes alongside ACV resulted in dose dependent downregulation of inflammatory cytokines (TNFα, IL-6). Results are expressed as percentage decreases in cytokine secretion comparing ACV treated with non-ACV treated monocytes cultured with E-coli (TNFα, 99.2%; IL-6, 98%), S. aureus (TNFα, 90%; IL-6, 83%) and C. albicans (TNFα, 83.3%; IL-6, 90.1%) respectively. Proteomic analyses of microbes demonstrated that ACV impaired cell integrity, organelles and protein expression. ACV treatment resulted in an absence in expression of DNA starvation protein, citrate synthase, isocitrate and malate dehydrogenases in E-coli; chaperone protein DNak and ftsz in S. aureus and pyruvate kinase, 6-phosphogluconate dehydrogenase, fructose bisphosphate were among the enzymes absent in C.albican cultures. The results demonstrate ACV has multiple antimicrobial potential with clinical therapeutic implications.

  9. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. Fifty-four adult male Wistar rats were randomly

  10. Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver

    NARCIS (Netherlands)

    Xu, Cui-Ping; Ji, Wen-Min; van den Brink, Gijs R.; Peppelenbosch, Maikel P.

    2006-01-01

    AIM: To characterize the expression and dynamic changes of bone morphogenetic protein (BMP)-2 in hepatocytes in the regenerating liver in rats after partial hepatectomy (PH), and examine the effects of BMP-2 on proliferation of human Huh7 hepatoma cells. METHODS: Fifty-four adult male Wistar rats

  11. Down-regulation of E protein activity augments an ILC2 differentiation program in the thymus

    Science.gov (United States)

    Innate lymphoid cells (ILCs) are important regulators in various immune responses. Current paradigm states that all newly-made ILCs originate from common lymphoid progenitors (CLP) in the bone marrow. Id2, an inhibitor of E protein transcription factors, is indispensable for ILC differentiation. Une...

  12. Down-regulation of honey bee IRS gene biases behavior toward food rich in protein.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2010-04-01

    Full Text Available Food choice and eating behavior affect health and longevity. Large-scale research efforts aim to understand the molecular and social/behavioral mechanisms of energy homeostasis, body weight, and food intake. Honey bees (Apis mellifera could provide a model for these studies since individuals vary in food-related behavior and social factors can be controlled. Here, we examine a potential role of peripheral insulin receptor substrate (IRS expression in honey bee foraging behavior. IRS is central to cellular nutrient sensing through transduction of insulin/insulin-like signals (IIS. By reducing peripheral IRS gene expression and IRS protein amount with the use of RNA interference (RNAi, we demonstrate that IRS influences foraging choice in two standard strains selected for different food-hoarding behavior. Compared with controls, IRS knockdowns bias their foraging effort toward protein (pollen rather than toward carbohydrate (nectar sources. Through control experiments, we establish that IRS does not influence the bees' sucrose sensory response, a modality that is generally associated with food-related behavior and specifically correlated with the foraging preference of honey bees. These results reveal a new affector pathway of honey bee social foraging, and suggest that IRS expressed in peripheral tissue can modulate an insect's foraging choice between protein and carbohydrate sources.

  13. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection.

    Science.gov (United States)

    An, Zhao; Qiao, Fan; Lu, Qijue; Ma, Ye; Liu, Yang; Lu, Fanglin; Xu, Zhiyun

    2017-12-01

    -regulation. ATG4B knockdown blocked IL-6-induced autophagy and α-SMA and SM22α degradation, while ATG4B overexpression partly replaced the function of IL-6 in human VSMCs. In conclusion, our study demonstrated that IL-6 downregulated expression of VSMCs contractile proteins α-SMA and SM22α via enhancing ATG4B-mediated autophagy in TAD.

  15. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  16. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  17. Activation of farnesoid X receptor downregulates monocyte chemoattractant protein-1 in murine macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangpeng; Zhang, Qian; Peng, Jiahe; Jiang, Chanjui; Zhang, Yan; Shen, Lili; Dong, Jinyu; Wang, Yongchao; Jiang, Yu, E-mail: yujiang0207@163.com

    2015-11-27

    Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays important roles in bile acids/lipid homeostasis and inflammation. Monocyte chemoattractant protein-1 (MCP-1) contributes to macrophage infiltration into body tissues during inflammation. Here we investigated whether FXR can regulate MCP-1 expression in murine macrophage. FXR activation down regulate MCP-1 mRNA and protein levels in ANA-1 and Raw264.7 cells. Luciferase reporter assay, Gel shift and Chromatin immunoprecipitation assays have revealed that the activated FXR bind to the FXR element located in −738 bp ∼  −723 bp in MCP-1 promoter. These results suggested that FXR may serve as a novel target for regulating MCP-1 levels for the inflammation related diseases therapies. - Highlights: • FXR is expressed in murine macrophage cell line. • FXR down regulates MCP-1 expression. • FXR binds to the DR4 in MCP-1 promoter.

  18. Obesity-induced down-regulation of the mitochondrial translocator protein (TSPO) impairs placental steroid production.

    Science.gov (United States)

    Lassance, Luciana; Haghiac, Maricela; Minium, Judi; Catalano, Patrick; Hauguel-de Mouzon, Sylvie

    2015-01-01

    Low concentrations of estradiol and progesterone are hallmarks of adverse pregnancy outcomes as is maternal obesity. During pregnancy, placental cholesterol is the sole source of sex steroids. Cholesterol trafficking is the limiting step in sex steroid biosynthesis and is mainly mediated by the translocator protein (TSPO), present in the mitochondrial outer membrane. The objective of the study was to investigate the effects of maternal obesity in placental sex steroid biosynthesis and TSPO regulation. One hundred forty-four obese (body mass index 30-35 kg/m(2)) and 90 lean (body mass index 19-25 kg/m(2)) pregnant women (OP and LP, respectively) recruited at scheduled term cesarean delivery. Placenta and maternal blood were collected. This study was conducted at MetroHealth Medical Center (Cleveland, Ohio). Maternal metabolic components (fasting glucose, insulin, leptin, estradiol, progesterone, and total cholesterol) and placental weight were measured. Placenta (mitochondria and membranes separated) and cord blood cholesterol values were verified. The expression and regulation of TSPO and mitochondrial function were analyzed. Plasma estradiol and progesterone concentrations were significantly lower (P < .04) in OP as compared with LP women. Maternal and cord plasma cholesterol were not different between groups. Placental citrate synthase activity and mitochondrial DNA, markers of mitochondrial density, were unchanged, but the mitochondrial cholesterol concentrations were 40% lower in the placenta of OP. TSPO gene and protein expressions were decreased 2-fold in the placenta of OP. In vitro trophoblast activation of the innate immune pathways with lipopolysaccharide and long-chain saturated fatty acids reduced TSPO expression by 2- to 3-fold (P < .05). These data indicate that obesity in pregnancy impairs mitochondrial steroidogenic function through the negative regulation of mitochondrial TSPO.

  19. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  20. Sonic Hedgehog Initiates Cochlear Hair Cell Regeneration through Downregulation of Retinoblastoma Protein

    Science.gov (United States)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596

  1. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    International Nuclear Information System (INIS)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Highlights: ► Shh activation in neonatal cochleae enhances sensory cell proliferation. ► Proliferating supporting cells can transdifferentiate into hair cells. ► Shh promotes proliferation by transiently modulating pRb activity. ► Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  2. Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Jing-Jing [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Dai, Yuan-Chang [Department of Pathology, Chiayi Christian Hospital, Chiayi, Taiwan (China); Lin, Yung-Lun; Chen, Yang-Yi; Lin, Wei-Han [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China); Chan, Hong-Lin [Institute of Bioinformatics and Structural Biology and Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan (China); Liu, Yi-Wen, E-mail: ywlss@mail.ncyu.edu.tw [Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi, Taiwan (China)

    2014-09-15

    Bladder cancer is highly recurrent following specific transurethral resection and intravesical chemotherapy, which has prompted continuing efforts to develop novel therapeutic agents and early-stage diagnostic tools. Specific changes in protein expression can provide a diagnostic marker. In our present study, we investigated changes in protein expression during urothelial carcinogenesis. The carcinogen BBN was used to induce mouse bladder tumor formation. Mouse bladder mucosa proteins were collected and analyzed by 2D electrophoresis from 6 to 20 weeks after commencing continuous BBN treatment. By histological examination, the connective layer of the submucosa showed gradual thickening and the number of submucosal capillaries gradually increased after BBN treatment. At 12-weeks after the start of BBN treatment, the urothelia became moderately dysplastic and tumors arose after 20-weeks of treatment. These induced bladder lesions included carcinoma in situ and connective tissue invasive cancer. In protein 2D analysis, the sequentially downregulated proteins from 6 to 20 weeks included GSTM1, L-lactate dehydrogenase B chain, keratin 8, keratin 18 and major urinary proteins 2 and 11/8. In contrast, the sequentially upregulated proteins identified were GSTO1, keratin 15 and myosin light polypeptide 6. Western blotting confirmed that GSTM1 and NQO-1 were decreased, while GSTO1 and Sp1 were increased, after BBN treatment. In human bladder cancer cells, 5-aza-2′-deoxycytidine increased the GSTM1 mRNA and protein expression. These data suggest that the downregulation of GSTM1 in the urothelia is a biomarker of bladder carcinogenesis and that this may be mediated by DNA CpG methylation. - Highlights: • GSTM1 and NQO-1 proteins decreased in the mouse bladder mucosa after BBN treatment. • BBN induced GSTO1 and Sp1 protein expression in the mouse bladder mucosa. • 5-Aza-2′-deoxycytidine increased GSTM1 mRNA and protein in human bladder cancer cell. • GSTM1

  3. Prolonged calorie restriction downregulates skeletal muscle mTORC1 signaling independent of dietary protein intake and associated microRNA expression

    Directory of Open Access Journals (Sweden)

    Lee M Margolis

    2016-10-01

    Full Text Available Short-term (5-10 days calorie restriction (CR downregulates muscle protein synthesis, with consumption of a high protein-based diet attenuating this decline. Benefit of increase protein intake is believed to be due to maintenance of amino acid-mediated anabolic signaling through the mechanistic target of rapamycin complex 1 (mTORC1, however, there is limited evidence to support this contention. The purpose of this investigation was to determine the effects of prolonged CR and high protein diets on skeletal muscle mTORC1 signaling and expression of associated microRNA (miR. 12-wk old male Sprague Dawley rats consumed ad libitum (AL or calorie restricted (CR; 40% adequate (10%, AIN-93M or high (32% protein milk-based diets for 16 weeks. Body composition was determined using dual energy X-ray absorptiometry and muscle protein content was calculated from muscle homogenate protein concentrations expressed relative to fat-free mass to estimate protein content. Western blot and RT-qPCR were used to determine mTORC1 signaling and mRNA and miR expression in fasted mixed gastrocnemius. Independent of dietary protein intake, muscle protein content was 38% lower (P < 0.05 in CR compared to AL. Phosphorylation and total Akt, mTOR, rpS6 and p70S6K were lower (P < 0.05 in CR versus AL, and total rpS6 was associated with muscle protein content (r = 0.64, r2 = 0.36. Skeletal muscle miR expression was not altered by either energy or protein intake. This study provides evidence that chronic CR attenuates muscle protein content by downregulating mTORC1 signaling. This response is independent of skeletal muscle miR and dietary protein.

  4. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  5. Downregulation of adaptor protein MyD88 compromises the angiogenic potential of B16 murine melanoma

    Science.gov (United States)

    Araya, Paula; Nuñez, Nicolás Gonzalo; Mena, Hebe Agustina; Bocco, José Luis; Negrotto, Soledad; Maccioni, Mariana

    2017-01-01

    The mechanisms that link inflammatory responses to cancer development remain a subject of intense investigation, emphasizing the need to better understand the cellular and molecular pathways that create a tumor promoting microenvironment. The myeloid differentiation primary response protein MyD88 acts as a main adaptor molecule for the signaling cascades initiated from Toll-like receptors (TLRs) and the interleukin 1 receptor (IL-1R). MyD88 has been shown to contribute to tumorigenesis in many inflammation-associated cancer models. In this study, we sought to better define the role of MyD88 in neoplastic cells using a murine melanoma model. Herein, we have demonstrated that MyD88 expression is required to maintain the angiogenic switch that supports B16 melanoma growth. By knocking down MyD88 we reduced TLR-mediated NF-κB activation with no evident effects over cell proliferation and survival. In addition, MyD88 downregulation was associated with a decrease of HIF1α levels and its target gene VEGF, in correlation with an impaired capability to induce capillary sprouting and tube formation of endothelial cells. Melanomas developed from cells lacking MyD88 showed an enhanced secretion of chemoattractant ligands such as CCL2, CXCL10 and CXCL1 and have an improved infiltration of macrophages to the tumor site. Our results imply that cell-autonomous signaling through MyD88 is required to sustain tumor growth and underscore its function as an important positive modulator of tumor angiogenesis. PMID:28662055

  6. Protein Tyrosine Phosphatase 1B Inhibitors from the Roots of Cudrania tricuspidata

    Directory of Open Access Journals (Sweden)

    Tran Hong Quang

    2015-06-01

    Full Text Available A chemical investigation of the methanol extract from the roots of Cudrania tricuspidata resulted in the isolation of 16 compounds, including prenylated xanthones 1–9 and flavonoids 10–16. Their structures were identified by NMR spectroscopy and mass spectrometry and comparisons with published data. Compounds 1–9 and 13–16 significantly inhibited PTP1B activity in a dose dependent manner, with IC50 values ranging from 1.9–13.6 μM. Prenylated xanthones showed stronger PTP1B inhibitory effects than the flavonoids, suggesting that they may be promising targets for the future discovery of novel PTP1B inhibitors. Furthermore, kinetic analyses indicated that compounds 1 and 13 inhibited PTP1B in a noncompetitive manner; therefore, they may be potential lead compounds in the development of anti-obesity and -diabetic agents.

  7. Down-regulation of Transducin-Like Enhancer of Split protein 4 in hepatocellular carcinoma promotes cell proliferation and epithelial-Mesenchymal-Transition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-cai; Xiao, Cui-cui; Li, Hua [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Tai, Yan; Zhang, Qi [Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou (China); Yang, Yang, E-mail: yysysu2@163.com [Department of Hepatic Surgery, 3rd Affiliated Hospital of Sun Yat-sen University, Guangzhou (China)

    2016-08-19

    Background: Transducin-Like Enhancer of Split protein 4 (TLE4) has been reported to be involved in some subsets of acute myeloid leukemia and colorectal cancer. In the present study, we aimed to explore the role of TLE4 in tumorigenesis and cancer progression in hepatocellular carcinoma (HCC). Methods: The expression pattern of TLE4 in HCC was determined by Western-blot and qRT-PCR, gain-of-function and loss-of-function was used to explore the biological role of TLE4 in HCC cells. A xenograft model was established to confirm its effects on proliferation. Results: The protein expression levels of TLE4 were significantly down-regulated in HCC tissues compared to matched adjacent normal liver tissues. In vitro, down-regulation of TLE4 in Huh7 or SMMC-7721 promoted cell proliferation and ectopical expression of TLE4 in Hep3B or Bel-7404 suppressed cell proliferation. In addition, the cell colony formation ability was enhanced after down-regulation of TLE4 expression in Huh-7 but suppressed after over-expression in Hep3B. Furthermore, down-regulation of TLE4 increased the cell invasion ability, as well as increased the expression level of Vimentin and decreased that of E-cadherin, indicating a phenotype of epithelial-mesenchymal transition (EMT) in HCC cells. On the contrary, ectopical expression of TLE4 in HCC cells decreased the cell invasion ability and inhibited EMT. In vivo, compared to control group, xenograft tumor volumes were significantly decreased in TLE4 overexpression group. Conclusions: These results demonstrated that TLE4 might play important regulatory roles in cellular proliferation and EMT process in HCC. - Highlights: • TLE4 is significantly down-regulated in HCC samples. • Down regulated of TLE4 in HCC cells promotes cell proliferation. • Down regulated of TLE4 in HCC cells promotes epithelial-to-mesenchymal transition.

  8. Downregulation of viral RNA translation by hepatitis C virus non-structural protein NS5A requires the poly(U/UC) sequence in the 3' UTR.

    Science.gov (United States)

    Hoffman, Brett; Li, Zhubing; Liu, Qiang

    2015-08-01

    Hepatitis C virus (HCV) non-structural protein 5A (NS5A) is essential for viral replication; however, its effect on HCV RNA translation remains controversial partially due to the use of reporters lacking the 3' UTR, where NS5A binds to the poly(U/UC) sequence. We investigated the role of NS5A in HCV translation using a monocistronic RNA containing a Renilla luciferase gene flanked by the HCV UTRs. We found that NS5A downregulated viral RNA translation in a dose-dependent manner. This downregulation required both the 5' and 3' UTRs of HCV because substitution of either sequence with the 5' and 3' UTRs of enterovirus 71 or a cap structure at the 5' end eliminated the effects of NS5A on translation. Translation of the HCV genomic RNA was also downregulated by NS5A. The inhibition of HCV translation by NS5A required the poly(U/UC) sequence in the 3' UTR as NS5A did not affect translation when it was deleted. In addition, we showed that, whilst the amphipathic α-helix of NS5A has no effect on viral translation, the three domains of NS5A can inhibit translation independently, also dependent on the presence of the poly(U/UC) sequence in the 3' UTR. These results suggested that NS5A downregulated HCV RNA translation through a mechanism involving the poly(U/UC) sequence in the 3' UTR.

  9. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection

    Directory of Open Access Journals (Sweden)

    Wei-Lian Tan

    2018-01-01

    Full Text Available Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  10. Comparative proteomics reveals that YK51, a 4-Hydroxypandurantin-A analogue, downregulates the expression of proteins associated with dengue virus infection.

    Science.gov (United States)

    Tan, Wei-Lian; Lee, Yean Kee; Ho, Yen Fong; Yusof, Rohana; Abdul Rahman, Noorsaadah; Karsani, Saiful Anuar

    2018-01-01

    Dengue is endemic throughout tropical and subtropical regions of the world. Currently, there is no clinically approved therapeutic drug available for this acute viral infection. Although the first dengue vaccine Dengvaxia has been approved for use in certain countries, it is limited to those without a previous dengue infection while the safety and efficacy of the vaccine in those elderly and younger children still need to be identified. Therefore, it is becoming increasingly important to develop therapeutics/drugs to combat dengue virus (DENV) infection. YK51 is a synthetic analogue of 4-Hydroxypandurantin A (a compound found in the crude extract of the rhizomes of Boesenbergia rotunda ) that has been extensively studied by our research group. It has been shown to possess outstanding antiviral activity due to its inhibitory activity against NS2B/NS3 DENV2 protease. However, it is not known how YK51 affects the proteome of DENV infected cells. Therefore, we performed a comparative proteomics analysis to identify changes in protein expression in DENV infected HepG2 cells treated with YK51. Classical two-dimensional gel electrophoresis followed by protein identification using tandem mass spectrometry was employed in this study. Thirty proteins were found to be down-regulated with YK51 treatment. In silico analysis predicted that the down-regulation of eight of these proteins may inhibit viral infection. Our results suggested that apart from inhibiting the NS2B/NS3 DENV2 protease, YK51 may also be causing the down-regulation of a number of proteins that may be responsible in, and/or essential to virus infection. However, functional characterization of these proteins will be necessary before we can conclusively determine their roles in DENV infection.

  11. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells

    International Nuclear Information System (INIS)

    Tong, Yuxin; Li, Yan; Gu, Hui; Wang, Chunyu; Liu, Funan; Shao, Yangguang; Li, Jiabin; Cao, Liu; Li, Feng

    2015-01-01

    ArgBP2 is an adapter protein that plays an important role in actin-dependent processes such as cell adhesion and migration. However, its function and regulation mechanisms in gastric cancer have not yet been investigated. Here, we showed the low expression of ArgBP2 mRNA level in gastric tumor samples and its repressive function in the proliferation, migration, and invasion of gastric cancer cells. Then, we cloned and identified ArgBP2 promoter and verified that MORC2 bound to the promoter. Moreover, we demonstrated that MORC2 enhanced the recruitment of EZH2, which promoted the tri-methylation of H3K27, leading to the transcriptional repression of ArgBP2. Our results might thus contribute to understanding the molecular mechanisms of ArgBP2 regulation and suggesting ArgBP2 as a potential therapeutic target for gastric cancer. - Highlights: • ArgBP2 inhibits proliferation, migration, and invasion of gastric cancer cells. • Identification of ArgBP2 promoter and its transcription factor MORC2. • EZH2 is required in MORC2 down-regulating ArgBP2 via histone methylation.

  12. Microchidia protein 2, MORC2, downregulates the cytoskeleton adapter protein, ArgBP2, via histone methylation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yuxin; Li, Yan [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China); Gu, Hui [Department of Key Laboratory of Health Ministry for Congenital Malformation Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004 (China); Wang, Chunyu [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China); Liu, Funan [Department of Surgical Oncology, The First Hospital of China Medical University, Shenyang, Liaoning 110001 (China); Shao, Yangguang; Li, Jiabin; Cao, Liu [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China); Li, Feng, E-mail: fli@mail.cmu.edu.cn [Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122 (China)

    2015-11-27

    ArgBP2 is an adapter protein that plays an important role in actin-dependent processes such as cell adhesion and migration. However, its function and regulation mechanisms in gastric cancer have not yet been investigated. Here, we showed the low expression of ArgBP2 mRNA level in gastric tumor samples and its repressive function in the proliferation, migration, and invasion of gastric cancer cells. Then, we cloned and identified ArgBP2 promoter and verified that MORC2 bound to the promoter. Moreover, we demonstrated that MORC2 enhanced the recruitment of EZH2, which promoted the tri-methylation of H3K27, leading to the transcriptional repression of ArgBP2. Our results might thus contribute to understanding the molecular mechanisms of ArgBP2 regulation and suggesting ArgBP2 as a potential therapeutic target for gastric cancer. - Highlights: • ArgBP2 inhibits proliferation, migration, and invasion of gastric cancer cells. • Identification of ArgBP2 promoter and its transcription factor MORC2. • EZH2 is required in MORC2 down-regulating ArgBP2 via histone methylation.

  13. Advanced glycation end products-modified proteins and oxidized LDL mediate down-regulation of leptin in mouse adipocytes via CD36

    International Nuclear Information System (INIS)

    Unno, Yuka; Sakai, Masakazu; Sakamoto, Yu-ichiro; Kuniyasu, Akihiko; Nakayama, Hitoshi; Nagai, Ryoji; Horiuchi, Seikoh

    2004-01-01

    Advanced glycation end products (AGE)-modified proteins as well as oxidized-LDL (Ox-LDL) undergo receptor-mediated endocytosis by CHO cells overexpressing CD36, a member of class B scavenger receptor family. The purpose of the present study was to examine the effects of glycolaldehyde-modified BSA (GA-BSA) as an AGE-ligand and Ox-LDL on leptin expression in adipocytes. GA-BSA decreased leptin expression at both protein and mRNA levels in 3T3-L1 adipocytes and mouse epididymal adipocytes. Ox-LDL showed a similar inhibitory effect on leptin expression in 3T3-L1 adipocytes, which effect was protected by N-acetylcysteine, a reactive oxygen species (ROS) inhibitor. Binding of 125 I-GA-BSA or 125 I-Ox-LDL to 3T3-L1 adipocytes and subsequent endocytic degradation were inhibited by a neutralizing anti-CD36 antibody. Furthermore, this antibody also suppressed Ox-LDL-induced leptin down-regulation. These results clarify that the interaction of GA-BSA and Ox-LDL with CD36 leads to down-regulation of leptin expression via ROS system(s) in 3T3-L1 adipocytes, suggesting that a potential link of AGE- and/or Ox-LDL-induced leptin down-regulation might be linked to insulin-sensitivity in metabolic syndrome

  14. Niclosamide, an anti-helminthic molecule, downregulates the retroviral oncoprotein Tax and pro-survival Bcl-2 proteins in HTLV-1-transformed T lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Di [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Yuan, Yunsheng [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai (China); Chen, Li [Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou (China); Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Liu, Xin; Belani, Chandra [Penn State Hershey Cancer Institute, Penn State University College of Medicine, Hershey, PA 17033 (United States); Cheng, Hua, E-mail: hcheng@ihv.umaryland.edu [Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Department Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2015-08-14

    Adult T cell leukemia and lymphoma (ATL) is a highly aggressive form of hematological malignancy and is caused by chronic infection of human T cell leukemia virus type 1 (HTLV-1). The viral genome encodes an oncogenic protein, Tax, which plays a key role in transactivating viral gene transcription and in deregulating cellular oncogenic signaling to promote survival, proliferation and transformation of virally infected T cells. Hence, Tax is a desirable therapeutic target, particularly at early stage of HTLV-1-mediated oncogenesis. We here show that niclosamide, an anti-helminthic molecule, induced apoptosis of HTLV-1-transformed T cells. Niclosamide facilitated degradation of the Tax protein in proteasome. Consistent with niclosamide-mediated Tax degradation, this compound inhibited activities of MAPK/ERK1/2 and IκB kinases. In addition, niclosamide downregulated Stat3 and pro-survival Bcl-2 family members such as Mcl-1 and repressed the viral gene transcription of HTLV-1 through induction of Tax degradation. Since Tax, Stat3 and Mcl-1 are crucial molecules for promoting survival and growth of HTLV-1-transformed T cells, our findings demonstrate a novel mechanism of niclosamide in inducing Tax degradation and downregulating various cellular pro-survival molecules, thereby promoting apoptosis of HTLV-1-associated leukemia cells. - Highlights: • Niclosamide is a promising therapeutic candidate for adult T cell leukemia. • Niclosamide employs a novel mechanism through proteasomal degradation of Tax. • Niclosamide downregulates certain cellular pro-survival molecules.

  15. Myelin down-regulates myelin phagocytosis by microglia and macrophages through interactions between CD47 on myelin and SIRPα (signal regulatory protein-α on phagocytes

    Directory of Open Access Journals (Sweden)

    Reichert Fanny

    2011-03-01

    Full Text Available Abstract Background Traumatic injury to axons produces breakdown of axons and myelin at the site of the lesion and then further distal to this where Wallerian degeneration develops. The rapid removal of degenerated myelin by phagocytosis is advantageous for repair since molecules in myelin impede regeneration of severed axons. Thus, revealing mechanisms that regulate myelin phagocytosis by macrophages and microglia is important. We hypothesize that myelin regulates its own phagocytosis by simultaneous activation and down-regulation of microglial and macrophage responses. Activation follows myelin binding to receptors that mediate its phagocytosis (e.g. complement receptor-3, which has been previously studied. Down-regulation, which we test here, follows binding of myelin CD47 to the immune inhibitory receptor SIRPα (signal regulatory protein-α on macrophages and microglia. Methods CD47 and SIRPα expression was studied by confocal immunofluorescence microscopy, and myelin phagocytosis by ELISA. Results We first document that myelin, oligodendrocytes and Schwann cells express CD47 without SIRPα and further confirm that microglia and macrophages express both CD47 and SIRPα. Thus, CD47 on myelin can bind to and subsequently activate SIRPα on phagocytes, a prerequisite for CD47/SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis by itself. We then demonstrate that phagocytosis of CD47+/+ myelin is augmented when binding between myelin CD47 and SIRPα on phagocytes is blocked by mAbs against CD47 and SIRPα, indicating that down-regulation of phagocytosis indeed depends on CD47-SIRPα binding. Further, phagocytosis in serum-free medium of CD47+/+ myelin is augmented after knocking down SIRPα levels (SIRPα-KD in phagocytes by lentiviral infection with SIRPα-shRNA, whereas phagocytosis of myelin that lacks CD47 (CD47-/- is not. Thus, myelin CD47 produces SIRPα-dependent down-regulation of CD47+/+ myelin phagocytosis in phagocytes

  16. Downregulation of tight junction-associated MARVEL protein marvelD3 during epithelial-mesenchymal transition in human pancreatic cancer cells.

    Science.gov (United States)

    Kojima, Takashi; Takasawa, Akira; Kyuno, Daisuke; Ito, Tatsuya; Yamaguchi, Hiroshi; Hirata, Koichi; Tsujiwaki, Mitsuhiro; Murata, Masaki; Tanaka, Satoshi; Sawada, Norimasa

    2011-10-01

    The novel tight junction protein marvelD3 contains a conserved MARVEL (MAL and related proteins for vesicle trafficking and membrane link) domain like occludin and tricellulin. However, little is yet known about the detailed role and regulation of marvelD3 in normal epithelial cells and cancer cells, including pancreatic cancer. In the present study, we investigated marvelD3 expression in well and poorly differentiated human pancreatic cancer cell lines and normal pancreatic duct epithelial cells in which the hTERT gene was introduced into human pancreatic duct epithelial cells in primary culture, and the changes of marvelD3 during Snail-induced epithelial-mesenchymal transition (EMT) under hypoxia, TGF-β treatment and knockdown of FOXA2 in well differentiated pancreatic cancer HPAC cells. MarvelD3 was transcriptionally downregulated in poorly differentiated pancreatic cancer cells and during Snail-induced EMT of pancreatic cancer cells in which Snail was highly expressed and the fence function downregulated, whereas it was maintained in well differentiated human pancreatic cancer cells and normal pancreatic duct epithelial cells. Depletion of marvelD3 by siRNAs in HPAC cells resulted in downregulation of barrier functions indicated as a decrease in transepithelial electric resistance and an increase of permeability to fluorescent dextran tracers, whereas it did not affect fence function of tight junctions. In conclusion, marvelD3 is transcriptionally downregulated in Snail-induced EMT during the progression for the pancreatic cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. S-phase Specific Downregulation of Human O6-Methylguanine DNA Methyltransferase (MGMT and its Serendipitous Interactions with PCNA and p21cip1 Proteins in Glioma Cells

    Directory of Open Access Journals (Sweden)

    AGM Mostofa

    2018-04-01

    Full Text Available Whether the antimutagenic DNA repair protein MGMT works solo in human cells and if it has other cellular functions is not known. Here, we show that human MGMT associates with PCNA and in turn, with the cell cycle inhibitor, p21cip1 in glioblastoma and other cancer cell lines. MGMT protein was shown to harbor a nearly perfect PCNA-Interacting Protein (PIP box motif. Isogenic p53-null H1299 cells were engineered to express the p21 protein by two different procedures. Reciprocal immunoprecipitation/western blotting, Far-western blotting, and confocal microscopy confirmed the specific association of MGMT with PCNA and the ability of p21 to strongly disrupt the MGMT-PCNA complexes in tumor cells. Alkylation DNA damage resulted in a greater colocalization of MGMT and PCNA proteins, particularly in HCT116 cells deficient in p21 expression. p21 expression in isogenic cell lines directly correlated with markedly higher levels of MGMT mRNA, protein, activity and greater resistance to alkylating agents. In other experiments, four glioblastoma cell lines synchronized at the G1/S phase using either double thymidine or thymidine-mimosine blocks and subsequent cycling consistently showed a loss of MGMT protein at mid- to late S-phase, irrespective of the cell line, suggesting such a downregulation is fundamental to cell cycle control. MGMT protein was also specifically degraded in extracts from S-phase cells and evidence strongly suggested the involvement of PCNA-dependent CRL4Cdt2 ubiquitin-ligase in the reaction. Overall, these data provide the first evidence for non-repair functions of MGMT in cell cycle and highlight the involvement of PCNA in MGMT downregulation, with p21 attenuating the process.

  18. Silica nanoparticles induce multinucleation through activation of PI3K/Akt/GSK-3β pathway and downregulation of chromosomal passenger proteins in L-02 cells

    Science.gov (United States)

    Geng, Weijia; Li, Yang; Yu, Yongbo; Yu, Yang; Duan, Junchao; Jiang, Lizhen; Li, Qiuling; Sun, Zhiwei

    2016-04-01

    Silica nanoparticles (SNPs) are applicable in various fields due to their unique physicochemical characteristics. However, concerns over their potential adverse effects have been raised. In our previous studies, we reported that SNPs could induce abnormal high incidence of multinucleation. The aim of this study is to further investigate the mechanisms of multinucleation induced by SNPs (68 nm) in human normal liver L-02 cells (L-02 cells). In order to determine the cytotoxicity of SNPs, MTT assay was performed, and the cell viability was decreased in a dose-dependent manner. The intracellular reactive oxygen species (ROS) detected by flow cytometry and multinucleation observed by Giemsa stain showed that ROS generation and rate of multinucleated cells increased after SNPs exposure. N-acetyl-cysteine (NAC), a glutathione precursor against SNP-induced toxicity, was used as a ROS inhibitor to elucidate the relationship between ROS and multinucleation. The presence of NAC resulted in inhibition of both ROS generation and rate of multinucleation. Moreover, Western blot analysis showed that the protein levels of Cdc20, Aurora B, and Survivin were down-regulated, and the PI3K/Akt/GSK-3β pathway was activated by SNPs. In conclusion, our findings strongly suggested that multinucleation induced by SNPs was related to PI3K/Akt/GSK-3β signal pathway activation and downregulation of G2/M phase-related protein and chromosomal passenger proteins.

  19. 17-Allylamino-17-demethoxygeldanamycin induces downregulation of critical Hsp90 protein clients and results in cell cycle arrest and apoptosis of human urinary bladder cancer cells

    International Nuclear Information System (INIS)

    Karkoulis, Panagiotis K; Stravopodis, Dimitrios J; Margaritis, Lukas H; Voutsinas, Gerassimos E

    2010-01-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG), a benzoquinone ansamycin antibiotic, specifically targets heat shock protein 90 (Hsp90) and interferes with its function as a molecular chaperone that maintains the structural and functional integrity of various protein clients involved in cellular signaling. In this study, we have investigated the effect of 17-AAG on the regulation of Hsp90-dependent signaling pathways directly implicated in cell cycle progression, survival and motility of human urinary bladder cancer cell lines. We have used MTT-based assays, FACS analysis, Western blotting, semi-quantitative RT-PCR, immunocytochemistry and scratch-wound assay in RT4, RT112 and T24 human urinary bladder cancer cell lines. We have demonstrated that, upon 17-AAG treatment, bladder cancer cells are arrested in the G1 phase of the cell cycle and eventually undergo apoptotic cell death in a dose-dependent manner. Furthermore, 17-AAG administration was shown to induce a pronounced downregulation of multiple Hsp90 protein clients and other downstream effectors, such as IGF-IR, Akt, IKK-α, IKK-β, FOXO1, ERK1/2 and c-Met, resulting in sequestration-mediated inactivation of NF-κB, reduced cell proliferation and decline of cell motility. In total, we have clearly evinced a dose-dependent and cell type-specific effect of 17-AAG on cell cycle progression, survival and motility of human bladder cancer cells, due to downregulation of multiple Hsp90 clients and subsequent disruption of signaling integrity

  20. Silica nanoparticles induce multinucleation through activation of PI3K/Akt/GSK-3β pathway and downregulation of chromosomal passenger proteins in L-02 cells

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Weijia; Li, Yang; Yu, Yongbo; Yu, Yang; Duan, Junchao; Jiang, Lizhen; Li, Qiuling; Sun, Zhiwei, E-mail: zwsun@ccmu.edu.cn, E-mail: zwsun@hotmail.com [Capital Medical University, School of Public Health (China)

    2016-04-15

    Silica nanoparticles (SNPs) are applicable in various fields due to their unique physicochemical characteristics. However, concerns over their potential adverse effects have been raised. In our previous studies, we reported that SNPs could induce abnormal high incidence of multinucleation. The aim of this study is to further investigate the mechanisms of multinucleation induced by SNPs (68 nm) in human normal liver L-02 cells (L-02 cells). In order to determine the cytotoxicity of SNPs, MTT assay was performed, and the cell viability was decreased in a dose-dependent manner. The intracellular reactive oxygen species (ROS) detected by flow cytometry and multinucleation observed by Giemsa stain showed that ROS generation and rate of multinucleated cells increased after SNPs exposure. N-acetyl-cysteine (NAC), a glutathione precursor against SNP-induced toxicity, was used as a ROS inhibitor to elucidate the relationship between ROS and multinucleation. The presence of NAC resulted in inhibition of both ROS generation and rate of multinucleation. Moreover, Western blot analysis showed that the protein levels of Cdc20, Aurora B, and Survivin were down-regulated, and the PI3K/Akt/GSK-3β pathway was activated by SNPs. In conclusion, our findings strongly suggested that multinucleation induced by SNPs was related to PI3K/Akt/GSK-3β signal pathway activation and downregulation of G2/M phase-related protein and chromosomal passenger proteins.

  1. Induction of cell cycle arrest and apoptosis with downregulation of Hsp90 client proteins and histone modification by 4β-hydroxywithanolide E isolated from Physalis peruviana.

    Science.gov (United States)

    Park, Eun-Jung; Sang-Ngern, Mayuramas; Chang, Leng Chee; Pezzuto, John M

    2016-06-01

    Physalis peruviana (Solanaceae) is used for culinary and medicinal purposes. We currently report withanolides, isolated from P. peruviana, inhibit the growth of colon cancer monolayer and spheroid cultures. A detailed mechanistic evaluation was performed with 4β-hydroxywithanolide E (4HWE). Treatment of HT-29 cells with low concentrations of 4HWE inhibited growth while enhancing levels of p21(Waf1/Cip1) and reducing levels of several cell cycle-related proteins. Apoptosis was induced at higher concentrations. In addition, 4HWE treatment downregulated the levels of Hsp90 client proteins. Nuclear sirtuin 1 (SIRT1) was increased and histone H3 acetylated at lysine 9 was decreased. An additional consequence of SIRT1 elevation in the nucleus may be inhibition of c-Jun activity. The expression of 21 genes was altered, including downregulation of PTGS2, and this correlated with reduced protein levels of cyclooxygenase-2 (COX-2). Overall, efficacious induction of G0/G1 cell cycle arrest at low concentrations, and induction of apoptosis at higher concentrations are interesting 4HWE-mediated phenomena that are accompanied by a complex array of molecular events. Considering the worldwide prevalence of colon cancer, and the unique mode of action mediated by 4HWE, it is reasonable to investigate additional mechanistic details and the potential utility of this compound. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  3. Neuroinflammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Kavanaugh, Michael; Block, Michelle; D'Angiulli, Amedeo; Delgado-Chávez, Ricardo; Torres-Jardón, Ricardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Osnaya, Norma; Villarreal-Calderon, Rodolfo; Guo, Ruixin; Hua, Zhaowei; Zhu, Hongtu; Perry, George; Diaz, Philippe

    2012-01-01

    Air pollution exposures have been linked to neuroinflammation and neuropathology. Autopsy samples of the frontal cortex from control (n = 8) and pollution-exposed (n = 35) children and young adults were analyzed by RT-PCR (n = 43) and microarray analysis (n = 12) for gene expression changes in oxidative stress, DNA damage signaling, NFκB signaling, inflammation, and neurodegeneration pathways. The effect of apolipoprotein E (APOE) genotype on the presence of protein aggregates associated with Alzheimer's disease (AD) pathology was also explored. Exposed urbanites displayed differential (>2-fold) regulation of 134 genes. Forty percent exhibited tau hyperphosphorylation with pre-tangle material and 51% had amyloid-β (Aβ) diffuse plaques compared with 0% in controls. APOE4 carriers had greater hyperphosphorylated tau and diffuse Aβ plaques versus E3 carriers (Q = 7.82, p = 0.005). Upregulated gene network clusters included IL1, NFκB, TNF, IFN, and TLRs. A 15-fold frontal down-regulation of the prion-related protein (PrP(C)) was seen in highly exposed subjects. The down-regulation of the PrP(C) is critical given its important roles for neuroprotection, neurodegeneration, and mood disorder states. Elevation of indices of neuroinflammation and oxidative stress, down-regulation of the PrP(C) and AD-associated pathology are present in young megacity residents. The inducible regulation of gene expression suggests they are evolving different mechanisms in an attempt to cope with the constant state of inflammation and oxidative stress related to their environmental exposures. Together, these data support a role for air pollution in CNS damage and its impact upon the developing brain and the potential etiology of AD and mood disorders.

  4. Arsenic downregulates tight junction claudin proteins through p38 and NF-κB in intestinal epithelial cell line, HT-29

    International Nuclear Information System (INIS)

    Jeong, Chang Hee; Seok, Jin Sil; Petriello, Michael C.; Han, Sung Gu

    2017-01-01

    Arsenic is a naturally occurring metalloid that often is found in foods and drinking water. Human exposure to arsenic is associated with the development of gastrointestinal problems such as fluid loss, diarrhea and gastritis. Arsenic is also known to induce toxic responses including oxidative stress in cells of the gastrointestinal track. Tight junctions (TJs) regulate paracellular permeability and play a barrier role by inhibiting the movement of water, solutes and microorganisms in the paracellular space. Since oxidative stress and TJ damage are known to be associated, we examined whether arsenic produces TJ damage such as downregulation of claudins in the human colorectal cell line, HT-29. To confirm the importance of oxidative stress in arsenic-induced TJ damage, effects of the antioxidant compound (e.g., N-acetylcysteine (NAC)) were also determined in cells. HT-29 cells were treated with arsenic trioxide (40 μM, 12 h) to observe the modified expression of TJ proteins. Arsenic decreased expression of TJ proteins (i.e., claudin-1 and claudin-5) and transepithelial electrical resistance (TEER) whereas pretreatment of NAC (5–10 mM, 1 h) attenuated the observed claudins downregulation and TEER. Arsenic treatment produced cellular oxidative stress via superoxide generation and lowering glutathione (GSH) levels, while NAC restored cellular GSH levels and decreased oxidative stress. Arsenic increased phosphorylation of p38 and nuclear translocation of nuclear factor-kappa B (NF-κB) p65, while NAC attenuated these intracellular events. Results demonstrated that arsenic can damage intestinal epithelial cells by proinflammatory process (oxidative stress, p38 and NF-κB) which resulted in the downregulation of claudins and NAC can protect intestinal TJs from arsenic toxicity.

