WorldWideScience

Sample records for protein nmr storage

  1. NMR of unfolded proteins

    Indian Academy of Sciences (India)

    Unknown

    2005-01-03

    Jan 3, 2005 ... covering all the systems, so far discovered.5,7,8,12. With the increasing ... Structural investigations on proteins by NMR are, currently ... rapid analysis of unfolded proteins. ...... and hence help in design of drugs against them.

  2. Fundamentals of Protein NMR Spectroscopy

    CERN Document Server

    Rule, Gordon S

    2006-01-01

    NMR spectroscopy has proven to be a powerful technique to study the structure and dynamics of biological macromolecules. Fundamentals of Protein NMR Spectroscopy is a comprehensive textbook that guides the reader from a basic understanding of the phenomenological properties of magnetic resonance to the application and interpretation of modern multi-dimensional NMR experiments on 15N/13C-labeled proteins. Beginning with elementary quantum mechanics, a set of practical rules is presented and used to describe many commonly employed multi-dimensional, multi-nuclear NMR pulse sequences. A modular analysis of NMR pulse sequence building blocks also provides a basis for understanding and developing novel pulse programs. This text not only covers topics from chemical shift assignment to protein structure refinement, as well as the analysis of protein dynamics and chemical kinetics, but also provides a practical guide to many aspects of modern spectrometer hardware, sample preparation, experimental set-up, and data pr...

  3. Solution NMR structure determination of proteins revisited

    International Nuclear Information System (INIS)

    Billeter, Martin; Wagner, Gerhard; Wuethrich, Kurt

    2008-01-01

    This 'Perspective' bears on the present state of protein structure determination by NMR in solution. The focus is on a comparison of the infrastructure available for NMR structure determination when compared to protein crystal structure determination by X-ray diffraction. The main conclusion emerges that the unique potential of NMR to generate high resolution data also on dynamics, interactions and conformational equilibria has contributed to a lack of standard procedures for structure determination which would be readily amenable to improved efficiency by automation. To spark renewed discussion on the topic of NMR structure determination of proteins, procedural steps with high potential for improvement are identified

  4. A microscale protein NMR sample screening pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Paolo; Swapna, G. V. T.; Huang, Yuanpeng J.; Aramini, James M. [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States); Anklin, Clemens [Bruker Biospin Corporation (United States); Conover, Kenith; Hamilton, Keith; Xiao, Rong; Acton, Thomas B.; Ertekin, Asli; Everett, John K.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.ed [State University of New Jersey, Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers (United States)

    2010-01-15

    As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30-200 {mu}g in 8-35 {mu}l volume. Extensive automation has been made possible by the combination of database tools, mechanization of key process steps, and the use of a micro-cryoprobe that gives excellent data while requiring little optimization and manual setup. In this perspective, we describe the overall process used by the NESG for screening NMR samples as part of a sample optimization process, assessing optimal construct design and solution conditions, as well as for determining protein rotational correlation times in order to assess protein oligomerization states. Database infrastructure has been developed to allow for flexible implementation of new screening protocols and harvesting of the resulting output. The NESG micro NMR screening pipeline has also been used for detergent screening of membrane proteins. Descriptions of the individual steps in the NESG NMR sample design, production, and screening pipeline are presented in the format of a standard operating procedure.

  5. MAS NMR of HIV-1 protein assemblies

    Science.gov (United States)

    Suiter, Christopher L.; Quinn, Caitlin M.; Lu, Manman; Hou, Guangjin; Zhang, Huilan; Polenova, Tatyana

    2015-04-01

    The negative global impact of the AIDS pandemic is well known. In this perspective article, the utility of magic angle spinning (MAS) NMR spectroscopy to answer pressing questions related to the structure and dynamics of HIV-1 protein assemblies is examined. In recent years, MAS NMR has undergone major technological developments enabling studies of large viral assemblies. We discuss some of these evolving methods and technologies and provide a perspective on the current state of MAS NMR as applied to the investigations into structure and dynamics of HIV-1 assemblies of CA capsid protein and of Gag maturation intermediates.

  6. Using Cloud Storage for NMR Data Distribution

    Science.gov (United States)

    Soulsby, David

    2012-01-01

    An approach using Google Groups as method for distributing student-acquired NMR data has been implemented. We describe how to configure NMR spectrometer software so that data is uploaded to a laboratory section specific Google Group, thereby removing bottlenecks associated with printing and processing at the spectrometer workstation. Outside of…

  7. Tuber storage proteins.

    Science.gov (United States)

    Shewry, Peter R

    2003-06-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits activity as an acylhydrolase and esterase, sporamin from sweet potato is an inhibitor of trypsin, and dioscorin from yam is a carbonic anhydrase. Both sporamin and dioscorin also exhibit antioxidant and radical scavenging activity. Taro differs from the other three crops in that it contains two major types of storage protein: a trypsin inhibitor related to sporamin and a mannose-binding lectin. These characteristics indicate that tuber storage proteins have evolved independently in different species, which contrasts with the highly conserved families of storage proteins present in seeds. Furthermore, all exhibit biological activities which could contribute to resistance to pests, pathogens or abiotic stresses, indicating that they may have dual roles in the tubers.

  8. Tuber Storage Proteins

    OpenAIRE

    SHEWRY, PETER R.

    2003-01-01

    A wide range of plants are grown for their edible tubers, but five species together account for almost 90 % of the total world production. These are potato (Solanum tuberosum), cassava (Manihot esculenta), sweet potato (Ipomoea batatus), yams (Dioscorea spp.) and taro (Colocasia, Cyrtosperma and Xanthosoma spp.). All of these, except cassava, contain groups of storage proteins, but these differ in the biological properties and evolutionary relationships. Thus, patatin from potato exhibits act...

  9. Solid NMR characterization of hydrogen solid storage matrices

    International Nuclear Information System (INIS)

    Pilette, M.A.; Charpentier, T.; Berthault, P.

    2007-01-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  10. nmrML: A Community Supported Open Data Standard for the Description, Storage, and Exchange of NMR Data.

    Science.gov (United States)

    Schober, Daniel; Jacob, Daniel; Wilson, Michael; Cruz, Joseph A; Marcu, Ana; Grant, Jason R; Moing, Annick; Deborde, Catherine; de Figueiredo, Luis F; Haug, Kenneth; Rocca-Serra, Philippe; Easton, John; Ebbels, Timothy M D; Hao, Jie; Ludwig, Christian; Günther, Ulrich L; Rosato, Antonio; Klein, Matthias S; Lewis, Ian A; Luchinat, Claudio; Jones, Andrew R; Grauslys, Arturas; Larralde, Martin; Yokochi, Masashi; Kobayashi, Naohiro; Porzel, Andrea; Griffin, Julian L; Viant, Mark R; Wishart, David S; Steinbeck, Christoph; Salek, Reza M; Neumann, Steffen

    2018-01-02

    NMR is a widely used analytical technique with a growing number of repositories available. As a result, demands for a vendor-agnostic, open data format for long-term archiving of NMR data have emerged with the aim to ease and encourage sharing, comparison, and reuse of NMR data. Here we present nmrML, an open XML-based exchange and storage format for NMR spectral data. The nmrML format is intended to be fully compatible with existing NMR data for chemical, biochemical, and metabolomics experiments. nmrML can capture raw NMR data, spectral data acquisition parameters, and where available spectral metadata, such as chemical structures associated with spectral assignments. The nmrML format is compatible with pure-compound NMR data for reference spectral libraries as well as NMR data from complex biomixtures, i.e., metabolomics experiments. To facilitate format conversions, we provide nmrML converters for Bruker, JEOL and Agilent/Varian vendor formats. In addition, easy-to-use Web-based spectral viewing, processing, and spectral assignment tools that read and write nmrML have been developed. Software libraries and Web services for data validation are available for tool developers and end-users. The nmrML format has already been adopted for capturing and disseminating NMR data for small molecules by several open source data processing tools and metabolomics reference spectral libraries, e.g., serving as storage format for the MetaboLights data repository. The nmrML open access data standard has been endorsed by the Metabolomics Standards Initiative (MSI), and we here encourage user participation and feedback to increase usability and make it a successful standard.

  11. Automated protein structure calculation from NMR data

    International Nuclear Information System (INIS)

    Williamson, Mike P.; Craven, C. Jeremy

    2009-01-01

    Current software is almost at the stage to permit completely automatic structure determination of small proteins of <15 kDa, from NMR spectra to structure validation with minimal user interaction. This goal is welcome, as it makes structure calculation more objective and therefore more easily validated, without any loss in the quality of the structures generated. Moreover, it releases expert spectroscopists to carry out research that cannot be automated. It should not take much further effort to extend automation to ca 20 kDa. However, there are technological barriers to further automation, of which the biggest are identified as: routines for peak picking; adoption and sharing of a common framework for structure calculation, including the assembly of an automated and trusted package for structure validation; and sample preparation, particularly for larger proteins. These barriers should be the main target for development of methodology for protein structure determination, particularly by structural genomics consortia

  12. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  13. (S)Pinning down protein interactions by NMR

    DEFF Research Database (Denmark)

    Teilum, Kaare; Kunze, Micha Ben Achim; Erlendsson, Simon

    2017-01-01

    Protein molecules are highly diverse communication platforms and their interaction repertoire stretches from atoms over small molecules such as sugars and lipids to macromolecules. An important route to understanding molecular communication is to quantitatively describe their interactions...... all types of protein reactions, which can span orders of magnitudes in affinities, reaction rates and lifetimes of states. As the more versatile technique, solution NMR spectroscopy offers a remarkable catalogue of methods that can be successfully applied to the quantitative as well as qualitative...... descriptions of protein interactions. In this review we provide an easy-access approach to NMR for the non-NMR specialist and describe how and when solution state NMR spectroscopy is the method of choice for addressing protein ligand interaction. We describe very briefly the theoretical background...

  14. Unraveling the meaning of chemical shifts in protein NMR.

    Science.gov (United States)

    Berjanskii, Mark V; Wishart, David S

    2017-11-01

    Chemical shifts are among the most informative parameters in protein NMR. They provide wealth of information about protein secondary and tertiary structure, protein flexibility, and protein-ligand binding. In this report, we review the progress in interpreting and utilizing protein chemical shifts that has occurred over the past 25years, with a particular focus on the large body of work arising from our group and other Canadian NMR laboratories. More specifically, this review focuses on describing, assessing, and providing some historical context for various chemical shift-based methods to: (1) determine protein secondary and super-secondary structure; (2) derive protein torsion angles; (3) assess protein flexibility; (4) predict residue accessible surface area; (5) refine 3D protein structures; (6) determine 3D protein structures and (7) characterize intrinsically disordered proteins. This review also briefly covers some of the methods that we previously developed to predict chemical shifts from 3D protein structures and/or protein sequence data. It is hoped that this review will help to increase awareness of the considerable utility of NMR chemical shifts in structural biology and facilitate more widespread adoption of chemical-shift based methods by the NMR spectroscopists, structural biologists, protein biophysicists, and biochemists worldwide. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Fast mapping of global protein folding states by multivariate NMR:

    DEFF Research Database (Denmark)

    Malmendal, Anders; Underhaug, Jarl; Otzen, Daniel

    2010-01-01

    To obtain insight into the functions of proteins and their specific roles, it is important to establish efficient procedures for exploring the states that encapsulate their conformational space. Global Protein folding State mapping by multivariate NMR (GPS NMR) is a powerful high-throughput method......-lactalbumin in the presence of the anionic surfactant sodium dodecyl sulfate, SDS, and compare these with other surfactants, acid, denaturants and heat....

  16. Cell signaling, post-translational protein modifications and NMR spectroscopy

    International Nuclear Information System (INIS)

    Theillet, Francois-Xavier; Smet-Nocca, Caroline; Liokatis, Stamatios; Thongwichian, Rossukon; Kosten, Jonas; Yoon, Mi-Kyung; Kriwacki, Richard W.; Landrieu, Isabelle; Lippens, Guy; Selenko, Philipp

    2012-01-01

    Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.

  17. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy.

    Science.gov (United States)

    Konuma, Tsuyoshi; Harada, Erisa; Sugase, Kenji

    2015-12-01

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  18. Extracting protein dynamics information from overlapped NMR signals using relaxation dispersion difference NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Konuma, Tsuyoshi [Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology (United States); Harada, Erisa [Suntory Foundation for Life Sciences, Bioorganic Research Institute (Japan); Sugase, Kenji, E-mail: sugase@sunbor.or.jp, E-mail: sugase@moleng.kyoto-u.ac.jp [Kyoto University, Department of Molecular Engineering, Graduate School of Engineering (Japan)

    2015-12-15

    Protein dynamics plays important roles in many biological events, such as ligand binding and enzyme reactions. NMR is mostly used for investigating such protein dynamics in a site-specific manner. Recently, NMR has been actively applied to large proteins and intrinsically disordered proteins, which are attractive research targets. However, signal overlap, which is often observed for such proteins, hampers accurate analysis of NMR data. In this study, we have developed a new methodology called relaxation dispersion difference that can extract conformational exchange parameters from overlapped NMR signals measured using relaxation dispersion spectroscopy. In relaxation dispersion measurements, the signal intensities of fluctuating residues vary according to the Carr-Purcell-Meiboon-Gill pulsing interval, whereas those of non-fluctuating residues are constant. Therefore, subtraction of each relaxation dispersion spectrum from that with the highest signal intensities, measured at the shortest pulsing interval, leaves only the signals of the fluctuating residues. This is the principle of the relaxation dispersion difference method. This new method enabled us to extract exchange parameters from overlapped signals of heme oxygenase-1, which is a relatively large protein. The results indicate that the structural flexibility of a kink in the heme-binding site is important for efficient heme binding. Relaxation dispersion difference requires neither selectively labeled samples nor modification of pulse programs; thus it will have wide applications in protein dynamics analysis.

  19. Quantitative analysis of protein-ligand interactions by NMR.

    Science.gov (United States)

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  20. Solid State NMR Characterization of Complex Metal Hydrides systems for Hydrogen Storage Applications

    Directory of Open Access Journals (Sweden)

    Son-Jong Hwang

    2011-12-01

    Full Text Available Solid state NMR is widely applied in studies of solid state chemistries for hydrogen storage reactions. Use of 11B MAS NMR in studies of metal borohydrides (BH4 is mainly focused, revisiting the issue of dodecaborane formation and observation of 11B{1H} Nuclear Overhauser Effect.

  1. De novo protein structure determination using sparse NMR data

    International Nuclear Information System (INIS)

    Bowers, Peter M.; Strauss, Charlie E.M.; Baker, David

    2000-01-01

    We describe a method for generating moderate to high-resolution protein structures using limited NMR data combined with the ab initio protein structure prediction method Rosetta. Peptide fragments are selected from proteins of known structure based on sequence similarity and consistency with chemical shift and NOE data. Models are built from these fragments by minimizing an energy function that favors hydrophobic burial, strand pairing, and satisfaction of NOE constraints. Models generated using this procedure with ∼1 NOE constraint per residue are in some cases closer to the corresponding X-ray structures than the published NMR solution structures. The method requires only the sparse constraints available during initial stages of NMR structure determination, and thus holds promise for increasing the speed with which protein solution structures can be determined

  2. NMR structural studies of peptides and proteins in membranes

    Energy Technology Data Exchange (ETDEWEB)

    Opella, S J [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Chemistry

    1994-12-31

    The use of NMR methodology in structural studies is described as applicable to larger proteins, considering that the majority of membrane proteins is constructed from a limited repertoire of structural and dynamic elements. The membrane associated domains of these proteins are made up of long hydrophobic membrane spanning helices, shorter amphipathic bridging helices in the plane of the bilayer, connecting loops with varying degrees of mobility, and mobile N- and C- terminal sections. NMR studies have been successful in identifying all of these elements and their orientations relative to each other and the membrane bilayer 19 refs., 9 figs.

  3. Protein folding on the ribosome studied using NMR spectroscopy

    Science.gov (United States)

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  4. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    OpenAIRE

    Rist, Manuela; Muhle-Goll, Claudia; Görling, Benjamin; Bub, Achim; Heissler, Stefan; Watzl, Bernhard; Luy, Burkhard

    2013-01-01

    It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine sample...

  5. Application of Solution NMR Spectroscopy to Study Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Christoph Göbl

    2012-03-01

    Full Text Available Recent advances in spectroscopic methods allow the identification of minute fluctuations in a protein structure. These dynamic properties have been identified as keys to some biological processes. The consequences of this structural flexibility can be far‑reaching and they add a new dimension to the structure-function relationship of biomolecules. Nuclear Magnetic Resonance (NMR spectroscopy allows the study of structure as well as dynamics of biomolecules in a very broad range of timescales at atomic level. A number of new NMR methods have been developed recently to allow the measurements of time scales and spatial fluctuations, which in turn provide the thermodynamics associated with the biological processes. Since NMR parameters reflect ensemble measurements, structural ensemble approaches in analyzing NMR data have also been developed. These new methods in some instances can even highlight previously hidden conformational features of the biomolecules. In this review we describe several solution NMR methods to study protein dynamics and discuss their impact on important biological processes.

  6. NMR spectroscopy of muscle proteins; Spektroskopia MRJ bialek miesniowych

    Energy Technology Data Exchange (ETDEWEB)

    Slosarek, G. [Inst. Fizyki, Univ. A. Mickiewicza, Poznan (Poland)

    1995-12-31

    Author reviews various experimental techniques used for study of the structure of muscle proteins. Difficulties of application of NMR are described. Studies of the influence of Ca{sup 2+} on flexibility of actin polymer are presented. 11 refs, 3 figs.

  7. Protein structure estimation from NMR data by matrix completion.

    Science.gov (United States)

    Li, Zhicheng; Li, Yang; Lei, Qiang; Zhao, Qing

    2017-09-01

    Knowledge of protein structures is very important to understand their corresponding physical and chemical properties. Nuclear Magnetic Resonance (NMR) spectroscopy is one of the main methods to measure protein structure. In this paper, we propose a two-stage approach to calculate the structure of a protein from a highly incomplete distance matrix, where most data are obtained from NMR. We first randomly "guess" a small part of unobservable distances by utilizing the triangle inequality, which is crucial for the second stage. Then we use matrix completion to calculate the protein structure from the obtained incomplete distance matrix. We apply the accelerated proximal gradient algorithm to solve the corresponding optimization problem. Furthermore, the recovery error of our method is analyzed, and its efficiency is demonstrated by several practical examples.

  8. High Resolution NMR Studies of Encapsulated Proteins In Liquid Ethane

    Science.gov (United States)

    Peterson, Ronald W.; Lefebvre, Brian G.; Wand, A. Joshua

    2005-01-01

    Many of the difficulties presented by large, aggregation-prone, and membrane proteins to modern solution NMR spectroscopy can be alleviated by actively seeking to increase the effective rate of molecular reorientation. An emerging approach involves encapsulating the protein of interest within the protective shell of a reverse micelle, and dissolving the resulting particle in a low viscosity fluid, such as the short chain alkanes. Here we present the encapsulation of proteins with high structural fidelity within reverse micelles dissolved in liquid ethane. The addition of appropriate co-surfactants can significantly reduce the pressure required for successful encapsulation. At these reduced pressures, the viscosity of the ethane solution is low enough to provide sufficiently rapid molecular reorientation to significantly lengthen the spin-spin NMR relaxation times of the encapsulated protein. PMID:16028922

  9. DNA nanotubes for NMR structure determination of membrane proteins.

    Science.gov (United States)

    Bellot, Gaëtan; McClintock, Mark A; Chou, James J; Shih, William M

    2013-04-01

    Finding a way to determine the structures of integral membrane proteins using solution nuclear magnetic resonance (NMR) spectroscopy has proved to be challenging. A residual-dipolar-coupling-based refinement approach can be used to resolve the structure of membrane proteins up to 40 kDa in size, but to do this you need a weak-alignment medium that is detergent-resistant and it has thus far been difficult to obtain such a medium suitable for weak alignment of membrane proteins. We describe here a protocol for robust, large-scale synthesis of detergent-resistant DNA nanotubes that can be assembled into dilute liquid crystals for application as weak-alignment media in solution NMR structure determination of membrane proteins in detergent micelles. The DNA nanotubes are heterodimers of 400-nm-long six-helix bundles, each self-assembled from a M13-based p7308 scaffold strand and >170 short oligonucleotide staple strands. Compatibility with proteins bearing considerable positive charge as well as modulation of molecular alignment, toward collection of linearly independent restraints, can be introduced by reducing the negative charge of DNA nanotubes using counter ions and small DNA-binding molecules. This detergent-resistant liquid-crystal medium offers a number of properties conducive for membrane protein alignment, including high-yield production, thermal stability, buffer compatibility and structural programmability. Production of sufficient nanotubes for four or five NMR experiments can be completed in 1 week by a single individual.

  10. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Lindsay A. [University of Oxford, Oxford Particle Imaging Centre, The Wellcome Trust Centre for Human Genetics, Division of Structural Biology, Nuffield Department of Medicine (United Kingdom); Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc, E-mail: m.baldus@uu.nl [Utrecht University, NMR Spectroscopy, Department of Chemistry, Faculty of Science, Bijvoet Center for Biomolecular Research (Netherlands)

    2015-06-15

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR.

  11. Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling

    International Nuclear Information System (INIS)

    Baker, Lindsay A.; Daniëls, Mark; Cruijsen, Elwin A. W. van der; Folkers, Gert E.; Baldus, Marc

    2015-01-01

    Solid-state NMR spectroscopy (ssNMR) has made significant progress towards the study of membrane proteins in their native cellular membranes. However, reduced spectroscopic sensitivity and high background signal levels can complicate these experiments. Here, we describe a method for ssNMR to specifically label a single protein by repressing endogenous protein expression with rifampicin. Our results demonstrate that treatment of E. coli with rifampicin during induction of recombinant membrane protein expression reduces background signals for different expression levels and improves sensitivity in cellular membrane samples. Further, the method reduces the amount of time and resources needed to produce membrane protein samples, enabling new strategies for studying challenging membrane proteins by ssNMR

  12. Structure and Dynamic Properties of Membrane Proteins using NMR

    DEFF Research Database (Denmark)

    Rösner, Heike; Kragelund, Birthe

    2012-01-01

    conformational changes. Their structural and functional decoding is challenging and has imposed demanding experimental development. Solution nuclear magnetic resonance (NMR) spectroscopy is one of the techniques providing the capacity to make a significant difference in the deciphering of the membrane protein...... structure-function paradigm. The method has evolved dramatically during the last decade resulting in a plethora of new experiments leading to a significant increase in the scientific repertoire for studying membrane proteins. Besides solving the three-dimensional structures using state-of-the-art approaches......-populated states, this review seeks to introduce the vast possibilities solution NMR can offer to the study of membrane protein structure-function analyses with special focus on applicability. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012....

  13. Covariance NMR Processing and Analysis for Protein Assignment.

    Science.gov (United States)

    Harden, Bradley J; Frueh, Dominique P

    2018-01-01

    During NMR resonance assignment it is often necessary to relate nuclei to one another indirectly, through their common correlations to other nuclei. Covariance NMR has emerged as a powerful technique to correlate such nuclei without relying on error-prone peak peaking. However, false-positive artifacts in covariance spectra have impeded a general application to proteins. We recently introduced pre- and postprocessing steps to reduce the prevalence of artifacts in covariance spectra, allowing for the calculation of a variety of 4D covariance maps obtained from diverse combinations of pairs of 3D spectra, and we have employed them to assign backbone and sidechain resonances in two large and challenging proteins. In this chapter, we present a detailed protocol describing how to (1) properly prepare existing 3D spectra for covariance, (2) understand and apply our processing script, and (3) navigate and interpret the resulting 4D spectra. We also provide solutions to a number of errors that may occur when using our script, and we offer practical advice when assigning difficult signals. We believe such 4D spectra, and covariance NMR in general, can play an integral role in the assignment of NMR signals.

  14. Contemporary NMR Studies of Protein Electrostatics.

    Science.gov (United States)

    Hass, Mathias A S; Mulder, Frans A A

    2015-01-01

    Electrostatics play an important role in many aspects of protein chemistry. However, the accurate determination of side chain proton affinity in proteins by experiment and theory remains challenging. In recent years the field of nuclear magnetic resonance spectroscopy has advanced the way that protonation states are measured, allowing researchers to examine electrostatic interactions at an unprecedented level of detail and accuracy. Experiments are now in place that follow pH-dependent (13)C and (15)N chemical shifts as spatially close as possible to the sites of protonation, allowing all titratable amino acid side chains to be probed sequence specifically. The strong and telling response of carefully selected reporter nuclei allows individual titration events to be monitored. At the same time, improved frameworks allow researchers to model multiple coupled protonation equilibria and to identify the underlying pH-dependent contributions to the chemical shifts.

  15. Peakr: simulating solid-state NMR spectra of proteins

    International Nuclear Information System (INIS)

    Schneider, Robert; Odronitz, Florian; Hammesfahr, Bjorn; Hellkamp, Marcel; Kollmar, Martin

    2013-01-01

    When analyzing solid-state nuclear magnetic resonance (NMR) spectra of proteins, assignment of resonances to nuclei and derivation of restraints for 3D structure calculations are challenging and time-consuming processes. Simulated spectra that have been calculated based on, for example, chemical shift predictions and structural models can be of considerable help. Existing solutions are typically limited in the type of experiment they can consider and difficult to adapt to different settings. Here, we present Peakr, a software to simulate solid-state NMR spectra of proteins. It can generate simulated spectra based on numerous common types of internuclear correlations relevant for assignment and structure elucidation, can compare simulated and experimental spectra and produces lists and visualizations useful for analyzing measured spectra. Compared with other solutions, it is fast, versatile and user friendly. (authors)

  16. NMR

    International Nuclear Information System (INIS)

    Kneeland, J.B.; Lee, B.C.P.; Whalen, J.P.; Knowles, R.J.R.; Cahill, P.T.

    1984-01-01

    Although still quite new, NMR imaging has already emerged as a safe, noninvasive, painless, and effective diagnostic modality requiring no ionizing radiation. Also, NMR appears already to have established itself as the method of choice for the examination of the brain spinal cord (excluding herniated disks). Another area in which NMR excels is in the examination of the pelvis. The use of surface coils offers the promise of visualizing structures with resolution unobtainable by any other means. In addition, NMR, with its superb visualization of vascular structures and potential ability to measure flow, may soon revolutionize the diagnosis of cardiovascular disease. Finally, NMR, through biochemically and physiologically based T/sub 1/ and T/sub 2/ indices or through spectroscopy, may provide a means of monitoring therapeutic response so as to permit tailoring of treatment to the individual patient. In short, NMR is today probably at the same stage as the x-ray was in Roentgen's day

  17. Dehydration/hydration of granular beds for thermal storage applications: a combined NMR and temperature study

    NARCIS (Netherlands)

    Donkers, P.A.J.; Pel, L.; Adan, O.C.G.

    For heat/cold storage systems a granular bed of salt hydrates is studied during dehydration/hydration. The water density in these beds are measured with help of NMR. Diffusion based dehydration of a granular bed of Na2SO4·10H2O is shown to be internally limited as larger grains dehydrate faster than

  18. Systematic comparison of crystal and NMR protein structures deposited in the protein data bank.

    Science.gov (United States)

    Sikic, Kresimir; Tomic, Sanja; Carugo, Oliviero

    2010-09-03

    Nearly all the macromolecular three-dimensional structures deposited in Protein Data Bank were determined by either crystallographic (X-ray) or Nuclear Magnetic Resonance (NMR) spectroscopic methods. This paper reports a systematic comparison of the crystallographic and NMR results deposited in the files of the Protein Data Bank, in order to find out to which extent these information can be aggregated in bioinformatics. A non-redundant data set containing 109 NMR - X-ray structure pairs of nearly identical proteins was derived from the Protein Data Bank. A series of comparisons were performed by focusing the attention towards both global features and local details. It was observed that: (1) the RMDS values between NMR and crystal structures range from about 1.5 Å to about 2.5 Å; (2) the correlation between conformational deviations and residue type reveals that hydrophobic amino acids are more similar in crystal and NMR structures than hydrophilic amino acids; (3) the correlation between solvent accessibility of the residues and their conformational variability in solid state and in solution is relatively modest (correlation coefficient = 0.462); (4) beta strands on average match better between NMR and crystal structures than helices and loops; (5) conformational differences between loops are independent of crystal packing interactions in the solid state; (6) very seldom, side chains buried in the protein interior are observed to adopt different orientations in the solid state and in solution.

  19. Optimization of protein samples for NMR using thermal shift assays

    International Nuclear Information System (INIS)

    Kozak, Sandra; Lercher, Lukas; Karanth, Megha N.; Meijers, Rob; Carlomagno, Teresa; Boivin, Stephane

    2016-01-01

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor"® provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.

  20. Optimization of protein samples for NMR using thermal shift assays

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, Sandra [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany); Lercher, Lukas; Karanth, Megha N. [European Molecular Biology Laboratory (EMBL), SCB Unit (Germany); Meijers, Rob [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany); Carlomagno, Teresa, E-mail: teresa.carlomagno@oci.uni-hannover.de [European Molecular Biology Laboratory (EMBL), SCB Unit (Germany); Boivin, Stephane, E-mail: sboivin77@hotmail.com, E-mail: s.boivin@embl-hamburg.de [European Molecular Biology Laboratory (EMBL), Hamburg Outstation, SPC Facility (Germany)

    2016-04-15

    Maintaining a stable fold for recombinant proteins is challenging, especially when working with highly purified and concentrated samples at temperatures >20 °C. Therefore, it is worthwhile to screen for different buffer components that can stabilize protein samples. Thermal shift assays or ThermoFluor{sup ®} provide a high-throughput screening method to assess the thermal stability of a sample under several conditions simultaneously. Here, we describe a thermal shift assay that is designed to optimize conditions for nuclear magnetic resonance studies, which typically require stable samples at high concentration and ambient (or higher) temperature. We demonstrate that for two challenging proteins, the multicomponent screen helped to identify ingredients that increased protein stability, leading to clear improvements in the quality of the spectra. Thermal shift assays provide an economic and time-efficient method to find optimal conditions for NMR structural studies.

  1. Exploring translocation of proteins on DNA by NMR

    International Nuclear Information System (INIS)

    Marius Clore, G.

    2011-01-01

    While an extensive body of knowledge has accumulated on the structures of transcription factors, DNA and their complexes from both NMR and crystallography, much less is known at a molecular level regarding the mechanisms whereby transcription factors locate their specific DNA target site within an overwhelming sea of non-specific DNA sites. Indirect kinetic data suggested that three processes are involved in the search procedure: jumping by dissociation of the protein from the DNA followed by re-association at another site, direct transfer from one DNA molecule or segment to another, and one-dimensional sliding. In this brief perspective I summarize recent NMR developments from our laboratory that have permitted direct characterization of the species and molecular mechanisms involved in the target search process, including the detection of highly transient sparsely-populated states. The main tool in these studies involves the application of paramagnetic relaxation enhancement, supplemented by z-exchange spectroscopy, lineshape analysis and residual dipolar couplings. These studies led to the first direct demonstration of rotation-coupled sliding of a protein along the DNA and the direct transfer of a protein from one DNA molecule to another without dissociating into free solution.

  2. Probabilistic validation of protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Dashti, Hesam; Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel; Ulrich, Eldon L.; Markley, John L.

    2016-01-01

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/

  3. Probabilistic validation of protein NMR chemical shift assignments

    Energy Technology Data Exchange (ETDEWEB)

    Dashti, Hesam [University of Wisconsin-Madison, Graduate Program in Biophysics, Biochemistry Department (United States); Tonelli, Marco; Lee, Woonghee; Westler, William M.; Cornilescu, Gabriel [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States); Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Biochemistry Department (United States); Markley, John L., E-mail: markley@nmrfam.wisc.edu, E-mail: jmarkley@wisc.edu [University of Wisconsin-Madison, Biochemistry Department, National Magnetic Resonance Facility at Madison (United States)

    2016-01-15

    Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data. ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/ http://areca.nmrfam.wisc.edu/.

  4. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  5. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kokoro [Fujifilm Corporation, Analysis Technology Center (Japan); Kojima, Chojiro, E-mail: kojima@protein.osaka-u.ac.j [Nara Institute of Science and Technology (NAIST), Graduate School of Biological Sciences (Japan)

    2010-11-15

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in {sup 1}H-{sup 15}N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  6. [Non-invasive analysis of proteins in living cells using NMR spectroscopy].

    Science.gov (United States)

    Tochio, Hidehito; Murayama, Shuhei; Inomata, Kohsuke; Morimoto, Daichi; Ohno, Ayako; Shirakawa, Masahiro

    2015-01-01

    NMR spectroscopy enables structural analyses of proteins and has been widely used in the structural biology field in recent decades. NMR spectroscopy can be applied to proteins inside living cells, allowing characterization of their structures and dynamics in intracellular environments. The simplest "in-cell NMR" approach employs bacterial cells; in this approach, live Escherichia coli cells overexpressing a specific protein are subjected to NMR. The cells are grown in an NMR active isotope-enriched medium to ensure that the overexpressed proteins are labeled with the stable isotopes. Thus the obtained NMR spectra, which are derived from labeled proteins, contain atomic-level information about the structure and dynamics of the proteins. Recent progress enables us to work with higher eukaryotic cells such as HeLa and HEK293 cells, for which a number of techniques have been developed to achieve isotope labeling of the specific target protein. In this review, we describe successful use of electroporation for in-cell NMR. In addition, (19)F-NMR to characterize protein-ligand interactions in cells is presented. Because (19)F nuclei rarely exist in natural cells, when (19)F-labeled proteins are delivered into cells and (19)F-NMR signals are observed, one can safely ascertain that these signals originate from the delivered proteins and not other molecules.

  7. A probabilistic approach for validating protein NMR chemical shift assignments

    International Nuclear Information System (INIS)

    Wang Bowei; Wang, Yunjun; Wishart, David S.

    2010-01-01

    It has been estimated that more than 20% of the proteins in the BMRB are improperly referenced and that about 1% of all chemical shift assignments are mis-assigned. These statistics also reflect the likelihood that any newly assigned protein will have shift assignment or shift referencing errors. The relatively high frequency of these errors continues to be a concern for the biomolecular NMR community. While several programs do exist to detect and/or correct chemical shift mis-referencing or chemical shift mis-assignments, most can only do one, or the other. The one program (SHIFTCOR) that is capable of handling both chemical shift mis-referencing and mis-assignments, requires the 3D structure coordinates of the target protein. Given that chemical shift mis-assignments and chemical shift re-referencing issues should ideally be addressed prior to 3D structure determination, there is a clear need to develop a structure-independent approach. Here, we present a new structure-independent protocol, which is based on using residue-specific and secondary structure-specific chemical shift distributions calculated over small (3-6 residue) fragments to identify mis-assigned resonances. The method is also able to identify and re-reference mis-referenced chemical shift assignments. Comparisons against existing re-referencing or mis-assignment detection programs show that the method is as good or superior to existing approaches. The protocol described here has been implemented into a freely available Java program called 'Probabilistic Approach for protein Nmr Assignment Validation (PANAV)' and as a web server (http://redpoll.pharmacy.ualberta.ca/PANAVhttp://redpoll.pharmacy.ualberta.ca/PANAV) which can be used to validate and/or correct as well as re-reference assigned protein chemical shifts.

  8. In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.

    Science.gov (United States)

    Wang, Hao; Forse, Alexander C; Griffin, John M; Trease, Nicole M; Trognko, Lorie; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P

    2013-12-18

    Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.

  9. Effects of NMR spectral resolution on protein structure calculation.

    Directory of Open Access Journals (Sweden)

    Suhas Tikole

    Full Text Available Adequate digital resolution and signal sensitivity are two critical factors for protein structure determinations by solution NMR spectroscopy. The prime objective for obtaining high digital resolution is to resolve peak overlap, especially in NOESY spectra with thousands of signals where the signal analysis needs to be performed on a large scale. Achieving maximum digital resolution is usually limited by the practically available measurement time. We developed a method utilizing non-uniform sampling for balancing digital resolution and signal sensitivity, and performed a large-scale analysis of the effect of the digital resolution on the accuracy of the resulting protein structures. Structure calculations were performed as a function of digital resolution for about 400 proteins with molecular sizes ranging between 5 and 33 kDa. The structural accuracy was assessed by atomic coordinate RMSD values from the reference structures of the proteins. In addition, we monitored also the number of assigned NOESY cross peaks, the average signal sensitivity, and the chemical shift spectral overlap. We show that high resolution is equally important for proteins of every molecular size. The chemical shift spectral overlap depends strongly on the corresponding spectral digital resolution. Thus, knowing the extent of overlap can be a predictor of the resulting structural accuracy. Our results show that for every molecular size a minimal digital resolution, corresponding to the natural linewidth, needs to be achieved for obtaining the highest accuracy possible for the given protein size using state-of-the-art automated NOESY assignment and structure calculation methods.

  10. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Burkhard Luy

    2013-04-01

    Full Text Available It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at −20 °C, on dry ice, at −80 °C or in liquid nitrogen and then stored at −20 °C, −80 °C or in liquid nitrogen vapor phase for 1–5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at −20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  11. Influence of Freezing and Storage Procedure on Human Urine Samples in NMR-Based Metabolomics.

    Science.gov (United States)

    Rist, Manuela J; Muhle-Goll, Claudia; Görling, Benjamin; Bub, Achim; Heissler, Stefan; Watzl, Bernhard; Luy, Burkhard

    2013-04-09

    It is consensus in the metabolomics community that standardized protocols should be followed for sample handling, storage and analysis, as it is of utmost importance to maintain constant measurement conditions to identify subtle biological differences. The aim of this work, therefore, was to systematically investigate the influence of freezing procedures and storage temperatures and their effect on NMR spectra as a potentially disturbing aspect for NMR-based metabolomics studies. Urine samples were collected from two healthy volunteers, centrifuged and divided into aliquots. Urine aliquots were frozen either at -20 °C, on dry ice, at -80 °C or in liquid nitrogen and then stored at -20 °C, -80 °C or in liquid nitrogen vapor phase for 1-5 weeks before NMR analysis. Results show spectral changes depending on the freezing procedure, with samples frozen on dry ice showing the largest deviations. The effect was found to be based on pH differences, which were caused by variations in CO2 concentrations introduced by the freezing procedure. Thus, we recommend that urine samples should be frozen at -20 °C and transferred to lower storage temperatures within one week and that freezing procedures should be part of the publication protocol.

  12. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  13. NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein

    Directory of Open Access Journals (Sweden)

    Lola A. Brown

    2015-04-01

    Full Text Available Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2 is mediated by Gag’s N-terminally myristylated matrix (MA domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV, a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S. These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.

  14. NMR structure of the myristylated feline immunodeficiency virus matrix protein.

    Science.gov (United States)

    Brown, Lola A; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G; Kuo, Lillian; Freed, Eric O; Summers, Michael F

    2015-04-30

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly.

  15. PDBStat: a universal restraint converter and restraint analysis software package for protein NMR

    International Nuclear Information System (INIS)

    Tejero, Roberto; Snyder, David; Mao, Binchen; Aramini, James M.; Montelione, Gaetano T.

    2013-01-01

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data

  16. PDBStat: a universal restraint converter and restraint analysis software package for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Tejero, Roberto [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine (United States); Snyder, David [William Paterson University, Department of Chemistry (United States); Mao, Binchen; Aramini, James M.; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.edu [Rutgers, The State University of New Jersey, Center for Advanced Biotechnology and Medicine (United States)

    2013-08-15

    The heterogeneous array of software tools used in the process of protein NMR structure determination presents organizational challenges in the structure determination and validation processes, and creates a learning curve that limits the broader use of protein NMR in biology. These challenges, including accurate use of data in different data formats required by software carrying out similar tasks, continue to confound the efforts of novices and experts alike. These important issues need to be addressed robustly in order to standardize protein NMR structure determination and validation. PDBStat is a C/C++ computer program originally developed as a universal coordinate and protein NMR restraint converter. Its primary function is to provide a user-friendly tool for interconverting between protein coordinate and protein NMR restraint data formats. It also provides an integrated set of computational methods for protein NMR restraint analysis and structure quality assessment, relabeling of prochiral atoms with correct IUPAC names, as well as multiple methods for analysis of the consistency of atomic positions indicated by their convergence across a protein NMR ensemble. In this paper we provide a detailed description of the PDBStat software, and highlight some of its valuable computational capabilities. As an example, we demonstrate the use of the PDBStat restraint converter for restrained CS-Rosetta structure generation calculations, and compare the resulting protein NMR structure models with those generated from the same NMR restraint data using more traditional structure determination methods. These results demonstrate the value of a universal restraint converter in allowing the use of multiple structure generation methods with the same restraint data for consensus analysis of protein NMR structures and the underlying restraint data.

  17. Molecular structure, dynamics and hydration studies of soybean storage proteins and model systems by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Kakalis, L.T.

    1989-01-01

    The potential of high-resolution 13 C NMR for the characterization of soybean storage proteins was explored. The spectra of a commercial soy protein isolate as well as those of alkali-denatured 7S and 11S soybean globulins were well resolved and tentatively assigned. Relaxation measurements indicated fast motion for several side chains and the protein backbone. Protein fractions (11S and 7S) were also investigated at various states of molecular association. The large size of the multisubunit soybean storage proteins affected adversely both the resolution and the sensitivity of their 13 C NMR spectra. A comparison of 17 O and 2 H NMR relaxation rates of water in solutions of lysozyme (a model system) as a function of concentration, pH and magnetic field suggested that only 17 O monitors directly the hydration of lysozyme. Analysis of 17 O NMR lysozyme hydration data in terms of a two-state, fast-exchange, anisotropic model resulted in hydration parameters which are consistent with the protein's physico-chemical properties. The same model was applied to the calculation of the amount and mobility of bound water in soy protein dispersions by means of 17 O NMR relaxation measurements as a function of protein concentration. The protein concentration dependences of 1 H transverse NMR relaxation measurements at various pH and ionic strength values were fitted by a viral expansion. The interpretation of the data was based on the effects of protein aggregation, salt binding and protein group ionization on the NMR measurements. In all cases, relaxation rates showed a linear dependence on protein activity

  18. Solid-state NMR analysis of membrane proteins and protein aggregates by proton detected spectroscopy

    International Nuclear Information System (INIS)

    Zhou, Donghua H.; Nieuwkoop, Andrew J.; Berthold, Deborah A.; Comellas, Gemma; Sperling, Lindsay J.; Tang, Ming; Shah, Gautam J.; Brea, Elliott J.; Lemkau, Luisel R.; Rienstra, Chad M.

    2012-01-01

    Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6 kDa), a deuterated microcrystalline protein (DsbA, 21 kDa), a membrane protein (DsbB, 20 kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (α-synuclein, 14 kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100 % amide proton), fast magic-angle spinning conditions (40 kHz) and moderate proton decoupling power levels. Each H–N pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.

  19. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques

    DEFF Research Database (Denmark)

    Calcutta, Antonello; Jessen, Christian M; Behrens, Manja Annette

    2012-01-01

    induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl ß-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010......)) along with dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). GPS-NMR is used as a tool for fast analysis of the protein unfolding processes upon external perturbation, and DLS and SAXS are used for further structural characterization of the unfolding states. The combination allows...

  20. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    OpenAIRE

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats wit...

  1. Biomimetic materials for protein storage and transport

    Science.gov (United States)

    Firestone, Millicent A [Elmhurst, IL; Laible, Philip D [Villa Park, IL

    2012-05-01

    The invention provides a method for the insertion of protein in storage vehicles and the recovery of the proteins from the vehicles, the method comprising supplying isolated protein; mixing the isolated protein with a fluid so as to form a mixture, the fluid comprising saturated phospholipids, lipopolymers, and a surfactant; cycling the mixture between a first temperature and a second temperature; maintaining the mixture as a solid for an indefinite period of time; diluting the mixture in detergent buffer so as to disrupt the composition of the mixture, and diluting to disrupt the fluid in its low viscosity state for removal of the guest molecules by, for example, dialysis, filtering or chromatography dialyzing/filtering the emulsified solid.

  2. (3,2)D GFT-NMR experiments for fast data collection from proteins

    International Nuclear Information System (INIS)

    Xia Youlin; Zhu Guang; Veeraraghavan, Sudha; Gao Xiaolian

    2004-01-01

    High throughput structure determination of proteins will contribute to the success of proteomics investigations. The G-Matrix Fourier Transformation NMR (GFT-NMR) method significantly shortens experimental time by reducing the number of the dimensions of data acquisition for isotopically labeled proteins (Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc.125, 1385). We demonstrate herein a suite of ten 3D → 2D or (3,2)D GFT-NMR experiments using 13 C/ 15 N-labeled ubiquitin. These experiments were completed within 18 hours, representing a 4- to 18-fold reduction in data acquisition time compared to the corresponding conventional 3D experiments. A subset of the GFT-NMR experiments, (3,2)D HNCO, HNCACB, HN(CO)CACB, and 2D 1 H- 15 N HSQC, which are necessary for backbone assignments, were carried out within 6 hours. To facilitate the analysis of the GFT-NMR spectra, we developed automated procedures for viewing and analyzing the GFT-NMR spectra. Our overall strategy allows (3,2)D GFT-NMR experiments to be readily performed and analyzed. Nevertheless, the increase in spectral overlap and the reduction in signal sensitivity in these fast NMR experiments presently limit their application to relatively small proteins

  3. In-cell NMR spectroscopy of proteins inside Xenopus laevis oocytes

    International Nuclear Information System (INIS)

    Sakai, Tomomi; Tochio, Hidehito; Tenno, Takeshi; Ito, Yutaka; Kokubo, Tetsuro; Hiroaki, Hidekazu; Shirakawa, Masahiro

    2006-01-01

    In-cell NMR is an application of solution NMR that enables the investigation of protein conformations inside living cells. We have measured in-cell NMR spectra in oocytes from the African clawed frog Xenopus laevis. 15 N-labeled ubiquitin, its derivatives and calmodulin were injected into Xenopus oocytes and two-dimensional 1 H- 15 N correlation spectra of the proteins were obtained. While the spectrum of wild-type ubiquitin in oocytes had rather fewer cross-peaks compared to its in vitro spectrum, ubiquitin derivatives that are presumably unable to bind to ubiquitin-interacting proteins gave a markedly larger number of cross-peaks. This observation suggests that protein-protein interactions between ubiquitin and ubiquitin-interacting proteins may cause NMR signal broadening, and hence spoil the quality of the in-cell HSQC spectra. In addition, we observed the maturation of ubiquitin precursor derivative in living oocytes using the in-cell NMR technique. This process was partly inhibited by pre-addition of ubiquitin aldehyde, a specific inhibitor for ubiquitin C-terminal hydrolase (UCH). Our work demonstrates the potential usefulness of in-cell NMR with Xenopus oocytes for the investigation of protein conformations and functions under intracellular environmental conditions

  4. The eigenmode perspective of NMR spin relaxation in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il; Meirovitch, Eva, E-mail: shapiro@nmrsgi4.ls.biu.ac.il, E-mail: eva.meirovitch@biu.ac.il [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2013-12-14

    We developed in recent years the two-body (protein and probe) coupled-rotator slowly relaxing local structure (SRLS) approach for elucidating protein dynamics from NMR spin relaxation. So far we used as descriptors the set of physical parameters that enter the SRLS model. They include the global (protein-related) diffusion tensor, D{sub 1}, the local (probe-related) diffusion tensor, D{sub 2}, and the local coupling/ordering potential, u. As common in analyzes based on mesoscopic dynamic models, these parameters have been determined with data-fitting techniques. In this study, we describe structural dynamics in terms of the eigenmodes comprising the SRLS time correlation functions (TCFs) generated by using the best-fit parameters as input to the Smoluchowski equation. An eigenmode is a weighted exponential with decay constant given by an eigenvalue of the Smoluchowski operator, and weighting factor determined by the corresponding eigenvector. Obviously, both quantities depend on the SRLS parameters as determined by the SRLS model. Unlike the set of best-fit parameters, the eigenmodes represent patterns of motion of the probe-protein system. The following new information is obtained for the typical probe, the {sup 15}N−{sup 1}H bond. Two eigenmodes, associated with the protein and the probe, dominate when the time scale separation is large (i.e., D{sub 2} ≫ D{sub 1}), the tensorial properties are simple, and the local potential is either very strong or very weak. When the potential exceeds these limits while the remaining conditions are preserved, new eigenmodes arise. The multi-exponentiality of the TCFs is associated in this case with the restricted nature of the local motion. When the time scale separation is no longer large, the rotational degrees of freedom of the protein and the probe become statistically dependent (coupled dynamically). The multi-exponentiality of the TCFs is associated in this case with the restricted nature of both the local and the

  5. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a

    International Nuclear Information System (INIS)

    Zuiderweg, E.R.P.; Fesik, S.W.

    1989-01-01

    The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of 1 H and 15 N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with 15 N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the 15 N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that 15 N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques

  6. Heteronuclear three-dimensional NMR spectroscopy of the inflammatory protein C5a

    Energy Technology Data Exchange (ETDEWEB)

    Zuiderweg, E.R.P.; Fesik, S.W. (Abbott Laboratories, Abbott Park, IL (USA))

    1989-03-21

    The utility of three-dimensional heteronuclear NMR spectroscopy for the assignment of {sup 1}H and {sup 15}N resonances of the inflammatory protein C5a (MW 8500), uniformly labeled with {sup 15}N, is demonstrated at a protein concentration of 0.7 mM. It is shown that dramatic simplification of the 2D nuclear Overhauser effect spectrum (NOESY) is obtained by editing with respect to the frequency of the {sup 15}N heteronucleus in a third dimension. The improved resolution in the 3D experiment largely facilitates the assignment of protein NMR spectra and allows for the determination of distance constraints from otherwise overlapping NOE cross peaks for purposes of 3D structure determination. The results show that {sup 15}N heteronuclear 3D NMR can facilitate the structure determination of small proteins and promises to be a useful tool for the study of larger systems that cannot be studied by conventional 2D NMR techniques.

  7. Non-Uniform Sampling and J-UNIO Automation for Efficient Protein NMR Structure Determination.

    Science.gov (United States)

    Didenko, Tatiana; Proudfoot, Andrew; Dutta, Samit Kumar; Serrano, Pedro; Wüthrich, Kurt

    2015-08-24

    High-resolution structure determination of small proteins in solution is one of the big assets of NMR spectroscopy in structural biology. Improvements in the efficiency of NMR structure determination by advances in NMR experiments and automation of data handling therefore attracts continued interest. Here, non-uniform sampling (NUS) of 3D heteronuclear-resolved [(1)H,(1)H]-NOESY data yielded two- to three-fold savings of instrument time for structure determinations of soluble proteins. With the 152-residue protein NP_372339.1 from Staphylococcus aureus and the 71-residue protein NP_346341.1 from Streptococcus pneumonia we show that high-quality structures can be obtained with NUS NMR data, which are equally well amenable to robust automated analysis as the corresponding uniformly sampled data. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. NMR studies of a new family of DNA binding proteins: the THAP proteins

    International Nuclear Information System (INIS)

    Gervais, Virginie; Campagne, Sébastien; Durand, Jade; Muller, Isabelle; Milon, Alain

    2013-01-01

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  9. NMR studies of a new family of DNA binding proteins: the THAP proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, Virginie, E-mail: virginie.gervais@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France); Campagne, Sebastien [ETH Zurich (Switzerland); Durand, Jade; Muller, Isabelle; Milon, Alain, E-mail: alain.milon@ipbs.fr [IPBS (Institut de Pharmacologie et de Biologie Structurale), CNRS (France)

    2013-05-15

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer.

  10. Uniform and selective deuteration in two-dimensional NMR of proteins

    International Nuclear Information System (INIS)

    LeMaster, D.M.

    1990-01-01

    This paper reports on the practicality of isotopic labeling, particularly deuteration, that has received considerable impetus from advances in molecular biology, which have allowed ready production of NMR quantities of labeled proteins. Protein expression in Escherichia coli allows use of the considerable metabolic genetics known for the organism in shaping the biosynthetic process to meet the labeling demands of the NMR experiments. In addition to deuteration's common use in spectral assignment problems, it also offers considerable potential for enhancing the quality of the nuclear Overhauser effect (NOE) distance and dihedral angle constraints used for solution structural analysis of proteins. Recent reviews emphasize the sample preparation and spectral benefits of protein deuteration

  11. Methyl labeling and TROSY NMR spectroscopy of proteins expressed in the eukaryote Pichia pastoris

    International Nuclear Information System (INIS)

    Clark, Lindsay; Zahm, Jacob A.; Ali, Rustam; Kukula, Maciej; Bian, Liangqiao; Patrie, Steven M.; Gardner, Kevin H.; Rosen, Michael K.; Rosenbaum, Daniel M.

    2015-01-01

    13 C Methyl TROSY NMR spectroscopy has emerged as a powerful method for studying the dynamics of large systems such as macromolecular assemblies and membrane proteins. Specific 13 C labeling of aliphatic methyl groups and perdeuteration has been limited primarily to proteins expressed in E. coli, preventing studies of many eukaryotic proteins of physiological and biomedical significance. We demonstrate the feasibility of efficient 13 C isoleucine δ1-methyl labeling in a deuterated background in an established eukaryotic expression host, Pichia pastoris, and show that this method can be used to label the eukaryotic protein actin, which cannot be expressed in bacteria. This approach will enable NMR studies of previously intractable targets

  12. Introduction to the conformational investigation of peptides and proteins by using two-dimensional proton NMR experiments

    International Nuclear Information System (INIS)

    Neumann, J.M.; Macquaire, F.

    1991-01-01

    This report presents the elementary bases for an initiation to the conformational study of peptides and proteins by using two-dimensional proton NMR experiments. First, some general features of protein structures are summarized. A second chapter is devoted to the basic NMR experiments and to the spectral parameters which provide a structural information. This description is illustrated by NMR spectra of peptides. The third chapter concerns the most standard two-dimensional proton NMR experiments and their use for a conformational study of peptides and proteins. Lastly, an example of NMR structural investigation of a peptide is reported [fr

  13. Structures of larger proteins in solution: Three- and four-dimensional heteronuclear NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gronenborn, A.M.; Clore, G.M. [National Institutes of Health, Bethesda, MD (United States)

    1994-12-01

    Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.