  5. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  6. Hypoxic human cancer cells are sensitized to BH-3 mimetic–induced apoptosis via downregulation of the Bcl-2 protein Mcl-1

    Science.gov (United States)

    Harrison, Luke R.E.; Micha, Dimitra; Brandenburg, Martin; Simpson, Kathryn L.; Morrow, Christopher J.; Denneny, Olive; Hodgkinson, Cassandra; Yunus, Zaira; Dempsey, Clare; Roberts, Darren; Blackhall, Fiona; Makin, Guy; Dive, Caroline

    2011-01-01

    Solid tumors contain hypoxic regions in which cancer cells are often resistant to chemotherapy-induced apoptotic cell death. Therapeutic strategies that specifically target hypoxic cells and promote apoptosis are particularly appealing, as few normal tissues experience hypoxia. We have found that the compound ABT-737, a Bcl-2 homology domain 3 (BH-3) mimetic, promotes apoptotic cell death in human colorectal carcinoma and small cell lung cancer cell lines exposed to hypoxia. This hypoxic induction of apoptosis was mediated through downregulation of myeloid cell leukemia sequence 1 (Mcl-1), a Bcl-2 family protein that serves as a biomarker for ABT-737 resistance. Downregulation of Mcl-1 in hypoxia was independent of hypoxia-inducible factor 1 (HIF-1) activity and was consistent with decreased global protein translation. In addition, ABT-737 induced apoptosis deep within tumor spheroids, consistent with an optimal hypoxic oxygen tension being necessary to promote ABT-737–induced cell death. Tumor xenografts in ABT-737–treated mice also displayed significantly more apoptotic cells within hypoxic regions relative to normoxic regions. Synergies between ABT-737 and other cytotoxic drugs were maintained in hypoxia, suggesting that this drug may be useful in combination with chemotherapeutic agents. Taken together, these findings suggest that Mcl-1–sparing BH-3 mimetics may induce apoptosis in hypoxic tumor cells that are resistant to other chemotherapeutic agents and may have a role in combinatorial chemotherapeutic regimens for treatment of solid tumors. PMID:21393866

  7. MicroRNA-124 (MiR-124 Inhibits Cell Proliferation, Metastasis and Invasion in Colorectal Cancer by Downregulating Rho-Associated Protein Kinase 1(ROCK1

    Directory of Open Access Journals (Sweden)

    Liqing Zhou

    2016-05-01

    Full Text Available Background/Aims: MiR-124 inhibits neoplastic transformation, cell proliferation, and metastasis and downregulates Rho-associated protein kinase (ROCK1 in Colorectal Cancer (CRC. The aim of this study was to further investigate the roles and interactions of ROCK1 and miR-124 and the effects of knockdown of ROCK1and MiR-124 in human Colorectal Cancer (CRC. Methods: Three Colorectal cancer cell lines (HCT116, HT29 and SW620 and one Human Colonic Mucosa Epithelial cell line (NCM460 were studied. The protein expression of ROCK1 was examined by Western-blot and qRT-PCR were performed to examine the expression levels of ROCK1 mRNA and miR-124. Furthermore, We performed transfection of cancer cell line (SW620 with pre-miR-124(mimics, anti-miR-124(inhibitor, ROCK1 siRNA and the control, then observed the affects of ROCK1 protein expression by westen-blot, cell proliferation by EDU (5-ethynyl-2'deoxyuridine assay and expression levels of ROCK1mRNA by qRT-PCR . A soft agar formation assay, Migration and invasion assays were used to determine the effect of regulation of miR-124 and ROCK1, and survivin on the transformation and invasion capability of colorectal cancer cell. Results: MiR-124 expression was significantly downregulated in CRC cell lines compare to normal (P 0.05. ROCK1 mRNA was unaltered in cells transfected with miR-124 mimic and miR-124 inhibitor, compared to normal controls. There was a significant reduction in ROCK1 protein in cells transfected with miR-124 mimic and a significant increase in cells transfected with miR-124 inhibitor (P Conclusions: In conclusion, our results demonstrated that miR-124 not only promoted cancer cell hyperplasia and significantly associated with CRC metastasis and progression, but also downregulated ROCK1 protein expression. More importantly, increased ROCK1 expression or inhibited miR-124 expression may constitute effective new therapeutic strategies for the treatment of renal cancer in the future.

  8. Experimental study of inhibitory effects of diallyl trisulfide on the growth of human osteosarcoma Saos-2 cells by downregulating expression of glucose-regulated protein 78

    Directory of Open Access Journals (Sweden)

    Zhang Y

    2018-01-01

    Full Text Available Yue Zhang,1,* Wen-Peng Xie,1,* Yong-Kui Zhang,2 Yi-Qiang Chen,3 Dong-Li Wang,2 Gang Li,2 Dong-Hui Guan2 1First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 2Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China; 3Department of Orthopedics, The First People’s Hospital of Taian City, Taian, People’s Republic of China *These authors contributed equally to the paper Background: Diallyl trisulfide (DATS is a natural organic sulfur compound isolated from garlic that has good anticancer activity according to many previous reports. There are many studies pointing out that DATS can downregulate expression of the glucose-regulated protein 78 (GRP78, which is associated with poor prognosis and drug resistance in various types of human cancers. However, it remains unknown whether DATS has the same effect on human osteosarcoma cells. This study attempted to clarify the potential molecular mechanisms of the action of DATS in human osteosarcoma Saos-2 cells.Methods: We used an inverted phase microscope and immunofluorescent staining to observe the morphological changes of Saos-2 cells after being cultured in different concentrations of DATS (0, 25, 50, and 100 µM for 24 h, or for four time periods (24, 48, 72, and 96 h in the same DATS concentration (50 µM. Quantitative real-time polymerase chain reaction and Western blot were used to detect the expression level of GRP78 mRNA and proteins in Saos-2 cells. GRP78 expression was suppressed in Saos-2 cells by utilizing small-interfering RNA, and the cells were subsequently used to study the anti-proliferative effects of DATS treatment.Results: The expression level of GRP78 mRNA and proteins was significantly downregulated due to the increased concentration and effective times of DATS (P<0.05. In addition, there were significant associations between GRP78

  9. Phorbol-ester-induced down-regulation of protein kinase C in mouse pancreatic islets. Potentiation of phase 1 and inhibition of phase 2 of glucose-induced insulin secretion

    DEFF Research Database (Denmark)

    Thams, P; Capito, K; Hedeskov, C J

    1990-01-01

    and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1...

  10. Human Calmodulin-Like Protein CALML3: A Novel Marker for Normal Oral Squamous Mucosa That Is Downregulated in Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Michael D. Brooks

    2013-01-01

    Full Text Available Oral cancer is often diagnosed only at advanced stages due to a lack of reliable disease markers. The purpose of this study was to determine if the epithelial-specific human calmodulin-like protein (CALML3 could be used as marker for the various phases of oral tumor progression. Immunohistochemical analysis using an affinity-purified CALML3 antibody was performed on biopsy-confirmed oral tissue samples representing these phases. A total of 90 tissue specimens were derived from 52 patients. Each specimen was analyzed in the superficial and basal mucosal cell layers for overall staining and staining of cellular subcompartments. CALML3 was strongly expressed in benign oral mucosal cells with downregulation of expression as squamous cells progress to invasive carcinoma. Based on the Cochran-Armitage test for trend, expression in the nucleus and at the cytoplasmic membrane significantly decreased with increasing disease severity. Chi-square test showed that benign tissue specimens had significantly more expression compared to dysplasia/CIS and invasive specimens. Dysplasia/CIS tissue had significantly more expression than invasive tissue. We conclude that CALML3 is expressed in benign oral mucosal cells with a statistically significant trend in downregulation as tumorigenesis occurs. CALML3 may thus be a sensitive new marker for oral cancer screening.

  11. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway.

    Science.gov (United States)

    Mudgil, Yashwanti; Uhrig, Joachm F; Zhou, Jiping; Temple, Brenda; Jiang, Kun; Jones, Alan M

    2009-11-01

    Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.

  12. FLASH knockdown sensitizes cells to Fas-mediated apoptosis via down-regulation of the anti-apoptotic proteins, MCL-1 and Cflip short.

    Directory of Open Access Journals (Sweden)

    Song Chen

    Full Text Available FLASH (FLICE-associated huge protein or CASP8AP2 is a large multifunctional protein that is involved in many cellular processes associated with cell death and survival. It has been reported to promote apoptosis, but we show here that depletion of FLASH in HT1080 cells by siRNA interference can also accelerate the process. As shown previously, depletion of FLASH halts growth by down-regulating histone biosynthesis and arrests the cell cycle in S-phase. FLASH knockdown followed by stimulating the cells with Fas ligand or anti-Fas antibodies was found to be associated with a more rapid cleavage of PARP, accelerated activation of caspase-8 and the executioner caspase-3 and rapid progression to cellular disintegration. As is the case for most anti-apoptotic proteins, FLASH was degraded soon after the onset of apoptosis. Depletion of FLASH also resulted in the reduced intracellular levels of the anti-apoptotic proteins, MCL-1 and the short isoform of cFLIP. FLASH knockdown in HT1080 mutant cells defective in p53 did not significantly accelerate Fas mediated apoptosis indicating that the effect was dependent on functional p53. Collectively, these results suggest that under some circumstances, FLASH suppresses apoptosis.

  13. Cyclosporin A inhibits nucleotide excision repair via downregulation of the xeroderma pigmentosum group A and G proteins, which is mediated by calcineurin inhibition.

    Science.gov (United States)

    Kuschal, Christiane; Thoms, Kai-Martin; Boeckmann, Lars; Laspe, Petra; Apel, Antje; Schön, Michael P; Emmert, Steffen

    2011-10-01

    Cyclosporin A (CsA) inhibits nucleotide excision repair (NER) in human cells, a process that contributes to the skin cancer proneness in organ transplant patients. We investigated the mechanisms of CsA-induced NER reduction by assessing all xeroderma pigmentosum (XP) genes (XPA-XPG). Western blot analyses revealed that XPA and XPG protein expression was reduced in normal human GM00637 fibroblasts exposed to 0.1 and 0.5 μm CsA. Interestingly, the CsA treatment reduced XPG, but not XPA, mRNA expression. Calcineurin knockdown in GM00637 fibroblasts using RNAi led to similar results suggesting that calcineurin-dependent signalling is involved in XPA and XPG protein regulation. CsA-induced reduction in NER could be complemented by the overexpression of either XPA or XPG protein. Likewise, XPA-deficient fibroblasts with stable overexpression of XPA (XP2OS-pCAH19WS) did not show the inhibitory effect of CsA on NER. In contrast, XPC-deficient fibroblasts overexpressing XPC showed CsA-reduced NER. Our data indicate that the CsA-induced inhibition of NER is a result of downregulation of XPA and XPG protein in a calcineurin-dependent manner. © 2011 John Wiley & Sons A/S.

  14. Whey protein hydrolysate and branched-chain amino acids downregulate inflammation-related genes in vascular endothelial cells.

    Science.gov (United States)

    Da Silva, Marine S; Bigo, Cyril; Barbier, Olivier; Rudkowska, Iwona

    2017-02-01

    A recent review of clinical studies reports that dairy products may improve inflammation, a key etiologic cardiovascular disease risk factor. Yet the impact of dairy proteins on inflammatory markers is controversial and could be mediated by a differential impact of whey proteins and caseins. In this study, we hypothesized that whey proteins may have a greater anti-inflammatory effect than caseins. A model of human umbilical vein endothelial cells, with or without TNF-α stimulation, was used to investigate the effect of several dairy protein compounds on inflammation. Specifically, the impact of whey proteins either isolate or hydrolysate, caseins, and their amino acids on expression of TNF, VCAM-1, SOD2, and eNOS was examined. After a 24-hour incubation period, whey protein hydrolysate, leucine, isoleucine, and valine attenuated the TNF-α-induced endothelial inflammation by normalizing TNF and eNOS gene expression. This effect was not observed in unstimulated cells. Oppositely, caseins, a whey protein/casein mixture (1:4 w/w), and glutamine aggravated the TNF-α-induced TNF and SOD2 gene expression. Yet caseins and whey protein/casein mixture decreased VCAM-1 expression in both unstimulated and stimulated human umbilical vein endothelial cells. Measurement of TNF-α in cell supernatants by immunoassay substantiates gene expression data without reaching statistical significance. Taken together, this study showed that whey proteins and their major amino acids normalize TNF-α-induced proinflammatory gene expression in endothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Gene expression profile of zeitlupe/lov kelch protein1 T-DNA insertion mutants in Arabidopsis thaliana: Downregulation of auxin-inducible genes in hypocotyls.

    Science.gov (United States)

    Saitoh, Aya; Takase, Tomoyuki; Kitaki, Hiroyuki; Miyazaki, Yuji; Kiyosue, Tomohiro

    2015-01-01

    Elongation of hypocotyl cells has been studied as a model for elucidating the contribution of cellular expansion to plant organ growth. ZEITLUPE (ZTL) or LOV KELCH PROTEIN1 (LKP1) is a positive regulator of warmth-induced hypocotyl elongation under white light in Arabidopsis, although the molecular mechanisms by which it promotes hypocotyl cell elongation remain unknown. Microarray analysis showed that 134 genes were upregulated and 204 genes including 15 auxin-inducible genes were downregulated in the seedlings of 2 ztl T-DNA insertion mutants grown under warm conditions with continuous white light. Application of a polar auxin transport inhibitor, an auxin antagonist or an auxin biosynthesis inhibitor inhibited hypocotyl elongation of control seedlings to the level observed with the ztl mutant. Our data suggest the involvement of auxin and auxin-inducible genes in ZTL-mediated hypocotyl elongation.

  16. The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defenses.

    Science.gov (United States)

    Quentin, Michaël; Baurès, Isabelle; Hoefle, Caroline; Caillaud, Marie-Cécile; Allasia, Valérie; Panabières, Franck; Abad, Pierre; Hückelhoven, Ralph; Keller, Harald; Favery, Bruno

    2016-03-01

    The oomycete Hyaloperonospora arabidopsidis and the ascomycete Erysiphe cruciferarum are obligate biotrophic pathogens causing downy mildew and powdery mildew, respectively, on Arabidopsis. Upon infection, the filamentous pathogens induce the formation of intracellular bulbous structures called haustoria, which are required for the biotrophic lifestyle. We previously showed that the microtubule-associated protein AtMAP65-3 plays a critical role in organizing cytoskeleton microtubule arrays during mitosis and cytokinesis. This renders the protein essential for the development of giant cells, which are the feeding sites induced by root knot nematodes. Here, we show that AtMAP65-3 expression is also induced in leaves upon infection by the downy mildew oomycete and the powdery mildew fungus. Loss of AtMAP65-3 function in the map65-3 mutant dramatically reduced infection by both pathogens, predominantly at the stages of leaf penetration. Whole-transcriptome analysis showed an over-represented, constitutive activation of genes involved in salicylic acid (SA) biosynthesis, signaling, and defense execution in map65-3, whereas jasmonic acid (JA)-mediated signaling was down-regulated. Preventing SA synthesis and accumulation in map65-3 rescued plant susceptibility to pathogens, but not the developmental phenotype caused by cytoskeleton defaults. AtMAP65-3 thus has a dual role. It positively regulates cytokinesis, thus plant growth and development, and negatively interferes with plant defense against filamentous biotrophs. Our data suggest that downy mildew and powdery mildew stimulate AtMAP65-3 expression to down-regulate SA signaling for infection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Hexavalent Chromium (Cr(VI Down-Regulates Acetylation of Histone H4 at Lysine 16 through Induction of Stressor Protein Nupr1.

    Directory of Open Access Journals (Sweden)

    Danqi Chen

    Full Text Available The environmental and occupational carcinogen Hexavalent Chromium (Cr(VI has been shown to cause lung cancer in humans when inhaled. In spite of a considerable research effort, the mechanisms of Cr(VI-induced carcinogenesis remain largely unknown. Nupr1 (nuclear protein 1 is a small, highly basic, and unfolded protein with molecular weight of 8,800 daltons and is induced by a variety of stressors. Studies in animal models have suggested that Nupr1 is a key factor in the development of lung and pancreatic cancers, with little known about the underlying molecular mechanisms. Here we report that the level of Nupr1 is significantly increased in human bronchial epithelial BEAS2B cells following exposure to Cr(VI through epigenetic mechanisms. Interestingly, Cr(VI exposure also results in the loss of acetylation at histone H4K16, which is considered a 'hallmark' of human cancer. Cr(VI-induced reduction of H4K16 acetylation appears to be caused by the induction of Nupr1, since (a overexpression of Nupr1 decreased the levels of both H4K16 acetylation and the histone acetyltransferase MOF (male absent on the first; also known as Kat8, Myst 1, which specifically acetylates H4K16; (b the loss of acetylation of H4K16 upon Cr(VI exposure is greatly compromised by knockdown of Nupr1. Moreover, Nupr1-induced reduction of H4K16 acetylation correlates with the transcriptional down-regulation at several genomic loci. Notably, overexpression of Nupr1 induces anchorage-independent cell growth and knockdown of Nupr1 expression prevents Cr(VI-induced cell transformation. We propose that Cr(VI induces Nupr1 and rapidly perturbs gene expression by downregulating H4K16 acetylation, thereby contributing to Cr(VI-induced carcinogenesis.

  18. Down-regulation of cellular FLICE-inhibitory protein (Long Form contributes to apoptosis induced by Hsp90 inhibition in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Wang Qilin

    2012-12-01

    Full Text Available Abstract Background Cellular FLICE-Inhibitory Protein (long form, c-FLIPL is a critical negative regulator of death receptor-mediated apoptosis. Overexpression of c-FLIPL has been reported in many cancer cell lines and is associated with chemoresistance. In contrast, down-regulation of c-FLIP may drive cancer cells into cellular apoptosis. This study aims to demonstrate that inhibition of the heat shock protein 90 (Hsp90 either by inhibitors geldanamycin/17-N-Allylamino-17-demethoxygeldanamycin (GA/17-AAG or siRNA technique in human lung cancer cells induces c-FLIPL degradation and cellular apoptosis through C-terminus of Hsp70-interacting protein (CHIP-mediated mechanisms. Methods Calu-1 and H157 cell lines (including H157-c-FLIPL overexpressing c-FLIPL and control cell H157-lacZ were treated with 17-AAG and the cell lysates were prepared to detect the given proteins by Western Blot and the cell survival was assayed by SRB assay. CHIP and Hsp90 α/β proteins were knocked down by siRNA technique. CHIP and c-FLIPL plasmids were transfected into cells and immunoprecipitation experiments were performed to testify the interactions between c-FLIPL, CHIP and Hsp90. Results c-FLIPL down-regulation induced by 17-AAG can be reversed with the proteasome inhibitor MG132, which suggested that c-FLIPL degradation is mediated by a ubiquitin-proteasome system. Inhibition of Hsp90α/β reduced c-FLIPL level, whereas knocking down CHIP expression with siRNA technique inhibited c-FLIPL degradation. Furthermore, c-FLIPL and CHIP were co-precipitated in the IP complexes. In addition, overexpression of c-FLIPL can rescue cancer cells from apoptosis. When 17-AAG was combined with an anti-cancer agent celecoxib(CCB, c-FLIPL level declined further and there was a higher degree of caspase activation. Conclusion We have elucidated c-FLIPL degradation contributes to apoptosis induced by Hsp90 inhibition, suggesting c-FLIP and Hsp90 may be the promising combined targets

  19. Identification, Characterization and Down-Regulation of Cysteine Protease Genes in Tobacco for Use in Recombinant Protein Production.

    Directory of Open Access Journals (Sweden)

    Kishor Duwadi

    Full Text Available Plants are an attractive host system for pharmaceutical protein production. Many therapeutic proteins have been produced and scaled up in plants at a low cost compared to the conventional microbial and animal-based systems. The main technical challenge during this process is to produce sufficient levels of recombinant proteins in plants. Low yield is generally caused by proteolytic degradation during expression and downstream processing of recombinant proteins. The yield of human therapeutic interleukin (IL-10 produced in transgenic tobacco leaves was found to be below the critical level, and may be due to degradation by tobacco proteases. Here, we identified a total of 60 putative cysteine protease genes (CysP in tobacco. Based on their predicted expression in leaf tissue, 10 candidate CysPs (CysP1-CysP10 were selected for further characterization. The effect of CysP gene silencing on IL-10 accumulation was examined in tobacco. It was found that the recombinant protein yield in tobacco could be increased by silencing CysP6. Transient expression of CysP6 silencing construct also showed an increase in IL-10 accumulation in comparison to the control. Moreover, CysP6 localizes to the endoplasmic reticulum (ER, suggesting that ER may be the site of IL-10 degradation. Overall results suggest that CysP6 is important in determining the yield of recombinant IL-10 in tobacco leaves.

  20. A G-protein β subunit, AGB1, negatively regulates the ABA response and drought tolerance by down-regulating AtMPK6-related pathway in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Dong-bei Xu

    Full Text Available Heterotrimeric G-proteins are versatile regulators involved in diverse cellular processes in eukaryotes. In plants, the function of G-proteins is primarily associated with ABA signaling. However, the downstream effectors and the molecular mechanisms in the ABA pathway remain largely unknown. In this study, an AGB1 mutant (agb1-2 was found to show enhanced drought tolerance, indicating that AGB1 might negatively regulate drought tolerance in Arabidopsis. Data showed that AGB1 interacted with protein kinase AtMPK6 that was previously shown to phosphorylate AtVIP1, a transcription factor responding to ABA signaling. Our study found that transcript levels of three ABA responsive genes, AtMPK6, AtVIP1 and AtMYB44 (downstream gene of AtVIP1, were significantly up-regulated in agb1-2 lines after ABA or drought treatments. Other ABA-responsive and drought-inducible genes, such as RD29A (downstream gene of AtMYB44, were also up-regulated in agb1-2 lines. Furthermore, overexpression of AtVIP1 resulted in hypersensitivity to ABA at seed germination and seedling stages, and significantly enhanced drought tolerance in transgenic plants. These results suggest that AGB1 was involved in the ABA signaling pathway and drought tolerance in Arabidopsis through down-regulating the AtMPK6, AtVIP1 and AtMYB44 cascade.

  1. Zonal down-regulation and redistribution of the multidrug resistance protein 2 during bile duct ligation in rat liver

    NARCIS (Netherlands)

    Paulusma, C. C.; Kothe, M. J.; Bakker, C. T.; Bosma, P. J.; van Bokhoven, I.; van Marle, J.; Bolder, U.; Tytgat, G. N.; Oude Elferink, R. P.

    2000-01-01

    We have studied regulation of the multidrug resistance protein 2 (mrp2) during bile duct ligation (BDL) in the rat. In hepatocytes isolated after 16, 48, and 72 hours of BDL, mrp2-mediated dinitrophenyl-glutathione (DNP-GS) transport was decreased to 65%, 33%, and 33% of control values,

  2. The role of ubiquitin in down-regulation and intracellular sorting of membrane proteins: insights from yeast

    Czech Academy of Sciences Publication Activity Database

    Horák, Jaroslav

    2003-01-01

    Roč. 1614, č. 2 (2003), s. 139-155 ISSN 0005-2736 R&D Projects: GA ČR GA204/01/0272; GA ČR GA204/02/1240 Institutional research plan: CEZ:AV0Z5011922 Keywords : ubiquitin * membrane proteins * yeast Subject RIV: CE - Biochemistry Impact factor: 2.665, year: 2003

  3. Subcellular redistribution of trimeric G-proteins – potential mechanism of desensitization of hormone response: internalisation, solubilization, down-regulation

    Czech Academy of Sciences Publication Activity Database

    Drastichová, Zdeňka; Bouřová, Lenka; Lisý, Václav; Hejnová, L.; Rudajev, Vladimír; Stöhr, Jiří; Durchánková, Dana; Ostašov, Pavel; Teisinger, Jan; Soukup, Tomáš; Novotný, Jiří; Svoboda, Petr

    2008-01-01

    Roč. 57, Suppl.3 (2008), S1-S10 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/0121 Institutional research plan: CEZ:AV0Z50110509 Keywords : brain * subcellular fractionation * trimeric G-proteins Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  4. Hepatitis C virus core protein induces dysfunction of liver sinusoidal endothelial cell by down-regulation of silent information regulator 1.

    Science.gov (United States)

    Sun, Li-Jie; Yu, Jian-Wu; Shi, Yu-Guang; Zhang, Xiao-Yu; Shu, Meng-Ni; Chen, Mo-Yang

    2018-05-01

    . HCV core protein may down-regulate the activity and the expression of SIRT1 of LSEC, then decreasing synthesis of adiponectin and the expression of AdipoR2, thus inducing contraction of LSEC and hepatic sinusoidal capillarization and increasing oxidative stress, ultimately cause hepatic stellate cell (HSC) activation. Treatment with SIRT1 activator restored the function of LSEC and inhibited the activation of HSC. © 2018 Wiley Periodicals, Inc.

  5. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  6. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  7. Down-regulation of the expression of CCAAT/enhancer binding protein α gene in cervical squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pan, Zemin; Shao, Renfu; Zheng, Weinan; Zhang, Jinli; Gao, Rui; Li, Dongmei; Guo, Xiaoqing; Han, Hu; Li, Feng; Qu, Shen

    2014-01-01

    Cervical carcinoma is the second most common cancer and is an important cause of death in women worldwide. CCAAT/enhancer binding proteins (C/EBPs) are a family of transcription factors that regulate cellular differentiation and proliferation in a variety of tissues. However, the role of C/EBPα gene in cervical cancer is still not clear. We investigated the expression of C/EBPα gene in cervical squamous cell carcinoma. C/EBPα mRNA level was measured by real-time quantitative RT-PCR in cervical cancer tissues and their adjacent normal tissues. C/EBPα protein level was measured by immunohistochemistry. Methylation in the promoter of C/EBPα gene was detected by MALDI TOF MassARRAY. We transfected HeLa cells with C/EBPα expression vector. C/EBPα expression in HeLa cells was examined and HeLa cell proliferation was measured by MTT assay and HeLa cells migration was analyzed by matrigel-coated transwell migration assays. There were significant difference in C/EBPα protein expression between chronic cervicitis and cervical carcinoma (P < 0.001). CEBPα mRNA level was significantly lower in cervical cancer tissues than in normal cervical tissues (P < 0.01). Methylation of the promoter of CEBPα gene in CpG 5, CpG-14.15, CpG-19.20 were significantly higher in cervical cancer than in normal cervical tissues (P < 0.05, P < 0.01, P < 0.05, respectively). CEBPα pcDNA3.1 construct transfected into HeLa cells inhibited cell proliferation and decreased cell migration. Our results indicate that reduced C/EBPα gene expression may play a role in the development of cervical squamous cell carcinoma

  8. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    Science.gov (United States)

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2017-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation by the APC/CCdh1 ubiquitin ligase. In this study, we identify the HECT (homologous to the E6-AP carboxyl terminus) family E3 ubiquitin ligase, UBR5, as a novel ubiquitin ligase for MOAP-1. We demonstrate that UBR5 interacts physically with MOAP-1, ubiquitylates MOAP-1 in vitro and inhibits MOAP-1 stability in cultured cells. In addition, we show that Dyrk2 kinase, a reported UBR5 interactor, cooperates with UBR5 in mediating MOAP-1 ubiquitylation. Importantly, we found that cisplatin-resistant ovarian cancer cell lines exhibit lower levels of MOAP-1 accumulation than their sensitive counterparts upon cisplatin treatment, consistent with the previously reported role of MOAP-1 in modulating cisplatin-induced apoptosis. Accordingly, UBR5 knockdown increased MOAP-1 expression, enhanced Bax activation and sensitized otherwise resistant cells to cisplatin-induced apoptosis. Furthermore, UBR5 expression was higher in ovarian cancers from cisplatin-resistant patients than from cisplatin-responsive patients. These results show that UBR5 downregulates proapoptotic MOAP-1 and suggest that UBR5 can confer cisplatin resistance in ovarian cancer. Thus UBR5 may be an attractive therapeutic target for ovarian cancer treatment. PMID:27721409

  9. Lamprey Prohibitin2 Arrest G2/M Phase Transition of HeLa Cells through Down-regulating Expression and Phosphorylation Level of Cell Cycle Proteins.

    Science.gov (United States)

    Shi, Ying; Guo, Sicheng; Wang, Ying; Liu, Xin; Li, Qingwei; Li, Tiesong

    2018-03-02

    Prohibitin 2(PHB2) is a member of the SFPH trans-membrane family proteins. It is a highly conserved and functionally diverse protein that plays an important role in preserving the structure and function of the mitochondria. In this study, the lamprey PHB2 gene was expressed in HeLa cells to investigate its effect on cell proliferation. The effect of Lm-PHB2 on the proliferation of HeLa cells was determined by treating the cells with pure Lm-PHB2 protein followed by MTT assay. Using the synchronization method with APC-BrdU and PI double staining revealed rLm-PHB2 treatment induced the decrease of both S phase and G0/G1 phase and then increase of G2/M phase. Similarly, cells transfected with pEGFP-N1-Lm-PHB2 also exhibited remarkable reduction in proliferation. Western blot and quantitative real-time PCR(qRT-PCR) assays suggested that Lm-PHB2 caused cell cycle arrest in HeLa cells through inhibition of CDC25C and CCNB1 expression. According to our western blot analysis, Lm-PHB2 was also found to reduce the expression level of Wee1 and PLK1 and the phosphorylation level of CCNB1, CDC25C and CDK1 in HeLa cells. Lamprey prohibitin 2 could arrest G2/M phase transition of HeLa cells through down-regulating expression and phosphorylation level of cell cycle proteins.

  10. The Crc protein participates in down-regulation of the Lon gene to promote rhamnolipid production and rhl quorum sensing in Pseudomonas aeruginosa.

    Science.gov (United States)

    Yang, Nana; Ding, Shuting; Chen, Feifei; Zhang, Xue; Xia, Yongjie; Di, Hongxia; Cao, Qiao; Deng, Xin; Wu, Min; Wong, Catherine C L; Tian, Xiao-Xu; Yang, Cai-Guang; Zhao, Jing; Lan, Lefu

    2015-05-01

    Rhamnolipid acts as a virulence factor during Pseudomonas aeruginosa infection. Here, we show that deletion of the catabolite repression control (crc) gene in P. aeruginosa leads to a rhamnolipid-negative phenotype. This effect is mediated by the down-regulation of rhl quorum sensing (QS). We discover that a disruption of the gene encoding the Lon protease entirely offsets the effect of crc deletion on the production of both rhamnolipid and rhl QS signal C4-HSL. Crc is unable to bind lon mRNA in vitro in the absence of the RNA chaperon Hfq, while Crc contributes to Hfq-mediated repression of the lon gene expression at a posttranscriptional level. Deletion of crc, which results in up-regulation of lon, significantly reduces the in vivo stability and abundance of the RhlI protein that synthesizes C4-HSL, causing the attenuation of rhl QS. Lon is also capable of degrading the RhlI protein in vitro. In addition, constitutive expression of rhlI suppresses the defects of the crc deletion mutant in rhamnolipid, C4-HSL and virulence on lettuce leaves. This study therefore uncovers a novel posttranscriptional regulatory cascade, Crc-Hfq/Lon/RhlI, for the regulation of rhamnolipid production and rhl QS in P. aeruginosa. © 2015 John Wiley & Sons Ltd.

  11. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available Hepatitis C virus (HCV has been reported to regulate cellular microRNAs (miRNAs. The HCV core protein is considered to be a potential oncoprotein in HCV-related hepatocellular carcinoma (HCV-HCC, but HCV core-regulated miRNAs are largely unknown. Our preliminary experiments revealed significant down-regulation of microRNA-152 (miR-152 by HCV core protein in HepG2 cells. Through target gene prediction softwares, Wnt1 was predicted to be a potential target of miR-152. The present study was initiated to investigate whether miR-152 is aberrantly regulated by the HCV core protein, and involved in the regulation of the aberrant proliferation of HCV-HCC cells.MiR-152 levels were examined by stem-loop real-time RT-PCR (SLqRT-PCR. Cell proliferation was analyzed by MTT and colony formation assay. Cell cycle analysis was performed by flow cytometry. Luciferase reporter assay was conducted to confirm miRNA-target association. Wnt1 expression was determined by real-time qPCR and Western blotting.HCV core protein significantly suppressed miR-152 expression, and led to significant Wnt1 up-regulation with a concomitant aberrantly promoted proliferation. Moreover, we validated that miR-152 inhibition promoted, while miR-152 mimics inhibited cell proliferation. Using, qRT-PCR and western blot, Wnt1 was demonstrated to be regulated by miR-152. Luciferase activity assay showed that while miR-152 mimics significantly reduced the luciferase activity by 83.76% (P<0.0001, miR-152 inhibitor showed no effect on luciferase reporter. Most notably, salvage expression of miR-152 after Ad-HCV core infection for 24 h almost totally reversed the proliferation-promoting effect of the HCV core protein, and meanwhile, reduced the expression of both Wnt1 mRNA and protein to basal levels.These findings provide important evidence that the reduced miR-152 expression by HCV core protein can indirectly lose an inhibitory effect on Wnt1, which might, at least partially lead to cell

  12. Down-Regulation of Na+/K+ ATPase Activity by Human Parvovirus B19 Capsid Protein VP1

    Directory of Open Access Journals (Sweden)

    Ahmad Almilaji

    2013-05-01

    Full Text Available Background/Aims: Human parvovirus B19 (B19V may cause inflammatory cardiomyopathy (iCMP which is accompanied by endothelial dysfunction. The B19V capsid protein VP1 contains a lysophosphatidylcholine producing phospholipase A2 (PLA sequence. Lysophosphatidylcholine has in turn been shown to inhibit Na+/K+ ATPase. The present study explored whether VP1 modifies Na+/K+ ATPase activity. Methods: Xenopus oocytes were injected with cRNA encoding VP1 isolated from a patient suffering from fatal B19V-iCMP or cRNA encoding PLA2-negative VP1 mutant (H153A and K+ induced pump current (Ipump as well as ouabain-inhibited current (Iouabain both reflecting Na+/K+-ATPase activity were determined by dual electrode voltage clamp. Results: Injection of cRNA encoding VP1, but not of VP1(H153A or water, was followed by a significant decrease of both, Ipump and Iouabain in Xenopus oocytes. The effect was not modified by inhibition of transcription with actinomycin (10 µM for 36 hours but was abrogated in the presence of PLA2 specific blocker 4-bromophenacylbromide (50 µM and was mimicked by lysophosphatidylcholine (0.5 - 1 µg/ml. According to whole cell patch clamp, lysophosphatidylcholine (1 µg /ml similarly decreased Ipump in human microvascular endothelial cells (HMEC. Conclusion: The B19V capsid protein VP1 is a powerful inhibitor of host cell Na+/K+ ATPase, an effect at least partially due to phospholipase A2 (PLA2 dependent formation of lysophosphatidylcholine.

  13. Down-Regulation of the Na+-Coupled Phosphate Transporter NaPi-IIa by AMP-Activated Protein Kinase

    Directory of Open Access Journals (Sweden)

    Miribane Dërmaku-Sopjani

    2013-11-01

    Full Text Available Background/Aims: The Na+-coupled phosphate transporter NaPi-IIa is the main carrier accomplishing renal tubular phosphate reabsorption. It is driven by the electrochemical Na+ gradient across the apical cell membrane, which is maintained by Na+ extrusion across the basolateral cell membrane through the Na+/K+ ATPase. The operation of NaPi-IIa thus requires energy in order to avoid cellular Na+ accumulation and K+ loss with eventual decrease of cell membrane potential, Cl- entry and cell swelling. Upon energy depletion, early inhibition of Na+-coupled transport processes may delay cell swelling and thus foster cell survival. Energy depletion is sensed by the AMP-activated protein kinase (AMPK, a serine/threonine kinase stimulating several cellular mechanisms increasing energy production and limiting energy utilization. The present study explored whether AMPK influences the activity of NAPi-IIa. Methods: cRNA encoding NAPi-IIa was injected into Xenopus oocytes with or without additional expression of wild-type AMPK (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1-HA, of inactive AMPKαK45R (AMPKα1K45R+AMPKβ1-Flag+AMPKγ1-HA or of constitutively active AMPKγR70Q (AMPKα1-HA+AMPKβ1-Flag+AMPKγ1R70Q. NaPi-IIa activity was estimated from phosphate-induced current in dual electrode voltage clamp experiments. Results: In NaPi-IIa-expressing, but not in water-injected Xenopus oocytes, the addition of phosphate (1 mM to the extracellular bath solution generated a current (Ip, which was significantly decreased by coexpression of wild-type AMPK and of AMPKγR70Q but not of AMPKαK45R. The phosphate-induced current in NaPi-IIa- and AMPK-expressing Xenopus ooocytes was significantly increased by AMPK inhibitor Compound C (20 µM. Kinetic analysis revealed that AMPK significantly decreased the maximal transport rate. Conclusion: The AMP-activated protein kinase AMPK is a powerful regulator of NaPi-IIa and thus of renal tubular phosphate transport.

  14. mRNA-binding protein TIA-1 reduces cytokine expression in human endometrial stromal cells and is down-regulated in ectopic endometrium.

    Science.gov (United States)

    Karalok, Hakan Mete; Aydin, Ebru; Saglam, Ozlen; Torun, Aysenur; Guzeloglu-Kayisli, Ozlem; Lalioti, Maria D; Kristiansson, Helena; Duke, Cindy M P; Choe, Gina; Flannery, Clare; Kallen, Caleb B; Seli, Emre

    2014-12-01

    Cytokines and growth factors play important roles in endometrial function and the pathogenesis of endometriosis. mRNAs encoding cytokines and growth factors undergo rapid turnover; primarily mediated by adenosine- and uridine-rich elements (AREs) located in their 3'-untranslated regions. T-cell intracellular antigen (TIA-1), an mRNA-binding protein, binds to AREs in target transcripts, leading to decreased gene expression. The purpose of this article was to determine whether TIA-1 plays a role in the regulation of endometrial cytokine and growth factor expression during the normal menstrual cycle and whether TIA-1 expression is altered in women with endometriosis. Eutopic endometrial tissue obtained from women without endometriosis (n = 30) and eutopic and ectopic endometrial tissues from women with endometriosis (n = 17) were immunostained for TIA-1. Staining intensities were evaluated by histological scores (HSCOREs). The regulation of endometrial TIA-1 expression by immune factors and steroid hormones was studied by treating primary cultured human endometrial stromal cells (HESCs) with vehicle, lipopolysaccharide, TNF-α, IL-6, estradiol, or progesterone, followed by protein blot analyses. HESCs were engineered to over- or underexpress TIA-1 to test whether TIA-1 regulates IL-6 or TNF-α expression in these cells. We found that TIA-1 is expressed in endometrial stromal and glandular cells throughout the menstrual cycle and that this expression is significantly higher in the perimenstrual phase. In women with endometriosis, TIA-1 expression in eutopic and ectopic endometrium was reduced compared with TIA-1 expression in eutopic endometrium of unaffected control women. Lipopolysaccharide and TNF-α increased TIA-1 expression in HESCs in vitro, whereas IL-6 or steroid hormones had no effect. In HESCs, down-regulation of TIA-1 resulted in elevated IL-6 and TNF-α expression, whereas TIA-1 overexpression resulted in decreased IL-6 and TNF-α expression. Endometrial

  15. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp transcription factors

    Directory of Open Access Journals (Sweden)

    Pathi Satya

    2011-08-01

    Full Text Available Abstract Background Betulinic acid (BA inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. Methods The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a and ZBTB10 mRNA expression. Results BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS, ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. Conclusions These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent.

  16. Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors

    International Nuclear Information System (INIS)

    Chintharlapalli, Sudhakar; Papineni, Sabitha; Lei, Ping; Pathi, Satya; Safe, Stephen

    2011-01-01

    Betulinic acid (BA) inhibits growth of several cancer cell lines and tumors and the effects of BA have been attributed to its mitochondriotoxicity and inhibition of multiple pro-oncogenic factors. Previous studies show that BA induces proteasome-dependent degradation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 in prostate cancer cells and this study focused on the mechanism of action of BA in colon cancer cells. The effects of BA on colon cancer cell proliferation and apoptosis and tumor growth in vivo were determined using standardized assays. The effects of BA on Sp proteins and Sp-regulated gene products were analyzed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a) and ZBTB10 mRNA expression. BA inhibited growth and induced apoptosis in RKO and SW480 colon cancer cells and inhibited tumor growth in athymic nude mice bearing RKO cells as xenograft. BA also decreased expression of Sp1, Sp3 and Sp4 transcription factors which are overexpressed in colon cancer cells and decreased levels of several Sp-regulated genes including survivin, vascular endothelial growth factor, p65 sub-unit of NFκB, epidermal growth factor receptor, cyclin D1, and pituitary tumor transforming gene-1. The mechanism of action of BA was dependent on cell context, since BA induced proteasome-dependent and proteasome-independent downregulation of Sp1, Sp3 and Sp4 in SW480 and RKO cells, respectively. In RKO cells, the mechanism of BA-induced repression of Sp1, Sp3 and Sp4 was due to induction of reactive oxygen species (ROS), ROS-mediated repression of microRNA-27a, and induction of the Sp repressor gene ZBTB10. These results suggest that the anticancer activity of BA in colon cancer cells is due, in part, to downregulation of Sp1, Sp3 and Sp4 transcription factors; however, the mechanism of this response is cell context-dependent

  17. Downregulation of miR-200a-3p induced by hepatitis B Virus X (HBx) Protein promotes cell proliferation and invasion in HBV-infection-associated hepatocarcinoma.

    Science.gov (United States)

    Shi, Taiyang; Hua, Qinfang; Ma, Zhipeng; Lv, Qijun

    2017-12-01

    Hepatitis B Virus X (HBx) Protein encoded by HBV is believed to be the major player in the process of HBV-induced oncogenesis. Ectopic expression of miR-200a-3p was reported to be associated with diverse tumorigenesis. This study aimed to better understand the role of miR-200a-3p and its correlation with HBx in HBV-induced hepatocellular carcinoma (HCC). In this report, we examined the gene expression using quantitative RT-PCR and protein expression using Western blotting analysis. Cells were transfected with miR-200a-3p mimics or empty vector, and HBx-carrying vector or empty vector. Cell viability was tested using CCK-8 assay. Wound healing assay was performed to assess cell migration while Transwell assay was performed to evaluate cell invasion. miR-200a-3p was downregulated in HBV-positive tissue samples compared with HBV-negative tissue samples. This result was further confirmed with HBV-positive and - negative cell lines. HBx protein was overexpressed in HBV-positive cells where expression of miR-200a-3p was significantly suppressed. Increased cell viability, altered cell cycle progression, increased cell migration and invasion occurred in HBx-overexpressed cells compared to its controls. In forced expressed miR-200a-3p cells, cell viability, cell migration and invasion were significantly decreased, and cell cycle status was altered compared to its controls. Taken together, pathogenetic function of HBx is negatively correlated with miR-200a-3p in HBV-cased HCC through regulating cell viability, cell cycle arrest, cell migration and cell invasion. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65.

    Science.gov (United States)

    Masuhara, Masaaki; Sato, Takuya; Hada, Naoto; Hakeda, Yoshiyuki

    2009-01-01

    Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.

  19. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial–mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongjing [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Wu, Jilin, E-mail: 6296082@qq.com [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Liu, Meizhou [Department of Medical Service, Shenzhen Second People' s Hospital, Shenzhen, Guangdong 518035 (China); Yin, Hui [Staff' s Hospital, Central South University, Changsha, Hunan 410078 (China); He, Jiantai [Hepatobiliary and Enteric Surgery Research Center, Xiangya Hospital, Central South University, Changsha 410008 (China); Zhang, Bo, E-mail: zhangbo8095@126.com [Department of Ultrasonography, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China)

    2015-09-04

    Hepatitis C virus (HCV) Core protein has been demonstrated to induce epithelial–mesenchymal transition (EMT) and is associated with cancer progression of hepatocellular carcinoma (HCC). However, how the Core protein regulates EMT is still unclear. In this study, HCV Core protein was overexpressed by an adenovirus. The protein levels of EMT markers were measured by Western blot. The xenograft animal model was established by inoculation of HepG2 cells. Results showed that ectopic expression of HCV core protein induced EMT in L02 hepatocytes and HepG2 tumor cells by upregulating vimentin, Sanl1, and Snal2 expression and downregulating E-cadherin expression. Moreover, Core protein downregulated miR-30c and miR-203a levels in L02 and HepG2 cells, but artificial expression of miR-30c and miR-203a reversed Core protein-induced EMT. Further analysis showed that ectopic expression of HCV core protein stimulated cell proliferation, inhibited apoptosis, and increased cell migration, whereas artificial expression of miR-30c and miR-203a significantly reversed the role of Core protein in these cell functions in L02 and HepG2 cells. In the HepG2 xenograft tumor models, artificial expression of miR-30c and miR-203a inhibited EMT and tumor growth. Moreover, L02 cells overexpressing Core protein can form tumors in nude mice. In HCC patients, HCV infection significantly shortened patients' survival time, and loss of miR-30c and miR-203 expression correlated with poor survival. In conclusion, HCV core protein downregulates miR-30c and miR-203a expression, which results in activation of EMT in normal hepatocytes and HCC tumor cells. The Core protein-activated-EMT is involved in the carcinogenesis and progression of HCC. Loss of miR-30c and miR-203a expression is a marker for the poor prognosis of HCC. - Highlights: • HCV core protein downregulates miR-30c and miR-203a expression. • Downregulation of miR-30c and miR-203a activates EMT. • Activated-EMT is involved in the

  20. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  1. Downregulation of heat shock protein B8 decreases osteogenic differentiation potential of dental pulp stem cells during in vitro proliferation.