  14. Comparison of NMR and crystal structures for the proteins TM1112 and TM1367

    International Nuclear Information System (INIS)

    Mohanty, Biswaranjan; Serrano, Pedro; Pedrini, Bill; Jaudzems, Kristaps; Geralt, Michael; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    NMR structures of the proteins TM1112 and TM1367 solved by the JCSG in solution at 298 K could be superimposed with the corresponding crystal structures at 100 K with r.m.s.d. values of <1.0 Å for the backbone heavy atoms. For both proteins the structural differences between multiple molecules in the asymmetric unit of the crystals correlated with structural variations within the bundles of conformers used to represent the NMR solution structures. A recently introduced JCSG NMR structure-determination protocol, which makes use of the software package UNIO for extensive automation, was further evaluated by comparison of the TM1112 structure obtained using these automated methods with another NMR structure that was independently solved in another PSI center, where a largely interactive approach was applied. The NMR structures of the TM1112 and TM1367 proteins from Thermotoga maritima in solution at 298 K were determined following a new protocol which uses the software package UNIO for extensive automation. The results obtained with this novel procedure were evaluated by comparison with the crystal structures solved by the JCSG at 100 K to 1.83 and 1.90 Å resolution, respectively. In addition, the TM1112 solution structure was compared with an NMR structure solved by the NESG using a conventional largely interactive methodology. For both proteins, the newly determined NMR structure could be superimposed with the crystal structure with r.m.s.d. values of <1.0 Å for the backbone heavy atoms, which provided a starting platform to investigate local structure variations, which may arise from either the methods used or from the different chemical environments in solution and in the crystal. Thereby, these comparative studies were further explored with the use of reference NMR and crystal structures, which were computed using the NMR software with input of upper-limit distance constraints derived from the molecular models that represent the results of structure

  15. Protein-observed (19)F-NMR for fragment screening, affinity quantification and druggability assessment.

    Science.gov (United States)

    Gee, Clifford T; Arntson, Keith E; Urick, Andrew K; Mishra, Neeraj K; Hawk, Laura M L; Wisniewski, Andrea J; Pomerantz, William C K

    2016-08-01

    NMR spectroscopy can be used to quantify the binding affinity between proteins and low-complexity molecules, termed 'fragments'; this versatile screening approach allows researchers to assess the druggability of new protein targets. Protein-observed (19)F-NMR (PrOF NMR) using (19)F-labeled amino acids generates relatively simple spectra that are able to provide dynamic structural information toward understanding protein folding and function. Changes in these spectra upon the addition of fragment molecules can be observed and quantified. This protocol describes the sequence-selective labeling of three proteins (the first bromodomains of Brd4 and BrdT, and the KIX domain of the CREB-binding protein) using commercially available fluorinated aromatic amino acids and fluorinated precursors as example applications of the method developed by our research group. Fragment-screening approaches are discussed, as well as Kd determination, ligand-efficiency calculations and druggability assessment, i.e., the ability to target these proteins using small-molecule ligands. Experiment times on the order of a few minutes and the simplicity of the NMR spectra obtained make this approach well-suited to the investigation of small- to medium-sized proteins, as well as the screening of multiple proteins in the same experiment.

  16. The second round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013

    International Nuclear Information System (INIS)

    Rosato, Antonio; Vranken, Wim; Fogh, Rasmus H.; Ragan, Timothy J.; Tejero, Roberto; Pederson, Kari; Lee, Hsiau-Wei; Prestegard, James H.; Yee, Adelinda; Wu, Bin; Lemak, Alexander; Houliston, Scott; Arrowsmith, Cheryl H.; Kennedy, Michael; Acton, Thomas B.; Xiao, Rong; Liu, Gaohua; Montelione, Gaetano T.; Vuister, Geerten W.

    2015-01-01

    The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100 % of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90 % of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged

  17. The second round of Critical Assessment of Automated Structure Determination of Proteins by NMR: CASD-NMR-2013

    Energy Technology Data Exchange (ETDEWEB)

    Rosato, Antonio [University of Florence, Department of Chemistry and Magnetic Resonance Center (Italy); Vranken, Wim [Vrije Universiteit Brussel, Structural Biology Brussels (Belgium); Fogh, Rasmus H.; Ragan, Timothy J. [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom); Tejero, Roberto [Universidad de Valencia, Departamento de Química Física (Spain); Pederson, Kari; Lee, Hsiau-Wei; Prestegard, James H. [University of Georgia, Complex Carbohydrate Research Center and Northeast Structural Genomics Consortium (United States); Yee, Adelinda; Wu, Bin; Lemak, Alexander; Houliston, Scott; Arrowsmith, Cheryl H. [University of Toronto, Department of Medical Biophysics, Cancer Genomics and Proteomics, Ontario Cancer Institute, Northeast Structural Genomics Consortium (Canada); Kennedy, Michael [Miami University, Department of Chemistry and Biochemistry, Northeast Structural Genomics Consortium (United States); Acton, Thomas B.; Xiao, Rong; Liu, Gaohua; Montelione, Gaetano T., E-mail: guy@cabm.rutgers.edu [The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, Northeast Structural Genomics Consortium, Rutgers (United States); Vuister, Geerten W., E-mail: gv29@le.ac.uk [University of Leicester, Department of Biochemistry, School of Biological Sciences (United Kingdom)

    2015-08-15

    The second round of the community-wide initiative Critical Assessment of automated Structure Determination of Proteins by NMR (CASD-NMR-2013) comprised ten blind target datasets, consisting of unprocessed spectral data, assigned chemical shift lists and unassigned NOESY peak and RDC lists, that were made available in both curated (i.e. manually refined) or un-curated (i.e. automatically generated) form. Ten structure calculation programs, using fully automated protocols only, generated a total of 164 three-dimensional structures (entries) for the ten targets, sometimes using both curated and un-curated lists to generate multiple entries for a single target. The accuracy of the entries could be established by comparing them to the corresponding manually solved structure of each target, which was not available at the time the data were provided. Across the entire data set, 71 % of all entries submitted achieved an accuracy relative to the reference NMR structure better than 1.5 Å. Methods based on NOESY peak lists achieved even better results with up to 100 % of the entries within the 1.5 Å threshold for some programs. However, some methods did not converge for some targets using un-curated NOESY peak lists. Over 90 % of the entries achieved an accuracy better than the more relaxed threshold of 2.5 Å that was used in the previous CASD-NMR-2010 round. Comparisons between entries generated with un-curated versus curated peaks show only marginal improvements for the latter in those cases where both calculations converged.

  18. Algal autolysate medium to label proteins for NMR in mammalian cells.

    Science.gov (United States)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia; Neri, Sara; Fragai, Marco

    2016-04-01

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in (15)N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  19. Algal autolysate medium to label proteins for NMR in mammalian cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuccio, Carmelo; Luchinat, Enrico; Barbieri, Letizia [University of Florence, Magnetic Resonance Center (CERM) (Italy); Neri, Sara [Giotto Biotech S.R.L. (Italy); Fragai, Marco, E-mail: fragai@cerm.unifi.it [University of Florence, Magnetic Resonance Center (CERM) (Italy)

    2016-04-15

    In-cell NMR provides structural and functional information on proteins directly inside living cells. At present, the high costs of the labeled media for mammalian cells represent a limiting factor for the development of this methodology. Here we report a protocol to prepare a homemade growth medium from Spirulina platensis autolysate, suitable to express uniformly labeled proteins inside mammalian cells at a reduced cost-per-sample. The human proteins SOD1 and Mia40 were overexpressed in human cells grown in {sup 15}N-enriched S. platensis algal-derived medium, and high quality in-cell NMR spectra were obtained.

  20. Reproducibility of NMR analysis of urine samples: impact of sample preparation, storage conditions, and animal health status.

    Science.gov (United States)

    Schreier, Christina; Kremer, Werner; Huber, Fritz; Neumann, Sindy; Pagel, Philipp; Lienemann, Kai; Pestel, Sabine

    2013-01-01

    Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining (1)H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing) and the health status of the animals, which may influence urine pH and osmolarity. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after (1)H NMR spectroscopy. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at -20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions.

  1. Reproducibility of NMR Analysis of Urine Samples: Impact of Sample Preparation, Storage Conditions, and Animal Health Status

    Directory of Open Access Journals (Sweden)

    Christina Schreier

    2013-01-01

    Full Text Available Introduction. Spectroscopic analysis of urine samples from laboratory animals can be used to predict the efficacy and side effects of drugs. This employs methods combining 1H NMR spectroscopy with quantification of biomarkers or with multivariate data analysis. The most critical steps in data evaluation are analytical reproducibility of NMR data (collection, storage, and processing and the health status of the animals, which may influence urine pH and osmolarity. Methods. We treated rats with a solvent, a diuretic, or a nephrotoxicant and collected urine samples. Samples were titrated to pH 3 to 9, or salt concentrations increased up to 20-fold. The effects of storage conditions and freeze-thaw cycles were monitored. Selected metabolites and multivariate data analysis were evaluated after 1H NMR spectroscopy. Results. We showed that variation of pH from 3 to 9 and increases in osmolarity up to 6-fold had no effect on the quantification of the metabolites or on multivariate data analysis. Storage led to changes after 14 days at 4°C or after 12 months at −20°C, independent of sample composition. Multiple freeze-thaw cycles did not affect data analysis. Conclusion. Reproducibility of NMR measurements is not dependent on sample composition under physiological or pathological conditions.

  2. Protein NMR Structures Refined with Rosetta Have Higher Accuracy Relative to Corresponding X-ray Crystal Structures

    Science.gov (United States)

    2014-01-01

    We have found that refinement of protein NMR structures using Rosetta with experimental NMR restraints yields more accurate protein NMR structures than those that have been deposited in the PDB using standard refinement protocols. Using 40 pairs of NMR and X-ray crystal structures determined by the Northeast Structural Genomics Consortium, for proteins ranging in size from 5–22 kDa, restrained Rosetta refined structures fit better to the raw experimental data, are in better agreement with their X-ray counterparts, and have better phasing power compared to conventionally determined NMR structures. For 37 proteins for which NMR ensembles were available and which had similar structures in solution and in the crystal, all of the restrained Rosetta refined NMR structures were sufficiently accurate to be used for solving the corresponding X-ray crystal structures by molecular replacement. The protocol for restrained refinement of protein NMR structures was also compared with restrained CS-Rosetta calculations. For proteins smaller than 10 kDa, restrained CS-Rosetta, starting from extended conformations, provides slightly more accurate structures, while for proteins in the size range of 10–25 kDa the less CPU intensive restrained Rosetta refinement protocols provided equally or more accurate structures. The restrained Rosetta protocols described here can improve the accuracy of protein NMR structures and should find broad and general for studies of protein structure and function. PMID:24392845

  3. Chemical Ligation of Folded Recombinant Proteins: Segmental Isotopic Labeling of Domains for NMR Studies

    Science.gov (United States)

    Xu, Rong; Ayers, Brenda; Cowburn, David; Muir, Tom W.

    1999-01-01

    A convenient in vitro chemical ligation strategy has been developed that allows folded recombinant proteins to be joined together. This strategy permits segmental, selective isotopic labeling of the product. The src homology type 3 and 2 domains (SH3 and SH2) of Abelson protein tyrosine kinase, which constitute the regulatory apparatus of the protein, were individually prepared in reactive forms that can be ligated together under normal protein-folding conditions to form a normal peptide bond at the ligation junction. This strategy was used to prepare NMR sample quantities of the Abelson protein tyrosine kinase-SH(32) domain pair, in which only one of the domains was labeled with 15N Mass spectrometry and NMR analyses were used to confirm the structure of the ligated protein, which was also shown to have appropriate ligand-binding properties. The ability to prepare recombinant proteins with selectively labeled segments having a single-site mutation, by using a combination of expression of fusion proteins and chemical ligation in vitro, will increase the size limits for protein structural determination in solution with NMR methods. In vitro chemical ligation of expressed protein domains will also provide a combinatorial approach to the synthesis of linked protein domains.

  4. CASD-NMR 2: robust and accurate unsupervised analysis of raw NOESY spectra and protein structure determination with UNIO

    International Nuclear Information System (INIS)

    Guerry, Paul; Duong, Viet Dung; Herrmann, Torsten

    2015-01-01

    UNIO is a comprehensive software suite for protein NMR structure determination that enables full automation of all NMR data analysis steps involved—including signal identification in NMR spectra, sequence-specific backbone and side-chain resonance assignment, NOE assignment and structure calculation. Within the framework of the second round of the community-wide stringent blind NMR structure determination challenge (CASD-NMR 2), we participated in two categories of CASD-NMR 2, namely using either raw NMR spectra or unrefined NOE peak lists as input. A total of 15 resulting NMR structure bundles were submitted for 9 out of 10 blind protein targets. All submitted UNIO structures accurately coincided with the corresponding blind targets as documented by an average backbone root mean-square deviation to the reference proteins of only 1.2 Å. Also, the precision of the UNIO structure bundles was virtually identical to the ensemble of reference structures. By assessing the quality of all UNIO structures submitted to the two categories, we find throughout that only the UNIO–ATNOS/CANDID approach using raw NMR spectra consistently yielded structure bundles of high quality for direct deposition in the Protein Data Bank. In conclusion, the results obtained in CASD-NMR 2 are another vital proof for robust, accurate and unsupervised NMR data analysis by UNIO for real-world applications

  5. Facilitated assignment of large protein NMR signals with covariance sequential spectra using spectral derivatives.

    Science.gov (United States)

    Harden, Bradley J; Nichols, Scott R; Frueh, Dominique P

    2014-09-24

    Nuclear magnetic resonance (NMR) studies of larger proteins are hampered by difficulties in assigning NMR resonances. Human intervention is typically required to identify NMR signals in 3D spectra, and subsequent procedures depend on the accuracy of this so-called peak picking. We present a method that provides sequential connectivities through correlation maps constructed with covariance NMR, bypassing the need for preliminary peak picking. We introduce two novel techniques to minimize false correlations and merge the information from all original 3D spectra. First, we take spectral derivatives prior to performing covariance to emphasize coincident peak maxima. Second, we multiply covariance maps calculated with different 3D spectra to destroy erroneous sequential correlations. The maps are easy to use and can readily be generated from conventional triple-resonance experiments. Advantages of the method are demonstrated on a 37 kDa nonribosomal peptide synthetase domain subject to spectral overlap.

  6. Engineering of soybean seed storage proteins

    International Nuclear Information System (INIS)

    Dickinson, C.D.; Floener, L.A.; Evans, R.P.; Nielsen, N.C.

    1987-01-01

    Protein engineering is one approach to the improvement of seed quality. With this in mind, a rapid in vitro system has been developed to assay the effect structural modifications have on the assembly of glycinin and β-conglycinin subunit complexes. Transcription plasmids were constructed for production of synthetic glycinin and β-conglycinin mRNAs by SP6 RNA-polymerase. Radiolabeled translation products from these messages were tested for their ability to form complexes. Gy4 and Gy5 proglycinins (group-2 subunits) and the a-subunit of β-conglycinin self-assembled into trimers. Proglycinin Gy2 (group-1 subunit) did not self-assemble, but assembled into mixed trimers in combination with Gy4 proglycinin. No assembly was observed for preproglycinins Gyl and Gy4, or for a Gy4 proglycinin which lacked 27 amino acids in a highly conserved internal sequence. Insertion of alternating MET-ARG residues in predicted turn regions of a hypervariable sequence in Gy4 proglycinin were tolerated when the string was short but inhibited trimer assembly as it became longer. The response to several different long deletions in this hypervariable region have also been tested. Different levels of trimer assembly were obtained and may depend on the secondary structures of the regions being joined in the engineered subunits. This system will be useful to study the assembly of storage protein complexes and to screen against modifications that interfere with subunit assembly

  7. In situ NMR studies of hydrogen storage kinetics and molecular diffusion in clathrate hydrate at elevated hydrogen pressures

    Energy Technology Data Exchange (ETDEWEB)

    Okuchi, T. [Okayama Univ., Misasa, Tottori (Japan); Moudrakovski, I.L.; Ripmeester, J.A. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences

    2008-07-01

    The challenge of storing high-density hydrogen into compact host media was investigated. The conventional storage scheme where an aqueous solution is frozen with hydrogen gas is too slow for practical use in a hydrogen-based society. Therefore, the authors developed a faster method whereby hydrogen was stored into gas hydrates. The hydrogen gas was directly charged into hydrogen-free, crystalline hydrate powders with partly empty lattices. The storage kinetics and hydrogen diffusion into the hydrate was observed in situ by nuclear magnetic resonance (NMR) in a pressurized tube cell. At pressures up to 20 MPa, the storage was complete within 80 minutes, as observed by growth of stored-hydrogen peak into the hydrate. Hydrogen diffusion within the crystalline hydrate media is the rate-determining step of current storage scheme. Therefore, the authors measured the diffusion coefficient of hydrogen molecules using the pulsed field gradient NMR method. The results show that the stored hydrogen is very mobile at temperatures down to 250 K. As such, the powdered hydrate media should work well even in cold environments. Compared with more prevailing hydrogen storage media such as metal hydrides, clathrate hydrates have the advantage of being free from hydrogen embrittlement, more chemically durable, more environmentally sound, and economically affordable. It was concluded that the powdered clathrate hydrate is suitable as a hydrogen storage media. 22 refs., 4 figs.

  8. Identifying secondary structures in proteins using NMR chemical shift 3D correlation maps

    Science.gov (United States)

    Kumari, Amrita; Dorai, Kavita

    2013-06-01

    NMR chemical shifts are accurate indicators of molecular environment and have been extensively used as aids in protein structure determination. This work focuses on creating empirical 3D correlation maps of backbone chemical shift nuclei for use as identifiers of secondary structure elements in proteins. A correlated database of backbone nuclei chemical shifts was constructed from experimental structural data gathered from entries in the Protein Data Bank (PDB) as well as isotropic chemical shift values from the RefDB database. Rigorous statistical analysis of the maps led to the conclusion that specific correlations between triplets of backbone chemical shifts are best able to differentiate between different secondary structures such as α-helices, β-strands and turns. The method is compared with similar techniques that use NMR chemical shift information as aids in biomolecular structure determination and performs well in tests done on experimental data determined for different types of proteins, including large multi-domain proteins and membrane proteins.

  9. An approach for high-throughput structure determination of proteins by NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Medek, Ales; Olejniczak, Edward T.; Meadows, Robert P.; Fesik, Stephen W. [Abbott Laboratories, Pharmaceutical Discovery Division (United States)

    2000-11-15

    An approach is described for rapidly determining protein structures by NMR that utilizes proteins containing {sup 13}C-methyl labeled Val, Leu, and Ile ({delta}1) and protonated Phe and Tyr in a deuterated background. Using this strategy, the key NOEs that define the hydrophobic core and overall fold of the protein are easily obtained. NMR data are acquired using cryogenic probe technology which markedly reduces the spectrometer time needed for data acquisition. The approach is demonstrated by determining the overall fold of the antiapoptotic protein, Bcl-xL, from data collected in only 4 days. Refinement of the Bcl-xL structure to a backbone rmsd of 0.95 A was accomplished with data collected in an additional 3 days. A distance analysis of 180 different proteins and structure calculations using simulated data suggests that our method will allow the global folds of a wide variety of proteins to be determined.

  10. Comparison of NMR and crystal structures highlights conformational isomerism in protein active sites

    International Nuclear Information System (INIS)

    Serrano, Pedro; Pedrini, Bill; Geralt, Michael; Jaudzems, Kristaps; Mohanty, Biswaranjan; Horst, Reto; Herrmann, Torsten; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Tools for systematic comparisons of NMR and crystal structures developed by the JCSG were applied to two proteins with known functions: the T. maritima anti-σ factor antagonist TM1081 and the mouse γ-glutamylamine cyclotransferase A2LD1 (gi:13879369). In an attempt to exploit the complementarity of crystal and NMR data, the combined use of the two structure-determination techniques was explored for the initial steps in the challenge of searching proteins of unknown functions for putative active sites. The JCSG has recently developed a protocol for systematic comparisons of high-quality crystal and NMR structures of proteins. In this paper, the extent to which this approach can provide function-related information on the two functionally annotated proteins TM1081, a Thermotoga maritima anti-σ factor antagonist, and A2LD1 (gi:13879369), a mouse γ-glutamylamine cyclotransferase, is explored. The NMR structures of the two proteins have been determined in solution at 313 and 298 K, respectively, using the current JCSG protocol based on the software package UNIO for extensive automation. The corresponding crystal structures were solved by the JCSG at 100 K and 1.6 Å resolution and at 100 K and 1.9 Å resolution, respectively. The NMR and crystal structures of the two proteins share the same overall molecular architectures. However, the precision of the structure determination along the amino-acid sequence varies over a significantly wider range in the NMR structures than in the crystal structures. Thereby, in each of the two NMR structures about 65% of the residues have displacements below the average and in both proteins the less well ordered residues include large parts of the active sites, in addition to some highly solvent-exposed surface areas. Whereas the latter show increased disorder in the crystal and in solution, the active-site regions display increased displacements only in the NMR structures, where they undergo local conformational exchange on the

  11. Ring current shifts in {sup 19}F-NMR of membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dongsheng, E-mail: liudsh@shanghaitech.edu.cn; Wüthrich, Kurt, E-mail: kwuthrich@shanghaitech.edu.cn [ShanghaiTech University, iHuman Institute (China)

    2016-05-15

    Fluorine-19 NMR markers are attractive reporter groups for use in studies of complex biomacromolecular systems, in particular also for studies of function-related conformational equilibria and rate processes in membrane proteins. Advantages of {sup 19}F-NMR probes include high sensitivity of the {sup 19}F chemical shifts to variations in the non-covalent environment. Nonetheless, in studies of G protein-coupled receptors (GPCR) we encountered situations where {sup 19}F chemical shifts were not responsive to conformational changes that had been implicated by other methods. This prompted us to examine possible effects of aromatic ring current fields on the chemical shifts of {sup 19}F-NMR probes used in GPCRs. Analysis of previously reported {sup 19}F-NMR data on the β{sub 2}-adrenergic receptor and mammalian rhodopsin showed that all {sup 19}F-labeling sites which manifested conformational changes are located near aromatic residues. Although ring current effects are small when compared to other known non-covalent effects on {sup 19}F chemical shifts, there is thus an indication that their contributions are significant when studying activation processes in GPCRs, since the observed activation-related {sup 19}F-NMR chemical shifts are comparable in size to the calculated ring current shifts. Considering the impact of ring current shifts may thus be helpful in identifying promising indigenous or engineered labeling sites for future {sup 19}F-NMR studies of GPCR activation, and novel information may be obtained on the nature of conformational rearrangements near the {sup 19}F-labels. It will then also be interesting to see if the presently indicated role of ring current shifts in membrane protein studies with {sup 19}F-NMR markers can be substantiated by a more extensive data base resulting from future studies.

  12. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio

    2015-01-26

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet\\'s performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  13. Median Modified Wiener Filter for nonlinear adaptive spatial denoising of protein NMR multidimensional spectra

    KAUST Repository

    Cannistraci, Carlo Vittorio; Abbas, Ahmed; Gao, Xin

    2015-01-01

    Denoising multidimensional NMR-spectra is a fundamental step in NMR protein structure determination. The state-of-the-art method uses wavelet-denoising, which may suffer when applied to non-stationary signals affected by Gaussian-white-noise mixed with strong impulsive artifacts, like those in multi-dimensional NMR-spectra. Regrettably, Wavelet's performance depends on a combinatorial search of wavelet shapes and parameters; and multi-dimensional extension of wavelet-denoising is highly non-trivial, which hampers its application to multidimensional NMR-spectra. Here, we endorse a diverse philosophy of denoising NMR-spectra: less is more! We consider spatial filters that have only one parameter to tune: the window-size. We propose, for the first time, the 3D extension of the median-modified-Wiener-filter (MMWF), an adaptive variant of the median-filter, and also its novel variation named MMWF*. We test the proposed filters and the Wiener-filter, an adaptive variant of the mean-filter, on a benchmark set that contains 16 two-dimensional and three-dimensional NMR-spectra extracted from eight proteins. Our results demonstrate that the adaptive spatial filters significantly outperform their non-adaptive versions. The performance of the new MMWF* on 2D/3D-spectra is even better than wavelet-denoising. Noticeably, MMWF* produces stable high performance almost invariant for diverse window-size settings: this signifies a consistent advantage in the implementation of automatic pipelines for protein NMR-spectra analysis.

  14. Practical aspects of NMR signal assignment in larger and challenging proteins

    Science.gov (United States)

    Frueh, Dominique P.

    2014-01-01

    NMR has matured into a technique routinely employed for studying proteins in near physiological conditions. However, applications to larger proteins are impeded by the complexity of the various correlation maps necessary to assign NMR signals. This article reviews the data analysis techniques traditionally employed for resonance assignment and describes alternative protocols necessary for overcoming challenges in large protein spectra. In particular, simultaneous analysis of multiple spectra may help overcome ambiguities or may reveal correlations in an indirect manner. Similarly, visualization of orthogonal planes in a multidimensional spectrum can provide alternative assignment procedures. We describe examples of such strategies for assignment of backbone, methyl, and nOe resonances. We describe experimental aspects of data acquisition for the related experiments and provide guidelines for preliminary studies. Focus is placed on large folded monomeric proteins and examples are provided for 37, 48, 53, and 81 kDa proteins. PMID:24534088

  15. Lightweight hydrogen-storage material Mg0.65Sc0.35D2 studied with 2H and 2H–{45Sc} MAS NMR exchange spectroscopy

    NARCIS (Netherlands)

    Srinivasan, S.; Magusin, P.C.M.M.

    2011-01-01

    Using double-quantum 2H MAS NMR with 45Sc recoupling and Bloch–Siegert compensated 2H–{45Sc} TRAPDOR we have identified the overlapping NMR signals of deuterium with and without scandium neighbors in Mg0.65Sc0.35D2, a candidate lightweight material for hydrogen storage. At room temperature we also

  16. REDOR NMR of stable-isotope-labeled protein binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J. [Washington Univ., St. Louis, MO (United States)

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  17. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  18. Blind testing of routine, fully automated determination of protein structures from NMR data.

    NARCIS (Netherlands)

    Rosato, A.; Aramini, J.M.; Arrowsmith, C.; Bagaria, A.; Baker, D.; Cavalli, A.; Doreleijers, J.; Eletsky, A.; Giachetti, A.; Guerry, P.; Gutmanas, A.; Guntert, P.; He, Y.; Herrmann, T.; Huang, Y.J.; Jaravine, V.; Jonker, H.R.; Kennedy, M.A.; Lange, O.F.; Liu, G.; Malliavin, T.E.; Mani, R.; Mao, B.; Montelione, G.T.; Nilges, M.; Rossi, P.; Schot, G. van der; Schwalbe, H.; Szyperski, T.A.; Vendruscolo, M.; Vernon, R.; Vranken, W.F.; Vries, S.D. de; Vuister, G.W.; Wu, B.; Yang, Y.; Bonvin, A.M.

    2012-01-01

    The protocols currently used for protein structure determination by nuclear magnetic resonance (NMR) depend on the determination of a large number of upper distance limits for proton-proton pairs. Typically, this task is performed manually by an experienced researcher rather than automatically by

  19. Blind Testing of Routine, Fully Automated Determination of Protein Structures from NMR Data

    NARCIS (Netherlands)

    Rosato, A.; Aramini, J.M.; van der Schot, G.; de Vries, S.J.|info:eu-repo/dai/nl/304837717; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238

    2012-01-01

    The protocols currently used for protein structure determination by nuclear magnetic resonance (NMR) depend on the determination of a large number of upper distance limits for proton-proton pairs. Typically, this task is performed manually by an experienced researcher rather than automatically by

  20. A novel strategy for NMR resonance assignment and protein structure determination

    International Nuclear Information System (INIS)

    Lemak, Alexander; Gutmanas, Aleksandras; Chitayat, Seth; Karra, Murthy; Farès, Christophe; Sunnerhagen, Maria; Arrowsmith, Cheryl H.

    2011-01-01

    The quality of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy is contingent on the number and quality of experimentally-derived resonance assignments, distance and angular restraints. Two key features of protein NMR data have posed challenges for the routine and automated structure determination of small to medium sized proteins; (1) spectral resolution – especially of crowded nuclear Overhauser effect spectroscopy (NOESY) spectra, and (2) the reliance on a continuous network of weak scalar couplings as part of most common assignment protocols. In order to facilitate NMR structure determination, we developed a semi-automated strategy that utilizes non-uniform sampling (NUS) and multidimensional decomposition (MDD) for optimal data collection and processing of selected, high resolution multidimensional NMR experiments, combined it with an ABACUS protocol for sequential and side chain resonance assignments, and streamlined this procedure to execute structure and refinement calculations in CYANA and CNS, respectively. Two graphical user interfaces (GUIs) were developed to facilitate efficient analysis and compilation of the data and to guide automated structure determination. This integrated method was implemented and refined on over 30 high quality structures of proteins ranging from 5.5 to 16.5 kDa in size.

  1. A combined rheology and time domain NMR approach for determining water distributions in protein blends

    NARCIS (Netherlands)

    Dekkers, Birgit L.; Kort, de Daan W.; Grabowska, Katarzyna J.; Tian, Bei; As, Van Henk; Goot, van der Atze Jan

    2016-01-01

    We present a combined time domain NMR and rheology approach to quantify the water distribution in a phase separated protein blend. The approach forms the basis for a new tool to assess the microstructural properties of phase separated biopolymer blends, making it highly relevant for many food and

  2. NMR assignments of juvenile hormone binding protein in complex with JH III.

    Science.gov (United States)

    Suzuki, Rintaro; Tase, Akira; Fujimoto, Zui; Shiotsuki, Takahiro; Yamazaki, Toshimasa

    2009-06-01

    A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.

  3. Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    NARCIS (Netherlands)

    Peters, Fabian; Maestre-Martinez, M.; Leonov, A.; Kovacic, L.; Becker, S.; Boelens, R.; Griesinger, C.

    2011-01-01

    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large

  4. Protein construct storage: Bayesian variable selection and prediction with mixtures.

    Science.gov (United States)

    Clyde, M A; Parmigiani, G

    1998-07-01

    Determining optimal conditions for protein storage while maintaining a high level of protein activity is an important question in pharmaceutical research. A designed experiment based on a space-filling design was conducted to understand the effects of factors affecting protein storage and to establish optimal storage conditions. Different model-selection strategies to identify important factors may lead to very different answers about optimal conditions. Uncertainty about which factors are important, or model uncertainty, can be a critical issue in decision-making. We use Bayesian variable selection methods for linear models to identify important variables in the protein storage data, while accounting for model uncertainty. We also use the Bayesian framework to build predictions based on a large family of models, rather than an individual model, and to evaluate the probability that certain candidate storage conditions are optimal.

  5. A robust algorithm for optimizing protein structures with NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Berjanskii, Mark; Arndt, David; Liang, Yongjie; Wishart, David S., E-mail: david.wishart@ualberta.ca [University of Alberta, Department of Computing Science (Canada)

    2015-11-15

    Over the past decade, a number of methods have been developed to determine the approximate structure of proteins using minimal NMR experimental information such as chemical shifts alone, sparse NOEs alone or a combination of comparative modeling data and chemical shifts. However, there have been relatively few methods that allow these approximate models to be substantively refined or improved using the available NMR chemical shift data. Here, we present a novel method, called Chemical Shift driven Genetic Algorithm for biased Molecular Dynamics (CS-GAMDy), for the robust optimization of protein structures using experimental NMR chemical shifts. The method incorporates knowledge-based scoring functions and structural information derived from NMR chemical shifts via a unique combination of multi-objective MD biasing, a genetic algorithm, and the widely used XPLOR molecular modelling language. Using this approach, we demonstrate that CS-GAMDy is able to refine and/or fold models that are as much as 10 Å (RMSD) away from the correct structure using only NMR chemical shift data. CS-GAMDy is also able to refine of a wide range of approximate or mildly erroneous protein structures to more closely match the known/correct structure and the known/correct chemical shifts. We believe CS-GAMDy will allow protein models generated by sparse restraint or chemical-shift-only methods to achieve sufficiently high quality to be considered fully refined and “PDB worthy”. The CS-GAMDy algorithm is explained in detail and its performance is compared over a range of refinement scenarios with several commonly used protein structure refinement protocols. The program has been designed to be easily installed and easily used and is available at http://www.gamdy.ca http://www.gamdy.ca.

  6. Describing intrinsically disordered proteins at atomic resolution by NMR

    International Nuclear Information System (INIS)

    Ringkjobing Jensen, Malene; Blackledge, Martin; Ruigrok, Rob WH

    2013-01-01

    There is growing interest in the development of physical methods to study the conformational behaviour and biological activity of intrinsically disordered proteins (IDPs). In this review recent advances in the elucidation of quantitative descriptions of disordered proteins from nuclear magnetic resonance spectroscopy are presented. Ensemble approaches are particularly well adapted to map the conformational energy landscape sampled by the protein at atomic resolution. Significant advances in development of calibrated approaches to the statistical representation of the conformational behaviour of IDPs are presented, as well as applications to some biologically important systems where disorder plays a crucial role. (authors)

  7. NMRNet: A deep learning approach to automated peak picking of protein NMR spectra.

    Science.gov (United States)

    Klukowski, Piotr; Augoff, Michal; Zieba, Maciej; Drwal, Maciej; Gonczarek, Adam; Walczak, Michal J

    2018-03-14

    Automated selection of signals in protein NMR spectra, known as peak picking, has been studied for over 20 years, nevertheless existing peak picking methods are still largely deficient. Accurate and precise automated peak picking would accelerate the structure calculation, and analysis of dynamics and interactions of macromolecules. Recent advancement in handling big data, together with an outburst of machine learning techniques, offer an opportunity to tackle the peak picking problem substantially faster than manual picking and on par with human accuracy. In particular, deep learning has proven to systematically achieve human-level performance in various recognition tasks, and thus emerges as an ideal tool to address automated identification of NMR signals. We have applied a convolutional neural network for visual analysis of multidimensional NMR spectra. A comprehensive test on 31 manually-annotated spectra has demonstrated top-tier average precision (AP) of 0.9596, 0.9058 and 0.8271 for backbone, side-chain and NOESY spectra, respectively. Furthermore, a combination of extracted peak lists with automated assignment routine, FLYA, outperformed other methods, including the manual one, and led to correct resonance assignment at the levels of 90.40%, 89.90% and 90.20% for three benchmark proteins. The proposed model is a part of a Dumpling software (platform for protein NMR data analysis), and is available at https://dumpling.bio/. michaljerzywalczak@gmail.compiotr.klukowski@pwr.edu.pl. Supplementary data are available at Bioinformatics online.

  8. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    International Nuclear Information System (INIS)

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M.

    2015-01-01

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales

  9. Solid-state NMR of the Yersinia pestis outer membrane protein Ail in lipid bilayer nanodiscs sedimented by ultracentrifugation

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yi; Fujimoto, L. Miya; Yao, Yong; Marassi, Francesca M., E-mail: fmarassi@sbmri.org [Sanford-Burnham Medical Research Institute (United States)

    2015-04-15

    Solid-state NMR studies of sedimented soluble proteins has been developed recently as an attractive approach for overcoming the size limitations of solution NMR spectroscopy while bypassing the need for sample crystallization or precipitation (Bertini et al. Proc Natl Acad Sci USA 108(26):10396–10399, 2011). Inspired by the potential benefits of this method, we have investigated the ability to sediment lipid bilayer nanodiscs reconstituted with a membrane protein. In this study, we show that nanodiscs containing the outer membrane protein Ail from Yersinia pestis can be sedimented for solid-state NMR structural studies, without the need for precipitation or lyophilization. Optimized preparations of Ail in phospholipid nanodiscs support both the structure and the fibronectin binding activity of the protein. The same sample can be used for solution NMR, solid-state NMR and activity assays, facilitating structure–activity correlation experiments across a wide range of timescales.

  10. Application of virus-like particles (VLP) to NMR characterization of viral membrane protein interactions

    Energy Technology Data Exchange (ETDEWEB)

    Antanasijevic, Aleksandar; Kingsley, Carolyn [University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics (United States); Basu, Arnab; Bowlin, Terry L. [Microbiotix Inc. (United States); Rong, Lijun [University of Illinois at Chicago, Department of Microbiology and Immunology (United States); Caffrey, Michael, E-mail: caffrey@uic.edu [University of Illinois at Chicago, Department of Biochemistry and Molecular Genetics (United States)

    2016-03-15

    The membrane proteins of viruses play critical roles in the virus life cycle and are attractive targets for therapeutic intervention. Virus-like particles (VLP) present the possibility to study the biochemical and biophysical properties of viral membrane proteins in their native environment. Specifically, the VLP constructs contain the entire protein sequence and are comprised of native membrane components including lipids, cholesterol, carbohydrates and cellular proteins. In this study we prepare VLP containing full-length hemagglutinin (HA) or neuraminidase (NA) from influenza and characterize their interactions with small molecule inhibitors. Using HA-VLP, we first show that VLP samples prepared using the standard sucrose gradient purification scheme contain significant amounts of serum proteins, which exhibit high potential for non-specific interactions, thereby complicating NMR studies of ligand-target interactions. We then show that the serum contaminants may be largely removed with the addition of a gel filtration chromatography step. Next, using HA-VLP we demonstrate that WaterLOGSY NMR is significantly more sensitive than Saturation Transfer Difference (STD) NMR for the study of ligand interactions with membrane bound targets. In addition, we compare the ligand orientation to HA embedded in VLP with that of recombinant HA by STD NMR. In a subsequent step, using NA-VLP we characterize the kinetic and binding properties of substrate analogs and inhibitors of NA, including study of the H274Y-NA mutant, which leads to wide spread resistance to current influenza antivirals. In summary, our work suggests that VLP have high potential to become standard tools in biochemical and biophysical studies of viral membrane proteins, particularly when VLP are highly purified and combined with control VLP containing native membrane proteins.

  11. NMR structure of the protein NP-247299.1: comparison with the crystal structure

    International Nuclear Information System (INIS)

    Jaudzems, Kristaps; Geralt, Michael; Serrano, Pedro; Mohanty, Biswaranjan; Horst, Reto; Pedrini, Bill; Elsliger, Marc-André; Wilson, Ian A.; Wüthrich, Kurt

    2010-01-01

    Comparison of the NMR and crystal structures of a protein determined using largely automated methods has enabled the interpretation of local differences in the highly similar structures. These differences are found in segments of higher B values in the crystal and correlate with dynamic processes on the NMR chemical shift timescale observed in solution. The NMR structure of the protein NP-247299.1 in solution at 313 K has been determined and is compared with the X-ray crystal structure, which was also solved in the Joint Center for Structural Genomics (JCSG) at 100 K and at 1.7 Å resolution. Both structures were obtained using the current largely automated crystallographic and solution NMR methods used by the JCSG. This paper assesses the accuracy and precision of the results from these recently established automated approaches, aiming for quantitative statements about the location of structure variations that may arise from either one of the methods used or from the different environments in solution and in the crystal. To evaluate the possible impact of the different software used for the crystallographic and the NMR structure determinations and analysis, the concept is introduced of reference structures, which are computed using the NMR software with input of upper-limit distance constraints derived from the molecular models representing the results of the two structure determinations. The use of this new approach is explored to quantify global differences that arise from the different methods of structure determination and analysis versus those that represent interesting local variations or dynamics. The near-identity of the protein core in the NMR and crystal structures thus provided a basis for the identification of complementary information from the two different methods. It was thus observed that locally increased crystallographic B values correlate with dynamic structural polymorphisms in solution, including that the solution state of the protein involves

  12. Site-specific labeling of proteins with NMR-active unnatural amino acids

    International Nuclear Information System (INIS)

    Jones, David H.; Cellitti, Susan E.; Hao Xueshi; Zhang Qiong; Jahnz, Michael; Summerer, Daniel; Schultz, Peter G.; Uno, Tetsuo; Geierstanger, Bernhard H.

    2010-01-01

    A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.

  13. APSY-NMR for protein backbone assignment in high-throughput structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Samit Kumar; Serrano, Pedro; Proudfoot, Andrew; Geralt, Michael [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Herrmann, Torsten [Université de Lyon, Institut des Sciences Analytiques, Centre de RMN à Très Hauts Champs, UMR 5280 CNRS, ENS Lyon, UCB Lyon 1 (France); Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    A standard set of three APSY-NMR experiments has been used in daily practice to obtain polypeptide backbone NMR assignments in globular proteins with sizes up to about 150 residues, which had been identified as targets for structure determination by the Joint Center for Structural Genomics (JCSG) under the auspices of the Protein Structure Initiative (PSI). In a representative sample of 30 proteins, initial fully automated data analysis with the software UNIO-MATCH-2014 yielded complete or partial assignments for over 90 % of the residues. For most proteins the APSY data acquisition was completed in less than 30 h. The results of the automated procedure provided a basis for efficient interactive validation and extension to near-completion of the assignments by reference to the same 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra that were subsequently used for the collection of conformational constraints. High-quality structures were obtained for all 30 proteins, using the J-UNIO protocol, which includes extensive automation of NMR structure determination.

  14. EPR and NMR spectroscopy on spin-labeled proteins

    NARCIS (Netherlands)

    Finiguerra, Michelina Giuseppina

    2011-01-01

    Spin labeling and electron paramagnetic resonance (EPR) have been employed to study structure and dynamics of proteins. The surface polarity of four single cysteine mutants of the Zn-azurin in frozen solution were studied using 275 GHz EPR (J-band), with the advantage compared to 9 GHz (X-band) and

  15. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Brian Finley [Univ. of California, Berkeley, CA (United States)

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a "receiver domain" in the family of "two-component" regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  16. On the Analytical Superiority of 1D NMR for Fingerprinting the Higher Order Structure of Protein Therapeutics Compared to Multidimensional NMR Methods.

    Science.gov (United States)

    Poppe, Leszek; Jordan, John B; Rogers, Gary; Schnier, Paul D

    2015-06-02

    An important aspect in the analytical characterization of protein therapeutics is the comprehensive characterization of higher order structure (HOS). Nuclear magnetic resonance (NMR) is arguably the most sensitive method for fingerprinting HOS of a protein in solution. Traditionally, (1)H-(15)N or (1)H-(13)C correlation spectra are used as a "structural fingerprint" of HOS. Here, we demonstrate that protein fingerprint by line shape enhancement (PROFILE), a 1D (1)H NMR spectroscopy fingerprinting approach, is superior to traditional two-dimensional methods using monoclonal antibody samples and a heavily glycosylated protein therapeutic (Epoetin Alfa). PROFILE generates a high resolution structural fingerprint of a therapeutic protein in a fraction of the time required for a 2D NMR experiment. The cross-correlation analysis of PROFILE spectra allows one to distinguish contributions from HOS vs protein heterogeneity, which is difficult to accomplish by 2D NMR. We demonstrate that the major analytical limitation of two-dimensional methods is poor selectivity, which renders these approaches problematic for the purpose of fingerprinting large biological macromolecules.

  17. Micro-scale NMR Experiments for Monitoring the Optimization of Membrane Protein Solutions for Structural Biology.

    Science.gov (United States)

    Horst, Reto; Wüthrich, Kurt

    2015-07-20

    Reconstitution of integral membrane proteins (IMP) in aqueous solutions of detergent micelles has been extensively used in structural biology, using either X-ray crystallography or NMR in solution. Further progress could be achieved by establishing a rational basis for the selection of detergent and buffer conditions, since the stringent bottleneck that slows down the structural biology of IMPs is the preparation of diffracting crystals or concentrated solutions of stable isotope labeled IMPs. Here, we describe procedures to monitor the quality of aqueous solutions of [ 2 H, 15 N]-labeled IMPs reconstituted in detergent micelles. This approach has been developed for studies of β-barrel IMPs, where it was successfully applied for numerous NMR structure determinations, and it has also been adapted for use with α-helical IMPs, in particular GPCRs, in guiding crystallization trials and optimizing samples for NMR studies (Horst et al ., 2013). 2D [ 15 N, 1 H]-correlation maps are used as "fingerprints" to assess the foldedness of the IMP in solution. For promising samples, these "inexpensive" data are then supplemented with measurements of the translational and rotational diffusion coefficients, which give information on the shape and size of the IMP/detergent mixed micelles. Using microcoil equipment for these NMR experiments enables data collection with only micrograms of protein and detergent. This makes serial screens of variable solution conditions viable, enabling the optimization of parameters such as the detergent concentration, sample temperature, pH and the composition of the buffer.

  18. Isolation of Protein Storage Vacuoles and Their Membranes.

    Science.gov (United States)

    Shimada, Tomoo; Hara-Nishimura, Ikuko

    2017-01-01

    Protein-storage vacuoles (PSVs) are specialized vacuoles that sequester large amounts of storage proteins. During seed development, PSVs are formed de novo and/or from preexisting lytic vacuoles. Seed PSVs can be subdivided into four distinct compartments: membrane, globoid, matrix, and crystalloid. In this chapter, we introduce easy methods for isolation of PSVs and their membranes from pumpkin seeds. These methods facilitate the identification and characterization of PSV components.

  19. Cys-Ph-TAHA: a lanthanide binding tag for RDC and PCS enhanced protein NMR

    International Nuclear Information System (INIS)

    Peters, Fabian; Maestre-Martinez, Mitcheell; Leonov, Andrei; Kovačič, Lidija; Becker, Stefan; Boelens, Rolf; Griesinger, Christian

    2011-01-01

    Here we present Cys-Ph-TAHA, a new nonadentate lanthanide tag for the paramagnetic labelling of proteins. The tag can be easily synthesized and is stereochemically homogenous over a wide range of temperatures, yielding NMR spectra with a single set of peaks. Bound to ubiquitin, it induced large residual dipolar couplings and pseudocontact shifts that could be measured easily and agreed very well with the protein structure. We show that Cys-Ph-TAHA can be used to label large proteins that are biochemically challenging such as the Lac repressor in a 90 kDa ternary complex with DNA and inducer.

  20. Microscopic insights into the NMR relaxation based protein conformational entropy meter

    Science.gov (United States)

    Kasinath, Vignesh; Sharp, Kim A.; Wand, A. Joshua

    2013-01-01

    Conformational entropy is a potentially important thermodynamic parameter contributing to protein function. Quantitative measures of conformational entropy are necessary for an understanding of its role but have been difficult to obtain. An empirical method that utilizes changes in conformational dynamics as a proxy for changes in conformational entropy has recently been introduced. Here we probe the microscopic origins of the link between conformational dynamics and conformational entropy using molecular dynamics simulations. Simulation of seven pro! teins gave an excellent correlation with measures of side-chain motion derived from NMR relaxation. The simulations show that the motion of methyl-bearing side-chains are sufficiently coupled to that of other side chains to serve as excellent reporters of the overall side-chain conformational entropy. These results tend to validate the use of experimentally accessible measures of methyl motion - the NMR-derived generalized order parameters - as a proxy from which to derive changes in protein conformational entropy. PMID:24007504

  1. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Elena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Gath, Julia [ETH Zurich, Physical Chemistry (Switzerland); Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Ravotti, Francesco; Szekely, Kathrin; Huber, Matthias [ETH Zurich, Physical Chemistry (Switzerland); Buchner, Lena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Guentert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2013-07-15

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and {alpha}-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.

  2. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    International Nuclear Information System (INIS)

    Schmidt, Elena; Gath, Julia; Habenstein, Birgit; Ravotti, Francesco; Székely, Kathrin; Huber, Matthias; Buchner, Lena; Böckmann, Anja; Meier, Beat H.; Güntert, Peter

    2013-01-01

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218–289) and α-synuclein yielded 88–97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77–90 % correctness if also assignments classified as tentative by the algorithm are included

  3. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  4. PARAssign-paramagnetic NMR assignments of protein nuclei on the basis of pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Simon P., E-mail: skinnersp@chem.leidenuniv.nl [Leiden University, Gorlaeus Laboratories, Leiden Institute of Chemistry (Netherlands); Moshev, Mois, E-mail: mois@monomon.me [Leiden University, Leiden Institute of Advanced Computer Science (Netherlands); Hass, Mathias A. S., E-mail: hassmas@chem.leidenuniv.nl; Ubbink, Marcellus, E-mail: m.ubbink@chem.leidenuniv.nl [Leiden University, Gorlaeus Laboratories, Leiden Institute of Chemistry (Netherlands)

    2013-04-15

    The use of paramagnetic NMR data for the refinement of structures of proteins and protein complexes is widespread. However, the power of paramagnetism for protein assignment has not yet been fully exploited. PARAssign is software that uses pseudocontact shift data derived from several paramagnetic centers attached to the protein to obtain amide and methyl assignments. The ability of PARAssign to perform assignment when the positions of the paramagnetic centers are known and unknown is demonstrated. PARAssign has been tested using synthetic data for methyl assignment of a 47 kDa protein, and using both synthetic and experimental data for amide assignment of a 14 kDa protein. The complex fitting space involved in such an assignment procedure necessitates that good starting conditions are found, both regarding placement and strength of paramagnetic centers. These starting conditions are obtained through automated tensor placement and user-defined tensor parameters. The results presented herein demonstrate that PARAssign is able to successfully perform resonance assignment in large systems with a high degree of reliability. This software provides a method for obtaining the assignments of large systems, which may previously have been unassignable, by using 2D NMR spectral data and a known protein structure.

  5. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  6. Rapid Determination of Protein Solubility and Stability Conditions for NMR Studies Using Incomplete Factorial Design

    International Nuclear Information System (INIS)

    Ducat, Thierry; Declerck, Nathalie; Gostan, Thierry; Kochoyan, Michel; Demene, Helene

    2006-01-01

    Sample preparation constitutes a crucial and limiting step in structural studies of proteins by NMR. The determination of the solubility and stability (SAS) conditions of biomolecules at millimolar concentrations stays today empirical and hence time- and material-consuming. Only few studies have been recently done in this field and they have highlighted the interest of using crystallogenesis tools to optimise sample conditions. In this study, we have adapted a method based on incomplete factorial design and making use of crystallisation plates to quantify the influence of physico-chemical parameters such as buffer pH and salts on protein SAS. A description of the experimental set up and an evaluation of the method are given by case studies on two functional domains from the bacterial regulatory protein LicT as well as two other proteins. Using this method, we could rapidly determine optimised conditions for extracting soluble proteins from bacterial cells and for preparing purified protein samples sufficiently concentrated and stable for NMR characterisation. The drastic reduction in the time and number of experiments required for searching protein SAS conditions makes this method particularly well-adapted for a systematic investigation on a large range of physico-chemical parameters

  7. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping; Pilla, Kala Bharath; Li, Qingfeng; Zhang, Zhengfeng; Su, Xuncheng; Huber, Thomas; Yang, Jun

    2013-01-01

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  8. Magic Angle Spinning NMR Structure Determination of Proteins from Pseudocontact Shifts

    KAUST Repository

    Li, Jianping

    2013-06-05

    Magic angle spinning solid-state NMR is a unique technique to study atomic-resolution structure of biomacromolecules which resist crystallization or are too large to study by solution NMR techniques. However, difficulties in obtaining sufficient number of long-range distance restraints using dipolar coupling based spectra hamper the process of structure determination of proteins in solid-state NMR. In this study it is shown that high-resolution structure of proteins in solid phase can be determined without the use of traditional dipolar-dipolar coupling based distance restraints by combining the measurements of pseudocontact shifts (PCSs) with Rosetta calculations. The PCSs were generated by chelating exogenous paramagnetic metal ions to a tag 4-mercaptomethyl-dipicolinic acid, which is covalently attached to different residue sites in a 56-residue immunoglobulin-binding domain of protein G (GB1). The long-range structural restraints with metal-nucleus distance of up to ∼20 Å are quantitatively extracted from experimentally observed PCSs, and these are in good agreement with the distances back-calculated using an X-ray structure model. Moreover, we demonstrate that using several paramagnetic ions with varied paramagnetic susceptibilities as well as the introduction of paramagnetic labels at different sites can dramatically increase the number of long-range restraints and cover different regions of the protein. The structure generated from solid-state NMR PCSs restraints combined with Rosetta calculations has 0.7 Å root-mean-square deviation relative to X-ray structure. © 2013 American Chemical Society.

  9. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH

    International Nuclear Information System (INIS)

    Volk, Jochen; Herrmann, Torsten; Wuethrich, Kurt

    2008-01-01

    MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness

  10. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  11. Seed storage protein components are associated with curled ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... analysis suggests that the two increased protein spots in mutants were ... The main objective of this work was to gain further understanding of the influence of curled cotyledon on the seed storage protein components in soybean by com- .... cotyledon formation during Arabidopsis embryogenesis: interaction.

  12. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    Directory of Open Access Journals (Sweden)

    Choe Senyon

    2007-11-01

    Full Text Available Abstract Background Structural studies of integral membrane proteins (IMPs are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs. The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.

  13. Principal components analysis of protein structure ensembles calculated using NMR data

    International Nuclear Information System (INIS)

    Howe, Peter W.A.

    2001-01-01

    One important problem when calculating structures of biomolecules from NMR data is distinguishing converged structures from outlier structures. This paper describes how Principal Components Analysis (PCA) has the potential to classify calculated structures automatically, according to correlated structural variation across the population. PCA analysis has the additional advantage that it highlights regions of proteins which are varying across the population. To apply PCA, protein structures have to be reduced in complexity and this paper describes two different representations of protein structures which achieve this. The calculated structures of a 28 amino acid peptide are used to demonstrate the methods. The two different representations of protein structure are shown to give equivalent results, and correct results are obtained even though the ensemble of structures used as an example contains two different protein conformations. The PCA analysis also correctly identifies the structural differences between the two conformations

  14. Study of the hydration of globular proteins by broad NMR lines method

    Energy Technology Data Exchange (ETDEWEB)

    Blicharska, B [Uniwersytet Jagiellonski, Krakow (Poland). Instytut Fizyki

    1973-01-01

    Spectra of proteins and polypeptides obtained by means of a NMR broad line spectrometer consist of broad and thin lines. These broad and thin lines are attributed to proteins and to water absorbed on the surfaces of proteins respectively. The behaviour of the thin line in the spectra of lyophilizated albumin of the egg white has been studied in the temperature range from -42 to 20/sup 0/C. The amount of water has been found by the simple method of weighing and has been equal about 7% of the total weight. It has been found that the water absorbed on the surface of the lyophilizated proteins gives a thinner line in comparison to the water absorbed on molecules of proteins in water solutions and that the correlation time is about 10/sup 3/ times greater.

  15. CASA: An Efficient Automated Assignment of Protein Mainchain NMR Data Using an Ordered Tree Search Algorithm

    International Nuclear Information System (INIS)

    Wang Jianyong; Wang Tianzhi; Zuiderweg, Erik R. P.; Crippen, Gordon M.

    2005-01-01

    Rapid analysis of protein structure, interaction, and dynamics requires fast and automated assignments of 3D protein backbone triple-resonance NMR spectra. We introduce a new depth-first ordered tree search method of automated assignment, CASA, which uses hand-edited peak-pick lists of a flexible number of triple resonance experiments. The computer program was tested on 13 artificially simulated peak lists for proteins up to 723 residues, as well as on the experimental data for four proteins. Under reasonable tolerances, it generated assignments that correspond to the ones reported in the literature within a few minutes of CPU time. The program was also tested on the proteins analyzed by other methods, with both simulated and experimental peaklists, and it could generate good assignments in all relevant cases. The robustness was further tested under various situations

  16. Human urine as test material in 1H NMR-based metabonomics: recommendations for sample preparation and storage.

    Science.gov (United States)

    Lauridsen, Michael; Hansen, Steen H; Jaroszewski, Jerzy W; Cornett, Claus

    2007-02-01

    Metabonomic approaches are believed to have the capability of revolutionizing diagnosis of diseases and assessment of patient conditions after medical interventions. In order to ensure comparability of metabonomic 1H NMR data from different studies, we suggest validated sample preparation guidelines for human urine based on a stability study that evaluates effects of storage time and temperature, freeze-drying, and the presence of preservatives. The results indicated that human urine samples should be stored at or below -25 degrees C, as no changes in the 1H NMR fingerprints have been observed during storage at this temperature for 26 weeks. Formation of acetate, presumably due to microbial contamination, was occasionally observed in samples stored at 4 degrees C without addition of a preservative. Addition of a preserving agent is not mandatory provided that the samples are stored at -25 degrees C. Thus, no differences were observed between 1H NMR spectra of nonpreserved urines and urines with added sodium azide and stored at -25 degrees C, whereas the presence of sodium fluoride caused a shift of especially citrate resonances. Freeze-drying of urine and reconstitution in D2O at pH 7.4 resulted in the disappearance of the creatinine CH2 signal at delta 4.06 due to deuteration. A study evaluating the effects of phosphate buffer concentration on signal variability and assessment of the probability of citrate or creatinine resonances crossing bucket border (a boundary between adjacent integrated regions) led to the conclusion that a minimum buffer concentration of 0.3 M is adequate for normal urines used in this study. However, final buffer concentration of 1 M will be required for very concentrated urines.