    Science.gov (United States)

    Flanagan, M; Li, C; Dietrich, M A; Richard, M; Yao, S

    2018-04-01

    Tissue-derived stem cells, such as dental pulp stem cells (DPSCs), reduce differentiation capability during in vitro culture. We found that cultured DPSCs reduce expression of heat shock protein B8 (HspB8) and GIPC PDZ domain containing family member 2 (Gipc2). Our objectives were to evaluate the changes in DPSC composition during in vitro proliferation and to determine whether HspB8 and Gipc2 have function in differentiation potential of DPSCs. Different passages of rat DPSCs were evaluated for changes in CD90+ and/or CD271+ stem cells and changes in osteogenic potential. Real-time RT-PCR and immunostaining were conducted to determine expression of HspB8 and Gipc2. Expression of the genes in DPSCs was knocked down by siRNA, followed by osteogenic induction to evaluate the function of the genes. About 90% of cells in the DPSC cultures were CD90+ and/or CD271+ cells without dramatic change during in vitro proliferation. The DPSCs at passages 3 to 5 (P3 to P5) possess strong osteogenic potential, but such potential was greatly reduced at later passages. Expression of HspB8 and Gipc2 was significantly reduced at P11 versus P3. Knock-down of HspB8 expression abolished osteogenic potential of the DPSCs, but knock-down of Gipc2 had no effect. CD90+ and CD271+ cells are the major components of DPSCs in in vitro culture. High-level expression of HspB8 was critical for maintaining differentiation potential of DPSCs. © 2017 John Wiley & Sons Ltd.

  2. Downregulation of eIF4G by microRNA-503 enhances drug sensitivity of MCF-7/ADR cells through suppressing the expression of ABC transport proteins.

    Science.gov (United States)

    Pan, Xia; Yang, Xiaoyan; Zang, Jinglei; Zhang, Si; Huang, Nan; Guan, Xinxin; Zhang, Jianhua; Wang, Zhihui; Li, Xi; Lei, Xiaoyong

    2017-06-01

    Overexpression of adenosine triphosphate-binding cassette (ABC) transport protein is emerging as a critical contributor to anticancer drug resistance. The eukaryotic translation initiation factor (eIF) 4F complex, the key modulator of mRNA translation, is regulated by the phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway in anticancer drug-resistant tumors. The present study demonstrated the roles of ABC translation protein alterations in the acquisition of the Adriamycin (ADM)-resistant phenotype of MCF-7 human breast cells. Quantitative polymerase chain reaction and western blot analysis were applied to examine the differences in mRNA and protein levels, respectively. It was found that the expression of the ABC sub-family B member 1, ABC sub-family C member 1 and ABC sub-family G member 2 transport proteins were upregulated in MCF-7/ADR cells. An MTT assay was used to detect the cell viability, from the results MCF-7/ADR cells were less sensitive to ADM, tamoxifen (TAM) and taxol (TAX) treatment compared with MCF-7 cells. We predicted that the 3'-untranslated region of eukaryotic translation initiation factor 4-γ 1 (eIF4G) contains a potential miRNA binding site for microRNA (miR)-503 through using computational programs. These binding sites were confirmed by luciferase reporter assays. eIF4G mRNA degradation was accelerated in cells transfected with miR-503 mimics. Furthermore, it was demonstrated that eIF4G and ABC translation proteins were significantly downregulated in MCF-7/ADR cells after transfection with miR-503. It was found that miR-503 mimics could sensitize the cells to treatment with ADM, TAM and TAX. These findings demonstrated for the first time that eIF4G acted as a key factor in MCF-7/ADR cells, and may be an efficient agent for preventing and reversing multi-drug resistance in breast cancer.

  3. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    International Nuclear Information System (INIS)

    Zhou, Heng; Guo, Wei; Long, Cong; Wang, Huan; Wang, Jingchao; Sun, Xiaoping

    2015-01-01

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression

  4. Triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes by down-regulating expression of a viral protein LMP1

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Heng [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Long, Cong; Wang, Huan; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)

    2015-01-16

    Highlights: • Triptolide inhibits proliferation of EBV-positive lymphoma cells in vitro and in vivo. • Triptolide reduces expression of LMP1 by decreasing its transcription level. • Triptolide inhibits ED-L1 promoter activity. - Abstract: Epstein–Barr virus (EBV) infects various types of cells and mainly establishes latent infection in B lymphocytes. The viral latent membrane protein 1 (LMP1) plays important roles in transformation and proliferation of B lymphocytes infected with EBV. Triptolide is a compound of Tripterygium extracts, showing anti-inflammatory, immunosuppressive, and anti-cancer activities. In this study, it is determined whether triptolide inhibits proliferation of Epstein–Barr virus-positive B lymphocytes. The CCK-8 assays were performed to examine cell viabilities of EBV-positive B95-8 and P3HR-1 cells treated by triptolide. The mRNA and protein levels of LMP1 were examined by real time-PCR and Western blotting, respectively. The activities of two LMP1 promoters (ED-L1 and TR-L1) were determined by Dual luciferase reportor assay. The results showed that triptolide inhibited the cell viability of EBV-positive B lymphocytes, and the over-expression of LMP1 attenuated this inhibitory effect. Triptolide decreased the LMP1 expression and transcriptional levels in EBV-positive B cells. The activity of LMP1 promoter ED-L1 in type III latent infection was strongly suppressed by triptolide treatment. In addition, triptolide strongly reduced growth of B95-8 induced B lymphoma in BALB/c nude mice. These results suggest that triptolide decreases proliferation of EBV-induced B lymphocytes possibly by a mechanism related to down-regulation of the LMP1 expression.

  5. Downregulation of the S1P Transporter Spinster Homology Protein 2 (Spns2 Exerts an Anti-Fibrotic and Anti-Inflammatory Effect in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Olivier Blanchard

    2018-05-01

    Full Text Available Sphingosine kinase (SK catalyses the formation of sphingosine 1-phosphate (S1P, which acts as a key regulator of inflammatory and fibrotic reactions, mainly via S1P receptor activation. Here, we show that in the human renal proximal tubular epithelial cell line HK2, the profibrotic mediator transforming growth factor β (TGFβ induces SK-1 mRNA and protein expression, and in parallel, it also upregulates the expression of the fibrotic markers connective tissue growth factor (CTGF and fibronectin. Stable downregulation of SK-1 by RNAi resulted in the increased expression of CTGF, suggesting a suppressive effect of SK-1-derived intracellular S1P in the fibrotic process, which is lost when SK-1 is downregulated. In a further approach, the S1P transporter Spns2, which is known to export S1P and thereby reduces intracellular S1P levels, was stably downregulated in HK2 cells by RNAi. This treatment decreased TGFβ-induced CTGF and fibronectin expression, and it abolished the strong induction of the monocyte chemotactic protein 1 (MCP-1 by the pro-inflammatory cytokines tumor necrosis factor (TNFα and interleukin (IL-1β. Moreover, it enhanced the expression of aquaporin 1, which is an important water channel that is expressed in the proximal tubules, and reverted aquaporin 1 downregulation induced by IL-1β/TNFα. On the other hand, overexpression of a Spns2-GFP construct increased S1P secretion and it resulted in enhanced TGFβ-induced CTGF expression. In summary, our data demonstrate that in human renal proximal tubular epithelial cells, SK-1 downregulation accelerates an inflammatory and fibrotic reaction, whereas Spns2 downregulation has an opposite effect. We conclude that Spns2 represents a promising new target for the treatment of tubulointerstitial inflammation and fibrosis.

  6. Endoplasmic reticulum stress-induced apoptosis accompanies enhanced expression of multiple inositol polyphosphate phosphatase 1 (Minpp1): a possible role for Minpp1 in cellular stress response.

    Science.gov (United States)

    Kilaparty, Surya P; Agarwal, Rakhee; Singh, Pooja; Kannan, Krishnaswamy; Ali, Nawab

    2016-07-01

    Inositol polyphosphates represent a group of differentially phosphorylated inositol metabolites, many of which are implicated to regulate diverse cellular processes such as calcium mobilization, vesicular trafficking, differentiation, apoptosis, etc. The metabolic network of these compounds is complex and tightly regulated by various kinases and phosphatases present predominantly in the cytosol. Multiple inositol polyphosphate phosphatase 1 (Minpp1) is the only known endoplasmic reticulum (ER) luminal enzyme that hydrolyzes various inositol polyphosphates in vitro as well as in vivo conditions. However, access of the Minpp1 to cytosolic substrates has not yet been demonstrated clearly and hence its physiological function. In this study, we examined a potential role for Minpp1 in ER stress-induced apoptosis. We generated a custom antibody and characterized its specificity to study the expression of Minpp1 protein in multiple mammalian cells under experimentally induced cellular stress conditions. Our results demonstrate a significant increase in the expression of Minpp1 in response to a variety of cellular stress conditions. The protein expression was corroborated with the expression of its mRNA and enzymatic activity. Further, in an attempt to link the role of Minpp1 to apoptotic stress, we studied the effect of Minpp1 expression on apoptosis following silencing of the Minpp1 gene by its specific siRNA. Our results suggest an attenuation of apoptotic parameters following knockdown of Minpp1. Thus, in addition to its known role in inositol polyphosphate metabolism, we have identified a novel role for Minpp1 as a stress-responsive protein. In summary, our results provide, for the first time, a probable link between ER stress-induced apoptosis and Minpp1 expression.

  7. Role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of Dr+ Escherichia coli receptor protein decay accelerating factor (DAF or CD55) by nitric oxide.

    Science.gov (United States)

    Banadakoppa, Manu; Liebenthal, Daniel; Nowak, David E; Urvil, Petri; Yallampalli, Uma; Wilson, Gerald M; Kishor, Aparna; Yallampalli, Chandra

    2013-02-01

    We previously reported that nitric oxide (NO) reduces the rate of bacteremia and maternal mortality in pregnant rats with uterine infection by Escherichia coli expressing the Dr Fimbria (Dr(+) ). The epithelial invasion of Dr(+) E. coli is dependent on the expression level of its cellular receptor decay accelerating factor (DAF). NO reduces the rate of bacteremia by downregulating the expression of DAF. In this study, we elucidated the role of transcription factor Sp1 and RNA binding protein HuR in the downregulation of human DAF by NO. We generated a series of deletion mutant constructs of DAF gene 5'-untranslated region and mapped the NO-response region upstream to the core promoter region of the DAF gene. One of the several Sp1 binding sites in the DAF 5'-untranslated region was located within the NO-response region. The binding of Sp1 to this site was inhibited by NO. Furthermore, NO also promoted the degradation of DAF mRNA. The 3'-untranslated region of DAF harbors an AU-rich element and this element destabilized the mRNA transcript. NO promoted the rapid degradation of DAF mRNA by inhibiting the binding of mRNA stabilizing protein HuR to this AU-rich region. The inhibition of binding of HuR to the AU-rich region was due to the S-nitrosylation of one or more cysteine residues by NO. Thus, these data reveal the molecular mediators of transcriptional and post-transcriptional regulation of DAF by NO with implications in pathophysiology related to DAF. © 2012 The Authors Journal compilation © 2012 FEBS.

  8. New 5-deoxyflavonoids and their inhibitory effects on protein tyrosine phosphatase 1B (PTP1B) activity

    DEFF Research Database (Denmark)

    Nguyen, Phi Hung; Dao, Trong Tuan; Kim, Jayeon

    2011-01-01

    .9 ± 1.6 to 19.2 ± 1.1 μM), while compounds (3, 5, and 9) with 2,2-dimethylpyrano ring showed less inhibitory effect (IC₅₀ 22.6 ± 2.3 to 72.9 ± 9.7 μM). These results suggest that prenyl and methoxy groups may be responsible for the increase on the activity of 5-deoxyflavonoids against PTP1B......, but the presence of 2,2-dimethylpyrano ring on the B ring may be induced the decrease of PTP1B inhibitory activity....

  9. Four new neolignans isolated from Eleutherococcus senticosus and their protein tyrosine phosphatase 1B inhibitory activity (PTP1B).

    Science.gov (United States)

    Zhang, Le; Li, Ban-Ban; Li, Hao-Ze; Meng, Xiao; Lin, Xin; Jiang, Yi-Yu; Ahn, Jong-Seog; Cui, Long

    2017-09-01

    Four new compounds, erythro-7'E-4-hydroxy-3,3'-dimethoxy-8,5'-oxyneoligna-7'-ene-7,9-diol-9'-al (1), (7S,8S)-4-hydroxy-3,1',3'-trimethoxy-4',7-epoxy-8,5'-neolign-9-ol (5), (7S,8S,7'E)-5-hydroxy-3,3'-dimethoxy-4',7-epoxy-8,5'-neolign-7'-ene-9,9'-diol (6) and (7S,8S,7'E)-5-hydroxy-3,3',9'-trimethoxy-4'-7-epoxy-8,5'-neolign-7'-ene-9-ol (7). Along with four known compounds (2-4, 8) were isolated from the EtOAc-soluble extract of Eleutherococcus senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the compounds were evaluated for in vitro inhibitory activity against PTP1B, VHR and PP1. Among them, compounds 1-4 and 6-8 were found to exhibit selective inhibitory activity on PTP1B with IC 50 values ranging from 17.2±1.6 to 32.7±1.2μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Protection against paracetamol-induced adverse effects in the liver by the inhibition of the protein tyrosine phosphatase 1B

    OpenAIRE

    Mobasher, Maysa A.

    2013-01-01

    [ES]: El fallo hepático agudo debido a una sobredosis de paracetamol está asociado con una elevada mortalidad. La PTP1B modula negativamente la señalización mediada por los receptores de factores de crecimiento de la súper familia tirosina quinasa. En el hígado, estas rutas confieren protección frente al daño. En esta Tesis Doctoral hemos investigado la expresión de PTP1B en el daño agudo inducido por sobredosis de paracetamol en humanos, así como su papel en la regulación de los mecani...

  11. Type 2C Phosphatase 1 of Artemisia annua L. Is a Negative Regulator of ABA Signaling

    Directory of Open Access Journals (Sweden)

    Fangyuan Zhang

    2014-01-01

    Full Text Available The phytohormone abscisic acid (ABA plays an important role in plant development and environmental stress response. Additionally, ABA also regulates secondary metabolism such as artemisinin in the medicinal plant Artemisia annua L. Although an earlier study showed that ABA receptor, AaPYL9, plays a positive role in ABA-induced artemisinin content improvement, many components in the ABA signaling pathway remain to be elucidated in Artemisia annua L. To get insight of the function of AaPYL9, we isolated and characterized an AaPYL9-interacting partner, AaPP2C1. The coding sequence of AaPP2C1 encodes a deduced protein of 464 amino acids, with all the features of plant type clade A PP2C. Transcriptional analysis showed that the expression level of AaPP2C1 is increased after ABA, salt, and drought treatments. Yeast two-hybrid and bimolecular fluorescence complementation assays (BiFC showed that AaPYL9 interacted with AaPP2C1. The P89S, H116A substitution in AaPYL9 as well as G199D substitution or deletion of the third phosphorylation site-like motif in AaPP2C1 abolished this interaction. Furthermore, constitutive expression of AaPP2C1 conferred ABA insensitivity compared with the wild type. In summary, our data reveals that AaPP2C1 is an AaPYL9-interacting partner and involved in the negative modulation of the ABA signaling pathway in A. annua L.

  12. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    KAUST Repository

    Ruchti, E.

    2016-10-08

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the neurotransmitter noradrenaline. To achieve further insight into the role of PTG in the regulation of astrocytic glycogen, its levels of expression were manipulated in primary cultures of mouse cortical astrocytes using adenovirus-mediated overexpression of tagged-PTG or siRNA to downregulate its expression. Infection of astrocytes with adenovirus led to a strong increase in PTG expression and was associated with massive glycogen accumulation (>100 fold), demonstrating that increased PTG expression is sufficient to induce glycogen synthesis and accumulation. In contrast, siRNA-mediated downregulation of PTG resulted in a 2-fold decrease in glycogen levels. Interestingly, PTG downregulation strongly impaired long-term astrocytic glycogen synthesis induced by insulin or noradrenaline. Finally, these effects of PTG downregulation on glycogen metabolism could also be observed in cultured astrocytes isolated from PTG-KO mice. Collectively, these observations point to a major role of PTG in the regulation of glycogen synthesis in astrocytes and indicate that conditions leading to changes in PTG expression will directly impact glycogen levels in this cell type.

  13. Baicalin Protects against TNF-α-Induced Injury by Down-Regulating miR-191a That Targets the Tight Junction Protein ZO-1 in IEC-6 Cells.

    Science.gov (United States)

    Wang, Li; Zhang, Ren; Chen, Jian; Wu, Qihui; Kuang, Zaoyuan

    2017-04-01

    Tumor necrosis factor-alpha (TNF-α) plays an important role in the developing process of inflammatory bowel disease. Tight junction protein zonula occludens-1 (ZO-1), one of epithelial junctional proteins, maintains the permeability of intestinal barrier. The objective of this study was to investigate the mechanism of the protective effect of baicalin on TNF-α-induced injury and ZO-1 expression in intestinal epithelial cells (IECs). We found that baicalin pretreatment significantly improved cell viability and cell migration following TNF-α stimulation. miR-191a inhibitor increased the protective effect of baicalin on cell motility injured by TNF-α. In addition, miR-191a down-regulated the mRNA and protein level of its target gene ZO-1. TNF-α stimulation increased miR-191a expression, leading to the decline of ZO-1 mRNA and protein. Moreover, pretreatment with baicalin reversed TNF-α induced decrease of ZO-1 and increase of miR-191a, miR-191a inhibitor significantly enhanced ZO-1 protein expression restored by baicalin. These results indicate that baicalin exerts a protective effect on IEC-6 (rat small intestinal epithelial cells) cells against TNF-α-induced injury, which is at least partly via inhibiting the expression of miR-191a, thus increasing ZO-1 mRNA and protein levels.

  14. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin

    OpenAIRE

    Matsuura, K; Huang, N-J; Cocce, K; Zhang, L; Kornbluth, S

    2016-01-01

    Evasion of apoptosis allows many cancers to resist chemotherapy. Apoptosis is mediated by the serial activation of caspase family proteins. These proteases are often activated upon the release of cytochrome c from the mitochondria, which is promoted by the proapoptotic Bcl-2 family protein, Bax. This function of Bax is enhanced by the MOAP-1 (modulator of apoptosis protein 1) protein in response to DNA damage. Previously, we reported that MOAP-1 is targeted for ubiquitylation and degradation ...

  15. Low intensity ultrasound promotes the sensitivity of rat brain glioma to Doxorubicin by down-regulating the expressions of p-glucoprotein and multidrug resistance protein 1 in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available The overall prognosis for malignant glioma is extremely poor, and treatment options are limited in part because of multidrug resistant proteins. Our previous findings suggest low intensity ultrasound (LIUS can induce apoptosis of glioma cells. Given this finding, we were interested in determining if LIUS could help treat glioma by inhibiting multidrug resistant proteins, and if so, which pathways are involved. In this study, the toxicity sensitivity and multidrug resistance proteins of glioma induced by LIUS were investigated using CCK-8, immunohistochemistry, immunofluorency, and RT-PCR in tissue samples and cultured cells. LIUS inhibited increase of C6 cells in an intensity- and time-dependent manner. The toxicity sensitivity of C6 cells increased significantly after LIUS sonication (intensity of 142.0 mW/cm(2 or Doxorubicin (DOX at different concentration, particularly by the combination of LIUS sonication and DOX. The expressions of P-gp and MRP1 decreased significantly post-sonication at intensity of 142.0 mW/cm(2 both in vitro and in vivo. The expressions of p110 delta (PI3K, NF-κB-p65, Akt/PKB, and p-Akt/PKB were downregulated by LIUS sonication and DOX treatment separately or in combination at the same parameters in rat glioma. These results indicate that LIUS could increase the toxicity sensitivity of glioma by down-regulating the expressions of P-gp and MRP1, which might be mediated by the PI3K/Akt/NF-κB pathway.

  16. Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB-C/EBP-β complex formation

    NARCIS (Netherlands)

    Kleemann, R.; Gervois, P.P.; Verschuren, L.; Staels, B.; Princen, H.M.G.; Kooistra, T.

    2003-01-01

    C-reactive protein (CRP) is a major acute-phase protein in humans. Elevated plasma CRP levels are a risk factor for cardiovascular disease. CRP is predominantly expressed in hepatocytes and is induced by interleukin-1 (IL-1) and IL-6 under inflammatory situations, such as the acute phase. Fibrates

  17. The SARS Coronavirus 3a protein causes endoplasmic reticulum stress and induces ligand-independent downregulation of the type 1 interferon receptor.

    Directory of Open Access Journals (Sweden)

    Rinki Minakshi

    2009-12-01

    Full Text Available The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV is reported to cause apoptosis of infected cells and several of its proteins including the 3a accessory protein, are pro-apoptotic. Since the 3a protein localizes to the endoplasmic reticulum (ER-Golgi compartment, its role in causing ER stress was investigated in transiently transfected cells. Cells expressing the 3a proteins showed ER stress based on activation of genes for the ER chaperones GRP78 and GRP94. Since ER stress can cause differential modulation of the unfolded protein response (UPR, which includes the inositol-requiring enzyme 1 (IRE-1, activating transcription factor 6 (ATF6 and PKR-like ER kinase (PERK pathways, these were individually tested in 3a-expressing cells. Only the PERK pathway was found to be activated in 3a-expressing cells based on (1 increased phosphorylation of eukaryotic initiation factor 2 alpha (eIF2alpha and inhibitory effects of a dominant-negative form of eIF2alpha on GRP78 promoter activity, (2 increased translation of activating transcription factor 4 (ATF4 mRNA, and (3 ATF4-dependent activation of the C/EBP homologous protein (CHOP gene promoter. Activation of PERK affects innate immunity by suppression of type 1 interferon (IFN signaling. The 3a protein was found to induce serine phosphorylation within the IFN alpha-receptor subunit 1 (IFNAR1 degradation motif and to increase IFNAR1 ubiquitination. Confocal microscopic analysis showed increased translocation of IFNAR1 into the lysosomal compartment and flow cytometry showed reduced levels of IFNAR1 in 3a-expressing cells. These results provide further mechanistic details of the pro-apoptotic effects of the SARS-CoV 3a protein, and suggest a potential role for it in attenuating interferon responses and innate immunity.

  18. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes.

    Science.gov (United States)

    Yoshida, Kazuko; Ma, Dawei; Constabel, C Peter

    2015-03-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells.

    Science.gov (United States)

    Cammarata, Patrick R; Neelam, Sudha; Brooks, Morgan M

    2015-01-01

    The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed. Recently, we reported

  20. On the role of the second coding exon of the HIV-1 Tat protein in virus replication and MHC class I downregulation

    NARCIS (Netherlands)

    Verhoef, K.; Bauer, M.; Meyerhans, A.; Berkhout, B.

    1998-01-01

    Tat is an essential protein of human immunodeficiency virus type 1 (HIV-1) and activates transcription from the viral long terminal repeat (LTR) promoter. The tat gene is composed of two coding exons of which the first, corresponding to the N-terminal 72 amino acid residues, has been reported to be

  1. Downregulation of GABA[Subscript A] Receptor Protein Subunits a6, ß2, d, e, ?2, ?, and ?2 in Superior Frontal Cortex of Subjects with Autism

    Science.gov (United States)

    Fatemi, S. Hossein; Reutiman, Teri J.; Folsom, Timothy D.; Rustan, Oyvind G.; Rooney, Robert J.; Thuras, Paul D.

    2014-01-01

    We measured protein and mRNA levels for nine gamma-aminobutyric acid A (GABA[subscript A]) receptor subunits in three brain regions (cerebellum, superior frontal cortex, and parietal cortex) in subjects with autism versus matched controls. We observed changes in mRNA for a number of GABA[subscript A] and GABA[subscript B] subunits and overall…

  2. Down-regulation of lipid raft-associated onco-proteins via cholesterol-dependent lipid raft internalization in docosahexaenoic acid-induced apoptosis.

    Science.gov (United States)

    Lee, Eun Jeong; Yun, Un-Jung; Koo, Kyung Hee; Sung, Jee Young; Shim, Jaegal; Ye, Sang-Kyu; Hong, Kyeong-Man; Kim, Yong-Nyun

    2014-01-01

    Lipid rafts, plasma membrane microdomains, are important for cell survival signaling and cholesterol is a critical lipid component for lipid raft integrity and function. DHA is known to have poor affinity for cholesterol and it influences lipid rafts. Here, we investigated a mechanism underlying the anti-cancer effects of DHA using a human breast cancer cell line, MDA-MB-231. We found that DHA decreased cell surface levels of lipid rafts via their internalization, which was partially reversed by cholesterol addition. With DHA treatment, caveolin-1, a marker for rafts, and EGFR were colocalized with LAMP-1, a lysosomal marker, in a cholesterol-dependent manner, indicating that DHA induces raft fusion with lysosomes. DHA not only displaced several raft-associated onco-proteins, including EGFR, Hsp90, Akt, and Src, from the rafts but also decreased total levels of those proteins via multiple pathways, including the proteasomal and lysosomal pathways, thereby decreasing their activities. Hsp90 overexpression maintained its client proteins, EGFR and Akt, and attenuated DHA-induced cell death. In addition, overexpression of Akt or constitutively active Akt attenuated DHA-induced apoptosis. All these data indicate that the anti-proliferative effect of DHA is mediated by targeting of lipid rafts via decreasing cell surface lipid rafts by their internalization, thereby decreasing raft-associated onco-proteins via proteasomal and lysosomal pathways and decreasing Hsp90 chaperone function. © 2013.

  3. Nrdp1 Increases Ischemia Induced Primary Rat Cerebral Cortical Neurons and Pheochromocytoma Cells Apoptosis Via Downregulation of HIF-1α Protein

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-09-01

    Full Text Available Neuregulin receptor degradation protein-1 (Nrdp1 is an E3 ubiquitin ligase that targets proteins for degradation and regulates cell growth, apoptosis and oxidative stress in various cell types. We have previously shown that Nrdp1 is implicated in ischemic cardiomyocyte death. In this study, we investigated the change of Nrdp1 expression in ischemic neurons and its role in ischemic neuronal injury. Primary rat cerebral cortical neurons and pheochromocytoma (PC12 cells were infected with adenoviral constructs expressing Nrdp1 gene or its siRNA before exposing to oxygen-glucose deprivation (OGD treatment. Our data showed that Nrdp1 was upregulated in ischemic brain tissue 3 h after middle cerebral artery occlusion (MCAO and in OGD-treated neurons. Of note, Nrdp1 overexpression by Ad-Nrdp1 enhanced OGD-induced neuron apoptosis, while knockdown of Nrdp1 with siRNA attenuated this effect, implicating a role of Nrdp1 in ischemic neuron injury. Moreover, Nrdp1 upregulation is accompanied by increased protein ubiquitylation and decreased protein levels of ubiquitin-specific protease 8 (USP8 in OGD-treated neurons, which led to a suppressed interaction between USP8 and HIF-1α and subsequently a reduction in HIF-1α protein accumulation in neurons under OGD conditions. In conclusion, our data support an important role of Nrdp1 upregulation in ischemic neuronal death, and suppressing the interaction between USP8 and HIF-1α and consequently the hypoxic adaptive response of neurons may account for this detrimental effect.

  4. Depletion of the cellular levels of Bag-1 proteins attenuates phorbol ester-induced downregulation of IκBα and nuclear accumulation of NF-κB

    International Nuclear Information System (INIS)

    Maier, Jana V.; Volz, Yvonne; Berger, Caroline; Schneider, Sandra; Cato, Andrew C.B.

    2010-01-01

    Research highlights: →Bag-1 depletion only marginally affects the action of the glucocorticoid receptor but strongly regulates the activity of NF-κB. →Bag-1 depletion attenuates phosphorylation and degradation of IκBα and nuclear accumulation of NF-κB p65 and p50. →Bag-1 interacts with IκBα and partially restores IκBα and NF-κB activation in Bag-1 depleted cells. -- Abstract: Bag-1 consists in humans of four isoforms generated from the same RNA by alternative translation. Overexpression of single Bag-1 isoforms has identified Bag-1 as a negative regulator of action of many proteins including the glucocorticoid receptor (GR). Here we have analysed the ability of Bag-1 to regulate the transrepression function of the GR. Silencing Bag-1 expression only marginally affects the transrepression action of the GR but decreased the action of the transcription factor NF-κB. Furthermore phosphorylation and degradation of the inhibitor protein IκBα and nuclear accumulation of p65 and p50 NF-κB proteins in response to phorbol ester was attenuated following Bag-1 depletion in HeLa cells. Reconstitution of Bag-1 in depleted cells partially restored IκBα and NF-κB activation. Knock-down of Bag-1 expression also did not significantly alter GR-mediated transactivation but affected the basal transcription of some of the target genes. Thus Bag-1 proteins function as regulators of the action of selective transcription factors.

  5. Exercise training protects against atherosclerotic risk factors through vascular NADPH oxidase, extracellular signal-regulated kinase 1/2 and stress-activated protein kinase/c-Jun N-terminal kinase downregulation in obese rats.

    Science.gov (United States)

    Touati, Sabeur; Montezano, Augusto C I; Meziri, Fayçal; Riva, Catherine; Touyz, Rhian M; Laurant, Pascal

    2015-02-01

    Exercise training reverses atherosclerotic risk factors associated with metabolic syndrome and obesity. The aim of the present study was to determine the molecular anti-inflammatory, anti-oxidative and anti-atherogenic effects in aorta from rats with high-fat diet-induced obesity. Male Sprague-Dawley rats were placed on a high-fat (HFD) or control (CD) diet for 12 weeks. The HFD rats were then divided into four groups: (i) sedentary HFD-fed rats (HFD-S); (ii) exercise trained (motor treadmill 5 days/week, 60 min/day, 12 weeks) HFD-fed rats (HFD-Ex); (iii) modified diet (HFD to CD) sedentary rats (HF/CD-S); and (iv) an exercise-trained modified diet group (HF/CD-Ex). Tissue levels of NADPH oxidase (activity and expression), NADPH oxidase (Nox) 1, Nox2, Nox4, p47(phox) , superoxide dismutase (SOD)-1, angiotensin AT1 and AT2 receptors, phosphorylated mitogen-activated protein kinase (MAPK; extracellular signal-regulated kinase (ERK) 1/2, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK)) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the aorta. Plasma cytokines (tumour necrosis factor (TNF)-α and interleukin (IL)-6) levels were also measured. Obesity was accompanied by increases in NADPH oxidase activity, p47(phox) translocation, Nox4 and VCAM-1 protein expression, MAPK (ERK1/2, SAPK/JNK) phosphorylation and plasma TNF-α and IL-6 levels. Exercise training and switching from the HFD to CD reversed almost all these molecular changes. In addition, training increased aortic SOD-1 protein expression and decreased ERK1/2 phosphorylation. These findings suggest that protective effects of exercise training on atherosclerotic risk factors induced by obesity are associated with downregulation of NADPH oxidase, ERK1/2 and SAPK/JNK activity and increased SOD-1 expression. © 2014 Wiley Publishing Asia Pty Ltd.

  6. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    Directory of Open Access Journals (Sweden)

    Bei Zhang

    2015-01-01

    Full Text Available Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ′learned non-use′ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model group, a CIMT + model (CIMT group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  7. Degradation of the HilC and HilD regulator proteins by ATP-dependent Lon protease leads to downregulation of Salmonella pathogenicity island 1 gene expression.

    Science.gov (United States)

    Takaya, Akiko; Kubota, Yohsuke; Isogai, Emiko; Yamamoto, Tomoko

    2005-02-01

    Salmonella pathogenicity island 1 (SPI1) enables infecting Salmonella to cross the small intestinal barrier and to escape phagocytosis by inducing apoptosis. Several environmental signals and transcriptional regulators modulate the expression of hilA, which encodes a protein playing a central role in the regulatory hierarchy of SPI1 gene expression. We have previously shown that Lon, a stress-induced ATP-dependent protease, is a negative regulator of hilA, suggesting that it targets factors required for activating hilA expression. To elucidate the mechanisms by which Lon protease negatively regulates SPI1 transcription, we looked for its substrate proteins. We found that HilC and HilD, which are positive regulators of hilA expression, accumulate in Lon-depleted cells, and that the enhancement of SPI1 expression that occurs in a lon-disrupted mutant is not observed in the lon hilC hilD triple null mutant. Furthermore, we demonstrated that the half-lives of HilC and HilD are, respectively, about 12 times and three times longer in the Lon-depleted mutant, than in the Lon+ cells, suggesting that Lon targets both of HilC and HilD. In view of these findings, we suggest that the regulation of SPI1 expression is negatively controlled through degradation of the HilC and HilD transcriptional regulators by Lon.

  8. Effect of the down-regulation of the high Grain Protein Content (GPC) genes on the wheat transcriptome during monocarpic senescence

    DEFF Research Database (Denmark)

    Cantu, Dario; Pearce, Stephen P; Distelfeld, Assaf

    2011-01-01

    Background: Increasing the nutrient concentration of wheat grains is important to ameliorate nutritional deficiencies in many parts of the world. Proteins and nutrients in the wheat grain are largely derived from the remobilization of degraded leaf molecules during monocarpic senescence. The down....... At this early stage of senescence GPC transcript levels are significantly lower in transgenic GPC-RNAi plants than in the wild type, but there are still no visible phenotypic differences between genotypes. Results: We generated 1.4 million 454 reads from early senescing flag leaves (average ~350 nt......) and assembled 1.2 million into 30,497 contigs that were used as a reference to map 145 million Illumina reads from three wild type and four GPC-RNAi plants. Following normalization and statistical testing, we identified a set of 691 genes differentially regulated by GPC (431 ≥ 2-fold change). Transcript level...

  9. Role of protein kinase A and class II phosphatidylinositol 3-kinase C2β in the downregulation of KCa3.1 channel synthesis and membrane surface expression by lyso-globotriaosylceramide

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ju Yeon; Park, Seonghee, E-mail: sp@ewha.ac.kr

    2016-02-19

    The intermediate conductance calcium-activated potassium channel (KCa3.1) mediates proliferation of many cell types including fibroblasts, and is a molecular target for intervention in various cell proliferative diseases. Our previous study showed that reduction of KCa3.1 channel expression by lyso-globotriaosylceramide (lyso-Gb3) inhibits differentiation into myofibroblasts and collagen synthesis, which might lead to development of ascending thoracic aortic aneurysm secondary to Fabry disease. However, how lyso-Gb3 downregulates KCa3.1 channel expression is unknown. Therefore, we aimed to investigate the underlying mechanisms of lyso-Gb3-mediated KCa3.1 channel downregulation, focusing on the cAMP signaling pathway. We found that lyso-Gb3 increased the intracellular cAMP concentration by upregulation of adenylyl cyclase 6 and inhibited ERK 1/2 phosphorylation through the protein kinase A (PKA) pathway, leading to the inhibition of KCa3.1 channel synthesis, not the exchange protein directly activated by cAMP (Epac) pathway. Moreover, lyso-Gb3 suppressed expression of class II phosphatidylinositol 3-kinase C2β (PI3KC2β) by PKA activation, which reduces the production of phosphatidylinositol 3-phosphate [PI(3)P], and the reduced membrane surface expression of KCa3.1 channel was recovered by increasing the intracellular levels of PI(3)P. Consequently, our findings that lyso-Gb3 inhibited both KCa3.1 channel synthesis and surface expression by increasing intracellular cAMP, and controlled surface expression through changes in PI3KC2β-mediated PI(3)P production, suggest that modulation of PKA and PI3KC2β activity to control of KCa3.1 channel expression can be an alternative important target to attenuate ascending thoracic aortic aneurysms in Fabry disease. - Highlights: • Lyso-Gb3 causes elevation of intracellular cAMP. • Lyso-Gb3 inhibits the ERK 1/2 phosphorylation through PKA, thereby reducing KCa3.1 channel synthesis. • Lyso-Gb3 reduces PI3KC2

  10. Sitagliptin down-regulates retinol-binding protein 4 and reduces insulin resistance in gestational diabetes mellitus: a randomized and double-blind trial.

    Science.gov (United States)

    Sun, Xia; Zhang, Zhendong; Ning, Hui; Sun, Hong; Ji, Xianghong

    2017-06-01

    Gestational diabetes mellitus (GDM) is a condition that affects increasing number of pregnant women worldwide. Sitagliptin was reported to alleviate symptoms of type 2 diabetes mellitus by reducing serum levels of retinol-binding protein 4 (RBP-4). We investigated the effectiveness of sitagliptin on insulin sensitivity parameters in GDM patients. Pregnant GDM women in the 2nd trimester were recruited for this study. Participants were then assigned randomly to sitagliptin treatment group or placebo treatment group, and administered sitagliptin or placebo daily for 16 weeks. Glucose and insulin profiles, as well as serum RBP-4 level, were measured at both baseline and end of the study. After 16 weeks of treatment, participants in the STL group exhibited significantly improved levels of fasting plasma glucose and serum insulin, homeostasis model of assessment of β cell function (HOMA-β) and insulin resistance (HOMA-IR), compared with those in the placebo group. Serum levels of RBP-4 were also markedly decreased in the sitagliptin treatment group, and more importantly it was positively correlated with improved insulin resistance parameters. Our study supports a potentially promising role of sitagliptin in improving insulin resistance by decreasing RBP-4 in GDM-affected women.

  11. Kaempferol Reduces Matrix Metalloproteinase-2 Expression by Down-Regulating ERK1/2 and the Activator Protein-1 Signaling Pathways in Oral Cancer Cells

    Science.gov (United States)

    Lin, Chiao-Wen; Chen, Pei-Ni; Chen, Mu-Kuan; Yang, Wei-En; Tang, Chih-Hsin; Yang, Shun-Fa; Hsieh, Yih-Shou

    2013-01-01

    Background Kaempferol has been proposed as a potential drug for cancer chemoprevention and treatment because it is a natural polyphenol contained in plant-based foods. Recent studies have demonstrated that kaempferol protects against cardiovascular disease and cancer. Based on this finding, we investigated the mechanisms by which kaempferol produces the anti-metastatic effect in human tongue squamous cell carcinoma SCC4 cells. Methodology/Principal Findings In this study, we provided molecular evidence associated with the anti-metastatic effect of kaempferol by demonstrating a substantial suppression of SCC4 cell migration and invasion. This effect was associated with reduced expressions of MMP-2 and TIMP-2 mRNA and protein levels. Analysis of the transcriptional regulation indicated that kaempferol inhibited MMP-2 transcription by suppressing c-Jun activity. Kaempferol also produced an inhibitory effect on the phosphorylation of ERK1/2. Conclusions These findings provide new insights into the molecular mechanisms involved in the anti-metastatic effect of kaempferol, and are valuable in the prevention of oral cancer metastasis. PMID:24278338

  12. Imoxin attenuates high fructose-induced oxidative stress and apoptosis in renal epithelial cells via downregulation of protein kinase R pathway.

    Science.gov (United States)

    Kalra, Jaspreet; Mangali, Suresh Babu; Bhat, Audesh; Dhar, Indu; Udumula, Mary Priyanka; Dhar, Arti

    2018-02-11

    Double-stranded RNA (dsRNA)-activated protein kinase R (PKR), a ubiquitously expressed serine/threonine kinase, is a key inducer of inflammation, insulin resistance, and glucose homeostasis in obesity. Recent studies have demonstrated that PKR can respond to metabolic stress in mice as well as in humans. However, the underlying molecular mechanism is not fully understood. The aim of this study was to examine the effect of high fructose (HF) in cultured renal tubular epithelial cells (NRK-52E) derived from rat kidney and to investigate whether inhibition of PKR could prevent any deleterious effects of HF in these cells. PKR expression was determined by immunofluorescence staining and Western blotting. Oxidative damage and apoptosis were measured by flow cytometry. HF-treated renal cells developed a significant increase in PKR expression. A significant increase in reactive oxygen species generation and apoptosis was also observed in HF-treated cultured renal epithelial cells. All these effects of HF were attenuated by a selective PKR inhibitor, imoxin (C16). In conclusion, our study demonstrates PKR induces oxidative stress and apoptosis, is a significant contributor involved in vascular complications and is a possible mediator of HF-induced hypertension. Inhibition of PKR pathway can be used as a therapeutic strategy for the treatment of cardiovascular and metabolic disorders. © 2018 Société Française de Pharmacologie et de Thérapeutique.

  13. Amelioration of ultraviolet-B-induced down-regulation of mRNA levels for chloroplast proteins, by high irradiance, is mediated by photosynthesis

    International Nuclear Information System (INIS)

    Mackerness, S.A. H.; Butt, P.J.; Jordan, B.R.; Thomas, B.

    1996-01-01

    The mechanism by which increasing photosynthetically active radiation (PAR) reduces the sensitivity of RNA transcripts to UV-B radiation was studied in pea (Pisum sativum L.). mRNA transcript levels for rbc S, rbc L, cab and psb A were measured over an 8 d experimental period in pea, plants supplemented with UV-B radiation under a range of conditions. Under low light (150 mu-mol m -2 s -1 ), UV-B resulted in a significant decline in the levels of transcripts for all four genes which was prevented by increasing the background irradiance to 350 mu-mol m -2 s -1 (high light) with white light from fluorescent lamps. Increasing CO 2 levels to give photosynthesis rates equivalent to the high light treatment partially protected rbc S and cab transcripts and fully protected rbc L transcripts but did not prevent visible injury. Increasing light with low pressure sodium lamps, which increase photosynthesis but are not effective for activation of the DNA repair enzyme, photolyase, gave results which were not significantly different from white fluorescent high light treatments. Protection by high light was lost in the presence of the photosynthesis inhibitors CCCP and DCMU. The UV-B induced increase in the expression of chalcone synthase (chs) genes was delayed by the treatments which increased photosynthesis rates and conferred protection. The results indicate that photosynthesis plays a key role in the amelioration of UV-B induced decline in mRNA levels for proteins. The minimal role of DNA repair by photolyase indicates that reduction in photosynthesis gene transcripts in response to UV-B represents a specific regulation rather than being a consequence of DNA damage. (author)

  14. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  15. Nuclear Envelope Phosphatase 1-Regulatory Subunit 1 (Formerly TMEM188) Is the Metazoan Spo7p Ortholog and Functions in the Lipin Activation Pathway*

    Science.gov (United States)

    Han, Sungwon; Bahmanyar, Shirin; Zhang, Peixiang; Grishin, Nick; Oegema, Karen; Crooke, Roseann; Graham, Mark; Reue, Karen; Dixon, Jack E.; Goodman, Joel M.

    2012-01-01

    Lipin-1 catalyzes the formation of diacylglycerol from phosphatidic acid. Lipin-1 mutations cause lipodystrophy in mice and acute myopathy in humans. It is heavily phosphorylated, and the yeast ortholog Pah1p becomes membrane-associated and active upon dephosphorylation by the Nem1p-Spo7p membrane complex. A mammalian ortholog of Nem1p is the C-terminal domain nuclear envelope phosphatase 1 (CTDNEP1, formerly “dullard”), but its Spo7p-like partner is unknown, and the need for its existence is debated. Here, we identify the metazoan ortholog of Spo7p, TMEM188, renamed nuclear envelope phosphatase 1-regulatory subunit 1 (NEP1-R1). CTDNEP1 and NEP1-R1 together complement a nem1Δspo7Δ strain to block endoplasmic reticulum proliferation and restore triacylglycerol levels and lipid droplet number. The two human orthologs are in a complex in cells, and the amount of CTDNEP1 is increased in the presence of NEP1-R1. In the Caenorhabditis elegans embryo, expression of nematode CTDNEP1 and NEP1-R1, as well as lipin-1, is required for normal nuclear membrane breakdown after zygote formation. The expression pattern of NEP1-R1 and CTDNEP1 in human and mouse tissues closely mirrors that of lipin-1. CTDNEP1 can dephosphorylate lipins-1a, -1b, and -2 in human cells only in the presence of NEP1-R1. The nuclear fraction of lipin-1b is increased when CTDNEP1 and NEP1-R1 are co-expressed. Therefore, NEP1-R1 is functionally conserved from yeast to humans and functions in the lipin activation pathway. PMID:22134922

  16. Damaged DNA-binding protein down-regulates epigenetic mark H3K56Ac through histone deacetylase 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qianzheng; Battu, Aruna; Ray, Alo; Wani, Gulzar; Qian, Jiang; He, Jinshan; Wang, Qi-en [Department of Radiology, The Ohio State University, Columbus, OH 43210 (United States); Wani, Altaf A., E-mail: wani.2@osu.edu [Department of Radiology, The Ohio State University, Columbus, OH 43210 (United States); Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210 (United States); James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH 43210 (United States)

    2015-06-15

    Highlights: • HDAC1 and HDAC2 co-localize with UV radiation-induced DNA damage sites. • HDAC1 translocation to chromatin is dependent on DDB2 function. • HDAC1 and HDAC2 are involved in H3K56Ac deacetylation. • H3K56Ac deacetylation requires DDB1 and DDB2 but not XPA or XPC functions. • HDAC1/2 depletion decreases XPC ubiquitination and local γH2AX accumulation. - Abstract: Acetylated histone H3 lysine 56 (H3K56Ac) is one of the reversible histone post-translational modifications (PTMs) responsive to DNA damage. We previously described a biphasic decrease and increase of epigenetic mark H3K56Ac in response to ultraviolet radiation (UVR)-induced DNA damage. Here, we report a new function of UV damaged DNA-binding protein (DDB) in deacetylation of H3K56Ac through specific histone deacetylases (HDACs). We show that simultaneous depletion of HDAC1/2 compromises the deacetylation of H3K56Ac, while depletion of HDAC1 or HDAC2 alone has no effect on H3K56Ac. The H3K56Ac deacetylation does not require functional nucleotide excision repair (NER) factors XPA and XPC, but depends on the function of upstream factors DDB1 and DDB2. UVR enhances the association of DDB2 with HDAC1 and, enforced DDB2 expression leads to translocation of HDAC1 to UVR-damaged chromatin. HDAC1 and HDAC2 are recruited to UVR-induced DNA damage spots, which are visualized by anti-XPC immunofluorescence. Dual HDAC1/2 depletion decreases XPC ubiquitination, but does not affect the recruitment of DDB2 to DNA damage. By contrast, the local accumulation of γH2AX at UVR-induced DNA damage spots was compromised upon HDAC1 as well as dual HDAC1/2 depletions. Additionally, UVR-induced ATM activation decreased in H12899 cells expressing H3K56Ac-mimicing H3K56Q. These results revealed a novel role of DDB in H3K56Ac deacetylation during early step of NER and the existence of active functional cross-talk between DDB-mediated damage recognition and H3K56Ac deacetylation.

  17. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    Science.gov (United States)

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Rocaglamide overcomes tumor necrosis factor-related apoptosis-inducing ligand resistance in hepatocellular carcinoma cells by attenuating the inhibition of caspase-8 through cellular FLICE-like-inhibitory protein downregulation.

    Science.gov (United States)

    Luan, Zhou; He, Ying; He, Fan; Chen, Zhishui

    2015-01-01

    The enhancement of apoptosis is a therapeutic strategy used in the treatment of cancer. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor agent. However, hepatocellular carcinoma (HCC) cells exhibit marked resistance to the induction of cell death by TRAIL. The present study investigated whether rocaglamide, a naturally occurring product isolated from the genus Aglaia, is able to sensitize resistant HCC cells to TRAIL-mediated apoptosis. Two HCC cell lines, HepG2 and Huh-7, were treated with rocaglamide and/or TRAIL and the induction of apoptosis and effects on the TRAIL signaling pathway were investigated. The in vivo efficacy of rocaglamide was determined in TRAIL-resistant Huh-7-derived tumor xenografts. Rocaglamide significantly sensitized the TRAIL-resistant HCC cells to apoptosis by TRAIL, which resulted from the rocaglamide-mediated downregulation of cellular FLICE-like inhibitory protein and subsequent caspase-8 activation. Furthermore, rocaglamide markedly inhibited tumor growth from Huh-7 cells propagated in severe combined immunodeficient mice, suggesting that chemosentization also occurred in vivo. These data suggest that rocaglamide acted synergistically with TRAIL against the TRAIL-resistant HCC cells. Thus, it is concluded that rocaglamide as an adjuvant to TRAIL-based therapy may present a promising therapeutic approach for the treatment of HCC.

  19. Co-ordinate regulation of growth factor receptors and lipid phosphate phosphatase-1 controls cell activation by exogenous lysophosphatidate.

    Science.gov (United States)

    Pilquil, C; Ling, Z C; Singh, I; Buri, K; Zhang, Q X; Brindley, D N

    2001-11-01

    The serum-derived lipid growth factors, lysophosphatidate (LPA) and sphingosine 1-phosphate (S1P), activate cells selectively through different members of a family of endothelial differentiation gene (EDG) receptors. Activation of EDG receptors by LPA and S1P provides a variety of signalling cascades depending upon the G-protein coupling of the different EDG receptors. This leads to chemotactic and mitogenic responses, which are important in wound healing. For example, LPA stimulates fibroblast division and S1P stimulates the chemotaxis and division of endothelial cells leading to angiogenesis. Counteracting these effects of LPA and S1P, are the actions of lipid phosphate phosphatases (LPP, or phosphatidate phosphohydrolases, Type 2). The isoform LPP-1 is expressed in the plasma membrane with its active site outside the cell. This enzyme is responsible for 'ecto-phosphatase' activity leading to the degradation of exogenous lipid phosphate mediators, particularly LPA. Expression of LPP-1 decreases cell activation by exogenous LPA. The mechanism for this is controversial and several mechanisms have been proposed. Evidence will be presented that the LPPs cross-talk with EDG and other growth factor receptors, thus, regulating the responses of the cells to lipid phosphate mediators of signal transduction.

  20. High Brain Ammonia Tolerance and Down-Regulation of Na+:K+:2Cl- Cotransporter 1b mRNA and Protein Expression in the Brain of the Swamp Eel, Monopterus albus, Exposed to Environmental Ammonia or Terrestrial Conditions

    Science.gov (United States)

    Ip, Yuen K.; Hou, Zhisheng; Chen, Xiu L.; Ong, Jasmine L. Y.; Chng, You R.; Ching, Biyun; Hiong, Kum C.; Chew, Shit F.

    2013-01-01

    Na+:K+:2Cl- cotransporter 1 (NKCC1) has been implicated in mediating ischemia-, trauma- or ammonia-induced astrocyte swelling/brain edema in mammals. This study aimed to determine the effects of ammonia or terrestrial exposure on ammonia concentrations in the plasma and brain, and the mRNA expression and protein abundance of nkcc/Nkcc in the brain, of the swamp eel Monopterus albus . Ammonia exposure led to a greater increase in the ammonia concentration in the brain of M. albus than terrestrial exposure. The brain ammonia concentration of M. albus reached 4.5 µmol g-1 and 2.7 µmol g-1 after 6 days of exposure to 50 mmol l-1 NH4Cl and terrestrial conditions, respectively. The full cDNA coding sequence of nkcc1b from M. albus brain comprised 3276 bp and coded for 1092 amino acids with an estimated molecular mass of 119.6 kDa. A molecular characterization indicated that it could be activated through phosphorylation and/or glycosylation by osmotic and/or oxidative stresses. Ammonia exposure for 1 day or 6 days led to significant decreases in the nkcc1b mRNA expression and Nkcc1b protein abundance in the brain of M. albus. In comparison, a significant decrease in nkcc1b mRNA expression was observed in the brain of M. albus only after 6 days of terrestrial exposure, but both 1 day and 6 days of terrestrial exposure resulted in significant decreases in the protein abundance of Nkcc1b. These results are novel because it has been established in mammals that ammonia up-regulates NKCC1 expression in astrocytes and NKCC1 plays an important role in ammonia-induced astrocyte swelling and brain edema. By contrast, our results indicate for the first time that M. albus is able to down-regulate the mRNA and protein expression of nkcc1b/Nkcc1b in the brain when confronted with ammonia toxicity, which could be one of the contributing factors to its extraordinarily high brain ammonia tolerance. PMID:24069137

  1. Downregulation of reversion-inducing cysteine-rich protein with Kazal motifs in malignant melanoma: inverse correlation with membrane-type 1-matrix metalloproteinase and tissue inhibitor of metalloproteinase 2.

    Science.gov (United States)

    Jacomasso, Thiago; Trombetta-Lima, Marina; Sogayar, Mari C; Winnischofer, Sheila M B

    2014-02-01

    The invasive phenotype of many tumors is associated with an imbalance between the matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs), and the membrane-anchored reversion-inducing cysteine-rich protein with Kazal motifs (RECK). RECK inhibits MMP-2, MMP-9, and MT1-MMP, and has been linked to patient survival and better prognosis in several types of tumors. However, despite the wide implication of these MMPs in melanoma establishment and progression, the role of RECK in this type of tumor is still unknown. Here, we analyzed the expression of RECK, TIMP1, TIMP2, TIMP3, MT1MMP, MMP2, and MMP9 in two publicly available melanoma microarray datasets and in a panel of human melanoma cell lines. We found that RECK is downregulated in malignant melanoma, accompanied by upregulation of MT1MMP and TIMP2. In both datasets, we observed that the group of samples displaying higher RECK levels show lower median expression levels of MT1MMP and TIMP2 and higher levels of TIMP3. When tested in a sample-wise manner, these correlations were statistically significant. Inverse correlations between RECK, MT1MMP, and TIMP2 were verified in a panel of human melanoma cell lines and in a further reduced model that includes a pair of matched primary tumor-derived and metastasis-derived cell lines. Taken together, our data indicate a consistent correlation between RECK, MT1MMP, and TIMP2 across different models of clinical samples and cell lines and suggest evidence of the potential use of this subset of genes as a gene signature for diagnosing melanoma.

  2. The combination of maltose-binding protein and BCG-induced Th1 activation is involved in TLR2/9-mediated upregulation of MyD88-TRAF6 and TLR4-mediated downregulation of TRIF-TRAF3.

    Science.gov (United States)

    Liu, Guomu; Zhai, Xiaoyu; Zhou, Hongyue; Yang, Xiaoyu; Zhang, Nannan; Tai, Guixiang; Ni, Weihua

    2018-03-01

    Our previous study demonstrated that maltose-binding protein (MBP) activated Th1 through the TLR2-mediated MyD88-dependent pathway and the TLR4-mediated TRIF-dependent pathway. The combination of MBP and BCG synergistically induced Th1 activation, and the TLR2/9-mediated MyD88-dependent pathway is involved in this process. To further explore this mechanism, we stimulated purified mouse CD4 + T cells with MBP and BCG in vitro. The results demonstrated that MBP combined with BCG synergistically increased IFN-γ production and TLR2/4/9 expression, suggesting the involvement of TLR2/4/9 in the combination-induced Th1 activation. Next, TLRs 2/4/9 were blocked to analyze the effects of TLRs on Th1 activation. The results demonstrated that MBP induced a low level of Th1 activation by upregulating TLR2-mediated MyD88-TRAF6 and TLR4-mediated TRIF-TRAF3 expression, whereas MBP combined with BCG induced synergistic Th1 activation, which was not only triggered by strong upregulation of TLR2/9-mediated MyD88-TRAF6 expression but also by shifting TLR4-mediated TRIF-TRAF3 into the TRIF-TRAF6 pathway. Moreover, we observed that a TLR4 antibody upregulated MyD88 expression and a TLR9 inhibitor downregulated TRIF expression, indicating that there was cross-talk between TLRs 2/4/9 in MBP combined with BCG-induced Th1 activation. Our findings may expand the knowledge regarding TLR cross-talk involved in regulating the Th1 response. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Yeol; Bae, Young-Seuk, E-mail: ysbae@knu.ac.kr

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)–p53–p21{sup Cip1/WAF1} pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. - Highlights: • FoxO3a overexpression inhibited ROS production mediated by CK2α knockdown. • CK2α downregulation induced nuclear export of FoxO3a via AKT activation. • CK2α downregulation reduced transcription of FoxO3a target genes including SOD. • CK2α upregulation elevated nuclear import and target gene expression of FoxO3a. • This study indicates that CK2 can modulate the intracellular ROS level via FoxO3a.

  4. Steered Molecular Dynamics for Investigating the Interactions Between Insulin Receptor Tyrosine Kinase (IRK) and Variants of Protein Tyrosine Phosphatase 1B (PTP1B).

    Science.gov (United States)

    Nguyen, Hung; Do, Nhat; Phan, Tuyn; Pham, Tri

    2018-02-01

    The aim of this study is to use steered molecular dynamics to investigate the dissociation process between IRK and PTP1Bs for wild type and five mutants (consisting of p.D181E, p.D181A, p.Q262A, p.D181A-Y46F, and p.D181A-Q262A). The gained results are observed not only the unbinding mechanism of IRK-PTP1B complexes came from pulling force profile, number of hydrogen bonds, and interaction energy between IRK and PTP1Bs but also described PTP1B's point mutations could variably change its binding affinity towards IRK. Additionally, the binding free energy calculated by Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) is also revealed that electrostatic energy and polar solvation energy mainly made up the binding free energy of PTP1B-IRK complexes.

  5. A widespread amino acid polymorphism at codon 905 of the glycogen-associated regulatory subunit of protein phosphatase-1 is associated with insulin resistance and hypersecretion of insulin

    DEFF Research Database (Denmark)

    Hansen, Lars; Hansen, Torben; Vestergaard, Henrik

    1995-01-01

    with indirect calorimetry in order to elucidate the potential impact of the Tyr905 substitution on the whole body glucose metabolism. Interestingly, the Tyr905 variant was associated with altered routing of glucose: a decreased insulin stimulated non-oxidative glucose metabolism of peripheral tissues (glycogen...... synthesis) (p population-based sample of 380 unrelated young healthy Caucasians was examined during a combined intravenous glucose and tolbutamide test to address whether the Asp905/Tyr905 polymorphism...

  6. Inactivation of the FoxO3a transcription factor is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated senescence in human colon cancer and breast cancer cells.

    Science.gov (United States)

    Park, Seong-Yeol; Bae, Young-Seuk

    2016-09-09

    We previously showed that protein kinase CK2 downregulation mediates senescence through the reactive oxygen species (ROS)-p53-p21(Cip1/WAF1) pathway in various human cells. In the present study, we investigated whether the FoxO3a transcription factor is associated with ROS production during CK2 downregulation-induced senescence in human colon cancer HCT116 and breast cancer MCF-7 cells. FoxO3a overexpression suppressed ROS production and p53 stabilization induced by a CK2α knockdown. CK2α downregulation induced nuclear export of FoxO3a through stimulation of AKT-mediated phosphorylation of FoxO3a and decreased transcription of its target genes (Cu/ZnSOD, MnSOD, and catalase). In contrast, CK2α overexpression inhibited AKT-mediated FoxO3a phosphorylation. This resulted in nuclear accumulation of FoxO3a, and elevated expression of its target genes. Therefore, these data indicate for the first time that CK2 downregulation stimulates ROS generation by inhibiting FoxO3a during premature senescence in human colon and breast cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice

    Science.gov (United States)

    Zinker, Bradley A.; Rondinone, Cristina M.; Trevillyan, James M.; Gum, Rebecca J.; Clampit, Jill E.; Waring, Jeffrey F.; Xie, Nancy; Wilcox, Denise; Jacobson, Peer; Frost, Leigh; Kroeger, Paul E.; Reilly, Regina M.; Koterski, Sandra; Opgenorth, Terry J.; Ulrich, Roger G.; Crosby, Seth; Butler, Madeline; Murray, Susan F.; McKay, Robert A.; Bhanot, Sanjay; Monia, Brett P.; Jirousek, Michael R.

    2002-01-01

    The role of protein-tyrosine phosphatase 1B (PTP1B) in diabetes was investigated using an antisense oligonucleotide in ob/ob and db/db mice. PTP1B antisense oligonucleotide treatment normalized plasma glucose levels, postprandial glucose excursion, and HbA1C. Hyperinsulinemia was also reduced with improved insulin sensitivity. PTP1B protein and mRNA were reduced in liver and fat with no effect in skeletal muscle. Insulin signaling proteins, insulin receptor substrate 2 and phosphatidylinositol 3 (PI3)-kinase regulatory subunit p50α, were increased and PI3-kinase p85α expression was decreased in liver and fat. These changes in protein expression correlated with increased insulin-stimulated protein kinase B phosphorylation. The expression of liver gluconeogenic enzymes, phosphoenolpyruvate carboxykinase, and fructose-1,6-bisphosphatase was also down-regulated. These findings suggest that PTP1B modulates insulin signaling in liver and fat, and that therapeutic modalities targeting PTP1B inhibition may have clinical benefit in type 2 diabetes. PMID:12169659

  8. Curcumin significantly enhances dual PI3K/Akt and mTOR inhibitor NVP-BEZ235-induced apoptosis in human renal carcinoma Caki cells through down-regulation of p53-dependent Bcl-2 expression and inhibition of Mcl-1 protein stability.

    Directory of Open Access Journals (Sweden)

    Bo Ram Seo

    Full Text Available The PI3K/Akt and mTOR signaling pathways are important for cell survival and growth, and they are highly activated in cancer cells compared with normal cells. Therefore, these signaling pathways are targets for inducing cancer cell death. The dual PI3K/Akt and mTOR inhibitor NVP-BEZ235 completely inhibited both signaling pathways. However, NVP-BEZ235 had no effect on cell death in human renal carcinoma Caki cells. We tested whether combined treatment with natural compounds and NVP-BEZ235 could induce cell death. Among several chemopreventive agents, curcumin, a natural biologically active compound that is extracted from the rhizomes of Curcuma species, markedly induced apoptosis in NVP-BEZ235-treated cells. Co-treatment with curcumin and NVP-BEZ235 led to the down-regulation of Mcl-1 protein expression but not mRNA expression. Ectopic expression of Mcl-1 completely inhibited curcumin plus NVP-NEZ235-induced apoptosis. Furthermore, the down-regulation of Bcl-2 was involved in curcumin plus NVP-BEZ235-induced apoptosis. Curcumin or NVP-BEZ235 alone did not change Bcl-2 mRNA or protein expression, but co-treatment reduced Bcl-2 mRNA and protein expression. Combined treatment with NVP-BEZ235 and curcumin reduced Bcl-2 expression in wild-type p53 HCT116 human colon carcinoma cells but not p53-null HCT116 cells. Moreover, Bcl-2 expression was completely reversed by treatment with pifithrin-α, a p53-specific inhibitor. Ectopic expression of Bcl-2 also inhibited apoptosis in NVP-BE235 plus curcumin-treated cells. In contrast, NVP-BEZ235 combined with curcumin did not have a synergistic effect on normal human skin fibroblasts and normal human mesangial cells. Taken together, combined treatment with NVP-BEZ235 and curcumin induces apoptosis through p53-dependent Bcl-2 mRNA down-regulation at the transcriptional level and Mcl-1 protein down-regulation at the post-transcriptional level.

  9. Eldecalcitol (ED-71), an analog of 1α,25(OH)2D3, inhibits the growth of squamous cell carcinoma (SCC) cells in vitro and in vivo by down-regulating expression of heparin-binding protein 17/fibroblast growth factor-binding protein-1 (HBp17/FGFBP-1) and FGF-2.

    Science.gov (United States)

    Shintani, T; Takatsu, F; Rosli, S N Z; Usui, E; Hamada, A; Sumi, K; Hayashido, Y; Toratani, S; Okamoto, Tetsuji

    2017-10-01

    Heparin-binding protein 17 (HBp17)/fibroblast growth factor-binding protein-1 (FGFBP-1) was first purified from medium conditioned by A431 cells for its capacity to bind to fibroblast growth factors 1 and 2 (FGF-1 and -2). Among FGF family members, FGF-2 is a potent mitogen for various cell types, including vascular endothelial cells, fibroblasts, and cancer cells such as oral squamous cell carcinoma (OSCC) cells. Besides being well known in bone metabolism, the active form of vitamin D 3 , i.e., 1α,25(OH) 2 D 3 (1,25D 3 ), was reported to have protective effects for heart disease and cancer. Previously, we reported that 1,25D 3 inhibited HBp17/FGFBP-1 expression in OSCC cell lines through NF-κB inhibition (IκBα activation) and resulted in the inactivation of FGF-2. In this study, we examined the potential anti-tumor effect of ED-71, an analog of 1α,25(OH) 2 D 3 , for squamous cell carcinoma cells in vitro and in vivo. The cell lines used were OSCC cell lines (NA-HO-1-n-1 and UE-HO-1-u-1), established from oral cancer patients in our laboratory, and an epidermoid carcinoma/SCC cell line (A431). The growth assay in serum-free culture revealed that ED-71 inhibited the growth of the cancer cell lines in a dose-dependent manner. In addition, ED-71 suppressed HBp17/FGFBP-1 expression by inhibiting the NF-κB pathway as did 1,25D 3 . Furthermore, a luciferase reporter assay revealed that the promoter activity of HBp17/FGFBP-1 (region between -217 and +61) was down-regulated by ED-71. Oral administration of ED-71 significantly inhibited the growth of A431-derived tumors in athymic nude mice. Immunohistochemical analysis revealed that the expression of HBp17/FGFBP-1, FGF-2, CD31, and Ki-67 in the tumors of ED71-treated group was down-regulated in comparison to control. These results suggest that ED-71 possesses potential anti-tumor activity for SCCs both in vitro and in vivo. This compound may act directly on the tumor cells or on endothelial cells by modulating the

  10. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells

    Science.gov (United States)

    NATHWANI, SEEMA-MARIA; GREENE, LISA M.; BUTINI, STEFANIA; CAMPIANI, GIUSEPPE; WILLIAMS, D. CLIVE; SAMALI, AFSHIN; SZEGEZDI, EVA; ZISTERER, DANIELA M.

    2016-01-01

    Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL. PMID:27176505

  11. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  12. Loss of the polycomb protein Mel-18 enhances the epithelial-mesenchymal transition by ZEB1 and ZEB2 expression through the downregulation of miR-205 in breast cancer.

    Science.gov (United States)

    Lee, J-Y; Park, M K; Park, J-H; Lee, H J; Shin, D H; Kang, Y; Lee, C H; Kong, G

    2014-03-06

    The epithelial-mesenchymal transition (EMT) is the pivotal mechanism underlying the initiation of cancer invasion and metastasis. Although Mel-18 has been implicated in several biological processes in cancer, its function in the EMT of human cancers has not yet been studied. Here, we demonstrate that Mel-18 negatively regulates the EMT by epigenetically modulating miR-205. We identified miR-205 as a novel target of Mel-18 using a microRNA microarray analysis and found that Mel-18 increased miR-205 transcription by the inhibition of DNA methyltransferase-mediated DNA methylation of the miR-205 promoter, thereby downregulating its target genes, ZEB1 and ZEB2. Furthermore, the loss of Mel-18 promoted ZEB1- and ZEB2-mediated downregulation of E-cadherin transcription and also enhanced the expression of mesenchymal markers, leading to increased migration and invasion in MCF-7 cells. In MDA-MB-231 cells, Mel-18 overexpression restored E-cadherin expression, resulting in reduced migration and invasion. These effects were reversed by miR-205 overexpression or inhibition. A tumor xenograft with Mel-18 knockdown MCF-7 cells consistently showed increased ZEB1 and ZEB2 expression and decreased E-cadherin expression. Taken together, these results suggest that Mel-18 functions as a tumor suppressor by its novel negative control of the EMT, achieved through regulating the expression of miR-205 and its target genes, ZEB1 and ZEB2.

  13. Neuronal protein gene product 9.5 (IEF SSP 6104) is expressed in cultured human MRC-5 fibroblasts of normal origin and is strongly down-regulated in their SV40 transformed counterparts

    DEFF Research Database (Denmark)

    Honoré, B; Rasmussen, H H; Vandekerckhove, J

    1991-01-01

    of proteins recovered from 2D gels we have identified PGP 9.5 UCH-L1 as polypeptide IEF SSP 6104 (Mr = 27,000, pI = 5.49) in the comprehensive 2D gel cellular protein database of human embryonal lung MRC-5 fibroblasts [(1989) Electrophoresis 10, 76 115; (1990) Electrophoresis 11, 1072 1113]. This protein...

  14. Oxidative stress specifically downregulates survivin to promote breast tumour formation.

    Science.gov (United States)

    Pervin, S; Tran, L; Urman, R; Braga, M; Parveen, M; Li, S A; Chaudhuri, G; Singh, R

    2013-03-05

    Breast cancer, a heterogeneous disease has been broadly classified into oestrogen receptor positive (ER+) or oestrogen receptor negative (ER-) tumour types. Each of these tumours is dependent on specific signalling pathways for their progression. While high levels of survivin, an anti-apoptotic protein, increases aggressive behaviour in ER- breast tumours, oxidative stress (OS) promotes the progression of ER+ breast tumours. Mechanisms and molecular targets by which OS promotes tumourigenesis remain poorly understood. DETA-NONOate, a nitric oxide (NO)-donor induces OS in breast cancer cell lines by early re-localisation and downregulation of cellular survivin. Using in vivo models of HMLE(HRAS) xenografts and E2-induced breast tumours in ACI rats, we demonstrate that high OS downregulates survivin during initiation of tumourigenesis. Overexpression of survivin in HMLE(HRAS) cells led to a significant delay in tumour initiation and tumour volume in nude mice. This inverse relationship between survivin and OS was also observed in ER+ human breast tumours. We also demonstrate an upregulation of NADPH oxidase-1 (NOX1) and its activating protein p67, which are novel markers of OS in E2-induced tumours in ACI rats and as well as in ER+ human breast tumours. Our data, therefore, suggest that downregulation of survivin could be an important early event by which OS initiates breast tumour formation.

  15. Downregulation of the expression of HDGF attenuates malignant biological behaviors of hilar cholangiocarcinoma cells.

    Science.gov (United States)

    Liu, Yanfeng; Sun, Jingxian; Yang, Guangyun; Liu, Zhaojian; Guo, Sen; Zhao, Rui; Xu, Kesen; Wu, Xiaopeng; Zhang, Zhaoyang

    2015-09-01

    Hepatoma-derived growth factor (HDGF) has been reported to be a potential predictive and prognostic marker for several types of cancer and important in malignant biological behaviors. However, its role in human hilar cholangiocarcinoma remains to be elucidated. Our previous study demonstrated that high expression levels of HDGF in hilar cholangiocarcinoma tissues correlates with tumor progression and patient outcome. The present study aimed to elucidate the detailed functions of the HDGF protein. This was performed by downregulating the protein expression of HDGF in the FRH0201 hilar cholangiocarcinoma cell line by RNA interference (RNAi) in vitro, and revealed that downregulation of the HDGF protein significantly inhibited the malignant biological behavior of the FRH0201 cells. In addition, further investigation revealed that downregulation of the protein expression of HDGF significantly decreased the secretion of vascular endothelial growth factor, which may be the mechanism partially responsible for the inhibition of malignant biological behaviors. These findings demonstrated that HDGF is important in promoting malignant biological behaviors, including proliferation, migration and invasion of hilar cholangiocarcinoma FRH0201 cells. Inhibition of the expression of HDGF downregulated the malignant biological behaviors, suggesting that downregulation of the protein expression of HDGF by RNAi may be a novel therapeutic approach to inhibit the progression of hilar cholangiocarcinoma.

  16. Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced down-regulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl

    Czech Academy of Sciences Publication Activity Database

    Bořucká, Jana; Fellner, Martin

    2012-01-01

    Roč. 68, č. 3 (2012), s. 503-509 ISSN 0167-6903 R&D Projects: GA MŠk 1P05ME792 Institutional research plan: CEZ:AV0Z50380511 Keywords : Auxin binding protein * ABP1 * ABP4 Subject RIV: EF - Botanics Impact factor: 1.670, year: 2012

  17. Basal and β-Adrenergic Cardiomyocytes Contractility Dysfunction Induced by Dietary Protein Restriction is Associated with Downregulation of SERCA2a Expression and Disturbance of Endoplasmic Reticulum Ca2+ Regulation in Rats

    Directory of Open Access Journals (Sweden)

    Arlete R. Penitente

    2014-07-01

    Full Text Available Background: The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and β-adrenergic contractility in murine ventricular cardiomyocytes. Methods: After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20 and a protein-restricted group (PRG, n = 20, receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca2+sparks analysis. Results: PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after β-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca2+sparks were observed in PRG cardiomyocytes. Conclusion: The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the β-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca2+ intracellular kinetics.

  18. Down-regulation of activity and expression of three transport-related proteins in the gills of the euryhaline green crab, Carcinus maenas, in response to high salinity acclimation.

    Science.gov (United States)

    Jillette, Nathaniel; Cammack, Lauren; Lowenstein, Margaret; Henry, Raymond P

    2011-02-01

    The euryhaline green crab, Carcinus maenas, undergoes an annual cycle of salinity exposure, having to adapt to low salinity during its annual spring migration into estuaries, and then having to re-adapt to high salinity when it moves off-shore at the end of summer. Most studies have focused on low salinity acclimation, the activation of osmoregulatory mechanisms, and the induction of transport protein and transport-related enzyme activity and gene expression. In this study we followed the changes in hemolymph osmolality, carbonic anhydrase activity, and mRNA expression of three proteins through a complete cycle of low (15 ppt) and high (32 ppt) salinity acclimation. One week of low salinity acclimation resulted in hemolymph osmoregulation and a four-fold induction of branchial carbonic anhydrase activity. Relative mRNA expression increased for two CA isoforms (CAc 100-fold, and CAg 7-fold) and the α-subunit of the Na/K-ATPase (8-fold). Upon re-exposure to high salinity, hemolymph osmolality increased to 32 ppt acclimated levels by 6 h, and mRNA levels returned to high salinity, baseline levels within 1 week. However, CA activity remained unchanged in response to high salinity exposure for the first week and then gradually declined to baseline levels over 4 weeks. The relative timing of these changes suggests that while whole-organism physiological adaptations and regulation at the gene level can be very rapid, changes at the level of protein expression and turnover are much slower. It is possible that the high metabolic cost of protein synthesis and/or processing could be the underlying reason for long biological life spans of physiologically important proteins. Published by Elsevier Inc.

  19. Effect of NADPH oxidase inhibitor-apocynin on the expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 exposed renal ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Zhiming Li

    2015-01-01

    Full Text Available This study was designed to evaluate whether NADPH oxidase inhibitor (apocynin preconditioning induces expression of Src homology-2 domain-containing phosphatase-1 (SHP-1 to protect against renal ischemia/reperfusion (I/R injury (RI/RI in rats. Rats were pretreated with 50 mg/kg apocynin, then subjected to 45 min ischemia and 24 h reperfusion. The results indicated that apocynin preconditioning improved the recovery of renal function and nitroso-redox balance, reduced oxidative stress injury and inflammation damage, and upregulated expression of SHP-1 as compared to RI/RI group. Therefore our study demonstrated that apocynin preconditioning provided a protection to the kidney against I/R injury in rats partially through inducing expression of SHP-1.

  20. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A; Mühling, Karl Hermann; Zörb, Christian

    2015-05-01

    The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Cloning of a human insulin-stimulated protein kinase (ISPK-1) gene and analysis of coding regions and mRNA levels of the ISPK-1 and the protein phosphatase-1 genes in muscle from NIDDM patients

    DEFF Research Database (Denmark)

    Bjørbaek, C; Vik, T A; Echwald, S M

    1995-01-01

    with non-insulin-dependent diabetes mellitus (NIDDM). The human ISPK-1 cDNA was cloned from T-cell leukemia and placental cDNA libraries and mapped to the short arm of the human X chromosome. Single-strand conformation polymorphism (SSCP) analysis identified a total of six variations in the coding regions...

  2. Mutation in GNE Downregulates Peroxiredoxin IV Altering ER Redox Homeostasis.

    Science.gov (United States)

    Chanana, Pratibha; Padhy, Gayatri; Bhargava, Kalpana; Arya, Ranjana

    2017-12-01

    GNE myopathy is a rare neuromuscular genetic disorder characterized by early adult onset and muscle weakness due to mutation in sialic acid biosynthetic enzyme, UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). More than 180 different GNE mutations are known all over the world with unclear pathomechanism. Although hyposialylation of glycoproteins is speculated to be the major cause, but cellular mechanism leading to loss of muscle mass has not yet been deciphered. Besides sialic acid biosynthesis, GNE affects other cellular functions such as cell adhesion and apoptosis. In order to understand the effect of mutant GNE protein on cellular functions, differential proteome profile of HEK293 cells overexpressing pathologically relevant recombinant mutant GNE protein (D207V and V603L) was analyzed. These cells, along with vector control and wild-type GNE-overexpressing cells, were subjected to two-dimensional gel electrophoresis coupled with mass spectrometry (MALDI-TOF/TOF MS/MS). In the study, 10 differentially expressed proteins were identified. Progenesis same spots software revealed downregulation of peroxiredoxin IV (PrdxIV), an ER-resident H 2 O 2 sensor that regulates neurogenesis. Significant reduction in mRNA and protein levels of PrdxIV was observed in GNE mutant cell lines compared with vector control. However, neither total reactive oxygen species was altered nor H 2 O 2 accumulation was observed in GNE mutant cell lines. Interestingly, ER redox state was significantly affected due to reduced normal GNE enzyme activity. Our study indicates that downregulation of PrdxIV affects ER redox state that may contribute to misfolding and aggregation of proteins in GNE myopathy.

  3. DMBT1 expression is down-regulated in breast cancer

    International Nuclear Information System (INIS)

    Braidotti, P; Pietra, GG; Nuciforo, PG; Mollenhauer, J; Poustka, A; Pellegrini, C; Moro, A; Bulfamante, G; Coggi, G; Bosari, S

    2004-01-01

    We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. Sections from 17 benign lesions and 55 carcinomas were immunostained with anti DMBT1 antibody (DMBTh12) and sections from 36 samples, were double-stained also with anti MCM5, one of the 6 pre-replicative complex proteins with cell proliferation-licensing functions. DMBT1 gene expression at mRNA level was assessed by RT-PCR in frozen tissues samples from 39 patients. Normal glands and hyperplastic epithelium in benign lesions displayed a luminal polarized DMBTh12 immunoreactivity. Normal and hyperplastic epithelium adjacent to carcinomas showed a loss of polarization, with immunostaining present in basal and perinuclear cytoplasmic compartments. DMBT1 protein expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant expression of DMTB1 and MCM5 suggests its possible association with the cell-cycle regulation

  4. Antisense downregulation of mutant huntingtin in a cell model

    DEFF Research Database (Denmark)

    Hasholt, L.; Abell, K.; Norremolle, A.

    2003-01-01

    or by addition to the culture medium. Results Expression of the fusion protein containing the mutant huntingtin fragment resulted in diffuse green fluorescence in the cytoplasm and formation of aggregates in some of the NT2 cells and NT2-N neurons. We obtained antisense sequence-specific inhibition of expression...... of the fusion protein and/or suppression of the aggregate formation in both cell types. In the NT2 cells the antisense effect was dependent on the way of administration of the oligo. Conclusions The PS-antisense oligo is effective in downregulation of mutant huntingtin, and the reduction of aggregate formation...... is a sensitive biological marker. The findings suggest that antisense knockdown of huntingtin could be a useful strategy for treatment of HD, and could also be suitable for studies of the normal and pathological function of huntingtin in different cellular model systems....

  5. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    International Nuclear Information System (INIS)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning; Boehm, Beate; Pfeilschifter, Josef; Dummer, Reinhard; Mihic-Probst, Daniela; Gutwein, Paul

    2010-01-01

    Research highlights: → Strong ADAM15 expression is found in normal melanocytes. → ADAM15 expression is significantly downregulated in patients with melanoma metastasis. → TGF-β can downregulate ADAM15 expression in melanoma cells. → Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. → Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-γ and TGF-β downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  6. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ungerer, Christopher; Doberstein, Kai [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning [Department of Dermatology, Clinic of the Goethe-University, Theodor-Stern-Kai, Frankfurt (Germany); Boehm, Beate [Division of Rheumatology, Goethe University, Frankfurt am Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Dummer, Reinhard [Department of Pathology, Institute of Surgical Pathology, University Hospital, Zurich (Switzerland); Mihic-Probst, Daniela [Department of Dermatology, University Hospital Zurich (Switzerland); Gutwein, Paul, E-mail: p.gutwein@med.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany)

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  7. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2.

    Science.gov (United States)

    Huang, C-L; Ueno, M; Liu, D; Masuya, D; Nakano, J; Yokomise, H; Nakagawa, T; Miyake, M

    2006-10-19

    Motility-related protein-1 (MRP-1/CD9) is involved in cell motility. We studied the change in the actin cytoskeleton, and the expression of actin-related protein (Arp) 2 and Arp3 and the Wiskott-Aldrich syndrome protein (WASP) family according to MRP-1/CD9 gene transduction into HT1080 cells. The frequency of cells with lamellipodia was significantly lower in MRP-1/CD9-transfected HT1080 cells than in control HT1080 cells (PMRP-1/CD9 gene transduction affected the subcellular localization of Arp2 and Arp3 proteins. Furthermore, MRP-1/CD9 gene transduction induced a downregulation of WAVE2 expression (PMRP-1/CD9 monoclonal antibody inhibited downregulation of WAVE2 in MRP-1/CD9-transfected HT1080 cells (PMRP-1/CD9 gene transduction. Furthermore, downregulation of WAVE2 by transfection of WAVE2-specific small interfering RNA (siRNA) mimicked the morphological effects of MRP-1/CD9 gene transduction and suppressed cell motility. However, transfection of each siRNA for Wnt1, Wnt2b1 or Wnt5a did not affect WAVE2 expression. Transfection of WAVE2-specific siRNA also did not affect expressions of these Wnts. These results indicate that MRP-1/CD9 regulates the actin cytoskeleton by downregulating of the WAVE2, through the Wnt-independent signal pathway.

  8. Deubiquitylating enzyme USP2 counteracts Nedd4-2-mediated downregulation of KCNQ1 potassium channels

    DEFF Research Database (Denmark)

    Krzystanek, Katarzyna; Rasmussen, Hanne Borger; Grunnet, Morten

    2012-01-01

    KCNQ1 (Kv7.1), together with its KCNE ß subunits, plays a pivotal role both in the repolarization of cardiac tissue and in water and salt transport across epithelial membranes. Nedd4/Nedd4-like (neuronal precursor cell-expressed developmentally downregulated 4) ubiquitin-protein ligases interact ...

  9. Avicin D: a protein reactive plant isoprenoid dephosphorylates Stat 3 by regulating both kinase and phosphatase activities.

    Directory of Open Access Journals (Sweden)

    Valsala Haridas

    Full Text Available Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a the cross-talk that occurs between redox and phosphorylation processes, and (b the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways.

  10. Myeloid protein tyrosine phosphatase 1B (PTP1B deficiency protects against atherosclerotic plaque formation in the ApoE−/− mouse model of atherosclerosis with alterations in IL10/AMPKα pathway

    Directory of Open Access Journals (Sweden)

    D. Thompson

    2017-08-01

    Conclusions: Here we demonstrate that inhibiting the activity of PTP1B specifically in myeloid lineage cells protects against atherosclerotic plaque formation, under atherogenic conditions, in an ApoE−/− mouse model of atherosclerosis. Our findings suggest for the first time that macrophage PTP1B targeting could be a therapeutic target for atherosclerosis treatment and reduction of CVD risk.

  11. Crystal structure of methyl (S-2-{(R-4-[(tert-butoxycarbonylamino]-3-oxo-1,2-thiazolidin-2-yl}-3-methylbutanoate: a chemical model for oxidized protein tyrosine phosphatase 1B (PTP1B

    Directory of Open Access Journals (Sweden)

    Kasi Viswanatharaju Ruddraraju

    2015-07-01

    Full Text Available The asymmetric unit of the title compound, C14H24N2O5S, contains two independent molecules (A and B. In each molecule, the isothiazolidin-3-one ring adopts an envelope conformation with the methylene C atom as the flap. In the crystal, the A molecules are linked to one another by N—H...O hydrogen bonds, forming columns along [010]. The B molecules are also linked to one another by N—H...O hydrogen bonds, forming columns along the same direction, i.e. [010]. Within the individual columns, there are also C—H...S and C—H...O hydrogen bonds present. The columns of A and B molecules are linked by C—H...O hydrogen bonds, forming sheets parallel to (10-1. The absolute structure was determined by resonant scattering [Flack parameter = 0.00 (3].

  12. High SINE RNA Expression Correlates with Post-Transcriptional Downregulation of BRCA1

    Directory of Open Access Journals (Sweden)

    Giovanni Bosco

    2013-04-01

    Full Text Available Short Interspersed Nuclear Elements (SINEs are non-autonomous retrotransposons that comprise a large fraction of the human genome. SINEs are demethylated in human disease, but whether SINEs become transcriptionally induced and how the resulting transcripts may affect the expression of protein coding genes is unknown. Here, we show that downregulation of the mRNA of the tumor suppressor gene BRCA1 is associated with increased transcription of SINEs and production of sense and antisense SINE small RNAs. We find that BRCA1 mRNA is post-transcriptionally down-regulated in a Dicer and Drosha dependent manner and that expression of a SINE inverted repeat with sequence identity to a BRCA1 intron is sufficient for downregulation of BRCA1 mRNA. These observations suggest that transcriptional activation of SINEs could contribute to a novel mechanism of RNA mediated post-transcriptional silencing of human genes.

  13. Flavonoids from Theobroma cacao down-regulate inflammatory mediators.

    Science.gov (United States)

    Ramiro, Emma; Franch, Angels; Castellote, Cristina; Pérez-Cano, Francisco; Permanyer, Joan; Izquierdo-Pulido, Maria; Castell, Margarida

    2005-11-02

    In the present study, we report the effects of a cocoa extract on the secretion and RNA expression of various proinflammatory mediators by macrophages. Monocyte chemoattractant protein 1 and tumor necrosis factor alpha (TNFalpha) were significantly and dose-dependently diminished by cocoa extract, and this effect was higher than that produced by equivalent concentrations of epicatechin but was lower than that produced by isoquercitrin. Interestingly, cocoa extract added prior to cell activation resulted in a significantly greater inhibition of TNFalpha secretion. Both cocoa extract and epicatechin decreased TNFalpha, interleukin (IL) 1alpha, and IL-6 mRNA expression, suggesting that their inhibitory effect on cytokine secretion is produced, in part, at the transcriptional level. Cocoa extract also significantly decreased NO secretion in a dose-dependent manner and with a greater effect than that produced by epicatechin. In conclusion, our study shows that cocoa flavonoids not only inhibit NO release from macrophages but also down-regulate inflammatory cytokines and chemokines.

  14. Down-Regulation of p53 by Double-Stranded RNA Modulates the Antiviral Response

    Science.gov (United States)

    Marques, Joao T.; Rebouillat, Dominique; Ramana, Chilakamarti V.; Murakami, Junko; Hill, Jason E.; Gudkov, Andrei; Silverman, Robert H.; Stark, George R.; Williams, Bryan R. G.