  17. Constructing a folding model for protein S6 guided by native fluctuations deduced from NMR structures

    International Nuclear Information System (INIS)

    Lammert, Heiko; Noel, Jeffrey K.; Haglund, Ellinor; Onuchic, José N.; Schug, Alexander

    2015-01-01

    The diversity in a set of protein nuclear magnetic resonance (NMR) structures provides an estimate of native state fluctuations that can be used to refine and enrich structure-based protein models (SBMs). Dynamics are an essential part of a protein’s functional native state. The dynamics in the native state are controlled by the same funneled energy landscape that guides the entire folding process. SBMs apply the principle of minimal frustration, drawn from energy landscape theory, to construct a funneled folding landscape for a given protein using only information from the native structure. On an energy landscape smoothed by evolution towards minimal frustration, geometrical constraints, imposed by the native structure, control the folding mechanism and shape the native dynamics revealed by the model. Native-state fluctuations can alternatively be estimated directly from the diversity in the set of NMR structures for a protein. Based on this information, we identify a highly flexible loop in the ribosomal protein S6 and modify the contact map in a SBM to accommodate the inferred dynamics. By taking into account the probable native state dynamics, the experimental transition state is recovered in the model, and the correct order of folding events is restored. Our study highlights how the shared energy landscape connects folding and function by showing that a better description of the native basin improves the prediction of the folding mechanism

  18. Accurate protein structure modeling using sparse NMR data and homologous structure information.

    Science.gov (United States)

    Thompson, James M; Sgourakis, Nikolaos G; Liu, Gaohua; Rossi, Paolo; Tang, Yuefeng; Mills, Jeffrey L; Szyperski, Thomas; Montelione, Gaetano T; Baker, David

    2012-06-19

    While information from homologous structures plays a central role in X-ray structure determination by molecular replacement, such information is rarely used in NMR structure determination because it can be incorrect, both locally and globally, when evolutionary relationships are inferred incorrectly or there has been considerable evolutionary structural divergence. Here we describe a method that allows robust modeling of protein structures of up to 225 residues by combining (1)H(N), (13)C, and (15)N backbone and (13)Cβ chemical shift data, distance restraints derived from homologous structures, and a physically realistic all-atom energy function. Accurate models are distinguished from inaccurate models generated using incorrect sequence alignments by requiring that (i) the all-atom energies of models generated using the restraints are lower than models generated in unrestrained calculations and (ii) the low-energy structures converge to within 2.0 Å backbone rmsd over 75% of the protein. Benchmark calculations on known structures and blind targets show that the method can accurately model protein structures, even with very remote homology information, to a backbone rmsd of 1.2-1.9 Å relative to the conventional determined NMR ensembles and of 0.9-1.6 Å relative to X-ray structures for well-defined regions of the protein structures. This approach facilitates the accurate modeling of protein structures using backbone chemical shift data without need for side-chain resonance assignments and extensive analysis of NOESY cross-peak assignments.

  19. NMR structure of the N-terminal domain of the replication initiator protein DnaA

    Energy Technology Data Exchange (ETDEWEB)

    Wemmer, David E.; Lowery, Thomas J.; Pelton, Jeffrey G.; Chandonia, John-Marc; Kim, Rosalind; Yokota, Hisao; Wemmer, David E.

    2007-08-07

    DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1-100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 +/- 0.2 Angstrom based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein-protein interactions essential for the initiation of DNA replication.

  20. Assignment strategies in homonuclear three-dimensional 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Vuister, G.W.; Boelens, R.; Padilla, A.; Kleywegt, G.J.; Kaptein, R.

    1990-01-01

    The increase in dimensionality of three-dimensional (3D) NMR greatly enhances the spectral resolution in comparison to 2D NMR. It alleviates the problem of resonance overlap and may extend the range of molecules amenable to structure determination by high-resolution NMR spectroscopy. Here, the authors present strategies for the assignment of protein resonances from homonuclear nonselective 3D NOE-HOHAHA spectra. A notation for connectivities between protons, corresponding to cross peaks in 3D spectra, is introduced. They show how spin systems can be identified by tracing cross-peak patterns in cross sections perpendicular to the three frequency axes. The observable 3D sequential connectivities in proteins are tabulated, and estimates for the relative intensities of the corresponding cross peaks are given for α-helical and β-sheet conformations. Intensities of the cross peaks in the 3D spectrum of pike III paravalbumin follow the predictions. The sequential-assignment procedure is illustrated for loop regions, extended and α-helical conformations for the residues Ala 54-Leu 63 of paravalbumin. NOEs that were not previously identified in 2D spectra of paravalbumin due to overlap are found

  1. On the relationship between NMR-derived amide order parameters and protein backbone entropy changes.

    Science.gov (United States)

    Sharp, Kim A; O'Brien, Evan; Kasinath, Vignesh; Wand, A Joshua

    2015-05-01

    Molecular dynamics simulations are used to analyze the relationship between NMR-derived squared generalized order parameters of amide NH groups and backbone entropy. Amide order parameters (O(2) NH ) are largely determined by the secondary structure and average values appear unrelated to the overall flexibility of the protein. However, analysis of the more flexible subset (O(2) NH  entropy than that reported by the side chain methyl axis order parameters, O(2) axis . A calibration curve for backbone entropy vs. O(2) NH is developed, which accounts for both correlations between amide group motions of different residues, and correlations between backbone and side chain motions. This calibration curve can be used with experimental values of O(2) NH changes obtained by NMR relaxation measurements to extract backbone entropy changes, for example, upon ligand binding. In conjunction with our previous calibration for side chain entropy derived from measured O(2) axis values this provides a prescription for determination of the total protein conformational entropy changes from NMR relaxation measurements. © 2015 Wiley Periodicals, Inc.

  2. Optimizing nanodiscs and bicelles for solution NMR studies of two β-barrel membrane proteins

    International Nuclear Information System (INIS)

    Kucharska, Iga; Edrington, Thomas C.; Liang, Binyong; Tamm, Lukas K.

    2015-01-01

    Solution NMR spectroscopy has become a robust method to determine structures and explore the dynamics of integral membrane proteins. The vast majority of previous studies on membrane proteins by solution NMR have been conducted in lipid micelles. Contrary to the lipids that form a lipid bilayer in biological membranes, micellar lipids typically contain only a single hydrocarbon chain or two chains that are too short to form a bilayer. Therefore, there is a need to explore alternative more bilayer-like media to mimic the natural environment of membrane proteins. Lipid bicelles and lipid nanodiscs have emerged as two alternative membrane mimetics that are compatible with solution NMR spectroscopy. Here, we have conducted a comprehensive comparison of the physical and spectroscopic behavior of two outer membrane proteins from Pseudomonas aeruginosa, OprG and OprH, in lipid micelles, bicelles, and nanodiscs of five different sizes. Bicelles stabilized with a fraction of negatively charged lipids yielded spectra of almost comparable quality as in the best micellar solutions and the secondary structures were found to be almost indistinguishable in the two environments. Of the five nanodiscs tested, nanodiscs assembled from MSP1D1ΔH5 performed the best with both proteins in terms of sample stability and spectral resolution. Even in these optimal nanodiscs some broad signals from the membrane embedded barrel were severely overlapped with sharp signals from the flexible loops making their assignments difficult. A mutant OprH that had two of the flexible loops truncated yielded very promising spectra for further structural and dynamical analysis in MSP1D1ΔH5 nanodiscs

  3. Storage of parbaked bread affects shelf life of fully baked end product: a ¹H NMR study.

    Science.gov (United States)

    Bosmans, Geertrui M; Lagrain, Bert; Ooms, Nand; Fierens, Ellen; Delcour, Jan A

    2014-12-15

    Full baking of earlier partially baked (parbaked) bread can supply fresh bread to the consumer at any time of the day. When parbaked bread loaves were stored at -25, 4 or 23°C, the extent of crumb to crust moisture migration and amylopectin retrogradation differed with storage temperature, and the firming rate was evidently lowest during frozen storage. The extent of crumb to crust moisture migration during parbaked bread storage largely determined the mass of the fresh finished bread, and its crumb and crust moisture contents. Initial NMR proton mobility, initial resilience, the extent of amylopectin retrogradation and changes in firmness and resilience during storage of fully baked bread were affected by its crumb moisture content. The lowest firming rate was observed for finished bread resulting from parbaked bread stored at -25°C, while the highest firming rate was observed for finished bread from parbaked bread stored at 23°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    International Nuclear Information System (INIS)

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von

    2007-01-01

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand (α/β-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available

  5. NMR in a crystallography-based high-throughput protein structure-determination environment

    International Nuclear Information System (INIS)

    Wüthrich, Kurt

    2010-01-01

    As an introduction to three papers on comparisons of corresponding crystal and NMR solution structures determined by the Joint Center for Structural Genomics (JCSG), an outline is provided of the JCSG strategy for combined use of the two techniques. A special commentary addresses the potentialities of the concept of ‘reference crystal structures’, which is introduced in the following three papers. An introduction is provided to three papers which compare corresponding protein crystal and NMR solution structures determined by the Joint Center for Structural Genomics (JCSG). Special mention is made of the JCSG strategy for combined use of the two techniques, and of potential applications of the concept of ‘reference crystal structures’, which is introduced in the following three papers

  6. Measuring 13Cβ chemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy

    International Nuclear Information System (INIS)

    Lundstroem, Patrik; Lin Hong; Kay, Lewis E.

    2009-01-01

    A labeling scheme is introduced that facilitates the measurement of accurate 13 C β chemical shifts of invisible, excited states of proteins by relaxation dispersion NMR spectroscopy. The approach makes use of protein over-expression in a strain of E. coli in which the TCA cycle enzyme succinate dehydrogenase is knocked out, leading to the production of samples with high levels of 13 C enrichment (30-40%) at C β side-chain carbon positions for 15 of the amino acids with little 13 C label at positions one bond removed (∼5%). A pair of samples are produced using [1- 13 C]-glucose/NaH 12 CO 3 or [2- 13 C]-glucose as carbon sources with isolated and enriched (>30%) 13 C β positions for 11 and 4 residues, respectively. The efficacy of the labeling procedure is established by NMR spectroscopy. The utility of such samples for measurement of 13 C β chemical shifts of invisible, excited states in exchange with visible, ground conformations is confirmed by relaxation dispersion studies of a protein-ligand binding exchange reaction in which the extracted chemical shift differences from dispersion profiles compare favorably with those obtained directly from measurements on ligand free and fully bound protein samples

  7. Assessment of the structure of pegylated-recombinant protein therapeutics by the NMR fingerprint assay.

    Science.gov (United States)

    Hodgson, Derek J; Aubin, Yves

    2017-05-10

    A number of recombinant protein therapeutic products, such as filgrastim (methionyl granulocyte colony stimulating factor [Met-GCSF] used to boost the immune system in chemotherapy treated cancer patients), and interferon alpha-2 (used for the treatment of various viral infections), have been chemically modified with the addition of a polyethylene glycol (PEG) chain. This modification prolongs residency of the drug in the body and reduces metabolic degradation, which allows less frequent administration of the products. Here we show how NMR spectroscopy methods can assess the higher order structure (HOS) of pegylated-filgrastim (Neulasta®), pegylated interferon-α2a (Pegasys®) pegylated interferon-α2b (PEG-Intron®) purchased from the marketplace. The addition of the PEG moiety effectively doubles the molecular weight of the three products. This presents a significant challenge for the application of NMR techniques. Nevertheless, the results showed that high-resolution spectra could be recorded for two of the three products. Comparison of the spectra of the pegylated protein and the non-pegylated protein shows that the chemical modification did not alter the HOS of these proteins. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  8. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers Univ., Piscataway, NJ (United States)

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  9. Optimization of NMR spectroscopy of encapsulated proteins dissolved in low viscosity fluids

    International Nuclear Information System (INIS)

    Nucci, Nathaniel V.; Marques, Bryan S.; Bédard, Sabrina; Dogan, Jakob; Gledhill, John M.; Moorman, Veronica R.; Peterson, Ronald W.; Valentine, Kathleen G.; Wand, Alison L.; Wand, A. Joshua

    2011-01-01

    Comprehensive application of solution NMR spectroscopy to studies of macromolecules remains fundamentally limited by the molecular rotational correlation time. For proteins, molecules larger than 30 kDa require complex experimental methods, such as TROSY in conjunction with isotopic labeling schemes that are often expensive and generally reduce the potential information available. We have developed the reverse micelle encapsulation strategy as an alternative approach. Encapsulation of proteins within the protective nano-scale water pool of a reverse micelle dissolved in ultra-low viscosity nonpolar solvents overcomes the slow tumbling problem presented by large proteins. Here, we characterize the contributions from the various components of the protein-containing reverse micelle system to the rotational correlation time of the encapsulated protein. Importantly, we demonstrate that the protein encapsulated in the reverse micelle maintains a hydration shell comparable in size to that seen in bulk solution. Using moderate pressures, encapsulation in ultra-low viscosity propane or ethane can be used to magnify this advantage. We show that encapsulation in liquid ethane can be used to reduce the tumbling time of the 43 kDa maltose binding protein from ∼23 to ∼10 ns. These conditions enable, for example, acquisition of TOCSY-type data resolved on the adjacent amide NH for the 43 kDa encapsulated maltose binding protein dissolved in liquid ethane, which is typically impossible for proteins of such size without use of extensive deuteration or the TROSY effect.

  10. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer

    International Nuclear Information System (INIS)

    Huber, J.G.

    1996-01-01

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an α helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S γ -C β -H β )Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven instrumental in affording new

  11. PINE-SPARKY.2 for automated NMR-based protein structure research.

    Science.gov (United States)

    Lee, Woonghee; Markley, John L

    2018-05-01

    Nuclear magnetic resonance (NMR) spectroscopy, along with X-ray crystallography and cryoelectron microscopy, is one of the three major tools that enable the determination of atomic-level structural models of biological macromolecules. Of these, NMR has the unique ability to follow important processes in solution, including conformational changes, internal dynamics and protein-ligand interactions. As a means for facilitating the handling and analysis of spectra involved in these types of NMR studies, we have developed PINE-SPARKY.2, a software package that integrates and automates discrete tasks that previously required interaction with separate software packages. The graphical user interface of PINE-SPARKY.2 simplifies chemical shift assignment and verification, automated detection of secondary structural elements, predictions of flexibility and hydrophobic cores, and calculation of three-dimensional structural models. PINE-SPARKY.2 is available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). For a detailed description of the program, see http://www.nmrfam.wisc.edu/pine-sparky2.htm. whlee@nmrfam.wisc.edu or markley@nmrfam.wisc.edu. Supplementary data are available at Bioinformatics online.

  12. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    Science.gov (United States)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  13. Efficient DNP NMR of membrane proteins: sample preparation protocols, sensitivity, and radical location

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo [Massachusetts Institute of Technology, Department of Chemistry (United States); Sergeyev, Ivan V. [Bruker Biospin (United States); Hong, Mei, E-mail: meihong@mit.edu [Massachusetts Institute of Technology, Department of Chemistry (United States)

    2016-03-15

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~fourfold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes.

  14. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Delaglio, Frank [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Cornilescu, Gabriel [National Magnetic Resonance Facility (United States); Bax, Ad [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: bax@nih.gov

    2009-08-15

    NMR chemical shifts in proteins depend strongly on local structure. The program TALOS establishes an empirical relation between {sup 13}C, {sup 15}N and {sup 1}H chemical shifts and backbone torsion angles {phi} and {psi} (Cornilescu et al. J Biomol NMR 13 289-302, 1999). Extension of the original 20-protein database to 200 proteins increased the fraction of residues for which backbone angles could be predicted from 65 to 74%, while reducing the error rate from 3 to 2.5%. Addition of a two-layer neural network filter to the database fragment selection process forms the basis for a new program, TALOS+, which further enhances the prediction rate to 88.5%, without increasing the error rate. Excluding the 2.5% of residues for which TALOS+ makes predictions that strongly differ from those observed in the crystalline state, the accuracy of predicted {phi} and {psi} angles, equals {+-}13{sup o}. Large discrepancies between predictions and crystal structures are primarily limited to loop regions, and for the few cases where multiple X-ray structures are available such residues are often found in different states in the different structures. The TALOS+ output includes predictions for individual residues with missing chemical shifts, and the neural network component of the program also predicts secondary structure with good accuracy.

  15. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  16. Insights into the interaction between nucleoid-associated proteins H ha and H-NS by NMR and fluorescence anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, T.N.; Garcia, J. [Institut de Recerca Biomedica-Parc Cientific de (Spain). Lab. of Biomolecular NMR; Pons, M. [Universitat de Barcelona (Spain). Dept. de Quimica Organica]. E-mail: mpons@ub.edu

    2005-07-01

    NMR and fluorescence anisotropy are both valuable tools for studying bio molecular interactions. NMR can provide structural insights at atomic resolution. Still, it can be wisely complemented by lower-resolution biophysical techniques, such as fluorescence anisotropy. In this article we report the combination of NMR and fluorescence anisotropy in establishing novel structure-function insights into the interaction between two bacterial nucleoid-associated proteins, H ha and H-NS. H ha (H-NS) complexes are known to play an important role in modulating the expression of some environmentally regulated genes that confer survival advantage in a particular growth condition. (author)

  17. Insights into the interaction between nucleoid-associated proteins H ha and H-NS by NMR and fluorescence anisotropy

    International Nuclear Information System (INIS)

    Cordeiro, T.N.; Garcia, J.; Pons, M.

    2005-01-01

    NMR and fluorescence anisotropy are both valuable tools for studying bio molecular interactions. NMR can provide structural insights at atomic resolution. Still, it can be wisely complemented by lower-resolution biophysical techniques, such as fluorescence anisotropy. In this article we report the combination of NMR and fluorescence anisotropy in establishing novel structure-function insights into the interaction between two bacterial nucleoid-associated proteins, H ha and H-NS. H ha (H-NS) complexes are known to play an important role in modulating the expression of some environmentally regulated genes that confer survival advantage in a particular growth condition. (author)

  18. High Pressure ZZ-Exchange NMR Reveals Key Features of Protein Folding Transition States.

    Science.gov (United States)

    Zhang, Yi; Kitazawa, Soichiro; Peran, Ivan; Stenzoski, Natalie; McCallum, Scott A; Raleigh, Daniel P; Royer, Catherine A

    2016-11-23

    Understanding protein folding mechanisms and their sequence dependence requires the determination of residue-specific apparent kinetic rate constants for the folding and unfolding reactions. Conventional two-dimensional NMR, such as HSQC experiments, can provide residue-specific information for proteins. However, folding is generally too fast for such experiments. ZZ-exchange NMR spectroscopy allows determination of folding and unfolding rates on much faster time scales, yet even this regime is not fast enough for many protein folding reactions. The application of high hydrostatic pressure slows folding by orders of magnitude due to positive activation volumes for the folding reaction. We combined high pressure perturbation with ZZ-exchange spectroscopy on two autonomously folding protein domains derived from the ribosomal protein, L9. We obtained residue-specific apparent rates at 2500 bar for the N-terminal domain of L9 (NTL9), and rates at atmospheric pressure for a mutant of the C-terminal domain (CTL9) from pressure dependent ZZ-exchange measurements. Our results revealed that NTL9 folding is almost perfectly two-state, while small deviations from two-state behavior were observed for CTL9. Both domains exhibited large positive activation volumes for folding. The volumetric properties of these domains reveal that their transition states contain most of the internal solvent excluded voids that are found in the hydrophobic cores of the respective native states. These results demonstrate that by coupling it with high pressure, ZZ-exchange can be extended to investigate a large number of protein conformational transitions.

  19. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  20. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  1. Exploring abiotic stress on asynchronous protein metabolism in single kernels of wheat studied by NMR spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Winning, H.; Viereck, N.; Wollenweber, B.

    2009-01-01

    at the vegetative growth stage had little effect on the parameters investigated. For the first time, H-1 HR-MAS NMR spectra of grains taken during grain-filling were analysed by an advanced multiway model. In addition to the results from the chemical protein analysis and the H-1 HR-MAS NMR spectra of single kernels...... was to examine the implications of different drought treatments on the protein fractions in grains of winter wheat using H-1 nuclear magnetic resonance spectroscopy followed by chemometric analysis. Triticum aestivum L. cv. Vinjett was studied in a semi-field experiment and subjected to drought episodes either...... at terminal spikelet, during grain-filling or at both stages. Principal component trajectories of the total protein content and the protein fractions of flour as well as the H-1 NMR spectra of single wheat kernels, wheat flour, and wheat methanol extracts were analysed to elucidate the metabolic development...

  2. RESCUE: An artificial neural network tool for the NMR spectral assignment of proteins

    International Nuclear Information System (INIS)

    Pons, J.L.; Delsuc, M.A.

    1999-01-01

    The assignment of the 1 H spectrum of a protein or a polypeptide is the prerequisite for advanced NMR studies. We present here an assignment tool based on the artificial neural network technology, which determines the type of the amino acid from the chemical shift values observed in the 1 H spectrum. Two artificial neural networks have been trained and extensively tested against a non-redundant subset of the BMRB chemical shift data bank [Seavey, B.R. et al. (1991) J. Biomol. NMR, 1, 217-236]. The most promising of the two accomplishes the analysis in two steps, grouping related amino acids together. It presents a mean rate of success above 80% on the test set. The second network tested separates down to the single amino acid; it presents a mean rate of success of 63%. This tool has been used to assist the manual assignment of peptides and proteins and can also be used as a block in an automated approach to assignment. The program has been called RESCUE and is made publicly available at the following URL: http://www.infobiosud.univ-montp1.fr/rescue

  3. PASA - A Program for Automated Protein NMR Backbone Signal Assignment by Pattern-Filtering Approach

    International Nuclear Information System (INIS)

    Xu Yizhuang; Wang Xiaoxia; Yang Jun; Vaynberg, Julia; Qin Jun

    2006-01-01

    We present a new program, PASA (Program for Automated Sequential Assignment), for assigning protein backbone resonances based on multidimensional heteronuclear NMR data. Distinct from existing programs, PASA emphasizes a per-residue-based pattern-filtering approach during the initial stage of the automated 13 C α and/or 13 C β chemical shift matching. The pattern filter employs one or multiple constraints such as 13 C α /C β chemical shift ranges for different amino acid types and side-chain spin systems, which helps to rule out, in a stepwise fashion, improbable assignments as resulted from resonance degeneracy or missing signals. Such stepwise filtering approach substantially minimizes early false linkage problems that often propagate, amplify, and ultimately cause complication or combinatorial explosion of the automation process. Our program (http://www.lerner.ccf.org/moleccard/qin/) was tested on four representative small-large sized proteins with various degrees of resonance degeneracy and missing signals, and we show that PASA achieved the assignments efficiently and rapidly that are fully consistent with those obtained by laborious manual protocols. The results demonstrate that PASA may be a valuable tool for NMR-based structural analyses, genomics, and proteomics

  4. Relationship between recombinant protein expression and host metabolome as determined by two-dimensional NMR spectroscopy.

    Directory of Open Access Journals (Sweden)

    Young Kee Chae

    Full Text Available Escherichia coli has been the most widely used host to produce large amounts of heterologous proteins. However, given an input plasmid DNA, E. coli may produce soluble protein, produce only inclusion bodies, or yield little or no protein at all. Many efforts have been made to surmount these problems, but most of them have involved time-consuming and labor-intensive trial-and-error. We hypothesized that different metabolomic fingerprints might be associated with different protein production outcomes. If so, then it might be possible to change the expression pattern by manipulating the metabolite environment. As a first step in testing this hypothesis, we probed a subset of the intracellular metabolites by partially labeling it with 13C-glucose. We tested 71 genes and identified 17 metabolites by employing the two-dimensional NMR spectroscopy. The statistical analysis showed that there existed the metabolite compositions favoring protein production. We hope that this work would help devise a systematic and predictive approach to the recombinant protein production.

  5. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    International Nuclear Information System (INIS)

    Lee, Woonghee; Petit, Chad M.; Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L.

    2016-01-01

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  6. The AUDANA algorithm for automated protein 3D structure determination from NMR NOE data

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woonghee, E-mail: whlee@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States); Petit, Chad M. [University of Alabama at Birmingham, Department of Biochemistry and Molecular Genetics (United States); Cornilescu, Gabriel; Stark, Jaime L.; Markley, John L., E-mail: markley@nmrfam.wisc.edu [University of Wisconsin-Madison, National Magnetic Resonance Facility at Madison and Biochemistry Department (United States)

    2016-06-15

    We introduce AUDANA (Automated Database-Assisted NOE Assignment), an algorithm for determining three-dimensional structures of proteins from NMR data that automates the assignment of 3D-NOE spectra, generates distance constraints, and conducts iterative high temperature molecular dynamics and simulated annealing. The protein sequence, chemical shift assignments, and NOE spectra are the only required inputs. Distance constraints generated automatically from ambiguously assigned NOE peaks are validated during the structure calculation against information from an enlarged version of the freely available PACSY database that incorporates information on protein structures deposited in the Protein Data Bank (PDB). This approach yields robust sets of distance constraints and 3D structures. We evaluated the performance of AUDANA with input data for 14 proteins ranging in size from 6 to 25 kDa that had 27–98 % sequence identity to proteins in the database. In all cases, the automatically calculated 3D structures passed stringent validation tests. Structures were determined with and without database support. In 9/14 cases, database support improved the agreement with manually determined structures in the PDB and in 11/14 cases, database support lowered the r.m.s.d. of the family of 20 structural models.

  7. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts.

    Science.gov (United States)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, Jes; Ferkinghoff-Borg, Jesper; Hamelryck, Thomas; Lindorff-Larsen, Kresten; Vendruscolo, Michele

    2014-09-23

    Methods of protein structure determination based on NMR chemical shifts are becoming increasingly common. The most widely used approaches adopt the molecular fragment replacement strategy, in which structural fragments are repeatedly reassembled into different complete conformations in molecular simulations. Although these approaches are effective in generating individual structures consistent with the chemical shift data, they do not enable the sampling of the conformational space of proteins with correct statistical weights. Here, we present a method of molecular fragment replacement that makes it possible to perform equilibrium simulations of proteins, and hence to determine their free energy landscapes. This strategy is based on the encoding of the chemical shift information in a probabilistic model in Markov chain Monte Carlo simulations. First, we demonstrate that with this approach it is possible to fold proteins to their native states starting from extended structures. Second, we show that the method satisfies the detailed balance condition and hence it can be used to carry out an equilibrium sampling from the Boltzmann distribution corresponding to the force field used in the simulations. Third, by comparing the results of simulations carried out with and without chemical shift restraints we describe quantitatively the effects that these restraints have on the free energy landscapes of proteins. Taken together, these results demonstrate that the molecular fragment replacement strategy can be used in combination with chemical shift information to characterize not only the native structures of proteins but also their conformational fluctuations.

  8. Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yang; Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2013-07-15

    A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, {>=}90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed ({phi}, {psi}) torsion angles of ca 12 Masculine-Ordinal-Indicator . TALOS-N also reports sidechain {chi}{sup 1} rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

  9. Methane Storage in Nanoporous Media as Observed via High-Field NMR Relaxometry

    Science.gov (United States)

    Papaioannou, A.; Kausik, R.

    2015-08-01

    The storage properties of methane gas in Vycor porous glass (5.7 nm) are characterized in a wide pressure range from 0.7 to 89.7 MPa using nuclear magnetic resonance. We demonstrate the capability of high-field nuclear-magnetic-resonance relaxometry for the determination of the methane-gas storage capacity and the measurement of the hydrogen index, to a high degree of accuracy. This helps determine the excess gas in the pore space which can be identified to exhibit Langmuir properties in the low pressure regime of 0.7 to 39.6 MPa. The Langmuir model enables us to determine the equilibrium density of the monolayer of adsorbed gas to be 8.5% lower than that of liquid methane. We also identify the signatures of multilayer adsorption at the high pressure regime from 39.6 to 89.7 MPa and use the Brunauer-Emmet-Teller theory to determine the number of adsorbed layers of methane gas. We show how these measurements help us differentiate the gas stored in the Vycor pore space into free and adsorbed fractions for the entire pressure range paving way for similar applications such as studying natural-gas storage in gas shale rock or hydrogen storage in carbon nanotubes.

  10. Resonance assignment for a particularly challenging protein based on systematic unlabeling of amino acids to complement incomplete NMR data sets

    International Nuclear Information System (INIS)

    Bellstedt, Peter; Seiboth, Thomas; Häfner, Sabine; Kutscha, Henriette; Ramachandran, Ramadurai; Görlach, Matthias

    2013-01-01

    NMR-based structure determination of a protein requires the assignment of resonances as indispensable first step. Even though heteronuclear through-bond correlation methods are available for that purpose, challenging situations arise in cases where the protein in question only yields samples of limited concentration and/or stability. Here we present a strategy based upon specific individual unlabeling of all 20 standard amino acids to complement standard NMR experiments and to achieve unambiguous backbone assignments for the fast precipitating 23 kDa catalytic domain of human aprataxin of which only incomplete standard NMR data sets could be obtained. Together with the validation of this approach utilizing the protein GB1 as a model, a comprehensive insight into metabolic interconversion ('scrambling”) of NH and CO groups in a standard Escherichia coli expression host is provided

  11. Protein analysis by 31p NMR spectroscopy in ionic liquid: quantitative determination of enzymatically created cross-links.

    Science.gov (United States)

    Monogioudi, Evanthia; Permi, Perttu; Filpponen, Ilari; Lienemann, Michael; Li, Bin; Argyropoulos, Dimitris; Buchert, Johanna; Mattinen, Maija-Liisa

    2011-02-23

    Cross-linking of β-casein by Trichoderma reesei tyrosinase (TrTyr) and Streptoverticillium mobaraense transglutaminase (Tgase) was analyzed by (31)P nuclear magnetic resonance (NMR) spectroscopy in ionic liquid (IL). According to (31)P NMR, 91% of the tyrosine side chains were cross-linked by TrTyr at high dosages. When Tgase was used, no changes were observed because a different cross-linking mechanism was operational. However, this verified the success of the phosphitylation of phenolics within the protein matrix in the IL. Atomic force microscopy (AFM) in solid state showed that disk-shaped nanoparticles were formed in the reactions with average diameters of 80 and 20 nm for TrTyr and Tgase, respectively. These data further advance the current understanding of the action of tyrosinases on proteins on molecular and chemical bond levels. Quantitative (31)P NMR in IL was shown to be a simple and efficient method for the study of protein modification.

  12. Detergent/nanodisc screening for high-resolution NMR studies of an integral membrane protein containing a cytoplasmic domain.

    Directory of Open Access Journals (Sweden)

    Christos Tzitzilonis

    Full Text Available Because membrane proteins need to be extracted from their natural environment and reconstituted in artificial milieus for the 3D structure determination by X-ray crystallography or NMR, the search for membrane mimetic that conserve the native structure and functional activities remains challenging. We demonstrate here a detergent/nanodisc screening study by NMR of the bacterial α-helical membrane protein YgaP containing a cytoplasmic rhodanese domain. The analysis of 2D [(15N,(1H]-TROSY spectra shows that only a careful usage of low amounts of mixed detergents did not perturb the cytoplasmic domain while solubilizing in parallel the transmembrane segments with good spectral quality. In contrast, the incorporation of YgaP into nanodiscs appeared to be straightforward and yielded a surprisingly high quality [(15N,(1H]-TROSY spectrum opening an avenue for the structural studies of a helical membrane protein in a bilayer system by solution state NMR.

  13. A natural and readily available crowding agent: NMR studies of proteins in hen egg white.

    Science.gov (United States)

    Martorell, Gabriel; Adrover, Miquel; Kelly, Geoff; Temussi, Piero Andrea; Pastore, Annalisa

    2011-05-01

    In vitro studies of biological macromolecules are usually performed in dilute, buffered solutions containing one or just a few different biological macromolecules. Under these conditions, the interactions among molecules are diffusion limited. On the contrary, in living systems, macromolecules of a given type are surrounded by many others, at very high total concentrations. In the last few years, there has been an increasing effort to study biological macromolecules directly in natural crowded environments, as in intact bacterial cells or by mimicking natural crowding by adding proteins, polysaccharides, or even synthetic polymers. Here, we propose the use of hen egg white (HEW) as a simple natural medium, with all features of the media of crowded cells, that could be used by any researcher without difficulty and inexpensively. We present a study of the stability and dynamics behavior of model proteins in HEW, chosen as a prototypical, readily accessible natural medium that can mimic cytosol. We show that two typical globular proteins, dissolved in HEW, give NMR spectra very similar to those obtained in dilute buffers, although dynamic parameters are clearly affected by the crowded medium. The thermal stability of one of these proteins, measured in a range comprising both heat and cold denaturation, is also similar to that in buffer. Our data open new possibilities to the study of proteins in natural crowded media. Copyright © 2010 Wiley-Liss, Inc.

  14. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells.

    Science.gov (United States)

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-10-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  15. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells

    Energy Technology Data Exchange (ETDEWEB)

    Hikone, Yuya [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Hirai, Go [RIKEN, Synthetic Organic Chemistry Laboratory (Japan); Mishima, Masaki [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Inomata, Kohsuke [RIKEN, Quantitative Biology Center (Japan); Ikeya, Teppei; Arai, Souichiro [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan); Shirakawa, Masahiro [Japan Agency for Medical Research and Development, AMED-CREST (Japan); Sodeoka, Mikiko [RIKEN, Synthetic Organic Chemistry Laboratory (Japan); Ito, Yutaka, E-mail: ito-yutaka@tmu.ac.jp [Tokyo Metropolitan University, Department of Chemistry, Graduate School of Science and Engineering (Japan)

    2016-10-15

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N–H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  16. A new carbamidemethyl-linked lanthanoid chelating tag for PCS NMR spectroscopy of proteins in living HeLa cells

    International Nuclear Information System (INIS)

    Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka

    2016-01-01

    Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N–H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.

  17. Plant storage proteins – the main nourisching products – from biosynthesis to cellular storage depots

    Directory of Open Access Journals (Sweden)

    Agnieszka Chmielnicka

    2017-06-01

    Full Text Available Storage proteins of legumes are one of the main components of the human and animal diet. The substances collected in their seeds have the pro-health values, supporting the prevention of many civilization diseases. However, there are still many uncertainties about the mechanisms leading to the production of nutritious seeds. It is also difficult to identify which of their constituents and in what final form are responsible for the observed protective effects in vivo. In this work, on the background of different types of storage proteins, these deposited mainly in legumes were in the focus of interest. They were characterized on the example of pea (Pisum sativum proteins. Mechanisms associated with their biosynthesis and transport to specific cellular compartments was presented. Ways of their post-translational processing, segregation and storage in the specific vacuoles were also discussed. Therefore, the paper presents the state-of-the-art knowledge concerning the processes making the accumulated protein deposits ready to use by plants, animals and humans.

  18. Structure and dynamics of cationic membrane peptides and proteins: Insights from solid-state NMR

    Science.gov (United States)

    Hong, Mei; Su, Yongchao

    2011-01-01

    Many membrane peptides and protein domains contain functionally important cationic Arg and Lys residues, whose insertion into the hydrophobic interior of the lipid bilayer encounters significant energy barriers. To understand how these cationic molecules overcome the free energy barrier to insert into the lipid membrane, we have used solid-state NMR spectroscopy to determine the membrane-bound topology of these peptides. A versatile array of solid-state NMR experiments now readily yields the conformation, dynamics, orientation, depth of insertion, and site-specific protein–lipid interactions of these molecules. We summarize key findings of several Arg-rich membrane peptides, including β-sheet antimicrobial peptides, unstructured cell-penetrating peptides, and the voltage-sensing helix of voltage-gated potassium channels. Our results indicate the central role of guanidinium-phosphate and guanidinium-water interactions in dictating the structural topology of these cationic molecules in the lipid membrane, which in turn account for the mechanisms of this functionally diverse class of membrane peptides. PMID:21344534

  19. Quantifying protein dynamics in the ps–ns time regime by NMR relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Griselda; LeMaster, David M., E-mail: david.lemaster@health.ny.gov [University at Albany - SUNY, Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, School of Public Health (United States)

    2016-11-15

    Both {sup 15}N chemical shift anisotropy (CSA) and sufficiently rapid exchange linebroadening transitions exhibit relaxation contributions that are proportional to the square of the magnetic field. Deconvoluting these contributions is further complicated by residue-dependent variations in protein amide {sup 15}N CSA values which have proven difficult to accurately measure. Exploiting recently reported improvements for the implementation of T{sub 1} and T{sub 1ρ} experiments, field strength-dependent studies have been carried out on the B3 domain of protein G (GB3) as well as on the immunophilin FKBP12 and a H87V variant of that protein in which the major conformational exchange linebroadening transition is suppressed. By applying a zero frequency spectral density rescaling analysis to the relaxation data collected at magnetic fields from 500 to 900 MHz {sup 1}H, differential residue-specific {sup 15}N CSA values have been obtained for GB3 which correlate with those derived from solid state and liquid crystalline NMR measurements to a level similar to the correlation among those previously reported studies. Application of this analysis protocol to FKBP12 demonstrated an efficient quantitation of both weak exchange linebroadening contributions and differential residue-specific {sup 15}N CSA values. Experimental access to such differential residue-specific {sup 15}N CSA values should significantly facilitate more accurate comparisons with molecular dynamics simulations of protein motion that occurs within the timeframe of global molecular tumbling.

  20. Protein-Glycan Quinary Interactions in Crowding Environment Unveiled by NMR Spectroscopy.

    Science.gov (United States)

    Diniz, Ana; Dias, Jorge S; Jiménez-Barbero, Jesús; Marcelo, Filipa; Cabrita, Eurico J

    2017-09-21

    Protein-glycan interactions as modulators for quinary structures in crowding environments were explored. The interaction between human galectin 3 (Gal-3) and distinct macromolecular crowders, such as bovine and human serum albumin (BSA and HSA), Ficoll 70 and PEG3350, was scrutinized. The molecular recognition event of the specific ligand, lactose, by Gal-3 in crowding conditions was evaluated. Gal-3 interactions were monitored by NMR analysing chemical shift perturbation (CSP) and line broadening of 1 H 15 N-HSQC signals. The intensity of the Gal-3 1 H 15 N-HSQC signals decreased in the presence of all crowders, due to the increase in the solution viscosity and to the formation of large protein complexes. When glycosylated containing samples of BSA and HSA were used, signal broadening was more severe than that observed in the presence of the more viscous solutions of PEG3350 and Ficoll 70. However, for the samples containing glycoproteins, the signal intensity of 1 H 15 N-HSQC recovered upon addition of lactose. We show that serum proteins interact with Gal-3, through their α2,3-linked sialylgalactose moieties exposed at their surfaces, competing with lactose for the same binding site. The quinary interaction between Gal-3 and serum glycoproteins, could help to co-localize Gal-3 at the cell surface, and may play a role in adhesion and signalling functions of this protein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Zero in on Key Open Problems in Automated NMR Protein Structure Determination

    KAUST Repository

    Abbas, Ahmed

    2015-11-12

    Nuclear magnetic resonance (NMR) is one of the main approaches for protein struc- ture determination. The biggest advantage of this approach is that it can determine the three-dimensional structure of the protein in the solution phase. Thus, the natural dynamics of the protein can be studied. However, NMR protein structure determina- tion is an expertise intensive and time-consuming process. If the structure determi- nation process can be accelerated or even automated by computational methods, that will significantly advance the structural biology field. Our goal in this dissertation is to propose highly efficient and error tolerant methods that can work well on real and noisy data sets of NMR. Our first contribution in this dissertation is the development of a novel peak pick- ing method (WaVPeak). First, WaVPeak denoises the NMR spectra using wavelet smoothing. A brute force method is then used to identify all the candidate peaks. Af- ter that, the volume of each candidate peak is estimated. Finally, the peaks are sorted according to their volumes. WaVPeak is tested on the same benchmark data set that was used to test the state-of-the-art method, PICKY. WaVPeak shows significantly better performance than PICKY in terms of recall and precision. Our second contribution is to propose an automatic method to select peaks pro- duced by peak picking methods. This automatic method is used to overcome the limitations of fixed number-based methods. Our method is based on the Benjamini- Hochberg (B-H) algorithm. The method is used with both WaVPeak and PICKY to automatically select the number of peaks to return from out of hundreds of candidate peaks. The volume (in WaVPeak) and the intensity (in PICKY) are converted into p-values. Peaks that have p-values below some certain threshold are selected. Ex- perimental results show that the new method is better than the fixed number-based method in terms of recall. To improve precision, we tried to eliminate false peaks using

  2. Resolution-by-proxy: a simple measure for assessing and comparing the overall quality of NMR protein structures

    International Nuclear Information System (INIS)

    Berjanskii, Mark; Zhou Jianjun; Liang Yongjie; Lin Guohui; Wishart, David S.

    2012-01-01

    In protein X-ray crystallography, resolution is often used as a good indicator of structural quality. Diffraction resolution of protein crystals correlates well with the number of X-ray observables that are used in structure generation and, therefore, with protein coordinate errors. In protein NMR, there is no parameter identical to X-ray resolution. Instead, resolution is often used as a synonym of NMR model quality. Resolution of NMR structures is often deduced from ensemble precision, torsion angle normality and number of distance restraints per residue. The lack of common techniques to assess the resolution of X-ray and NMR structures complicates the comparison of structures solved by these two methods. This problem is sometimes approached by calculating “equivalent resolution” from structure quality metrics. However, existing protocols do not offer a comprehensive assessment of protein structure as they calculate equivalent resolution from a relatively small number (<5) of protein parameters. Here, we report a development of a protocol that calculates equivalent resolution from 25 measurable protein features. This new method offers better performance (correlation coefficient of 0.92, mean absolute error of 0.28 Å) than existing predictors of equivalent resolution. Because the method uses coordinate data as a proxy for X-ray diffraction data, we call this measure “Resolution-by-Proxy” or ResProx. We demonstrate that ResProx can be used to identify under-restrained, poorly refined or inaccurate NMR structures, and can discover structural defects that the other equivalent resolution methods cannot detect. The ResProx web server is available at http://www.resprox.cahttp://www.resprox.ca.

  3. Characterization of polyacrylamide-stabilized Pf1 phage liquid crystals for protein NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trempe, Jean-Francois; Morin, Frederick G.; Xia Zhicheng; Marchessault, Robert H.; Gehring, Kalle [McGill University, Department of Biochemistry and Department of Chemistry (Canada)], E-mail: kalle@bri.nrc.ca

    2002-01-15

    A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the {sup 2}H NMR water signal and by the measurement of {sup 1}H-{sup 15}N residual dipolar couplings (RDC) in the archeal translation elongation factor 1{beta}. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample.

  4. Characterization of polyacrylamide-stabilized Pf1 phage liquid crystals for protein NMR spectroscopy

    International Nuclear Information System (INIS)

    Trempe, Jean-Francois; Morin, Frederick G.; Xia Zhicheng; Marchessault, Robert H.; Gehring, Kalle

    2002-01-01

    A new polymer-stabilized nematic liquid crystal has been characterized for the measurement of biomolecular residual dipolar couplings. Filamentous Pf1 phage were embedded in a polyacrylamide matrix that fixes the orientation of the particles. The alignment was characterized by the quadrupolar splitting of the 2 H NMR water signal and by the measurement of 1 H- 15 N residual dipolar couplings (RDC) in the archeal translation elongation factor 1β. Protein dissolved in the polymer-stabilized medium orients quantitatively as in media without polyacrylamide. We show that the quadrupolar splitting and RDCs are zero in media in which the Pf1 phage particles are aligned at the magic angle. This allows measurement of J and dipolar couplings in a single sample

  5. Smartnotebook: A semi-automated approach to protein sequential NMR resonance assignments

    International Nuclear Information System (INIS)

    Slupsky, Carolyn M.; Boyko, Robert F.; Booth, Valerie K.; Sykes, Brian D.

    2003-01-01

    Complete and accurate NMR spectral assignment is a prerequisite for high-throughput automated structure determination of biological macromolecules. However, completely automated assignment procedures generally encounter difficulties for all but the most ideal data sets. Sources of these problems include difficulty in resolving correlations in crowded spectral regions, as well as complications arising from dynamics, such as weak or missing peaks, or atoms exhibiting more than one peak due to exchange phenomena. Smartnotebook is a semi-automated assignment software package designed to combine the best features of the automated and manual approaches. The software finds and displays potential connections between residues, while the spectroscopist makes decisions on which connection is correct, allowing rapid and robust assignment. In addition, smartnotebook helps the user fit chains of connected residues to the primary sequence of the protein by comparing the experimentally determined chemical shifts with expected shifts derived from a chemical shift database, while providing bookkeeping throughout the assignment procedure

  6. Protein folding kinetics by combined use of rapid mixing techniques and NMR observation of individual amide protons

    International Nuclear Information System (INIS)

    Roder, H.; Wuethrich, K.

    1986-01-01

    A method to be used for experimental studies of protein folding introduced by Schmid and Baldwin, which is based on the competition between amide hydrogen exchange and protein refolding, was extended by using rapid mixing techniques and 1 H NMR to provide site-resolved kinetic information on the early phases of protein structure acquisition. In this method, a protonated solution of the unfolded protein is rapidly mixed with a deuterated buffer solution at conditions assuring protein refolding in the mixture. This simultaneously initiates the exchange of unprotected amide protons with solvent deuterium and the refolding of protein segments which can protect amide groups from further exchange. After variable reaction times the amide proton exchange is quenched while folding to the native form continues to completion. By using 1 H NMR, the extent of exchange at individual amide sites is then measured in the refolded protein. Competition experiments at variable reaction times or variable pH indicate the time at which each amide group is protected in the refolding process. This technique was applied to the basic pancreatic trypsin inhibitor, for which sequence-specific assignments of the amide proton NMR lines had previously been obtained. For eight individual amide protons located in the beta-sheet and the C-terminal alpha-helix of this protein, apparent refolding rates in the range from 15 s-1 to 60 s-1 were observed. These rates are on the time scale of the fast folding phase observed with optical probes

  7. Structural Insights into Triglyceride Storage Mediated by Fat Storage-Inducing Transmembrane (FIT) Protein 2

    Science.gov (United States)

    Gross, David A.; Snapp, Erik L.; Silver, David L.

    2010-01-01

    Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2) belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9)AAA) in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9)AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation. PMID:20520733

  8. Structural insights into triglyceride storage mediated by fat storage-inducing transmembrane (FIT protein 2.

    Directory of Open Access Journals (Sweden)

    David A Gross

    2010-05-01

    Full Text Available Fat storage-Inducing Transmembrane proteins 1 & 2 (FIT1/FITM1 and FIT2/FITM2 belong to a unique family of evolutionarily conserved proteins localized to the endoplasmic reticulum that are involved in triglyceride lipid droplet formation. FIT proteins have been shown to mediate the partitioning of cellular triglyceride into lipid droplets, but not triglyceride biosynthesis. FIT proteins do not share primary sequence homology with known proteins and no structural information is available to inform on the mechanism by which FIT proteins function. Here, we present the experimentally-solved topological models for FIT1 and FIT2 using N-glycosylation site mapping and indirect immunofluorescence techniques. These methods indicate that both proteins have six-transmembrane-domains with both N- and C-termini localized to the cytosol. Utilizing this model for structure-function analysis, we identified and characterized a gain-of-function mutant of FIT2 (FLL(157-9AAA in transmembrane domain 4 that markedly augmented the total number and mean size of lipid droplets. Using limited-trypsin proteolysis we determined that the FLL(157-9AAA mutant has enhanced trypsin cleavage at K86 relative to wild-type FIT2, indicating a conformational change. Taken together, these studies indicate that FIT2 is a 6 transmembrane domain-containing protein whose conformation likely regulates its activity in mediating lipid droplet formation.

  9. Quantitative measurement of water diffusion lifetimes at a protein/DNA interface by NMR

    International Nuclear Information System (INIS)

    Gruschus, James M.; Ferretti, James A.

    2001-01-01

    Hydration site lifetimes of slowly diffusing water molecules at the protein/DNA interface of the vnd/NK-2 homeodomain DNA complex were determined using novel three-dimensional NMR techniques. The lifetimes were calculated using the ratios of ROE and NOE cross-relaxation rates between the water and the protein backbone and side chain amides. This calculation of the lifetimes is based on a model of the spectral density function of the water-protein interaction consisting of three timescales of motion: fast vibrational/rotational motion, diffusion into/out of the hydration site, and overall macromolecular tumbling. The lifetimes measured ranged from approximately 400 ps to more than 5 ns, and nearly all the slowly diffusing water molecules detected lie at the protein/DNA interface. A quantitative analysis of relayed water cross-relaxation indicated that even at very short mixing times, 5 ms for ROESY and 12 ms for NOESY, relay of magnetization can make a small but detectable contribution to the measured rates. The temperature dependences of the NOE rates were measured to help discriminate direct dipolar cross-relaxation from chemical exchange. Comparison with several X-ray structures of homeodomain/DNA complexes reveals a strong correspondence between water molecules in conserved locations and the slowly diffusing water molecules detected by NMR. A homology model based on the X-ray structures was created to visualize the conserved water molecules detected at the vnd/NK-2 homeodomain DNA interface. Two chains of water molecules are seen at the right and left sides of the major groove, adjacent to the third helix of the homeodomain. Two water-mediated hydrogen bond bridges spanning the protein/DNA interface are present in the model, one between the backbone of Phe8 and a DNA phosphate, and one between the side chain of Asn51 and a DNA phosphate. The hydrogen bond bridge between Asn51 and the DNA might be especially important since the DNA contact made by the invariant

  10. Probing membrane protein structure using water polarization transfer solid-state NMR.

    Science.gov (United States)

    Williams, Jonathan K; Hong, Mei

    2014-10-01

    Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review radiofrequency pulse sequences for measuring water polarization transfer to biomolecules, the mechanisms of polarization transfer, and the application of this method to various biological systems. Three polarization transfer mechanisms, chemical exchange, spin diffusion and NOE, manifest themselves at different temperatures, magic-angle-spinning frequencies, and pulse irradiations. Chemical exchange is ubiquitous in all systems examined so far, and spin diffusion plays the key role in polarization transfer within the macromolecule. Tightly bound water molecules with long residence times are rare in proteins at ambient temperature. The water polarization-transfer technique has been used to study the hydration of microcrystalline proteins, lipid membranes, and plant cell wall polysaccharides, and to derive atomic-resolution details of the kinetics and mechanism of ion conduction in channels and pumps. Using this approach, we have measured the water polarization transfer to the transmembrane domain of the influenza M2 protein to obtain information on the structure of this tetrameric proton channel. At short mixing times, the polarization transfer rates are site-specific and depend on the pH, labile protons, sidechain conformation, as well as the radial position of the residues in this four-helix bundle. Despite the multiple dependences, the initial transfer rates reflect the periodic nature of the residue positions from the water-filled pore, thus this technique provides a way of gleaning secondary structure information, helix tilt angle, and the oligomeric structure of membrane proteins. Copyright © 2014 Elsevier Inc. All

  11. Protein samples for NMR: expression and analysis without purification, and stabilization by covalent cyclization

    International Nuclear Information System (INIS)

    Otting, G.; Ozawa, K.; Prosselkov, P.; Williams, N.K.; Dixon, N.E.; Liepinsh, E.

    2002-01-01

    Full text: A modified cell-free in vitro expression system was established for the expression of milligram quantities of protein per mL reaction medium. Expression levels of the E coli cytoplasmic peptidyl-prolyl cis-trans isomerase, PpiB, in 0 6 mL reaction medium were sufficient for the direct recording of clean 15N-HSQC spectra without chromatographic purification or sample concentration steps, using a 600 MHz NMR spectrometer with cryoprobe. Besides providing a route to high-throughput sample preparation, in vitro expression systems are known to be highly economic in their utilization of selectively labelled ammo acids. Using dual-selective labelling with 15N- and 13C-labelled amino acids, the 15N-HSQC cross peaks of strategically selected ammo acids can readily be identified and monitored for their response to the presence of ligand molecules, again without sample purification. 2) The N-terminal domain of E coli DnaB is a protein of ca 110 residues with a structured core composed of 6 helices. Additional segments of 10 residues each at the N- and C-termini are highly mobile. Both ends are close in space and can be linked together in a covalent peptide bond using intern technology. The core structures of linear (lin-DnaB-N) and cyclized (cz-DnaB-N) protein are conserved, as evidenced by superimposable NOESY spectra and chemical shifts. The linker segment in cz-DnaB-N is mobile as shown by 1H-15N NOEs. Yet, the cyclic protein melts about 10 degrees higher than the linear version. A stabilization free energy of ca 2 kcal/mol is in agreement with predictions based on the reduced entropy in the unfolded state. Amide proton exchange rates are much slower in the cyclic protein and reveal cooperative exchange through total, global unfolding at a rate of once every 100 minutes in the linear protein

  12. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation

    NARCIS (Netherlands)

    Prompers, J.J.; Brüschweiler, R.

    2002-01-01

    A general framework is presented for the interpretation of NMR relaxation data of proteins. The method, termed isotropic reorientational eigenmode dynamics (iRED), relies on a principal component analysis of the isotropically averaged covariance matrix of the lattice functions of the spin

  13. Main-chain-directed strategy for the assignment of 1H NMR spectra of proteins

    International Nuclear Information System (INIS)

    Englander, S.W.; Wand, A.J.

    1987-01-01

    A strategy for assigning the resonances in two-dimensional (2D) NMR spectra of proteins is described. The method emphasizes the analysis of through-space relationships between protons by use of the two-dimensional nuclear Overhauser effect (NOE) experiment. NOE patterns used in the algorithm were derived from a statistical analysis of the combinations of short proton-proton distances observed in the high-resolution crystal structures of 21 proteins. One starts with a search for authentic main-chain NH-C/sub α/H-C/sub β/H J-coupled units, which can be found with high reliability. The many main-chain units of a protein are then placed in their proper juxtaposition by recognition of predefined NOE connectivity patterns. To discover these connectivities, the 2D NOE spectrum is examined, in a prescribed order, for the distinct NOE patterns characteristic of helices, sheets, turns, and extended chain. Finally, the recognition of a few amino acid side-chain types places the discovered secondary structure elements within the polypeptide sequences. Unlike the sequential assignment approach, the main-chain-directed strategy does not rely on the difficult task of recognizing many side-chain spin systems in J-correlated spectra, the assignment process is not in general sequential with the polypeptide chain, and the prescribed connectivity patterns are cyclic rather than linear. The latter characteristic avoids ambiguous branch points in the analysis and imposed an internally confirmatory property on each forward step

  14. Tritium NMR spectroscopy of ligand binding to maltose-binding protein

    International Nuclear Information System (INIS)

    Gehring, K.; Williams, P.G.; Pelton, J.G.; Morimoto, H.; Wemmer, D.E.

    1991-01-01

    Tritium-labeled α- and β-maltodextrins have been used to study their complexes with maltose-binding protein (MBP), a 40-kDa bacterial protein. Five substrates, from maltose to maltohexaose, were labeled at their reducing ends and their binding studied. Tritium NMR specctroscopy of the labeled sugars showed large upfield chamical shift changes upon binding and strong anomeric specficity. At 10 degrees C, MBP bound α-maltose with 2.7 ± 0.5-fold higher affinity than β-maltose, and, for longer maltodextrins, the ratio of affinities was even larger. The maximum chemical shift change was 2.2 ppm, suggesting that the reducing end of bound α-maltodextrin makes close contact with an aromatic residue in the MBP-binding site. Experiments with maltotriose (and longer maltodextrins) also revealed the presence of two bound β-maltotriose resonances in rapid exchange. The authors interpret these two resonances as arising from two distinct sugar-protein complexes. In one complex, the β-maltodextrin is bound by its reducing end, and, in the other complex, the β-maltodextrin is bound by the middle glucose residue(s). This interpretation also suggests how MBP is able to bind both linear and circular maltodextrins

  15. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment

    Directory of Open Access Journals (Sweden)

    Hao Yang

    2018-01-01

    Full Text Available Bryostatin 1 (henceforth bryostatin is in clinical trials for the treatment of Alzheimer’s disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC–ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.

  16. Recommendations for the presentation of NMR structures of proteins and nucleic acids - IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy

    International Nuclear Information System (INIS)

    Markley, John L.; Bax, Ad; Arata, Yoji; Hilbers, C. W.; Kaptein, Robert; Sykes, Brian D.; Wright, Peter E.; Wuethrich, Kurt

    1998-01-01

    The recommendations presented here are designed to support easier communication of NMR data and NMR structures of proteins and nucleic acids through unified nomenclature and reporting standards. Much of this document pertains to the reporting of data in journal articles; however, in the interest of the future development of structural biology, it is desirable that the bulk of the reported information be stored in computer-accessible form and be freely accessible to the scientific community in standardized formats for data exchange. These recommendations stem from an IUPAC-IUBMB-IUPAB inter-union venture with the direct involvement of ICSU and CODATA. The Task Group has reviewed previous formal recommendations and has extended them in the light of more recent developments in the field of biomolecular NMR spectroscopy. Drafts of the recommendations presented here have been examined critically by more than 50 specialists in the field and have gone through two rounds of extensive modification to incorporate suggestions and criticisms

  17. Characterization of seed storage protein patterns of Heliotropium digynum

    Directory of Open Access Journals (Sweden)

    Mona Soliman Alwhibi

    2017-09-01

    Full Text Available Heliotropium digynum, is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8 software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir’iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  18. Characterization of seed storage protein patterns of Heliotropium digynum.

    Science.gov (United States)

    Alwhibi, Mona Soliman

    2017-09-01

    Heliotropium digynum , is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8) software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir'iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  19. Solid NMR characterization of hydrogen solid storage matrices; Caracterisation par RMN du solide des matrices de stockage solide de l'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Pilette, M.A.; Charpentier, T.; Berthault, P. [CEA Saclay, Dept. de Recherche sur l' Etat Condense, les Atomes et les Molecules, Lab. de Structure et Dynamique par Resonance Magnetique Lab. Claude Frejacques - CEA/CNRS URA 331, DSM/DRECAM/SCM, 91 - Gif sur Yvette (France)

    2007-07-01

    The aim of this work is to develop and validate characterization tools by NMR imagery and spectroscopy of the structure of materials for hydrogen storage, and of their evolution during load/unload cycles. The two main topics of this work are in one hand the analysis of the local structure of the materials and the understanding of their eventual modifications, and in another hand, the in-situ analysis of the distribution and diffusion of hydrogen inside the storage material. (O.M.)

  20. Efficient Stereospecific Hβ2/3 NMR Assignment Strategy for Mid-Size Proteins

    Directory of Open Access Journals (Sweden)

    Alexandra Born

    2018-06-01

    Full Text Available We present a strategy for stereospecific NMR assignment of Hβ2 and Hβ3 protons in mid-size proteins (~150 residues. For such proteins, resonance overlap in standard experiments is severe, thereby preventing unambiguous assignment of a large fraction of β-methylenes. To alleviate this limitation, assignment experiments may be run in high static fields, where higher decoupling power is required. Three-bond Hα–Hβ J-couplings (3JHα–Hβ are critical for stereospecific assignments of β-methylene protons, and for determining rotameric χ1 states. Therefore, we modified a pulse sequence designed to measure accurate 3JHα–Hβ couplings such that probe heating was reduced, while the decoupling performance was improved. To further increase the resolution, we applied non-uniform sampling (NUS schemes in the indirect 1H and 13C dimensions. The approach was applied to two medium-sized proteins, odorant binding protein 22 (OBP22; 14.4 kDa and Pin1 (18.2 kDa, at 900 MHz polarizing fields. The coupling values obtained from NUS and linear sampling were extremely well correlated. However, NUS decreased the overlap of Hβ2/3 protons, thus supplying a higher yield of extracted 3JHα-Hβ coupling values when compared with linear sampling. A similar effect could be achieved with linear prediction applied to the linearly sampled data prior to the Fourier transformation. Finally, we used 3JHα–Hβ couplings from Pin1 in combination with either conventional or exact nuclear Overhauser enhancement (eNOE restraints to determine the stereospecific assignments of β-methylene protons. The use of eNOEs further increased the fraction of unambiguously assigned resonances when compared with procedures using conventional NOEs.

  1. Probing Early Misfolding Events in Prion Protein Mutants by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Gregor Ilc

    2013-08-01

    Full Text Available The post-translational conversion of the ubiquitously expressed cellular form of the prion protein, PrPC, into its misfolded and pathogenic isoform, known as prion or PrPSc, plays a key role in prion diseases. These maladies are denoted transmissible spongiform encephalopathies (TSEs and affect both humans and animals. A prerequisite for understanding TSEs is unraveling the molecular mechanism leading to the conversion process whereby most α-helical motifs are replaced by β-sheet secondary structures. Importantly, most point mutations linked to inherited prion diseases are clustered in the C-terminal domain region of PrPC and cause spontaneous conversion to PrPSc. Structural studies with PrP variants promise new clues regarding the proposed conversion mechanism and may help identify “hot spots” in PrPC involved in the pathogenic conversion. These investigations may also shed light on the early structural rearrangements occurring in some PrPC epitopes thought to be involved in modulating prion susceptibility. Here we present a detailed overview of our solution-state NMR studies on human prion protein carrying different pathological point mutations and the implications that such findings may have for the future of prion research.

  2. Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations

    International Nuclear Information System (INIS)

    Hong, M.; Jakes, K.

    1999-01-01

    The selective and extensive 13C labeling of mostly hydrophobic amino acid residues in a 25 kDa membrane protein, the colicin Ia channel domain, is reported. The novel 13C labeling approach takes advantage of the amino acid biosynthetic pathways in bacteria and suppresses the synthesis of the amino acid products of the citric acid cycle. The selectivity and extensiveness of labeling significantly simplify the solid-state NMR spectra, reduce line broadening, and should permit the simultaneous measurement of multiple structural constraints. We show the assignment of most 13C resonances to specific amino acid types based on the characteristic chemical shifts, the 13C labeling pattern, and the amino acid composition of the protein. The assignment is partly confirmed by a 2D homonuclear double-quantum-filter experiment under magic-angle spinning. The high sensitivity and spectral resolution attained with this 13C-labeling protocol, which is termed TEASE for ten-amino acid selective and extensive labeling, are demonstrated

  3. Stable and rigid DTPA-like paramagnetic tags suitable for in vitro and in situ protein NMR analysis.

    Science.gov (United States)

    Chen, Jia-Liang; Zhao, Yu; Gong, Yan-Jun; Pan, Bin-Bin; Wang, Xiao; Su, Xun-Cheng

    2018-02-01

    Organic synthesis of a ligand with high binding affinities for paramagnetic lanthanide ions is an effective way of generating paramagnetic effects on proteins. These paramagnetic effects manifested in high-resolution NMR spectroscopy are valuable dynamic and structural restraints of proteins and protein-ligand complexes. A paramagnetic tag generally contains a metal chelating moiety and a reactive group for protein modification. Herein we report two new DTPA-like tags, 4PS-PyDTTA and 4PS-6M-PyDTTA that can be site-specifically attached to a protein with a stable thioether bond. Both protein-tag adducts form stable lanthanide complexes, of which the binding affinities and paramagnetic tensors are tunable with respect to the 6-methyl group in pyridine. Paramagnetic relaxation enhancement (PRE) effects of Gd(III) complex on protein-tag adducts were evaluated in comparison with pseudocontact shift (PCS), and the results indicated that both 4PS-PyDTTA and 4PS-6M-PyDTTA tags are rigid and present high-quality PREs that are crucially important in elucidation of the dynamics and interactions of proteins and protein-ligand complexes. We also show that these two tags are suitable for in-situ protein NMR analysis.

  4. Moessbauer spectroscopic studies of iron-storage proteins

    Energy Technology Data Exchange (ETDEWEB)

    St. Pierre, T.G.

    1986-01-01

    /sup 57/Fe Moessbauer spectroscopy was used to study iron storage proteins. Various cryostats and a superconducting magnet were used to obtain sample environment temperatures from 1.3 to 200K and applied magnetic fields of up to 10T. The Moessbauer spectra of ferritins isolated from iron-overloaded human spleen, limpet (Patella vulgata), giant limpet (Patella laticostata) and chiton (Clavarizona hirtosa) hemolymph, and bacterial (Pseudomonas aeruginosa) cells are used to gain information on the magnetic ordering- and superparamagnetic transition temperatures of the microcrystalline cores of the proteins. Investigations were made about the cause of the difference in the magnetic anisotropy constants of the cores of iron-overloaded human spleen ferritin and hemosiderin. Livers taken from an iron-overloaded hornbill and artificially iron-loaded rats showed no component with a superparamagnetic transition temperature approaching that of the human spleen hemosiderin.

  5. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    International Nuclear Information System (INIS)

    Yao, Yong; Dutta, Samit Kumar; Park, Sang Ho; Rai, Ratan; Fujimoto, L. Miya; Bobkov, Andrey A.; Opella, Stanley J.; Marassi, Francesca M.

    2017-01-01

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with 13 C or 1 H detection, have very narrow line widths (0.40–0.60 ppm for 13 C, 0.11–0.15 ppm for 1 H, and 0.46–0.64 ppm for 15 N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The 1 H-detected solid-state NMR 1 H/ 15 N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR 1 H/ 15 N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  6. High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yong; Dutta, Samit Kumar [Sanford Burnham Prebys Medical Discovery Institute (United States); Park, Sang Ho; Rai, Ratan [University of California San Diego, Department of Chemistry and Biochemistry (United States); Fujimoto, L. Miya; Bobkov, Andrey A. [Sanford Burnham Prebys Medical Discovery Institute (United States); Opella, Stanley J. [University of California San Diego, Department of Chemistry and Biochemistry (United States); Marassi, Francesca M., E-mail: fmarassi@sbp.edu [Sanford Burnham Prebys Medical Discovery Institute (United States)

    2017-03-15

    The outer membrane protein Ail (Adhesion invasion locus) is one of the most abundant proteins on the cell surface of Yersinia pestis during human infection. Its functions are expressed through interactions with a variety of human host proteins, and are essential for microbial virulence. Structures of Ail have been determined by X-ray diffraction and solution NMR spectroscopy, but those samples contained detergents that interfere with functionality, thus, precluding analysis of the structural basis for Ail’s biological activity. Here, we demonstrate that high-resolution solid-state NMR spectra can be obtained from samples of Ail in detergent-free phospholipid liposomes, prepared with a lipid to protein molar ratio of 100. The spectra, obtained with {sup 13}C or {sup 1}H detection, have very narrow line widths (0.40–0.60 ppm for {sup 13}C, 0.11–0.15 ppm for {sup 1}H, and 0.46–0.64 ppm for {sup 15}N) that are consistent with a high level of sample homogeneity. The spectra enable resonance assignments to be obtained for N, CO, CA and CB atomic sites from 75 out of 156 residues in the sequence of Ail, including 80% of the transmembrane region. The {sup 1}H-detected solid-state NMR {sup 1}H/{sup 15}N correlation spectra obtained for Ail in liposomes compare very favorably with the solution NMR {sup 1}H/{sup 15}N TROSY spectra obtained for Ail in nanodiscs prepared with a similar lipid to protein molar ratio. These results set the stage for studies of the molecular basis of the functional interactions of Ail with its protein partners from human host cells, as well as the development of drugs targeting Ail.

  7. Fat storage-inducing transmembrane protein 2 is required for normal fat storage in adipose tissue.

    Science.gov (United States)

    Miranda, Diego A; Kim, Ji-Hyun; Nguyen, Long N; Cheng, Wang; Tan, Bryan C; Goh, Vera J; Tan, Jolene S Y; Yaligar, Jadegoud; Kn, Bhanu Prakash; Velan, S Sendhil; Wang, Hongyan; Silver, David L

    2014-04-04

    Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.

  8. NMR approaches in structure-based lead discovery: recent developments and new frontiers for targeting multi-protein complexes.

    Science.gov (United States)

    Dias, David M; Ciulli, Alessio

    2014-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a pivotal method for structure-based and fragment-based lead discovery because it is one of the most robust techniques to provide information on protein structure, dynamics and interaction at an atomic level in solution. Nowadays, in most ligand screening cascades, NMR-based methods are applied to identify and structurally validate small molecule binding. These can be high-throughput and are often used synergistically with other biophysical assays. Here, we describe current state-of-the-art in the portfolio of available NMR-based experiments that are used to aid early-stage lead discovery. We then focus on multi-protein complexes as targets and how NMR spectroscopy allows studying of interactions within the high molecular weight assemblies that make up a vast fraction of the yet untargeted proteome. Finally, we give our perspective on how currently available methods could build an improved strategy for drug discovery against such challenging targets. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    International Nuclear Information System (INIS)

    Takeuchi, Koh; Arthanari, Haribabu; Shimada, Ichio; Wagner, Gerhard

    2015-01-01

    Detection of 15 N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15 N nuclei (TROSY 15 N H ) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow 15 N transverse relaxation and compensating for the inherently low 15 N sensitivity. The 15 N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY 15 N H component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a 15 N-detected 2D 1 H– 15 N TROSY-HSQC ( 15 N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ c  ∼ 40 ns). Unlike for 1 H detected TROSY, deuteration is not mandatory to benefit 15 N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording 15 N TROSY of proteins expressed in H 2 O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D 2 O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of 15 N H -detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz

  10. Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, Koh [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Arthanari, Haribabu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States); Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [National Institute for Advanced Industrial Science and Technology, Molecular Profiling Research Center for Drug Discovery (Japan); Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biochemistry and Molecular Pharmacology (United States)

    2015-12-15

    Detection of {sup 15}N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached {sup 15}N nuclei (TROSY {sup 15}N{sub H}) yields high quality spectra in high field magnets (>600 MHz) by taking advantage of the slow {sup 15}N transverse relaxation and compensating for the inherently low {sup 15}N sensitivity. The {sup 15}N TROSY transverse relaxation rates increase modestly with molecular weight but the TROSY gain in peak heights depends strongly on the magnetic field strength. Theoretical simulations predict that the narrowest line width for the TROSY {sup 15}N{sub H} component can be obtained at 900 MHz, but sensitivity reaches its maximum around 1.2 GHz. Based on these considerations, a {sup 15}N-detected 2D {sup 1}H–{sup 15}N TROSY-HSQC ({sup 15}N-detected TROSY-HSQC) experiment was developed and high-quality 2D spectra were recorded at 800 MHz in 2 h for 1 mM maltose-binding protein at 278 K (τ{sub c} ∼ 40 ns). Unlike for {sup 1}H detected TROSY, deuteration is not mandatory to benefit {sup 15}N detected TROSY due to reduced dipolar broadening, which facilitates studies of proteins that cannot be deuterated, especially in cases where production requires eukaryotic expression systems. The option of recording {sup 15}N TROSY of proteins expressed in H{sub 2}O media also alleviates the problem of incomplete amide proton back exchange, which often hampers the detection of amide groups in the core of large molecular weight proteins that are expressed in D{sub 2}O culture media and cannot be refolded for amide back exchange. These results illustrate the potential of {sup 15}N{sub H}-detected TROSY experiments as a means to exploit the high resolution offered by high field magnets near and above 1 GHz.

  11. Probing the Structure and Dynamics of Proteins by Combining Molecular Dynamics Simulations and Experimental NMR Data.

    Science.gov (United States)

    Allison, Jane R; Hertig, Samuel; Missimer, John H; Smith, Lorna J; Steinmetz, Michel O; Dolenc, Jožica

    2012-10-09

    NMR experiments provide detailed structural information about biological macromolecules in solution. However, the amount of information obtained is usually much less than the number of degrees of freedom of the macromolecule. Moreover, the relationships between experimental observables and structural information, such as interatomic distances or dihedral angle values, may be multiple-valued and may rely on empirical parameters and approximations. The extraction of structural information from experimental data is further complicated by the time- and ensemble-averaged nature of NMR observables. Combining NMR data with molecular dynamics simulations can elucidate and alleviate some of these problems, as well as allow inconsistencies in the NMR data to be identified. Here, we use a number of examples from our work to highlight the power of molecular dynamics simulations in providing a structural interpretation of solution NMR data.

  12. Gravity-driven pH adjustment for site-specific protein pKa measurement by solution-state NMR

    Science.gov (United States)

    Li, Wei

    2017-12-01

    To automate pH adjustment in site-specific protein pKa measurement by solution-state NMR, I present a funnel with two caps for the standard 5 mm NMR tube. The novelty of this simple-to-build and inexpensive apparatus is that it allows automatic gravity-driven pH adjustment within the magnet, and consequently results in a fully automated NMR-monitored pH titration without any hardware modification on the NMR spectrometer.

  13. Myristoylation as a general method for immobilization and alignment of soluble proteins for solid-state NMR structural studies

    International Nuclear Information System (INIS)

    Mesleh, M.F.; Valentine, K.G.; Opella, S.J.; Louis, J.M.; Gronenborn, A.M.

    2003-01-01

    N-terminal myristoylation of the immunoglobulin-binding domain of protein G (GB1) from group G Streptococcus provides the means to bind the protein to aligned phospholipid bilayers for solid-state NMR structural studies. The myristoylated protein is immobilized by its interactions with bilayers, and the sample alignment enables orientationally dependent 15 N chemical shifts and 1 H- 15 N-dipolar couplings to be measured. Spectra calculated for the average solution NMR structure of the protein at various orientations with respect to the magnetic field direction were compared to the experimental spectrum. The best fit identified the orientation of the myristoylated protein on the lipid bilayers, and demonstrated that the protein adopts a similar structure in both its myristoylated and non-myristoylated forms, and that the structure is not grossly distorted by its interaction with the phosholipid bilayer surface or by its location in the restricted aqueous space between bilayer leaflets. The protein is oriented such that its charged sides face the phosphatidylcholine headgroups of the lipids with the single amphiphilic helix running parallel to the bilayer surface

  14. Determination of 1,2/1,3-diglycerides in Sicilian extra-virgin olive oils by 1H-NMR over a one-year storage period.

    Science.gov (United States)

    Salvo, Andrea; Rotondo, Archimede; La Torre, Giovanna Loredana; Cicero, Nicola; Dugo, Giacomo

    2017-04-01

    This study is aimed to monitor by 1 H NMR spectroscopy the effect of a 12-month storage period on the 1,2-diglycerides over 1,3-diglycerides ratio for five mono-cultivar 'extra virgin olive oils' (EVOO) (Arbequina, Arbosana, Cerasuola, Nocellara and FS17) and one blend of two different cultivars (Nocellara + Biancolilla) preserved in the dark and at room temperature. These quantifications, at 500 MHz, are readily extracted through a specific and original integration difference method. Albeit it was known that the isomerisation rate is affected by the free acidity, we here demonstrate that it also depends on the presence of specific macromolecules (lipases), indeed, different EVOO cultivars with similar free acidity, show different isomerisation rate. Our results are consistent with similar diglyceride monitoring performed on Greek and Spanish EVOOs by 31 P NMR.

  15. Mechanism of phosphoryl transfer and protein-protein interaction in the PTS system-an NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Rajagopal, P.; Klevit, R.E. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    HPr and Enzyme IIA{sup Glc} are two of the components of the bacterial PTS (phosphoenolpyruvate: sugar phosphotranferase system) and are involved in the phosphorylation and concomitant translocation of sugars across the membrane. These PTS protein complexes also regulate sugar transport. HPr, phosphorylated at a histidine N1 site by Enzyme I and phosphoenol pyruvate, transfers the phosphoryl group to a histidine N3 position in Enzyme IIA{sup Glc}. HPrs from Gram-positive bacteria undergo regulatory phosphorylation at Ser{sup 46}, whereby phosphorylation of the histidine residue is inhibited. Conversely, histidine phosphorylation inhibits phosphorylation at Ser{sup 46}. HPrs from Gram-negative bacteria possess a serine residue at position 46, but do not undergo regulatory phosphorylation. HPr forms an open-faced sandwich structure with a four-strand S-sheet and 2 to 3 helices lying on top of the sheet. The active-site histidine and Ser{sup 46} occur in conformationally flexible regions. P-His-HPr from the Gram-positive bacterium Bacillus subtilus has been investigated by both homonuclear and heteronuclear two-dimensional and three-dimensional NMR experiments using an in-situ enzymatic regeneration system to maintain a constant level of P-His-HPr. The results show that localized conformational changes occur in the vicinity of the active-site histidine and also near Ser{sup 46}. HPr-Enzyme IIA{sup Glc} complexes from both Bacillus subtilis and Gram-negative Escherichia coli were also studied by a variety of {sup 15}N-edited two-dimensional NMR experiments, which were performed on uniformly {sup 15}N-labeled HPr complexed to unlabeled Enzyme IIA{sup Glc}. The complex is in fast exchange with a molecular weight of about 27 kDa. The focus of our work is to assess the changes undergone by HPr (the smaller of the two components), and so all the experiments were performed with excess Enzyme IIA present in the system.

  16. Micro-coil NMR to monitor optimization of the reconstitution conditions for the integral membrane protein OmpW in detergent micelles

    International Nuclear Information System (INIS)

    Stanczak, Pawel; Zhang Qinghai; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2012-01-01

    Optimization of aqueous solutions of the integral membrane protein (IMP) OmpW for NMR structure determination has been monitored with micro-coil NMR, which enables the acquisition of NMR spectra using only micrograms of protein and detergent. The detergent 30-Fos (2-undecylphosphocholine) was found to yield the best 2D [ 15 N, 1 H]-TROSY correlation NMR spectra of [ 2 H, 15 N]-labeled OmpW. For the OmpW structure determination we then optimized the 30-Fos concentration, the sample temperature and long-time stability, and the deuteration level of the protein. Some emerging guidelines for reconstitution of β-barrel integral membrane proteins in structural biology are discussed.

  17. Site-specific tagging proteins with a rigid, small and stable transition metal chelator, 8-hydroxyquinoline, for paramagnetic NMR analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yin; Huang, Feng [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China); Huber, Thomas [Australian National University, Research School of Chemistry (Australia); Su, Xun-Cheng, E-mail: xunchengsu@nankai.edu.cn [Nankai University, State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2016-02-15

    Design of a paramagnetic metal binding motif in a protein is a valuable way for understanding the function, dynamics and interactions of a protein by paramagnetic NMR spectroscopy. Several strategies have been proposed to site-specifically tag proteins with paramagnetic lanthanide ions. Here we report a simple approach of engineering a transition metal binding motif via site-specific labelling of a protein with 2-vinyl-8-hydroxyquinoline (2V-8HQ). The protein-2V-8HQ adduct forms a stable complex with transition metal ions, Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). The paramagnetic effects generated by these transition metal ions were evaluated by NMR spectroscopy. We show that 2V-8HQ is a rigid and stable transition metal binding tag. The coordination of the metal ion can be assisted by protein sidechains. More importantly, tunable paramagnetic tensors are simply obtained in an α-helix that possesses solvent exposed residues in positions i and i + 3, where i is the residue to be mutated to cysteine, i + 3 is Gln or Glu or i − 4 is His. The coordination of a sidechain carboxylate/amide or imidazole to cobalt(II) results in different structural geometries, leading to different paramagnetic tensors as shown by experimental data.

  18. Cell-Free Protein Synthesis Enhancement from Real-Time NMR Metabolite Kinetics: Redirecting Energy Fluxes in Hybrid RRL Systems.

    Science.gov (United States)

    Panthu, Baptiste; Ohlmann, Théophile; Perrier, Johan; Schlattner, Uwe; Jalinot, Pierre; Elena-Herrmann, Bénédicte; Rautureau, Gilles J P

    2018-01-19

    A counterintuitive cell-free protein synthesis (CFPS) strategy, based on reducing the ribosomal fraction in rabbit reticulocyte lysate (RRL), triggers the development of hybrid systems composed of RRL ribosome-free supernatant complemented with ribosomes from different mammalian cell-types. Hybrid RRL systems maintain translational properties of the original ribosome cell types, and deliver protein expression levels similar to RRL. Here, we show that persistent ribosome-associated metabolic activity consuming ATP is a major obstacle for maximal protein yield. We provide a detailed picture of hybrid CFPS systems energetic metabolism based on real-time nuclear magnetic resonance (NMR) investigation of metabolites kinetics. We demonstrate that protein synthesis capacity has an upper limit at native ribosome concentration and that lower amounts of the ribosomal fraction optimize energy fluxes toward protein translation, consequently increasing CFPS yield. These results provide a rationalized strategy for further mammalian CFPS developments and reveal the potential of real-time NMR metabolism phenotyping for optimization of cell-free protein expression systems.

  19. NMR spin relaxation in proteins: The patterns of motion that dissipate power to the bath

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Yury E., E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com; Meirovitch, Eva, E-mail: eva.meirovitch@biu.ac.il, E-mail: yuryeshapiro@gmail.com [The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900-02 (Israel)

    2014-04-21

    We developed in recent years the two-body coupled-rotator slowly relaxing local structure (SRLS) approach for the analysis of NMR relaxation in proteins. The two bodies/rotators are the protein (diffusion tensor D{sub 1}) and the spin-bearing probe, e.g., the {sup 15}N−{sup 1}H bond (diffusion tensor, D{sub 2}), coupled by a local potential (u). A Smoluchowski equation is solved to yield the generic time correlation functions (TCFs), which are sums of weighted exponentials (eigenmodes). By Fourier transformation one obtains the generic spectral density functions (SDFs) which underlie the experimental relaxation parameters. The typical paradigm is to characterize structural dynamics in terms of the best-fit values of D{sub 1}, D{sub 2}, and u. Additional approaches we pursued employ the SRLS TCFs, SDFs, or eigenmodes as descriptors. In this study we develop yet another perspective. We consider the SDF as function of the angular velocity associated with the fluctuating fields underlying NMR relaxation. A parameter called j-fraction, which represents the relative contribution of eigenmode, i, to a given value of the SDF function at a specific frequency, ω, is defined. j-fraction profiles of the dominant eigenmodes are derived for 0 ≤ ω ≤ 10{sup 12} rad/s. They reveal which patterns of motion actuate power dissipation at given ω-values, what are their rates, and what is their relative contribution. Simulations are carried out to determine the effect of timescale separation, D{sub 1}/D{sub 2}, axial potential strength, and local diffusion axiality. For D{sub 1}/D{sub 2} ≤ 0.01 and strong local potential of 15 k{sub B}T, power is dissipated by global diffusion, renormalized (by the strong potential) local diffusion, and probe diffusion on the surface of a cone (to be called cone diffusion). For D{sub 1}/D{sub 2} = 0.1, power is dissipated by mixed eigenmodes largely of a global-diffusion-type or cone-diffusion-type, and a nearly bare renormalized

  20. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    International Nuclear Information System (INIS)

    Zanzoni, Serena; D’Onofrio, Mariapina; Molinari, Henriette; Assfalg, Michael

    2012-01-01

    Highlights: ► Bile acid binding proteins from different constructs retain structural integrity. ► NMR 15 N-T 1 relaxation data of BABPs show differences if LVPR extension is present. ► Deviations from a 15 N-T 1 /molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

  1. Recombinant proteins incorporating short non-native extensions may display increased aggregation propensity as detected by high resolution NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zanzoni, Serena; D' Onofrio, Mariapina; Molinari, Henriette [Department of Biotechnology, University of Verona, 37134 Verona (Italy); Assfalg, Michael, E-mail: michael.assfalg@univr.it [Department of Biotechnology, University of Verona, 37134 Verona (Italy)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Bile acid binding proteins from different constructs retain structural integrity. Black-Right-Pointing-Pointer NMR {sup 15}N-T{sub 1} relaxation data of BABPs show differences if LVPR extension is present. Black-Right-Pointing-Pointer Deviations from a {sup 15}N-T{sub 1}/molecular-weight calibration curve indicate aggregation. -- Abstract: The use of a recombinant protein to investigate the function of the native molecule requires that the former be obtained with the same amino acid sequence as the template. However, in many cases few additional residues are artificially introduced for cloning or purification purposes, possibly resulting in altered physico-chemical properties that may escape routine characterization. For example, increased aggregation propensity without visible protein precipitation is hardly detected by most analytical techniques but its investigation may be of great importance for optimizing the yield of recombinant protein production in biotechnological and structural biology applications. In this work we show that bile acid binding proteins incorporating the common C-terminal LeuValProArg extension display different hydrodynamic properties from those of the corresponding molecules without such additional amino acids. The proteins were produced enriched in nitrogen-15 for analysis via heteronuclear NMR spectroscopy. Residue-specific spin relaxation rates were measured and related to rotational tumbling time and molecular size. While the native-like recombinant proteins show spin-relaxation rates in agreement with those expected for monomeric globular proteins of their mass, our data indicate the presence of larger adducts for samples of proteins with very short amino acid extensions. The used approach is proposed as a further screening method for the quality assessment of biotechnological protein products.

  2. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA

    Energy Technology Data Exchange (ETDEWEB)

    Smet-Nocca, Caroline, E-mail: caroline.smet@univ-lille1.fr; Launay, Helene; Wieruszeski, Jean-Michel; Lippens, Guy; Landrieu, Isabelle, E-mail: isabelle.landrieu@univ-lille1.fr [Universite de Lille-Nord de France, Institut Federatif de Recherches 147, CNRS UMR 8576 (France)

    2013-04-15

    The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer's disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the {sup 1}H,{sup 15}N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.

  3. Unraveling a phosphorylation event in a folded protein by NMR spectroscopy: phosphorylation of the Pin1 WW domain by PKA

    International Nuclear Information System (INIS)

    Smet-Nocca, Caroline; Launay, Hélène; Wieruszeski, Jean-Michel; Lippens, Guy; Landrieu, Isabelle

    2013-01-01

    The Pin1 protein plays a critical role in the functional regulation of the hyperphosphorylated neuronal Tau protein in Alzheimer’s disease and is by itself regulated by phosphorylation. We have used Nuclear Magnetic Resonance (NMR) spectroscopy to both identify the PKA phosphorylation site in the Pin1 WW domain and investigate the functional consequences of this phosphorylation. Detection and identification of phosphorylation on serine/threonine residues in a globular protein, while mostly occurring in solvent-exposed flexible loops, does not lead to chemical shift changes as obvious as in disordered proteins and hence does not necessarily shift the resonances outside the spectrum of the folded protein. Other complications were encountered to characterize the extent of the phosphorylation, as part of the 1 H, 15 N amide resonances around the phosphorylation site are specifically broadened in the unphosphorylated state. Despite these obstacles, NMR spectroscopy was an efficient tool to confirm phosphorylation on S16 of the WW domain and to quantify the level of phosphorylation. Based on this analytical characterization, we show that WW phosphorylation on S16 abolishes its binding capacity to a phosphorylated Tau peptide. A reduced conformational heterogeneity and flexibility of the phospho-binding loop upon S16 phosphorylation could account for part of the decreased affinity for its phosphorylated partner. Additionally, a structural model of the phospho-WW obtained by molecular dynamics simulation and energy minimization suggests that the phosphate moiety of phospho-S16 could compete with the phospho-substrate.

  4. Exploiting E. coli auxotrophs for leucine, valine, and threonine specific methyl labeling of large proteins for NMR applications

    Energy Technology Data Exchange (ETDEWEB)

    Monneau, Yoan R. [Rutgers University, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology (United States); Ishida, Yojiro [Rutgers University, Center for Advanced Biotechnology and Medicine (United States); Rossi, Paolo; Saio, Tomohide; Tzeng, Shiou-Ru [Rutgers University, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology (United States); Inouye, Masayori, E-mail: inouye@cabm.rutgers.edu [Rutgers University, Center for Advanced Biotechnology and Medicine (United States); Kalodimos, Charalampos G., E-mail: ckalodim@umn.edu [Rutgers University, Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology (United States)

    2016-06-15

    A simple and cost effective method to independently and stereo-specifically incorporate [{sup 1}H,{sup 13}C]-methyls in Leu and Val in proteins is presented. Recombinant proteins for NMR studies are produced using a tailored set of auxotrophic E. coli strains. NMR active isotopes are routed to either Leu or Val methyl groups from the commercially available and scrambling-free precursors α-ketoisovalerate and acetolactate. The engineered strains produce deuterated proteins with stereospecific [{sup 1}H,{sup 13}C]-methyl labeling separately at Leu or Val amino acids. This is the first method that achieves Leu-specific stereospecific [{sup 1}H,{sup 13}C]-methyl labeling of proteins and scramble-free Val-specific labeling. Use of auxotrophs drastically decreases the amount of labeled precursor required for expression without impacting the yield. The concept is extended to Thr methyl labeling by means of a Thr-specific auxotroph that provides enhanced efficiency for use with the costly L-[4-{sup 13}C,2,3-{sup 2}H{sub 2},{sup 15}N]-Thr reagent. The Thr-specific strain allows for the production of Thr-[{sup 13}CH{sub 3}]{sup γ2} labeled protein with an optimal isotope incorporation using up to 50 % less labeled Thr than the traditional E. coli strain without the need for {sup 2}H-glycine to prevent scrambling.

  5. Flow-through lipid nanotube arrays for structure-function studies of membrane proteins by solid-state NMR spectroscopy.

    Science.gov (United States)

    Chekmenev, Eduard Y; Gor'kov, Peter L; Cross, Timothy A; Alaouie, Ali M; Smirnov, Alex I

    2006-10-15

    A novel method for studying membrane proteins in a native lipid bilayer environment by solid-state NMR spectroscopy is described and tested. Anodic aluminum oxide (AAO) substrates with flow-through 175 nm wide and 60-mum-long nanopores were employed to form macroscopically aligned peptide-containing lipid bilayers that are fluid and highly hydrated. We demonstrate that the surfaces of both leaflets of such bilayers are fully accessible to aqueous solutes. Thus, high hydration levels as well as pH and desirable ion and/or drug concentrations could be easily maintained and modified as desired in a series of experiments with the same sample. The method allows for membrane protein NMR experiments in a broad pH range that could be extended to as low as 1 and as high as 12 units for a period of up to a few hours and temperatures as high as 70 degrees C without losing the lipid alignment or bilayers from the nanopores. We demonstrate the utility of this method by a solid-state 19.6 T (17)O NMR study of reversible binding effects of mono- and divalent ions on the chemical shift properties of the Leu(10) carbonyl oxygen of transmembrane pore-forming peptide gramicidin A (gA). We further compare the (17)O shifts induced by binding metal ions to the binding of protons in the pH range from 1 to 12 and find a significant difference. This unexpected result points to a difference in mechanisms for ion and proton conduction by the gA pore. We believe that a large number of solid-state NMR-based studies, including structure-function, drug screening, proton exchange, pH, and other titration experiments, will benefit significantly from the method described here.

  6. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard; Gao, Xin; Li, Ming

    2011-01-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg's contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  7. Towards fully automated structure-based NMR resonance assignment of 15N-labeled proteins from automatically picked peaks

    KAUST Repository

    Jang, Richard

    2011-03-01

    In NMR resonance assignment, an indispensable step in NMR protein studies, manually processed peaks from both N-labeled and C-labeled spectra are typically used as inputs. However, the use of homologous structures can allow one to use only N-labeled NMR data and avoid the added expense of using C-labeled data. We propose a novel integer programming framework for structure-based backbone resonance assignment using N-labeled data. The core consists of a pair of integer programming models: one for spin system forming and amino acid typing, and the other for backbone resonance assignment. The goal is to perform the assignment directly from spectra without any manual intervention via automatically picked peaks, which are much noisier than manually picked peaks, so methods must be error-tolerant. In the case of semi-automated/manually processed peak data, we compare our system with the Xiong-Pandurangan-Bailey- Kellogg\\'s contact replacement (CR) method, which is the most error-tolerant method for structure-based resonance assignment. Our system, on average, reduces the error rate of the CR method by five folds on their data set. In addition, by using an iterative algorithm, our system has the added capability of using the NOESY data to correct assignment errors due to errors in predicting the amino acid and secondary structure type of each spin system. On a publicly available data set for human ubiquitin, where the typing accuracy is 83%, we achieve 91% accuracy, compared to the 59% accuracy obtained without correcting for such errors. In the case of automatically picked peaks, using assignment information from yeast ubiquitin, we achieve a fully automatic assignment with 97% accuracy. To our knowledge, this is the first system that can achieve fully automatic structure-based assignment directly from spectra. This has implications in NMR protein mutant studies, where the assignment step is repeated for each mutant. © Copyright 2011, Mary Ann Liebert, Inc.

  8. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Iowa State University, Department of Chemistry (United States)], E-mail: mhong@iastate.edu; McMillan, R. Andrew; Conticello, Vincent P. [Emory University, Department of Chemistry (United States)

    2002-02-15

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve {sup 13}CO{sub i} {sup {yields}} {sup 15}N{sub i} {sup {yields}} {sup 13}C{alpha}{sub i} transfer between two residues. A {sup 13}C, {sup 15}N-labeled elastin mimetic protein (VPGVG){sub n} is used to demonstrate the method. The technique selected the Gly3 C{alpha} signal while suppressing the Gly5 C{alpha} signal, and allowed the measurement of the Gly3 C{alpha} chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues.

  9. Measurement of conformational constraints in an elastin-mimetic protein by residue-pair selected solid-state NMR

    International Nuclear Information System (INIS)

    Hong, Mei; McMillan, R. Andrew; Conticello, Vincent P.

    2002-01-01

    We introduce a solid-state NMR technique for selective detection of a residue pair in multiply labeled proteins to obtain site-specific structural constraints. The method exploits the frequency-offset dependence of cross polarization to achieve 13 CO i → 15 N i → 13 Cα i transfer between two residues. A 13 C, 15 N-labeled elastin mimetic protein (VPGVG) n is used to demonstrate the method. The technique selected the Gly3 Cα signal while suppressing the Gly5 Cα signal, and allowed the measurement of the Gly3 Cα chemical shift anisotropy to derive information on the protein conformation. This residue-pair selection technique should simplify the study of protein structure at specific residues

  10. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data

    Energy Technology Data Exchange (ETDEWEB)

    Mantsyzov, Alexey B. [M.V. Lomonosov Moscow State University, Faculty of Fundamental Medicine (Russian Federation); Shen, Yang; Lee, Jung Ho [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States); Hummer, Gerhard [Max Planck Institute of Biophysics (Germany); Bax, Ad, E-mail: bax@nih.gov [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)

    2015-09-15

    MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ({sup 15}N, {sup 13}C{sup α}, and {sup 13}C′), six types of J couplings ({sup 3}J{sub HNHα}, {sup 3}J{sub C′C′}, {sup 3}J{sub C′Hα}, {sup 1}J{sub HαCα}, {sup 2}J{sub CαN} and {sup 1}J{sub CαN}), as well as the {sup 15}N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.

  11. Application of NMR Screening Methods with 19F Detection to Fluorinated Compounds Bound to Proteins

    Directory of Open Access Journals (Sweden)

    Kazuo Furihata

    2017-12-01

    Full Text Available The combinational use of one-dimensional (1D NMR-based screening techniques with 1H and 19F detections were applied to a human serum albumin–diflunisal complex. Since most NMR screening methods observe 1H spectra, the overlapped 1H signals were unavailable in the binding epitope mapping. However, the NMR experiments with 19F detection can be used as an effective complementary method. For the purpose of identifying the 1H and 19F binding epitopes of diflunisal, this paper carries out a combinatorial analysis using 1H{1H} and 19F{1H} saturation transfer difference experiments. The differences of the 1H-inversion recovery rates with and without target irradiation are also analyzed for a comprehensive interpretation of binding epitope mapping.

  12. 1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans

    DEFF Research Database (Denmark)

    Ciurli, Stefano; Cremonini, Mauro Andrea; Kofod, Pauli

    1996-01-01

    residues bound to the [4Fe-4S]3+/2+ cluster have been performed using one-dimensional NOE and exchange spectroscopy experiments. 1H-NMR hyperfine shifts and relaxation rates of cluster-bound Cys β-CH2 protons indicate that in the [4Fe-4S]3+ cluster one iron ion can be formally described as Fe(III), while......Oxidized and reduced forms of high-potential iron-sulfur protein (HiPIP) from the purple non-sulfur photosynthetic bacterium Rhodoferux fermentans have been characterized using 1H-NMR spectroscopy. Pairwise and sequence-specific assignments of hyperfine-shifted 1H-NMR signals to protons of cysteine...... longitudinal relaxation rates of Cys β-CH2 protons in HiPIPs from six different sources as a function of the Fe-S-Cβ-Cα dihedral angle, indicate that the major contribution is due to a dipolar metal-centered mechanism, with a non-negligeable contribution from a ligand-centered dipolar mechanism which involves...

  13. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies

    Science.gov (United States)

    2018-01-01

    Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents. PMID:29488756

  14. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    Energy Technology Data Exchange (ETDEWEB)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States); Assadi, Amir [University of Wisconsin-Madison, Mathematics Department (United States); Markley, John L. [National Magnetic Resonance Facility at Madison, Biochemistry Department (United States)], E-mail: eghbalni@nmrfam.wisc.edu

    2005-05-15

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states.

  15. Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements

    International Nuclear Information System (INIS)

    Eghbalnia, Hamid R.; Wang Liya; Bahrami, Arash; Assadi, Amir; Markley, John L.

    2005-01-01

    We present an energy model that combines information from the amino acid sequence of a protein and available NMR chemical shifts for the purposes of identifying low energy conformations and determining elements of secondary structure. The model ('PECAN', Protein Energetic Conformational Analysis from NMR chemical shifts) optimizes a combination of sequence information and residue-specific statistical energy function to yield energetic descriptions most favorable to predicting secondary structure. Compared to prior methods for secondary structure determination, PECAN provides increased accuracy and range, particularly in regions of extended structure. Moreover, PECAN uses the energetics to identify residues located at the boundaries between regions of predicted secondary structure that may not fit the stringent secondary structure class definitions. The energy model offers insights into the local energetic patterns that underlie conformational preferences. For example, it shows that the information content for defining secondary structure is localized about a residue and reaches a maximum when two residues on either side are considered. The current release of the PECAN software determines the well-defined regions of secondary structure in novel proteins with assigned chemical shifts with an overall accuracy of 90%, which is close to the practical limit of achievable accuracy in classifying the states

  16. Nano-mole scale sequential signal assignment by 1 H-detected protein solid-state NMR

    KAUST Repository

    Wang, Songlin; Parthasarathy, Sudhakar; Xiao, Yiling; Nishiyama, Yusuke; Long, Fei; Matsuda, Isamu; Endo, Yuki; Nemoto, Takahiro; Yamauchi, Kazuo; Asakura, Tetsuo; Takeda, Mitsuhiro; Terauchi, Tsutomu; Kainosho, Masatsune; Ishii, Yoshitaka

    2015-01-01

    We present a 3D 1H-detected solid-state NMR (SSNMR) approach for main-chain signal assignments of 10-100 nmol of fully protonated proteins using ultra-fast magic-angle spinning (MAS) at ∼80 kHz by a novel spectral-editing method, which permits drastic spectral simplification. The approach offers ∼110 fold time saving over a traditional 3D 13C-detected SSNMR approach. This journal is © The Royal Society of Chemistry 2015.

  17. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus

    Czech Academy of Sciences Publication Activity Database

    Macek, Pavel; Chmelík, Josef; Křížová, Ivana; Kadeřávek, P.; Padrta, P.; Žídek, L.; Wildová, Marcela; Hadravová, Romana; Chaloupková, R.; Pichová, Iva; Ruml, T.; Rumlová, Michaela; Sklenář, V.

    2009-01-01

    Roč. 392, č. 1 (2009), s. 100-114 ISSN 0022-2836 R&D Projects: GA MŠk LC545; GA MŠk 1M0508; GA ČR GA204/09/1388; GA ČR GESCO/06/E001 Grant - others:GA MŠk(CZ) 1M0520; MŠk(CZ) LC06030 Program:1M; LC Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : M-PMV * betaretroviruses * capsid protein * NMR structure * internal dynamics Subject RIV: CE - Biochemistry Impact factor: 3.871, year: 2009

  18. Effects of Long-Term Storage Time and Original Sampling Month on Biobank Plasma Protein Concentrations

    Directory of Open Access Journals (Sweden)

    Stefan Enroth

    2016-10-01

    Full Text Available The quality of clinical biobank samples is crucial to their value for life sciences research. A number of factors related to the collection and storage of samples may affect the biomolecular composition. We have studied the effect of long-time freezer storage, chronological age at sampling, season and month of the year and on the abundance levels of 108 proteins in 380 plasma samples collected from 106 Swedish women. Storage time affected 18 proteins and explained 4.8–34.9% of the observed variance. Chronological age at sample collection after adjustment for storage-time affected 70 proteins and explained 1.1–33.5% of the variance. Seasonal variation had an effect on 15 proteins and month (number of sun hours affected 36 proteins and explained up to 4.5% of the variance after adjustment for storage-time and age. The results show that freezer storage time and collection date (month and season exerted similar effect sizes as age on the protein abundance levels. This implies that information on the sample handling history, in particular storage time, should be regarded as equally prominent covariates as age or gender and need to be included in epidemiological studies involving protein levels.

  19. High-field EPR on membrane proteins - crossing the gap to NMR.

    Science.gov (United States)

    Möbius, Klaus; Lubitz, Wolfgang; Savitsky, Anton

    2013-11-01

    In this review on advanced EPR spectroscopy, which addresses both the EPR and NMR communities, considerable emphasis is put on delineating the complementarity of NMR and EPR concerning the measurement of molecular interactions in large biomolecules. From these interactions, detailed information can be revealed on structure and dynamics of macromolecules embedded in solution- or solid-state environments. New developments in pulsed microwave and sweepable cryomagnet technology as well as ultrafast electronics for signal data handling and processing have pushed to new horizons the limits of EPR spectroscopy and its multifrequency extensions concerning the sensitivity of detection, the selectivity with respect to interactions, and the resolution in frequency and time domains. One of the most important advances has been the extension of EPR to high magnetic fields and microwave frequencies, very much in analogy to what happens in NMR. This is exemplified by referring to ongoing efforts for signal enhancement in both NMR and EPR double-resonance techniques by exploiting dynamic nuclear or electron spin polarization via unpaired electron spins and their electron-nuclear or electron-electron interactions. Signal and resolution enhancements are particularly spectacular for double-resonance techniques such as ENDOR and PELDOR at high magnetic fields. They provide greatly improved orientational selection for disordered samples that approaches single-crystal resolution at canonical g-tensor orientations - even for molecules with small g-anisotropies. Exchange of experience between the EPR and NMR communities allows for handling polarization and resolution improvement strategies in an optimal manner. Consequently, a dramatic improvement of EPR detection sensitivity could be achieved, even for short-lived paramagnetic reaction intermediates. Unique structural and dynamic information is thus revealed that can hardly be obtained by any other analytical techniques. Micromolar

  20. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2013-10-15

    The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD {approx}0.44 A, a tilt angle of 24 Degree-Sign {+-} 1 Degree-Sign , and an azimuthal angle of 55 Degree-Sign {+-} 6 Degree-Sign . This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.

  1. Crystallization and preliminary X-ray crystallographic analysis of the NmrA-like DDB-G0286605 protein from the social amoeba Dictyostelium discoideum

    International Nuclear Information System (INIS)

    Kim, Min-Kyu; Yim, Hyung-Soon; Kang, Sa-Ouk

    2010-01-01

    In order to investigate its structure and function, the NmrA-like domain-containing DDB-G0286605 protein from D. discoideum was expressed, purified and crystallized. X-ray diffraction analysis is reported to a resolution of 1.64 Å. The DDB-G0286605 gene product from Dictyostelium discoideum, an NmrA-like protein that belongs to the short-chain dehydrogenase/reductase family, has been crystallized by the hanging-drop vapour-diffusion method at 295 K. A 1.64 Å resolution data set was collected using synchrotron radiation. The DDB-G0286605 protein crystals belonged to space group P2 1 , with unit-cell parameters a = 67.598, b = 54.935, c = 84.219 Å, β = 109.620°. Assuming the presence of two molecules in the asymmetric unit, the solvent content was estimated to be about 43.25% with 99% probability. Molecular-replacement trials were attempted with three NmrA-like proteins, NmrA, HSCARG and QOR2, as search models, but failed. This may be a consequence of the low sequence identity between the DDB-G0286605 protein and the search models (DDB-G0286605 has a primary-sequence identity of 28, 32 and 19% to NmrA, HCARG and QOR2, respectively)

  2. An improved ultrafast 2D NMR experiment: Towards atom-resolved real-time studies of protein kinetics at multi-Hz rates

    International Nuclear Information System (INIS)

    Gal, Maayan; Kern, Thomas; Schanda, Paul; Frydman, Lucio; Brutscher, Bernhard

    2009-01-01

    Multidimensional NMR spectroscopy is a well-established technique for the characterization of structure and fast-time-scale dynamics of highly populated ground states of biological macromolecules. The investigation of short-lived excited states that are important for molecular folding, misfolding and function, however, remains a challenge for modern biomolecular NMR techniques. Off-equilibrium real-time kinetic NMR methods allow direct observation of conformational or chemical changes by following peak positions and intensities in a series of spectra recorded during a kinetic event. Because standard multidimensional NMR methods required to yield sufficient atom-resolution are intrinsically time-consuming, many interesting phenomena are excluded from real-time NMR analysis. Recently, spatially encoded ultrafast 2D NMR techniques have been proposed that allow one to acquire a 2D NMR experiment within a single transient. In addition, when combined with the SOFAST technique, such ultrafast experiments can be repeated at high rates. One of the problems detected for such ultrafast protein NMR experiments is related to the heteronuclear decoupling during detection with interferences between the pulses and the oscillatory magnetic field gradients arising in this scheme. Here we present a method for improved ultrafast data acquisition yielding higher signal to noise and sharper lines in single-scan 2D NMR spectra. In combination with a fast-mixing device, the recording of 1 H- 15 N correlation spectra with repetition rates of up to a few Hertz becomes feasible, enabling real-time studies of protein kinetics occurring on time scales down to a few seconds

  3. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    International Nuclear Information System (INIS)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam; Gabel, Frank; Sattler, Michael

    2013-01-01

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  4. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  5. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations

    Science.gov (United States)

    Baxa, Michael C.; Haddadian, Esmael J.; Jumper, John M.; Freed, Karl F.; Sosnick, Tobin R.

    2014-01-01

    The loss of conformational entropy is a major contribution in the thermodynamics of protein folding. However, accurate determination of the quantity has proven challenging. We calculate this loss using molecular dynamic simulations of both the native protein and a realistic denatured state ensemble. For ubiquitin, the total change in entropy is TΔSTotal = 1.4 kcal⋅mol−1 per residue at 300 K with only 20% from the loss of side-chain entropy. Our analysis exhibits mixed agreement with prior studies because of the use of more accurate ensembles and contributions from correlated motions. Buried side chains lose only a factor of 1.4 in the number of conformations available per rotamer upon folding (ΩU/ΩN). The entropy loss for helical and sheet residues differs due to the smaller motions of helical residues (TΔShelix−sheet = 0.5 kcal⋅mol−1), a property not fully reflected in the amide N-H and carbonyl C=O bond NMR order parameters. The results have implications for the thermodynamics of folding and binding, including estimates of solvent ordering and microscopic entropies obtained from NMR. PMID:25313044

  6. Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations

    International Nuclear Information System (INIS)

    Bernado, Pau; Fernandes, Miguel X.; Jacobs, Doris M.; Fiebig, Klaus; Garcia de la Torre, Jose; Pons, Miquel

    2004-01-01

    Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition. Heteronuclear NMR relaxation is sensitive to motions in the relevant time scales and could provide valuable information on the dynamics of multi-domain proteins. However, the standard analysis based on the separation of global tumbling and fast local motions is no longer valid for multi-domain proteins undergoing internal motions involving complete domains and that take place on the same time scale than the overall motion.The complexity of the motions experienced even for the simplest two-domain proteins are difficult to capture with simple extensions of the classical Lipari-Szabo approach. Hydrodynamic effects are expected to dominate the motion of the individual globular domains, as well as that of the complete protein. Using Pin1 as a test case, we have simulated its motion at the microsecond time scale, at a reasonable computational expense, using Brownian Dynamic simulations on simplified models. The resulting trajectories provide insight on the interplay between global and inter-domain motion and can be analyzed using the recently published method of isotropic Reorientational Mode Dynamics which offer a way of calculating their contribution to heteronuclear relaxation rates. The analysis of trajectories computed with Pin1 models of different flexibility provides a general framework to understand the dynamics of multi-domain proteins and explains some of the observed features in the relaxation rate profile of free Pin1

  7. Interpretation of NMR relaxation properties of Pin1, a two-domain protein, based on Brownian dynamic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bernado, Pau [Institut de Biologie Structurale, Jean Pierre Ebel (France); Fernandes, Miguel X. [Universidad de Murcia, Departamento de Quimica Fisica, Facultad de Quimica (Spain); Jacobs, Doris M. [Johann Wolfgang Goethe-Universitaet Frankfurt, Institut fuer Organische Chemie und Chemische Biologie (Germany); Fiebig, Klaus [Affinium Pharmaceuticals (Canada); Garcia de la Torre, Jose [Universidad de Murcia, Departamento de Quimica Fisica, Facultad de Quimica (Spain); Pons, Miquel [Laboratori de RMN de Biomolecules, Parc Cientific de Barcelona (Spain)], E-mail: mpons@ub.edu

    2004-05-15

    Many important proteins contain multiple domains connected by flexible linkers. Inter-domain motion is suggested to play a key role in many processes involving molecular recognition. Heteronuclear NMR relaxation is sensitive to motions in the relevant time scales and could provide valuable information on the dynamics of multi-domain proteins. However, the standard analysis based on the separation of global tumbling and fast local motions is no longer valid for multi-domain proteins undergoing internal motions involving complete domains and that take place on the same time scale than the overall motion.The complexity of the motions experienced even for the simplest two-domain proteins are difficult to capture with simple extensions of the classical Lipari-Szabo approach. Hydrodynamic effects are expected to dominate the motion of the individual globular domains, as well as that of the complete protein. Using Pin1 as a test case, we have simulated its motion at the microsecond time scale, at a reasonable computational expense, using Brownian Dynamic simulations on simplified models. The resulting trajectories provide insight on the interplay between global and inter-domain motion and can be analyzed using the recently published method of isotropic Reorientational Mode Dynamics which offer a way of calculating their contribution to heteronuclear relaxation rates. The analysis of trajectories computed with Pin1 models of different flexibility provides a general framework to understand the dynamics of multi-domain proteins and explains some of the observed features in the relaxation rate profile of free Pin1.