    2005-01-01

    p53 has been well characterized as a tumor suppressor gene, but its role in antiviral defense remains unclear. A recent report has demonstrated that p53 can be induced by interferons and is activated after vesicular stomatitis virus (VSV) infection. We observed that different nononcogenic viruses, including encephalomyocarditis virus (EMCV) and human parainfluenza virus type 3 (HPIV3), induced down-regulation of p53 in infected cells. Double-stranded RNA (dsRNA) and a mutant vaccinia virus lacking the dsRNA binding protein E3L can also induce this effect, indicating that dsRNA formed during viral infection is likely the trigger for down-regulation of p53. The mechanism of down-regulation of p53 by dsRNA relies on translation inhibition mediated by the PKR and RNase L pathways. In the absence of p53, the replication of both EMCV and HPIV3 was retarded, whereas, conversely, VSV replication was enhanced. Cell cycle analysis indicated that wild-type (WT) but not p53 knockout (KO) fibroblasts undergo an early-G1 arrest following dsRNA treatment. Moreover, in WT cells the onset of dsRNA-induced apoptosis begins after p53 levels are down-regulated, whereas p53 KO cells, which lack the early-G1 arrest, rapidly undergo apoptosis. Hence, our data suggest that the down-regulation of p53 facilitates apoptosis, thereby limiting viral replication. PMID:16103161

  15. Aspartame downregulates 3T3-L1 differentiation.

    Science.gov (United States)

    Pandurangan, Muthuraman; Park, Jeongeun; Kim, Eunjung

    2014-10-01

    Aspartame is an artificial sweetener used as an alternate for sugar in several foods and beverages. Since aspartame is 200 times sweeter than traditional sugar, it can give the same level of sweetness with less substance, which leads to lower-calorie food intake. There are reports that consumption of aspartame-containing products can help obese people lose weight. However, the potential role of aspartame in obesity is not clear. The present study investigated whether aspartame suppresses 3T3-L1 differentiation, by downregulating phosphorylated peroxisome proliferator-activated receptor γ (p-PPARγ), peroxisome proliferator-activated receptor γ (PPARγ), fatty acid-binding protein 4 (FABP4), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein 1 (SREBP1), which are critical for adipogenesis. The 3T3-L1 adipocytes were cultured and differentiated for 6 d in the absence and presence of 10 μg/ml of aspartame. Aspartame reduced lipid accumulation in differentiated adipocytes as evidenced by Oil Red O staining. qRT-PCR analysis showed that the PPARγ, FABP4, and C/EBPα mRNA expression was significantly reduced in the aspartame-treated adipocytes. Western blot analysis showed that the induction of p-PPARγ, PPARγ, SREBP1, and adipsin was markedly reduced in the aspartame-treated adipocytes. Taken together, these data suggest that aspartame may be a potent substance to alter adipocyte differentiation and control obesity.

  16. Protein targeting to glycogen is a master regulator of glycogen synthesis in astrocytes

    OpenAIRE

    E. Ruchti; P.J. Roach; A.A. DePaoli-Roach; P.J. Magistretti; I. Allaman

    2016-01-01

    The storage and use of glycogen, the main energy reserve in the brain, is a metabolic feature of astrocytes. Glycogen synthesis is regulated by Protein Targeting to Glycogen (PTG), a member of specific glycogen-binding subunits of protein phosphatase-1 (PPP1). It positively regulates glycogen synthesis through de-phosphorylation of both glycogen synthase (activation) and glycogen phosphorylase (inactivation). In cultured astrocytes, PTG mRNA levels were previously shown to be enhanced by the ...

  17. Receptor downregulation and desensitization enhance the information processing ability of signalling receptors

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-11-01

    Full Text Available Abstract Background In addition to initiating signaling events, the activation of cell surface receptors also triggers regulatory processes that restrict the duration of signaling. Acute attenuation of signaling can be accomplished either via ligand-induced internalization of receptors (endocytic downregulation or via ligand-induced receptor desensitization. These phenomena have traditionally been viewed in the context of adaptation wherein the receptor system enters a refractory state in the presence of sustained ligand stimuli and thereby prevents the cell from over-responding to the ligand. Here we use the epidermal growth factor receptor (EGFR and G-protein coupled receptors (GPCR as model systems to respectively examine the effects of downregulation and desensitization on the ability of signaling receptors to decode time-varying ligand stimuli. Results Using a mathematical model, we show that downregulation and desensitization mechanisms can lead to tight and efficient input-output coupling thereby ensuring synchronous processing of ligand inputs. Frequency response analysis indicates that upstream elements of the EGFR and GPCR networks behave like low-pass filters with the system being able to faithfully transduce inputs below a critical frequency. Receptor downregulation and desensitization increase the filter bandwidth thereby enabling the receptor systems to decode inputs in a wider frequency range. Further, system-theoretic analysis reveals that the receptor systems are analogous to classical mechanical over-damped systems. This analogy enables us to metaphorically describe downregulation and desensitization as phenomena that make the systems more resilient in responding to ligand perturbations thereby improving the stability of the system resting state. Conclusion Our findings suggest that in addition to serving as mechanisms for adaptation, receptor downregulation and desensitization can play a critical role in temporal information

  18. Downregulation of HIF-1a sensitizes U251 glioma cells to the temozolomide (TMZ) treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jun-Hai [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Ma, Zhi-Xiong [National Institute of Biological Sciences, Beijing 102206 (China); Huang, Guo-Hao; Xu, Qing-Fu; Xiang, Yan [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Li, Ningning; Sidlauskas, Kastytis [Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG (United Kingdom); Zhang, Eric Erquan [National Institute of Biological Sciences, Beijing 102206 (China); Lv, Sheng-Qing, E-mail: lvsq0518@hotmail.com [Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2016-05-01

    Purpose: The aim of this study was to investigate the effect of downregulation of HIF-1α gene on human U251 glioma cells and examine the consequent changes of TMZ induced effects and explore the molecular mechanisms. Methods: U251 cell line stably expressing HIF-1α shRNA was acquired via lentiviral vector transfection. The mRNA and protein expression alterations of genes involved in our study were determined respectively by qRT-PCR and Western blot. Cell proliferation was measured by MTT assay and colony formation assay, cell invasion/migration capacity was determined by transwell invasion assay/wound healing assay, and cell apoptosis was detected by flow cytometry. Results: We successfully established a U251 cell line with highly efficient HIF-1α knockdown. HIF-1a downregulation sensitized U251 cells to TMZ treatment and enhanced the proliferation-inhibiting, invasion/migration-suppressing, apoptosis-inducing and differentiation-promoting effects exerted by TMZ. The related molecular mechanisms demonstrated that expression of O{sup 6}-methylguanine DNA methyltransferase gene (MGMT) and genes of Notch1 pathway were significantly upregulated by TMZ treatment. However, this upregulation was abrogated by HIF-1α knockdown. We further confirmed important regulatory roles of HIF-1α in the expression of MGMT and activation of Notch1 pathways. Conclusion: HIF-1α downregulation sensitizes U251 glioma cells to the temozolomide treatment via inhibiting MGMT expression and Notch1 pathway activation. - Highlights: • TMZ caused more significant proliferation inhibition and apoptosis in U251 cells after downregulating HIF-1α. • Under TMZ treatment, HIF-1 downregulated U251 cells exhibited weaker mobility and more differentiated state. • TMZ caused MGMT over-expression and Notch1 pathway activation, which could be abrogated by HIF-1α downregulation.

  19. Optimal experimental design in an epidermal growth factor receptor signalling and down-regulation model.

    Science.gov (United States)

    Casey, F P; Baird, D; Feng, Q; Gutenkunst, R N; Waterfall, J J; Myers, C R; Brown, K S; Cerione, R A; Sethna, J P

    2007-05-01

    We apply the methods of optimal experimental design to a differential equation model for epidermal growth factor receptor signalling, trafficking and down-regulation. The model incorporates the role of a recently discovered protein complex made up of the E3 ubiquitin ligase, Cbl, the guanine exchange factor (GEF), Cool-1 (beta -Pix) and the Rho family G protein Cdc42. The complex has been suggested to be important in disrupting receptor down-regulation. We demonstrate that the model interactions can accurately reproduce the experimental observations, that they can be used to make predictions with accompanying uncertainties, and that we can apply ideas of optimal experimental design to suggest new experiments that reduce the uncertainty on unmeasurable components of the system.

  20. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    International Nuclear Information System (INIS)

    Ragnum, Harald Bull; Røe, Kathrine; Holm, Ruth; Vlatkovic, Ljiljana; Nesland, Jahn Marthin; Aarnes, Eva-Katrine; Ree, Anne Hansen; Flatmark, Kjersti; Seierstad, Therese; Lilleby, Wolfgang; Lyng, Heidi

    2013-01-01

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  1. Hypoxia-Independent Downregulation of Hypoxia-Inducible Factor 1 Targets by Androgen Deprivation Therapy in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ragnum, Harald Bull [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Røe, Kathrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Holm, Ruth; Vlatkovic, Ljiljana [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Nesland, Jahn Marthin [Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Aarnes, Eva-Katrine [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Ree, Anne Hansen [Division of Medicine, Department of Oncology, Akershus University Hospital, Lørenskog (Norway); Medical Faculty, University of Oslo, Oslo (Norway); Flatmark, Kjersti [Department of Tumor Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Department of Gastrointestinal Surgery, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Seierstad, Therese [Department of Radiology and Nuclear Medicine, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Faculty of Health Sciences, Buskerud University College, Drammen (Norway); Lilleby, Wolfgang [Department of Oncology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway); Lyng, Heidi, E-mail: heidi.lyng@rr-research.no [Department of Radiation Biology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo (Norway)

    2013-11-15

    Purpose: We explored changes in hypoxia-inducible factor 1 (HIF1) signaling during androgen deprivation therapy (ADT) of androgen-sensitive prostate cancer xenografts under conditions in which no significant change in immunostaining of the hypoxia marker pimonidazole had occurred. Methods and Materials: Gene expression profiles of volume-matched androgen-exposed and androgen-deprived CWR22 xenografts, with similar pimonidazole-positive fractions, were compared. Direct targets of androgen receptor (AR) and HIF1 transcription factors were identified among the differentially expressed genes by using published lists. Biological processes affected by ADT were determined by gene ontology analysis. HIF1α protein expression in xenografts and biopsy samples from 35 patients receiving neoadjuvant ADT was assessed by immunohistochemistry. Results: A total of 1344 genes showed more than 2-fold change in expression by ADT, including 35 downregulated and 5 upregulated HIF1 targets. Six genes were shared HIF1 and AR targets, and their downregulation was confirmed with quantitative RT-PCR. Significant suppression of the biological processes proliferation, metabolism, and stress response in androgen-deprived xenografts was found, consistent with tumor regression. Nineteen downregulated HIF1 targets were involved in those significant biological processes, most of them in metabolism. Four of these were shared AR and HIF1 targets, including genes encoding the regulatory glycolytic proteins HK2, PFKFB3, and SLC2A1. Most of the downregulated HIF1 targets were induced by hypoxia in androgen-responsive prostate cancer cell lines, confirming their role as hypoxia-responsive HIF1 targets in prostate cancer. Downregulation of HIF1 targets was consistent with the absence of HIF1α protein in xenografts and downregulation in patients by ADT (P<.001). Conclusions: AR repression by ADT may lead to downregulation of HIF1 signaling independently of hypoxic fraction, and this may contribute to

  2. Downregulation of hPMC2 imparts chemotherapeutic sensitivity to alkylating agents in breast cancer cells.

    Science.gov (United States)

    Krishnamurthy, Nirmala; Liu, Lili; Xiong, Xiahui; Zhang, Junran; Montano, Monica M

    2015-01-01

    Triple negative breast cancer cell lines have been reported to be resistant to the cyotoxic effects of temozolomide (TMZ). We have shown previously that a novel protein, human homolog of Xenopus gene which Prevents Mitotic Catastrophe (hPMC2) has a role in the repair of estrogen-induced abasic sites. Our present study provides evidence that downregulation of hPMC2 in MDA-MB-231 and MDA-MB-468 breast cancer cells treated with temozolomide (TMZ) decreases cell survival. This increased sensitivity to TMZ is associated with an increase in number of apurinic/apyrimidinic (AP) sites in the DNA. We also show that treatment with another alkylating agent, BCNU, results in an increase in AP sites and decrease in cell survival. Quantification of western blot analyses and immunofluorescence experiments reveal that treatment of hPMC2 downregulated cells with TMZ results in an increase in γ-H2AX levels, suggesting an increase in double strand DNA breaks. The enhancement of DNA double strand breaks in TMZ treated cells upon downregulation of hPCM2 is also revealed by the comet assay. Overall, we provide evidence that downregulation of hPMC2 in breast cancer cells increases cytotoxicity of alkylating agents, representing a novel mechanism of treatment for breast cancer. Our data thus has important clinical implications in the management of breast cancer and brings forth potentially new therapeutic strategies.

  3. Downregulation of toll-like receptor-mediated signalling pathways in oral lichen planus.

    Science.gov (United States)

    Sinon, Suraya H; Rich, Alison M; Parachuru, Venkata P B; Firth, Fiona A; Milne, Trudy; Seymour, Gregory J

    2016-01-01

    The objective of this study was to investigate the expression of Toll-like receptors (TLR) and TLR-associated signalling pathway genes in oral lichen planus (OLP). Initially, immunohistochemistry was used to determine TLR expression in 12 formalin-fixed archival OLP tissues with 12 non-specifically inflamed oral tissues as controls. RNA was isolated from further fresh samples of OLP and non-specifically inflamed oral tissue controls (n = 6 for both groups) and used in qRT(2)-PCR focused arrays to determine the expression of TLRs and associated signalling pathway genes. Genes with a statistical significance of ±two-fold regulation (FR) and a P-value < 0.05 were considered as significantly regulated. Significantly more TLR4(+) cells were present in the inflammatory infiltrate in OLP compared with the control tissues (P < 0.05). There was no statistically significant difference in the numbers of TLR2(+) and TLR8(+) cells between the groups. TLR3 was significantly downregulated in OLP (P < 0.01). TLR8 was upregulated in OLP, but the difference between the groups was not statistically significant. The TLR-mediated signalling-associated protein genes MyD88 and TIRAP were significantly downregulated (P < 0.01 and P < 0.05), as were IRAK1 (P < 0.05), MAPK8 (P < 0.01), MAP3K1 (P < 0.05), MAP4K4 (P < 0.05), REL (P < 0.01) and RELA (P < 0.01). Stress proteins HMGB1 and the heat shock protein D1 were significantly downregulated in OLP (P < 0.01). These findings suggest a downregulation of TLR-mediated signalling pathways in OLP lesions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. [The Effect of TALENs-mediated Downregulation Expression of Nanog on Malignant Behavior of Cervical Cancer HeLa Cells].

    Science.gov (United States)

    Yu, Ai-qing; Li, Cheng-lin; Yang, Yi; Yan, Shi-rong

    2016-01-01

    To study the effect of downregulation expression of Nanog on malignant behavior of cervical cancer HeLa cells. Gene editing tool TALENs was employed to induce downregulation expression of Nanog, and Nanog mutation was evaluated by sequencing. RT-PCR and Western blot was used to detect the mRNA and protein expression level, respectively. Colony-formation assay, Transwell invasion assay, and chemotherapy sensibility assay was carried out to assess the capacity of colony-formation, invasion, and chemoresistance, respectively. TALENs successfully induced Nanog mutation and downregulated Nanog expression. Nanog mRNA and protein expression of Nanog-mutated monoclonal HeLa cells downregulated 3 times compared to thoses of wild-type HeLa cells (P HeLa cells were observed when compared to those of wild-type HeLa cells (P HeLa cells. Importantly, downregulation or silencing of Nanog is promising to be a novel strategy for the treatment of cervical carcinoma.

  5. WWC3 downregulation correlates with poor prognosis and inhibition of Hippo signaling in human gastric cancer

    Directory of Open Access Journals (Sweden)

    Hou J

    2017-06-01

    Full Text Available Jiabin Hou, Jin Zhou The First Affiliated Hospital, Harbin Medical University, Harbin, People’s Republic of China Abstract: The aim of this study was to investigate the clinicopathological significance and biological roles of WWC3 in human gastric cancer (GC. Clinical significance of WWC3 in human GCs was examined by using immunohistochemistry (IHC. WWC3 was downregulated in 48 of 111 human GCs, and its downregulation was associated with advanced stage, positive nodal status, and higher relapse rate. Importantly, WWC3 downregulation correlated with poor survival. It was also found that WWC3 protein expression was downregulated in GC cell lines compared with normal cell line GES-1. On one hand, WWC3 overexpression inhibited the cell growth rate and invading ability in HGC-27 cell line. On the other hand, depleting WWC3 by small interfering RNA (siRNA promoted proliferation rate and invading ability in the SGC-7901 cell line. In addition, cell cycle analysis showed that WWC3 overexpression inhibited while its depletion accelerated cell cycle progression at the G1/S transition. Western blot (WB analysis demonstrated that WWC3 repressed cyclin D1 and cyclin E while upregulated p27 expression. Luciferase reporter assay showed that WWC3 activated Hippo signaling pathway by suppressing TEAD transcription activity, with downregulation of total and nuclear YAP and its target CTGF. WWC3 siRNA depletion exhibited the opposite effects. In conclusion, this study indicates that WWC3 serves as a tumor suppressor in GC by activating Hippo signaling. Keywords: WWC3, gastric cancer, cell cycle, Hippo, YAP

  6. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  7. Pu-erh Tea Inhibits Tumor Cell Growth by Down-Regulating Mutant p53

    Science.gov (United States)

    Zhao, Lanjun; Jia, Shuting; Tang, Wenru; Sheng, Jun; Luo, Ying

    2011-01-01

    Pu-erh tea is a kind of fermented tea with the incorporation of microorganisms’ metabolites. Unlike green tea, the chemical characteristics and bioactivities of Pu-erh tea are still not well understood. Using water extracts of Pu-erh tea, we analyzed the tumor cell growth inhibition activities on several genetically engineered mouse tumor cell lines. We found that at the concentration that did not affect wild type mouse embryo fibroblasts (MEFs) growth, Pu-erh tea extracts could inhibit tumor cell growth by down-regulated S phase and cause G1 or G2 arrest. Further study showed that Pu-erh tea extracts down-regulated the expression of mutant p53 in tumor cells at the protein level as well as mRNA level. The same concentration of Pu-erh tea solution did not cause p53 stabilization or activation of its downstream pathways in wild type cells. We also found that Pu-erh tea treatment could slightly down-regulate both HSP70 and HSP90 protein levels in tumor cells. These data revealed the action of Pu-erh tea on tumor cells and provided the possible mechanism for Pu-erh tea action, which explained its selectivity in inhibiting tumor cells without affecting wild type cells. Our data sheds light on the application of Pu-erh tea as an anti-tumor agent with low side effects. PMID:22174618

  8. Down-regulation of lipoprotein lipase increases glucose uptake in L6 muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Veronica; Saraff, Kumuda [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States); Medh, Jheem D., E-mail: jheem.medh@csun.edu [Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA 91330-8262 (United States)

    2009-11-06

    Thiazolidinediones (TZDs) are synthetic hypoglycemic agents used to treat type 2 diabetes. TZDs target the peroxisome proliferator activated receptor-gamma (PPAR-{gamma}) and improve systemic insulin sensitivity. The contributions of specific tissues to TZD action, or the downstream effects of PPAR-{gamma} activation, are not very clear. We have used a rat skeletal muscle cell line (L6 cells) to demonstrate that TZDs directly target PPAR-{gamma} in muscle cells. TZD treatment resulted in a significant repression of lipoprotein lipase (LPL) expression in L6 cells. This repression correlated with an increase in glucose uptake. Down-regulation of LPL message and protein levels using siRNA resulted in a similar increase in insulin-dependent glucose uptake. Thus, LPL down-regulation improved insulin sensitivity independent of TZDs. This finding provides a novel method for the management of insulin resistance.

  9. Tolerization with BLP down-regulates HMGB1 a critical mediator of sepsis-related lethality.

    LENUS (Irish Health Repository)

    Coffey, J Calvin

    2012-02-03

    Tolerization with bacterial lipoprotein (BLP) affords a significant survival benefit in sepsis. Given that high mobility group box protein-1 (HMGB1) is a recognized mediator of sepsis-related lethality, we determined if tolerization with BLP leads to alterations in HMGB1. In vitro, BLP tolerization led to a reduction in HMGB1 gene transcription. This was mirrored at the protein level, as HMGB1 protein expression and release were reduced significantly in BLP-tolerized human THP-1 monocytic cells. BLP tolerance in vivo led to a highly significant, long-term survival benefit following challenge with lethal dose BLP in C57BL\\/6 mice. This was associated with an attenuation of HMGB1 release into the circulation, as evidenced by negligible serum HMGB1 levels in BLP-tolerized mice. Moreover, HMGB1 levels in peritoneal macrophages from BLP-tolerized mice were reduced significantly. Hence, tolerization with BLP leads to a down-regulation of HMGB1 protein synthesis and release. The improved survival associated with BLP tolerance could thus be explained by a reduction in HMGB1, were the latter associated with lethality in BLP-related sepsis. In testing this hypothesis, it was noted that neutralization of HMGB1, using anti-HMGB1 antibodies, abrogated BLP-associated lethality almost completely. To conclude, tolerization with BLP leads to a down-regulation of HMGB1, thus offering a novel means of targeting the latter. HMGB1 is also a mediator of lethality in BLP-related sepsis.

  10. Downregulation of tropomyosin-1 in squamous cell carcinoma of esophagus, the role of Ras signaling and methylation.

    Science.gov (United States)

    Zare, Maryam; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Moghanibashi, Mohamad-Mehdi

    2012-10-01

    Tropomyosins (TMs) are a family of cytoskeletal proteins that bind to and stabilize actin microfilaments. Non-muscle cells express multiple isoforms of TMs including three high molecular weight (HMW) isoforms: TM1, TM2, and TM3. While reports have indicated downregulation of TMs in transformed cells and several human cancers, nevertheless, little is known about the underlying mechanism of TMs suppression. In present study the expression of HMW TMs was investigated in squamous cell carcinoma of esophagus (SCCE), relative to primary cell cultures of normal esophagus by western blotting and real-time RT-PCR. Our results showed that TM1, TM2, and TM3 were significantly downregulated in cell line of SCCE. Moreover, mRNA level of TPM1 and TPM2 were markedly decreased by 93% and 96%, in tumor cell line relative to esophagus normal epithelial cells. Therefore, downregulation of TMs could play an important role in tumorigenesis of esophageal cancer. To asses the mechanism of TM downregulation in esophageal cancer, the role of Ras dependent signaling and promoter hypermethylation were investigated. We found that inhibition of two Ras effectory downstream pathways; MEK/ERK and PI3K/Akt leads to significant increased expression of TM1 protein and both TPM1 and TPM2 mRNAs. In addition, methyltransferase inhibition significantly upregulated TM1, suggesting the prominent contribution of promoter hypermethylation in TM1 downregulation in esophageal cancer. These data indicate that downregulation of HMW TMs occurs basically in SCCE and the activation of MEK/ERK and PI3K/Akt pathways as well as the epigenetic mechanism of promoter hypermethylation play important role in TM1 suppression in SCCE. Copyright © 2011 Wiley Periodicals, Inc.

  11. Separate enrichment analysis of pathways for up- and downregulated genes.

    Science.gov (United States)

    Hong, Guini; Zhang, Wenjing; Li, Hongdong; Shen, Xiaopei; Guo, Zheng

    2014-03-06

    Two strategies are often adopted for enrichment analysis of pathways: the analysis of all differentially expressed (DE) genes together or the analysis of up- and downregulated genes separately. However, few studies have examined the rationales of these enrichment analysis strategies. Using both microarray and RNA-seq data, we show that gene pairs with functional links in pathways tended to have positively correlated expression levels, which could result in an imbalance between the up- and downregulated genes in particular pathways. We then show that the imbalance could greatly reduce the statistical power for finding disease-associated pathways through the analysis of all-DE genes. Further, using gene expression profiles from five types of tumours, we illustrate that the separate analysis of up- and downregulated genes could identify more pathways that are really pertinent to phenotypic difference. In conclusion, analysing up- and downregulated genes separately is more powerful than analysing all of the DE genes together.

  12. Downregulation of surface sodium pumps by endocytosis during meiotic maturation of Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Schmalzing, G.; Eckard, P.; Kroener, S.P.; Passow, H.

    1990-01-01

    During meiotic maturation, plasma membranes of Xenopus laevis oocytes completely lose the capacity to transport Na and K and to bind ouabain. To explore whether the downregulation might be due to an internalization of the sodium pump molecules, the intracellular binding of ouabain was determined. Selective permeabilization of the plasma membrane of mature oocytes (eggs) by digitonin almost failed to disclose ouabain binding sites. However, when the eggs were additionally treated with 0.02% sodium dodecyl sulfate (SDS) to permeabilize inner membranes, all sodium pumps present before maturation were recovered. Phosphorylation by [gamma-32P]ATP combined with SDS-polyacrylamide gel electrophoresis (PAGE) and autoradiography showed that sodium pumps were greatly reduced in isolated plasma membranes of eggs. According to sucrose gradient fractionation, maturation induced a shift of sodium pumps from the plasma membrane fraction to membranes of lower buoyant density with a protein composition different from that of the plasma membrane. Endocytosed sodium pumps identified on the sucrose gradient from [3H]ouabain bound to the cell surface before maturation could be phosphorylated with inorganic [32P]phosphate. The findings suggest that downregulation of sodium pumps during maturation is brought about by translocation of surface sodium pumps to an intracellular compartment, presumably endosomes. This contrasts the mechanism of downregulation of Na-dependent cotransport systems, the activities of which are reduced as a consequence of a maturation-induced depolarization of the membrane without a removal of the corresponding transporter from the plasma membrane

  13. Downregulation of telomerase maintenance-related ACD expression in patients undergoing immunosuppresive therapy following kidney transplantation.

    Science.gov (United States)

    Witkowska, Agnieszka; Strzalka-Mrozik, Barbara; Owczarek, Aleksander; Gola, Joanna; Mazurek, Urszula; Grzeszczak, Wladyslaw; Gumprecht, Janusz

    2015-12-01

    Chronic administration of immunosuppressants has been associated with long-term consequences, including a higher risk of neoplasm development. The processes regulating telomere function exert a major influence on human cancer biology. The present study aimed to assess the effect of immunosuppressive therapy on the expression of genes associated with telomere maintenance and protection in patients following renal transplantation. A total of 51 patients that had undergone kidney transplantation and 54 healthy controls were enrolled in the study. The 51 transplant patients received a three-drug immunosuppressive regimen consisting of cyclosporine A, prednisone and mycophenolate mofetil. In stage 1 of the study, the expression profiles of 123 transcripts, which represented 70 genes, were assessed in peripheral mononuclear blood cells using an oligonucleotide microarray technique in 8 transplant recipients and 4 healthy control subjects. Among the analyzed transcripts, the expression levels of 4 differed significantly between the studied groups; however, only the ACD (adrenocortical dysplasia homolog) gene, encoding the telomere-binding protein POT1-interacting protein 1 (TPP1), was sufficiently specific for telomere homeostasis. The expression of ACD was downregulated in transplant recipients (fold change, 2.11; P=0.006). In stage 2 of the study, reverse transcription-quantitative polymerase chain reaction analysis of ACD , DKC1 and hTERT mRNA was conducted for all transplant patients and control subjects. The results confirmed the downregulation of the ACD gene in patients that had received immunosuppressive therapy (P=0.002). The results of the present study indicate that the downregulation of ACD gene transcription, and thus TPP1 protein expression, may enhance the capacity for cell immortalization, despite normal levels of other key telomere maintenance factors, in patients undergoing immunosuppressive therapy. Furthermore, the results indicate that TPP1 has

  14. Nucleolin down-regulation is involved in ADP-induced cell cycle arrest in S phase and cell apoptosis in vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Wenmeng Wang

    Full Text Available High concentration of extracellular ADP has been reported to induce cell apoptosis, but the molecular mechanisms remain not fully elucidated. In this study, we found by serendipity that ADP treatment of human umbilical vein endothelial cells (HUVEC and human aortic endothelial cells (HAEC down-regulated the protein level of nucleolin in a dose- and time-dependent manner. ADP treatment did not decrease the transcript level of nucloelin, suggesting that ADP might induce nucleolin protein degradation. HUVEC and HAEC expressed ADP receptor P2Y13 receptor, but did not express P2Y1 or P2Y12 receptors. However, P2Y1, 12, 13 receptor antagonists MRS2179, PSB0739, MRS2211 did not inhibit ADP-induced down-regulation of nucleolin. Moreover, MRS2211 itself down-regulated nucleolin protein level. In addition, 2-MeSADP, an agonist for P2Y1, 12 and 13 receptors, did not down-regulate nucleolin protein. These results suggested that ADP-induced nucleolin down-regulation was not due to the activation of P2Y1, 12, or 13 receptors. We also found that ADP treatment induced cell cycle arrest in S phase, cell apoptosis and cell proliferation inhibition via nucleolin down-regulation. The over-expression of nucleolin by gene transfer partly reversed ADP-induced cell cycle arrest, cell apoptosis and cell proliferation inhibition. Furthermore, ADP sensitized HUVEC to cisplatin-induced cell death by the down-regulation of Bcl-2 expression. Taken together, we found, for the first time to our knowledge, a novel mechanism by which ADP regulates cell proliferation by induction of cell cycle arrest and cell apoptosis via targeting nucelolin.

  15. Celiac Disease Histopathology Recapitulates Hedgehog Downregulation, Consistent with Wound Healing Processes Activation.

    Directory of Open Access Journals (Sweden)

    Stefania Senger

    Full Text Available In celiac disease (CD, intestinal epithelium damage occurs secondary to an immune insult and is characterized by blunting of the villi and crypt hyperplasia. Similarities between Hedgehog (Hh/BMP4 downregulation, as reported in a mouse model, and CD histopathology, suggest mechanistic involvement of Hh/BMP4/WNT pathways in proliferation and differentiation of immature epithelial cells in the context of human intestinal homeostasis and regeneration after damage. Herein we examined the nature of intestinal crypt hyperplasia and involvement of Hh/BMP4 in CD histopathology.Immunohistochemistry, qPCR and in situ hybridization were used to study a cohort of 24 healthy controls (HC and 24 patients with diagnosed acute celiac disease (A-CD intestinal biopsies. In A-CD we observed an increase in cells positive for Leucin-rich repeat-containing G protein-coupled receptor 5 (LGR5, an epithelial stem cell specific marker and expansion of WNT responding compartment. Further, we observed alteration in number and distribution of mesenchymal cells, predicted to be part of the intestinal stem cells niche. At the molecular level we found downregulation of indian hedgehog (IHH and other components of the Hh pathway, but we did not observe a concurrent downregulation of BMP4. However, we observed upregulation of BMPs antagonists, gremlin 1 and gremlin 2.Our data suggest that acute CD histopathology partially recapitulates the phenotype reported in Hh knockdown models. Specifically, Hh/BMP4 paradigm appears to be decoupled in CD, as the expansion of the immature cell population does not occur consequent to downregulation of BMP4. Instead, we provide evidence that upregulation of BMP antagonists play a key role in intestinal crypt hyperplasia. This study sheds light on the molecular mechanisms underlying CD histopathology and the limitations in the use of mouse models for celiac disease.

  16. The impact of lignin downregulation on alfalfa yield, chemical composition, and in vitro gas production.

    Science.gov (United States)

    Getachew, Girma; Laca, Emilio A; Putnam, Daniel H; Witte, Dave; McCaslin, Mark; Ortega, Kara P; DePeters, Edward J

    2018-02-06

    Lignin is a complex, phenolic polymer found in plant cell walls that is essential for mechanical support, water and mineral transport, and defense in vascular plants. Over ten different enzymes play a role in the synthesis of lignin in plants. Suppression of any one enzyme or combinations of these enzymes may change the concentration and composition of lignin in the genetically transformed plants. Two lines of alfalfa that were downregulated for caffeoyl coenzyme A O-methyltransferase were used to assess the impact of lignin downregulation on chemical composition and fermentation rate and extent using an in vitro gas production technique. A total of 64 samples consisting of two reduced lignin (RL) and two controls (CL), four field replicates, two cutting intervals (CIs; 28 and 35 days), and two cuts (Cut-1 and Cut-3) were used. No differences were detected in yield, crude protein, neutral detergent fiber (aNDF), and acid detergent fiber between the lines when harvested at the 28-day CI. The acid detergent lignin (ADL) concentration in RL alfalfa lines was significantly (P gas production and metabolizable energy content were greater in RL than in CL alfalfa. RL lines had 3.8% indigestible aNDF per unit ADL, whereas CL had 3.4% (P < 0.01). The positive effect of lignin downregulation was more pronounced when intervals between harvests were longer (35-day CI compared with the 28-day CI). Lignin downregulation in alfalfa offers an opportunity to extend harvesting time (CI) for higher yield without compromising the nutritional quality of the alfalfa forage for dairy and livestock feeding. However, the in vitro results reported here warrant further study using in vivo methods. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  17. Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system

    Directory of Open Access Journals (Sweden)

    Millward Jason M

    2007-09-01

    Full Text Available Abstract Background Matrix metalloproteinases (MMPs are thought to mediate cellular infiltration in central nervous system (CNS inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (MT-MMPs. Leukocyte infiltration is an integral part of the pathogenesis of autoimmune inflammation in the CNS, as occurs in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE, as well as in the response to brain trauma and injury. We have previously shown that gene expression of the majority of MMPs was upregulated in the spinal cord of SJL mice with severe EAE induced by adoptive transfer of myelin basic protein-reactive T cells, whereas four of the six MT-MMPs (MMP-15, 16, 17 and 24 were downregulated. The two remaining MT-MMPs (MMP-14 and 25 were upregulated in whole tissue. Methods We used in vivo models of CNS inflammation and injury to study expression of MT-MMP and cytokine mRNA by real-time RT-PCR. Expression was also assessed in microglia sorted from CNS by flow cytometry, and in primary microglia cultures following treatment with IFNγ. Results We now confirm the expression pattern of MT-MMPs in the B6 mouse, independent of effects of adjuvant. We further show expression of all the MT-MMPs, except MMP-24, in microglia. Microglia isolated from mice with severe EAE showed statistically significant downregulation of MMP-15, 17 and 25 and lack of increase in levels of other MT-MMPs. Downregulation of MT-MMPs was also apparent following CNS injury. The pattern of regulation of MT-MMPs in neuroinflammation showed no association with expression of the proinflammatory cytokines TNFα, IL-1β, or IFNγ. Conclusion CNS inflammation and injury leads to downregulation in expression of the majority of MT-MMPs. Microglia in EAE showed a general downregulation of MT-MMPs, and our findings suggest that MT-MMP levels may

  18. Down-regulation of S100C is associated with bladder cancer progression and poor survival

    DEFF Research Database (Denmark)

    Memon, Ashfaque Ahmed; Sorensen, Boe Sandahl; Meldgaard, Peter

    2005-01-01

    cancer biopsy samples obtained from 88 patients followed for a median of 23 months (range, 1-97 months). RESULTS: We found a significantly lower mRNA expression of S100C in connective tissue invasive tumors (T1, P = 0.0030) and muscle invasive tumors [(T2-T4), P ...PURPOSE: The goal of this study was to identify proteins down-regulated during bladder cancer progression. EXPERIMENTAL DESIGN: By using comparative proteome analysis and measurement of mRNA, we found a significant down-regulation of S100C, a member of the S100 family of proteins, in T24 (grade 3......) as compared with RT4 (grade 1) bladder cancer cell lines. Moreover, quantification of the mRNA level revealed that decreased expression of the protein reflects a low level of transcription of the S100C gene. Based on this observation, we quantified the S100C mRNA expression level with real-time PCR in bladder...

  19. Chromosomal deletion, promoter hypermethylation and downregulation of FYN in prostate cancer

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Borre, Michael; Ørntoft, Torben Falck

    2008-01-01

    prostate hyperplasia (BPH), as well as in 6 prostate adenocarcinoma cell lines compared with that in BPH-1 cells. By immunohistochemistry, FYN protein was detected in nonmalignant prostate epithelium, but not in cancerous glands. Moreover, genomic bisulfite sequencing revealed frequent aberrant methylation......, consistent with gene silencing, was detected in 2 of 18 tumors (11%). No methylation was found in BPH-1 cells or nonmalignant prostate tissue samples (0 of 7). These results indicate that FYN is downregulated in prostate cancer by both chromosomal deletion and promoter hypermethylation, and therefore...

  20. PPARα activators down-regulate CYP2C7, a retinoic acid and testosterone hydroxylase

    International Nuclear Information System (INIS)

    Fan Liqun; Brown-Borg, Holly; Brown, Sherri; Westin, Stefan; Mode, Agneta; Corton, J. Christopher

    2004-01-01

    Peroxisome proliferators (PP) are a large class of structurally diverse chemicals that mediate their effects in the liver mainly through the peroxisome proliferator-activated receptor α (PPARα). Exposure to PP results in down-regulation of CYP2C family members under control of growth hormone and sex steroids including CYP2C11 and CYP2C12. We hypothesized that PP exposure would also lead to similar changes in CYP2C7, a retinoic acid and testosterone hydroxylase. CYP2C7 gene expression was dramatically down-regulated in the livers of rats treated for 13 weeks by WY-14,643 (WY; 500 ppm) or gemfibrozil (GEM; 8000 ppm). In the same tissues, exposure to WY and GEM and to a lesser extent di-n-butyl phthalate (20 000 ppm) led to decreases in CYP2C7 protein levels in both male and female rats. An examination of the time and dose dependence of CYP2C7 protein changes after PP exposure revealed that CYP2C7 was more sensitive to compound exposure compared to other CYP2C family members. Protein expression was decreased after 1, 5 and 13 weeks of PP treatment. CYP2C7 protein expression was completely abolished at 5 ppm WY, the lowest dose tested. GEM and DBP exhibited dose-dependent decreases in CYP2C7 protein expression, becoming significant at 1000 ppm or 5000 ppm and above, respectively. These results show that PP exposure leads to changes in CYP2C7 mRNA and protein levels. Thus, in addition to known effects on steroid metabolism, exposure to PP may alter retinoic acid metabolism

  1. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  2. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  3. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  4. Rapamycin up-regulates triglycerides in hepatocytes by down-regulating Prox1.

    Science.gov (United States)

    Kwon, Sora; Jeon, Ji-Sook; Kim, Su Bin; Hong, Young-Kwon; Ahn, Curie; Sung, Jung-Suk; Choi, Inho

    2016-02-27

    Although the prolonged use of rapamycin may cause unwanted side effects such as hyperlipidemia, the underlying mechanism remains unknown. Prox1 is a transcription factor responsible for the development of several tissues including lymphatics and liver. There is growing evidences that Prox1 participates in metabolism in addition to embryogenesis. However, whether Prox1 is directly related to lipid metabolism is currently unknown. HepG2 human hepatoma cells were treated with rapamycin and total lipids were analyzed by thin layer chromatography. The effect of rapamycin on the expression of Prox1 was determined by western blotting. To investigate the role of Prox1 in triglycerides regulation, siRNA and overexpression system were employed. Rapamycin was injected into mice for 2 weeks and total lipids and proteins in liver were measured by thin layer chromatography and western blot analysis, respectively. Rapamycin up-regulated the amount of triglyceride and down-regulated the expression of Prox1 in HepG2 cells by reducing protein half-life but did not affect its transcript. The loss-of-function of Prox1 was coincident with the increase of triglycerides in HepG2 cells treated with rapamycin. The up-regulation of triglycerides by rapamycin in HepG2 cells reverted to normal levels by the compensation of Prox1 using the overexpression system. Rapamycin also down-regulated Prox1 expression but increased triglycerides in mouse liver. This study suggests that rapamycin can increase the amount of triglycerides by down-regulating Prox1 expression in hepatocytes, which means that the mammalian target of rapamycin (mTOR) signaling is important for the regulation of triglycerides by maintaining Prox1 expression.

  5. Downregulation of RBO-PI4KIIIα Facilitates Aβ42 Secretion and Ameliorates Neural Deficits in Aβ42-Expressing Drosophila.

    Science.gov (United States)

    Zhang, Xiao; Wang, Wen-An; Jiang, Li-Xiang; Liu, Hai-Yan; Zhang, Bao-Zhu; Lim, Nastasia; Li, Qing-Yi; Huang, Fu-De

    2017-05-10

    Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI 4 P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aβ 42 -expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aβ 42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aβ 42 release and that PI4P facilitated the assembly or oligomerization of Aβ 42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aβ 42 release and consequently reduces neuronal Aβ 42 accumulation likely via decreasing Aβ 42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment. SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aβ 42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aβ 42 -expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI 4 P-against the defects caused by Aβ 42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aβ 42 accumulation, and interestingly increased neuronal Aβ 42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates. Copyright

  6. Downregulation of rRNA transcription triggers cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yuki Hayashi

    Full Text Available Responding to various stimuli is indispensable for the maintenance of homeostasis. The downregulation of ribosomal RNA (rRNA transcription is one of the mechanisms involved in the response to stimuli by various cellular processes, such as cell cycle arrest and apoptosis. Cell differentiation is caused by intra- and extracellular stimuli and is associated with the downregulation of rRNA transcription as well as reduced cell growth. The downregulation of rRNA transcription during differentiation is considered to contribute to reduced cell growth. However, the downregulation of rRNA transcription can induce various cellular processes; therefore, it may positively regulate cell differentiation. To test this possibility, we specifically downregulated rRNA transcription using actinomycin D or a siRNA for Pol I-specific transcription factor IA (TIF-IA in HL-60 and THP-1 cells, both of which have differentiation potential. The inhibition of rRNA transcription induced cell differentiation in both cell lines, which was demonstrated by the expression of the common differentiation marker CD11b. Furthermore, TIF-IA knockdown in an ex vivo culture of mouse hematopoietic stem cells increased the percentage of myeloid cells and reduced the percentage of immature cells. We also evaluated whether differentiation was induced via the inhibition of cell cycle progression because rRNA transcription is tightly coupled to cell growth. We found that cell cycle arrest without affecting rRNA transcription did not induce differentiation. To the best of our knowledge, our results demonstrate the first time that the downregulation of rRNA levels could be a trigger for the induction of differentiation in mammalian cells. Furthermore, this phenomenon was not simply a reflection of cell cycle arrest. Our results provide a novel insight into the relationship between rRNA transcription and cell differentiation.

  7. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States); Wang, Lei; Poyil, Pratheeshkumar [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Luo, Jia [Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: Zhuo.Zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536 (United States)

    2016-11-15

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  8. Increased keratinocyte proliferation initiated through downregulation of desmoplakin by RNA interference

    International Nuclear Information System (INIS)

    Wan Hong; South, Andrew P.; Hart, Ian R.

    2007-01-01

    The intercellular adhesive junction desmosomes are essential for the maintenance of tissue structure and integrity in skin. Desmoplakin (Dp) is a major obligate plaque protein which plays a fundamental role in anchoring intermediate filaments to desmosomal cadherins. Evidence from hereditary human disease caused by mutations in the gene encoding Dp, e.g. Dp haploinsufficiency, suggests that alterations in Dp expression result not only in the disruption of tissue structure and integrity but also could evoke changes in keratinocyte proliferation. We have used transient RNA interference (RNAi) to downregulate Dp specifically in HaCaT keratinocytes. We showed that this Dp downregulation also caused reduced expression of several other desmosomal proteins. Increased cell proliferation and enhanced G 1 -to-S-phase entry in the cell cycle, as monitored by colonial cellular density and BrdU incorporation, were seen in Dp RNAi-treated cells. These proliferative changes were associated with elevated phospho-ERK1/2 and phospho-Akt levels. Furthermore, this increase in phospho-ERK/1/2 and phospho-Akt levels was sustained in Dp RNAi-treated cells at confluence whereas in control cells there was a significant reduction in phosphorylation of ERK1/2. This study indicates that Dp may participate in the regulation of keratinocyte cell proliferation by, in part at least, regulating cell cycle progression

  9. Downregulation of NEDD9 by apigenin suppresses migration, invasion, and metastasis of colorectal cancer cells

    International Nuclear Information System (INIS)

    Dai, Jin; Van Wie, Peter G.; Fai, Leonard Yenwong; Kim, Donghern; Wang, Lei; Poyil, Pratheeshkumar; Luo, Jia; Zhang, Zhuo

    2016-01-01

    Apigenin is a natural flavonoid which possesses multiple anti-cancer properties such as anti-proliferation, anti-inflammation, and anti-metastasis in many types of cancers including colorectal cancer. Neural precursor cell expressed developmentally downregulated 9 (NEDD9) is a multi-domain scaffolding protein of the Cas family which has been shown to correlate with cancer metastasis and progression. The present study investigates the role of NEDD9 in apigenin-inhibited cell migration, invasion, and metastasis of colorectal adenocarcinoma DLD1 and SW480 cells. The results show that knockdown of NEDD9 inhibited cell migration, invasion, and metastasis and that overexpression of NEDD9 promoted cell migration and invasion of DLD1 cells and SW4890 cells. Apigenin treatment attenuated NEDD9 expression at protein level, resulting in reduced phosphorylations of FAK, Src, and Akt, leading to inhibition on cell migration, invasion, and metastasis of both DLD1 and SW480 cells. The present study has demonstrated that apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt cascade in colorectal cancer cells. NEDD9 may function as a biomarker for evaluation of cancer aggressiveness and for selection of therapeutic drugs against cancer progression. - Highlights: • Apigenin inhibits migration, invasion, and metastasis of colorectal cancer cells. • Apigenin downregulates NEDD9. • Apigenin decreases phosphorylations of FAK, Src, and Akt. • Apigenin inhibits cell migration, invasion, and metastasis through NEDD9/Src/Akt.