  8. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  9. NMR of proteins (4Fe-4S): structural properties and intramolecular electron transfer; RMN de proteines (4Fe-4S): proprietes structurales et transfert electronique intramoleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Huber, J G

    1996-10-17

    NMR started to be applied to Fe-S proteins in the seventies. Its use has recently been enlarged as the problems arising from the paramagnetic polymetallic clusters ware overcome. Applications to [4Fe-4S] are presented herein. The information derived thereof deepens the understanding of the redox properties of these proteins which play a central role in the metabolism of bacterial cells. The secondary structure elements and the overall folding of Chromatium vinosum ferredoxin (Cv Fd) in solution have been established by NMR. The unique features of this sequence have been shown to fold as an {alpha} helix at the C-terminus and as a loop between two cysteines ligand of one cluster: these two parts localize in close proximity from one another. The interaction between nuclear and electronic spins is a source of additional structural information for (4Fe-AS] proteins. The conformation of the cysteine-ligands, as revealed by the Fe-(S{sub {gamma}}-C{sub {beta}}-H{sub {beta}})Cys dihedral angles, is related to the chemical shifts of the signals associated with the protons of these residues. The longitudinal relaxation times of the protons depend on their distance to the cluster. A quantitative relationship has been established and used to show that the solution structure of the high-potential ferredoxin from Cv differs significantly from the crystal structure around Phe-48. Both parameters (chemical shifts and longitudinal relaxation times) give also insight into the electronic and magnetic properties of the [4Fe-4S] clusters. The rate of intramolecular electron transfer between the two [4FE-4S] clusters of ferredoxins has been measured by NMR. It is far slower in the case of Cv Fd than for shorter ferredoxins. The difference may be associated with changes in the magnetic and/or electronic properties of one cluster. The strong paramagnetism of the [4Fe-4S] clusters, which originally limited the applicability of NMR to proteins containing these cofactors, has been proven

  10. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance {sup 13}C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Daley, Margaret E.; Sykes, Brian D. [University of Alberta, Department of Biochemistry, CIHR Group in Protein Structure and Function and Protein Engineering Network of Centres of Excellence (Canada)

    2004-06-15

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance {sup 13}C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the {sup 1}H-{sup 13}C NOE were determined in this study. The C{alpha}H relaxation measurements were compared to the previously measured {sup 15}N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the {chi}{sub 1} dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than {+-}25 deg.

  11. Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy

    International Nuclear Information System (INIS)

    Daley, Margaret E.; Sykes, Brian D.

    2004-01-01

    The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance 13 C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the 1 H- 13 C NOE were determined in this study. The CαH relaxation measurements were compared to the previously measured 15 N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the χ 1 dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159-7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than ±25 deg

  12. A suite of Mathematica notebooks for the analysis of protein main chain 15N NMR relaxation data

    International Nuclear Information System (INIS)

    Spyracopoulos, Leo

    2006-01-01

    A suite of Mathematica notebooks has been designed to ease the analysis of protein main chain 15 N NMR relaxation data collected at a single magnetic field strength. Individual notebooks were developed to perform the following tasks: nonlinear fitting of 15 N-T 1 and -T 2 relaxation decays to a two parameter exponential decay, calculation of the principal components of the inertia tensor from protein structural coordinates, nonlinear optimization of the principal components and orientation of the axially symmetric rotational diffusion tensor, model-free analysis of 15 N-T 1 , -T 2 , and { 1 H}- 15 N NOE data, and reduced spectral density analysis of the relaxation data. The principle features of the notebooks include use of a minimal number of input files, integrated notebook data management, ease of use, cross-platform compatibility, automatic visualization of results and generation of high-quality graphics, and output of analyses in text format

  13. Selective {sup 2}H and {sup 13}C labeling in NMR analysis of solution protein structure and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    LeMaster, D.M. [Northwestern Univ., Evanston, IL (United States)

    1994-12-01

    Preparation of samples bearing combined isotope enrichment patterns has played a central role in the recent advances in NMR analysis of proteins in solution. In particular, uniform {sup 13}C, {sup 15}N enrichment has made it possible to apply heteronuclear multidimensional correlation experiments for the mainchain assignments of proteins larger than 30 KDa. In contrast, selective labeling approaches can offer advantages in terms of the directedness of the information provided, such as chirality and residue type assignments, as well as through enhancements in resolution and sensitivity that result from editing the spectral complexity, the relaxation pathways and the scalar coupling networks. In addition, the combination of selective {sup 13}C and {sup 2}H enrichment can greatly facilitate the determination of heteronuclear relaxation behavior.

  14. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    Science.gov (United States)

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    International Nuclear Information System (INIS)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S.

    2011-01-01

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly 13 C, 15 N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5°C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution 13 C and 15 N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  16. NMR Determination of Protein Partitioning into Membrane Domains with Different Curvatures and Application to the Influenza M2 Peptide

    Science.gov (United States)

    Wang, Tuo; Cady, Sarah D.; Hong, Mei

    2012-01-01

    The M2 protein of the influenza A virus acts both as a drug-sensitive proton channel and mediates virus budding through membrane scission. The segment responsible for causing membrane curvature is an amphipathic helix in the cytoplasmic domain of the protein. Here, we use 31P and 13C solid-state NMR to examine M2-induced membrane curvature. M2(22–46), which includes only the transmembrane (TM) helix, and M2(21–61), which contains an additional amphipathic helix, are studied. 31P chemical shift lineshapes indicate that M2(21–61) causes a high-curvature isotropic phase to both cholesterol-rich virus-mimetic membranes and 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers, whereas M2(22–46) has minimal effect. The lamellar and isotropic domains have distinct 31P isotropic chemical shifts, indicating perturbation of the lipid headgroup conformation by the amphipathic helix. 31P- and 13C-detected 1H T2 relaxation and two-dimensional peptide-lipid correlation spectra show that M2(21–61) preferentially binds to the high-curvature domain. 31P linewidths indicate that the isotropic vesicles induced by M2(21–61) are 10–35 nm in diameter, and the virus-mimetic vesicles are smaller than the 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles. A strong correlation is found between high membrane curvature and weak drug-binding ability of the TM helix. Thus, the M2 amphipathic helix causes membrane curvature, which in turn perturbs the TM helix conformation, abolishing drug binding. These NMR experiments are applicable to other curvature-inducing membrane proteins such as fusion proteins and antimicrobial peptides. PMID:22385849

  17. Specific labeling and assignment strategies of valine methyl groups for NMR studies of high molecular weight proteins

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Guillaume; Crublet, Elodie [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France); Hamelin, Olivier [CNRS (France); Gans, Pierre; Boisbouvier, Jérôme, E-mail: jerome.boisbouvier@ibs.fr [Univ. Grenoble Alpes, Institut de Biologie Structurale (IBS) (France)

    2013-09-28

    The specific protonation of valine and leucine methyl groups in proteins is typically achieved by overexpressing proteins in M9/D{sub 2}O medium supplemented with either labeled α-ketoisovalerate for the labeling of the four prochiral methyl groups or with 2-acetolactate for the stereospecific labeling of the valine and leucine side chains. However, when these labeling schemes are applied to large protein assemblies, significant overlap between the correlations of the valine and leucine methyl groups occurs, hampering the analysis of 2D methyl-TROSY spectra. Analysis of the leucine and valine biosynthesis pathways revealed that the incorporation of labeled precursors in the leucine pathway can be inhibited by the addition of exogenous l-leucine-d{sub 10}. We exploited this property to label stereospecifically the pro-R and pro-S methyl groups of valine with minimal scrambling to the leucine residues. This new labeling protocol was applied to the 468 kDa homododecameric peptidase TET2 to decrease the complexity of its NMR spectra. All of the pro-S valine methyl resonances of TET2 were assigned by combining mutagenesis with this innovative labeling approach. The assignments were transferred to the pro-R groups using an optimally labeled sample and a set of triple resonance experiments. This improved labeling scheme enables us to overcome the main limitation of overcrowding in the NMR spectra of prochiral methyl groups, which is a prerequisite for the site-specific measurement of the structural and dynamic parameters or for the study of interactions in very large protein assemblies.

  18. Seed storage protein polymorphism in ten elite rice (Oryza sativa L ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... for several economical traits by conserving landrace genotypes and ... plasm, seed storage protein analysis represents a valid alternative ... of each variety was taken and ground into fine powder using pestle and mortal and ...

  19. A comparison of chemical shift sensitivity of trifluoromethyl tags: optimizing resolution in {sup 19}F NMR studies of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Libin; Larda, Sacha Thierry; Frank Li, Yi Feng [University of Toronto, UTM, Department of Chemistry (Canada); Manglik, Aashish [Stanford University School of Medicine, Department of Molecular and Cellular Physiology (United States); Prosser, R. Scott, E-mail: scott.prosser@utoronto.ca [University of Toronto, UTM, Department of Chemistry (Canada)

    2015-05-15

    The elucidation of distinct protein conformers or states by fluorine ({sup 19}F) NMR requires fluorinated moieties whose chemical shifts are most sensitive to subtle changes in the local dielectric and magnetic shielding environment. In this study we evaluate the effective chemical shift dispersion of a number of thiol-reactive trifluoromethyl probes [i.e. 2-bromo-N-(4-(trifluoromethyl)phenyl)acetamide (BTFMA), N-(4-bromo-3-(trifluoromethyl)phenyl)acetamide (3-BTFMA), 3-bromo-1,1,1-trifluoropropan-2-ol (BTFP), 1-bromo-3,3,4,4,4-pentafluorobutan-2-one (BPFB), 3-bromo-1,1,1-trifluoropropan-2-one (BTFA), and 2,2,2-trifluoroethyl-1-thiol (TFET)] under conditions of varying polarity. In considering the sensitivity of the {sup 19}F NMR chemical shift to the local environment, a series of methanol/water mixtures were prepared, ranging from relatively non-polar (MeOH:H{sub 2}O = 4) to polar (MeOH:H{sub 2}O = 0.25). {sup 19}F NMR spectra of the tripeptide, glutathione ((2S)-2-amino-4-{[(1R)-1-[(carboxymethyl)carbamoyl] -2-sulfanylethyl]carbamoyl}butanoic acid), conjugated to each of the above trifluoromethyl probes, revealed that the BTFMA tag exhibited a significantly greater range of chemical shift as a function of solvent polarity than did either BTFA or TFET. DFT calculations using the B3LYP hybrid functional and the 6-31G(d,p) basis set, confirmed the observed trend in chemical shift dispersion with solvent polarity.

  20. Sparse "1"3C labelling for solid-state NMR studies of P. pastoris expressed eukaryotic seven-transmembrane proteins

    International Nuclear Information System (INIS)

    Liu, Jing; Liu, Chang; Fan, Ying; Munro, Rachel A.; Ladizhansky, Vladimir; Brown, Leonid S.; Wang, Shenlin

    2016-01-01

    We demonstrate a novel sparse "1"3C labelling approach for methylotrophic yeast P. pastoris expression system, towards solid-state NMR studies of eukaryotic membrane proteins. The labelling scheme was achieved by co-utilizing natural abundance methanol and specifically "1"3C labelled glycerol as carbon sources in the expression medium. This strategy improves the spectral resolution by 1.5 fold, displays site-specific labelling patterns, and has advantages for collecting long-range distance restraints for structure determination of large eukaryotic membrane proteins by solid-state NMR.

  1. Measurement of backbone hydrogen-deuterium exchange in the type III secretion system needle protein PrgI by solid-state NMR

    Science.gov (United States)

    Chevelkov, Veniamin; Giller, Karin; Becker, Stefan; Lange, Adam

    2017-10-01

    In this report we present site-specific measurements of amide hydrogen-deuterium exchange rates in a protein in the solid state phase by MAS NMR. Employing perdeuteration, proton detection and a high external magnetic field we could adopt the highly efficient Relax-EXSY protocol previously developed for liquid state NMR. According to this method, we measured the contribution of hydrogen exchange on apparent 15N longitudinal relaxation rates in samples with differing D2O buffer content. Differences in the apparent T1 times allowed us to derive exchange rates for multiple residues in the type III secretion system needle protein.

  2. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  3. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  4. Solution NMR structure and functional analysis of the integral membrane protein YgaP from Escherichia coli.

    Science.gov (United States)

    Eichmann, Cédric; Tzitzilonis, Christos; Bordignon, Enrica; Maslennikov, Innokentiy; Choe, Senyon; Riek, Roland

    2014-08-22

    The solution NMR structure of the α-helical integral membrane protein YgaP from Escherichia coli in mixed 1,2-diheptanoyl-sn-glycerol-3-phosphocholine/1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles is presented. In these micelles, YgaP forms a homodimer with the two transmembrane helices being the dimer interface, whereas the N-terminal cytoplasmic domain includes a rhodanese-fold in accordance to its sequence homology to the rhodanese family of sulfurtransferases. The enzymatic sulfur transfer activity of full-length YgaP as well as of the N-terminal rhodanese domain only was investigated performing a series of titrations with sodium thiosulfate and potassium cyanide monitored by NMR and EPR. The data indicate the thiosulfate concentration-dependent addition of several sulfur atoms to the catalytic Cys-63, which process can be reversed by the addition of potassium cyanide. The catalytic reaction induces thereby conformational changes within the rhodanese domain, as well as on the transmembrane α-helices of YgaP. These results provide insights into a potential mechanism of YgaP during the catalytic thiosulfate activity in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    Science.gov (United States)

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-03

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Study on the effects of wheat bran incorporation on water mobility and biopolymer behavior during bread making and storage using time-domain 1H NMR relaxometry.

    Science.gov (United States)

    Hemdane, S; Jacobs, P J; Bosmans, G M; Verspreet, J; Delcour, J A; Courtin, C M

    2017-12-01

    Water binding is suggested to be key in the deleterious effect of wheat bran on bread quality. This study investigates water mobility and biopolymer behavior during bran-rich bread making and storage, using 1 H NMR. Coarse, ground, and pericarp-enriched bran were incorporated in bread dough, and their impact on freshly baked and stored bread properties was assessed. Compared to wheat flour control dough, bran incorporation resulted in a progressive immobilization of water during dough resting, which could be linked to changes in evolution of dough height during fermentation and oven rise. This, together with modified starch gelatinization behavior upon baking, can be related with the inferior quality of bran-rich breads. The impact was most pronounced with pericarp-enriched bran. Textural quality during storage was less affected for coarse or ground bran-rich bread compared to wheat flour bread, which could be principally attributed to retardation of amylopectin retrogradation in the presence of bran. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Controlling residual dipolar couplings in high-resolution NMR of proteins by strain induced alignment in a gel

    International Nuclear Information System (INIS)

    Ishii, Yoshitaka; Markus, Michelle A.; Tycko, Robert

    2001-01-01

    Water-soluble biological macromolecules can be weakly aligned by dissolution in a strained, hydrated gel such as cross-linked polyacrylamide, an effect termed 'strain-induced alignment in a gel' (SAG). SAG induces nonzero nuclear magnetic dipole-dipole couplings that can be measured in high-resolution NMR spectra and used as structural constraints. The dependence of experimental 15 N- 1 H dipolar couplings extracted from two-dimensional heteronuclear single quantum coherence (HSQC) spectra on several properties of compressed polyacrylamide, including the extent of compression, the polyacrylamide concentration, and the cross-link density, is reported for the B1 immunoglobulin binding domain of streptococcal protein G (protein G/B1, 57 residues). It is shown that the magnitude of macromolecular alignment can be widely varied by adjusting these properties, although the orientation and asymmetry of the alignment tensor are not affected significantly. The dependence of the 15 N relaxation times T 1 and T 2 of protein G/B1 on polyacrylamide concentration are also reported. In addition, the results of 15 N relaxation and HSQC experiments on the RNA binding domain of prokaryotic protein S4 from Bacillus stearothermophilus (S4 Δ41, residues 43-200) in a compressed polyacrylamide gel are presented. These results demonstrate the applicability of SAG to proteins of higher molecular weight and greater complexity. A modified in-phase/anti-phase (IPAP) HSQC technique is described that suppresses natural-abundance 15 N background signals from amide groups in polyacrylamide, resulting in cleaner HSQC spectra in SAG experiments. The mechanism of protein alignment in strained polyacrylamide gels is contrasted with that in liquid crystalline media

  8. NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes

    OpenAIRE

    Choe Senyon; Riek Roland; Johnson Casey; Kefala Georgia; Maslennikov Innokentiy; Kwiatkowski Witek

    2007-01-01

    Abstract Background Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characteriza...

  9. BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions

    International Nuclear Information System (INIS)

    Markley, John L.; Ulrich, Eldon L.; Berman, Helen M.; Henrick, Kim; Nakamura, Haruki; Akutsu, Hideo

    2008-01-01

    We describe the role of the BioMagResBank (BMRB) within the Worldwide Protein Data Bank (wwPDB) and recent policies affecting the deposition of biomolecular NMR data. All PDB depositions of structures based on NMR data must now be accompanied by experimental restraints. A scheme has been devised that allows depositors to specify a representative structure and to define residues within that structure found experimentally to be largely unstructured. The BMRB now accepts coordinate sets representing three-dimensional structural models based on experimental NMR data of molecules of biological interest that fall outside the guidelines of the Protein Data Bank (i.e., the molecule is a peptide with 23 or fewer residues, a polynucleotide with 3 or fewer residues, a polysaccharide with 3 or fewer sugar residues, or a natural product), provided that the coordinates are accompanied by representation of the covalent structure of the molecule (atom connectivity), assigned NMR chemical shifts, and the structural restraints used in generating model. The BMRB now contains an archive of NMR data for metabolites and other small molecules found in biological systems

  10. An Introduction to Drug Discovery by Probing Protein-Substrate Interactions Using Saturation Transfer Difference-Nuclear Magnetic Resonance (STD-NMR)

    Science.gov (United States)

    Guegan, Jean-Paul; Daniellou, Richard

    2012-01-01

    NMR spectroscopy is a powerful tool for characterizing and identifying molecules and nowadays is even used to characterize complex systems in biology. In the experiment presented here, students learned how to apply this modern technique to probe interactions between small molecules and proteins. With the use of simple organic synthesis, students…

  11. Solid state NMR sequential resonance assignments and conformational analysis of the 2x10.4 kDa dimeric form of the Bacillus subtilis protein Crh

    Energy Technology Data Exchange (ETDEWEB)

    Boeckmann, Anja [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France)], E-mail: a.bockmann@ibcp.fr; Lange, Adam [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Galinier, Anne [Institut de Biologie Structurale et Microbiologie, C.N.R.S UPR 9043 (France); Luca, Sorin [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Giraud, Nicolas; Juy, Michel [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Heise, Henrike [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany); Montserret, Roland; Penin, Francois [Institut de Biologie et Chimie des Proteines, C.N.R.S UMR 5086 (France); Baldus, Marc [Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR (Germany)], E-mail: maba@mpibpc.mpg.de

    2003-12-15

    Solid state NMR sample preparation and resonance assignments of the U-[{sup 13}C,{sup 15}N] 2x10.4 kDa dimeric form of the regulatory protein Crh in microcrystalline, PEG precipitated form are presented. Intra- and interresidue correlations using dipolar polarization transfer methods led to nearly complete sequential assignments of the protein, and to 88% of all {sup 15}N, {sup 13}C chemical shifts. For several residues, the resonance assignments differ significantly from those reported for the monomeric form analyzed by solution state NMR. Dihedral angles obtained from a TALOS-based statistical analysis suggest that the microcrystalline arrangement of Crh must be similar to the domain-swapped dimeric structure of a single crystal form recently solved using X-ray crystallography. For a limited number of protein residues, a remarkable doubling of the observed NMR resonances is observed indicative of local static or dynamic conformational disorder. Our study reports resonance assignments for the largest protein investigated by solid state NMR so far and describes the conformational dimeric variant of Crh with previously unknown chemical shifts.

  12. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    Energy Technology Data Exchange (ETDEWEB)

    Motackova, Veronika; Novacek, Jiri [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Zawadzka-Kazimierczuk, Anna; Kazimierczuk, Krzysztof [University of Warsaw, Faculty of Chemistry (Poland); Zidek, Lukas, E-mail: lzidek@chemi.muni.c [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic); Sanderova, Hana; Krasny, Libor [Academy of Sciences of the Czech Republic, Laboratory of Molecular Genetics of Bacteria and Department of Bacteriology, Institute of Microbiology (Czech Republic); Kozminski, Wiktor [University of Warsaw, Faculty of Chemistry (Poland); Sklenar, Vladimir [Masaryk University, Faculty of Science, National Centre for Biomolecular Research (Czech Republic)

    2010-11-15

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, {delta} subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  13. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects.

    Science.gov (United States)

    Cala, Olivier; Pinaud, Noël; Simon, Cécile; Fouquet, Eric; Laguerre, Michel; Dufourc, Erick J; Pianet, Isabelle

    2010-11-01

    In organoleptic science, the association of tannins to saliva proteins leads to the poorly understood phenomenon of astringency. To decipher this interaction at molecular and colloidal levels, the binding of 4 procyanidin dimers (B1-4) and 1 trimer (C2) to a human saliva proline-rich peptide, IB7(14), was studied. Interactions have been characterized by measuring dissociation constants, sizes of complexes, number, and nature of binding sites using NMR (chemical shift variations, diffusion-ordered spectroscopy, and saturation transfer diffusion). The binding sites were identified using molecular mechanics, and the hydrophilic/hydrophobic nature of the interactions was resolved by calculating the molecular lipophilicity potential within the complexes. The following comprehensive scheme can be proposed: 1) below the tannin critical micelle concentration (CMC), interaction is specific, and the procyanidin anchorage always occurs on the same three IB7(14) sites. The tannin 3-dimensional structure plays a key role in the binding force and in the tannin's ability to act as a bidentate ligand: tannins adopting an extended conformation exhibit higher affinity toward protein and initiate the formation of a network. 2) Above the CMC, after the first specific hydrophilic interaction has taken place, a random hydrophobic stacking occurs between tannins and proteins. The whole process is discussed in the general frame of wine tannins eliciting astringency.

  14. RNA-binding domain of the A protein component of the U1 small nuclear ribonucleoprotein analyzed by NMR spectroscopy is structurally similar to ribosomal proteins

    International Nuclear Information System (INIS)

    Hoffman, D.W.; Query, C.C.; Golden, B.L.; White, S.W.; Keene, J.D.

    1991-01-01

    An RNA recognition motif (RRM) of ∼80 amino acids constitutes the core of RNA-binding domains found in a large family of proteins involved in RNA processing. The U1 RNA-binding domain of the A protein component of the human U1 small nuclear ribonucleoprotein (RNP), which encompasses the RRM sequence, was analyzed by using NMR spectroscopy. The domain of the A protein is a highly stable monomer in solution consisting of four antiparallel β-strands and two α-helices. The highly conserved RNP1 and RNP2 consensus sequences, containing residues previously suggested to be involved in nucleic acid binding, are juxtaposed in adjacent β-strands. Conserved aromatic side chains that are critical for RNA binding are clustered on the surface to the molecule adjacent to a variable loop that influences recognition of specific RNA sequences. The secondary structure and topology of the RRM are similar to those of ribosomal proteins L12 and L30, suggesting a distant evolutionary relationship between these two types of RNA-associated proteins

  15. Equilibrium simulations of proteins using molecular fragment replacement and NMR chemical shifts

    DEFF Research Database (Denmark)

    Boomsma, Wouter; Tian, Pengfei; Frellsen, J.

    2014-01-01

    recently been shown that using such information directly as input in molecular simulations based on the molecular fragment replacement strategy can help the process of protein structure determination. Here, we show how to implement this strategy to determine not only the structures of proteins but also...

  16. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis).

    Science.gov (United States)

    Watanabe, Miki; Roth, Terri L; Bauer, Stuart J; Lane, Adam; Romick-Rosendale, Lindsey E

    2016-01-01

    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health

  17. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis.

    Directory of Open Access Journals (Sweden)

    Miki Watanabe

    Full Text Available A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD, or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3, including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4. Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30 and unhealthy (n = 13. A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for

  18. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP

    Energy Technology Data Exchange (ETDEWEB)

    Rozentur-Shkop, Eva; Goobes, Gil; Chill, Jordan H., E-mail: Jordan.Chill@biu.ac.il [Bar Ilan University, Department of Chemistry (Israel)

    2016-12-15

    Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J({sup 15}N,{sup 13}Cα) couplings. This concept was realized using a unidirectional (H)NCO {sup 13}C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J({sup 15}N,{sup 13}Cα) couplings were acquired for WIP residues 2–65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16–23 and 45–60, and a helical tendency at residues 28–42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP{sup 2–65} conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein–protein interactions that stabilize the unfolded

  19. Cell-free expression, purification, and membrane reconstitution for NMR studies of the nonstructural protein 4B from hepatitis C virus

    Energy Technology Data Exchange (ETDEWEB)

    Fogeron, Marie-Laure [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Jirasko, Vlastimil; Penzel, Susanne [ETH Zurich, Physical Chemistry (Switzerland); Paul, David [Heidelberg University, Department of Infectious Diseases, Molecular Virology (Germany); Montserret, Roland; Danis, Clément; Lacabanne, Denis; Badillo, Aurélie [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Gouttenoire, Jérôme; Moradpour, Darius [University of Lausanne, Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois (Switzerland); Bartenschlager, Ralf [Heidelberg University, Department of Infectious Diseases, Molecular Virology (Germany); Penin, François [Université de Lyon, Institut de Biologie et Chimie des Protéines, Bases Moléculaires et Structurales des Systèmes Infectieux, Labex Ecofect, UMR 5086 CNRS (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); and others

    2016-06-15

    We describe the expression of the hepatitis C virus nonstructural protein 4B (NS4B), which is an integral membrane protein, in a wheat germ cell-free system, the subsequent purification and characterization of NS4B and its insertion into proteoliposomes in amounts sufficient for multidimensional solid-state NMR spectroscopy. First spectra of the isotopically [{sup 2}H,{sup 13}C,{sup 15}N]-labeled protein are shown to yield narrow {sup 13}C resonance lines and a proper, predominantly α-helical fold. Clean residue-selective leucine, isoleucine and threonine-labeling is demonstrated. These results evidence the suitability of the wheat germ-produced integral membrane protein NS4B for solid-state NMR. Still, the proton linewidth under fast magic angle spinning is broader than expected for a perfect sample and possible causes are discussed.

  20. Dynamic changes in proteins during apple (Malus x domestica) fruit ripening and storage

    OpenAIRE

    Shi, Yun; Jiang, Li; Zhang, Li; Kang, Ruoyi; Yu, Zhifang

    2014-01-01

    A proteomic study, using two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight/time-of-flight, was conducted in apple fruit (cv. ‘Golden Delicious’) starting at 10 days prior to harvest through 50 days in storage. Total protein was extracted using a phenol/sodium dodecyl sulfate protocol. More than 400 protein spots were detected in each gel and 55 differentially expressed proteins (p

  1. Conservation of polypyrimidine tract binding proteins and their putative target RNAs in several storage root crops.

    Science.gov (United States)

    Kondhare, Kirtikumar R; Kumar, Amit; Hannapel, David J; Banerjee, Anjan K

    2018-02-07

    Polypyrimidine-tract binding proteins (PTBs) are ubiquitous RNA-binding proteins in plants and animals that play diverse role in RNA metabolic processes. PTB proteins bind to target RNAs through motifs rich in cytosine/uracil residues to fine-tune transcript metabolism. Among tuber and root crops, potato has been widely studied to understand the mobile signals that activate tuber development. Potato PTBs, designated as StPTB1 and StPTB6, function in a long-distance transport system by binding to specific mRNAs (StBEL5 and POTH1) to stabilize them and facilitate their movement from leaf to stolon, the site of tuber induction, where they activate tuber and root growth. Storage tubers and root crops are important sustenance food crops grown throughout the world. Despite the availability of genome sequence for sweet potato, cassava, carrot and sugar beet, the molecular mechanism of root-derived storage organ development remains completely unexplored. Considering the pivotal role of PTBs and their target RNAs in potato storage organ development, we propose that a similar mechanism may be prevalent in storage root crops as well. Through a bioinformatics survey utilizing available genome databases, we identify the orthologues of potato PTB proteins and two phloem-mobile RNAs, StBEL5 and POTH1, in five storage root crops - sweet potato, cassava, carrot, radish and sugar beet. Like potato, PTB1/6 type proteins from these storage root crops contain four conserved RNA Recognition Motifs (characteristic of RNA-binding PTBs) in their protein sequences. Further, 3´ UTR (untranslated region) analysis of BEL5 and POTH1 orthologues revealed the presence of several cytosine/uracil motifs, similar to those present in potato StBEL5 and POTH1 RNAs. Using RT-qPCR assays, we verified the presence of these related transcripts in leaf and root tissues of these five storage root crops. Similar to potato, BEL5-, PTB1/6- and POTH1-like orthologue RNAs from the aforementioned storage root

  2. Genotypic variability and mutant identification in cicer arietinum L. by seed storage protein profiling

    International Nuclear Information System (INIS)

    Hameed, A.; Iqbal, N.; Shah, T.M.

    2012-01-01

    A collection of thirty-four chickpea genotypes, including five kabuli and twenty-nine desi, were analyzed by SDS-PAGE for seed storage protein profiling. Total soluble seed proteins were resolved on 12% gels. A low level of variability was observed in desi as compared to kabuli genotypes. Dendrogram based on electrophoretic data clustered the thirty-four genotypes in four major groups. As large number of desi genotypes illustrated identical profiles, therefore could not be differentiated on the basis of seed storage protein profiles. One kabuli genotype ILC-195 found to be the most divergent showing 86% similarity with all other genotypes. ILC-195 can be distinguished from its mutant i.e., CM-2000 and other kabuli genotypes on the basis of three peptides i.e. SSP-66, SSP-43 and SSP-39. Some proteins peptides were found to be genotype specific like SSP-26 for ICCV-92311. Uniprot and NCBI protein databases were searched for already reported and characterized seed storage proteins in chickpea. Among 33 observed peptides, only six seed storages proteins from chickpea source were available in databases. On the basis of molecular weight similarity, identified peptides were SSP-64 as Serine/Threonine dehydratase, SSP-56 as Alpha-amylase inhibitor, SSP-50 as Provicillin, SSP-39 as seed imbibition protein, SSP-35 as Isoflavane reductase and SSP-19 as lipid transport protein. Highest variability was observed in vicillin subunits and beta subunits of legumins and its polymorphic forms. In conclusion, seed storage profiling can be economically used to asses the genetic variation, phylogenetic relationship and as markers to differentiate mutants from their parents. (author)

  3. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice

    NARCIS (Netherlands)

    Chen, Y.; Sun, A.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2014-01-01

    Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we

  4. Water-Protein Hydrogen Exchange in the Micro-Crystalline Protein Crh as Observed by Solid State NMR Spectroscopy

    International Nuclear Information System (INIS)

    Boeckmann, Anja; Juy, Michel; Bettler, Emmanuel; Emsley, Lyndon; Galinier, Anne; Penin, Francois; Lesage, Anne

    2005-01-01

    We report site-resolved observation of hydrogen exchange in the micro-crystalline protein Crh. Our approach is based on the use of proton T 2 ' -selective 1 H- 13 C- 13 C correlation spectra for site-specific assignments of carbons nearby labile protein protons. We compare the proton T 2 ' selective scheme to frequency selective water observation in deuterated proteins, and discuss the impacts of deuteration on 13 C linewidths in Crh. We observe that in micro-crystalline proteins, solvent accessible hydroxyl and amino protons show comparable exchange rates with water protons as for proteins in solution, and that structural constraints, such as hydrogen bonding or solvent accessibility, more significantly reduce exchange rates

  5. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    Science.gov (United States)

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  6. Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins

    International Nuclear Information System (INIS)

    Korzhnev, Dmitry M.; Neculai, Dante; Dhe-Paganon, Sirano; Arrowsmith, Cheryl H.; Bezsonova, Irina

    2016-01-01

    HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities. Thus, they can convert Y-shaped replication forks into X-shaped Holliday junction structures that allow error-free replication over DNA lesions. The fork reversal activity of HLTF is dependent on 3′-ssDNA-end binding activity of its N-terminal HIRAN domain. Here we present the solution NMR structure of the human HLTF HIRAN domain, an OB-like fold module found in organisms from bacteria (as a stand-alone domain) to plants, fungi and metazoan (in combination with SWI2/SNF2 helicase-like domain). The obtained structure of free HLTF HIRAN is similar to recently reported structures of its DNA bound form, while the NMR analysis also reveals that the DNA binding site of the free domain exhibits conformational heterogeneity. Sequence comparison of N-terminal regions of HLTF, SHPRH and Rad5 aided by knowledge of the HLTF HIRAN structure suggests that the SHPRH N-terminus also includes an uncharacterized structured module, exhibiting weak sequence similarity with HIRAN regions of HLTF and Rad5, and potentially playing a similar functional role.

  7. Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins

    Energy Technology Data Exchange (ETDEWEB)

    Korzhnev, Dmitry M. [University of Connecticut Health, Department of Molecular Biology and Biophysics (United States); Neculai, Dante [Zhejiang University, School of Medicine (China); Dhe-Paganon, Sirano [Dana-Farber Cancer Institute, Department of Cancer Biology (United States); Arrowsmith, Cheryl H. [University of Toronto, Structural Genomics Consortium (Canada); Bezsonova, Irina, E-mail: bezsonova@uchc.edu [University of Connecticut Health, Department of Molecular Biology and Biophysics (United States)

    2016-11-15

    HLTF is a SWI2/SNF2-family ATP-dependent chromatin remodeling enzyme that acts in the error-free branch of DNA damage tolerance (DDT), a cellular mechanism that enables replication of damaged DNA while leaving damage repair for a later time. Human HLTF and a closely related protein SHPRH, as well as their yeast homologue Rad5, are multi-functional enzymes that share E3 ubiquitin-ligase activity required for activation of the error-free DDT. HLTF and Rad5 also function as ATP-dependent dsDNA translocases and possess replication fork reversal activities. Thus, they can convert Y-shaped replication forks into X-shaped Holliday junction structures that allow error-free replication over DNA lesions. The fork reversal activity of HLTF is dependent on 3′-ssDNA-end binding activity of its N-terminal HIRAN domain. Here we present the solution NMR structure of the human HLTF HIRAN domain, an OB-like fold module found in organisms from bacteria (as a stand-alone domain) to plants, fungi and metazoan (in combination with SWI2/SNF2 helicase-like domain). The obtained structure of free HLTF HIRAN is similar to recently reported structures of its DNA bound form, while the NMR analysis also reveals that the DNA binding site of the free domain exhibits conformational heterogeneity. Sequence comparison of N-terminal regions of HLTF, SHPRH and Rad5 aided by knowledge of the HLTF HIRAN structure suggests that the SHPRH N-terminus also includes an uncharacterized structured module, exhibiting weak sequence similarity with HIRAN regions of HLTF and Rad5, and potentially playing a similar functional role.

  8. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm

    International Nuclear Information System (INIS)

    Yang, Yu; Fritzsching, Keith J.; Hong, Mei

    2013-01-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra (“good connections”), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra (“bad connections”), and minimizing the number of assigned peaks that have no matching peaks in the other spectra (“edges”). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct

  9. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.

    Science.gov (United States)

    Yang, Yu; Fritzsching, Keith J; Hong, Mei

    2013-11-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a

  10. Identification and characterisation of seed storage protein transcripts from Lupinus angustifolius

    Directory of Open Access Journals (Sweden)

    Goggin Danica E

    2011-04-01

    Full Text Available Abstract Background In legumes, seed storage proteins are important for the developing seedling and are an important source of protein for humans and animals. Lupinus angustifolius (L., also known as narrow-leaf lupin (NLL is a grain legume crop that is gaining recognition as a potential human health food as the grain is high in protein and dietary fibre, gluten-free and low in fat and starch. Results Genes encoding the seed storage proteins of NLL were characterised by sequencing cDNA clones derived from developing seeds. Four families of seed storage proteins were identified and comprised three unique α, seven β, two γ and four δ conglutins. This study added eleven new expressed storage protein genes for the species. A comparison of the deduced amino acid sequences of NLL conglutins with those available for the storage proteins of Lupinus albus (L., Pisum sativum (L., Medicago truncatula (L., Arachis hypogaea (L. and Glycine max (L. permitted the analysis of a phylogenetic relationships between proteins and demonstrated, in general, that the strongest conservation occurred within species. In the case of 7S globulin (β conglutins and 2S sulphur-rich albumin (δ conglutins, the analysis suggests that gene duplication occurred after legume speciation. This contrasted with 11S globulin (α conglutin and basic 7S (γ conglutin sequences where some of these sequences appear to have diverged prior to speciation. The most abundant NLL conglutin family was β (56%, followed by α (24%, δ (15% and γ (6% and the transcript levels of these genes increased 103 to 106 fold during seed development. We used the 16 NLL conglutin sequences identified here to determine that for individuals specifically allergic to lupin, all seven members of the β conglutin family were potential allergens. Conclusion This study has characterised 16 seed storage protein genes in NLL including 11 newly-identified members. It has helped lay the foundation for efforts to use

  11. The effects of frozen tissue storage conditions on the integrity of RNA and protein.

    Science.gov (United States)

    Auer, H; Mobley, J A; Ayers, L W; Bowen, J; Chuaqui, R F; Johnson, L A; Livolsi, V A; Lubensky, I A; McGarvey, D; Monovich, L C; Moskaluk, C A; Rumpel, C A; Sexton, K C; Washington, M K; Wiles, K R; Grizzle, W E; Ramirez, N C

    2014-10-01

    Unfixed tissue specimens most frequently are stored for long term research uses at either -80° C or in vapor phase liquid nitrogen (VPLN). There is little information concerning the effects such long term storage on tissue RNA or protein available for extraction. Aliquots of 49 specimens were stored for 5-12 years at -80° C or in VPLN. Twelve additional paired specimens were stored for 1 year under identical conditions. RNA was isolated from all tissues and assessed for RNA yield, total RNA integrity and mRNA integrity. Protein stability was analyzed by surface-enhanced or matrix-assisted laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS, MALDI-TOF-MS) and nano-liquid chromatography electrospray ionization tandem mass spectrometry (nLC-ESI-MS/MS). RNA yield and total RNA integrity showed significantly better results for -80° C storage compared to VPLN storage; the transcripts that were preferentially degraded during VPLN storage were these involved in antigen presentation and processing. No consistent differences were found in the SELDI-TOF-MS, MALDI-TOF-MS or nLC-ESI-MS/MS analyses of specimens stored for more than 8 years at -80° C compared to those stored in VPLN. Long term storage of human research tissues at -80° C provides at least the same quality of RNA and protein as storage in VPLN.

  12. Purification and Initial Functions of Sex-Specific Storage Protein 2 in Bombyx mori.

    Science.gov (United States)

    Chen, Jianqing; Shu, Tejun; Chen, Jian; Ye, Man; Lv, Zhengbing; Nie, Zuoming; Gai, Qijing; Yu, Wei; Zhang, Yaozhou

    2015-08-01

    In this study, we identified a heat-resistant protein from the chrysalis stage of the silkworm which we named sex-specific storage protein 2 (SSP2). This protein was stable even at 80 °C, and has an amino acid sequence that is 90.65 % homologous to SP2. We utilized the heat-resistant characteristics of SSP2 to purify the protein and maintain its biological activity. In addition, using flow cytometry and the MTT assay, we found that SSP2 had anti-apoptotic effects on BmN cells, and that SSP2 could also inhibit cell apoptosis induced by chemical factors. These results suggest that SSP2 has a cell-protective function, and provides a basis for future work on the function of storage proteins in silkworm.

  13. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: Application to microcrystalline and membrane protein preparations

    Science.gov (United States)

    Gopinath, T.; Veglia, Gianluigi

    2015-04-01

    Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.

  14. CSI 3.0: a web server for identifying secondary and super-secondary structure in proteins using NMR chemical shifts.

    Science.gov (United States)

    Hafsa, Noor E; Arndt, David; Wishart, David S

    2015-07-01

    The Chemical Shift Index or CSI 3.0 (http://csi3.wishartlab.com) is a web server designed to accurately identify the location of secondary and super-secondary structures in protein chains using only nuclear magnetic resonance (NMR) backbone chemical shifts and their corresponding protein sequence data. Unlike earlier versions of CSI, which only identified three types of secondary structure (helix, β-strand and coil), CSI 3.0 now identifies total of 11 types of secondary and super-secondary structures, including helices, β-strands, coil regions, five common β-turns (type I, II, I', II' and VIII), β hairpins as well as interior and edge β-strands. CSI 3.0 accepts experimental NMR chemical shift data in multiple formats (NMR Star 2.1, NMR Star 3.1 and SHIFTY) and generates colorful CSI plots (bar graphs) and secondary/super-secondary structure assignments. The output can be readily used as constraints for structure determination and refinement or the images may be used for presentations and publications. CSI 3.0 uses a pipeline of several well-tested, previously published programs to identify the secondary and super-secondary structures in protein chains. Comparisons with secondary and super-secondary structure assignments made via standard coordinate analysis programs such as DSSP, STRIDE and VADAR on high-resolution protein structures solved by X-ray and NMR show >90% agreement between those made with CSI 3.0. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. A role for seed storage proteins in Arabidopsis seed longevity

    NARCIS (Netherlands)

    Nguyen, Thu-Phuong|info:eu-repo/dai/nl/328228818; Cueff, Gwendal; Hegedus, Dwayne D; Rajjou, Loïc; Bentsink, Leónie|info:eu-repo/dai/nl/241338735

    2015-01-01

    Proteomics approaches have been a useful tool for determining the biological roles and functions of individual proteins and identifying the molecular mechanisms that govern seed germination, vigour and viability in response to ageing. In this work the dry seed proteome of four Arabidopsis thaliana

  16. Characterization of pH titration shifts for all the nonlabile proton resonances in a protein by two-dimensional NMR: The case of mouse epidermal growth factor

    International Nuclear Information System (INIS)

    Kohda, Daisuke; Sawada, Toshie; Inagaki, Fuyuhiko

    1991-01-01

    The pH titration shifts for all the nonlabile proton resonances in a 53-residue protein (mouse epidermal growth factor) were measured in the p 2 H range 1.5-9 with two-dimensional (2D) 1 H NMR. The 2D NMR pH titration experiment made it possible to determine the pK values for all the ionizable group which were titrated in the pH range 1.5-9 in the protein. The pK values of the nine ionizable groups (α-amino group, four Asp, two Glu, one His, and α-carboxyl group) were found to be near their normal values. The 2D titration experiment also provided a detailed description of the pH-dependent behavior of the proton chemical shifts and enabled us to characterize the pH-dependent changes of protein conformation. Analysis of the pH-dependent shifts of ca. 200 proton resonances offered evidence of conformational changes in slightly basic pH solution: The deprotonation of the N-terminal α-amino group induced a widespread conformational change over the β-sheet structure in the protein, while the effects of deprotonation of the His22 imidazole group were relatively localized. The authors found that the 2D NMR pH titration experiment is a powerful tool for investigating the structural and dynamic properties of proteins

  17. Mapping protein–protein interactions by double-REDOR-filtered magic angle spinning NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Changmiao; Hou, Guangjin, E-mail: hou@udel.edu; Lu, Xingyu; Polenova, Tatyana, E-mail: tpolenov@udel.edu [University of Delaware, Department of Chemistry and Biochemistry (United States)

    2017-02-15

    REDOR-based experiments with simultaneous {sup 1}H–{sup 13}C and {sup 1}H−{sup 15}N dipolar dephasing are explored for investigating intermolecular protein–protein interfaces in complexes formed by a U–{sup 13}C,{sup 15}N-labeled protein and its natural abundance binding partner. The application of a double-REDOR filter (dREDOR) results in a complete dephasing of proton magnetization in the U–{sup 13}C,{sup 15}N-enriched molecule while the proton magnetization of the unlabeled binding partner is not dephased. This retained proton magnetization is then transferred across the intermolecular interface by {sup 1}H–{sup 13}C or {sup 1}H–{sup 15}N cross polarization, permitting to establish the residues of the U–{sup 13}C,{sup 15}N-labeled protein, which constitute the binding interface. To assign the interface residues, this dREDOR-CPMAS element is incorporated as a building block into {sup 13}C–{sup 13}C correlation experiments. We established the validity of this approach on U–{sup 13}C,{sup 15}N-histidine and on a structurally characterized complex of dynactin’s U–{sup 13}C,{sup 15}N-CAP-Gly domain with end-binding protein 1 (EB1). The approach introduced here is broadly applicable to the analysis of intermolecular interfaces when one of the binding partners in a complex cannot be isotopically labeled.

  18. Carbohydrate-protein interaction studies by laser photo CIDNP NMR methods

    NARCIS (Netherlands)

    Siebert, HC; Kaptein, R; Beintema, JJ; Soedjanaatmadja, UM; Wright, CS; Rice, A; Kleineidam, RG; Kruse, S; Schauer, R; Pouwels, PJW; Kamerling, JP; Gabius, HJ; Vliegenthart, JFG

    The side chains of tyrosine, tryptophan and histidine are able to produce CIDNP (Chemically Induced Dynamic Nuclear Polarization) signals after laser irradiation in the presence of a suitable radical pair-generating dye. Elicitation of such a response in proteins implies surface accessibility of the

  19. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    Kalderon, B.; Korman, S.H.; Gutman, A.; Lapidot, A.

    1989-01-01

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U- 13 C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13 C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U- 13 C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13 C-enriched D-[U- 13 C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non- 13 C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  20. Fat-specific protein 27 regulates storage of triacylglycerol

    DEFF Research Database (Denmark)

    Keller, P.; Petrie, J.T.; Rose, P. De

    2008-01-01

    FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins...... in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L...... decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement Udgivelsesdato: 2008/5/23...

  1. Characterization of the Raf kinase inhibitory protein (RKIP) binding pocket: NMR-based screening identifies small-molecule ligands.

    Science.gov (United States)

    Shemon, Anne N; Heil, Gary L; Granovsky, Alexey E; Clark, Mathew M; McElheny, Dan; Chimon, Alexander; Rosner, Marsha R; Koide, Shohei

    2010-05-05

    Raf kinase inhibitory protein (RKIP), also known as phoshaptidylethanolamine binding protein (PEBP), has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE). In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized. In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity. This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  2. Characterization of the Raf kinase inhibitory protein (RKIP binding pocket: NMR-based screening identifies small-molecule ligands.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2010-05-01

    Full Text Available Raf kinase inhibitory protein (RKIP, also known as phoshaptidylethanolamine binding protein (PEBP, has been shown to inhibit Raf and thereby negatively regulate growth factor signaling by the Raf/MAP kinase pathway. RKIP has also been shown to suppress metastasis. We have previously demonstrated that RKIP/Raf interaction is regulated by two mechanisms: phosphorylation of RKIP at Ser-153, and occupation of RKIP's conserved ligand binding domain with a phospholipid (2-dihexanoyl-sn-glycero-3-phosphoethanolamine; DHPE. In addition to phospholipids, other ligands have been reported to bind this domain; however their binding properties remain uncharacterized.In this study, we used high-resolution heteronuclear NMR spectroscopy to screen a chemical library and assay a number of potential RKIP ligands for binding to the protein. Surprisingly, many compounds previously postulated as RKIP ligands showed no detectable binding in near-physiological solution conditions even at millimolar concentrations. In contrast, we found three novel ligands for RKIP that specifically bind to the RKIP pocket. Interestingly, unlike the phospholipid, DHPE, these newly identified ligands did not affect RKIP binding to Raf-1 or RKIP phosphorylation. One out of the three ligands displayed off target biological effects, impairing EGF-induced MAPK and metabolic activity.This work defines the binding properties of RKIP ligands under near physiological conditions, establishing RKIP's affinity for hydrophobic ligands and the importance of bulky aliphatic chains for inhibiting its function. The common structural elements of these compounds defines a minimal requirement for RKIP binding and thus they can be used as lead compounds for future design of RKIP ligands with therapeutic potential.

  3. J-UNIO protocol used for NMR structure determination of the 206-residue protein NP-346487.1 from Streptococcus pneumoniae TIGR4

    Energy Technology Data Exchange (ETDEWEB)

    Jaudzems, Kristaps [Latvian Institute of Organic Synthesis (Latvia); Pedrini, Bill [Paul Scherrer Institute (PSI), SwissFEL Project (Switzerland); Geralt, Michael; Serrano, Pedro; Wüthrich, Kurt, E-mail: wuthrich@scripps.edu [The Scripps Research Institute, Department of Integrative Structural and Computational Biology (United States)

    2015-01-15

    The NMR structure of the 206-residue protein NP-346487.1 was determined with the J-UNIO protocol, which includes extensive automation of the structure determination. With input from three APSY-NMR experiments, UNIO-MATCH automatically yielded 77 % of the backbone assignments, which were interactively validated and extended to 97 %. With an input of the near-complete backbone assignments and three 3D heteronuclear-resolved [{sup 1}H,{sup 1}H]-NOESY spectra, automated side chain assignment with UNIO-ATNOS/ASCAN resulted in 77 % of the expected assignments, which was extended interactively to about 90 %. Automated NOE assignment and structure calculation with UNIO-ATNOS/CANDID in combination with CYANA was used for the structure determination of this two-domain protein. The individual domains in the NMR structure coincide closely with the crystal structure, and the NMR studies further imply that the two domains undergo restricted hinge motions relative to each other in solution. NP-346487.1 is so far the largest polypeptide chain to which the J-UNIO structure determination protocol has successfully been applied.

  4. BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures

    Energy Technology Data Exchange (ETDEWEB)

    Doreleijers, Jurgen F. [University of Wisconsin-Madison, BioMagResBank, Department of Biochemistry (United States); Nederveen, Aart J. [Utrecht University, Bijvoet Center for Biomolecular Research (Netherlands); Vranken, Wim [European Bioinformatics Institute, Macromolecular Structure Database group (United Kingdom); Lin Jundong [University of Wisconsin-Madison, BioMagResBank, Department of Biochemistry (United States); Bonvin, Alexandre M.J.J.; Kaptein, Robert [Utrecht University, Bijvoet Center for Biomolecular Research (Netherlands); Markley, John L.; Ulrich, Eldon L. [University of Wisconsin-Madison, BioMagResBank, Department of Biochemistry (United States)], E-mail: elu@bmrb.wisc.edu

    2005-05-15

    We present two new databases of NMR-derived distance and dihedral angle restraints: the Database Of Converted Restraints (DOCR) and the Filtered Restraints Database (FRED). These databases currently correspond to 545 proteins with NMR structures deposited in the Protein Databank (PDB). The criteria for inclusion were that these should be unique, monomeric proteins with author-provided experimental NMR data and coordinates available from the PDB capable of being parsed and prepared in a consistent manner. The Wattos program was used to parse the files, and the CcpNmr FormatConverter program was used to prepare them semi-automatically. New modules, including a new implementation of Aqua in the BioMagResBank (BMRB) software Wattos were used to analyze the sets of distance restraints (DRs) for inconsistencies, redundancies, NOE completeness, classification and violations with respect to the original coordinates. Restraints that could not be associated with a known nomenclature were flagged. The coordinates of hydrogen atoms were recalculated from the positions of heavy atoms to allow for a full restraint analysis. The DOCR database contains restraint and coordinate data that is made consistent with each other and with IUPAC conventions. The FRED database is based on the DOCR data but is filtered for use by test calculation protocols and longitudinal analyses and validations. These two databases are available from websites of the BMRB and the Macromolecular Structure Database (MSD) in various formats: NMR-STAR, CCPN XML, and in formats suitable for direct use in the software packages CNS and CYANA.

  5. BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Nederveen, Aart J.; Vranken, Wim; Lin Jundong; Bonvin, Alexandre M.J.J.; Kaptein, Robert; Markley, John L.; Ulrich, Eldon L.

    2005-01-01

    We present two new databases of NMR-derived distance and dihedral angle restraints: the Database Of Converted Restraints (DOCR) and the Filtered Restraints Database (FRED). These databases currently correspond to 545 proteins with NMR structures deposited in the Protein Databank (PDB). The criteria for inclusion were that these should be unique, monomeric proteins with author-provided experimental NMR data and coordinates available from the PDB capable of being parsed and prepared in a consistent manner. The Wattos program was used to parse the files, and the CcpNmr FormatConverter program was used to prepare them semi-automatically. New modules, including a new implementation of Aqua in the BioMagResBank (BMRB) software Wattos were used to analyze the sets of distance restraints (DRs) for inconsistencies, redundancies, NOE completeness, classification and violations with respect to the original coordinates. Restraints that could not be associated with a known nomenclature were flagged. The coordinates of hydrogen atoms were recalculated from the positions of heavy atoms to allow for a full restraint analysis. The DOCR database contains restraint and coordinate data that is made consistent with each other and with IUPAC conventions. The FRED database is based on the DOCR data but is filtered for use by test calculation protocols and longitudinal analyses and validations. These two databases are available from websites of the BMRB and the Macromolecular Structure Database (MSD) in various formats: NMR-STAR, CCPN XML, and in formats suitable for direct use in the software packages CNS and CYANA

  6. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy.

    Science.gov (United States)

    Delaforge, Elise; Kragelj, Jaka; Tengo, Laura; Palencia, Andrés; Milles, Sigrid; Bouvignies, Guillaume; Salvi, Nicola; Blackledge, Martin; Jensen, Malene Ringkjøbing

    2018-01-24

    Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R 1ρ , Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.

  7. Effect of pomegranate peel extract on lipid and protein oxidation in beef meatballs during refrigerated storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Soyer, Ayla; Işıkçı, Fatma

    2016-06-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation was investigated in meatballs during refrigerated storage at 4±1°C. Concentrated lyophilised water extract of pomegranate peel was incorporated into freshly minced beef meat at 0.5% and 1% concentrations and compared with 0.01% butylated hydroxytoluene (BHT) as a reference and control (without any antioxidant). PE showed high phenolic content and antioxidant activity. In PE added samples, thiobarbituric acid reactive substances (TBARS) value, peroxide formation, loss of sulfhydryl groups and formation of protein carbonyls were lower than control (Pmeatballs prolonged the refrigerated storage up to 8 days. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  9. Storage stability of cauliflower soup powder: The effect of lipid oxidation and protein degradation reactions.

    Science.gov (United States)

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-09-15

    Soups based on cauliflower soup powders, prepared by dry mixing of ingredients and rapeseed oil, showed a decrease in quality, as evaluated by a sensory panel, during the storage of the soup powder in the dark for up to 12weeks under mildly accelerated conditions of 40°C and 75% relative humidity. Antioxidant, shown to be effective in protecting the rapeseed bulk oil, used for the powder preparation, had no effect on storage stability of the soup powder. The freshly prepared soup powder had a relatively high concentration of free radicals, as measured by electron spin resonance spectroscopy, which decreased during storage, and most remarkably during the first two weeks of storage, with only marginal increase in lipid hydroperoxides as primary lipid oxidation products, and without any increase in secondary lipid oxidation products. Analyses of volatiles by SPME-GC-MS revealed a significant increase in concentrations of 2-methyl- and 3-methyl butanals, related to Maillard reactions, together with an increase in 2-acetylpyrrole concentration. The soup powders became more brown during storage, as indicated by a decreasing Hunter L-value, in accord with non-enzymatic browning reactions. A significant increase in the concentrations of dimethyl disulfide in soup powder headspace indicated free radical-initiated protein oxidation. Protein degradation, including Maillard reactions and protein oxidation, is concluded to be more important than lipid oxidation in determining the shelf-life of dry cauliflower soup powder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. NMR studies on the mechanism of structural destabilization of the globular proteins and DNA by aliphatic alcohols

    International Nuclear Information System (INIS)

    Lubas, B.; Witman, B.; Wieniewska, T.; Soltysik, M.

    1977-01-01

    The concept that the mechanism of structural destabilization of the biologically active macromolecules by typical denaturing agents should find a reflection in the NMR spectra of the denaturants themselves has been followed by proton NMR for some aliphatic alcohols in the system containing the serum albumin of DNA. (author)

  11. Visualizing the principal component of 1H,15N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C

    International Nuclear Information System (INIS)

    Robertson, Ian M.; Boyko, Robert F.; Sykes, Brian D.

    2011-01-01

    Laboratories often repeatedly determine the structure of a given protein under a variety of conditions, mutations, modifications, or in a number of states. This approach can be cumbersome and tedious. Given then a database of structures, identifiers, and corresponding 1 H, 15 N-HSQC NMR spectra for homologous proteins, we investigated whether structural information could be ascertained for a new homolog solely from its 1 H, 15 N-HSQC NMR spectrum. We addressed this question with two different approaches. First, we used a semi-automated approach with the program, ORBplus. ORBplus looks for patterns in the chemical shifts and correlates these commonalities to the explicit property of interest. ORBplus ranks resonances based on consistency of the magnitude and direction of the chemical shifts within the database, and the chemical shift correlation of the unknown protein with the database. ORBplus visualizes the results by a histogram and a vector diagram, and provides residue specific predictions on structural similarities with the database. The second method we used was partial least squares (PLS), which is a multivariate statistical technique used to correlate response and predictor variables. We investigated the ability of these methods to predict the tertiary structure of the contractile regulatory protein troponin C. Troponin C undergoes a closed-to-open conformational change, which is coupled to its function in muscle. We found that both ORBplus and PLS were able to identify patterns in the 1 H, 15 N-HSQC NMR data from different states of troponin C that correlated to its conformation.

  12. 1H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins

    Science.gov (United States)

    Gopinath, T.; Nelson, Sarah E. D.; Veglia, Gianluigi

    2017-12-01

    Magic angle spinning (MAS) solid-state NMR (ssNMR) spectroscopy is emerging as a unique method for the atomic resolution structure determination of native membrane proteins in lipid bilayers. Although 13C-detected ssNMR experiments continue to play a major role, recent technological developments have made it possible to carry out 1H-detected experiments, boosting both sensitivity and resolution. Here, we describe a new set of 1H-detected hybrid pulse sequences that combine through-bond and through-space correlation elements into single experiments, enabling the simultaneous detection of rigid and dynamic domains of membrane proteins. As proof-of-principle, we applied these new pulse sequences to the membrane protein phospholamban (PLN) reconstituted in lipid bilayers under moderate MAS conditions. The cross-polarization (CP) based elements enabled the detection of the relatively immobile residues of PLN in the transmembrane domain using through-space correlations; whereas the most dynamic region, which is in equilibrium between folded and unfolded states, was mapped by through-bond INEPT-based elements. These new 1H-detected experiments will enable one to detect not only the most populated (ground) states of biomacromolecules, but also sparsely populated high-energy (excited) states for a complete characterization of protein free energy landscapes.

  13. Triple resonance 15N NMR relaxation experiments for studies of intrinsically disordered proteins

    Czech Academy of Sciences Publication Activity Database

    Srb, Pavel; Nováček, J.; Kadeřávek, P.; Rabatinová, Alžběta; Krásný, Libor; Žídková, Jitka; Bobálová, Janette; Sklenář, V.; Žídek, L.

    2017-01-01

    Roč. 69, č. 3 (2017), s. 133-146 ISSN 0925-2738 R&D Projects: GA ČR GA13-16842S; GA MŠk(CZ) LO1304 Institutional support: RVO:61388963 ; RVO:61388971 ; RVO:68081715 Keywords : nuclear magnetic resonance * relaxation * non-uniform sampling * intrinsically disordered proteins Subject RIV: CB - Analytical Chemistry, Separation; EE - Microbiology, Virology (MBU-M); CB - Analytical Chemistry, Separation (UIACH-O) OBOR OECD: Analytical chemistry; Microbiology (MBU-M); Analytical chemistry (UIACH-O) Impact factor: 2.410, year: 2016

  14. Quantification of protein backbone hydrogen-deuterium exchange rates by solid state NMR spectroscopy

    International Nuclear Information System (INIS)

    Lopez del Amo, Juan-Miguel; Fink, Uwe; Reif, Bernd

    2010-01-01

    We present the quantification of backbone amide hydrogen-deuterium exchange rates (HDX) for immobilized proteins. The experiments make use of the deuterium isotope effect on the amide nitrogen chemical shift, as well as on proton dilution by deuteration. We find that backbone amides in the microcrystalline α-spectrin SH3 domain exchange rather slowly with the solvent (with exchange rates negligible within the individual 15 N-T 1 timescales). We observed chemical exchange for 6 residues with HDX exchange rates in the range from 0.2 to 5 s -1 . Backbone amide 15 N longitudinal relaxation times that we determined previously are not significantly affected for most residues, yielding no systematic artifacts upon quantification of backbone dynamics (Chevelkov et al. 2008b). Significant exchange was observed for the backbone amides of R21, S36 and K60, as well as for the sidechain amides of N38, N35 and for W41ε. These residues could not be fit in our previous motional analysis, demonstrating that amide proton chemical exchange needs to be considered in the analysis of protein dynamics in the solid-state, in case D 2 O is employed as a solvent for sample preparation. Due to the intrinsically long 15 N relaxation times in the solid-state, the approach proposed here can expand the range of accessible HDX rates in the intermediate regime that is not accessible so far with exchange quench and MEXICO type experiments.

  15. Nutritional value and digestion rate of rhea meat proteins in association with storage and cooking processes.

    Science.gov (United States)

    Filgueras, Renata S; Gatellier, Philippe; Ferreira, Claude; Zambiazi, Rui C; Santé-Lhoutellier, Véronique

    2011-09-01

    The nutritional value of proteins was investigated after the storage and cooking of rhea M. Gastrocnemius pars interna. Oxidation of basic and aromatic amino acids, surface hydrophobicity and aggregation state of proteins, were determined in raw and cooked meat. In addition, myofibrillar proteins were exposed in vitro to proteases of the digestive tract. Cooking markedly affected the protein surface hydrophobicity. The BBP bound content was three times greater in cooked than in fresh rhea meat. A small increment in tryptophan content after cooking was observed. Storage influenced Schiff bases formation indicating the presence of protein-aldehyde adducts after cooking. High content of Schiff bases was found after cooking of samples stored for 5 days, demonstrating a probable implication of free amino groups, most likely from lysine. Cooking decreased the myofibrillar protein susceptibility to pepsin activity. After cooking, the proteolysis rate by pancreatic enzymes increased. Our findings support the importance of protein aggregation in the nutritional value of meat proteins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Solution structure of the c-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method.

    Science.gov (United States)

    Takeda, Mitsuhiro; Chang, Chung-ke; Ikeya, Teppei; Güntert, Peter; Chang, Yuan-hsiang; Hsu, Yen-lan; Huang, Tai-huang; Kainosho, Masatsune

    2008-07-18

    The C-terminal domain (CTD) of the severe acute respiratory syndrome coronavirus (SARS-CoV) nucleocapsid protein (NP) contains a potential RNA-binding region in its N-terminal portion and also serves as a dimerization domain by forming a homodimer with a molecular mass of 28 kDa. So far, the structure determination of the SARS-CoV NP CTD in solution has been impeded by the poor quality of NMR spectra, especially for aromatic resonances. We have recently developed the stereo-array isotope labeling (SAIL) method to overcome the size problem of NMR structure determination by utilizing a protein exclusively composed of stereo- and regio-specifically isotope-labeled amino acids. Here, we employed the SAIL method to determine the high-quality solution structure of the SARS-CoV NP CTD by NMR. The SAIL protein yielded less crowded and better resolved spectra than uniform (13)C and (15)N labeling, and enabled the homodimeric solution structure of this protein to be determined. The NMR structure is almost identical with the previously solved crystal structure, except for a disordered putative RNA-binding domain at the N-terminus. Studies of the chemical shift perturbations caused by the binding of single-stranded DNA and mutational analyses have identified the disordered region at the N-termini as the prime site for nucleic acid binding. In addition, residues in the beta-sheet region also showed significant perturbations. Mapping of the locations of these residues onto the helical model observed in the crystal revealed that these two regions are parts of the interior lining of the positively charged helical groove, supporting the hypothesis that the helical oligomer may form in solution.

  17. "Invisible" conformers of an antifungal disulfide protein revealed by constrained cold and heat unfolding, CEST-NMR experiments, and molecular dynamics calculations.

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-03-23

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20-40 % at 298 K in a disulfide-rich protein. In addition, sensitive (15) N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR "dark matter". Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  18. “Invisible” Conformers of an Antifungal Disulfide Protein Revealed by Constrained Cold and Heat Unfolding, CEST-NMR Experiments, and Molecular Dynamics Calculations

    Science.gov (United States)

    Fizil, Ádám; Gáspári, Zoltán; Barna, Terézia; Marx, Florentine; Batta, Gyula

    2015-01-01

    Transition between conformational states in proteins is being recognized as a possible key factor of function. In support of this, hidden dynamic NMR structures were detected in several cases up to populations of a few percent. Here, we show by two- and three-state analysis of thermal unfolding, that the population of hidden states may weight 20–40 % at 298 K in a disulfide-rich protein. In addition, sensitive 15N-CEST NMR experiments identified a low populated (0.15 %) state that was in slow exchange with the folded PAF protein. Remarkably, other techniques failed to identify the rest of the NMR “dark matter”. Comparison of the temperature dependence of chemical shifts from experiments and molecular dynamics calculations suggests that hidden conformers of PAF differ in the loop and terminal regions and are most similar in the evolutionary conserved core. Our observations point to the existence of a complex conformational landscape with multiple conformational states in dynamic equilibrium, with diverse exchange rates presumably responsible for the completely hidden nature of a considerable fraction. PMID:25676351

  19. Biochemical characterization of amandin, the major storage protein in almond (Prunus dulcis L.).

    Science.gov (United States)

    Sathe, Shridhar K; Wolf, Walter J; Roux, Kenneth H; Teuber, Suzanne S; Venkatachalam, Mahesh; Sze-Tao, Kar Wai Clara

    2002-07-17

    The almond major storage protein, amandin, was prepared by column chromatography (amandin-1), cryoprecipitation (amandin-2), and isoelectric precipitation (amandin-3) methods. Amandin is a legumin type protein characterized by a sedimentation value of 14S. Amandin is composed of two major types of polypeptides with estimated molecular weights of 42-46 and 20-22 kDa linked via disulfide bonds. Several additional minor polypeptides were also present in amandin. Amandin is a storage protein with an estimated molecular weight of 427,300 +/- 47,600 Da (n = 7) and a Stokes radius of 65.88 +/- 3.21 A (n = 7). Amandin is not a glycoprotein. Amandin-1, amandin-2, and amandin-3 are antigenically related and have similar biochemical properties. Amandin-3 is more negatively charged than either amandin-1 or amandin-2. Methionine is the first essential limiting amino acid in amandin followed by lysine and threonine.

  20. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR

    Energy Technology Data Exchange (ETDEWEB)

    Eddy, Matthew T. [Massachusetts Institute of Technology, Department of Chemistry (United States); Belenky, Marina [Brandeis University, Department of Chemistry (United States); Sivertsen, Astrid C. [Massachusetts Institute of Technology, Francis Bitter Magnet Laboratory (United States); Griffin, Robert G. [Massachusetts Institute of Technology, Department of Chemistry (United States); Herzfeld, Judith, E-mail: herzfeld@brandeis.edu [Brandeis University, Department of Chemistry (United States)

    2013-10-15

    The power of nuclear magnetic resonance spectroscopy derives from its site-specific access to chemical, structural and dynamic information. However, the corresponding multiplicity of interactions can be difficult to tease apart. Complimentary approaches involve spectral editing on the one hand and selective isotope substitution on the other. Here we present a new 'redox' approach to the latter: acetate is chosen as the sole carbon source for the extreme oxidation numbers of its two carbons. Consistent with conventional anabolic pathways for the amino acids, [1-{sup 13}C] acetate does not label {alpha} carbons, labels other aliphatic carbons and the aromatic carbons very selectively, and labels the carboxyl carbons heavily. The benefits of this labeling scheme are exemplified by magic angle spinning spectra of microcrystalline immunoglobulin binding protein G (GB1): the elimination of most J-couplings and one- and two-bond dipolar couplings provides narrow signals and long-range, intra- and inter-residue, recoupling essential for distance constraints. Inverse redox labeling, from [2-{sup 13}C] acetate, is also expected to be useful: although it retains one-bond couplings in the sidechains, the removal of CA-CO coupling in the backbone should improve the resolution of NCACX spectra.

  1. Proton NMR Studies of a Large Protein. pH, Substrate Titrations, and NOESY Experiments with Perdeuterated Yeast Phosphoglycerate Kinase Containing [ 1H]Histidine Residues

    Science.gov (United States)

    Pappu, K. M.; Serpersu, E. H.

    Fully deuterated yeast phosphoglycerate kinase ([ 2H]PGK) was prepared biosynthetically with only histidine side chains of normal ( 1H) isotopic composition. The 1H NMR spectrum of this enzyme([ 1H]His[ 2H]PGK) showed that the histidine side chains are clearly visible as sharp signals. Thus detailed structural studies by 1H NMR became feasible with isotope-hybrid phosphoglycerate kinase which is otherwise too large ( Mr ˜ 46,000) for conventional 1H NMR studies. Proton signals of bound substrates were visible in the 1H NMR spectrum even with a substrate-to-enzyme ratio of less than 1/2 (mol/mol). The 2D NOESY spectrum of enzyme-MgdATP-glycerol 3-phosphate complex showed that, although protein concentration was very high (1.5 m M), no intraprotein cross peaks were observed other than those of intraresidue histidine NOE cross peaks. In addition, intrasubstrate NOEs and intermolecular NOEs between histidine and substrate protons were visible at a 1.5/1 substrate/enzyme (mol/mol) ratio. Paramagnetic effects of a substrate analog, Cr(III)ATP, on some of the histidine side chains indicated that the formation of the ternary enzyme-substrate complex causes large conformational changes in the enzyme.

  2. Effects of storage conditions on results for quantitative and qualitative evaluation of proteins in canine urine.

    Science.gov (United States)

    Théron, Marie-Laure; Piane, Laetitia; Lucarelli, Laetitia; Henrion, Rémi; Layssol-Lamour, Catherine; Palanché, Florence; Concordet, Didier; Braun, Jean-Pierre D; Trumel, Catherine; Lavoué, Rachel

    2017-08-01

    OBJECTIVE To investigate effects of storage conditions on the canine urine protein-to-creatinine ratio (UPC) and on SDS-agarose gel electrophoresis (AGE) of urinary proteins. SAMPLE Urine specimens from 20 proteinuric (UPC > 0.5) and 20 nonproteinuric (UPC ≤ 0.2) dogs. PROCEDURES UPC and SDS-AGE were performed on urine specimens stored at room temperature (20°C) and 4°C for up to 5 days and at -20° and -80°C for up to 360 days; some specimens were subjected to 3 freeze-thaw cycles. Results were compared with those obtained for fresh urine specimens. RESULTS UPC was not affected by storage at room temperature or by freezing. A decrease in UPC was observed for specimens from nonproteinuric dogs after 5 days at 4°C (10%) and from both groups after 90 days at -20° and -80°C (≤ 20% and ≤ 15%, respectively). The SDS-AGE profiles revealed no visual changes regardless of duration of storage for specimens stored at room temperature, 4°C, and -80°C, except for 1 profile after 360 days at -80°C. Repeated freeze-thaw cycles did not affect SDS-AGE profiles. Appearance or strengthening of high-molecular-weight bands that could alter interpretation was evident in SDS-AGE profiles after storage at -20°C for ≥ 15 days (31/40 dogs). CONCLUSIONS AND CLINICAL RELEVANCE Storage of urine at -20° or -80°C for up to 1 year influenced the UPC without affecting clinical interpretation. Storage of urine specimens at -20°C impaired visual analysis of SDS-AGE. When SDS-AGE cannot be performed on fresh or recently refrigerated urine specimens, storage at -80°C is recommended.

  3. Irradiation and Post-Irradiation Storage of Chicken: Effects on Fat and Proteins

    International Nuclear Information System (INIS)

    Abou-Tarboush, H.M.; Al-Kahtani, H.A.; Abou-Arab, A.A.; Atia, M.; Bajaber, A.S.; Ahmed, M.A.; El-Mojaddidi, M.A.

    1997-01-01

    Chicken were subjected to gamma irradiation doses of 2.5, 5.0, 7.5 and 10.0 KGy and post-irradiation storage of 21 days at 4±2º. The effects on fat and protein of chicken were studied. Rate of formation of total volatile basic-nitrogen was less in irradiated samples particularly in samples treated with 5.0KGy during the entire storage. Fatty acid profiles of chicken lipids were not significantly (P≤ 0.05) affected by irradiation especially at doses of 5.0 KGy. However, irradiation caused a large increase in thiobarbituric acid (TBA) values which continued gradually during storage. Changes in amino acids were minimal. Irradiated and unirradiated samples showed the appearance of protein subunits with molecular weights in the range of 10.0 to 88.0 and 10.0 to 67.0 KD, respectively. No changes were observed in the sarcoplasmic protein but the intensity of bands in all irradiated samples decreased after 21 days of storage

  4. Effects of gamma irradiation on chickpea seeds vis-a-vis total seed storage proteins, antioxidant activity and protein profiling.

    Science.gov (United States)

    Bhagyawant, S S; Gupta, N; Shrivastava, N

    2015-10-23

    The present work describes radiation—induced effects on seed composition vis—à—vis total seed proteins, antioxidant levels and protein profiling employing two dimensional gel electrophoresis (2D—GE) in kabuli and desi chickpea varities. Seeds were exposed to the radiation doses of 1,2,3,4 and 5 kGy. The total protein concentrations decreased and antioxidant levels were increased with increasing dose compared to control seed samples. Radiation induced effects were dose dependent to these seed parameters while it showed tolerance to 1 kGy dose. Increase in the dose was complimented with increase in antioxidant levels, like 5 kGy enhanced % scavenging activities in all the seed extracts. Precisely, the investigations reflected that the dose range from 2 to 5 kGy was effective for total seed storage proteins, as depicted quantitatively and qualitative 2D—GE means enhance antioxidant activities in vitro.

  5. An inhibition of p38 mitogen activated protein kinase delays the platelet storage lesion.

    Directory of Open Access Journals (Sweden)

    Andrey Skripchenko

    Full Text Available BACKGROUND AND OBJECTIVES: Platelets during storage undergo diverse alterations collectively known as the platelet storage lesion, including metabolic, morphological, functional and structural changes. Some changes correlate with activation of p38 mitogen activated protein kinase (p38 MAPK. Another MAPK, extracellular signal-related kinase (ERK, is involved in PLT activation. The aim of this study was to compare the properties of platelets stored in plasma in the presence or absence of p38 and ERK MAPK inhibitors. MATERIALS AND METHODS: A single Trima apheresis platelet unit (n = 12 was aliquoted into five CLX storage bags. Two aliquots were continuously agitated with or without MAPK inhibitors. Two aliquots were subjected to 48 hours of interruption of agitation with or without MAPK inhibitors. One aliquot contained the same amount of solvent vehicle used to deliver the inhibitor. Platelets were stored at 20-24°C for 7 days and sampled on Days 1, 4, and 7 for 18 in vitro parameters. RESULTS: Inhibition of p38 MAPK by VX-702 leads to better maintenance of all platelet in vitro storage parameters including platelet mitochondrial function. Accelerated by interruption of agitation, the platelet storage lesion of units stored with VX-702 was diminished to that of platelets stored with continuous agitation. Inhibition of ERK MAPK did not ameliorate decrements in any in vitro platelet properties. CONCLUSION: Signaling through p38 MAPK, but not ERK, is associated with platelet deterioration during storage.

  6. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization.

    Science.gov (United States)

    Xu, Jing; Mukherjee, Dipaloke; Chang, Sam K C

    2018-02-01

    This study investigated the effects of the ultrahigh pressure homogenization (pressure, protein concentration, oil phase fraction, pH, temperature, and ionic strength) and storage on the properties of nanoemulsions (100-500nm range), which were stabilized by laboratory-prepared soybean protein isolate (SPI), β-conglycinin (7S) and glycinin (11S). The nanoemulsions made with SPI, 7S and 11S proteins exhibited considerable stability over various ionic strengths (0-500mM NaCl), pH (7), thermal treatments (30-60°C) and storage (0-45days). The far-UV spectra of SPI, 7S, 11S dispersions, and SPI-, 7S-, 11S protein-stabilized nanoemulsions were analyzed for the protein structural changes following lipid removal. The ultra-high pressure homogenization changed the secondary structure of SPI, 7S, 11S proteins in the nanoemulsions, and enhanced their stability. This study demonstrated that SPI, 7S, and 11S proteins can be used as effective emulsifiers in nanoemulsions prepared by ultra-high pressure homogenization. Copyright © 2017. Published by Elsevier Ltd.

  7. Influence of dietary lipid and protein sources on the sensory quality of organic rainbow trout (Oncorhynchus mykiss) after ice storage

    DEFF Research Database (Denmark)

    Green-Petersen, Ditte; Hyldig, Grethe; Jacobsen, Charlotte

    2014-01-01

    The influence of dietary protein and lipid sources on the quality of organic rainbow trout (Oncorhynchus mykiss) was studied. The protein and oil sources were fishmeal, fish oil, and organic vegetable protein and oils. Sensory profiling was performed during 3 to 14 days of ice storage along...... with lipid analyses of the fillet. Overall, the results showed that the sensory characteristics of the trout were affected in different ways during ice storage. The source of lipid seemed to affect the sensory quality at the beginning of the storage period, while the protein source seemed to have a more...

  8. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    International Nuclear Information System (INIS)

    Lehtivarjo, Juuso; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino; Peräkylä, Mikael

    2012-01-01

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein 1 H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6–17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for 1 Hα, 1 HN, 13 Cα, 13 Cβ, 13 CO and backbone 15 N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  9. Combining NMR ensembles and molecular dynamics simulations provides more realistic models of protein structures in solution and leads to better chemical shift prediction

    Energy Technology Data Exchange (ETDEWEB)

    Lehtivarjo, Juuso, E-mail: juuso.lehtivarjo@uef.fi; Tuppurainen, Kari; Hassinen, Tommi; Laatikainen, Reino [University of Eastern Finland, School of Pharmacy (Finland); Peraekylae, Mikael [University of Eastern Finland, Institute of Biomedicine (Finland)

    2012-03-15

    While chemical shifts are invaluable for obtaining structural information from proteins, they also offer one of the rare ways to obtain information about protein dynamics. A necessary tool in transforming chemical shifts into structural and dynamic information is chemical shift prediction. In our previous work we developed a method for 4D prediction of protein {sup 1}H chemical shifts in which molecular motions, the 4th dimension, were modeled using molecular dynamics (MD) simulations. Although the approach clearly improved the prediction, the X-ray structures and single NMR conformers used in the model cannot be considered fully realistic models of protein in solution. In this work, NMR ensembles (NMRE) were used to expand the conformational space of proteins (e.g. side chains, flexible loops, termini), followed by MD simulations for each conformer to map the local fluctuations. Compared with the non-dynamic model, the NMRE+MD model gave 6-17% lower root-mean-square (RMS) errors for different backbone nuclei. The improved prediction indicates that NMR ensembles with MD simulations can be used to obtain a more realistic picture of protein structures in solutions and moreover underlines the importance of short and long time-scale dynamics for the prediction. The RMS errors of the NMRE+MD model were 0.24, 0.43, 0.98, 1.03, 1.16 and 2.39 ppm for {sup 1}H{alpha}, {sup 1}HN, {sup 13}C{alpha}, {sup 13}C{beta}, {sup 13}CO and backbone {sup 15}N chemical shifts, respectively. The model is implemented in the prediction program 4DSPOT, available at http://www.uef.fi/4dspothttp://www.uef.fi/4dspot.

  10. Effect of pasteurization on the protein composition and oxidative stability of beer during storage.

    Science.gov (United States)

    Lund, Marianne N; Hoff, Signe; Berner, Torben S; Lametsch, René; Andersen, Mogens L

    2012-12-19

    The impacts of pasteurization of a lager beer on protein composition and the oxidative stability were studied during storage at 22 °C for 426 days in the dark. Pasteurization clearly improved the oxidative stability of beer determined by ESR spectroscopy, whereas it had a minor negative effect on the volatile profile by increasing volatile compounds that is generally associated with heat treatment and a loss of fruity ester aroma. A faster rate of radical formation in unpasteurized beer was consistent with a faster consumption of sulfite. Beer proteins in the unpasteurized beer were more degraded, most likely due to proteolytic enzyme activity of yeast remnants and more precipitation of proteins was also observed. The differences in soluble protein content and composition are suggested to result in differences in the contents of prooxidative metals as a consequence of the proteins ability to bind metals. This also contributes to the differences in oxidative stabilities of the beers.

  11. An NMR-based quenched hydrogen exchange investigation of model amyloid fibrils formed by cold shock protein A.

    Science.gov (United States)

    Alexandrescu, A T

    2001-01-01

    Acid-denatured cold shock protein A (CspA) self-assembles into polymers with properties typical of amyloid fibrils. In the present work, a quenched hydrogen exchange experiment was used to probe the interactions of CspA fibrils with solvent. Exchange was initiated by incubating suspensions of fibrils in D2O, and quenched by flash freezing. Following lyophilization, exchange-quenched samples were dissolved in 90% DMSO/10% D2O, giving DMSO-denatured monomers. Intrinsic exchange rates for denatured CspA in 90% DMSO/10% D2O (pH* 4.5) were sufficiently slow (approximately 1 x 10(-3) min-1) to enable quantification of NMR signal intensity decays due to H/D exchange in the fibrils. Hydrogen exchange rate constants for CspA fibrils were found to vary less than 3-fold from a mean value of 5 x 10(-5) min-1. The uniformity of rate constants suggests that exchange is in the EX1 limit, and that the mechanism of exchange involves a cooperative dissociation of CspA monomers from fibrils, concomitant with unfolding. Previous studies indicated that the highest protection factors in native CspA are approximately 10(3), and that protection factors for the acid-denatured monomer precursors of CspA fibrils are close to unity. Because exchange in is in the EX1 regime, it is only possible to place a lower limit of at least 10(5) on protection factors in CspA fibrils. The observation that all amide protons are protected from exchange indicates that the entire CspA polypeptide chain is structured in the fibrils.

  12. Baking quality parameters of wheat in relation to endosperm storage proteins

    Directory of Open Access Journals (Sweden)

    Daniela Horvat

    2012-01-01

    Full Text Available Wheat storage proteins of twelve winter wheat cultivars grown at the experimental field of the Agricultural Institute Osijek in 2009 were studied for their contribution to the baking quality. Composition of high molecular weight glutenin subunits (HMW-GS was analyzed by SDS-PAGE method, while the proportions of endosperm storage proteins were determined by RP-HPLC method. Regarding the proportion of storage proteins, results of the linear correlation (p<0.05 showed that protein (P and wet gluten (WG content were highly negatively correlated with albumins and globulins (AG and positively with α- gliadins (GLI. A strong negative correlation between AG and water absorption (WA capacity of flour was found, while α- GLI had positive influence on this property. Dough development time (DDT was positively significantly correlated with HMW-GS and negatively with AG. Degree of dough softening (DS was strongly positively affected by γ- GLI and gliadins to glutenins ratio (GLI/GLU and negatively by total GLU and HMW-GS. Dough energy (E and maximum resistance (RMAX were significantly positively affected by Glu-1 score and negatively by GLI/GLU ratio. Resistance to extensibility ratio (R/EXT was significantly negatively correlated with total GLI. Bread volume was significantly negatively influenced by AG.

  13. Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints

    International Nuclear Information System (INIS)

    Furuita, Kyoko; Kataoka, Saori; Sugiki, Toshihiko; Hattori, Yoshikazu; Kobayashi, Naohiro; Ikegami, Takahisa; Shiozaki, Kazuhiro; Fujiwara, Toshimichi; Kojima, Chojiro

    2015-01-01

    NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient

  14. Sensitivity enhanced NMR spectroscopy by quenching scalar coupling mediated relaxation: Application to the direct observation of hydrogen bonds in 13C/15N-labeled proteins

    Energy Technology Data Exchange (ETDEWEB)

    Liu Aizhuo; Hu Weidong; Qamar, Seema; Majumdar, Ananya [Memorial Sloan-Kettering Cancer Center, Cellular Biochemistry and Biophysics Program (United States)

    2000-05-15

    In this paper, we demonstrate that the sensitivity of triple-resonance NMR experiments can be enhanced significantly through quenching scalar coupling mediated relaxation by using composite-pulse decoupling (CPD) or an adiabatic decoupling sequence on aliphatic, in particular alpha-carbons in {sup 13}C/{sup 15}N-labeled proteins. The CPD-HNCO experiment renders 50% sensitivity enhancement over the conventional CT-HNCO experiment performed on a 12 kDa FK506 binding protein, when a total of 266 ms of amide nitrogen-carbonyl carbon defocusing and refocusing periods is employed. This is a typical time period for the direct detection of hydrogen bonds in proteins via trans-hydrogen bond {sup 3h}J{sub NC'} couplings. The experimental data fit theoretical analysis well. The significant enhancement in sensitivity makes the experiment more applicable to larger-sized proteins without resorting to perdeuteration.

  15. Influence of yogurt fermentation and refrigerated storage on the stability of protein toxin contaminants.

    Science.gov (United States)

    Jackson, Lauren S; Triplett, Odbert A; Tolleson, William H

    2015-06-01

    Dairy products sold in a ready-to-eat form present the risk that adulterants persisting through manufacturing, storage, and distribution would reach consumers. Pathogenic microbes, including shigatoxigenic strains of Escherichia coli and the toxins they produce, are common food safety hazards associated with dairy products. Ricin and abrin are plant-derived ribosome-inactivating protein toxins related to the shiga-like toxins produced by E. coli. Limited information exists on the effects of manufacturing processes on the stabilities of these heat-resistant ribosome-inactivating proteins in the presence of foods. The goal of this study was to determine how typical yogurt manufacturing and storage processes influence ribosome-inactivating protein toxins. Ricin and abrin were added to skim or whole milk and batch pasteurized. Complete inactivation of both toxins was observed after 30 minutes at 85 °C. If the toxins were added after pasteurization, the levels of ricin and abrin in yogurt and their cytotoxic activities did not change significantly during fermentation or refrigerated storage for 4 weeks. The activities of ricin and abrin were inhibited by skim milk, nonfat yogurt, whole milk, and whole milk yogurt. The results showed minimal effects of the toxins on yogurt pH and %titratable acidity but inhibitory effects of yogurt on toxin activity. Published by Elsevier Ltd.

  16. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.

    Science.gov (United States)

    Lu, George J; Son, Woo Sung; Opella, Stanley J

    2011-04-01

    A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a uniformly ¹⁵N-labeled membrane protein in magnetically aligned bilayers, and a previously assigned isotropic chemical shift spectrum obtained either from solution NMR on micelle or isotropic bicelle samples or from magic angle spinning (MAS) solid-state NMR on unoriented proteoliposomes. The sequential isotropic resonance assignments are transferred to the OS solid-state NMR spectra of aligned samples by correlating signals from the same residue observed in protein-containing bilayers aligned with their normals parallel and perpendicular to the magnetic field. The underlying principle is that the resonances from the same residue have heteronuclear dipolar couplings that differ by exactly a factor of two between parallel and perpendicular alignments. The method is demonstrated on the membrane-bound form of Pf1 coat protein in phospholipid bilayers, whose assignments have been previously made using an earlier generation of methods that relied on the preparation of many selectively labeled (by residue type) samples. The new method provides the correct resonance assignments using only a single uniformly ¹⁵N-labeled sample, two solid-state NMR spectra, and a previously assigned isotropic spectrum. Significantly, this approach is equally applicable to residues in alpha helices, beta sheets, loops, and any other elements of tertiary structure. Moreover, the strategy bridges between OS solid-state NMR of aligned samples and solution NMR or MAS solid-state NMR of unoriented samples. In combination with the development of complementary experimental methods, it provides a step towards unifying these apparently different NMR approaches. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    Science.gov (United States)

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Protein mobilities and P-selectin storage in Weibel-Palade bodies.

    Science.gov (United States)

    Kiskin, Nikolai I; Hellen, Nicola; Babich, Victor; Hewlett, Lindsay; Knipe, Laura; Hannah, Matthew J; Carter, Tom

    2010-09-01

    Using fluorescence recovery after photobleaching (FRAP) we measured the mobilities of EGFP-tagged soluble secretory proteins in the endoplasmic reticulum (ER) and in individual Weibel-Palade bodies (WPBs) at early (immature) and late (mature) stages in their biogenesis. Membrane proteins (P-selectin, CD63, Rab27a) were also studied in individual WPBs. In the ER, soluble secretory proteins were mobile; however, following insertion into immature WPBs larger molecules (VWF, Proregion, tPA) and P-selectin became immobilised, whereas small proteins (ssEGFP, eotaxin-3) became less mobile. WPB maturation led to further decreases in mobility of small proteins and CD63. Acute alkalinisation of mature WPBs selectively increased the mobilities of small soluble proteins without affecting larger molecules and the membrane proteins. Disruption of the Proregion-VWF paracrystalline core by prolonged incubation with NH(4)Cl rendered P-selectin mobile while VWF remained immobile. FRAP of P-selectin mutants revealed that immobilisation most probably involves steric entrapment of the P-selectin extracellular domain by the Proregion-VWF paracrystal. Significantly, immobilisation contributed to the enrichment of P-selectin in WPBs; a mutation of P-selectin preventing immobilisation led to a failure of enrichment. Together these data shed new light on the transitions that occur for soluble and membrane proteins following their entry and storage into post-Golgi-regulated secretory organelles.

  19. Protein changes in the albedo of citrus fruits on postharvesting storage.

    Science.gov (United States)

    Lliso, Ignacio; Tadeo, Francisco R; Phinney, Brett S; Wilkerson, Curtis G; Talón, Manuel

    2007-10-31

    In this work, major protein changes in the albedo of the fruit peel of Murcott tangor (tangerine x sweet orange) during postharvest ageing were studied through 2D PAGE. Protein content in matured on-tree fruits and in fruits stored in nonstressing [99% relative humidity (RH) and 25 degrees C], cold (99% RH and 4 degrees C), and drought (60% RH and 25 degrees C) conditions was initially determined. Protein identification through MS/MS determinations revealed in all samples analyzed the occurrence of manganese superoxide dismutase (Mn SOD), actin, ATP synthase beta subunit (ATPase), citrus salt-stress associated protein (CitSap), ascorbate peroxidase (APX), translationally controlled tumor protein (TCTP), and a cysteine proteinase (CP) of the papain family. The latter protein was identified in two different gel spots, with different molecular mass, suggesting the simultaneous presence of the proteinase precursor and its active form. While Mn SOD, actin, ATPase, and CitSap were unchanged in the assayed conditions, TCTP and APX were downregulated during the postharvest ageing process. Ageing-induced APX repression was also reversed by drought. CP contents in albedo, which were similar in on- and off-tree fruits, were strongly dependent upon cold storage. The active/total CP protein ratio significantly increased after cold exposure. This proteomic survey indicates that major changes in protein content in the albedo of the peel of postharvest stored citrus fruits are apparently related to the activation of programmed cell death (PCD).

  20. NMR spectroscopy and drug development

    International Nuclear Information System (INIS)

    Craik, D.; Munro, S.

    1990-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy for structural and conformational studies on drug molecules, the three-dimensional investigation of proteins structure and their interactions with ligands are discussed. In-vivo NMR studies of the effects of drugs on metabolism in perfused organs and whole animals are also briefly presented. 5 refs., ills

  1. Effects of storage structures and moisture contents on seed quality attributes of quality protein maize

    Directory of Open Access Journals (Sweden)

    Gopal Bhandari

    2017-12-01

    Full Text Available The study was aimed to examine the effects of various storage structures and moisture contents on seed quality attributes of quality protein maize seed. The quality protein maize (QPM-1 seed was tested in conventional seed storage containers (Fertilizer sack and earthen pot and the improved hermetic ones (Metal bin, Super grain bag, and Purdue Improved Crop Storage (PICS bag at Seed Science and Technology Division, Khumaltar, Nepal during February, 2015 to January 2016. Ten treatments comprising 5 storage devices in two moisture regimes (11% and 9% replicated thrice and laid out in Completely Randomized Design (CRD. Data on temperature, relative humidity (RH, germination, electrical conductivity (EC, seed moisture content (MC were collected bimonthly. The conventional containers were found liable to the external environmental condition whereas the hermetic structures observed with controlled RH level below 40% in all combinations. Electrical conductivity (EC for seed vigor showed that hermetic containers provide higher seed vigor than the conventional ones. Up to 4 months all treatments were found statistically at par for germination. A significant difference was observed in each treatment after 4 months where PICS bag & Super grain bag showed best germination followed by metal bin while fertilizer bag & earthen-pot showed poorer and poorest germination respectively till one year. Almost all treatments with lower MC showed better results than the treatments with higher MC. A negative correlation (R2=69.7% was found between EC and Germination. All six figures from 2 to 12 months on MC showed statistically different where hermetic plastic bags were found maintaining MC as initial whereas MC of fertilizer bags and earthen pot was spiked than the basal figure. The finding evidenced that the hermetic containers and low MC are the seed storage approaches for retaining the quality of seed even in an ambient environmental condition for more than a year.

  2. Progress in proton-detected solid-state NMR (SSNMR): Super-fast 2D SSNMR collection for nano-mole-scale proteins

    Science.gov (United States)

    Ishii, Yoshitaka; Wickramasinghe, Ayesha; Matsuda, Isamu; Endo, Yuki; Ishii, Yuji; Nishiyama, Yusuke; Nemoto, Takahiro; Kamihara, Takayuki

    2018-01-01

    Proton-detected solid-state NMR (SSNMR) spectroscopy has attracted much attention due to its excellent sensitivity and effectiveness in the analysis of trace amounts of amyloid proteins and other important biological systems. In this perspective article, we present the recent sensitivity limit of 1H-detected SSNMR using "ultra-fast" magic-angle spinning (MAS) at a spinning rate (νR) of 80-100 kHz. It was demonstrated that the high sensitivity of 1H-detected SSNMR at νR of 100 kHz and fast recycling using the paramagnetic-assisted condensed data collection (PACC) approach permitted "super-fast" collection of 1H-detected 2D protein SSNMR. A 1H-detected 2D 1H-15N correlation SSNMR spectrum for ∼27 nmol of a uniformly 13C- and 15N-labeled GB1 protein sample in microcrystalline form was acquired in only 9 s with 50% non-uniform sampling and short recycle delays of 100 ms. Additional data suggests that it is now feasible to detect as little as 1 nmol of the protein in 5.9 h by 1H-detected 2D 1H-15N SSNMR at a nominal signal-to-noise ratio of five. The demonstrated sensitivity is comparable to that of modern solution protein NMR. Moreover, this article summarizes the influence of ultra-fast MAS and 1H-detection on the spectral resolution and sensitivity of protein SSNMR. Recent progress in signal assignment and structural elucidation by 1H-detected protein SSNMR is outlined with both theoretical and experimental aspects.

  3. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings - an assessment of the interrelation of NMR restraints

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pernille Rose; Axelsen, Jacob Bock [University of Copenhagen, Institute of Molecular Biology (Denmark); Lerche, Mathilde Hauge [Amersham Health (Sweden); Poulsen, Flemming M. [University of Copenhagen, Institute of Molecular Biology (Denmark)], E-mail: fmp@apk.molbio.ku.dk

    2004-01-15

    We have examined how the hydrogen bond geometry in three different proteins is affected when structural restraints based on measurements of residual dipolar couplings are included in the structure calculations. The study shows, that including restraints based solely on {sup 1}H{sup N}-{sup 15}N residual dipolar couplings has pronounced impact on the backbone rmsd and Ramachandran plot but does not improve the hydrogen bond geometry. In the case of chymotrypsin inhibitor 2 the addition of {sup 13}CO-{sup 13}C{sup {alpha}} and {sup 15}N-{sup 13}CO one bond dipolar couplings as restraints in the structure calculations improved the hydrogen bond geometry to a quality comparable to that obtained in the 1.8 A resolution X-ray structure of this protein. A systematic restraint study was performed, in which four types of restraints, residual dipolar couplings, hydrogen bonds, TALOS angles and NOEs, were allowed in two states. This study revealed the importance of using several types of residual dipolar couplings to get good hydrogen bond geometry. The study also showed that using a small set of NOEs derived only from the amide protons, together with a full set of residual dipolar couplings resulted in structures of very high quality. When reducing the NOE set, it is mainly the side-chain to side-chain NOEs that are removed. Despite of this the effect on the side-chain packing is very small when a reduced NOE set is used, which implies that the over all fold of a protein structure is mainly determined by correct folding of the backbone.

  4. Solution NMR Structure of Hypothetical Protein CV_2116 Encoded by a Viral Prophage Element in Chromobacterium violaceum

    Directory of Open Access Journals (Sweden)

    Yunhuang Yang

    2012-06-01

    Full Text Available CV_2116 is a small hypothetical protein of 82 amino acids from the Gram-negative coccobacillus Chromobacterium violaceum. A PSI-BLAST search using the CV_2116 sequence as a query identified only one hit (E = 2e−07 corresponding to a hypothetical protein OR16_04617 from Cupriavidus basilensis OR16, which failed to provide insight into the function of CV_2116. The CV_2116 gene was cloned into the p15TvLic expression plasmid, transformed into E. coli, and 13C- and 15N-labeled NMR samples of CV_2116 were overexpressed in E. coli and purified for structure determination using NMR spectroscopy. The resulting high-quality solution NMR structure of CV_2116 revealed a novel α + β fold containing two anti-parallel β -sheets in the N-terminal two-thirds of the protein and one α-helix in the C-terminal third of the protein. CV_2116 does not belong to any known protein sequence family and a Dali search indicated that no similar structures exist in the protein data bank. Although no function of CV_2116 could be derived from either sequence or structural similarity searches, the neighboring genes of CV_2116 encode various proteins annotated as similar to bacteriophage tail assembly proteins. Interestingly, C. violaceum exhibits an extensive network of bacteriophage tail-like structures that likely result from lateral gene transfer by incorporation of viral DNA into its genome (prophages due to bacteriophage infection. Indeed, C. violaceum has been shown to contain four prophage elements and CV_2116 resides in the fourth of these elements. Analysis of the putative operon in which CV_2116 resides indicates that CV_2116 might be a component of the bacteriophage tail-like assembly that occurs in C. violaceum.

  5. Convergent evolution of plant and animal embryo defences by hyperstable non-digestible storage proteins.

    Science.gov (United States)

    Pasquevich, María Yanina; Dreon, Marcos Sebastián; Qiu, Jian-Wen; Mu, Huawei; Heras, Horacio

    2017-11-20

    Plants have evolved sophisticated embryo defences by kinetically-stable non-digestible storage proteins that lower the nutritional value of seeds, a strategy that have not been reported in animals. To further understand antinutritive defences in animals, we analysed PmPV1, massively accumulated in the eggs of the gastropod Pomacea maculata, focusing on how its structure and structural stability features affected its capacity to withstand passage through predator guts. The native protein withstands >50 min boiling and resists the denaturing detergent sodium dodecyl sulphate (SDS), indicating an unusually high structural stability (i.e., kinetic stability). PmPV1 is highly resistant to in vitro proteinase digestion and displays structural stability between pH 2.0-12.0 and 25-85 °C. Furthermore, PmPV1 withstands in vitro and mice digestion and is recovered unchanged in faeces, supporting an antinutritive defensive function. Subunit sequence similarities suggest a common origin and tolerance to mutations. This is the first known animal genus that, like plant seeds, lowers the nutritional value of eggs by kinetically-stable non-digestible storage proteins that survive the gut of predators unaffected. The selective pressure of the harsh gastrointestinal environment would have favoured their appearance, extending by convergent evolution the presence of plant-like hyperstable antinutritive proteins to unattended reproductive stages in animals.

  6. The dynamics of the G protein-coupled neuropeptide Y2 receptor in monounsaturated membranes investigated by solid-state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Lars; Kahr, Julian; Schmidt, Peter; Krug, Ulrike; Scheidt, Holger A.; Huster, Daniel, E-mail: daniel.huster@medizin.uni-leipzig.de [University of Leipzig, Institute of Medical Physics and Biophysics (Germany)

    2015-04-15

    In contrast to the static snapshots provided by protein crystallography, G protein-coupled receptors constitute a group of proteins with highly dynamic properties, which are required in the receptors’ function as signaling molecule. Here, the human neuropeptide Y2 receptor was reconstituted into a model membrane composed of monounsaturated phospholipids and solid-state NMR was used to characterize its dynamics. Qualitative static {sup 15}N NMR spectra and quantitative determination of {sup 1}H–{sup 13}C order parameters through measurement of the {sup 1}H–{sup 13}C dipolar couplings of the CH, CH{sub 2} and CH{sub 3} groups revealed axially symmetric motions of the whole molecule in the membrane and molecular fluctuations of varying amplitude from all molecular segments. The molecular order parameters (S{sub backbone} = 0.59–0.67, S{sub CH2} = 0.41–0.51 and S{sub CH3} = 0.22) obtained in directly polarized {sup 13}C NMR experiments demonstrate that the Y2 receptor is highly mobile in the native-like membrane. Interestingly, according to these results the receptor was found to be slightly more rigid in the membranes formed by the monounsaturated phospholipids than by saturated phospholipids as investigated previously. This could be caused by an increased chain length of the monounsaturated lipids, which may result in a higher helical content of the receptor. Furthermore, the incorporation of cholesterol, phosphatidylethanolamine, or negatively charged phosphatidylserine into the membrane did not have a significant influence on the molecular mobility of the Y2 receptor.

  7. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    Energy Technology Data Exchange (ETDEWEB)

    Zuiderweg, Erik R. P., E-mail: zuiderwe@umich.edu; Bagai, Ireena [The University of Michigan Medical School, Department of Biological Chemistry (United States); Rossi, Paolo [Rutgers University, Center for Integrative Proteomics Research (United States); Bertelsen, Eric B. [Arbor Communications, Inc. (United States)

    2013-10-15

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 Multiplication-Sign 10{sup 260} possible assignments. In 'EZ-ASSIGN', the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281-298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592-610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335-344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested.

  8. EZ-ASSIGN, a program for exhaustive NMR chemical shift assignments of large proteins from complete or incomplete triple-resonance data

    International Nuclear Information System (INIS)

    Zuiderweg, Erik R. P.; Bagai, Ireena; Rossi, Paolo; Bertelsen, Eric B.

    2013-01-01

    For several of the proteins in the BioMagResBank larger than 200 residues, 60 % or fewer of the backbone resonances were assigned. But how reliable are those assignments? In contrast to complete assignments, where it is possible to check whether every triple-resonance Generalized Spin System (GSS) is assigned once and only once, with incomplete data one should compare all possible assignments and pick the best one. But that is not feasible: For example, for 200 residues and an incomplete set of 100 GSS, there are 1.6 × 10 260 possible assignments. In “EZ-ASSIGN”, the protein sequence is divided in smaller unique fragments. Combined with intelligent search approaches, an exhaustive comparison of all possible assignments is now feasible using a laptop computer. The program was tested with experimental data of a 388-residue domain of the Hsp70 chaperone protein DnaK and for a 351-residue domain of a type III secretion ATPase. EZ-ASSIGN reproduced the hand assignments. It did slightly better than the computer program PINE (Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009) and significantly outperformed SAGA (Crippen et al. in J Biomol NMR 46:281–298, 2010), AUTOASSIGN (Zimmerman et al. in J Mol Biol 269:592–610, 1997), and IBIS (Hyberts and Wagner in J Biomol NMR 26:335–344, 2003). Next, EZ-ASSIGN was used to investigate how well NMR data of decreasing completeness can be assigned. We found that the program could confidently assign fragments in very incomplete data. Here, EZ-ASSIGN dramatically outperformed all the other assignment programs tested

  9. PFG-NMR self-diffusion in casein dispersions: effect of probe size and protein aggregate size

    NARCIS (Netherlands)

    Salami, S.; Rondeau, C.; Duynhoven, van J.P.M.; Mariette, F.

    2013-01-01

    The self-diffusion coefficients of different molecular weight PEGs (Polyethylene glycol) and casein particles were measured, using a pulsed-gradient nuclear magnetic resonance technique (PFG-NMR), in native phosphocaseinate (NPC) and sodium caseinate (SC) dispersions where caseins are not structured

  10. Structure of the putative 32 kDa myrosinase-binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR.

    Science.gov (United States)

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira M; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, Jungoo; Güntert, Peter; Aceti, David J; Markley, John L; Kainosho, Masatsune

    2008-12-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniform (13)C/(15)N labeling methods, we used stereo-array isotope labeling (SAIL) technology to prepare an optimally (2)H/(13)C/(15)N-labeled sample. NMR data sets collected using the SAIL protein enabled us to assign (1)H, (13)C and (15)N chemical shifts to 95.5% of all atoms, even at a low concentration (0.2 mm) of protein product. We collected additional NOESY data and determined the three-dimensional structure using the cyana software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent but similar lectin-fold domains, each composed of three beta-sheets.

  11. BioMagResBank database with sets of experimental NMR constraints corresponding to the structures of over 1400 biomolecules deposited in the Protein Data Bank

    International Nuclear Information System (INIS)

    Doreleijers, Jurgen F.; Mading, Steve; Maziuk, Dimitri; Sojourner, Kassandra; Yin Lei; Zhu Jun; Markley, John L.; Ulrich, Eldon L.

    2003-01-01

    Experimental constraints associated with NMR structures are available from the Protein Data Bank (PDB) in the form of 'Magnetic Resonance' (MR) files. These files contain multiple types of data concatenated without boundary markers and are difficult to use for further research. Reported here are the results of a project initiated to annotate, archive, and disseminate these data to the research community from a searchable resource in a uniform format. The MR files from a set of 1410 NMR structures were analyzed and their original constituent data blocks annotated as to data type using a semi-automated protocol. A new software program called Wattos was then used to parse and archive the data in a relational database. From the total number of MR file blocks annotated as constraints, it proved possible to parse 84% (3337/3975). The constraint lists that were parsed correspond to three data types (2511 distance, 788 dihedral angle, and 38 residual dipolar couplings lists) from the three most popular software packages used in NMR structure determination: XPLOR/CNS (2520 lists), DISCOVER (412 lists), and DYANA/DIANA (405 lists). These constraints were then mapped to a developmental version of the BioMagResBank (BMRB) data model. A total of 31 data types originating from 16 programs have been classified, with the NOE distance constraint being the most commonly observed. The results serve as a model for the development of standards for NMR constraint deposition in computer-readable form. The constraints are updated regularly and are available from the BMRB web site (http://www.bmrb.wisc.edu)

  12. 13CHD2–CEST NMR spectroscopy provides an avenue for studies of conformational exchange in high molecular weight proteins

    International Nuclear Information System (INIS)

    Rennella, Enrico; Huang, Rui; Velyvis, Algirdas; Kay, Lewis E.

    2015-01-01

    An NMR experiment for quantifying slow (millisecond) time-scale exchange processes involving the interconversion between visible ground state and invisible, conformationally excited state conformers is presented. The approach exploits chemical exchange saturation transfer (CEST) and makes use of 13 CHD 2 methyl group probes that can be readily incorporated into otherwise highly deuterated proteins. The methodology is validated with an application to a G48A Fyn SH3 domain that exchanges between a folded conformation and a sparsely populated and transiently formed unfolded ensemble. Experiments on a number of different protein systems, including a 360 kDa half-proteasome, establish that the sensitivity of this 13 CHD 2 13 C–CEST technique can be upwards of a factor of 5 times higher than for a previously published 13 CH 3 13 C–CEST approach (Bouvignies and Kay in J Biomol NMR 53:303–310, 2012), suggesting that the methodology will be powerful for studies of conformational exchange in high molecular weight proteins

  13. The "long tail" of the protein tumbling correlation function: observation by (1)H NMR relaxometry in a wide frequency and concentration range.

    Science.gov (United States)

    Roos, Matthias; Hofmann, Marius; Link, Susanne; Ott, Maria; Balbach, Jochen; Rössler, Ernst; Saalwächter, Kay; Krushelnitsky, Alexey

    2015-12-01

    Inter-protein interactions in solution affect the auto-correlation function of Brownian tumbling not only in terms of a simple increase of the correlation time, they also lead to the appearance of a weak slow component ("long tail") of the correlation function due to a slowly changing local anisotropy of the microenvironment. The conventional protocol of correlation time estimation from the relaxation rate ratio R1/R2 assumes a single-component tumbling correlation function, and thus can provide incorrect results as soon as the "long tail" is of relevance. This effect, however, has been underestimated in many instances. In this work we present a detailed systematic study of the tumbling correlation function of two proteins, lysozyme and bovine serum albumin, at different concentrations and temperatures using proton field-cycling relaxometry combined with R1ρ and R2 measurements. Unlike high-field NMR relaxation methods, these techniques enable a detailed study of dynamics on a time scale longer than the normal protein tumbling correlation time and, thus, a reliable estimate of the parameters of the "long tail". In this work we analyze the concentration dependence of the intensity and correlation time of the slow component and perform simulations of high-field (15)N NMR relaxation data demonstrating the importance of taking the "long tail" in the analysis into account.

  14. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins

    International Nuclear Information System (INIS)

    Bieri, Michael; D’Auvergne, Edward J.; Gooley, Paul R.

    2011-01-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  15. relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins.

    Science.gov (United States)

    Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R

    2011-06-01

    Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.