  10. MiR-375 inhibits the hepatocyte growth factor-elicited migration of mesenchymal stem cells by downregulating Akt signaling.

    Science.gov (United States)

    He, Lihong; Wang, Xianyao; Kang, Naixin; Xu, Jianwei; Dai, Nan; Xu, Xiaojing; Zhang, Huanxiang

    2018-04-01

    The migration of mesenchymal stem cells (MSCs) is critical for their use in cell-based therapies. Accumulating evidence suggests that microRNAs are important regulators of MSC migration. Here, we report that the expression of miR-375 was downregulated in MSCs treated with hepatocyte growth factor (HGF), which strongly stimulates the migration of these cells. Overexpression of miR-375 decreased the transfilter migration and the migration velocity of MSCs triggered by HGF. In our efforts to determine the mechanism by which miR-375 affects MSC migration, we found that miR-375 significantly inhibited the activation of Akt by downregulating its phosphorylation at T308 and S473, but had no effect on the activity of mitogen-activated protein kinases. Further, we showed that 3'phosphoinositide-dependent protein kinase-1 (PDK1), an upstream kinase necessary for full activation of Akt, was negatively regulated by miR-375 at the protein level. Moreover, miR-375 suppressed the phosphorylation of focal adhesion kinase (FAK) and paxillin, two important regulators of focal adhesion (FA) assembly and turnover, and decreased the number of FAs at cell periphery. Taken together, our results demonstrate that miR-375 inhibits HGF-elicited migration of MSCs through downregulating the expression of PDK1 and suppressing the activation of Akt, as well as influencing the tyrosine phosphorylation of FAK and paxillin and FA periphery distribution.

  11. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  12. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    International Nuclear Information System (INIS)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan; Tiollais, Pierre; Li, Tsaiping; Zhao, Mujun

    2011-01-01

    Highlights: → LIS1 mRNA and protein levels are decreased in 70% HCC tissues. → Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. → LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. → Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. → Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the development and

  13. The human LIS1 is downregulated in hepatocellular carcinoma and plays a tumor suppressor function

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Zhen; Tang, Xin; Gao, Yuan; Da, Liang; Song, Hai; Wang, Suiquan [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Tiollais, Pierre [Unite' d' Organisation Nucleaire et Oncogenese, INSERM U.579, Institut Pasteur, Paris (France); Li, Tsaiping [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China); Zhao, Mujun, E-mail: mjzhao@sibs.ac.cn [State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai (China)

    2011-06-03

    Highlights: {yields} LIS1 mRNA and protein levels are decreased in 70% HCC tissues. {yields} Downregulation of LIS1 expression induces oncogenic transformation of QSG7701 and NIH3T3 cells in vitro and in vivo. {yields} LIS1 downregulation leads to mitotic errors including spindle and chromosome defects. {yields} Ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. {yields} Our results suggest that LIS1 plays a potential tumor suppressor role in the development and progression of HCC. -- Abstract: The human lissencephaly-1 gene (LIS1) is a disease gene responsible for Miller-Dieker lissencephaly syndrome (MDL). LIS1 gene is located in the region of chromosome 17p13.3 that is frequency deleted in MDL patients and in human liver cancer cells. However, the expression and significance of LIS1 in liver cancer remain unknown. Here, we investigated the expression of LIS1 in hepatocellular carcinoma (HCC) tissues by real-time PCR, Western blot, and immunohistochemistry. The results indicated that the mRNA and protein levels of LIS1 were downregulated in about 70% of HCC tissues, and this downregulation was significantly associated with tumor progression. Functional studies showed that the reduction of LIS1 expression in the normal human liver cell line QSG7701 or the mouse fibroblast cell line NIH3T3 by shRNA resulted in colony formation in soft agar and xenograft tumor formation in nude mice, demonstrating that a decrease in the LIS1 level can promote the oncogenic transformation of cells. We also observed that the phenotypes of LIS1-knockdown cells displayed various defective mitotic structures, suggesting that the mechanism by which reduced LIS1 levels results in tumorigenesis is associated with its role in mitosis. Furthermore, we demonstrated that ectopic expression of LIS1 could significantly inhibit HCC cell proliferation and colony formation. Our results suggest that LIS1 plays a potential tumor suppressor role in the

  14. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes

    Directory of Open Access Journals (Sweden)

    Schorle Hubert

    2008-06-01

    Full Text Available Abstract Background During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP. Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin. Findings HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice. Conclusion The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.

  15. Frequent down-regulation of ABC transporter genes in prostate cancer

    International Nuclear Information System (INIS)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-01-01

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p < 0.001). The study suggests frequent down-regulation of the ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors. The online version of this article (doi:10.1186/s12885-015-1689-8) contains supplementary material, which is available to authorized users

  16. Herpes simplex virus downregulation of secretory leukocyte protease inhibitor enhances human papillomavirus type 16 infection.

    Science.gov (United States)

    Skeate, Joseph G; Porras, Tania B; Woodham, Andrew W; Jang, Julie K; Taylor, Julia R; Brand, Heike E; Kelly, Thomas J; Jung, Jae U; Da Silva, Diane M; Yuan, Weiming; Kast, W Martin

    2016-02-01

    Herpes simplex virus (HSV) was originally implicated in the aetiology of cervical cancer, and although high-risk human papillomavirus (HPV) is now the accepted causative agent, the epidemiological link between HSV and HPV-associated cancers persists. The annexin A2 heterotetramer (A2t) has been shown to mediate infectious HPV type 16 (HPV16) uptake by human keratinocytes, and secretory leukocyte protease inhibitor (SLPI), an endogenous A2t ligand, inhibits HPV16 uptake and infection. Interestingly, HSV infection induces a sustained downregulation of SLPI in epithelial cells, which we hypothesized promotes HPV16 infection through A2t. Here, we show that in vitro infection of human keratinocytes with HSV-1 or HSV-2, but not with an HSV-1 ICP4 deletion mutant that does not downregulate SLPI, leads to a >70% reduction of SLPI mRNA and a >60% decrease in secreted SLPI protein. Consequently, we observed a significant increase in the uptake of HPV16 virus-like particles and gene transduction by HPV16 pseudovirions (two- and 2.5-fold, respectively) in HSV-1- and HSV-2-infected human keratinocyte cell cultures compared with uninfected cells, whereas exogenously added SLPI reversed this effect. Using a SiMPull (single-molecule pulldown) assay, we demonstrated that endogenously secreted SLPI interacts with A2t on epithelial cells in an autocrine/paracrine manner. These results suggested that ongoing HSV infection and resultant downregulation of local levels of SLPI may impart a greater susceptibility for keratinocytes to HPV16 infection through the host cell receptor A2t, providing a mechanism that may, in part, provide an explanation for the aetiological link between HSV and HPV-associated cancers.

  17. BCL11B is frequently downregulated in HTLV-1-infected T-cells through Tax-mediated proteasomal degradation.

    Science.gov (United States)

    Permatasari, Happy Kurnia; Nakahata, Shingo; Ichikawa, Tomonaga; Morishita, Kazuhiro

    2017-08-26

    Human T-cell leukemia virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia-lymphoma (ATLL). The HTLV-1-encoded protein Tax plays important roles in the proliferation of HTLV-1-infected T-cells by affecting cellular proteins. In this study, we showed that Tax transcriptionally and post-transcriptionally downregulates the expression of the tumor suppressor gene B-cell leukemia/lymphoma 11B (BCL11B), which encodes a lymphoid-related transcription factor. BCL11B expression was downregulated in HTLV-1-infected T-cell lines at the mRNA and protein levels, and forced expression of BCL11B suppressed the proliferation of these cells. The proteasomal inhibitor MG132 increased BCL11B expression in HTLV-1-infected cell lines, and colocalization of Tax with BCL11B was detected in the cytoplasm of HTLV-1-infected T-cells following MG132 treatment. shRNA knock-down of Tax expression also increased the expression of BCL11B in HTLV-1-infected cells. Moreover, we found that Tax physically binds to BCL11B protein and induces the polyubiquitination of BCL11B and proteasome-dependent degradation of BCL11B. Thus, inactivation of BCL11B by Tax protein may play an important role in the Tax-mediated leukemogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Histones Induce the Procoagulant Phenotype of Endothelial Cells through Tissue Factor Up-Regulation and Thrombomodulin Down-Regulation.

    Science.gov (United States)

    Kim, Ji Eun; Yoo, Hyun Ju; Gu, Ja Yoon; Kim, Hyun Kyung

    2016-01-01

    The high circulating levels of histones found in various thrombotic diseases may compromise the anticoagulant barrier of endothelial cells. We determined how histones affect endothelial procoagulant tissue factor (TF) and anticoagulant thrombomodulin (TM). Surface antigens, soluble forms, and mRNA levels of TF and TM were measured by flow cytometry, ELISA, and real-time RT-PCR, respectively. TF and TM activity were measured using procoagulant activity, thrombin generation, or chromogenic assays. Involvement of the toll-like receptor (TLR) was assessed using the neutralizing antibodies. Histones dose-dependently induced surface antigens, activity and mRNA levels of endothelial TF. Histone-treated endothelial cells significantly shortened the lag time and enhanced the endogenous thrombin potential of normal plasma, which was normalized by a TF neutralizing antibody. Histones induced phosphatidylserine and protein-disulfide isomerase expression in endothelial cells. Histones also reduced the surface antigen, activity, and mRNA levels of endothelial TM. Polysialic acid and heparin reversed the histone-induced TF up-regulation and TM down-regulation. Activated protein C did not affect the TF up-regulation, but interrupted TM down-regulation. TLR2, and TLR4 inhibitors partially blocked the TF up-regulation. Histones induced the endothelial procoagulant phenotype through TF up-regulation and TM down-regulation. The effects of histones were partly mediated by TLR2, TLR4. Strategies to inhibit the harmful effects of histones in endothelial cells may be required in order to prevent a thrombotic environment.

  19. Impact of MUC1 mucin downregulation in the phenotypic characteristics of MKN45 gastric carcinoma cell line.

    Directory of Open Access Journals (Sweden)

    Natália R Costa

    Full Text Available BACKGROUND: Gastric carcinoma is the second leading cause of cancer-associated death worldwide. The high mortality associated with this disease is in part due to limited knowledge about gastric carcinogenesis and a lack of available therapeutic and prevention strategies. MUC1 is a high molecular weight transmembrane mucin protein expressed at the apical surface of most glandular epithelial cells and a major component of the mucus layer above gastric mucosa. Overexpression of MUC1 is found in approximately 95% of human adenocarcinomas, where it is associated with oncogenic activity. The role of MUC1 in gastric cancer progression remains to be clarified. METHODOLOGY: We downregulated MUC1 expression in a gastric carcinoma cell line by RNA interference and studied the effects on cellular proliferation (MTT assay, apoptosis (TUNEL assay, migration (migration assay, invasion (invasion assay and aggregation (aggregation assay. Global gene expression was evaluated by microarray analysis to identify alterations that are regulated by MUC1 expression. In vivo assays were also performed in mice, in order to study the tumorigenicity of cells with and without MUC1 downregulation in MKN45 gastric carcinoma cell line. RESULTS: Downregulation of MUC1 expression increased proliferation and apoptosis as compared to controls, whereas cell-cell aggregation was decreased. No significant differences were found in terms of migration and invasion between the downregulated clones and the controls. Expression of TCN1, KLK6, ADAM29, LGAL4, TSPAN8 and SHPS-1 was found to be significantly different between MUC1 downregulated clones and the control cells. In vivo assays have shown that mice injected with MUC1 downregulated cells develop smaller tumours when compared to mice injected with the control cells. CONCLUSIONS: These results indicate that MUC1 downregulation alters the phenotype and tumorigenicity of MKN45 gastric carcinoma cells and also the expression of several

  20. Amino acid limitation induces down-regulation of WNT5a at transcriptional level

    International Nuclear Information System (INIS)

    Wang Zuguang; Chen Hong

    2009-01-01

    An aberrant WNT signaling contributes to the development and progression of multiple cancers. WNT5a is one of the WNT signaling molecules. This study was designed to test the hypothesis that amino acid deprivation induces changes in the WNT signaling pathway in colon cancer cells. Results showed that targets of the amino acid response pathway, ATF3 and p21, were induced in the human colon cancer cell line SW480 during amino acid limitation. There was a significant decrease in the WNT5a mRNA level following amino acid deprivation. The down-regulation of WNT5a mRNA by amino acid deprivation is not due to mRNA destabilization. There is a reduction of nuclear β-catenin protein level by amino acid limitation. Under amino acid limitation, phosphorylation of ERK1/2 was increased and the blockage of ERK1/2 by the inhibitor U0126 partially restored WNT5a mRNA level. In conclusion, amino acid limitation in colon cancer cells induces phosphorylation of ERK1/2, which then down-regulates WNT5a expression.

  1. Ezrin dephosphorylation/downregulation contributes to ursolic acid-mediated cell death in human leukemia cells

    International Nuclear Information System (INIS)

    Li, G; Zhou, T; Liu, L; Chen, J; Zhao, Z; Peng, Y; Li, P; Gao, N

    2013-01-01

    Ezrin links the actin filaments with the cell membrane and has a functional role in the apoptotic process. It appears clear that ezrin is directly associated with Fas, leading to activation of caspase cascade and cell death. However, the exact role of ezrin in ursolic acid (UA)-induced apoptosis remains unclear. In this study, we show for the first time that UA induces apoptosis in both transformed and primary leukemia cells through dephosphorylation/downregulation of ezrin, association and polarized colocalization of Fas and ezrin, as well as formation of death-inducing signaling complex. These events are dependent on Rho-ROCK1 signaling pathway. Knockdown of ezrin enhanced cell death mediated by UA, whereas overexpression of ezrin attenuated UA-induced apoptosis. Our in vivo study also showed that UA-mediated inhibition of tumor growth of mouse leukemia xenograft model is in association with the dephosphorylation/downregulation of ezrin. Such findings suggest that the cytoskeletal protein ezrin may represent an attractive target for UA-mediated lethality in human leukemia cells

  2. Mycobacterium leprae downregulates the expression of PHEX in Schwann cells and osteoblasts

    Directory of Open Access Journals (Sweden)

    Sandra R Boiça Silva

    2010-08-01

    Full Text Available Neuropathy and bone deformities, lifelong sequelae of leprosy that persist after treatment, result in significant impairment to patients and compromise their social rehabilitation. Phosphate-regulating gene with homologies to endopeptidase on the X chromosome (PHEX is a Zn-metalloendopeptidase, which is abundantly expressed in osteoblasts and many other cell types, such as Schwann cells, and has been implicated in phosphate metabolism and X-linked rickets. Here, we demonstrate that Mycobacterium leprae stimulation downregulates PHEX transcription and protein expression in a human schwannoma cell line (ST88-14 and human osteoblast lineage. Modulation of PHEX expression was observed to a lesser extent in cells stimulated with other species of mycobacteria, but was not observed in cultures treated with latex beads or with the facultative intracellular bacterium Salmonella typhimurium. Direct downregulation of PHEX by M. leprae could be involved in the bone resorption observed in leprosy patients. This is the first report to describe PHEX modulation by an infectious agent.

  3. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    Science.gov (United States)

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  4. AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development.

    Science.gov (United States)

    Boudaba, Nadia; Marion, Allison; Huet, Camille; Pierre, Rémi; Viollet, Benoit; Foretz, Marc

    2018-02-01

    Nonalcoholic fatty liver disease is a highly prevalent component of disorders associated with disrupted energy homeostasis. Although dysregulation of the energy sensor AMP-activated protein kinase (AMPK) is viewed as a pathogenic factor in the development of fatty liver its role has not been directly demonstrated. Unexpectedly, we show here that liver-specific AMPK KO mice display normal hepatic lipid homeostasis and are not prone to fatty liver development, indicating that the decreases in AMPK activity associated with hepatic steatosis may be a consequence, rather than a cause, of changes in hepatic metabolism. In contrast, we found that pharmacological re-activation of downregulated AMPK in fatty liver is sufficient to normalize hepatic lipid content. Mechanistically, AMPK activation reduces hepatic triglyceride content both by inhibiting lipid synthesis and by stimulating fatty acid oxidation in an LKB1-dependent manner, through a transcription-independent mechanism. Furthermore, the effect of the antidiabetic drug metformin on lipogenesis inhibition and fatty acid oxidation stimulation was enhanced by combination treatment with small-molecule AMPK activators in primary hepatocytes from mice and humans. Overall, these results demonstrate that AMPK downregulation is not a triggering factor in fatty liver development but in contrast, establish the therapeutic impact of pharmacological AMPK re-activation in the treatment of fatty liver disease. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts.

    Science.gov (United States)

    Pistocchi, A; Fazio, G; Cereda, A; Ferrari, L; Bettini, L R; Messina, G; Cotelli, F; Biondi, A; Selicorni, A; Massa, V

    2013-10-17

    Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.

  6. Down-regulation of Rab5 decreases characteristics associated with maintenance of cell transformation

    International Nuclear Information System (INIS)

    Silva, Patricio; Soto, Nicolás; Díaz, Jorge; Mendoza, Pablo; Díaz, Natalia; Quest, Andrew F.G.; Torres, Vicente A.

    2015-01-01

    The early endosomal protein Rab5 is highly expressed in tumor samples, although a causal relationship between Rab5 expression and cell transformation has not been established. Here, we report the functional effects of targeting endogenous Rab5 with specific shRNA sequences in different tumor cell lines. Rab5 down-regulation in B16-F10 cells decreased tumor formation by subcutaneous injection into C57/BL6 mice. Accordingly, Rab5 targeting in B16-F10 and A549, but not MDA-MB-231 cells was followed by decreased cell proliferation, increased apoptosis and decreased anchorage-independent growth. These findings suggest that Rab5 expression is required to maintain characteristics associated with cell transformation. - Highlights: • Rab5 is important to the maintenance of cell transformation characteristics. • Down-regulation of Rab5 decreases cell proliferation and increases apoptosis in different cancer cells. • Rab5 is required for anchorage-independent growth and tumorigenicity in-vivo

  7. The CD3 gamma leucine-based receptor-sorting motif is required for efficient ligand-mediated TCR down-regulation

    DEFF Research Database (Denmark)

    von Essen, Marina; Menné, Charlotte; Nielsen, Bodil L

    2002-01-01

    . The other pathway is dependent on protein kinase C (PKC)-mediated activation of the CD3 gamma di-leucine-based receptor-sorting motif. Previous studies have failed to demonstrate a connection between ligand- and PKC-induced TCR down-regulation. Thus, although an apparent paradox, the dogma has been...... that ligand- and PKC-induced TCR down-regulations are not interrelated. By analyses of a newly developed CD3 gamma-negative T cell variant, freshly isolated and PHA-activated PBMC, and a mouse T cell line, we challenged this dogma and demonstrate in this work that PKC activation and the CD3 gamma di...

  8. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    International Nuclear Information System (INIS)

    Kim, Kyung-Chang; Kim, Hyeon Guk; Roh, Tae-Young; Park, Jihwan; Jung, Kyung-Min; Lee, Joo-Shil; Choi, Sang-Yun; Kim, Sung Soon; Choi, Byeong-Sun

    2011-01-01

    Research highlights: → CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. → CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. → HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. → H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. → HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56 Lck , ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56 Lck , ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.

  9. The effect of CD4 receptor downregulation and its downstream signaling molecules on HIV-1 latency

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung-Chang [National Institute of Health, Chungbuk (Korea, Republic of); School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Hyeon Guk [National Institute of Health, Chungbuk (Korea, Republic of); Roh, Tae-Young [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Park, Jihwan [Division of Molecular and Life Science, Pohang University of Science and Technology, Pohang, Gyeongbuk (Korea, Republic of); Jung, Kyung-Min; Lee, Joo-Shil [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Sang-Yun [School of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Kim, Sung Soon [National Institute of Health, Chungbuk (Korea, Republic of); Choi, Byeong-Sun, E-mail: byeongsun@korea.kr [National Institute of Health, Chungbuk (Korea, Republic of)

    2011-01-14

    Research highlights: {yields} CD4 receptors were downregulated on the surface of HIV-1 latently infected cells. {yields} CD4 downstream signaling molecules were suppressed in HIV-1 latently infected cells. {yields} HIV-1 progeny can be reactivated by induction of T-cell activation signal molecules. {yields} H3K4me3 and H3K9ac were highly enriched in CD4 downstream signaling molecules. {yields} HIV-1 latency can be maintained by the reduction of downstream signaling molecules. -- Abstract: HIV-1 can establish a latent infection in memory CD4 + T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56{sup Lck}, ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56{sup Lck}, ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new

  10. DMBT1 expression is down-regulated in breast cancer

    DEFF Research Database (Denmark)

    Braidotti, P; Nuciforo, P G; Mollenhauer, J

    2004-01-01

    and hyperplastic mammary cells positive with DMBTh12 were also MCM5-positive. CONCLUSIONS: The redistribution and up-regulation of DMBT1 in normal and hyperplastic tissues flanking malignant tumours and its down-regulation in carcinomas suggests a potential role in breast cancer. Moreover, the concomitant......BACKGROUND: We studied the expression of DMBT1 (deleted in malignant brain tumor 1), a putative tumor suppressor gene, in normal, proliferative, and malignant breast epithelium and its possible relation to cell cycle. METHODS: Sections from 17 benign lesions and 55 carcinomas were immunostained...... expression was down-regulated in the cancerous lesions compared to the normal and/or hyperplastic epithelium adjacent to carcinomas (3/55 positive carcinomas versus 33/42 positive normal/hyperplastic epithelia; p = 0.0001). In 72% of cases RT-PCR confirmed immunohistochemical results. Most of normal...

  11. Wind Turbine Down-regulation Strategy for Minimum Wake Deficit

    DEFF Research Database (Denmark)

    Ma, Kuichao; Zhu, Jiangsheng; N. Soltani, Mohsen

    2017-01-01

    Down-regulation mode of wind turbine is commonly used no matter for the reserve power for supporting ancillary service to the grid, power optimization in wind farm or reducing power loss in the fault condition. It is also a method to protect faulty turbine. A down-regulation strategy based...... on minimum wake deficit is proposed in this paper, for the power improvement of the downwind turbine in low and medium wind speed region. The main idea is to operate turbine work at an appropriate operating point through rotor speed and torque control. The effectiveness of the strategy is verified...... by comparing with maximum rotor speed strategy. The result shows that the proposed strategy can improve the power of downwind turbine effectively....

  12. Tumour MHC class I downregulation and immunotherapy (Review)

    Czech Academy of Sciences Publication Activity Database

    Bubeník, Jan

    2003-01-01

    Roč. 10, č. 6 (2003), s. 2005-2008 ISSN 1021-335X R&D Projects: GA MZd NC7148; GA ČR GA301/01/0985; GA AV ČR IAA5052203 Institutional research plan: CEZ:AV0Z5052915 Keywords : tumour vaccines * MHC class I downregulation Subject RIV: FD - Oncology ; Hematology Impact factor: 1.256, year: 2003

  13. Leukomogenic factors downregulate heparanase expression in acute myeloid leukemia cells

    International Nuclear Information System (INIS)

    Eshel, Rinat; Ben-Zaken, Olga; Vainas, Oded; Nadir, Yona; Minucci, Saverio; Polliack, Aaron; Naparstek, Ella; Vlodavsky, Israel; Katz, Ben-Zion

    2005-01-01

    Heparanase is a heparan sulfate-degrading endoglycosidase expressed by mature monocytes and myeloid cells, but not by immature hematopoietic progenitors. Heparanase gene expression is upregulated during differentiation of immature myeloid cells. PML-RARα and PLZF-RARα fusion gene products associated with acute promyelocytic leukemia abrogate myeloid differentiation and heparanase expression. AML-Eto, a translocation product associated with AML FAB M2, also downregulates heparanase gene expression. The common mechanism that underlines the activity of these three fusion gene products involves the recruitment of histone deacetylase complexes to specific locations within the DNA. We found that retinoic acid that dissociates PML-RARα from the DNA, and which is used to treat acute promyelocytic leukemia patients, restores heparanase expression to normal levels in an acute promyelocytic leukemia cell line. The retinoic acid effects were also observed in primary acute promyelocytic leukemia cells and in a retinoic acid-treated acute promyelocytic leukemia patient. Histone deacetylase inhibitor reverses the downregulation of heparanase expression induced by the AML-Eto fusion gene product in M2 type AML. In summary, we have characterized a link between leukomogenic factors and the downregulation of heparanase in myeloid leukemic cells

  14. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    Directory of Open Access Journals (Sweden)

    Shehla Pervin

    Full Text Available Vitamin D signaling in mammary cancer stem cells (MCSCs, which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+ had increased ability to form mammospheres compared to ALDH(- cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR was significantly down-regulated in mammospheres, as well as in ALDH(+ breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D, the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas cells with DETA NONOate, a nitric oxide (NO-donor led to induction of MAP-kinase phosphatase -1 (MKP-1 and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in

  15. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.

    Science.gov (United States)

    Pervin, Shehla; Hewison, Martin; Braga, Melissa; Tran, Lac; Chun, Rene; Karam, Amer; Chaudhuri, Gautam; Norris, Keith; Singh, Rajan

    2013-01-01

    Vitamin D signaling in mammary cancer stem cells (MCSCs), which are implicated in the initiation and progression of breast cancer, is poorly understood. In this study, we examined vitamin D signaling in mammospheres which are enriched in MCSCs from established breast cancer cell lines. Breast cancer cells positive for aldehyde dehydrogenase (ALDH(+)) had increased ability to form mammospheres compared to ALDH(-) cells. These mammospheres expressed MCSC-specific markers and generated transplantable xenografts in nude mice. Vitamin D receptor (VDR) was significantly down-regulated in mammospheres, as well as in ALDH(+) breast cancer cells. TN aggressive human breast tumors as well as transplantable xenografts obtained from SKBR3 expressed significantly lower levels of VDR but higher levels of CD44 expression. Snail was up-regulated in mammospheres isolated from breast cancer cells. Inhibition of VDR expression by siRNA led to a significant change in key EMT-specific transcription factors and increased the ability of these cells to form mammospheres. On the other hand, over-expression of VDR led to a down-regulation of Snail but increased expression of E-cad and significantly compromised the ability of cells to form mammospheres. Mammospheres were relatively insensitive to treatment with 1,25-dihydroxyvitamin D (1,25D), the active form of vitamin D, compared to more differentiated cancer cells grown in presence of serum. Treatment of H-Ras transformed HMLE(HRas) cells with DETA NONOate, a nitric oxide (NO)-donor led to induction of MAP-kinase phosphatase -1 (MKP-1) and dephosphorylation of ERK1/2 in the mammospheres. Combined treatment of these cells with 1,25D and a low-concentration of DETA NONOate led to a significant decrease in the overall size of mammospheres and reduced tumor volume in nude mice. Our findings therefore, suggest that combination therapy using 1,25D with drugs specifically targeting key survival pathways in MCSCs warrant testing in prospective

  16. Downregulation of catalase by reactive oxygen species via PI 3 kinase/Akt signaling in mesangial cells.

    Science.gov (United States)

    Venkatesan, Balachandar; Mahimainathan, Lenin; Das, Falguni; Ghosh-Choudhury, Nandini; Ghosh Choudhury, Goutam

    2007-05-01

    Reactive oxygen species (ROS) contribute to many glomerular diseases by targeting mesangial cells. ROS have been shown to regulate expression of many antioxidant enzymes including catalase. The mechanism by which the expression of catalase protein is regulated by ROS is not precisely known. Here we report that increased intracellular ROS level by hydrogen peroxide (H(2)O(2)) reduced the expression of catalase. H(2)O(2) increased phosphorylation of Akt kinase in a dose-dependent and sustained manner with a concomitant increase in the phosphorylation of FoxO1 transcription factor. Further analysis revealed that H(2)O(2) promoted rapid activation of phosphatidylinositol (PI) 3 kinase. The PI 3 kinase inhibitor Ly294002 and expression of tumor suppressor protein PTEN inhibited Akt kinase activity, resulting in the attenuation of FoxO1 phosphorylation and preventing the downregulating effect of H(2)O(2) on catalase protein level. Dominant negative Akt attenuated the inhibitory effect of H(2)O(2) on expression of catalase. Constitutively active FoxO1 increased the expression of catalase. However, dominant negative FoxO1 inhibited catalase protein level. Catalase transcription was reduced by H(2)O(2) treatment. Furthermore, expression of dominant negative Akt and constitutively active FoxO1 increased catalase transcription, respectively. These results demonstrate that ROS downregulate the expression of catalase in mesangial cells by PI 3 kinase/Akt signaling via FoxO1 as a target. (c) 2007 Wiley-Liss, Inc.

  17. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  18. Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis

    DEFF Research Database (Denmark)

    Wierzbicki, Mateusz; Sawosz, Ewa; Grodzik, Marta

    2013-01-01

    indices of the embryos' health. However, vascularization of the heart and the density of branched vessels were significantly reduced after treatment with diamond nanoparticles and, to a lesser extent, graphite nanoparticles. Application of nanoparticles significantly downregulated gene and protein......Carbon nanoparticles, with their high biocompatibility and low toxicity, have recently been considered for biomedical applications, including antiangiogenic therapy. Critical to normal development and tumor formation, angiogenesis is the process of forming capillary blood vessels from preexisting...... vessels. In the present study, we evaluated the effects of diamond and graphite nanoparticles on the development of chicken embryos, as well as vascularization of the chorioallantoic membrane and heart at the morphological and molecular level. Nanoparticles did not affect either body/heart weight or serum...

  19. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

    International Nuclear Information System (INIS)

    Pantano, Serafino; Jarrossay, David; Saccani, Simona; Bosisio, Daniela; Natoli, Gioacchino

    2006-01-01

    Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response

  20. Acidosis-induced downregulation of hepatocyte mitochondrial aquaporin-8 and ureagenesis from ammonia.

    Science.gov (United States)

    Molinas, Sara M; Soria, Leandro R; Marrone, Julieta; Danielli, Mauro; Trumper, Laura; Marinelli, Raúl A

    2015-08-01

    It has been proposed that, during metabolic acidosis, the liver downregulates mitochondrial ammonia detoxification via ureagenesis, a bicarbonate-consuming process. Since we previously demonstrated that hepatocyte mitochondrial aquaporin-8 channels (mtAQP8) facilitate the uptake of ammonia and its metabolism into urea, we studied whether mtAQP8 is involved in the liver adaptive response to acidosis. Primary cultured rat hepatocytes were adapted to acidosis by exposing them to culture medium at pH 7.0 for 40 h. Control cells were exposed to pH 7.4. Hepatocytes exposed to acid medium showed a decrease in mtAQP8 protein expression (-30%, p ammonia was assessed by incubating the cells with (15)N-labeled ammonia and measuring (15)N-labeled urea synthesis by nuclear magnetic resonance. Reduced ureagenesis was found in acidified hepatocytes (-31%, p ammonia in response to acidosis.

  1. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Science.gov (United States)

    Ke, Po-Yuan; Chen, Steve S-L

    2013-01-01

    So far how hepatitis C virus (HCV) replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS) protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp) infection and downregulated cell surface level of CD81, a critical HCV entry (co)receptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  2. Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension.

    Science.gov (United States)

    Potus, François; Ruffenach, Grégoire; Dahou, Abdellaziz; Thebault, Christophe; Breuils-Bonnet, Sandra; Tremblay, Ève; Nadeau, Valérie; Paradis, Renée; Graydon, Colin; Wong, Ryan; Johnson, Ian; Paulin, Roxane; Lajoie, Annie C; Perron, Jean; Charbonneau, Eric; Joubert, Philippe; Pibarot, Philippe; Michelakis, Evangelos D; Provencher, Steeve; Bonnet, Sébastien

    2015-09-08

    Right ventricular (RV) failure is the most important factor of both morbidity and mortality in pulmonary arterial hypertension (PAH). However, the underlying mechanisms resulting in the failed RV in PAH remain unknown. There is growing evidence that angiogenesis and microRNAs are involved in PAH-associated RV failure. We hypothesized that microRNA-126 (miR-126) downregulation decreases microvessel density and promotes the transition from a compensated to a decompensated RV in PAH. We studied RV free wall tissues from humans with normal RV (n=17), those with compensated RV hypertrophy (n=8), and patients with PAH with decompensated RV failure (n=14). Compared with RV tissues from patients with compensated RV hypertrophy, patients with decompensated RV failure had decreased miR-126 expression (quantitative reverse transcription-polymerase chain reaction; P<0.01) and capillary density (CD31(+) immunofluorescence; P<0.001), whereas left ventricular tissues were not affected. miR-126 downregulation was associated with increased Sprouty-related EVH1 domain-containing protein 1 (SPRED-1), leading to decreased activation of RAF (phosphorylated RAF/RAF) and mitogen-activated protein kinase (MAPK); (phosphorylated MAPK/MAPK), thus inhibiting the vascular endothelial growth factor pathway. In vitro, Matrigel assay showed that miR-126 upregulation increased angiogenesis of primary cultured endothelial cells from patients with decompensated RV failure. Furthermore, in vivo miR-126 upregulation (mimic intravenous injection) improved cardiac vascular density and function of monocrotaline-induced PAH animals. RV failure in PAH is associated with a specific molecular signature within the RV, contributing to a decrease in RV vascular density and promoting the progression to RV failure. More importantly, miR-126 upregulation in the RV improves microvessel density and RV function in experimental PAH. © 2015 American Heart Association, Inc.

  3. Active RNA replication of hepatitis C virus downregulates CD81 expression.

    Directory of Open Access Journals (Sweden)

    Po-Yuan Ke

    Full Text Available So far how hepatitis C virus (HCV replication modulates subsequent virus growth and propagation still remains largely unknown. Here we determine the impact of HCV replication status on the consequential virus growth by comparing normal and high levels of HCV RNA expression. We first engineered a full-length, HCV genotype 2a JFH1 genome containing a blasticidin-resistant cassette inserted at amino acid residue of 420 in nonstructural (NS protein 5A, which allowed selection of human hepatoma Huh7 cells stably-expressing HCV. Short-term establishment of HCV stable cells attained a highly-replicating status, judged by higher expressions of viral RNA and protein as well as higher titer of viral infectivity as opposed to cells harboring the same genome without selection. Interestingly, maintenance of highly-replicating HCV stable cells led to decreased susceptibility to HCV pseudotyped particle (HCVpp infection and downregulated cell surface level of CD81, a critical HCV entry (coreceptor. The decreased CD81 cell surface expression occurred through reduced total expression and cytoplasmic retention of CD81 within an endoplasmic reticulum -associated compartment. Moreover, productive viral RNA replication in cells harboring a JFH1 subgenomic replicon containing a similar blasticidin resistance gene cassette in NS5A and in cells robustly replicating full-length infectious genome also reduced permissiveness to HCVpp infection through decreasing the surface expression of CD81. The downregulation of CD81 surface level in HCV RNA highly-replicating cells thus interfered with reinfection and led to attenuated viral amplification. These findings together indicate that the HCV RNA replication status plays a crucial determinant in HCV growth by modulating the expression and intracellular localization of CD81.

  4. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847) as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    International Nuclear Information System (INIS)

    Karsono, Agung Heru; Tandrasasmita, Olivia Mayasari; Tjandrawinata, Raymond R

    2014-01-01

    DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC)-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR) pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway

  5. Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847 as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells

    Directory of Open Access Journals (Sweden)

    Karsono AH

    2014-06-01

    Full Text Available Agung Heru Karsono, Olivia Mayasari Tandrasasmita, Raymond R TjandrawinataSection of Molecular Pharmacology, Research Innovation and Invention, Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, IndonesiaAbstract: DLBS4847 is a standardized bioactive fraction of Curcuma mangga. In this study, we used prostate cancer (PC-3 as the cell line to study the effects of DLBS4847 on prostatic cell viability, as well as related molecular changes associated with the decreased cell number. The observation revealed that DLBS4847 inhibited the growth of PC3 cells through downregulation of the 5α-reductase (5AR pathway. At the transcription level, 5AR1 and androgen-receptor gene expressions were downregulated in a dose-dependent manner. Furthermore, 5AR-1 and dihydrotestosterone expression were also downregulated at the protein level. A microarray study was also performed to see the effects of DLBS4847 on differential gene expressions in prostate cancer 3 cells. Among others, DLBS4847 downregulated genes related to prostate growth and hypertrophy. Our results suggested that DLBS4847 could potentially become an alternative treatment for prostate disorders, such as benign prostatic hyperplasia. In this regard, DLBS4847 exerts its growth inhibition partially through downregulation of the 5AR pathway.Keywords: DLBS4847, Curcuma mangga, 5α-reductase inhibitor, benign prostatic hyperplasia (BPH, prostate cancer

  6. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax

    International Nuclear Information System (INIS)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-01-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion–induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo

  7. Oxidative Stress Induces Endothelial Cell Senescence via Downregulation of Sirt6

    Directory of Open Access Journals (Sweden)

    Rong Liu

    2014-01-01

    Full Text Available Accumulating evidence has shown that diabetes accelerates aging and endothelial cell senescence is involved in the pathogenesis of diabetic vascular complications, including diabetic retinopathy. Oxidative stress is recognized as a key factor in the induction of endothelial senescence and diabetic retinopathy. However, specific mechanisms involved in oxidative stress-induced endothelial senescence have not been elucidated. We hypothesized that Sirt6, which is a nuclear, chromatin-bound protein critically involved in many pathophysiologic processes such as aging and inflammation, may have a role in oxidative stress-induced vascular cell senescence. Measurement of Sirt6 expression in human endothelial cells revealed that H2O2 treatment significantly reduced Sirt6 protein. The loss of Sirt6 was associated with an induction of a senescence phenotype in endothelial cells, including decreased cell growth, proliferation and angiogenic ability, and increased expression of senescence-associated β-galactosidase activity. Additionally, H2O2 treatment reduced eNOS expression, enhanced p21 expression, and dephosphorylated (activated retinoblastoma (Rb protein. All of these alternations were attenuated by overexpression of Sirt6, while partial knockdown of Sirt6 expression by siRNA mimicked the effect of H2O2. In conclusion, these results suggest that Sirt6 is a critical regulator of endothelial senescence and oxidative stress-induced downregulation of Sirt6 is likely involved in the pathogenesis of diabetic retinopathy.

  8. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  9. Akt regulates drug-induced cell death through Bcl-w downregulation.

    Directory of Open Access Journals (Sweden)

    Michela Garofalo

    Full Text Available Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  10. Akt regulates drug-induced cell death through Bcl-w downregulation.

    Science.gov (United States)

    Garofalo, Michela; Quintavalle, Cristina; Zanca, Ciro; De Rienzo, Assunta; Romano, Giulia; Acunzo, Mario; Puca, Loredana; Incoronato, Mariarosaria; Croce, Carlo M; Condorelli, Gerolama

    2008-01-01

    Akt is a serine threonine kinase with a major role in transducing survival signals and regulating proteins involved in apoptosis. To find new interactors of Akt involved in cell survival, we performed a two-hybrid screening in yeast using human full-length Akt c-DNA as bait and a murine c-DNA library as prey. Among the 80 clones obtained, two were identified as Bcl-w. Bcl-w is a member of the Bcl-2 family that is essential for the regulation of cellular survival, and that is up-regulated in different human tumors, such as gastric and colorectal carcinomas. Direct interaction of Bcl-w with Akt was confirmed by immunoprecipitation assays. Subsequently, we addressed the function of this interaction: by interfering with the activity or amount of Akt, we have demonstrated that Akt modulates the amount of Bcl-w protein. We have found that inhibition of Akt activity may promote apoptosis through the downregulation of Bcl-w protein and the consequential reduction in interaction of Bcl-w with pro-apoptotic members of the Bcl-2 family. Our data provide evidence that Bcl-w is a new member of the Akt pathway and that Akt may induce anti-apoptotic signals at least in part through the regulation of the amount and activity of Bcl-w.

  11. ENA/VASP downregulation triggers cell death by impairing axonal maintenance in hippocampal neurons.

    Science.gov (United States)

    Franco, D Lorena; Rezával, Carolina; Cáceres, Alfredo; Schinder, Alejandro F; Ceriani, M Fernanda

    2010-06-01

    Neurodegenerative diseases encompass a broad variety of motor and cognitive disorders that are accompanied by death of specific neuronal populations or brain regions. Cellular and molecular mechanisms underlying these complex disorders remain largely unknown. In a previous work we searched for novel Drosophila genes relevant for neurodegeneration and singled out enabled (ena), which encodes a protein involved in cytoskeleton remodeling. To extend our understanding on the mechanisms of ENA-triggered degeneration we now investigated the effect of silencing ena ortholog genes in mouse hippocampal neurons. We found that ENA/VASP downregulation led to neurite retraction and concomitant neuronal cell death through an apoptotic pathway. Remarkably, this retraction initially affected the axonal structure, showing no effect on dendrites. Reduction in ENA/VASP levels blocked the neuritogenic effect of a specific RhoA kinase (ROCK) inhibitor, thus suggesting that these proteins could participate in the Rho-signaling pathway. Altogether these observations demonstrate that ENA/VASP proteins are implicated in the establishment and maintenance of the axonal structure and that a change on their expression levels triggers neuronal degeneration. 2010 Elsevier Inc. All rights reserved.

  12. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  13. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    International Nuclear Information System (INIS)

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-01-01

    In type 2 diabetes (T2DM) β-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 ± 3.8%) than ZF rats (48.8 ± 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 ± 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity

  14. Down-Regulation of Desmosomes in Cultured Cells: The Roles of PKC, Microtubules and Lysosomal/Proteasomal Degradation

    Science.gov (United States)

    McHarg, Selina; Hopkins, Gemma; Lim, Lusiana; Garrod, David

    2014-01-01

    Desmosomes are intercellular adhesive junctions of major importance for tissue integrity. To allow cell motility and migration they are down-regulated in epidermal wound healing. Electron microscopy indicates that whole desmosomes are internalised by cells in tissues, but the mechanism of down-regulation is unclear. In this paper we provide an overview of the internalisation of half-desmosomes by cultured cells induced by calcium chelation. Our results show that: (i) half desmosome internalisation is dependent on conventional PKC isoforms; (ii) microtubules transport internalised half desmosomes to the region of the centrosome by a kinesin-dependent mechanism; (iii) desmosomal proteins remain colocalised after internalisation and are not recycled to the cell surface; (iv) internalised desmosomes are degraded by the combined action of lysosomes and proteasomes. We also confirm that half desmosome internalisation is dependent upon the actin cytoskeleton. These results suggest that half desmosomes are not disassembled and recycled during or after internalisation but instead are transported to the centrosomal region where they are degraded. These findings may have significance for the down-regulation of desmosomes in wounds. PMID:25291180

  15. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization

    OpenAIRE

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals...

  16. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Chung, Young Chul [Department of Food Science and Culinary, International University of Korea, Jinju (Korea, Republic of); Jeong, Tae Cheon, E-mail: taecheon@ynu.ac.kr [College of Pharmacy, Yeungnam University, Gyeongsan (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2014-10-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression.