  16. Targeted modification of storage protein content resulting in improved amino acid composition of barley grain

    DEFF Research Database (Denmark)

    Sikdar, Md. Shafiqul Islam; Bowra, S; Schmidt, Daiana

    2016-01-01

    family members. Analysis of the AA composition of the transgenic lines showed that the level of essential amino acids increased with a concomitant reduction in proline and glutamine. Both the barley C-hordein and wheat ω-gliadin genes proved successful for RNAi-gene mediated suppression of barley C......C-hordein in barley and ω-gliadins in wheat are members of the prolamins protein families. Prolamins are the major component of cereal storage proteins and composed of non-essential amino acids (AA) such as proline and glutamine therefore have low nutritional value. Using double stranded RNAi...... silencing technology directed towards C-hordein we obtained transgenic barley lines with up to 94.7 % reduction in the levels of C-hordein protein relative to the parental line. The composition of the prolamin fraction of the barley parental line cv. Golden Promise was resolved using SDS...

  17. Relationships between storage protein composition, protein content, growing season and flour quaility of bread wheat

    DEFF Research Database (Denmark)

    Faergestad, E.M.; Flaete, N.E.S.; Magnus, E.M.

    2004-01-01

    ;f alleles appear similar on one-dimensional gels, two-dimensional separation of selected samples may suggest that the f components in these alleles are different proteins. Cross-validated partial least squares regression combined with empirical uncertainty estimates (jack-knifing) of the parameters...

  18. Biomarkers in the diagnosis of lysosomal storage disorders: proteins, lipids, and inhibodies.

    Science.gov (United States)

    Aerts, Johannes M F G; Kallemeijn, Wouter W; Wegdam, Wouter; Joao Ferraz, Maria; van Breemen, Marielle J; Dekker, Nick; Kramer, Gertjan; Poorthuis, Ben J; Groener, Johanna E M; Cox-Brinkman, Josanne; Rombach, Saskia M; Hollak, Carla E M; Linthorst, Gabor E; Witte, Martin D; Gold, Henrik; van der Marel, Gijs A; Overkleeft, Herman S; Boot, Rolf G

    2011-06-01

    A biomarker is an analyte indicating the presence of a biological process linked to the clinical manifestations and outcome of a particular disease. In the case of lysosomal storage disorders (LSDs), primary and secondary accumulating metabolites or proteins specifically secreted by storage cells are good candidates for biomarkers. Clinical applications of biomarkers are found in improved diagnosis, monitoring disease progression, and assessing therapeutic correction. These are illustrated by reviewing the discovery and use of biomarkers for Gaucher disease and Fabry disease. In addition, recently developed chemical tools allowing specific visualization of enzymatically active lysosomal glucocerebrosidase are described. Such probes, coined inhibodies, offer entirely new possibilities for more sophisticated molecular diagnosis, enzyme replacement therapy monitoring, and fundamental research.

  19. The pupylation machinery is involved in iron homeostasis by targeting the iron storage protein ferritin.

    Science.gov (United States)

    Küberl, Andreas; Polen, Tino; Bott, Michael

    2016-04-26

    The balance of sufficient iron supply and avoidance of iron toxicity by iron homeostasis is a prerequisite for cellular metabolism and growth. Here we provide evidence that, in Actinobacteria, pupylation plays a crucial role in this process. Pupylation is a posttranslational modification in which the prokaryotic ubiquitin-like protein Pup is covalently attached to a lysine residue in target proteins, thus resembling ubiquitination in eukaryotes. Pupylated proteins are recognized and unfolded by a dedicated AAA+ ATPase (Mycobacterium proteasomal AAA+ ATPase; ATPase forming ring-shaped complexes). In Mycobacteria, degradation of pupylated proteins by the proteasome serves as a protection mechanism against several stress conditions. Other bacterial genera capable of pupylation such as Corynebacterium lack a proteasome, and the fate of pupylated proteins is unknown. We discovered that Corynebacterium glutamicum mutants lacking components of the pupylation machinery show a strong growth defect under iron limitation, which was caused by the absence of pupylation and unfolding of the iron storage protein ferritin. Genetic and biochemical data support a model in which the pupylation machinery is responsible for iron release from ferritin independent of degradation.

  20. Effects of solvent concentration and composition on protein dynamics: 13C MAS NMR studies of elastin in glycerol-water mixtures.

    Science.gov (United States)

    Demuth, Dominik; Haase, Nils; Malzacher, Daniel; Vogel, Michael

    2015-08-01

    We use (13)C CP MAS NMR to investigate the dependence of elastin dynamics on the concentration and composition of the solvent at various temperatures. For elastin in pure glycerol, line-shape analysis shows that larger-scale fluctuations of the protein backbone require a minimum glycerol concentration of ~0.6 g/g at ambient temperature, while smaller-scale fluctuations are activated at lower solvation levels of ~0.2 g/g. Immersing elastin in various glycerol-water mixtures, we observe at room temperature that the protein mobility is higher for lower glycerol fractions in the solvent and, thus, lower solvent viscosity. When decreasing the temperature, the elastin spectra approach the line shape for the rigid protein at 245 K for all studied samples, indicating that the protein ceases to be mobile on the experimental time scale of ~10(-5) s. Our findings yield evidence for a strong coupling between elastin fluctuations and solvent dynamics and, hence, such interaction is not restricted to the case of protein-water mixtures. Spectral resolution of different carbon species reveals that the protein-solvent couplings can, however, be different for side chain and backbone units. We discuss these results against the background of the slaving model for protein dynamics. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. The trafficking pathway of a wheat storage protein in transgenic rice endosperm.

    Science.gov (United States)

    Oszvald, Maria; Tamas, Laszlo; Shewry, Peter R; Tosi, Paola

    2014-04-01

    The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.

  2. COMPARATIVE DYNAMICS OF PROTEIN DESTRUCTION IN CANNED FOODS IN SAUCE AT DIFFERENT THERMAL TREATMENT REGIMES AND SUBSEQUENT STORAGE

    OpenAIRE

    V. B. Krylova; T. V. Gustova

    2017-01-01

    In the course of investigations, the structural changes in proteins were established, which were associated with the preliminary treatment of meat ingredients, a pH level of the system and parameters of thermal treatment.The pasteurization regimes allowed retaining a protein nitrogen proportion up to 94% by the end of canned food storage duration. Upon sterilization, the losses in protein nitrogen were two times higher. A negative effect of more acidic sauce on preservation of the protein nitr...

  3. NMR imaging

    International Nuclear Information System (INIS)

    Andrew, E.R.

    1983-01-01

    Since hydrogen is the most abundant element in all living organisms, proton NMR lends itself well as a method of investigation in biology and medicine. NMR imaging has some special advantages as a diagnostic tool: no ionizing radiation is used, it is noninvasive; it provides a safer means of imaging than the use of x-rays, gamma rays, positrons, or heavy ions. In contrast with ultrasound, the radiation penetrates the bony structures without attenuation. In additional to morphological information, NMR imaging provides additional diagnostic insights through relaxation parameters, which are not available from other imaging methods. In the decade since the first primitive NMR images were obtained, the quality of images now obtained approaches those from CT x-ray scanners. Prototype instruments are being constructed for clinical evaluation and the first whole-body scanners are beginning to appear on the market at costs comparable to CT scanners. Primary differences in equipment for conventional NMR and NMR imaging are the much larger aperture magnets that are required for the examination of human subjects and the addition of coils to generate field gradients and facilities for manipulating the gradients. Early results from clinical trials in many parts of the world are encouraging, and in a few years, the usefuleness of this modality of medical imaging to the medical profession in diagnosis and treatment of disease will be defined. 10 figures

  4. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  5. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  6. Real-time Kinetics of High-mobility Group Box 1 (HMGB1) Oxidation in Extracellular Fluids Studied by in Situ Protein NMR Spectroscopy*

    Science.gov (United States)

    Zandarashvili, Levani; Sahu, Debashish; Lee, Kwanbok; Lee, Yong Sun; Singh, Pomila; Rajarathnam, Krishna; Iwahara, Junji

    2013-01-01

    Some extracellular proteins are initially secreted in reduced forms via a non-canonical pathway bypassing the endoplasmic reticulum and become oxidized in the extracellular space. One such protein is HMGB1 (high-mobility group box 1). Extracellular HMGB1 has different redox states that play distinct roles in inflammation. Using a unique NMR-based approach, we have investigated the kinetics of HMGB1 oxidation and the half-lives of all-thiol and disulfide HMGB1 species in serum, saliva, and cell culture medium. In this approach, salt-free lyophilized 15N-labeled all-thiol HMGB1 was dissolved in actual extracellular fluids, and the oxidation and clearance kinetics were monitored in situ by recording a series of heteronuclear 1H-15N correlation spectra. We found that the half-life depends significantly on the extracellular environment. For example, the half-life of all-thiol HMGB1 ranged from ∼17 min (in human serum and saliva) to 3 h (in prostate cancer cell culture medium). Furthermore, the binding of ligands (glycyrrhizin and heparin) to HMGB1 significantly modulated the oxidation kinetics. Thus, the balance between the roles of all-thiol and disulfide HMGB1 proteins depends significantly on the extracellular environment and can also be artificially modulated by ligands. This is important because extracellular HMGB1 has been suggested as a therapeutic target for inflammatory diseases and cancer. Our work demonstrates that the in situ protein NMR approach is powerful for investigating the behavior of proteins in actual extracellular fluids containing an enormous number of different molecules. PMID:23447529

  7. NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation

    Directory of Open Access Journals (Sweden)

    Bruix Marta

    2010-01-01

    Full Text Available Abstract Background Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. Results We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. Conclusions These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.

  8. NMR structure of navel orangeworm moth pheromone-binding protein (AtraPBP1): implications for pH-sensitive pheromone detection.

    Science.gov (United States)

    Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S; Ames, James B

    2010-02-23

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through the aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from A. transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multiangle light scattering, and (15)N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven alpha-helices (alpha1, L8-L23; alpha2, D27-F36; alpha3, R46-V62; alpha4, A73-M78; alpha5, D84-S100; alpha6, R107-L125; alpha7, M131-E141) that adopt an overall main-chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108, and C97/C117 and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141, and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (alpha7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139, and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, and V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions.

  9. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    Energy Technology Data Exchange (ETDEWEB)

    Gopinath, T. [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States); Mote, Kaustubh R. [University of Minnesota, Department of Chemistry (United States); Veglia, Gianluigi, E-mail: vegli001@umn.edu [University of Minnesota, Department of Biochemistry, Molecular Biology, and Biophysics (United States)

    2015-05-15

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living {sup 15}N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through {sup 15}N–{sup 15}N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish {sup 15}N–{sup 15}N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments.

  10. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples.

    Science.gov (United States)

    Gopinath, T; Mote, Kaustubh R; Veglia, Gianluigi

    2015-05-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living (15)N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through (15)N-(15)N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish (15)N-(15)N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI-HETCOR and 3D PISEMAI-HETCOR-mixing experiments.

  11. Dante-Z sequence as selective impulsion in high field mono and multidimensional NMR. Application to the study of proteins, peptides and their interactions

    International Nuclear Information System (INIS)

    Roumestand, C.; Toma, F.

    1992-01-01

    DANTE-Z is a simple and efficient way for NMR spectral selection. We present here different applications of DANTE-Z in high-resolution NMR of peptides and proteins. We have been using proton selective excitation by DANTE-Z to perform 1D-correlated (homo- or heteronuclear) experiments corresponding to one line of either 2D or 3D experiments. Following the same scheme, we could also edit planes of 3D experiments by concatenating 1D-correlated experiments with conventional 2D experiments. In the heteronuclear case (i.e. 1 H, 31 P), we could also edit planes of a 4D experiment by the simultaneous selection of 1 H and the X nucleus. Owing to the favourable excitation profile of DANTE-Z, we used it successfully for topological excitations (spectral width from 150 Hz up to 1500 Hz) in 'semi-soft'-2D experiments and 'soft'-2D experiment. These applications are illustrated by the results obtained at 600 MHz on a protein and a phosphonamide peptide

  12. Reconstitution of FMN-free NADPH-cytochrome P-450 reductase with a phosphorothioate analog of FMN: 31P NMR studies of the reconstituted protein

    International Nuclear Information System (INIS)

    Krum, D.P.; Otvos, J.D.; Calhoun, J.P.; Miziorko, H.M.; Masters, B.S.S.

    1987-01-01

    A phosphorothioate analog of FMN (FMNS) has been synthesized and shown to be completely competent in reconstituting the FMN-free form of NADPH-cytochrome P-450 reductase as evidenced by flavin determinations and cytochrome c reductase activity assays. The FMNS-reconstituted FMN-free reductase gives rise to an air-stable semiquinone, and the fluorescence of FMNS is quenched upon addition of FMN-free reductase. 31 P NMR spectra of the FMN-free reductase reveal only two resonances (-7.3 and -11.3 ppm), which are attributable to FAD. This result confirms the assignments of Otvos et al, and demonstrates unequivocally that there are no phosphate residues other than those of FMN and FAD attached to the steapsin-solubilized reductase. The addition of FMN to the FMN-free reductase resulted in the appearance of one additional resonance at 3.9 ppm. Addition of FMNS to the FMN-free reductase caused no change, surprisingly, in the 31 P NMR spectrum until Mn(II) was added, after which a peak centered at ∼ 45 ppm was observed. This unexpected result may be explained if the T 1 for the phosphate of FMNS is significantly longer than that of FMN, and suggests that the sulfur atom of FMNS may perturb the interaction of the phosphate with its protein environment. These results demonstrate the utility of phosphorothioate analogs as mechanistic probes for proteins containing nucleotide cofactors

  13. Simultaneous acquisition of 2D and 3D solid-state NMR experiments for sequential assignment of oriented membrane protein samples

    International Nuclear Information System (INIS)

    Gopinath, T.; Mote, Kaustubh R.; Veglia, Gianluigi

    2015-01-01

    We present a new method called DAISY (Dual Acquisition orIented ssNMR spectroScopY) for the simultaneous acquisition of 2D and 3D oriented solid-state NMR experiments for membrane proteins reconstituted in mechanically or magnetically aligned lipid bilayers. DAISY utilizes dual acquisition of sine and cosine dipolar or chemical shift coherences and long living 15 N longitudinal polarization to obtain two multi-dimensional spectra, simultaneously. In these new experiments, the first acquisition gives the polarization inversion spin exchange at the magic angle (PISEMA) or heteronuclear correlation (HETCOR) spectra, the second acquisition gives PISEMA-mixing or HETCOR-mixing spectra, where the mixing element enables inter-residue correlations through 15 N– 15 N homonuclear polarization transfer. The analysis of the two 2D spectra (first and second acquisitions) enables one to distinguish 15 N– 15 N inter-residue correlations for sequential assignment of membrane proteins. DAISY can be implemented in 3D experiments that include the polarization inversion spin exchange at magic angle via I spin coherence (PISEMAI) sequence, as we show for the simultaneous acquisition of 3D PISEMAI–HETCOR and 3D PISEMAI–HETCOR-mixing experiments

  14. An economical method for production of (2H, (13CH3-threonine for solution NMR studies of large protein complexes: application to the 670 kDa proteasome.

    Directory of Open Access Journals (Sweden)

    Algirdas Velyvis

    Full Text Available NMR studies of very high molecular weight protein complexes have been greatly facilitated through the development of labeling strategies whereby (13CH(3 methyl groups are introduced into highly deuterated proteins. Robust and cost-effective labeling methods are well established for all methyl containing amino acids with the exception of Thr. Here we describe an inexpensive biosynthetic strategy for the production of L-[α-(2H; β-(2H;γ-(13C]-Thr that can then be directly added during protein expression to produce highly deuterated proteins with Thr methyl group probes of structure and dynamics. These reporters are particularly valuable, because unlike other methyl containing amino acids, Thr residues are localized predominantly to the surfaces of proteins, have unique hydrogen bonding capabilities, have a higher propensity to be found at protein nucleic acid interfaces and can play important roles in signaling pathways through phosphorylation. The utility of the labeling methodology is demonstrated with an application to the 670 kDa proteasome core particle, where high quality Thr (13C,(1H correlation spectra are obtained that could not be generated from samples prepared with commercially available U-[(13C,(1H]-Thr.

  15. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers

    International Nuclear Information System (INIS)

    Mote, Kaustubh R.; Gopinath, T.; Traaseth, Nathaniel J.; Kitchen, Jason; Gor’kov, Peter L.; Brey, William W.; Veglia, Gianluigi

    2011-01-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1 H- 15 N dipolar couplings (DC) and 15 N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([ 1 H, 15 N]-SE-PISEMA-PDSD). The incorporation of 2D 15 N/ 15 N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15 N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.

  16. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  17. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations.

    Science.gov (United States)

    Ferrer-Gallego, Raúl; Hernández-Hierro, José Miguel; Brás, Natércia F; Vale, Nuno; Gomes, Paula; Mateus, Nuno; de Freitas, Victor; Heredia, Francisco J; Escribano-Bailón, María Teresa

    2017-08-09

    The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB7 12 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.

  18. Prolonging hypothermic storage (4 C) of bovine embryos with fish antifreeze protein.

    Science.gov (United States)

    Ideta, Atsushi; Aoyagi, Yoshito; Tsuchiya, Kanami; Nakamura, Yuuki; Hayama, Kou; Shirasawa, Atsushi; Sakaguchi, Kenichiro; Tominaga, Naomi; Nishimiya, Yoshiyuki; Tsuda, Sakae

    2015-01-01

    Embryos obtained via superovulation are necessary for mammalian artificial reproduction, and viability is a key determinant of success. Nonfreezing storage at 4 C is possible, but currently used storage solutions can maintain embryo viability for only 24-48 h. Here we found that 10 mg/ml antifreeze protein (AFP) dissolved in culture medium 199 with 20% (v/v) fetal bovine serum and 25 mM HEPES could keep bovine embryos alive for 10 days at 4 C. We used a recombinant AFP isolated from the notched-fin eelpout (Zoarces elongatus Kner). Photomicroscopy indicated that the AFP-embryo interaction was enhanced at 37 C. Embryos pre-warmed with the AFP solution at 37 C for 60 min maintained high viability, whereas those that were not pre-warmed could live no longer than 7 days. Thus, short-term storage of bovine embryos was achieved by a combination of AFP-containing medium and controlled pre-warming.

  19. Amino acid and protein changes in tilapia and spanish mackerel after irradiation and storage

    Energy Technology Data Exchange (ETDEWEB)

    Al-Kahtani, Hassan A.; Abu-Tarboush, Hamza M.; Atia, Mohamed; Bajaber, Adnan S.; Ahmed, Mohamed A.; El-Mojaddidi, Mohamed A

    1998-01-01

    Some amino acids in tilapia decreased while some others increased when subjected to doses up to 10.0 kGy. However, 10 kGy contributed to a significant reduction in all amino acids of Spanish mackerel. Variations in amino acid contents continued during post-irradiation storage with no consistent trend of increase or decrease. SDS-PAGE of protein from both fish showed 27 bands of subunits with MW < 14.0-94.0 KD. Isoelectric focusing patterns of sarcoplasmic protein of unirradiated and irradiated fish showed no charge in the number of bands, while some changes were observed in the intensities of the anodic and cathodic bands depending on isoelectric points (pIs)

  20. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhou, Jiaxing; Liu, Dongmiao; Deng, Xiong; Zhen, Shoumin; Wang, Zhimin; Yan, Yueming

    2018-03-12

    Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe......-regimes caused significant differences in both quantity and quality of the storage proteins transcripts. Principal Component Analysis of the amino acid (AA) profiles also indicated dissimilarity in individual AA percentages, correlated to hordein content. The abundance values of proteins of interest confirmed...

  2. REDOX POTENTIAL AND DYNAMICS OF PROTEIN AND FAT DESTRUCTION DURING STORAGE OF CANNED MEAT IN PIECES

    Directory of Open Access Journals (Sweden)

    V. B. Krylova

    2016-01-01

    Full Text Available The studies on the dynamics of the redox potential of systems and its relationship with the processes of protein and fat destruction in canned foods during their storage are fragmented and not systemized, which highlight their topicality. The aim of the research was to obtain the experimental data on the Eh values and physico-chemical indicators of canned food quality during storage in order to establish their possible correlation. It was shown that the dynamics of Eh, the content of free amino acids and fatty acid fractions in the canned products from beef and pork was different during storage. For example, a decrease in the Eh value and free amino acid content in the canned products from beef had a smooth character, while in the canned products from pork several periods were observed, which differed in the character of the change in the quality indicators.A linear character of the changes in the proportion of fatty acid fractions during storage of the canned products from beef and pork was noticed. With that, both canned food items had an increase in the saturated fatty acid content at the concomitant decrease in the sum of mono- and polyunsaturated fatty acids. The value of an increase in the proportion of saturated fatty acids associated with the process of reduction of mono- and polyunsaturated fatty acids did not depend on the kind of meat in the canned foods and was on average 6%. A decrease in the proportion of mono- and polyunsaturated fatty acids in the canned products from pork was about 4 times more intensive compared to the canned products from beef.

  3. Compact NMR

    Energy Technology Data Exchange (ETDEWEB)

    Bluemich, Bernhard; Haber-Pohlmeier, Sabina; Zia, Wasif [RWTH Aachen Univ. (Germany). Inst. fuer Technische und Makromolekulare Chemie (ITMC)

    2014-06-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is the most popular method for chemists to analyze molecular structures, while Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool for medical doctors that provides high-contrast images of biological tissue. In both applications, the sample (or patient) is positioned inside a large, superconducting magnet to magnetize the atomic nuclei. Interrogating radio-frequency pulses result in frequency spectra that provide the chemist with molecular information, the medical doctor with anatomic images, and materials scientist with NMR relaxation parameters. Recent advances in magnet technology have led to a variety of small permanent magnets to allow compact and low-cost instruments. The goal of this book is to provide an introduction to the practical use of compact NMR at a level nearly as basic as the operation of a smart phone.

  4. Salvage and storage of infectious disease protein targets in the SSGCID high-throughput crystallization pathway using microfluidics

    International Nuclear Information System (INIS)

    Christensen, Jeff; Gerdts, Cory J.; Clifton, Mathew C.; Stewart, Lance

    2011-01-01

    SSGCID protein crystals were salvaged and stored using the MPCS Plug Maker and CrystalCards when high-throughput traditional sitting-drop vapor diffusion initially failed. The MPCS Plug Maker is a microcapillary-based protein-crystallization system for generating diffraction-ready crystals from nanovolumes of protein. Crystallization screening using the Plug Maker was used as a salvage pathway for proteins that failed to crystallize during the initial observation period using the traditional sitting-drop vapor-diffusion method. Furthermore, the CrystalCards used to store the crystallization experiments set up by the Plug Maker are shown be a viable container for long-term storage of protein crystals without a discernable loss of diffraction quality with time. Use of the Plug Maker with SSGCID proteins is demonstrated to be an effective crystal-salvage and storage method

  5. Fabrication of Flexible, Fully Organic, Degradable Energy Storage Devices Using Silk Proteins.

    Science.gov (United States)

    Pal, Ramendra K; Kundu, Subhas C; Yadavalli, Vamsi K

    2018-03-21

    Flexible and thin-film devices are of great interest in epidermal and implantable bioelectronics. The integration of energy storage and delivery devices such as supercapacitors (SCs) with properties such as flexibility, miniaturization, biocompatibility, and degradability are sought for such systems. Reducing e-waste and using sustainable materials and processes are additional desirable qualities. Herein, a silk protein-based biocompatible and degradable thin-film microSC (μSC) is reported. A protein carrier with the conducting polymer poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and reduced graphene oxide dopant is used as a photopatternable biocomposite ink. Active electrodes are fabricated using photolithography under benign conditions, using only water as the solvent. These electrodes are printed on flexible protein sheets to form degradable, organic devices with a benign agarose-NaCl gel electrolyte. High capacitance, power density, cycling stability over 500 cycles, and the ability to power a light-emitting diode are shown. The device is flexible, can sustain cyclic mechanical stresses over 450 cycles, and retain capacitive properties over several days in liquid. Significantly, the μSCs are cytocompatible and completely degraded over the period of ∼1 month. By precise control of the device configuration, these silk protein-based, all-polymer organic devices can be designed to be tunably transient and provide viable alternatives for powering flexible and implantable bioelectronics.

  6. CHARACTERIZATION OF SEED STORAGE PROTEINS IN SOME IRANIAN DATE PALM CULTIVARS USING SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Sayed Mohammad Reza Khoshroo

    2013-08-01

    Full Text Available The date palm (Phoenix dactylifera L. is most adapted tree to grow in desert areas. It has always been looked on as a key source of stability, survival and evolution of the oasis agro-system since it constitutes the basic features of the ecological pyramid in desert regions. Determining genetic variability and cultivars identification in date palm are two major important factors in breeding programs, characterization of germplasm, and conservation purposes. The genetic variation of seed proteins was assayed by SDS-PAGE for 9 cultivars in Shahdad region in Iran. A total of 16 alternative protein bands with different mobility rates were identified within a molecular weight range of 11 KDa to 350 KDa. Then, electrophorogram for each cultivar was scored, and Jaccard‘s Similarity Index was calculated. Relying on UPGMA and NJ methods, genetic diversity of cultivars was evaluated by constructing the dendrogram for protein bands. Moreover, genetic distance was calculated for all of the cultivars.  It is concluded that seed storage protein profiles could be useful markers in genetic diversity studies and classification of cultivars. The cultivars from Shahdad were well separated from each other. This might have been done due to their unique genetic build-up. The cluster analysis displayed five major classes. In order to precise this assumption, data were computed to perform a PCA. Cluster analysis and PCA demonstrated their validity in establishing genetic diversity. When PCA was studied, the previously described results about Jaccard Similarity Coefficient dendrogram were also visualized.

  7. Sequence-specific assignments in the 1H NMR spectrum of the human inflammatory protein C5a

    International Nuclear Information System (INIS)

    Zuiderweg, E.R.P.; Mollison, K.W.; Henkin, J.; Carter, G.W.

    1988-01-01

    Full sequence-specific assignments for the 1 H NMR lines of the backbone protons of the human complement factor C5a are described and documented. The results were obtained by largely following the methodology developed by Wuethrich et al. Assignments for the majority of the amino acid side chain protons were obtained by using a comparison of double- and triple-quantum-filtered two-dimensional correlated experiments together with the analysis of relayed coherence transfer spectra. The assignments provide the basis for the determination of the thus far unknown three-dimensional structure of C5a from nuclear Overhauser enhancement distance constraints

  8. Chloroform-assisted phenol extraction improving proteome profiling of maize embryos through selective depletion of high-abundance storage proteins.

    Directory of Open Access Journals (Sweden)

    Erhui Xiong

    Full Text Available The presence of abundant storage proteins in plant embryos greatly impedes seed proteomics analysis. Vicilin (or globulin-1 is the most abundant storage protein in maize embryo. There is a need to deplete the vicilins from maize embryo extracts for enhanced proteomics analysis. We here reported a chloroform-assisted phenol extraction (CAPE method for vicilin depletion. By CAPE, maize embryo proteins were first extracted in an aqueous buffer, denatured by chloroform and then subjected to phenol extraction. We found that CAPE can effectively deplete the vicilins from maize embryo extract, allowing the detection of low-abundance proteins that were masked by vicilins in 2-DE gel. The novelty of CAPE is that it selectively depletes abundant storage proteins from embryo extracts of both monocot (maize and dicot (soybean and pea seeds, whereas other embryo proteins were not depleted. CAPE can significantly improve proteome profiling of embryos and extends the application of chloroform and phenol extraction in plant proteomics. In addition, the rationale behind CAPE depletion of abundant storage proteins was explored.

  9. Structural biology of the sequestration and transport of heavy metal toxins: NMR structure determination of proteins containing the -Cys-X-Y-Cys-metal binding motifs. 1998 annual progress report

    International Nuclear Information System (INIS)

    Opella, S.J.

    1998-01-01

    'The overall goal of the research is to apply the methods of structural biology, which have been previously used primarily in biomedical applications, to bioremediation. The authors are doing this by using NMR spectroscopy to determine the structures of proteins involved in the bacterial mercury detoxification system. The research is based on the premise that the proteins encoded in the genes of the bacterial detoxification system are an untapped source of reagents and, more fundamentally, chemical strategies that can be used to remove heavy metal toxins from the environment. The initial goals are to determine the structures of the proteins of the bacterial mercury detoxification systems responsible for the sequestration and transport of the Hg(II) ions in to the cell where reduction to Hg(O) occurs. These proteins are meP, which is water soluble and can be investigated with multidimensional solution NMR methods, and merT, the transport protein in the membrane that requires solid-state NMR methods. As of June 1998, this report summarizes work after about one and half years of the three-year award. The authors have made significant accomplishments in three aspects of the NMR studies of the proteins of the bacterial mercury detoxification system.'

  10. A new look on protein-polyphenol complexation during honey storage: is this a random or organized event with the help of dirigent-like proteins?

    Directory of Open Access Journals (Sweden)

    Katrina Brudzynski

    Full Text Available Honey storage initiates melanoidin formation that involves a cascade of seemingly unguided redox reactions between amino acids/proteins, reducing sugars and polyphenols. In the process, high molecular weight protein-polyphenol complexes are formed, but the mechanism involved remains unknown. The objective of this study was twofold: to determine quantitative and qualitative changes in proteins in honeys stored for prolonged times and in different temperatures and to relate these changes to the formation of protein-polyphenol complexes. Six -month storage decreased the protein content by 46.7% in all tested honeys (t-test, p<0.002 with the rapid reduction occurring during the first three month. The changes in protein levels coincided with alterations in molecular size and net charge of proteins on SDS -PAGE. Electro-blotted proteins reacted with a quinone-specific nitro blue tetrazolium (NBT on nitrocellulose membranes indicating that quinones derived from oxidized polyphenols formed covalent bonds with proteins. Protein-polyphenol complexes isolated by size-exclusion chromatography differed in size and stoichiometry and fall into two categories: (a high molecular weight complexes (230-180 kDa enriched in proteins but possessing a limited reducing activity toward the NBT and (b lower molecular size complexes (110-85 kDa enriched in polyphenols but strongly reducing the dye. The variable stoichiometry suggest that the large, "protein-type" complexes were formed by protein cross-linking, while in the smaller, "polyphenol-type" complexes polyphenols were first polymerized prior to protein binding. Quinones preferentially bound a 31 kDa protein which, by the electrospray quadrupole time of flight mass spectrometry (ESI-Qtof-MS analysis, showed homology to dirigent-like proteins known for assisting in radical coupling and polymerization of phenolic compounds. These findings provide a new look on protein-polyphenol interaction in honey where the

  11. Structure of the Putative 32 kDa Myrosinase Binding Protein from Arabidopsis (At3g16450.1) Determined by SAIL-NMR

    Science.gov (United States)

    Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira Mei; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, JunGoo; Güntert, Peter; Aceti, David J.; Markley, John L.; Kainosho, Masatsune

    2009-01-01

    The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme, myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniformly 13C/15N labeling methods, we used our stereo-array isotope labeling (SAIL) technology to prepare an optimally 2H/13C/15N-labeled sample. NMR data sets collected with the SAIL-protein enabled us to assign 1H, 13C and 15N chemical shifts to 95.5% of all atoms, even at the low concentration (0.2 mM) of the protein product. We collected additional NOESY data and solved the three-dimensional structure with the CYANA software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent, but similar, lectin-fold domains composed of three β-sheets. PMID:19021763

  12. Study of the interactions between a proline-rich protein and a flavan-3-ol by NMR: residual structures in the natively unfolded protein provides anchorage points for the ligands.

    Science.gov (United States)

    Pascal, Christine; Paté, Franck; Cheynier, Véronique; Delsuc, Marc-André

    2009-09-01

    Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline-rich proteins, which are natively unfolded proteins. A human salivary proline-rich protein, namely IB-5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan-3-ol in green tea, were studied here. Circular dichroism experiments showed that IB-5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB-5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB-5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB-5/EGCG aggregates.

  13. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Science.gov (United States)

    Fauteux, François; Strömvik, Martina V

    2009-01-01

    Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP) gene promoters from three plant families, namely Brassicaceae (mustards), Fabaceae (legumes) and Poaceae (grasses) using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L.) Heynh.), soybean (Glycine max (L.) Merr.) and rice (Oryza sativa L.) respectively. We have identified three conserved motifs (two RY-like and one ACGT-like) in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination of conserved motifs

  14. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae

    Directory of Open Access Journals (Sweden)

    Fauteux François

    2009-10-01

    Full Text Available Abstract Background Accurate computational identification of cis-regulatory motifs is difficult, particularly in eukaryotic promoters, which typically contain multiple short and degenerate DNA sequences bound by several interacting factors. Enrichment in combinations of rare motifs in the promoter sequence of functionally or evolutionarily related genes among several species is an indicator of conserved transcriptional regulatory mechanisms. This provides a basis for the computational identification of cis-regulatory motifs. Results We have used a discriminative seeding DNA motif discovery algorithm for an in-depth analysis of 54 seed storage protein (SSP gene promoters from three plant families, namely Brassicaceae (mustards, Fabaceae (legumes and Poaceae (grasses using backgrounds based on complete sets of promoters from a representative species in each family, namely Arabidopsis (Arabidopsis thaliana (L. Heynh., soybean (Glycine max (L. Merr. and rice (Oryza sativa L. respectively. We have identified three conserved motifs (two RY-like and one ACGT-like in Brassicaceae and Fabaceae SSP gene promoters that are similar to experimentally characterized seed-specific cis-regulatory elements. Fabaceae SSP gene promoter sequences are also enriched in a novel, seed-specific E2Fb-like motif. Conserved motifs identified in Poaceae SSP gene promoters include a GCN4-like motif, two prolamin-box-like motifs and an Skn-1-like motif. Evidence of the presence of a variant of the TATA-box is found in the SSP gene promoters from the three plant families. Motifs discovered in SSP gene promoters were used to score whole-genome sets of promoters from Arabidopsis, soybean and rice. The highest-scoring promoters are associated with genes coding for different subunits or precursors of seed storage proteins. Conclusion Seed storage protein gene promoter motifs are conserved in diverse species, and different plant families are characterized by a distinct combination

  15. Influence of prolonged storage process, pasteurization, and heat treatment on biologically-active human milk proteins.

    Science.gov (United States)

    Chang, Jih-Chin; Chen, Chao-Huei; Fang, Li-Jung; Tsai, Chi-Ren; Chang, Yu-Chuan; Wang, Teh-Ming

    2013-12-01

    The bioactive proteins in human milk may be influenced by prolonged storage process, pasteurization, and heat treatment. This study was conducted to evaluate the effects of these procedures. Three forms of human milk - freshly expressed, frozen at -20°C for a prolonged duration, and pasteurized milk - were collected from 14 healthy lactating mothers and a milk bank. The concentrations of major bioactive proteins (secretory immunoglobulin A, lactoferrin, lysozyme, and leptin) were quantified using enzyme-linked immunosorbent assay kits. Changes in these proteins by heat treatment at 40°C or 60°C for 30 minutes were further evaluated. The mean concentrations of lactoferrin and secretory immunoglobulin A were significantly reduced by 66% and 25.9%, respectively, in pasteurized milk compared with those in freshly-expressed milk. Heat treatment at 40°C or 60°C did not cause significant changes in lactoferrin and secretory immunoglobulin A, but there was an apparent increase in lysozyme (p = 0.016). There were no significant differences in leptin level among these three forms of milk prior to (p = 0.153) or after heat treatment (p = 0.053). Various freezing/heating/pasteurization processes applied to human milk prior to delivery to neonates could affect the concentration of immunomodulatory proteins, especially lactoferrin, secretory immunoglobulin A, and lysozyme. Leptin was unaffected by the various handling processes tested. Fresh milk was found to be the best food for neonates. Further studies are warranted to evaluate the functional activity of these proteins and their effects on infants' immunological status. Copyright © 2013. Published by Elsevier B.V.

  16. 2D NMR studies of biomolecules

    International Nuclear Information System (INIS)

    Lamerichs, R.M.J.N.

    1989-01-01

    The work described in this thesis comprises two related subjects. The first part describes methods to derive high-resolution structures of proteins in solution using two-dimensional (2-D) NMR. The second part describes 2-D NMR studies on the interaction between proteins and DNA. (author). 261 refs.; 52 figs.; 23 tabs

  17. Arabidopsis Intracellular NHX-Type Sodium-Proton Antiporters are Required for Seed Storage Protein Processing.

    Science.gov (United States)

    Ashnest, Joanne R; Huynh, Dung L; Dragwidge, Jonathan M; Ford, Brett A; Gendall, Anthony R

    2015-11-01

    The Arabidopsis intracellular sodium-proton exchanger (NHX) proteins AtNHX5 and AtNHX6 have a well-documented role in plant development, and have been used to improve salt tolerance in a variety of species. Despite evidence that intracellular NHX proteins are important in vacuolar trafficking, the mechanism of this role is poorly understood. Here we show that NHX5 and NHX6 are necessary for processing of the predominant seed storage proteins, and also influence the processing and activity of a vacuolar processing enzyme. Furthermore, we show by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) technology that the C-terminal tail of NHX6 interacts with a component of Retromer, another component of the cell sorting machinery, and that this tail is critical for NHX6 activity. These findings demonstrate that NHX5 and NHX6 are important in processing and activity of vacuolar cargo, and suggest a mechanism by which NHX intracellular (IC)-II antiporters may be involved in subcellular trafficking. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Vitellogenin-RNAi and ovariectomy each increase lifespan, increase protein storage, and decrease feeding, but are not additive in grasshoppers.

    Science.gov (United States)

    Tetlak, Alicia G; Burnett, Jacob B; Hahn, Daniel A; Hatle, John D

    2015-12-01

    Reduced reproduction has been shown to increase lifespan in many animals, yet the mechanisms behind this trade-off are unclear. We addressed this question by combining two distinct, direct means of life-extension via reduced reproduction, to test whether they were additive. In the lubber grasshopper, Romalea microptera, ovariectomized (OVX) individuals had a ~20% increase in lifespan and a doubling of storage relative to controls (Sham operated). Similarly, young female grasshoppers treated with RNAi against vitellogenin (the precursor to egg yolk protein) had increased fat body mass and halted ovarian growth. In this study, we compared VgRNAi to two control groups that do not reduce reproduction, namely buffer injection (Buffer) and injection with RNAi against a hexameric storage protein (Hex90RNAi). Each injection treatment was tested with and without ovariectomy. Hence, we tested feeding, storage, and lifespans in six groups: OVX and Buffer, OVX and Hex90RNAi, OVX and VgRNAi, Sham and Buffer, Sham and Hex90RNAi, and Sham and VgRNAi. Ovariectomized grasshoppers and VgRNAi grasshoppers each had similar reductions in feeding (~40%), increases in protein storage in the hemolymph (150-300%), and extensions in lifespan (13-21%). Ovariectomized grasshoppers had higher vitellogenin protein levels than did VgRNAi grasshoppers. Last but not least, when ovariectomy and VgRNAi were applied together, there was no greater effect on feeding, protein storage, or longevity. Hence, feeding regulation, and protein storage in insects, may be conserved components of life-extension via reduced reproduction.

  19. 15N NMR relaxation studies of calcium-loaded parvalbumin show tight dynamics compared to those of other EF-hand proteins

    DEFF Research Database (Denmark)

    Baldellon, C; Alattia, J R; Strub, M P

    1998-01-01

    Dynamics of the rat alpha-parvalbumin calcium-loaded form have been determined by measurement of 15N nuclear relaxation using proton-detected heteronuclear NMR spectroscopy. The relaxation data were analyzed using spectral density functions and the Lipari-Szabo formalism. The major dynamic features...... for the rat alpha-parvalbumin calcium-loaded form are (1) the extreme rigidity of the helix-loop-helix EF-hand motifs and the linker segment connecting them, (2) the N and C termini of the protein being restricted in their mobility, (3) a conformational exchange occurring at the kink of helix D, and (4...... properties which are conserved in the EF-hand domains from different members of this superfamily: (1) a tendency toward higher mobility of NH vectors at relative position 2 in the Ca2+-binding loop, (2) a restricted mobility for the other residues in the binding loop, and (3) an overall rigidity...

  20. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Yusuke; Tachikawa, Masanori [Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027 (Japan)

    2014-11-14

    Multicomponent quantum mechanical (MC-QM) calculation has been extended with ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) scheme [ONIOM(MC-QM:MM)] to take account of both the nuclear quantum effect and the surrounding environment effect. The authors have demonstrated the first implementation and application of ONIOM(MC-QM:MM) method for the analysis of the geometry and the isotope shift in hydrogen-bonding center of photoactive yellow protein. ONIOM(MC-QM:MM) calculation for a model with deprotonated Arg52 reproduced the elongation of O–H bond of Glu46 observed by neutron diffraction crystallography. Among the unique isotope shifts in different conditions, the model with protonated Arg52 with solvent effect reasonably provided the best agreement with the corresponding experimental values from liquid NMR measurement. Our results implied the availability of ONIOM(MC-QM:MM) to distinguish the local environment around hydrogen bonds in a biomolecule.

  1. Lack of Population Structure in Coriander Populations Based on SDS (Seed Storage Protein Page Analysis

    Directory of Open Access Journals (Sweden)

    Gülsüm Yaldiz

    2016-08-01

    Full Text Available Genetic variation is prerequisite for plant breeding. Nothing information existed in the literature for available diversity of Coriander accession in Turkey. Plant breeding activities are negligible in Turkey. So in order to start effective plant breeding program in Turkey, information on the available genetic diversity is viable. Therefore we planned to study the genetic variation and population structure of 29 Coriander accessions by seed storage protein (SDS. SDS analysis elaborated the lack of population structure and genetic bottleneck in the Coriander accessions in Turkey. Based on the results of this study, it was clear that sampling strategy was not appropriate and plant introduction should be made from different sources and diverse genotypes should be used as parents to initialize the effective Turkish Coriander breeding program.

  2. Transcriptome study of storage protein genes of field-grown barley in response to inorganic nitrogen fertilizers

    DEFF Research Database (Denmark)

    Hansen, Michael; Bowra, Steve; Lange, Mette

    2010-01-01

    The storage proteins of barley, in terms of both amino acid profile and quantity, are traits strongly influenced by the amount of nitrogen applied. Given this, we performed a developmental expression analysis of the genes from barley grains grown under field conditions to further our understanding...... profile under different N regimes. Reviewing the expression of the storage protein homologues within the families revealed markedly different temporal profiles; for example, some alleles were expressed very early in development. Furthermore, the differential temporal expression of the homologues suggested...

  3. Protein catabolism and high lipid metabolism associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses.

    Directory of Open Access Journals (Sweden)

    Laurence Le Moyec

    Full Text Available During long distance endurance races, horses undergo high physiological and metabolic stresses. The adaptation processes involve the modulation of the energetic pathways in order to meet the energy demand. The aims were to evaluate the effects of long endurance exercise on the plasma metabolomic profiles and to investigate the relationships with the individual horse performances. The metabolomic profiles of the horses were analyzed using the non-dedicated methodology, NMR spectroscopy and statistical multivariate analysis. The advantage of this method is to investigate several metabolomic pathways at the same time in a single sample. The plasmas were obtained before exercise (BE and post exercise (PE from 69 horses competing in three endurance races at national level (130-160 km. Biochemical assays were also performed on the samples taken at PE. The proton NMR spectra were compared using the supervised orthogonal projection on latent structure method according to several factors. Among these factors, the race location was not significant whereas the effect of the race exercise (sample BE vs PE of same horse was highly discriminating. This result was confirmed by the projection of unpaired samples (only BE or PE sample of different horses. The metabolomic profiles proved that protein, energetic and lipid metabolisms as well as glycoproteins content are highly affected by the long endurance exercise. The BE samples from finisher horses could be discriminated according to the racing speed based on their metabolomic lipid content. The PE samples could be discriminated according to the horse ranking position at the end of the race with lactate as unique correlated metabolite. As a conclusion, the metabolomic profiles of plasmas taken before and after the race provided a better understanding of the high energy demand and protein catabolism pathway that could expose the horses to metabolic disorders.

  4. Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy

    International Nuclear Information System (INIS)

    Sun Hechao; Godoy-Ruiz, Raquel; Tugarinov, Vitali

    2012-01-01

    Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743–1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent spin-systems as long as their transverse magnetization components relax with substantially different rates. The rate of this build-up is a reporter of the methyl-bearing side-chain mobility. Although the build-up of multiple-quantum 1 H coherences is monitored in these experiments, the decay of the methyl signal during relaxation delays occurs when methyl proton magnetization is in a single-quantum state. We describe a relaxation violated coherence transfer approach where the relaxation of multiple-quantum 1 H– 13 C methyl coherences during the relaxation delay period is quantified. The NMR experiment and the associated fitting procedure that models the time-dependence of the signal build-up, are applicable to the characterization of side-chain order in [ 13 CH 3 ]-methyl-labeled, highly deuterated protein systems up to ∼100 kDa in molecular weight. The feasibility of extracting reliable measures of side-chain order is experimentally verified on methyl-protonated, perdeuterated samples of an 8.5-kDa ubiquitin at 10°C and an 82-kDa Malate Synthase G at 37°C.

  5. Internal motion time scales of a small, highly stable and disulfide-rich protein: A 15N, 13C NMR and molecular dynamics study

    International Nuclear Information System (INIS)

    Guenneugues, Marc; Gilquin, Bernard; Wolff, Nicolas; Menez, Andre; Zinn-Justin, Sophie

    1999-01-01

    Motions of the backbone CαHα and threonine CβHβ bonds of toxin α were investigated using natural abundance 13C NMR and molecular dynamics. Measurement of the 13C longitudinal and transverse relaxation rates employed ACCORDION techniques together with coherence selection by pulsed field gradients and sensitivity enhancement through the use of preservation of equivalent pathway, thus allowing a considerable reduction of the required spectrometer time. 13C R1, R2, 1H → 13C NOE were obtained, as well as the variations of R1ρ(90 deg.) as a function of the rf field strength. These data were compared to those recorded by 1H and 15N NMR on a labelled sample of the toxin [Guenneugues et al. (1997) Biochemistry, 36, 16097-16108]. Both sets of data showed that picosecond to nanosecond time scale motions are well correlated to the secondary structure of the protein. This was further reinforced by the analysis of a 1 ns molecular dynamics simulation in water. Several CαHα and threonine CβHβ experimentally exhibit fast motions with a correlation time longer than 500 ps, that cannot be sampled along the simulation. In addition, the backbone exhibits motions on the microsecond to millisecond time scale on more than half of its length. Thus, toxin α, a highly stable protein (Tm=75 deg. C at acidic pH) containing 61 amino acids and 4 disulfides, shows important internal motions on time scales ranging from 0.1-0.5 ps, to 10-100 ps, 1 ns, and about 30 μs to 10 ms

  6. Hydrogen exchange kinetics in a membrane protein determined by 15N NMR spectroscopy: Use of the INEPT [insensitive nucleus enhancement by polarization transfer] experiment to follow individual amides in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    Henry, G.D.; Sykes, B.D.

    1990-01-01

    The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1 H nuclear magnetic resonance (NMR) study, multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow kinetic sets containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10 5 -fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein the authors use 15 N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiments can be used to transfer magnetization to the 15 N nucleus from a coupled proton; when 15 N-labeled protonated protein is dissolved in 2 H 2 O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H + and OH - ions. The time-dependent exchange-out experiment is suitable for slow exchange rates (k ex ). The INEPT experiment was also adapted to measure some of the more rapidly exchanging amides in the coat protein using either saturation transfer from water or exchange effects on the polarization transfer step itself. The results of all of these experiments are consistent with previous models of the coat protein in which a stable segment extends from the hydrophobic membrane-spanning region through to the C-terminus, whereas the N-terminal region is undergoing more extensive dynamic fluctuations

  7. Backbone dynamics of a model membrane protein: measurement of individual amide hydrogen-exchange rates in detergent-solubilized M13 coat protein using 13C NMR hydrogen/deuterium isotope shifts

    International Nuclear Information System (INIS)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    1987-01-01

    Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13 C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D 2 O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H 2 O solutions; in 1:1 H 2 O/D 2 O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13 C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects, the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule. A model of the detergent-solubilized coat protein is constructed from these H-exchange data which is consistent with circular dichroism and other NMR results

  8. Antioxidant activities of dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber.

    Science.gov (United States)

    Hou, W C; Lee, M H; Chen, H J; Liang, W L; Han, C H; Liu, Y W; Lin, Y H

    2001-10-01

    Dioscorin, the storage protein of yam (Dioscorea batatas Decne) tuber (which is different from dioscorine found in tubers of Dioscorea hirsuta), was purified to homogeneity after DE-52 ion exchange column according to the methods of Hou et al. (J. Agric. Food Chem. 1999, 47, 2168-2172). A single band of 32 kDa dioscorin was obtained on a sodium dodecyl sulfate-polyacrylamide gel electrophoresis gel with 2-mercaptoethanol treatment. This purified dioscorin was shown by spectrophotometric method to have scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical in a pH-dependent manner. There is a positive correlation between scavenging effects against DPPH (8-46%) and amounts of 32 kDa dioscorin (5.97-47.80 nmol) added in Tris-HCl buffer (pH 7.9), which are comparable to those of glutathione at the same concentrations. Using electron paramagnetic resonance (EPR) spectrometry for DPPH radical detection, it was found that the intensities of the EPR signal were decreased by 28.6 and 57 nmol of 32 kDa dioscorin in Tris-HCl buffer (pH 7.9) more than in distilled water compared to controls. EPR spectrometry was also used for hydroxyl radical detection. It was found that 32 kDa dioscorin could capture hydroxyl radical, and the intensities of the EPR signal were significantly decreased dose-dependently by 1.79-14.32 nmol of 32 kDa dioscorin (r = 0.975) compared to the control. It is suggested that 32 kDa dioscorin, the storage protein of yam tuber, may play a role as antioxidant in tubers and may be beneficial for health when people take it as a food additive or consume yam tubers.

  9. Physicochemical and functional properties, microstructure, and storage stability of whey protein/polyvinylpyrrolidone based glue sticks

    Directory of Open Access Journals (Sweden)

    Guorong Wang

    2012-11-01

    Full Text Available A glue stick is comprised of solidified adhesive mounted in a lipstick-like push-up tube. Whey is a byproduct of cheese making. Direct disposal of whey can cause environmental pollution. The objective of this study was to use whey protein isolate (WPI as a natural polymer along with polyvinylpyrrolidone (PVP to develop safe glue sticks. Pre-dissolved WPI solution, PVP, sucrose, 1,2-propanediol (PG, sodium stearate, defoamer, and preservative were mixed and dissolved in water at 90 oC and then molded in push-up tubes. Chemical composition, functional properties (bonding strength, glue setting time, gel hardness, extension/retraction, and spreading properties, microstructure, and storage stability of the prototypes were evaluated in comparison with a commercial control. Results showed that all WPI/PVP prototypes had desirable bonding strength and exhibited faster setting than PVP prototypes and control. WPI could reduce gel hardness and form less compact and rougher structures than that of PVP, but there was no difference in bonding strength. PVP and sucrose could increase the hygroscopicity of glue sticks, thus increasing storage stability. Finally, the optimized prototype GS3 (major components: WPI 8.0%, PVP 12.0%, 1,2-propanediol 10.0%, sucrose 10.0%, and stearic sodium 7.0% had a comparable functionality to the commercial control. Results indicated that whey protein could be used as an adhesive polymer for glue stick formulations, which could be used to bond fiber or cellulose derived substrates such as paper.

  10. Effects of sterilization, packaging, and storage on vitamin C degradation, protein denaturation, and glycation in fortified milks.

    Science.gov (United States)

    Gliguem, H; Birlouez-Aragon, I

    2005-03-01

    Monitoring the nutritional quality of dietetic milk throughout its shelf life is particularly important due to the high susceptibility of some vitamins to oxidation, and the continuous development of the Maillard reaction during storage. The objective of this paper was to evaluate the vitamin C content and protein modification by denaturation and glycation on fortified milk samples (growth milks) destined for 1- to 3-yr-old children. The influences of the sterilization process, formulation, packaging, and storage duration at ambient temperature in the dark were studied. Vitamin C degradation was particularly influenced by type of packaging. The use of a 3-layered opaque bottle was associated with complete oxidation of vitamin C after 1 mo of storage, whereas in the 6-layered opaque bottle, which has an oxygen barrier, the vitamin C content slowly decreased to reach 25% of the initial concentration after 4 mo of storage. However, no significant effect of vitamin C degradation during storage could be observed in terms of Maillard reaction, despite the fact that a probable impact occurred during sterilization. Furosine content and the FAST (fluorescence of advanced Maillard products and soluble tryptophan) index-indicators of the early and advanced Maillard reaction, respectively-were significantly higher in the in-bottle sterilized milk samples compared with UHT samples, and in fortified milk samples compared with cow milk. However, after 1 mo, the impact of storage was predominant, increasing the furosine level and the FAST index at similar levels for the differently processed samples. The early Maillard reaction developed continuously throughout the storage period.In conclusion, only packaging comprising an oxygen and light barrier is compatible with vitamin C fortification of milk. Furthermore, short storage time or low storage temperature is needed to retard vitamin C degradation, protein denaturation, and development of the Maillard reaction.

  11. Improving the Accuracy of NMR Structures of Large Proteins Using Pseudocontact Shifts as Long-Range Restraints

    Energy Technology Data Exchange (ETDEWEB)

    Gaponenko, Vadim [National Cancer Institute, Structural Biophysics Laboratory (United States); Sarma, Siddhartha P. [Indian Institute of Science, Molecular Biophysics Unit (India); Altieri, Amanda S. [National Cancer Institute, Structural Biophysics Laboratory (United States); Horita, David A. [Wake Forest University School of Medicine, Department of Biochemistry (United States); Li, Jess; Byrd, R. Andrew [National Cancer Institute, Structural Biophysics Laboratory (United States)], E-mail: rabyrd@ncifcrf.gov

    2004-03-15

    We demonstrate improved accuracy in protein structure determination for large ({>=}30 kDa), deuterated proteins (e.g. STAT4{sub NT}) via the combination of pseudocontact shifts for amide and methyl protons with the available NOEs in methyl-protonated proteins. The improved accuracy is cross validated by Q-factors determined from residual dipolar couplings measured as a result of magnetic susceptibility alignment. The paramagnet is introduced via binding to thiol-reactive EDTA, and multiple sites can be serially engineered to obtain data from alternative orientations of the paramagnetic anisotropic susceptibility tensor. The technique is advantageous for systems where the target protein has strong interactions with known alignment media.

  12. NMR imaging

    International Nuclear Information System (INIS)

    Ouchi, Toshihiro; Steiner, R.E.

    1984-01-01

    Three epidermoid and two dermoid tumours, pathologically proven, were examined by NMR and CT scans. Although most brain tumours have a low signal with a long T 1 , a dermoid cyst and one of the two components of the other dermoid tumour had a high signal and therefore a short T 1 . All three epidermoid tumours had a low signal and a long T 1 . Because of the high level contrast between some of the tumours and cerebrospinal fluid, NMR is helpful to detect the lesion. Neither of the liquid fluid levels in the tumour cysts or floating fat in the subarachnoid space was recognized in one patients, but the fine leakage of the content from the epidermoid cyst into the lateral ventricle was detected on a saturation recovery 1000 image in one case. (author)

  13. The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.).

    OpenAIRE

    Croy, R R; Gatehouse, J A; Tyler, M; Boulter, D

    1980-01-01

    A third storage protein, distinct from legumin and vicilin, has been purified from the seeds of pea (Pisum sativum L.). This protein has been named 'convicilin' and is present in protein bodies isolated from pea seeds. Convicilin has a subunit mol.wt. of 71 000 and a mol.wt. in its native form of 290 000. Convicilin is antigenically dissimilar to legumin, but gives a reaction of identity with vicilin when tested against antibodies raised against both proteins. However, convicilin contains no ...