  17. Metformin suppresses CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating aryl hydrocarbon receptor expression

    International Nuclear Information System (INIS)

    Do, Minh Truong; Kim, Hyung Gyun; Tran, Thi Thu Phuong; Khanal, Tilak; Choi, Jae Ho; Chung, Young Chul; Jeong, Tae Cheon; Jeong, Hye Gwang

    2014-01-01

    Induction of cytochrome P450 (CYP) 1A1 and CYP1B1 by environmental xenobiotic chemicals or endogenous ligands through the activation of the aryl hydrocarbon receptor (AhR) has been implicated in a variety of cellular processes related to cancer, such as transformation and tumorigenesis. Here, we investigated the effects of the anti-diabetes drug metformin on expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and inducible conditions. Our results indicated that metformin down-regulated the expression of CYP1A1 and CYP1B1 in breast cancer cells under constitutive and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced conditions. Down-regulation of AhR expression was required for metformin-mediated decreases in CYP1A1 and CYP1B1 expression, and the metformin-mediated CYP1A1 and CYP1B1 reduction is irrelevant to estrogen receptor α (ERα) signaling. Furthermore, we found that metformin markedly down-regulated Sp1 protein levels in breast cancer cells. The use of genetic and pharmacological tools revealed that metformin-mediated down-regulation of AhR expression was mediated through the reduction of Sp1 protein. Metformin inhibited endogenous AhR ligand-induced CYP1A1 and CYP1B1 expression by suppressing tryptophan-2,3-dioxygenase (TDO) expression in MCF-7 cells. Finally, metformin inhibits TDO expression through a down-regulation of Sp1 and glucocorticoid receptor (GR) protein levels. Our findings demonstrate that metformin reduces CYP1A1 and CYP1B1 expression in breast cancer cells by down-regulating AhR signaling. Metformin would be able to act as a potential chemopreventive agent against CYP1A1 and CYP1B1-mediated carcinogenesis and development of cancer. - Graphical abstract: Schematic of the CYP1A1 and CYP1B1 gene regulation by metformin. - Highlights: • Metformin inhibits CYP1A1 and CYP1B1 expression. • Metformin down-regulates the AhR signaling. • Metformin reduces Sp1 protein expression. • Metformin suppresses TDO expression

  18. Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in high glucose treated human mesangial cells

    International Nuclear Information System (INIS)

    Li, Yang; Hu, Fang; Xue, Meng; Jia, Yi-Jie; Zheng, Zong-Ji; Wang, Ling; Guan, Mei-Ping; Xue, Yao-Ming

    2017-01-01

    Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1. However, whether Klotho down-regulates Egr-1 by inhibiting TGF-β1/Smad3 signaling in DKD is unclear. In the present study, we assessed human MCs that were incubated under high-glucose conditions to mimic diabetes. Then, we transfected the cells with Klotho plasmid or siRNA to overexpress or knock down Klotho gene and protein expression. Klotho, Egr-1, fibronectin (FN), collagen type I (Col I), Smad3 and phosphorylated Smad3 (p-Smad3) gene and protein expression levels were determined by RT-qPCR and western blotting respectively. High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. pcDNA3.1-Klotho transfection-mediated Klotho overexpression down-regulated Egr-1, FN and Col I expression and the p-Smad3/Smad3 ratio in human MCs. Conversely, siRNA-mediated Klotho silencing up-regulated Egr-1, FN, and Col I expression and the p-Smad3/Smad3 ratio. Moreover, the effects of si-Klotho on Egr-1 expression were abolished by the TGF-β1 inhibitor SB-431542. Klotho overexpression can prevent mesangial ECM production in high-glucose-treated human MCs, an effect that has been partially attributed to Egr-1 down-regulation facilitated by TGF-β1/Smad3 signaling inhibition. - Highlights: • High glucose time-dependently down-regulated Klotho mRNA and protein expression in cultured human MCs. • Klotho overexpression down-regulated Egr-1 and prevented mesangial ECM production in high-glucose-treated human MCs. • Klotho down-regulated Egr-1 by inhibiting

  19. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death.

    Science.gov (United States)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M T; Formisano, Luigi

    2015-11-01

    Resveratrol (3,5,4'-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Ufmylation and FATylation pathways are downregulated in human alcoholic and nonalcoholic steatohepatitis, and mice fed DDC, where Mallory-Denk bodies (MDBs) form.

    Science.gov (United States)

    Liu, H; Li, J; Tillman, B; French, B A; French, S W

    2014-08-01

    We previously reported the mechanisms involved in the formation of Mallory-Denk bodies (MDBs) in mice fed DDC. To further provide clinical evidence as to how ubiquitin-like protein (Ubls) modification, gene transcript expression in Ufmylation and FATylation were investigated in human archived formalin-fixed, paraffin-embedded (FFPE) liver biopsies and frozen liver sections from DDC re-fed mice were used. Real-time PCR analysis showed that all Ufmylation molecules (Ufm1, Uba5, Ufc1, Ufl1 and UfSPs) were significantly downregulated, both in DDC re-fed mice livers and patients' livers where MDBs had formed, indicating that gene transcript changes were limited to MDB-forming livers where the protein quality control system was downregulated. FAT10 and subunits of the immunoproteasome (LMP2 and LMP7) were both upregulated as previously shown. An approximate 176- and 5-fold upregulation (respectively) of FAT10 was observed in the DDC re-fed mice liver and in the livers of human alcoholic hepatitis with MDBs present, implying that there was an important role played by this gene. The FAT10-specific E1 and E2 enzymes Uba6 and USE1, however, were found to be downregulated both in patients' livers and in the liver of DDC re-fed mice. Interestedly, the downregulation of mRNA levels was proportionate to MDB abundance in the liver tissues. Our results show the first systematic demonstration of transcript regulation of Ufmylation and FATylation in the liver of patients who form MDBs, where protein quality control is downregulated. This was also shown in the livers of DDC re-fed mice where MDBs had formed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy.

    Directory of Open Access Journals (Sweden)

    Protim Sarker

    Full Text Available BACKGROUND: Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18 in the large intestinal epithelia. AIMS: To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB, a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. METHODS: The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR and release of the CAP-18 peptide/protein in stool (Western blot. PRINCIPAL FINDINGS: Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. CONCLUSION: Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from

  2. Phenylbutyrate counteracts Shigella mediated downregulation of cathelicidin in rabbit lung and intestinal epithelia: a potential therapeutic strategy.

    Science.gov (United States)

    Sarker, Protim; Ahmed, Sultan; Tiash, Snigdha; Rekha, Rokeya Sultana; Stromberg, Roger; Andersson, Jan; Bergman, Peter; Gudmundsson, Gudmundur H; Agerberth, Birgitta; Raqib, Rubhana

    2011-01-01

    Cathelicidins and defensins are endogenous antimicrobial peptides (AMPs) that are downregulated in the mucosal epithelia of the large intestine in shigellosis. Oral treatment of Shigella infected rabbits with sodium butyrate (NaB) reduces clinical severity and counteracts the downregulation of cathelicidin (CAP-18) in the large intestinal epithelia. To develop novel regimen for treating infectious diseases by inducing innate immunity, we selected sodium 4-phenylbutyrate (PB), a registered drug for a metabolic disorder as a potential therapeutic candidate in a rabbit model of shigellosis. Since acute respiratory infections often cause secondary complications during shigellosis, the systemic effect of PB and NaB on CAP-18 expression in respiratory epithelia was also evaluated. The readouts were clinical outcomes, CAP-18 expression in mucosa of colon, rectum, lung and trachea (immunohistochemistry and real-time PCR) and release of the CAP-18 peptide/protein in stool (Western blot). Significant downregulation of CAP-18 expression in the epithelia of rectum and colon, the site of Shigella infection was confirmed. Interestingly, reduced expression of CAP-18 was also noticed in the epithelia of lung and trachea, indicating a systemic effect of the infection. This suggests a causative link to acute respiratory infections during shigellosis. Oral treatment with PB resulted in reduced clinical illness and upregulation of CAP-18 in the epithelium of rectum. Both PB and NaB counteracted the downregulation of CAP-18 in lung epithelium. The drug effect is suggested to be systemic as intravenous administration of NaB could also upregulate CAP-18 in the epithelia of lung, rectum and colon. Our results suggest that PB has treatment potential in human shigellosis. Enhancement of CAP-18 in the mucosal epithelia of the respiratory tract by PB or NaB is a novel discovery. This could mediate protection from secondary respiratory infections that frequently are the lethal causes in

  3. Down-regulated miR-448 relieves spinal cord ischemia/reperfusion injury by up-regulating SIRT1

    Directory of Open Access Journals (Sweden)

    Yun Wang

    2018-03-01

    Full Text Available MicroRNAs play a crucial role in the progression of spinal cord ischemia/reperfusion injury (SCII. The role of miR-448 and SIRT1 in SCII was investigated in this study, to provide further insights into prevention and improvement of this disorder. In this study, expressions of miR-448 and SIRT1 protein were determined by qRT-PCR and western blot, respectively. Flow cytometry was used to analyze cell apoptosis. The endogenous expression of genes was modulated by recombinant plasmids and cell transfection. Dual-luciferase reporter assay was performed to determine the interaction between miR-448 and SIRT1. The Basso, Beattie, and Bresnahan score was used to measure the hind-limb function of rat. The spinal cord ischemia reperfusion injury model of adult rats was developed by abdominal aorta clamping, and the nerve function evaluation was completed by motor deficit index score. In SCII tissues and cells treated with hypoxia, miR-448 was up-regulated while SIRT1 was down-regulated. Hypoxia treatment reduced the expression of SIRT1 through up-regulating miR-448 in nerve cells. Up-regulation of miR-448 induced by hypoxia promoted apoptosis of nerve cells through down-regulating SIRT1. Down-regulated miR-448 improved neurological function and hind-limb motor function of rats with SCII by up-regulating SIRT1. Down-regulated miR-448 inhibited apoptosis of nerve cells and improved neurological function by up-regulating SIRT1, which contributes to relieving SCII.

  4. Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer

    Science.gov (United States)

    Brighenti, E; Calabrese, C; Liguori, G; Giannone, F A; Trerè, D; Montanaro, L; Derenzini, M

    2014-01-01

    Chronic inflammation is an established risk factor for the onset of cancer, and the inflammatory cytokine IL-6 has a role in tumorigenesis by enhancing proliferation and hindering apoptosis. As factors stimulating proliferation also downregulate p53 expression by enhancing ribosome biogenesis, we hypothesized that IL-6 may cause similar changes in inflamed tissues, thus activating a mechanism that favors neoplastic transformation. Here, we showed that IL-6 downregulated the expression and activity of p53 in transformed and untransformed human cell lines. This was the consequence of IL-6-dependent stimulation of c-MYC mRNA translation, which was responsible for the upregulation of rRNA transcription. The enhanced rRNA transcription stimulated the MDM2-mediated proteasomal degradation of p53, by reducing the availability of ribosome proteins for MDM2 binding. The p53 downregulation induced the acquisition of cellular phenotypic changes characteristic of epithelial–mesenchymal transition, such as a reduced level of E-cadherin expression, increased cell invasiveness and a decreased response to cytotoxic stresses. We found that these changes also occurred in colon epithelial cells of patients with ulcerative colitis, a very representative example of chronic inflammation at high risk for tumor development. Histochemical and immunohistochemical analysis of colon biopsy samples showed an upregulation of ribosome biogenesis, a reduced expression of p53, together with a focal reduction or absence of E-cadherin expression in chronic colitis in comparison with normal mucosa samples. These changes disappeared after treatment with anti-inflammatory drugs. Taken together, the present results highlight a new mechanism that may link chronic inflammation to cancer, based on p53 downregulation, which is activated by the enhancement of rRNA transcription upon IL-6 exposure. PMID:24531714

  5. Insulin-like growth factor I reduces lipid oxidation and foam cell formation via downregulation of 12/15-lipoxygenase.

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2015-02-01

    We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe(-/-) mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe(-/-) mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. Published by Elsevier Ireland Ltd.

  6. Insulin-like Growth Factor I Reduces Lipid Oxidation and Foam Cell Formation via Downregulation of 12/15-lipoxygenase

    Science.gov (United States)

    Sukhanov, Sergiy; Snarski, Patricia; Vaughn, Charlotte; Lobelle-Rich, Patricia; Kim, Catherine; Higashi, Yusuke; Shai, Shaw-Yung; Delafontaine, Patrice

    2014-01-01

    Objective We have shown that insulin-like growth factor I (IGF-1) infusion in Apoe−/− mice decreased atherosclerotic plaque size and plaque macrophage and lipid content suggesting that IGF-1 suppressed formation of macrophage-derived foam cells. Since 12/15-lipoxygenase (12/15-LOX) plays an important role in OxLDL and foam cell formation, we hypothesized that IGF-1 downregulates 12/15-LOX, thereby suppressing lipid oxidation and foam cell formation. Approach and Results We found that IGF-1 decreased 12/15-LOX plaque immunopositivity and serum OxLDL levels in Apoe−/− mice. IGF-1 reduced 12/15-LOX protein and mRNA levels in cultured THP-1 macrophages and IGF-1 also decreased expression of STAT6 transcription factor. IGF-1 reduction in macrophage 12/15-LOX was mediated in part via a PI3 kinase- and STAT6-dependent transcriptional mechanism. IGF-1 suppressed THP-1 macrophage ability to oxidize lipids and form foam cells. IGF-1 downregulated 12/15-LOX in human blood-derived primary macrophages and IGF-1 decreased LDL oxidation induced by these cells. IGF-1 reduced LDL oxidation and formation of foam cells by wild type murine peritoneal macrophages, however these effects were completely blocked in 12/15-LOX-null macrophages suggesting that the ability of IGF-1 to reduce LDL oxidation and foam cells formation is dependent on its ability to downregulate 12/15-LOX. Conclusions Overall our data demonstrate that IGF-1 reduces lipid oxidation and foam cell formation via downregulation of 12/15-LOX and this mechanism may play a major role in the anti-atherosclerotic effects of IGF-1. PMID:25549319

  7. Chronic ethanol exposure downregulates hepatic expression of pregnane X receptor and P450 3A11 in female ICR mice

    International Nuclear Information System (INIS)

    Wang Jianping; Xu Dexiang; Sun Meifang; Chen Yuanhua; Wang Hua; Wei Wei

    2005-01-01

    Pregnane X receptor (PXR) is a nuclear receptor that regulates cytochrome P450 3A (CYP3A) gene transcription in a ligand-dependent manner. Ethanol has been reported to be either an inducer or an inhibitor of CYP3A expression. In this study, we investigated the effects of chronic ethanol exposure on PXR and P450 3A11 gene expression in mouse liver. Female ICR mice were administered by gavage with different doses (1000, 2000 and 4000 mg/kg) of ethanol for up to 5 weeks. Hepatic PXR and P450 3A11 mRNA levels were measured using RT-PCR. Erythromycin N-demethylase (ERND) activity was used as an indicator of CYP3A protein expression. Results showed that chronic ethanol exposure markedly decreased hepatic PXR and P450 3A11 mRNA levels. Consistent with downregulation of P450 3A11 mRNA, chronic ethanol exposure significantly decreased ERND activity in a dose-dependent manner. Additional experiment showed that chronic ethanol exposure significantly increased plasma endotoxin level and hepatic CD14 and TLR-4 mRNA expression, all of which were blocked by elimination of Gram-negative bacteria and endotoxin with antibiotics. Correspondingly, pretreatment with antibiotics reversed the downregulation of PXR and P450 3A11 mRNA expression and ERND activity in mouse liver. Furthermore, the downregulation of hepatic PXR and P450 3A11 mRNA expression was significantly attenuated in mice pretreated with GdCl 3 , a selective Kupffer cell toxicant. GdCl 3 pretreatment also significantly attenuated chronically ethanol-induced decrease in ERND activity. These results indicated that activation of Kupffer cells by gut-derived endotoxin contributes to downregulation of hepatic PXR and P450 3A11 expression during chronic alcohol intoxication

  8. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Li, Yuexia; Li, Xiaohui; Liu, Gang; Sun, Rongqing; Wang, Lirui; Wang, Jing; Wang, Hongmin

    2015-01-01

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression

  9. Human cytomegalovirus IE1 downregulates Hes1 in neural progenitor cells as a potential E3 ubiquitin ligase.

    Directory of Open Access Journals (Sweden)

    Xi-Juan Liu

    2017-07-01

    Full Text Available Congenital human cytomegalovirus (HCMV infection is the leading cause of neurological disabilities in children worldwide, but the mechanisms underlying these disorders are far from well-defined. HCMV infection has been shown to dysregulate the Notch signaling pathway in human neural progenitor cells (NPCs. As an important downstream effector of Notch signaling, the transcriptional regulator Hairy and Enhancer of Split 1 (Hes1 is essential for governing NPC fate and fetal brain development. In the present study, we report that HCMV infection downregulates Hes1 protein levels in infected NPCs. The HCMV 72-kDa immediate-early 1 protein (IE1 is involved in Hes1 degradation by assembling a ubiquitination complex and promoting Hes1 ubiquitination as a potential E3 ubiquitin ligase, followed by proteasomal degradation of Hes1. Sp100A, an important component of PML nuclear bodies, is identified to be another target of IE1-mediated ubiquitination. A C-terminal acidic region in IE1, spanning amino acids 451 to 475, is required for IE1/Hes1 physical interaction and IE1-mediated Hes1 ubiquitination, but is dispensable for IE1/Sp100A interaction and ubiquitination. Our study suggests a novel mechanism linking downregulation of Hes1 protein to neurodevelopmental disorders caused by HCMV infection. Our findings also complement the current knowledge of herpesviruses by identifying IE1 as the first potential HCMV-encoded E3 ubiquitin ligase.

  10. Downregulated TIPE2 is associated with poor prognosis and promotes cell proliferation in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuexia [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Li, Xiaohui [Department of Cardiovascular Surgery, Henan Provincial People’s Hospital, Zhengzhou, Henan 450003 (China); Liu, Gang; Sun, Rongqing; Wang, Lirui [Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Jing, E-mail: jing_wang1980@163.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China); Wang, Hongmin, E-mail: hmwangzz@126.com [Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052 (China)

    2015-01-30

    Highlights: • TIPE2 is down-regulated in NSCLC tissues. • TIPE2 inhibits NSCLC cell proliferation, colony formation and invasion. • TIPE2 reduces the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. - Abstract: The present study aims to investigate the expression pattern of TIPE2 protein and its clinical significance in human non-small cell lung cancer (NSCLC). We investigated the expression levels of TIPE2 in 96 NSCLC tumor samples by immunohistochemistry and then analyzed its clinical significance. Furthermore, the role of TIPE2 on the biological properties of the NSCLC cell line H1299 and A549 was experimentally tested in vitro and in vivo. We found that the expression level of TIPE2 was significantly higher in normal lung tissues compared with NSCLC tissues (P < 0.001), and TIPE2 downregulation was significantly correlated with advanced TNM stage (P = 0.006). TIPE2 expression was lower in lung cancer cell lines than normal bronchial cell line HBE. Transfection of TIPE2 plasmid was performed in H1299 and A549 cells. TIPE2 overexpression inhibited lung cancer cell proliferation, colony formation and cell invasive in vitro, and prevented lung tumor growth in vivo. In addition, TIPE2 transfection reduced the anti-apoptotic Bcl-XL protein and mesenchymal marker N-cadherin expression. Taken together, our results demonstrate that TIPE2 might serve as a tumor suppressor in NSCLC progression.

  11. Human rotavirus strain Wa downregulates NHE1 and NHE6 expressions in rotavirus-infected Caco-2 cells.

    Science.gov (United States)

    Chen, Honglang; Song, Lijun; Li, Guixian; Chen, Wenfeng; Zhao, Shumin; Zhou, Ruoxia; Shi, Xiaoying; Peng, Zhenying; Zhao, Wenchang

    2017-06-01

    Rotavirus (RV) is the most common cause of severe gastroenteritis and fatal dehydration in human infants and neonates of different species. However, the pathogenesis of rotavirus-induced diarrhea is poorly understood. Secretory diarrhea caused by rotavirus may lead to a combination of excessive secretion of fluid and electrolytes into the intestinal lumen. Fluid absorption in the small intestine is driven by Na + -coupled transport mechanisms at the luminal membrane, including Na + /H + exchanger (NHE). Here, we performed qRT-PCR to detect the transcription of NHEs. Western blotting was employed for protein detection. Furthermore, immunocytochemistry was used to validate the NHE's protein expression. Finally, intracellular Ca 2+ concentration was detected by confocal laser scanning microscopy. The results demonstrated that the NHE6 mRNA and protein expressed in the human colon adenocarcinoma cell line (Caco-2). Furthermore, RV-Wa induced decreased expression of the NHE1 and NHE6 in Caco-2 cell in a time-dependent manner. In addition, intracellular Ca 2+ concentration in RV-Wa-infected Caco-2 cells was higher than that in the mock-infected cells. Furthermore, RV-Wa also can downregulate the expression of calmodulin (CaM) and calmodulin kinase II (CaMKII) in Caco-2 cells. These findings provides important insights into the mechanisms of rotavirus-induced diarrhea. Further studies on the underlying pathophysiological mechanisms that downregulate NHEs in RV-induced diarrhea are required.

  12. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on.

    Science.gov (United States)

    Bergö, Martin; Wu, Gengshu; Ruge, Toralph; Olivecrona, Thomas

    2002-04-05

    During short term fasting, lipoprotein lipase (LPL) activity in rat adipose tissue is rapidly down-regulated. This down-regulation occurs on a posttranslational level; it is not accompanied by changes in LPL mRNA or protein levels. The LPL activity can be restored within 4 h by refeeding. Previously, we showed that during fasting there is a shift in the distribution of lipase protein toward an inactive form with low heparin affinity. To study the nature of the regulatory mechanism, we determined the in vivo turnover of LPL activity, protein mass, and mRNA in rat adipose tissue. When protein synthesis was inhibited with cycloheximide, LPL activity and protein mass decreased rapidly and in parallel with half-lives of around 2 h, and the effect of refeeding was blocked. This indicates that maintaining high levels of LPL activity requires continuous synthesis of new enzyme protein. When transcription was inhibited by actinomycin, LPL mRNA decreased with half-lives of 13.3 and 16.8 h in the fed and fasted states, respectively, demonstrating slow turnover of the LPL transcript. Surprisingly, when actinomycin was given to fed rats, LPL activity was not down-regulated during fasting, indicating that actinomycin interferes with the transcription of a gene that blocks the activation of newly synthesized LPL protein. When actinomycin was given to fasted rats, LPL activity increased 4-fold within 6 h, even in the absence of refeeding. The same effect was seen with alpha-amanitin, another inhibitor of transcription. The response to actinomycin was much less pronounced in aging rats, which are obese and insulin-resistant. These data suggest a default state where LPL protein is synthesized on a relatively stable mRNA and is processed into its active form. During fasting, a gene is switched on whose product prevents the enzyme from becoming active even though synthesis of LPL protein continues unabated.

  13. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    Energy Technology Data Exchange (ETDEWEB)

    Guida, Natascia [IRCSS SDN, Naples 80131 (Italy); Laudati, Giusy [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Anzilotti, Serenella [IRCSS SDN, Naples 80131 (Italy); Secondo, Agnese [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Montuori, Paolo [Department of Public Health, ‘Federico II’ University of Naples, Naples (Italy); Di Renzo, Gianfranco [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Canzoniero, Lorella M.T. [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy); Formisano, Luigi, E-mail: cformisa@unisannio.it [Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples (Italy); Division of Pharmacology, Department of Science and Technology, University of Sannio, Via Port' Arsa 11, 82100 Benevento (Italy)

    2015-11-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  14. Resveratrol via sirtuin-1 downregulates RE1-silencing transcription factor (REST) expression preventing PCB-95-induced neuronal cell death

    International Nuclear Information System (INIS)

    Guida, Natascia; Laudati, Giusy; Anzilotti, Serenella; Secondo, Agnese; Montuori, Paolo; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2015-01-01

    Resveratrol (3,5,4′-trihydroxystilbene) (RSV), a polyphenol widely present in plants, exerts a neuroprotective function in several neurological conditions; it is an activator of class III histone deacetylase sirtuin1 (SIRT1), a crucial regulator in the pathophysiology of neurodegenerative diseases. By contrast, the RE1-silencing transcription factor (REST) is involved in the neurotoxic effects following exposure to polychlorinated biphenyl (PCB) mixture A1254. The present study investigated the effects of RSV-induced activation of SIRT1 on REST expression in SH-SY5Y cells. Further, we investigated the possible relationship between the non-dioxin-like (NDL) PCB-95 and REST through SIRT1 to regulate neuronal death in rat cortical neurons. Our results revealed that RSV significantly decreased REST gene and protein levels in a dose- and time-dependent manner. Interestingly, overexpression of SIRT1 reduced REST expression, whereas EX-527, an inhibitor of SIRT1, increased REST expression and blocked RSV-induced REST downregulation. These results suggest that RSV downregulates REST through SIRT1. In addition, RSV enhanced activator protein 1 (AP-1) transcription factor c-Jun expression and its binding to the REST promoter gene. Indeed, c-Jun knockdown reverted RSV-induced REST downregulation. Intriguingly, in SH-SY5Y cells and rat cortical neurons the NDL PCB-95 induced necrotic cell death in a concentration-dependent manner by increasing REST mRNA and protein expression. In addition, SIRT1 knockdown blocked RSV-induced neuroprotection in rat cortical neurons treated with PCB-95. Collectively, these results indicate that RSV via SIRT1 activates c-Jun, thereby reducing REST expression in SH-SY5Y cells under physiological conditions and blocks PCB-95-induced neuronal cell death by activating the same SIRT1/c-Jun/REST pathway. - Highlights: • Resveratrol via SIRT1/c-Jun downregulates REST mRNA and protein in SH-SY5Y cells. • Non-dioxin-like (NDL) PCB-95 is cytotoxic to

  15. Spontaneous Physical Activity Downregulates Pax7 in Cancer Cachexia

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2016-01-01

    Full Text Available Emerging evidence suggests that the muscle microenvironment plays a prominent role in cancer cachexia. We recently showed that NF-kB-induced Pax7 overexpression impairs the myogenic potential of muscle precursors in cachectic mice, suggesting that lowering Pax7 expression may be beneficial in cancer cachexia. We evaluated the muscle regenerative potential after acute injury in C26 colon carcinoma tumor-bearing mice and healthy controls. Our analyses confirmed that the delayed muscle regeneration observed in muscles form tumor-bearing mice was associated with a persistent local inflammation and Pax7 overexpression. Physical activity is known to exert positive effects on cachectic muscles. However, the mechanism by which a moderate voluntary exercise ameliorates muscle wasting is not fully elucidated. To verify if physical activity affects Pax7 expression, we hosted control and C26-bearing mice in wheel-equipped cages and we found that voluntary wheel running downregulated Pax7 expression in muscles from tumor-bearing mice. As expected, downregulation of Pax7 expression was associated with a rescue of muscle mass and fiber size. Our findings shed light on the molecular basis of the beneficial effect exerted by a moderate physical exercise on muscle stem cells in cancer cachexia. Furthermore, we propose voluntary exercise as a physiological tool to counteract the overexpression of Pax7 observed in cancer cachexia.

  16. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53.

    Science.gov (United States)

    Shan, Han; Bian, Yaqi; Shu, Zhaoma; Zhang, Linxia; Zhu, Jialei; Ding, Jianhua; Lu, Ming; Xiao, Ming; Hu, Gang

    2016-08-01

    Fluoxetine, a selective serotonin reuptake inhibitor, exerts neuroprotective effects in a variety of neurological diseases including stroke, but the underlying mechanism remains obscure. In the present study, we addressed the molecular events in fluoxetine against ischemia/reperfusion-induced acute neuronal injury and inflammation-induced neuronal apoptosis. We showed that treatment of fluoxetine (40 mg/kg, i.p.) with twice injections at 1 h and 12 h after transient middle cerebral artery occlusion (tMCAO) respectively alleviated neurological deficits and neuronal apoptosis in a mouse ischemic stroke model, accompanied by inhibiting interleukin-1β (IL-1β), Bax and p53 expression and upregulating anti-apoptotic protein Bcl-2 level. We next mimicked neuroinflammation in ischemic stroke with IL-1β in primary cultured cortical neurons and found that pretreatment with fluoxetine (1 μM) prevented IL-1β-induced neuronal apoptosis and upregulation of p53 expression. Furthermore, we demonstrated that p53 overexpression in N2a cell line abolished the anti-apoptotic effect of fluoxetine, indicating that p53 downregulation is required for the protective role of fluoxetine in IL-1β-induced neuronal apoptosis. Fluoxetine downregulating p53 expression could be mimicked by SB203580, a specific inhibitor of p38, but blocked by anisomycin, a p38 activator. Collectively, our findings have revealed that fluoxetine protects against IL-1β-induced neuronal apoptosis via p38-p53 dependent pathway, which give us an insight into the potential of fluoxetine in terms of opening up novel therapeutic avenues for neurological diseases including stroke. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Jin [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wang, Ying [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Su, Ke [Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Liu, Min [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Hu, Peng-Chao [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Ma, Tian; Li, Jia-Xi [Ministry of Education Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Science, Wuhan University, Wuhan 430071 (China); Wei, Lei [Department of Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Zheng, Zhongliang, E-mail: biochem@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072 (China); Yang, Fang, E-mail: fang-yang@whu.edu.cn [Department of Physiology, School of Medicine, Wuhan University, Wuhan 430071 (China)

    2014-10-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER.

  18. Ritonavir binds to and downregulates estrogen receptors: Molecular mechanism of promoting early atherosclerosis

    International Nuclear Information System (INIS)

    Xiang, Jin; Wang, Ying; Su, Ke; Liu, Min; Hu, Peng-Chao; Ma, Tian; Li, Jia-Xi; Wei, Lei; Zheng, Zhongliang; Yang, Fang

    2014-01-01

    Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis. - Graphical abstract: RTV directly binds to ERα and Leu536 in the hydrophobic core of ligand binding domain is essential for the interaction. - Highlights: • RTV increases the thickness of rat coronary artery wall and foam cell formation. • RTV downregulates the expression of ERα and ERβ. • RTV inhibits ERα promoter activity. • RTV directly binds to ERα and the key amino acid is Leu536. • RTV inhibits the nuclear translocation of ERα and GPER

  19. Frequent down-regulation of ABC transporter genes in prostate cancer.

    Science.gov (United States)

    Demidenko, Rita; Razanauskas, Deividas; Daniunaite, Kristina; Lazutka, Juozas Rimantas; Jankevicius, Feliksas; Jarmalaite, Sonata

    2015-10-12

    ATP-binding cassette (ABC) transporters are transmembrane proteins responsible for the efflux of a wide variety of substrates, including steroid metabolites, through the cellular membranes. For better characterization of the role of ABC transporters in prostate cancer (PCa) development, the profile of ABC transporter gene expression was analyzed in PCa and noncancerous prostate tissues (NPT). TaqMan Low Density Array (TLDA) human ABC transporter plates were used for the gene expression profiling in 10 PCa and 6 NPT specimens. ABCB1 transcript level was evaluated in a larger set of PCa cases (N = 78) and NPT (N = 15) by real-time PCR, the same PCa cases were assessed for the gene promoter hypermethylation by methylation-specific PCR. Expression of eight ABC transporter genes (ABCA8, ABCB1, ABCC6, ABCC9, ABCC10, ABCD2, ABCG2, and ABCG4) was significantly down-regulated in PCa as compared to NPT, and only two genes (ABCC4 and ABCG1) were up-regulated. Down-regulation of ABC transporter genes was prevalent in the TMPRSS2-ERG-negative cases. A detailed analysis of ABCB1 expression confirmed TLDA results: a reduced level of the transcript was identified in PCa in comparison to NPT (p = 0.048). Moreover, the TMPRSS2-ERG-negative PCa cases showed significantly lower expression of ABCB1 in comparison to NPT (p = 0.003) or the fusion-positive tumors (p = 0.002). Promoter methylation of ABCB1 predominantly occurred in PCa and was rarely detected in NPT (p ABC transporter genes in PCa, especially in the TMPRSS2-ERG-negative tumors.

  20. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  1. MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-01-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor–α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α–positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer. PMID:25822021

  2. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  3. Use of bacterially expressed dsRNA to downregulate Entamoeba histolytica gene expression.

    Directory of Open Access Journals (Sweden)

    Carlos F Solis

    Full Text Available BACKGROUND: Modern RNA interference (RNAi methodologies using small interfering RNA (siRNA oligonucleotide duplexes or episomally synthesized hairpin RNA are valuable tools for the analysis of gene function in the protozoan parasite Entamoeba histolytica. However, these approaches still require time-consuming procedures including transfection and drug selection, or costly synthetic molecules. PRINCIPAL FINDINGS: Here we report an efficient and handy alternative for E. histolytica gene down-regulation mediated by bacterial double-stranded RNA (dsRNA targeting parasite genes. The Escherichia coli strain HT115 which is unable to degrade dsRNA, was genetically engineered to produce high quantities of long dsRNA segments targeting the genes that encode E. histolytica beta-tubulin and virulence factor KERP1. Trophozoites cultured in vitro were directly fed with dsRNA-expressing bacteria or soaked with purified dsRNA. Both dsRNA delivery methods resulted in significant reduction of protein expression. In vitro host cell-parasite assays showed that efficient downregulation of kerp1 gene expression mediated by bacterial dsRNA resulted in significant reduction of parasite adhesion and lytic capabilities, thus supporting a major role for KERP1 in the pathogenic process. Furthermore, treatment of trophozoites cultured in microtiter plates, with a repertoire of eighty-five distinct bacterial dsRNA segments targeting E. histolytica genes with unknown function, led to the identification of three genes potentially involved in the growth of the parasite. CONCLUSIONS: Our results showed that the use of bacterial dsRNA is a powerful method for the study of gene function in E. histolytica. This dsRNA delivery method is also technically suitable for the study of a large number of genes, thus opening interesting perspectives for the identification of novel drug and vaccine targets.

  4. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer.

    LENUS (Irish Health Repository)

    Gulmann, Christian

    2009-08-01

    Mitogen-activated protein kinases (MAPK) are considered to play significant roles in colonic carcinogenesis and kinase inhibitor therapy has been proposed as a potential tool in the treatment of this disease. Reverse-phase microarray assays using phospho-specific antibodies can directly measure levels of phosphorylated protein isoforms. In the current study, samples from 35 cases of untreated colorectal cancer colectomies were laser capture-microdissected to isolate epithelium and stroma from cancer as well as normal (i.e. uninvolved) mucosa. Lysates generated from these four tissue types were spotted onto reverse-phase protein microarrays and probed with a panel of antibodies to ERK, p-ERK, p38, p-p38, p-JNK, MEK and p-MEK. Whereas total protein levels were unchanged, or slightly elevated (p38, p = 0.0025) in cancers, activated isoforms, including p-ERK, p-p38 and p-JNK, were decreased two- to four-fold in cancers compared with uninvolved mucosa (p < 0.0023 in all cases except for p-JNK in epithelium, where decrement was non-significant). This was backed up by western blotting. Dukes\\' stage B and C cancers displayed lower p-ERK and p-p38 expression than Dukes\\' stage A cancers, although this was not statistically significant. It is concluded that MAPK activity may be down-regulated in colorectal cancer and that further exploration of inhibitory therapy in this system should be carefully evaluated if this finding is confirmed in larger series.

  5. Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level.

    Directory of Open Access Journals (Sweden)

    Xiao-Jun Wang

    Full Text Available The transcription factor Nrf2 is the master regulator of a cellular defense mechanism against environmental insults. The Nrf2-mediated antioxidant response is accomplished by the transcription of a battery of genes that encode phase II detoxifying enzymes, xenobiotic transporters, and antioxidants. Coordinated expression of these genes is critical in protecting cells from toxic and carcinogenic insults and in maintaining cellular redox homeostasis. Activation of the Nrf2 pathway is primarily controlled by Kelch-like ECH-associated protein 1 (Keap1, which is a molecular switch that turns on or off the Nrf2 signaling pathway according to intracellular redox conditions. Here we report our finding of a novel Nrf2 suppressor ectodermal-neural cortex 1 (ENC1, which is a BTB-Kelch protein and belongs to the same family as Keap1. Transient expression of ENC1 reduced steady-state levels of Nrf2 and its downstream gene expression. Although ENC1 interacted with Keap1 indirectly, the ENC1-mediated down-regulation of Nrf2 was independent of Keap1. The negative effect of ENC1 on Nrf2 was not due to a change in the stability of Nrf2 because neither proteasomal nor lysosomal inhibitors had any effects. Overexpression of ENC1 did not result in a change in the level of Nrf2 mRNA, rather, it caused a decrease in the rate of Nrf2 protein synthesis. These results demonstrate that ENC1 functions as a negative regulator of Nrf2 through suppressing Nrf2 protein translation, which adds another level of complexity in controlling the Nrf2 signaling pathway.

  6. Beclin 1 overexpression inhibits chondrocyte apoptosis and downregulates extracellular matrix metabolism in osteoarthritis.

    Science.gov (United States)

    Song, Bin; Song, Hong; Wang, Weiguo; Wang, Hongru; Peng, Hanyuan; Cui, Jing; Wang, Rong; Huang, Hua; Wang, Wei; Wang, Lili

    2017-10-01

    In the present study, the expression of Beclin 1 in osteoarthritis (OA) cartilage tissue was investigated, and also its role in proliferation, apoptosis and expression of matrix metalloproteinases (MMPs) in chondrocytes obtained from patients with OA. Beclin 1 expression in cartilage tissue from OA patients, and in the age- and sex-matched controls, was detected by immunohistochemistry, semi-quantitative polymerase chain reaction and western blotting. Chondrocytes were divided into control and Beclin 1-overexpressed groups. After transfection for 48, 72 and 96 h, cell viability, apoptosis, the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway and MMPs were examined. The mRNA and protein expression levels of Beclin 1 were significantly decreased in cartilage tissue from OA patients compared with the sex- and age-matched controls (Poverexpression significantly increased cell viability (Poverexpression additionally decreased the degree of apoptosis, as demonstrated by Hoechst staining and flow cytometric analysis. B-cell lymphoma-2 (Bcl-2) was upregulated, and Bcl-2 associated X was downregulated, following Beclin 1 overexpression (Poverexpression (Poverexpression (Poverexpression increased cell viability, inhibited apoptosis and MMPs, likely via the PI3K/Akt/mTOR signaling pathway.

  7. Physcion induces mitochondria-driven apoptosis in colorectal cancer cells via downregulating EMMPRIN.

    Science.gov (United States)

    Chen, Xuehong; Gao, Hui; Han, Yantao; Ye, Junli; Xie, Jing; Wang, Chunbo

    2015-10-05

    Physcion, an anthraquinone derivative widely isolated and characterized from both terrestrial and marine sources, has anti-tumor effects on a variety of carcinoma cells, mainly through inhibition of cell proliferation, apoptosis induction and cell cycle arrest. However, little is known about the mechanisms underlying its role in tumor progression. In the present study, we investigated the molecular mechanisms involved in physcion-induced apoptosis in human colorectal cancer (CRC) lines HCT116. Our results showed that physcion inhibited tumor cell viability in a dose- and time-dependent manner, and induced cell apoptosis via intrinsic mitochondrial pathway. Our results also revealed that physcion treatment significantly inhibited extracelluar matrix metalloproteinase inducer (EMMPRIN) expression in HCT116 cells in a dose-dependent manner and overexpression of EMMPRIN protein markedly reduced physcion-induced cell apoptosis. Furthermore, our results strongly indicated the modulating effect of physcion on EMMPRIN is correlated with AMP-activated protein kinase (AMPK)/Hypoxia-inducible factor 1α (HIF-1α) signaling pathway. Our data provide the first experimental evidence that physcion induces mitochondrial apoptosis in CRC cells by downregulating of EMMPRIN via AMPK/HIF-1α signaling pathway and suggest a new mechanism to explain its anti-tumor effects. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    International Nuclear Information System (INIS)

    Kita, Kayoko; Suzuki, Toshihide; Ochi, Takafumi

    2007-01-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments

  9. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents

    Energy Technology Data Exchange (ETDEWEB)

    Kita, Kayoko [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Suzuki, Toshihide [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan); Ochi, Takafumi [Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195 (Japan)

    2007-05-01

    In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.

  10. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    DEFF Research Database (Denmark)

    Vandekerckhove, J; Bauw, G; Vancompernolle, K

    1990-01-01

    A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...

  11. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    DEFF Research Database (Denmark)

    Vandekerckhove, J; Bauw, G; Vancompernolle, K

    1990-01-01

    downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial......A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...

  12. Structure determination of T-cell protein-tyrosine phosphatase

    DEFF Research Database (Denmark)

    Iversen, L.F.; Møller, K. B.; Pedersen, A.K.

    2002-01-01

    Protein-tyrosine phosphatase 1B (PTP1B) has recently received much attention as a potential drug target in type 2 diabetes. This has in particular been spurred by the finding that PTP1B knockout mice show increased insulin sensitivity and resistance to diet-induced obesity. Surprisingly, the highly...... homologous T cell protein-tyrosine phosphatase (TC-PTP) has received much less attention, and no x-ray structure has been provided. We have previously co-crystallized PTP1B with a number of low molecular weight inhibitors that inhibit TC-PTP with similar efficiency. Unexpectedly, we were not able to co...... the high degree of functional and structural similarity between TC-PTP and PTP1B, we have been able to identify areas close to the active site that might be addressed to develop selective inhibitors of each enzyme....

  13. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers

    OpenAIRE

    Hirvonen, J; Goodwin, RS; Li, C-T; Terry, GE; Zoghbi, SS; Morse, C; Pike, VW; Volkow, ND; Huestis, MA; Innis, RB

    2011-01-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB1 (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in human subjects who chronically smoke ca...

  14. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  15. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  16. Electroacupuncture Confers Antinociceptive Effects via Inhibition of Glutamate Transporter Downregulation in Complete Freund's Adjuvant-Injected Rats

    Directory of Open Access Journals (Sweden)

    Ha-Neui Kim

    2012-01-01

    Full Text Available When we evaluated changes of glial fibrillary acidic protein (GFAP and two glutamate transporter (GTs by immunohistochemistry, expression of GFAP showed a significant increase in complete Freund's adjuvant (CFA-injected rats; however, this expression was strongly inhibited by electroacupuncture (EA stimulation. Robust downregulation of glutamate-aspartate transporter (GLAST and glutamate transporter-1 (GLT-1 was observed in CFA-injected rats; however, EA stimulation resulted in recovery of this expression. Double-labeling staining showed co-localization of a large proportion of GLAST or GLT-1 with GFAP. Using Western blot, we confirmed protein expression of two GTs, but no differences in the mRNA content of these GTs were observed. Because EA treatment resulted in strong inhibition of CFA-induced proteasome activities, we examined the question of whether thermal sensitivities and GTs expression could be regulated by proteasome inhibitor MG132. CFA-injected rats co-treated with EA and MG132 showed a significantly longer thermal sensitivity, compared with CFA-injected rats with or without MG132. Both EA and MG132 blocked CFA-induced GLAST and GLT-1 downregulation within the spinal cord. These results provide evidence for involvement of GLAST and GLT-1 in response to activation of spinal astrocytes in an EA antinociceptive effect. Antinociceptive effect of EA may be induced via proteasome-mediated regulation of spinal GTs.

  17. Astragalus Granule Prevents Ca2+ Current Remodeling in Heart Failure by the Downregulation of CaMKII

    Directory of Open Access Journals (Sweden)

    Sinai Li

    2017-01-01

    Full Text Available Background. Astragalus was broadly used for treating heart failure (HF and arrhythmias in East Asia for thousands of years. Astragalus granule (AG, extracted from Astragalus, shows beneficial effect on the treatment of HF in clinical research. We hypothesized that administration of AG prevents the remodeling of L-type Ca2+ current (ICa-L in HF mice by the downregulation of Ca2+/calmodulin-dependent protein kinase II (CaMKII. Methods. HF mice were induced by thoracic aortic constriction (TAC. After 4 weeks of AG treatment, cardiac function and QT interval were evaluated. Single cardiac ventricular myocyte was then isolated and whole-cell patch clamp was used to record action potential (AP and ICa-L. The expressions of L-type calcium channel alpha 1C subunit (Cav1.2, CaMKII, and phosphorylated protein kinase A (p-PKA were examined by western blot. Results. The failing heart manifested distinct electrical remodeling including prolonged repolarization time and altered ICa-L kinetics. AG treatment attenuated this electrical remodeling, supported by AG-related shortened repolarization time, decreased peak ICa-L, accelerated ICa-L inactivation, and positive frequency-dependent ICa-L facilitation. In addition, AG treatment suppressed the overexpression of CaMKII, but not p-PKA, in the failing heart. Conclusion. AG treatment protected the failing heart against electrical remodeling and ICa-L remodeling by downregulating CaMKII.

  18. MicroRNA-199 suppresses cell proliferation, migration and invasion by downregulating RGS17 in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Wei; Qian, Sheng; Yang, Guowei; Zhu, Liang; Zhou, Bo; Wang, Jianhua; Liu, Rong; Yan, Zhiping; Qu, Xudong

    2018-06-15

    Hepatocellular carcinoma (HCC), the most common primary tumor of the liver, has a poor prognosis and shows rapid progression. MicroRNAs (miRNAs) play important roles in carcinogenesis and tumor progression. Regulators of G-protein signaling (RGS) are critical for defining G-protein-dependent signal fidelity. RGS17 plays an important role in the regulation of cancer cell proliferation, migration and invasion. Here, we showed that miR-199 was downregulated in a hepatocarcinoma cell line. Overexpression of miR-199 significantly suppressed HCC cell proliferation, migration, and invasion in vitro. RGS17 overexpression promoted HCC cell proliferation, migration, and invasion, and reversed the miR-199 mediated inhibition of proliferation, migration, and invasion. Dual-fluorescence reporter experiments confirmed that miR-199 downregulated RGS17 by direct interaction with the 3'-UTR of RGS17 mRNA. In vivo studies showed that miR-199 overexpression significantly inhibited the growth of tumors. Taken together, the results suggested that miR-199 inhibited tumor growth and metastasis by targeting RGS17. Published by Elsevier B.V.

  19. Retinoic acid-induced granulocytic differentiation of HL60 human promyelocytic leukemia cells is preceded by downregulation of autonomous generation of inositol lipid-derived second messengers

    International Nuclear Information System (INIS)

    Porfiri, E.; Hoffbrand, A.V.; Wickremasinghe, R.G.

    1991-01-01

    Inositol phosphates (InsPs) and diacyglycerol (DAG) are second messengers derived via the breakdown of inositol phospholipids, and which play important signalling roles in the regulation of proliferation of some cell types. The authors have studied the operation of this pathway during the early stages of retionic acid (RA)-induced granulocytic differentiation of HL60 myeloid leukemia cells. The autonomous breakdown of inositol lipids that occurred in HL60 cells labeled with [3H] inositol was completely abolished following 48 hours of RA treatment. The rate of influx of 45Ca2+ was also significantly decreased at 48 hours, consistent with the role of inositol lipid-derived second messengers in regulating Ca2+ entry into cells. The downregulation of inositol lipid metabolism clearly preceded the onset of reduced proliferation induced by RA treatment, and was therefore not a consequence of decreased cell growth. The generation of InsPs in RA-treated cells was reactivated by the fluoroaluminate ion, a direct activator of guanine nucleotide-binding protein(s) (G proteins) that regulate the inositol lipid signalling pathway. Subtle alterations to a regulatory mechanism may therefore mediate the RA-induced downregulation of this pathway. The data are consistent with the hypothesis that the autonomous generation of inositol lipid-derived second messengers may contribute to the continuous proliferation of HL60 cells, and that the RA-induced downregulation of this pathway may, in turn, play a role in signalling the cessation of proliferation that preceedes granulocytic differentiation

  20. Identification of genes highly downregulated in pancreatic cancer through a meta-analysis of microarray datasets: implications for discovery of novel tumor-suppressor genes and therapeutic targets.

    Science.gov (United States)

    Goonesekere, Nalin C W; Andersen, Wyatt; Smith, Alex; Wang, Xiaosheng

    2018-02-01

    The lack of specific symptoms at early tumor stages, together with a high biological aggressiveness of the tumor contribute to the high mortality rate for pancreatic cancer (PC), which has a 5-year survival rate of about 7%. Recent failures of targeted therapies inhibiting kinase activity in clinical trials have highlighted the need for new approaches towards combating this deadly disease. In this study, we have identified genes that are significantly downregulated in PC, through a meta-analysis of large number of microarray datasets. We have used qRT-PCR to confirm the downregulation of selected genes in a panel of PC cell lines. This study has yielded several novel candidate tumor-suppressor genes (TSGs) including GNMT, CEL, PLA2G1B and SERPINI2. We highlight the role of GNMT, a methyl transferase associated with the methylation potential of the cell, and CEL, a lipase, as potential therapeutic targets. We have uncovered genetic links to risk factors associated with PC such as smoking and obesity. Genes important for patient survival and prognosis are also discussed, and we confirm the dysregulation of metabolic pathways previously observed in PC. While many of the genes downregulated in our dataset are associated with protein products normally produced by the pancreas for excretion, we have uncovered some genes whose downregulation appear to play a more causal role in PC. These genes will assist in providing a better understanding of the disease etiology of PC, and in the search for new therapeutic targets and biomarkers.

  1. Down-regulation of MHC class I by the Marek's disease virus (MDV) UL49.5 gene product mildly affects virulence in a haplotype-specific fashion.

    Science.gov (United States)

    Jarosinski, Keith W; Hunt, Henry D; Osterrieder, Nikolaus

    2010-09-30

    Marek's disease is a devastating neoplastic disease of chickens caused by Marek's disease virus (MDV). MDV down-regulates surface expression of MHC class I molecules, although the mechanism has remained elusive. MDV harbors a UL49.5 homolog that has been shown to down-regulate MHC class I expression in other Varicelloviruses. Using in vitro assays, we showed that MDV pUL49.5 down-regulates MHC class I directly and identified its cytoplasmic tail as essential for this function. In vivo, viruses lacking the cytoplasmic tail of pUL49.5 showed no differences in MD pathogenesis compared to revertant viruses in highly susceptible chickens of the B(19)B(19) MHC class I haplotype, while there was a mild reduction in pathogenic potential of the deletion viruses in chickens more resistant to MD pathogenesis (MHC:B(21)B(21)). We concluded that the pathogenic effect of MHC class I down-regulation mediated by pUL49.5 is small because virus immune evasion possibly requires more than one viral protein. Copyright 2010 Elsevier Inc. All rights reserved.

  2. E3 Ligase cIAP2 Mediates Downregulation of MRE11 and Radiosensitization in Response to HDAC Inhibition in Bladder Cancer.

    Science.gov (United States)

    Nicholson, Judith; Jevons, Sarah J; Groselj, Blaz; Ellermann, Sophie; Konietzny, Rebecca; Kerr, Martin; Kessler, Benedikt M; Kiltie, Anne E

    2017-06-01

    The MRE11/RAD50/NBS1 (MRN) complex mediates DNA repair pathways, including double-strand breaks induced by radiotherapy. Meiotic recombination 11 homolog (MRE11) is downregulated by histone deacetylase inhibition (HDACi), resulting in reduced levels of DNA repair in bladder cancer cells and radiosensitization. In this study, we show that the mechanism of this downregulation is posttranslational and identify a C-terminally truncated MRE11, which is formed after HDAC inhibition as full-length MRE11 is downregulated. Truncated MRE11 was stabilized by proteasome inhibition, exhibited a decreased half-life after treatment with panobinostat, and therefore represents a newly identified intermediate induced and degraded in response to HDAC inhibition. The E3 ligase cellular inhibitor of apoptosis protein 2 (cIAP2) was upregulated in response to HDAC inhibition and was validated as a new MRE11 binding partner whose upregulation had similar effects to HDAC inhibition. cIAP2 overexpression resulted in downregulation and altered ubiquitination patterns of MRE11 and mediated radiosensitization in response to HDAC inhibition. These results highlight cIAP2 as a player in the DNA damage response as a posttranscriptional regulator of MRE11 and identify cIAP2 as a potential target for biomarker discovery or chemoradiation strategies in bladder cancer. Cancer Res; 77(11); 3027-39. ©2017 AACR . ©2017 American Association for Cancer Research.

  3. Downregulation of Wip1 phosphatase modulates the cellular threshold of DNA damage signaling in mitosis

    Science.gov (United States)

    Macurek, Libor; Benada, Jan; Müllers, Erik; Halim, Vincentius A.; Krejčíková, Kateřina; Burdová, Kamila; Pecháčková, Sona; Hodný, Zdeněk; Lindqvist, Arne; Medema, René H.; Bartek, Jiri

    2013-01-01

    Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression. PMID:23255129

  4. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1.

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-02-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK-HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated.

  5. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1

    Science.gov (United States)

    Abdelbaset-Ismail, A; Borkowska-Rzeszotek, S; Kubis, E; Bujko, K; Brzeźniakiewicz-Janus, K; Bolkun, L; Kloczko, J; Moniuszko, M; Basak, G W; Wiktor-Jedrzejczak, W; Ratajczak, M Z

    2017-01-01

    As a crucial arm of innate immunity, the complement cascade (ComC) is involved both in mobilization of normal hematopoietic stem/progenitor cells (HSPCs) from bone marrow (BM) into peripheral blood and in their homing to BM. Despite the fact that ComC cleavage fragments alone do not chemoattract normal HSPCs, we found that leukemia cell lines as well as clonogenic blasts from chronic myeloid leukemia and acute myeloid leukemia patients respond robustly to C3 and C5 cleavage fragments by chemotaxis and increased adhesion. This finding was supported by the detection of C3a and C5a receptors in cells from human malignant hematopoietic cell lines and patient blasts at the mRNA (reverse transcriptase-polymerase chain reaction) and protein level (fluorescence-activated cell sorting), and by the demonstration that these receptors respond to stimulation by C3a and C5a by phosphorylation of p42/44 and p38 mitogen-activated protein kinases (MAPK), and protein kinase B (PKB/AKT). We also found that inducible heme oxygenase 1 (HO-1) is a negative regulator of ComC-mediated trafficking of leukemic cells, and that stimulation of leukemic cells by C3 or C5 cleavage fragments activates p38 MAPK, which downregulates HO-1 expression, rendering cells more mobile. We conclude that activation of the ComC in leukemia/lymphoma patients (for example, as a result of accompanying infections) enhances the motility of malignant cells and contributes to their spread in a p38 MAPK–HO-1-dependent manner. Therefore, inhibition of p38 MAPK or upregulation of HO-1 by small-molecule modulators would have a beneficial effect on ameliorating cell migration-mediated expansion of leukemia/lymphoma cells when the ComC becomes activated. PMID:27451975

  6. Downregulation of SPARC expression inhibits the invasion of human trophoblast cells in vitro.

    Directory of Open Access Journals (Sweden)

    Yahong Jiang

    Full Text Available Successful pregnancy depends on the precise regulation of extravilloustrophoblast (EVT invasion into the uterine decidua. SPARC (secreted protein acidic and rich in cysteine is a matricellular glycoprotein that plays critical roles in the pathologies associated with obesity and diabetes, as well as tumorigenesis. The objective of this study was to investigate the role of SPARC in the process of trophoblast invasion which shares many similarities with tumor cell invasion. By Western blot, higher expression of SPARC was observed in mouse brain, ovary and uterus compared to other mouse tissues. Immunohistochemistry analysis revealed a spatio-temporal expression of SPARC in mouse uterus in the periimplantation period. At the implantation site of d8 pregnancy, SPARC mainly accumulated in the secondary decidua zone (SDZ, trophoblast cells and blastocyst. The expression of SPARC was also detected in human placental villi and trophoblast cell lines. In a Matrigel invasion assay, we found SPARC-specific RNA interference significantly reduced the invasion of human extravilloustrophoblast HTR8/SVneo cells. Microarray analysis revealed that SPARC depletion upregulated the expression of interleukin 11 (IL11, KISS1, insulin-like growth factor binding protein 4 (IGFBP4, collagen type I alpha 1 (COLIA1, matrix metallopeptidase 9 (MMP9, and downregulated the expression of the alpha polypeptide of chorionic gonadotropin (CGA, MMP1, gap junction protein alpha 1 (GJA1, et al. The gene array result was further validated by qRT-PCR and Western blot. The present data indicate that SPARC may play an important role in the regulation of normal placentation by promoting the invasion of trophoblast cells into the uterine decidua.

  7. MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway

    Science.gov (United States)

    Alam, Maroof; Bouillez, Audrey; Tagde, Ashujit; Ahmad, Rehan; Rajabi, Hasan; Maeda, Takahiro; Hiraki, Masayuki; Suzuki, Yozo; Kufe, Donald

    2016-01-01

    Apical-basal polarity and epithelial integrity are maintained in part by the Crumbs (CRB) complex. The C-terminal subunit of MUC1 (MUC1-C) is a transmembrane protein that is expressed at the apical border of normal epithelial cells and aberrantly at high levels over the entire surface of their transformed counterparts. However, it is not known if MUC1-C contributes to this loss of polarity that is characteristic of carcinoma cells. Here it is demonstrated that MUC1-C downregulates expression of the Crumbs complex CRB3 protein in triple-negative breast cancer (TNBC) cells. MUC1-C associates with ZEB1 on the CRB3 promoter and represses CRB3 transcription. Notably, CRB3 activates the core kinase cassette of the Hippo pathway, which includes LATS1 and LATS2. In this context, targeting MUC1-C was associated with increased phosphorylation of LATS1, consistent with activation of the Hippo pathway, which is critical for regulating cell contact, tissue repair, proliferation and apoptosis. Also shown is that MUC1-C-mediated suppression of CRB3 and the Hippo pathway is associated with dephosphorylation and activation of the oncogenic YAP protein. In turn, MUC1-C interacts with YAP, promotes formation of YAP/β-catenin complexes and induces the WNT target gene MYC. These data support a previously unrecognized model in which targeting MUC1-C in TNBC cells (i) induces CRB3 expression, (ii) activates the CRB3-driven Hippo pathway, (iii) inactivates YAP, and thereby (iv) suppresses YAP/β-catenin-mediated induction of MYC expression. Implications These findings demonstrate a previously unrecognized role for the MUC1-C oncoprotein in the regulation of polarity and the Hippo pathway in breast cancer. PMID:27658423

  8. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts.

    Science.gov (United States)

    Pritchard, Tracy J; Kawase, Yoshiaki; Haghighi, Kobra; Anjak, Ahmad; Cai, Wenfeng; Jiang, Min; Nicolaou, Persoulla; Pylar, George; Karakikes, Ioannis; Rapti, Kleopatra; Rubinstein, Jack; Hajjar, Roger J; Kranias, Evangelia G

    2013-01-01

    Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.

  9. The ubiquitin-proteasome pathway mediates gelsolin protein downregulation in pancreatic cancer

    NARCIS (Netherlands)

    Ni, Xiao-Guang; Zhou, Lu; Wang, Gui-Qi; Liu, Shang-Mei; Bai, Xiao-Feng; Liu, Fang; Peppelenbosch, Maikel P.; Zhao, Ping

    2008-01-01

    A well-known observation with respect to cancer biology is that transformed cells display a disturbed cytoskeleton, The underlying mechanisms, however, remain only partly understood. In an effort to identify possible mechanisms, we compared the proteome of pancreatic cancer with matched normal

  10. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  11. Roux-en-Y gastric bypass surgery suppresses hypothalamic PTP1B protein level and alleviates leptin resistance in obese rats.

    Science.gov (United States)

    Liu, Jia-Yu; Mu, Song; Zhang, Shu-Ping; Guo, Wei; Li, Qi-Fu; Xiao, Xiao-Qiu; Zhang, Jun; Wang, Zhi-Hong

    2017-09-01

    The present study aimed to explore the effect of Roux-en-Y gastric bypass (RYGB) surgery on protein tyrosine phosphatase 1B (PTP1B) expression levels and leptin activity in hypothalami of obese rats. Obese rats induced by a high-fat diet (HFD) that underwent RYGB (n=11) or sham operation (SO, n=9), as well as an obese control cohort (Obese, n=10) and an additional normal-diet group (ND, n=10) were used. Food efficiency was measured at 8 weeks post-operation. Plasma leptin levels were evaluated and hypothalamic protein tyrosine phosphatase 1B (PTP1B) levels and leptin signaling activity were examined at the genetic and protein levels. The results indicated that food efficiency was typically lower in RYGB rats compared with that in the Obese and SO rats. In the RYGB group, leptin receptor expression and proopiomelanocortin was significantly higher, while Neuropeptide Y levels were lower than those in the Obese and SO groups. Furthermore, the gene and protein expression levels of PTP1B in the RYGB group were lower, while levels of phosphorylated signal transducer and activator of transcription 3 protein were much higher compared with those in the Obese and SO groups. In conclusion, RYGB surgery significantly suppressed hypothalamic PTP1B protein expression. PTP1B regulation may partially alleviate leptin resistance.

  12. Modulation of Spc1 stress-activated protein kinase activity by methylglyoxal through inhibition of protein phosphatase in the fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2007-01-01

    Methylglyoxal, a ubiquitous metabolite derived from glycolysis has diverse physiological functions in yeast cells. Previously, we have reported that extracellularly added methylglyoxal activates Spc1, a stress-activated protein kinase (SAPK), in the fission yeast Schizosaccharomyces pombe [Y. Takatsume, S. Izawa, Y. Inoue, J. Biol. Chem. 281 (2006) 9086-9092]. Phosphorylation of Spc1 by treatment with methylglyoxal in S. pombe cells defective in glyoxalase I, an enzyme crucial for the metabolism of methylglyoxal, continues for a longer period than in wild-type cells. Here we show that methylglyoxal inhibits the activity of the protein phosphatase responsible for the dephosphorylation of Spc1 in vitro. In addition, we found that methylglyoxal inhibits human protein tyrosine phosphatase 1B (PTP1B) also. We propose a model for the regulation of the activity of the Spc1-SAPK signaling pathway by methylglyoxal in S. pombe

  13. TCR down-regulation controls T cell homeostasis

    DEFF Research Database (Denmark)

    Boding, Lasse; Bonefeld, Charlotte Menné; Nielsen, Bodil L

    2009-01-01

    TCR and cytokine receptor signaling play key roles in the complex homeostatic mechanisms that maintain a relative stable number of T cells throughout life. Despite the homeostatic mechanisms, a slow decline in naive T cells is typically observed with age. The CD3gamma di-leucine-based motif...... controls TCR down-regulation and plays a central role in fine-tuning TCR expression and signaling in T cells. In this study, we show that the age-associated decline of naive T cells is strongly accelerated in CD3gammaLLAA knock-in mice homozygous for a double leucine to alanine mutation in the CD3gamma di......-leucine-based motif, whereas the number of memory T cells is unaffected by the mutation. This results in premature T cell population senescence with a severe dominance of memory T cells and very few naive T cells in middle-aged to old CD3gamma mutant mice. The reduced number of naive T cells in CD3gamma mutant mice...

  14. Angiogenesis and lymphangiogenesis are downregulated in primary breast cancer

    Science.gov (United States)

    Boneberg, E-M; Legler, D F; Hoefer, M M; Öhlschlegel, C; Steininger, H; Füzesi, L; Beer, G M; Dupont-Lampert, V; Otto, F; Senn, H-J; Fürstenberger, G

    2009-01-01

    Background: Angiogenesis and lymphangiogenesis are considered to play key roles in tumour growth, progression and metastasis. However, targeting tumour angiogenesis in clinical trials showed only modest efficacy. We therefore scrutinised the concept of tumour angiogenesis and lymphangiogenesis by analysing the expression of crucial markers involved in these processes in primary breast cancer. Methods: We analysed the expression of angiogenic, lymphangiogenic or antiangiogenic factors, their respective receptors and specific markers for endothelial and lymphendothelial cells by quantitative real-time RT-PCR in primary breast cancer and compared the expression profiles to non-cancerous, tumour-adjacent tissues and breast tissues from healthy women. Results: We found decreased mRNA amounts of major angiogenic and lymphangiogenic factors in tumour compared to healthy tissues, whereas antiangiogenic factors were upregulated. Concomitantly, angiogenic and lymphangiogenic receptors were downregulated in breast tumours. This antiangiogenic, antilymphangiogenic microenvironment was even more pronounced in aggressive tumours and accompanied by reduced amounts of endothelial and lymphatic endothelial cell markers. Conclusion: Primary breast tumours are not a site of highly active angiogenesis and lymphangiogenesis. Selection for tumour cells that survive with minimal vascular supply may account for this observation in clinical apparent tumours. PMID:19672262

  15. p53 downregulates the Fanconi anaemia DNA repair pathway.

    Science.gov (United States)

    Jaber, Sara; Toufektchan, Eléonore; Lejour, Vincent; Bardot, Boris; Toledo, Franck

    2016-04-01

    Germline mutations affecting telomere maintenance or DNA repair may, respectively, cause dyskeratosis congenita or Fanconi anaemia, two clinically related bone marrow failure syndromes. Mice expressing p53(Δ31), a mutant p53 lacking the C terminus, model dyskeratosis congenita. Accordingly, the increased p53 activity in p53(Δ31/Δ31) fibroblasts correlated with a decreased expression of 4 genes implicated in telomere syndromes. Here we show that these cells exhibit decreased mRNA levels for additional genes contributing to telomere metabolism, but also, surprisingly, for 12 genes mutated in Fanconi anaemia. Furthermore, p53(Δ31/Δ31) fibroblasts exhibit a reduced capacity to repair DNA interstrand crosslinks, a typical feature of Fanconi anaemia cells. Importantly, the p53-dependent downregulation of Fanc genes is largely conserved in human cells. Defective DNA repair is known to activate p53, but our results indicate that, conversely, an increased p53 activity may attenuate the Fanconi anaemia DNA repair pathway, defining a positive regulatory feedback loop.

  16. SENP1 attenuates the liver fibrosis through down-regulating the expression of SMAD2.

    Science.gov (United States)

    Wu, Linshi; Qiu, Weiqing; Sun, Jianhua; Wang, Jian

    2018-01-01

    To investigate whether SENP1 could play a regulating role in the liver fibrosis process, the Sprague-Dawley (SD) rats were used to establish the liver fibrosis rat models by intraperitoneally injecting with 1 ml/kg of 10% CCl 4 , while the control normal rats were injected with olive oil. Then confirmation experiments to verify the successful establishment of these models were conducted by detecting the cellular and lobular architecture, and liver function indexes using hematoxylin-eosin staining, Masson's trichrome staining and microplate method, respectively. In addition, the expression levels of fibrosis markers including collagen I, collagen III, α-SMA and TGF-β1 were inspected using quantitative real-time PCR (qRT-PCR), as well as SMAD2. Subsequently, the relative mRNA and protein level of SENP1 was also determined via qRT-PCR and western blot analysis. Next, the HSC-T6 cells of SENP1 knock-down were constructed and used to test the relative protein expression levels of α-SMA and SMAD2 in these cells. The results of hematoxylin-eosin staining, Masson's trichrome staining and microplate method turned out that the rat liver fibrosis models were constructed successfully, which was further confirmed by the increased expression of collagen I, collagen III, α-SMA and TGF-β1 in mRNA and protein level, as well as SMAD2. Then the expression of SENP1 was overexpressed in the rat liver fibrosis models induced by CCl 4 and the TGF-β1 treatment could increase the protein expression level of collagen I, collagen III and α-SMA. Lastly, the SENP1 knockdown HSC-T6 cells were successfully constructed, while the silence of SENP1 down-regulated the protein expression of α-SMA and SMAD2. In conclusion, this study provided a new regulation mechanism about the liver fibrosis process. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Impressic acid from Acanthopanax koreanum, possesses matrix metalloproteinase-13 down-regulating capacity and protects cartilage destruction.

    Science.gov (United States)

    Lim, Hyun; Min, Dong Suk; Yun, Han Eul; Kim, Kil Tae; Sun, Ya Nan; Dat, Le Duc; Kim, Young Ho; Kim, Hyun Pyo

    2017-09-14

    Acanthopanax koreanum (Araliaceae) has been used in traditional medicine for enhancing vitality, rheumatism, and bone-related pains. But its activity on cartilage protection has not been known yet. Matrix metalloproteinase (MMP)-13 has an important role in degrading cartilage materials under pathologic conditions such as arthritis. The present study was designed to find the inhibitory activity of impressic acid on MMP-13 expression and cartilage protective action. 70% ethanol extract of Acanthopanax koreanum leaves and impressic acid, a major constituent isolated from the same plant materials, were examined on MMP-13 down-regulating capacity in IL-1β-treated human chondrocyte cell line (SW1353) and rabbit cartilage explants. In IL-1β-treated SW1353 cells, impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 0.5-10μM. Impressic acid was found to be able to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among the cellular signaling pathways involved. Further, impressic acid was found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10μM), glycosaminoglycan release (42.2% reduction at 10μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. In addition, a total of 21 lupane-type triterpenoids structurally-related to impressic acid were isolated from the same plant materials and their suppressive activities against MMP-13 expression were also examined. Among these derivatives, compounds 2, 3, 16, and 18 clearly down-regulated MMP-13 expression. However, impressic acid was more potent than these derivatives in down-regulating MMP-13 expression. Impressic acid, its related triterpenoids, and A. koreanum extract have potential as therapeutic agents to prevent cartilage degradation by inhibiting matrix protein degradation. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  18. Vesnarinone downregulates CXCR4 expression via upregulation of Krüppel-like factor 2 in oral cancer cells

    Directory of Open Access Journals (Sweden)

    Uchida Daisuke

    2009-08-01

    Full Text Available Abstract Background We have demonstrated that the stromal cell-derived factor-1 (SDF-1; CXCL12/CXCR4 system is involved in the establishment of lymph node metastasis in oral squamous cell carcinoma (SCC. Chemotherapy is a powerful tool for the treatment of oral cancer, including oral SCC; however, the effects of chemotherapeutic agents on the expression of CXCR4 are unknown. In this study, we examined the expression of CXCR4 associated with the chemotherapeutic agents in oral cancer cells. Results The expression of CXCR4 was examined using 3 different chemotherapeutic agents; 5-fluorouracil, cisplatin, and vesnarinone (3,4-dihydro-6-[4-(3,4-dimethoxybenzoyl-1-piperazinyl]-2-(1H-quinolinone in B88, a line of oral cancer cells that exhibits high levels of CXCR4 and lymph node metastatic potential. Of the 3 chemotherapeutic agents that we examined, only vesnarinone downregulated the expression of CXCR4 at the mRNA as well as the protein level. Vesnarinone significantly inhibited lymph node metastasis in tumor-bearing nude mice. Moreover, vesnarinone markedly inhibited 2.7-kb human CXCR4 promoter activity, and we identified the transcription factor, Krüppel-like factor 2 (KLF2, as a novel vesnarinone-responsive molecule, which was bound to the CXCR4 promoter at positions -300 to -167 relative to the transcription start site. The forced-expression of KLF2 led to the downregulation of CXCR4 mRNA and impaired CXCR4 promoter activity. The use of siRNA against KLF2 led to an upregulation of CXCR4 mRNA. Conclusion These Results indicate that vesnarinone downregulates CXCR4 via the upregulation of KLF2 in oral cancer.

  19. Crystal structure of 5-{4'-[(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl]-4-meth-oxy-[1,1'-biphen-yl]-3-yl}-3-oxo-1,2,5-thia-diazo-lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B).

    Science.gov (United States)

    Ruddraraju, Kasi Viswanatharaju; Hillebrand, Roman; Barnes, Charles L; Gates, Kent S

    2015-04-01

    The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio-eth-oxy)eth-oxy]eth-oxy}eth-yl)carbamo-yl] side chain is protonated, while the 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra-molecular N-H⋯O hydrogen bond. The 1,2,5-thia-diazo-lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol-ecules are linked by N-H⋯O and N-H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π inter-actions present.

  20. Crystal structure of 5-{4′-[(2-{2-[2-(2-ammonioethoxyethoxy]ethoxy}ethylcarbamoyl]-4-methoxy-[1,1′-biphenyl]-3-yl}-3-oxo-1,2,5-thiadiazolidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B

    Directory of Open Access Journals (Sweden)

    Kasi Viswanatharaju Ruddraraju

    2015-04-01

    Full Text Available The title compound, C24H32N4O8S, (I, crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonioethoxyethoxy]ethoxy}ethylcarbamoyl] side chain is protonated, while the 1,2,5-thiadiazolidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intramolecular N—H...O hydrogen bond. The 1,2,5-thiadiazolidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8°. In the crystal, molecules are linked by N—H...O and N—H...N hydrogen bonds, forming slabs lying parallel to (010. Within the slabs there are C—H...O and C—H...N hydrogen bonds and C—H...π interactions present.

  1. Reversible and regionally selective downregulation of brain cannabinoid CB1 receptors in chronic daily cannabis smokers.

    Science.gov (United States)

    Hirvonen, J; Goodwin, R S; Li, C-T; Terry, G E; Zoghbi, S S; Morse, C; Pike, V W; Volkow, N D; Huestis, M A; Innis, R B

    2012-06-01

    Chronic cannabis (marijuana, hashish) smoking can result in dependence. Rodent studies show reversible downregulation of brain cannabinoid CB(1) (cannabinoid receptor type 1) receptors after chronic exposure to cannabis. However, whether downregulation occurs in humans who chronically smoke cannabis is unknown. Here we show, using positron emission tomography imaging, reversible and regionally selective downregulation of brain cannabinoid CB(1) receptors in human subjects who chronically smoke cannabis. Downregulation correlated with years of cannabis smoking and was selective to cortical brain regions. After ∼4 weeks of continuously monitored abstinence from cannabis on a secure research unit, CB(1) receptor density returned to normal levels. This is the first direct demonstration of cortical cannabinoid CB(1) receptor downregulation as a neuroadaptation that may promote cannabis dependence in human brain.

  2. Downregulation of tumor suppressor QKI in gastric cancer and its implication in cancer prognosis

    International Nuclear Information System (INIS)

    Bian, Yongqian; Wang, Li; Lu, Huanyu; Yang, Guodong; Zhang, Zhang; Fu, Haiyan; Lu, Xiaozhao; Wei, Mengying; Sun, Jianyong; Zhao, Qingchuan; Dong, Guanglong; Lu, Zifan

    2012-01-01

    Highlights: ► QKI expression is decreased in gastric cancer samples. ► Promoter hyper methylation contributes to the downregulation of QKI. ► QKI inhibits the growth of gastric cancer cells. ► Decreased QKI expression predicts poor survival. -- Abstract: Gastric cancer (GC) is the fourth most common cancer and second leading cause of cancer-related death worldwide. RNA-binding protein Quaking (QKI) is a newly identified tumor suppressor in multiple cancers, while its role in GC is largely unknown. Our study here aimed to clarify the relationship between QKI expression with the clinicopathologic characteristics and the prognosis of GC. In the 222 GC patients’ specimens, QKI expression was found to be significantly decreased in most of the GC tissues, which was largely due to promoter hypermethylation. QKI overexpression reduced the proliferation ability of GC cell line in vitro study. In addition, the reduced QKI expression correlated well with poor differentiation status, depth of invasion, gastric lymph node metastasis, distant metastasis, advanced TNM stage, and poor survival. Multivariate analysis showed QKI expression was an independent prognostic factor for patient survival.

  3. Downregulation of keratin 76 expression during oral carcinogenesis of human, hamster and mouse.

    Directory of Open Access Journals (Sweden)

    Srikant Ambatipudi

    Full Text Available Keratins are structural marker proteins with tissue specific expression; however, recent reports indicate their involvement in cancer progression. Previous study from our lab revealed deregulation of many genes related to structural molecular integrity including KRT76. Here we evaluate the role of KRT76 downregulation in oral precancer and cancer development.We evaluated KRT76 expression by qRT-PCR in normal and tumor tissues of the oral cavity. We also analyzed K76 expression by immunohistochemistry in normal, oral precancerous lesion (OPL, oral squamous cell carcinoma (OSCC and in hamster model of oral carcinogenesis. Further, functional implication of KRT76 loss was confirmed using KRT76-knockout (KO mice.We observed a strong association of reduced K76 expression with increased risk of OPL and OSCC development. The buccal epithelium of DMBA treated hamsters showed a similar trend. Oral cavity of KRT76-KO mice showed preneoplastic changes in the gingivobuccal epithelium while no pathological changes were observed in KRT76 negative tissues such as tongue.The present study demonstrates loss of KRT76 in oral carcinogenesis. The KRT76-KO mice data underlines the potential of KRT76 being an early event although this loss is not sufficient to drive the development of oral cancers. Thus, future studies to investigate the contributing role of KRT76 in light of other tumor driving events are warranted.

  4. Downregulated Ku70 and ATM associated to poor prognosis in colorectal cancer among Chinese patients

    Directory of Open Access Journals (Sweden)

    Lu YF

    2014-10-01

    Full Text Available Yuanfang Lu,1,2 Jingyan Gao,1,3 Yuanming Lu,1 1Department of Toxicology, School of Public Health, Guilin Medical University, Guangxi, People's Republic of China; 2Department of Clinical Research Center, Affiliated 2nd Hospital of Nanjing Medical University, Nanjing, People's Republic of China; 3Department of Human Anatomy and Histo-Embryology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China Background: Double-strand DNA breaks (DSBs are a key factor in carcinogenesis. The necessary repair of DSBs is pivotal in maintaining normal cell division. To address the relationship between altered expression of DSB repair of proteins Ku70 and ataxia-telangiectasia mutated (ATM in colorectal cancer (CRC, we examined the expression levels and patterns of Ku70 and ATM in CRC samples. Methods: Expression and coexpression of Ku70 and ATM were investigated by using real-time quantitative polymerase chain reaction assays and confirmed further with fluorescent immunohistochemistry in CRC and pericancerous samples from 112 Chinese patients. Results: Downexpression patterns for both Ku70 and ATM were found in the CRC samples and were significantly associated with advanced tumor node metastasis stage and decreased 5-year overall survival rate. Conclusion: Downregulated Ku70 and ATM were associated with poor disease-free survival. Loss of Ku70 and ATM expression might act as a biomarker to predict poor prognosis in patients with CRC. Keywords: DNA double-strand breaks, ataxia-telangiectasia mutated, Ku70, colorectal cancer

  5. Downregulation of Akt1 Inhibits Anchorage-Independent Cell Growth and Induces Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2001-01-01

    Full Text Available The serine/threonine kinases, Akti/PKBα, Akt2/PKBβ, and Akt3/PKBγ, play a critical role in preventing cancer cells from undergoing apoptosis. However, the function of individual Akt isoforms in the tumorigenicity of cancer cells is still not well defined. In the current study, we used an AM antisense oligonucleotide (AS to specifically downregulate Akti protein in both cancer and normal cells. Our data indicate that AM AS treatment inhibits the ability of MiaPaCa-2, H460, HCT-15, and HT1080 cells to grow in soft agar. The treatment also induces apoptosis in these cancer cells as demonstrated by FRCS analysis and a caspase activity assay. Conversely, Akti AS treatment has little effect on the cell growth and survival of normal human cells including normal human fibroblast (NHF, fibroblast from muscle (FBM, and mammary gland epithelial 184135 cells. In addition, AM AS specifically sensitizes cancer cells to typical chemotherapeutic agents. Thus, Akti is indispensable for maintaining the tumorigenicity of cancer cells. Inhibition of AM may provide a powerful sensitization agent for chemotherapy specifically in cancer cells.

  6. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    Science.gov (United States)

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  7. Tunicamycin promotes apoptosis in leukemia cells through ROS generation and downregulation of survivin expression.

    Science.gov (United States)

    Lim, Eun Jin; Heo, Jeonghoon; Kim, Young-Ho

    2015-08-01

    Tunicamycin (TN), one of the endoplasmic reticulum stress inducers, has been reported to inhibit tumor cell growth and exhibit anticarcinogenic activity. However, the mechanism by which TN initiates apoptosis remains poorly understood. In the present study, we investigated the effect of TN on the apoptotic pathway in U937 cells. We show that TN induces apoptosis in association with caspase-3 activation, generation of reactive oxygen species (ROS), and downregulation of survivin expression. P38 MAPK (mitogen-activated protein kinase) and the generation of ROS signaling pathway play crucial roles in TN-induced apoptosis in U937 cells. We hypothesized that TN-induced activation of p38 MAPK signaling pathway is responsible for cell death. To test this hypothesis, we selectively inhibited MAPK during treatment with TN. Our data demonstrated that inhibitor of p38 (SB), but not ERK (PD) or JNK (SP), partially maintained apoptosis during treatment with TN. Pre-treatment with NAC and GSH markedly prevented cell death, suggesting a role for ROS in this process. Ectopic expression of survivin in U937 cells attenuated TN-induced apoptosis by suppression of caspase-3 cleavage, mitochondrial membrane potential, and cytochrome c release in U937 cells. Taken together, our results show that TN modulates multiple components of the apoptotic response of human leukemia cells and raise the possibility of a novel therapeutic strategy for hematological malignancies.

  8. Znhit1 causes cell cycle arrest and down-regulates CDK6 expression

    International Nuclear Information System (INIS)

    Yang, Zhengmin; Cao, Yonghao; Zhu, Xiaoyan; Huang, Ying; Ding, Yuqiang; Liu, Xiaolong

    2009-01-01

    Cyclin-dependent kinase 6 (CDK6) is the key element of the D-type cyclin holoenzymes which has been found to function in the regulation of G1-phase of the cell cycle and is presumed to play important roles in T cell function. In this study, Znhit1, a member of a new zinc finger protein family defined by a conserved Zf-HIT domain, induced arrest in the G1-phase of the cell cycle in NIH/3T3 cells. Of the G1 cell cycle factors examined, the expression of CDK6 was found to be strongly down-regulated by Znhit1 via transcriptional repression. This effect may have correlations with the decreased acetylation level of histone H4 in the CDK6 promoter region. In addition, considering that CDK6 expression predominates in T cells, the negative regulatory role of Znhit1 in TCR-induced T cell proliferation was validated using transgenic mice. These findings identified Znhit1 as a CDK6 regulator that plays an important role in cell proliferation.

  9. Down-regulation of a calmodulin-related gene during transformation of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Yaswen, P.; Smoll, A.; Stampfer, M.R.; Peehl, D.M.; Trask, D.K.; Sager, R.

    1990-01-01

    A human cDNA library obtained from cultured normal mammary epithelial cells (HMECs) was searched by subtractive hybridization for genes whose decrease in expression might be relevant to epithelial transformation. One clone identified by this procedure corresponded to a 1.4 kilobase mRNA, designated NB-1, whose expression was decreased >50-fold in HMECs tumorigenically transformed in vitro after exposure to benzo[α]pyrene and Kirsten sarcoma virus. Sequence analysis of NB-1 cDNA revealed an open reading frame with a high degree of homology to calmodulin. NB-1 expression could be demonstrated by polymerase chain reaction amplification in normal breast, prostate, cervix, and epidermal tissues. The presence of NB-1 transcripts was variable in primary breast carcinoma tissues and undetectable in tumor-derived cell lines of breast, prostate, or other origins. NB-1 mRNA expression could be down-regulated in cultured HMECs by exposure to reconstituted extracellular matrix material, while exposure to transforming growth factor type β increased its relative abundance. The protein encoded by NB-1 may have Ca 2 plus binding properties and perform functions similar to those of authentic calmodulin. Its possible roles in differentiation and/or suppression of tumorigenicity in epithelial tissues remain to be examined

  10. Mechanical stretching stimulates collagen synthesis via down-regulating SO2/AAT1 pathway

    Science.gov (United States)

    Liu, Jia; Yu, Wen; Liu, Yan; Chen, Selena; Huang, Yaqian; Li, Xiaohui; Liu, Cuiping; Zhang, Yanqiu; Li, Zhenzhen; Du, Jie; Tang, Chaoshu; Du, Junbao; Jin, Hongfang

    2016-01-01

    The aim of the study was to investigate the role of endogenous sulfur dioxide (SO2)/ aspartate aminotransferase 1 (AAT1) pathway in stretch-induced excessive collagen expression and its mechanism. The mechanical stretch downregulated SO2/AAT1 pathway and increased collagen I and III protein expression. Importantly, AAT1 overexpression blocked the increase in collagen I and III expression, transforming growth factor-β1 (TGF- β1) expression and phosphorylation of Smad2/3 induced by stretch, but AAT1 knockdown mimicked the increase in collagen I and III expression, TGF- β1 expression and phosphorylation of Smad2/3 induced by stretch. Mechanistically, SB431542, a TGF-β1/Smad2/3 inhibitor, eliminated excessive collagen I and III accumulation induced by AAT1 knockdown, stretch or stretch plus AAT1 knockdown. In a rat model of high pulmonary blood flow-induced pulmonary vascular collagen accumulation, AAT1 expression and SO2 content in lung tissues of rat were reduced in shunt rats with high pulmonary blood flow. Supplement of SO2 derivatives inhibited activation of TGF- β1/Smad2/3 pathway and alleviated the excessive collagen accumulation in lung tissues of shunt rats. The results suggested that deficiency of endogenous SO2/AAT1 pathway mediated mechanical stretch-stimulated abnormal collagen accumulation via TGF-β1/Smad2/3 pathway. PMID:26880260

  11. Diphlorethohydroxycarmalol from Ishige okamurae Suppresses Osteoclast Differentiation by Downregulating the NF-κB Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Hye Jung Ihn

    2017-12-01

    Full Text Available Marine algae possess a variety of beneficial effects on human health. In this study, we investigated whether diphlorethohydroxycarmalol (DPHC, isolated from Ishige okamurae, a brown alga, suppresses receptor activator of nuclear factor-κB ligand (RANKL-induced osteoclast differentiation. DPHC significantly suppressed RANKL-induced osteoclast differentiation and macrophage-colony stimulating factor (M-CSF expression in a dose-dependent manner. In addition, it significantly inhibited actin ring formation, the expression of osteoclast marker genes, such as tartrate-resistant acid phosphatase (TRAP, nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1, cathepsin K (Ctsk, and dendritic cell-specific transmembrane protein (Dcstamp, and osteoclast-induced bone resorption. Analysis of the RANKL-mediated signaling pathway showed that the phosphorylation of both IκB and p65 was specifically inhibited by DPHC. These results suggest that DPHC substantially suppresses osteoclastogenesis by downregulating the RANK-NF-κB signaling pathway. Thus, it holds significant potential for the treatment of skeletal diseases associated with an enhanced osteoclast activity.

  12. Dioscin enhances methotrexate absorption by down-regulating MDR1 in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijuan, E-mail: jlwang1979@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); Huo, Xiaokui, E-mail: huoxiaokui@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, Liaoning (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University, Dalian, Liaoning (China); and others

    2014-06-01

    The purpose of this study was to investigate the enhancing effect of dioscin on the absorption of methotrexate (MTX) and clarify the molecular mechanism involved in vivo and in vitro. Dioscin increased MTX chemosensitivity and transepithelial flux in the absorptive direction, significantly inhibiting multidrug resistance 1 (MDR1) mRNA and protein expression and MDR1 promoter and nuclear factor κ-B (NF-κB) activities in Caco-2 cells. Moreover, inhibitor κB-α (IκB-α) degradation was inhibited by dioscin. Dioscin enhanced the intracellular concentration of MTX by down-regulating MDR1 expression through a mechanism that involves NF-κB signaling pathway inhibition in Caco-2 cells. Dioscin strengthened MTX absorption by inhibiting MDR1 expression in rat intestine. In addition, even though MTX is absorbed into the enterocytes, there was no increase in toxicity observed, and that, in fact, decreased toxicity was seen. - Highlights: • Dioscin raised MTX concentration by inhibiting MDR1 in Caco-2 cells. • Dioscin suppresses MDR1 by inhibiting NF-κB signaling pathway in Caco-2 cells. • Dioscin can enhance MTX absorption via inhibiting MDR1 in vivo and in vi