  14. 15N and 31P solid-state NMR study of transmembrane domain alignment of M2 protein of influenza A virus in hydrated cylindrical lipid bilayers confined to anodic aluminum oxide nanopores.

    Science.gov (United States)

    Chekmenev, Eduard Y; Hu, Jun; Gor'kov, Peter L; Brey, William W; Cross, Timothy A; Ruuge, Andres; Smirnov, Alex I

    2005-04-01

    This communication reports the first example of a high resolution solid-state 15N 2D PISEMA NMR spectrum of a transmembrane peptide aligned using hydrated cylindrical lipid bilayers formed inside nanoporous anodic aluminum oxide (AAO) substrates. The transmembrane domain SSDPLVVA(A-15N)SIIGILHLILWILDRL of M2 protein from influenza A virus was reconstituted in hydrated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine bilayers that were macroscopically aligned by a conventional micro slide glass support or by the AAO nanoporous substrate. 15N and 31P NMR spectra demonstrate that both the phospholipids and the protein transmembrane domain are uniformly aligned in the nanopores. Importantly, nanoporous AAO substrates may offer several advantages for membrane protein alignment in solid-state NMR studies compared to conventional methods. Specifically, higher thermal conductivity of aluminum oxide is expected to suppress thermal gradients associated with inhomogeneous radio frequency heating. Another important advantage of the nanoporous AAO substrate is its excellent accessibility to the bilayer surface for exposure to solute molecules. Such high accessibility achieved through the substrate nanochannel network could facilitate a wide range of structure-function studies of membrane proteins by solid-state NMR.

  15. Two-dimensional NMR and photo-CIDNP studies of the insulin monomer: Assignment of aromatic resonances with application to protein folding, structure, and dynamics

    International Nuclear Information System (INIS)

    Weiss, M.A.; Shoelson, S.E.; Nguyen, D.T.; O'Shea, E.; Karplus, M.; Khait, I.; Neuringer, L.J.; Inouye, K.; Frank, B.H.; Beckage, M.

    1989-01-01

    The aromatic 1 H NMR resonances of the insulin monomer are assigned at 500 MHz by comparative studies of chemically modified and genetically altered variants, including a mutant insulin (PheB25 → Leu) associated with diabetes mellitus. The two histidines, three phenylalanines, and four tyrosines are observed to be in distinct local environments; their assignment provides sensitive markers for studies of tertiary structure, protein dynamics, and protein folding. The environments of the tyrosine residues have also been investigated by photochemically induced dynamic nuclear polarization (photo-CIDNP) and analyzed in relation to packing constrains in the crystal structures of insulin. Dimerization involving specific B-chain interactions is observed with increasing protein concentration and is shown to depend on temperature, pH, and solvent composition. The differences between proinsulin and mini-proinsulin suggest a structural mechanism for the observation that the fully reduced B29-A1 analogue folds more efficiently than proinsulin to form the correct pattern of disulfide bonds. These results are discussed in relation to molecular mechanics calculations of insulin based on the available crystal structures

  16. Protein structural studies by paramagnetic solid-state NMR spectroscopy aided by a compact cyclen-type Cu(II) binding tag

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Ishita; Gao, Min; Arachchige, Rajith J.; Nadaud, Philippe S. [The Ohio State University, Department of Chemistry and Biochemistry (United States); Cunningham, Timothy F.; Saxena, Sunil [University of Pittsburgh, Department of Chemistry (United States); Schwieters, Charles D. [National Institutes of Health, Center for Information Technology (United States); Jaroniec, Christopher P., E-mail: jaroniec@chemistry.ohio-state.edu [The Ohio State University, Department of Chemistry and Biochemistry (United States)

    2015-01-15

    Paramagnetic relaxation enhancements (PREs) are a rich source of structural information in protein solid-state NMR spectroscopy. Here we demonstrate that PRE measurements in natively diamagnetic proteins are facilitated by a thiol-reactive compact, cyclen-based, high-affinity Cu{sup 2+} binding tag, 1-[2-(pyridin-2-yldisulfanyl)ethyl]-1,4,7,10-tetraazacyclododecane (TETAC), that overcomes the key shortcomings associated with the use of larger, more flexible metal-binding tags. Using the TETAC–Cu{sup 2+} K28C mutant of B1 immunoglobulin-binding domain of protein G as a model, we find that amino acid residues located within ∼10 Å of the Cu{sup 2+} center experience considerable transverse PREs leading to severely attenuated resonances in 2D {sup 15}N–{sup 13}C correlation spectra. For more distant residues, electron–nucleus distances are accessible via quantitative measurements of longitudinal PREs, and we demonstrate such measurements for {sup 15}N–Cu{sup 2+} distances up to ∼20 Å.

  17. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  18. Toward an integrated model of protein-DNA recognition as inferred from NMR studies on the Lac repressor system

    NARCIS (Netherlands)

    Kalodimos, Ch.; Boelens, R.|info:eu-repo/dai/nl/070151407; Kaptein, R.|info:eu-repo/dai/nl/074334603

    2004-01-01

    Sequence-specific protein-DNA interactions are responsible for the regulation of key biological functions such as replication of the genome, initiation of transcription, and repair of damaged DNA. All of these regulatory pathways are built on the foundation that proteins are able to bind selectively

  19. Recombinant dioscorins of the yam storage protein expressed in Escherichia coli exhibit antioxidant and immunomodulatory activities.

    Science.gov (United States)

    Jheng, Yi-Jyun; Tsai, Wei-Yi; Chen, Kuo-Hsuan; Lin, Kuo-Wei; Chyan, Chia-Lin; Yang, Ching-Chi; Lin, Kuo-Chih

    2012-09-01

    Dioscorins, the major storage proteins in yam tubers, exhibit biochemical and immunomodulatroy activities. To investigate the potential application of dioscorins in biomedical research, we expressed the dioscorin genes Dj-dioA3 and Dp-dioA2 from Dioscorea japonica and Dioscorea pseudojaponica, respectively, in E. coli and routinely obtained approximately 15 mg proteins per liter Escherichia coli culture (mg/L) to 30 mg/L of rDj-dioscorinA3 and 4 to 8 mg/L of rDp-dioscorinA2. Western blot analyses revealed that both recombinant dioscorins contained epitopes with similar antigenicities to those of the native dioscorins. Results from dithiothreitol (DTT) treatment followed by monobromobimane (mBBr) staining showed that both recombinant dioscorins, like the native dioscorins, contain an intramolecular disulfide bond between Cys(28) and Cys(187) residues. Circular dichroism spectroscopy findings indicated that the secondary structural contents of the recombinant dioscorins showed high similarity to those of their corresponding native dioscorins. Both recombinant dioscorins, like the native dioscorins, exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and Toll-like receptor 4 signaling activities, and stimulated the phagocytosis of E. coli by macrophage. Overall, our results indicated that substantial amounts of recombinant dioscorins can be purified easily from E. coli and that these recombinant dioscorins are appropriate for application in future investigations of the biomedical functions of dioscorins. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. High resolution NMR theory and chemical applications

    CERN Document Server

    Becker, Edwin D

    1999-01-01

    High Resolution NMR provides a broad treatment of the principles and theory of nuclear magnetic resonance (NMR) as it is used in the chemical sciences. It is written at an "intermediate" level, with mathematics used to augment, rather than replace, clear verbal descriptions of the phenomena. The book is intended to allow a graduate student, advanced undergraduate, or researcher to understand NMR at a fundamental level, and to see illustrations of the applications of NMR to the determination of the structure of small organic molecules and macromolecules, including proteins. Emphasis is on the study of NMR in liquids, but the treatment also includes high resolution NMR in the solid state and the principles of NMR imaging and localized spectroscopy. Careful attention is given to developing and interrelating four approaches - steady state energy levels, the rotating vector picture, the density matrix, and the product operator formalism. The presentation is based on the assumption that the reader has an acquaintan...

  1. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  2. Integrated transcriptomics and proteomics analysis of storage protein composition in developing barley grain to improve nutritional profile

    DEFF Research Database (Denmark)

    Kaczmarczyk, Agnieszka Ewa; Dionisio, Giuseppe; Renaut, Jenny

    2012-01-01

    The aim of the study was to understand the molecular and biochemical mechanisms underpinning the effect of nitrogen (N) on barley (Hordeum vulgare) storage protein production (hordeins) during grain filling. Using a combination of advanced biochemistry methods, we could comprehensively describe c...

  3. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses.

    Science.gov (United States)

    Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2017-02-22

    Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.

  4. Proton detection for signal enhancement in solid-state NMR experiments on mobile species in membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Meaghan E.; Ritz, Emily [University of Guelph, Department of Physics (Canada); Ahmed, Mumdooh A. M. [Suez University, The Department of Physics, Faculty of Science (Egypt); Bamm, Vladimir V.; Harauz, George [University of Guelph, Biophysics Interdepartmental Group (Canada); Brown, Leonid S.; Ladizhansky, Vladimir, E-mail: vladizha@uoguelph.ca [University of Guelph, Department of Physics (Canada)

    2015-12-15

    Direct proton detection is becoming an increasingly popular method for enhancing sensitivity in solid-state nuclear magnetic resonance spectroscopy. Generally, these experiments require extensive deuteration of the protein, fast magic angle spinning (MAS), or a combination of both. Here, we implement direct proton detection to selectively observe the mobile entities in fully-protonated membrane proteins at moderate MAS frequencies. We demonstrate this method on two proteins that exhibit different motional regimes. Myelin basic protein is an intrinsically-disordered, peripherally membrane-associated protein that is highly flexible, whereas Anabaena sensory rhodopsin is composed of seven rigid transmembrane α-helices connected by mobile loop regions. In both cases, we observe narrow proton linewidths and, on average, a 10× increase in sensitivity in 2D insensitive nuclear enhancement of polarization transfer-based HSQC experiments when proton detection is compared to carbon detection. We further show that our proton-detected experiments can be easily extended to three dimensions and used to build complete amino acid systems, including sidechain protons, and obtain inter-residue correlations. Additionally, we detect signals which do not correspond to amino acids, but rather to lipids and/or carbohydrates which interact strongly with membrane proteins.

  5. Increasing Sucrose Uptake Capacity of Wheat Grains Stimulates Storage Protein Synthesis1[W

    Science.gov (United States)

    Weichert, Nicola; Saalbach, Isolde; Weichert, Heiko; Kohl, Stefan; Erban, Alexander; Kopka, Joachim; Hause, Bettina; Varshney, Alok; Sreenivasulu, Nese; Strickert, Marc; Kumlehn, Jochen; Weschke, Winfriede; Weber, Hans

    2010-01-01

    Increasing grain sink strength by improving assimilate uptake capacity could be a promising approach toward getting higher yield. The barley (Hordeum vulgare) sucrose transporter HvSUT1 (SUT) was expressed under control of the endosperm-specific Hordein B1 promoter (HO). Compared with the wild type, transgenic HOSUT grains take up more sucrose (Suc) in vitro, showing that the transgene is functional. Grain Suc levels are not altered, indicating that Suc fluxes are influenced rather than steady-state levels. HOSUT grains have increased percentages of total nitrogen and prolamins, which is reflected in increased levels of phenylalanine, tyrosine, tryptophan, isoleucine, and leucine at late grain development. Transcript profiling indicates specific stimulation of prolamin gene expression at the onset of storage phase. Changes in gene expression and metabolite levels related to carbon metabolism and amino acid biosynthesis suggest deregulated carbon-nitrogen balance, which together indicate carbon sufficiency and relative depletion of nitrogen. Genes, deregulated together with prolamin genes, might represent candidates, which respond positively to assimilate supply and are related to sugar-starch metabolism, cytokinin and brassinosteroid functions, cell proliferation, and sugar/abscisic acid signaling. Genes showing inverse expression patterns represent potential negative regulators. It is concluded that HvSUT1 overexpression increases grain protein content but also deregulates the metabolic status of wheat (Triticum aestivum) grains, accompanied by up-regulated gene expression of positive and negative regulators related to sugar signaling and assimilate supply. In HOSUT grains, alternating stimulation of positive and negative regulators causes oscillatory patterns of gene expression and highlights the capacity and great flexibility to adjust wheat grain storage metabolism in response to metabolic alterations. PMID:20018590

  6. Absolute nutrient concentration measurements in cell culture media: 1H q-NMR spectra and data to compare the efficiency of pH-controlled protein precipitation versus CPMG or post-processing filtering approaches

    Directory of Open Access Journals (Sweden)

    Luca Goldoni

    2016-09-01

    Full Text Available The NMR spectra and data reported in this article refer to the research article titled “A simple and accurate protocol for absolute polar metabolite quantification in cell cultures using q-NMR” [1]. We provide the 1H q-NMR spectra of cell culture media (DMEM after removal of serum proteins, which show the different efficiency of various precipitating solvents, the solvent/DMEM ratios, and pH of the solution. We compare the data of the absolute nutrient concentrations, measured by PULCON external standard method, before and after precipitation of serum proteins and those obtained using CPMG (Carr-Purcell-Meiboom-Gill sequence or applying post-processing filtering algorithms to remove, from the 1H q-NMR spectra, the proteins signal contribution. For each of these approaches, the percent error in the absolute value of every measurement for all the nutrients is also plotted as accuracy assessment. Keywords: 1H NMR, pH-controlled serum removal, PULCON, Accuracy, CPMG, Deconvolution

  7. Ocatin. A novel tuber storage protein from the andean tuber crop oca with antibacterial and antifungal activities.

    Science.gov (United States)

    Flores, Teresita; Alape-Girón, Alberto; Flores-Díaz, Marietta; Flores, Hector E

    2002-04-01

    The most abundant soluble tuber protein from the Andean crop oca (Oxalis tuberosa Mol.), named ocatin, has been purified and characterized. Ocatin accounts for 40% to 60% of the total soluble oca tuber proteins, has an apparent molecular mass of 18 kD and an isoelectric point of 4.8. This protein appears to be found only in tubers and is accumulated only within the cells of the pith and peridermis layers (peel) of the tuber as it develops. Ocatin inhibits the growth of several phytopathogenic bacteria (Agrobacterium tumefaciens, Agrobacterium radiobacter, Serratia marcescens, and Pseudomonas aureofaciens) and fungi (Phytophthora cinnamomi, Fusarium oxysporum, Rhizoctonia solani, and Nectria hematococcus). Ocatin displays substantial amino acid sequence similarity with a widely distributed group of intracellular pathogenesis-related proteins with a hitherto unknown biological function. Our results showed that ocatin serves as a storage protein, has antimicrobial properties, and belongs to the Betv 1/PR-10/MLP protein family. Our findings suggest that an ancient scaffolding protein was recruited in the oca tuber to serve a storage function and that proteins from the Betv 1/PR-10/MLP family might play a role in natural resistance to pathogens.

  8. Ocatin. A Novel Tuber Storage Protein from the Andean Tuber Crop Oca with Antibacterial and Antifungal Activities1

    Science.gov (United States)

    Flores, Teresita; Alape-Girón, Alberto; Flores-Díaz, Marietta; Flores, Hector E.

    2002-01-01

    The most abundant soluble tuber protein from the Andean crop oca (Oxalis tuberosa Mol.), named ocatin, has been purified and characterized. Ocatin accounts for 40% to 60% of the total soluble oca tuber proteins, has an apparent molecular mass of 18 kD and an isoelectric point of 4.8. This protein appears to be found only in tubers and is accumulated only within the cells of the pith and peridermis layers (peel) of the tuber as it develops. Ocatin inhibits the growth of several phytopathogenic bacteria (Agrobacterium tumefaciens, Agrobacterium radiobacter, Serratia marcescens, and Pseudomonas aureofaciens) and fungi (Phytophthora cinnamomi, Fusarium oxysporum, Rhizoctonia solani, and Nectria hematococcus). Ocatin displays substantial amino acid sequence similarity with a widely distributed group of intracellular pathogenesis-related proteins with a hitherto unknown biological function. Our results showed that ocatin serves as a storage protein, has antimicrobial properties, and belongs to the Betv 1/PR-10/MLP protein family. Our findings suggest that an ancient scaffolding protein was recruited in the oca tuber to serve a storage function and that proteins from the Betv 1/PR-10/MLP family might play a role in natural resistance to pathogens. PMID:11950978

  9. High-Pressure NMR and SAXS Reveals How Capping Modulates Folding Cooperativity of the pp32 Leucine-rich Repeat Protein.

    Science.gov (United States)

    Zhang, Yi; Berghaus, Melanie; Klein, Sean; Jenkins, Kelly; Zhang, Siwen; McCallum, Scott A; Morgan, Joel E; Winter, Roland; Barrick, Doug; Royer, Catherine A

    2018-04-27

    Many repeat proteins contain capping motifs, which serve to shield the hydrophobic core from solvent and maintain structural integrity. While the role of capping motifs in enhancing the stability and structural integrity of repeat proteins is well documented, their contribution to folding cooperativity is not. Here we examined the role of capping motifs in defining the folding cooperativity of the leucine-rich repeat protein, pp32, by monitoring the pressure- and urea-induced unfolding of an N-terminal capping motif (N-cap) deletion mutant, pp32-∆N-cap, and a C-terminal capping motif destabilization mutant pp32-Y131F/D146L, using residue-specific NMR and small-angle X-ray scattering. Destabilization of the C-terminal capping motif resulted in higher cooperativity for the unfolding transition compared to wild-type pp32, as these mutations render the stability of the C-terminus similar to that of the rest of the protein. In contrast, deletion of the N-cap led to strong deviation from two-state unfolding. In both urea- and pressure-induced unfolding, residues in repeats 1-3 of pp32-ΔN-cap lost their native structure first, while the C-terminal half was more stable. The residue-specific free energy changes in all regions of pp32-ΔN-cap were larger in urea compared to high pressure, indicating a less cooperative destabilization by pressure. Moreover, in contrast to complete structural disruption of pp32-ΔN-cap at high urea concentration, its pressure unfolded state remained compact. The contrasting effects of the capping motifs on folding cooperativity arise from the differential local stabilities of pp32, whereas the contrasting effects of pressure and urea on the pp32-ΔN-cap variant arise from their distinct mechanisms of action. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Effects of Storage and Granary Weevil Infestation on Gel Electrophoresis and Protein Solubility Properties of Hard and Soft Wheat Flours.

    Science.gov (United States)

    Keskin, Sule; Yalçin, Erkan; Özkaya, Hazim

    2018-02-24

    The objective of this study was to investigate the effects of storage and granary weevil, Sitophilus granarius (L.; Coleoptera: Curculionidae), infestation on pH, protein solubility (PS) and gel electrophoresis properties of meal and roller-milled flours of hard (Ceyhan-99 cv.) and soft (Eser cv.) wheat cultivars, respectively, after 6 mo of storage. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) technique was applied for studying the electrophoretic properties. Hard and soft wheats were infested with non-sexed S. granarius at a rate of two adults/ kg, and stored for 6 mo at 30 ± 1°C and 70 ± 5% RH. The pest-free wheat samples were used as control. The infested and its control samples were collected monthly, and after cleaning the granary weevils, they were hammer-milled or roller-milled in order to get meal flours and roller-milled flours, respectively. The effect of infestation on the storage proteins was more obvious in meal flours than that of the roller-milled flours. Granary weevil feeding resulted secreting of hydrolyzing enzymes and increased the acidity of flours; subsequently the breaking and releasing of some storage proteins generally caused a decrease in pH and an increase in PS values of the meal flours of wheat cultivars. SDS-PAGE results generally indicated that towards the end of storage, the insect population, that greatly increased, caused minor protein depletions resulting decreasing protein band intensities between 113 and 58 kDa of hard wheat meal flour and 101 and 40 kDa of soft wheat roller-milled flour. Consequently, the potential effect of changes probably occurred in high molecular weight glutenin subunits of both wheat cultivars.

  11. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-{sup 19}F-NMR

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, Elizabeth, E-mail: elizabeth.dickinson@york.ac.uk [University of York, Department of Chemistry (United Kingdom); Arnold, John R. P. [Selby College (United Kingdom); Fisher, Julie [University of Leeds, School of Chemistry (United Kingdom)

    2017-02-15

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using {sup 19}F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  12. Determination of glucose exchange rates and permeability of erythrocyte membrane in preeclampsia and subsequent oxidative stress-related protein damage using dynamic-"1"9F-NMR

    International Nuclear Information System (INIS)

    Dickinson, Elizabeth; Arnold, John R. P.; Fisher, Julie

    2017-01-01

    The cause of the pregnancy condition preeclampsia (PE) is thought to be endothelial dysfunction caused by oxidative stress. As abnormal glucose tolerance has also been associated with PE, we use a fluorinated-mimic of this metabolite to establish whether any oxidative damage to lipids and proteins in the erythrocyte membrane has increased cell membrane permeability. Data were acquired using "1"9F Dynamic-NMR (DNMR) to measure exchange of 3-fluoro-3-deoxyglucose (3-FDG) across the membrane of erythrocytes from 10 pregnant women (5 healthy control women, and 5 from women suffering from PE). Magnetisation transfer was measured using the 1D selective inversion and 2D EXSY pulse sequences, over a range of time delays. Integrated intensities from these experiments were used in matrix diagonalisation to estimate the values of the rate constants of exchange and membrane permeability. No significant differences were observed for the rate of exchange of 3-FDG and membrane permeability between healthy pregnant women and those suffering from PE, leading us to conclude that no oxidative damage had occurred at this carrier-protein site in the membrane.

  13. Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare.

    Science.gov (United States)

    Cabello-Hurtado, Francisco; Keller, Jean; Ley, José; Sanchez-Lucas, Rosa; Jorrín-Novo, Jesús V; Aïnouche, Abdelkader

    2016-06-30

    Lupins have a variety of both traditional and modern uses. In the last decade, reports assessing the benefits of lupin seed proteins have proliferated and, nowadays, the pharmaceutical industry is interested in lupin proteins for human health. Modern genomics and proteomics have hugely contributed to describing the diversity of lupin storage genes and, above all, proteins. Most of these studies have been centered on few edible lupin species. However, Lupinus genus comprises hundreds of species spread throughout the Old and New Worlds, and these resources have been scarcely explored and exploited. We present here a detailed review of the literature on the potential of lupin seed proteins as nutraceuticals, and the use of -omic tools to analyze seed storage polypeptides in main edible lupins and their diversity at the Lupinus inter- and intra-species level. In this sense, proteomics, more than any other, has been a key approach. Proteomics has shown that lupin seed protein diversity, where post-translational modifications yield a large number of peptide variants with a potential concern in bioactivity, goes far beyond gene diversity. The future extended use of second and third generation proteomics should definitely help to go deeper into coverage and characterization of lupin seed proteome. Some important topics concerning storage proteins from lupin seeds are presented and analyzed in an integrated way in this review. Proteomic approaches have been essential in characterizing lupin seed protein diversity, which goes far beyond gene diversity since the protein level adds to the latter differential proteolytic cleavage of conglutin pro-proteins and a diverse array of glycosylation forms and sites. Proteomics has also proved helpful for screening and studying Lupinus germplasm with the future aim of exploiting and improving food production, quality, and nutritional values. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage.

    Science.gov (United States)

    Turgut, Sebahattin Serhat; Işıkçı, Fatma; Soyer, Ayla

    2017-07-01

    Antioxidant effect of pomegranate peel extract (PE) to retard lipid and protein oxidation in beef meatballs was investigated during frozen storage at -18±1°C. Concentrated and freeze dried aqueous extract of pomegranate peel was incorporated into freshly prepared meatball mix at 0.5% and 1.0% concentrations, and compared with 0.01% butylated hydroxytoluene (BHT) and control (without any antioxidant). In PE treated samples, particularly in high PE concentration, peroxide, malondialdehyde and carbonyl formation, loss of total protein solubility and sulfhydryl groups were significantly lower than control after 6months of storage. A diminution of both myofibrillar (MP) and sarcoplasmic (SP) proteins of high molecular weight was detected after 6months of the storage according to gel electrophoresis patterns. The 1.0% PE led to maintain colour intensity (C) and hue (h°) value. The results from sensory analyses revealed that PE addition to meatballs was effective on preventing rancid odour formation. Addition of both 0.5 and 1% PE in meatballs reduced lipid and protein oxidation and improved sensory scores. These results indicated that PE was effective on retarding lipid and protein oxidations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Influence of storage and heating on protein glycation levels of processed lactose-free and regular bovine milk products.

    Science.gov (United States)

    Milkovska-Stamenova, Sanja; Hoffmann, Ralf

    2017-04-15

    Thermal treatment preserves the microbiological safety of milk, but also induces Maillard reactions modifying for example proteins. The purpose of this study was evaluating the influence of consumer behaviors (storage and heating) on protein glycation degrees in bovine milk products. Lactosylation and hexosylation sites were identified in ultra-high temperature (UHT), lactose-free pasteurized, and lactose-free UHT milk (ULF) and infant formula (IF) using tandem mass spectrometry (electron transfer dissociation). Overall, 303 lactosylated and 199 hexosylated peptides were identified corresponding to 170 lactosylation (31 proteins) and 117 hexosylation sites (25 proteins). In quantitative terms, storage increased lactosylation up to fourfold in UHT and IF and hexosylation up to elevenfold in ULF and threefold in IF. These levels increased additionally twofold when the stored samples were heated (40°C). In conclusion, storage and heating appear to influence protein glycation levels in milk at similar or even higher degrees than industrial processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. A modified strategy for sequence specific assignment of protein NMR spectra based on amino acid type selective experiments

    International Nuclear Information System (INIS)

    Schubert, Mario; Labudde, Dirk; Leitner, Dietmar; Oschkinat, Hartmut; Schmieder, Peter

    2005-01-01

    The determination of the three-dimensional structure of a protein or the study of protein-ligand interactions requires the assignment of all relevant nuclei as an initial step. This is nowadays almost exclusively performed using triple-resonance experiments. The conventional strategy utilizes one or more pairs of three dimensional spectra to obtain redundant information and thus reliable assignments. Here, a modified strategy for obtaining sequence specific assignments based on two dimensional amino acid type selective triple-resonance experiments is proposed. These experiments can be recorded with good resolution in a relatively short time. They provide very specific and redundant information, in particular on sequential connectivities, that drastically increases the ease and reliability of the assignment procedure, done either manually or in an automated fashion. The new strategy is demonstrated with the protein domain PB1 from yeast CDC24p

  17. Changes of microbial spoilage, lipid-protein oxidation and physicochemical properties during post mortem refrigerated storage of goat meat.

    Science.gov (United States)

    Sabow, Azad Behnan; Sazili, Awis Qurni; Aghwan, Zeiad Amjad; Zulkifli, Idrus; Goh, Yong Meng; Ab Kadir, Mohd Zainal Abidin; Nakyinsige, Khadijah; Kaka, Ubedullah; Adeyemi, Kazeem Dauda

    2016-06-01

    Examined was the effect of post mortem refrigerated storage on microbial spoilage, lipid-protein oxidation and physicochemical traits of goat meat. Seven Boer bucks were slaughtered, eviscerated and aged for 24 h. The Longissimus lumborum (LL) and Semitendinosus (ST) muscles were excised and subjected to 13 days post mortem refrigerated storage. The pH, lipid and protein oxidation, tenderness, color and drip loss were determined in LL while microbiological analysis was performed on ST. Bacterial counts generally increased with increasing aging time and the limit for fresh meat was reached at day 14 post mortem. Significant differences were observed in malondialdehyde (MDA) content at day 7 of storage. The thiol concentration significantly reduced as aging time increased. The band intensities of myosin heavy chain (MHC) and troponin-T significantly decreased as storage progressed, while actin remained relatively stable. After 14 days of aging, tenderness showed significant improvement while muscle pH and drip loss reduced with increase in storage time. Samples aged for 14 days had higher lightness (P goat meat. © 2016 Japanese Society of Animal Science.

  18. Analysis of local molecular motions of aromatic sidechains in proteins by 2D and 3D fast MAS NMR spectroscopy and quantum mechanical calculations

    Czech Academy of Sciences Publication Activity Database

    Paluch, P.; Pawlak, T.; Jeziorna, A.; Trébosc, J.; Hou, G.; Vega, A. J.; Amoureux, J. P.; Dračínský, Martin; Polenova, T.; Potrzebowski, M. J.

    2015-01-01

    Roč. 17, č. 43 (2015), s. 28789-28801 ISSN 1463-9076 R&D Projects: GA ČR GA15-11223S Institutional support: RVO:61388963 Keywords : solid-state NMR * angle spinning NMR * NMR Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.449, year: 2015 http://pubs.rsc.org/en/content/articlepdf/2015/cp/c5cp04475h

  19. Characterization of the yam tuber storage proteins from Dioscorea batatas exhibiting unique lectin activities.

    Science.gov (United States)

    Gaidamashvili, Mariam; Ohizumi, Yuki; Iijima, Shinichiro; Takayama, Tomo; Ogawa, Tomohisa; Muramoto, Koji

    2004-06-18

    Four major proteins designated DB1, DB2, DB3, and DB4 were isolated and characterized from the yam tuber Dioscorea batatas. The ratios of their yields were 20:50:20:10. DB1 was a mannose-binding lectin (20 kDa) consisting of 10-kDa subunits and was classified as the monocot mannose-binding lectin family. DB2, accounting for 50% of the total protein, was the storage protein, commonly called dioscorins consisting of a 31-kDa subunit. On the basis of amino acid sequence, DB2 was classified to be dioscorin A. DB3 was a maltose-binding lectin, having an apparent molecular mass of 120 kDa and composed of a 66-kDa subunit and two 31-kDa subunits (DB3S). The 66-kDa subunit was further composed of two 31-kDa subunits (DB3L) cross-linked by disulfide bonds. DB3L and DB3S (242 and 241 amino acid residues, respectively) were homologous with each other with 72% sequence identity. They showed a sequence homology to dioscorin B and dioscorin A from Dioscorea alata, with 90 and 93% identity, respectively, and to carbonic anhydrase from Arabidopsis thaliana with about 45% identity. DB3S had one intrachain disulfide bond located at Cys(28)-Cys(187), whereas DB3L had one interchain disulfide bond (Cys(40)-Cys(40)') in addition to the intrachain disulfide bond (Cys(28)-Cys(188)) to form a 66-kDa subunit. DB1 and DB3 agglutinated rabbit erythrocytes at 2.7 and 3.9 microg/ml, respectively. Despite the structural homology between DB2 and DB3, DB2 had no lectin activity. The 66-kDa subunit itself revealed the full hemagglutinating activity of DB3, indicating that DB3L but not DB3S was responsible for the activity. The hemagglutinating activity of DB3 required Ca(2+) ions and was exclusively inhibited by maltose and oligomaltoses (e.g. maltopentaose and maltohexaose) but not by d-glucose. DB3 could not be classified into any known plant lectin family. DB4 was a chitinase, homologous to an acidic chitinase from Dioscorea japonica. DB1, DB2, and DB3 did not show any activity of carbonic

  20. NMR spectroscopy

    International Nuclear Information System (INIS)

    Gruenert, J.

    1989-01-01

    The book reviews the applications of NMR-spectroscopy in medicine and biology. The first chapter of about 40 pages summarizes the history of development and explains the chemical and physical fundamentals of this new and non-invasive method in an easily comprehensible manner. The other chapters summarize diagnostic results obtained with this method in organs and tissues, so that the reader will find a systematic overview of the available findings obtained in the various organ systems. It must be noted, however, that ongoing research work and new insight quite naturally will necessitate corrections to be done, as is the case here with some biochemical interpretations which would need adjustment to latest research results. NMR-spectroscopy is able to measure very fine energy differences on the molecular level, and thus offers insight into metabolic processes, with the advantage that there is no need of applying ionizing radiation in order to qualitatively or quantitatively analyse the metabolic processes in the various organ systems. (orig./DG) With 40 figs., 4 tabs [de

  1. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus) Fruit Peel in Response to Pre-storage Cold Acclimation.

    Science.gov (United States)

    Wang, Bin; Shen, Fei; Zhu, Shijiang

    2017-01-01

    Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA) at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs) right after PsCA treatment and 23 after the following cold storage (PsCA+CS). These proteins are mainly related to stress response and defense (SRD), energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter altered the

  2. Proteomic Analysis of Differentially Accumulated Proteins in Cucumber (Cucumis sativus Fruit Peel in Response to Pre-storage Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2018-01-01

    Full Text Available Harvested fruits are still living organs and respond to environmental stimuli. Low temperature storage is effective in extending life of harvested fruit, but it may also cause chilling injury. Cold acclimation has been shown to induce chilling tolerance in plants, but what proteomic changes caused by cold acclimation are related to defense against chilling stress remains largely unclear. Here, 3 d of pre-storage cold acclimation (PsCA at 10°C reduced chilling injury and secondary disease severity in cucumber stored at 5°C by 51 and 94%, respectively, compared with the control which was directly stored at 5°C. Proteomic analysis of cucumber peel identified 21 significant differentially-accumulated proteins (SDAPs right after PsCA treatment and 23 after the following cold storage (PsCA+CS. These proteins are mainly related to stress response and defense (SRD, energy metabolism, protein metabolism, signal transduction, primary metabolism, and transcription. The SRD proteins, which made up 37% of the 21 and 47% of the 23, respectively, represented the largest class of SDAPs, and all but one protein were up-regulated, suggesting accumulation of proteins involved in defense response is central feature of proteomic profile changes brought about by PsCA. In fruit just after PsCA treatment, the identified SDAPs are related to responses to various stresses, including chilling, salt stress, dehydration, fungi, bacteria, insects, and DNA damage. However, after prolonged cold storage, the targeted proteins in acclimated fruit were narrowed down in scope to those involved in defense against chilling and pathogens. The change patterns at the transcription level of the majority of the up-regulated differentially-accumulated proteins were highly consistent with those at protein level. Taken all, the results suggest that the short-time cold acclimation initiated comprehensive defense responses in cucumber fruit at first, while the long term storage thereafter

  3. Effect of irradiation and soaking in BHT and sodium pyrophosphate on meat proteins and lipids during cold storage

    International Nuclear Information System (INIS)

    Hassan, I.M.; Emam, O.A.

    1988-01-01

    The effect of irradiation treatments up to 10 KGy, soaking in a solution containing 0.5% Na-pyrophosphate and 250 ppm butylated hydroxy toluene (BHT) and a combination of both treatments on the nitrogen content and solubility, protein fractions and lipids stability in beef steaks during cold storage at 4 ± 1°C was followed until the samples were rejected by sensory evaluation. The least effective radiation doses for soluble protein nitrogen (SPN), total soluble nitrogen (TSN) and total nitrogen (TN) were 2, 5 and 10 KGy, respectively. Such effects were proportionally related to the applied dose. The loss in nitrogen compounds and/or their solubility which occurred upon irradiation appeared to be retarded by soaking treatment. Irradiation treatments induced additional protein fraction which seems to be originated from the sarcoplasmic proteins. After the resolution of rigor mortis, the incremental rate of nitrogen extractability was inversely related to the irradiation dose. Another protein fraction was detected only in the 10 KGy irradiated samples after 14 days of cold storage which might be originating from fibrillar proteins as a result of its interaction with some lipid oxidation products. However, soaking treatment itself caused extensive changes in protein fractions, in contrast, protection from radiation and radiation after-effects were observed

  4. Yam storage protein dioscorins from Dioscorea alata and Dioscorea japonica exhibit distinct immunomodulatory activities in mice.

    Science.gov (United States)

    Lin, Pei-Lan; Lin, Kuo-Wei; Weng, Ching-Feng; Lin, Kuo-Chih

    2009-06-10

    The aim of this study was to elucidate the effect of the major storage protein dioscorin isolated from two different yam species, Tainong No. 1 (TN1-dioscorins) and Japanese yam (Dj-dioscorins), on the immune activities of mice. Dj-dioscorins, like TN1-dioscorins, could induce expression of the pro-inflammatory cytokines and stimulate phagocytosis of RAW 264.7. Intraperitoneal injection of the TN1-dioscorins into mice stimulated phagocytosis of bone marrow, spleen, and thymic cells. In contrast, the T and B cells in bone marrow, spleen, and thymus isolated from mice injected with Dj-dioscorins had higher proliferative responses to mitogens. Furthermore, Dj-dioscorins enhanced proliferation of CD4(+), CD8(+), and Tim3(+) (Th1) cells in spleen and CD19(+) cells in both spleen and thymus. Supplement of Dj-dioscorins in the lymphoid cells isolated from Dj-dioscorins primed mice induced cell proliferation of both spleen and thymic cells. These findings indicated that TN1-dioscorins have a higher ability to stimulate the phagocytic activity of the lymphoid cells than Dj-dioscorins, whereas Dj-dioscorins possess more abilities than TN1-dioscorins to enhance the proliferation of the lymphoid cells.

  5. Genetic diversity in radish germplasm for morphological traits and seed storage proteins

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Siddiqui, S.U.; Masood, M.S.; Javaid, A.; Iqbal, M.; Sayal, O.U.

    2011-01-01

    Genetic variation of forty-nine local and exotic radish genotypes including two checks was studied for morphological traits and seed storage protein electrophoresis using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) markers. A high variation in germplasm for root shape, root length, root colour (internal and external), flesh texture and root type was observed. Among these genotypes, the genetic variation was apparent for most of the characters like plant biomass, root weight, leaf length, root length and root diameter that indicated the potential for crop improvement in these traits through simple selection. Exotic germplasm exhibited higher variation for plant biomass, root weight and root length which could be utilized through breeding programme. Cluster analysis on the basis of genetic diversity for seven quantitative traits resulted into four clusters. No clustering was found on the basis of origin. Low level of variance was observed for SDS-PAGE electrophoresis that suggested acquisition of more germplasm. On the basis of high yield and crispy root texture some genotypes (10076, 10362, 10429, 10658, 10662 and 10667) were identified for further testing under wide range of agro-ecological conditions. (author)

  6. Myowater dynamics and protein secondary structural changes as affected by heating rate in three pork qualities: a combined FT-IR microspectroscopic and 1H NMR relaxometry study.

    Science.gov (United States)

    Wu, Zhiyun; Bertram, Hanne Christine; Böcker, Ulrike; Ofstad, Ragni; Kohler, Achim

    2007-05-16

    The objective of this study was to investigate the influence of heating rate on myowater dynamics and protein secondary structures in three pork qualities by proton NMR T2 relaxation and Fourier transform infrared (FT-IR) microspectroscopy measurements. Two oven temperatures at 100 degrees C and 200 degrees C corresponding to slow and fast heating rates were applied on three pork qualities (DFD, PSE, and normal) to an internal center temperature of 65 degrees C. The fast heating induced a higher cooking loss, particularly for PSE meat. The water proton T21 distribution representing water entrapped within the myofibrillar network was influenced by heating rate and meat quality. Fast heating broadened the T21 distribution and decreased the relaxation times of the T21 peak position for three meat qualities. The changes in T21 relaxation times in meat can be interpreted in terms of chemical and diffusive exchange. FT-IR showed that fast heating caused a higher gain of random structures and aggregated beta-sheets at the expense of native alpha-helixes, and these changes dominate the fast-heating-induced broadening of T21 distribution and reduction in T21 times. Furthermore, of the three meat qualities, PSE meat had the broadest T21 distribution and the lowest T21 times for both heating rates, reflecting that the protein aggregation of PSE caused by heating is more extensive than those of DFD and normal, which is consistent with the IR data. The present study demonstrated that the changes in T2 relaxation times of water protons affected by heating rate and raw meat quality are well related to the protein secondary structural changes as probed by FT-IR microspectroscopy.

  7. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    Science.gov (United States)

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  8. NMR in structure-based drug design.

    Science.gov (United States)

    Carneiro, Marta G; Ab, Eiso; Theisgen, Stephan; Siegal, Gregg

    2017-11-08

    NMR spectroscopy is a powerful technique that can provide valuable structural information for drug discovery endeavors. Here, we discuss the strengths (and limitations) of NMR applications to structure-based drug discovery, highlighting the different levels of resolution and throughput obtainable. Additionally, the emerging field of paramagnetic NMR in drug discovery and recent developments in approaches to speed up and automate protein-observed NMR data collection and analysis are discussed. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Synergic Investigation Of The Self-Assembly Structure And Mechanism Of Retroviral Capsid Proteins By Solid State NMR, Transmission Electron Microscopy And Multiscale simulation

    Science.gov (United States)

    2017-03-29

    18], a question naturally arises: if our ssNMR constraints actually impart any meaningful differences to the final model. To answer this question...Mitra at University of Auckland. Xin Qiao, Dr. Chen’s student, presented the ssNMR assignment strategy as a poster presentation titled “Methods

  10. N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway.

    Science.gov (United States)

    Zhang, Hongtao; Gannon, Lucy; Hassall, Kirsty L; Deery, Michael J; Gibbs, Daniel J; Holdsworth, Michael J; van der Hoorn, Renier A L; Lilley, Kathryn S; Theodoulou, Frederica L

    2018-05-01

    The N-end rule pathway of targeted protein degradation is an important regulator of diverse processes in plants but detailed knowledge regarding its influence on the proteome is lacking. To investigate the impact of the Arg/N-end rule pathway on the proteome of etiolated seedlings, we used terminal amine isotopic labelling of substrates with tandem mass tags (TMT-TAILS) for relative quantification of N-terminal peptides in prt6, an Arabidopsis thaliana N-end rule mutant lacking the E3 ligase PROTEOLYSIS6 (PRT6). TMT-TAILS identified over 4000 unique N-terminal peptides representing c. 2000 protein groups. Forty-five protein groups exhibited significantly increased N-terminal peptide abundance in prt6 seedlings, including cruciferins, major seed storage proteins, which were regulated by Group VII Ethylene Response Factor (ERFVII) transcription factors, known substrates of PRT6. Mobilisation of endosperm α-cruciferin was delayed in prt6 seedlings. N-termini of several proteases were downregulated in prt6, including RD21A. RD21A transcript, protein and activity levels were downregulated in a largely ERFVII-dependent manner. By contrast, cathepsin B3 protein and activity were upregulated by ERFVIIs independent of transcript. We propose that the PRT6 branch of the pathway regulates protease activities in a complex manner and optimises storage reserve mobilisation in the transition from seed to seedling via control of ERFVII action. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon.

    Science.gov (United States)

    Soladoye, O P; Shand, P; Dugan, M E R; Gariépy, C; Aalhus, J L; Estévez, M; Juárez, M

    2017-09-01

    This study aimed to examine the influence of cooking methods and pre-determined refrigerated storage days on the production of lipid oxidation (TBARS), protein oxidation (PROTOX) and heterocyclic aromatic amines (HAA) in bacon. Forty-four pork bellies selected from pigs varying in breed, sex and diets to introduce variability in composition were processed as bacon. Sliced-bacon was stored at 4°C either for 2 or 28days and these storage groups were cooked either with microwave or frying pan. Microwave led to significantly higher PROTOX (P0.05) by the cooking methods and storage times. Similarly, the fatty acid composition of pork belly did not significantly influence the production of HAA, TBARS and PROTOX produced in bacon during cooking. Overall, microwave cooking had lesser impact on the production of carcinogenic compounds in bacon with only minor impact on sensory attributes. Copyright © 2017. Published by Elsevier Ltd.

  12. Spectral editing at ultra-fast magic-angle-spinning in solid-state NMR: facilitating protein sequential signal assignment by HIGHLIGHT approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songlin; Matsuda, Isamu; Long, Fei; Ishii, Yoshitaka, E-mail: yishii@uic.edu [University of Illinois at Chicago, Department of Chemistry (United States)

    2016-02-15

    This study demonstrates a novel spectral editing technique for protein solid-state NMR (SSNMR) to simplify the spectrum drastically and to reduce the ambiguity for protein main-chain signal assignments in fast magic-angle-spinning (MAS) conditions at a wide frequency range of 40–80 kHz. The approach termed HIGHLIGHT (Wang et al., in Chem Comm 51:15055–15058, 2015) combines the reverse {sup 13}C, {sup 15}N-isotope labeling strategy and selective signal quenching using the frequency-selective REDOR pulse sequence under fast MAS. The scheme allows one to selectively observe the signals of “highlighted” labeled amino-acid residues that precede or follow unlabeled residues through selectively quenching {sup 13}CO or {sup 15}N signals for a pair of consecutively labeled residues by recoupling {sup 13}CO–{sup 15}N dipolar couplings. Our numerical simulation results showed that the scheme yielded only ∼15 % loss of signals for the highlighted residues while quenching as much as ∼90 % of signals for non-highlighted residues. For lysine-reverse-labeled micro-crystalline GB1 protein, the 2D {sup 15}N/{sup 13}C{sub α} correlation and 2D {sup 13}C{sub α}/{sup 13}CO correlation SSNMR spectra by the HIGHLIGHT approach yielded signals only for six residues following and preceding the unlabeled lysine residues, respectively. The experimental dephasing curves agreed reasonably well with the corresponding simulation results for highlighted and quenched residues at spinning speeds of 40 and 60 kHz. The compatibility of the HIGHLIGHT approach with fast MAS allows for sensitivity enhancement by paramagnetic assisted data collection (PACC) and {sup 1}H detection. We also discuss how the HIGHLIGHT approach facilitates signal assignments using {sup 13}C-detected 3D SSNMR by demonstrating full sequential assignments of lysine-reverse-labeled micro-crystalline GB1 protein (∼300 nmol), for which data collection required only 11 h. The HIGHLIGHT approach offers valuable

  13. Hepatitis B virus X protein (HBx)-induced abnormalities of nucleic acid metabolism revealed by (1)H-NMR-based metabonomics.

    Science.gov (United States)

    Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping

    2016-04-14

    Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.

  14. NMR experiments for resonance assignments of 13C, 15N doubly-labeled flexible polypeptides: Application to the human prion protein hPrP(23-230)

    International Nuclear Information System (INIS)

    Liu Aizhuo; Riek, Roland; Wider, Gerhard; Schroetter, Christine von; Zahn, Ralph; Wuethrich, Kurt

    2000-01-01

    A combination of three heteronuclear three-dimensional NMR experiments tailored for sequential resonance assignments in uniformly 15 N, 13 C-labeled flexible polypeptide chains is described. The 3D (H)N(CO-TOCSY)NH, 3D (H)CA(CO-TOCSY)NH and 3D (H)CBCA(CO-TOCSY)NH schemes make use of the favorable 15 N chemical shift dispersion in unfolded polypeptides, exploit the slow transverse 15 N relaxation rates of unfolded polypeptides in high resolution constant-time [ 1 H, 15 N]-correlation experiments, and use carbonyl carbon homonuclear isotropic mixing to transfer magnetization sequentially along the amino acid sequence. Practical applications are demonstrated with the 100-residue flexible tail of the recombinant human prion protein, making use of spectral resolution up to 0.6 Hz in the 15 N dimension, simultaneous correlation with the two adjacent amino acid residues to overcome problems associated with spectral overlap, and the potential of the presently described experiments to establish nearest-neighbor correlations across proline residues in the amino acid sequence

  15. Efficacy of various protein-based coating on enhancing the shelf life of fresh eggs during storage.

    Science.gov (United States)

    Caner, Cengiz; Yüceer, Muhammed

    2015-07-01

    The effectiveness of various coatings (whey protein isolate [WPI], whey protein concentrate [WPC], zein, and shellac) on functional properties, interior quality, and eggshell breaking strength of fresh eggs were evaluated during storage at 24 °: C for 6 weeks. Coatings and storage time had significant effects on Haugh unit, yolk index, albumen pH, dry matter (DMA), relative whipping capacity (RWC), and albumen viscosity. Uncoated eggs had higher albumen pH (9.56) and weight loss, and lower albumen viscosity (5.73), Haugh unit (HU), and yolk index (YI) during storage. Among the coated eggs, the shellac and zein coated eggs had the highest value of albumen viscosity (27.26 to 26.90), HU (74.10 to 73.61), and YI (44.84 to 44.63) after storage. Shellac (1.44%) was more effective in preventing weight loss than WPC (4.59%), WPI (4.60%), and zein (2.13%) coatings. Uncoated eggs had the higest value (6.71%) of weight lost. All coatings increased shell strength (5.18 to 5.73 for top and 3.58 to 4.71 for bottom) significantly (P eggs (4.70 for top and 3.15 for bottom). The functional properties such as albumen DMA (14.50 to 16.66 and 18.97 for uncoated) and albumen RWC (841 to 891 and 475 for uncoated) of fresh eggs can be preserved during storage when they are coated. The shellac and zein coatings were more effective for maintaining the internal quality of fresh eggs during storage. Fourier transform near infrared (FT-NIR) in the 800 to 2500 nm reflection spectra were used to quantify the contents of the fresh eggs at the end of storage. Eggs coated with shellac or zein displayed a higher absorbance at 970 and 1,197 nm respectively (OH vibration of water) compared with those coated with WPI or WPC and the uncoated group at the end of storage. The coatings improved functional properties and also shell strength and could be a viable alternative technology for maintaining the internal quality of eggs during long-term storage. This study highlights the promising use of

  16. Advanced NMR technology for bioscience and biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, P.C.; Hernandez, G.; Trewhella, J.; Unkefer, C.J. [Los Alamos National Lab., NM (US); Boumenthal, D.K. [Univ. of Utah, Salt Lake City, UT (US); Kennedy, M.A. [Pacific Northwest National Lab., Richland, WA (US); Moore, G.J. [Wayne State Univ., Detroit, MI (US)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). NMR plays critical roles in bioscience and biotechnology in both imaging and structure determination. NMR is limited, however, by the inherent low sensitivity of the NMR experiment and the demands for spectral resolution required to study biomolecules. The authors addressed both of these issues by working on the development of NMR force microscopy for molecular imaging, and high field NMR with isotope labeling to overcome limitations in the size of biomolecules that can be studied using NMR. A novel rf coil design for NMR force microscopy was developed that increases the limits of sensitivity in magnetic resonance detection for imaging, and the authors demonstrated sub-surface spatial imaging capabilities. The authors also made advances in the miniaturization of two critical NMR force microscope components. They completed high field NMR and isotope labeling studies of a muscle protein complex which is responsible for regulating muscle contraction and is too large for study using conventional NMR approaches.

  17. Application of high resolution NMR, ESR, and gamma-ray scintillation spectroscopy to the study of ligand binding in proteins

    International Nuclear Information System (INIS)

    Lancione, G.V.

    1982-01-01

    Electron spin resonance spectroscopy has been employed to study the nature of the ligand binding site of alpha-1-antitrypsin. Spectra of spin-labeled alpha-1-antitrypsin were recorded at pH's ranging from 2.4 to 12.5. This data demonstrates the tight binding of the spin-label to the protease, and the sensitivity of the bound spin-label to informational changes in the protease inhibitor. A molecular dipstick approach has also been applied to this system and has yielded information on the geometry of the cleft accommodating the spin-label. 160 Terbium(III) exchange experiments have been performed on the acetylcholine receptor protein isolated from Torpedo californica, employing a specially designed flow dialysis apparatus constructed in the laboratory. The apparatus is designed to allow continuous monitoring of 160 Tb(III) gamma-ray emission from the protein compartment of the flow dialysis cell. Nicotinic ligand-induced displacement of 160 Tb(III) from the nicotinic binding site of the receptor was monitored as a funtion of (1) the concentration of nicotinic ligand in the washout buffer, and (2) the nature of the nicotinic ligand in the buffer. Measured 160 Tb(III) exchange half-lives indicate (1) a direct relationship between 160 Tb(III) displacement and nicotinic ligand concentration in the wash-out buffer, and (2) an enhanced 160 Tb(III) displacement for nicotinic agents possessing quaternary ammonium functions

  18. NMR in clinical practice

    International Nuclear Information System (INIS)

    Smith, F.W.

    1987-01-01

    The development of NMR for clinical use has been complicated by a number of controversies, the largest of these being the question of what is the optimum field strength for proton imaging. Many workers believe that diagnostically useful images can only be produced at high field strength (i.e. 0.5 - 2.0 T), where in fact diagnostically useful images are made using field strengths of as low as 0.02 T. Because the method is more complex than X-ray CT, which relies on the measurement of only one parameter, tissue density, many new users have difficulty in selecting the correct imaging pulse sequence to provide the most useful image for diagnosis. NMR imaging pulse sequence may be selected to produce images of the proton density, T/sub 1/ or T/sub 2/ signals, or combinations of them. When this facility is used, images which are T/sub 1/ or T/sub 2/ weighted can be selected. Inversion-recovery sequences are more appropriate for imaging the abdomen where by selecting a short TR interval the signal from subcutaneous fat, which is the major cause of image artefact in abdominal imaging, is suppressed thereby improving image quality. The use of surface receiver coils, which are applied closely to the area of the body being examined is becoming more widespread and is of particular value when examining the orbits, facial structures, neck, breast, spine and limbs. The use of these coils together with a discussion of patient selection for NMR imaging, image interpretation and data storage follow

  19. Biophysical evaluation of aminoclay as an effective protectant for protein stabilization during freeze-drying and storage

    Directory of Open Access Journals (Sweden)

    Song JG

    2016-12-01

    Full Text Available Jae Geun Song, Sang Hoon Lee, Hyo-Kyung Han College of Pharmacy, Dongguk University, Goyang, South Korea Abstract: This study aimed to evaluate aminoclay (3-aminopropyl-functionalized magnesium phyllosilicate as an effective protectant for the stabilization of protein formulation in freeze-drying. Bovine serum albumin (BSA, as a model protein, was freeze-dried with aminoclay at various concentrations, and the effects of aminoclay on the structural stability of proteins were compared with those of the conventional stabilizers. The structural characteristics of the protein were determined by size exclusion chromatography (SEC, circular dichroism (CD, and Fourier transform infrared (FTIR spectroscopy. Furthermore, physicochemical and morphological characteristics were examined by X-ray powder diffraction (XRPD, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. XRPD and DSC patterns indicated that the glass transition temperature (Tg of the amorphous formulation of aminoclay mixed with proteins was gradually elevated as the concentration of aminoclay increased. FTIR and CD spectral analysis suggested that the protein structure was well maintained with aminoclay during the freeze-drying process and 3 months of storage at 4°C and 40°C. Furthermore, aminoclay conferred the greatest protection against aggregation and retained the monomer content of BSA even at a high temperature. The morphological characteristics of lyophilized proteins were also well conserved during the storage with aminoclay. These results suggested that aminoclay may be useful as an alternative stabilizer for maintaining the structural stability of protein formulations. Keywords: aminoclay, cryoprotectant, lyoprotectant, freeze-drying, protein, stability

  20. A functional genomics approach to understand the control and regulation of storage protein biosynthesis in barley grain

    DEFF Research Database (Denmark)

    Vincze, É; Hansen, M; Bowra, S

    2008-01-01

    assembled in our laboratory. To identify coregulated genes, a distance matrix was constructed and we identified three clusters corresponding to the early, middle and late seed development. The gene expression pattern associated with the clusters was investigated using pathway specific analysis with specific......The aim of the study was to obtain an insight into amino acid and storage protein metabolism in the developing barley grain at the molecular level. Our strategy was to analyse the transcriptome of relevant pathways in developing grains of field grown barley using a grain specific microarray...... pathways in th