WorldWideScience

Sample records for protein mutation matrices

  1. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.

    Science.gov (United States)

    Tan, Yen Hock; Huang, He; Kihara, Daisuke

    2006-08-15

    Aligning distantly related protein sequences is a long-standing problem in bioinformatics, and a key for successful protein structure prediction. Its importance is increasing recently in the context of structural genomics projects because more and more experimentally solved structures are available as templates for protein structure modeling. Toward this end, recent structure prediction methods employ profile-profile alignments, and various ways of aligning two profiles have been developed. More fundamentally, a better amino acid similarity matrix can improve a profile itself; thereby resulting in more accurate profile-profile alignments. Here we have developed novel amino acid similarity matrices from knowledge-based amino acid contact potentials. Contact potentials are used because the contact propensity to the other amino acids would be one of the most conserved features of each position of a protein structure. The derived amino acid similarity matrices are tested on benchmark alignments at three different levels, namely, the family, the superfamily, and the fold level. Compared to BLOSUM45 and the other existing matrices, the contact potential-based matrices perform comparably in the family level alignments, but clearly outperform in the fold level alignments. The contact potential-based matrices perform even better when suboptimal alignments are considered. Comparing the matrices themselves with each other revealed that the contact potential-based matrices are very different from BLOSUM45 and the other matrices, indicating that they are located in a different basin in the amino acid similarity matrix space.

  2. Von Willebrand protein binds to extracellular matrices independently of collagen.

    OpenAIRE

    Wagner, D D; Urban-Pickering, M; Marder, V J

    1984-01-01

    Von Willebrand protein is present in the extracellular matrix of endothelial cells where it codistributes with fibronectin and types IV and V collagen. Bacterial collagenase digestion of endothelial cells removed fibrillar collagen, but the pattern of fibronectin and of von Willebrand protein remained undisturbed. Exogenous von Willebrand protein bound to matrices of different cells, whether rich or poor in collagen. von Willebrand protein also decorated the matrix of cells grown in the prese...

  3. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  4. Evolution favors protein mutational robustness in sufficiently large populations

    Directory of Open Access Journals (Sweden)

    Venturelli Ophelia S

    2007-07-01

    Full Text Available Abstract Background An important question is whether evolution favors properties such as mutational robustness or evolvability that do not directly benefit any individual, but can influence the course of future evolution. Functionally similar proteins can differ substantially in their robustness to mutations and capacity to evolve new functions, but it has remained unclear whether any of these differences might be due to evolutionary selection for these properties. Results Here we use laboratory experiments to demonstrate that evolution favors protein mutational robustness if the evolving population is sufficiently large. We neutrally evolve cytochrome P450 proteins under identical selection pressures and mutation rates in populations of different sizes, and show that proteins from the larger and thus more polymorphic population tend towards higher mutational robustness. Proteins from the larger population also evolve greater stability, a biophysical property that is known to enhance both mutational robustness and evolvability. The excess mutational robustness and stability is well described by mathematical theory, and can be quantitatively related to the way that the proteins occupy their neutral network. Conclusion Our work is the first experimental demonstration of the general tendency of evolution to favor mutational robustness and protein stability in highly polymorphic populations. We suggest that this phenomenon could contribute to the mutational robustness and evolvability of viruses and bacteria that exist in large populations.

  5. Defective Proteasome Delivery of Polyubiquitinated Proteins by Ubiquilin-2 Proteins Containing ALS Mutations.

    Directory of Open Access Journals (Sweden)

    Lydia Chang

    Full Text Available Ubiquilin proteins facilitate delivery of ubiquitinated proteins to the proteasome for degradation. Interest in the proteins has been heightened by the discovery that gene mutations in UBQLN2 cause dominant inheritance of amyotrophic lateral sclerosis (ALS. However, the mechanisms by which the mutations cause ALS are not known. Here we report on the underlying defect of ubiquilin-2 proteins containing ALS-linked mutations in affecting proteasome-mediated degradation. We found that overexpression of ubiquilin-2 proteins containing any one of five different ALS mutations slow degradation of Myc, a prototypic proteasome substrate. Examination of coprecipitating proteins indicated that the mutant proteins are generally capable of binding polyubiquitinated proteins, but defective in binding the proteasome. GST-pulldown studies revealed that many of the mutants bind weaker to the S5a subunit of the proteasome, compared with wild type (WT ubiquilin-2 protein. The results suggest the mutant proteins are unable to deliver their captured cargo to the proteasome for degradation, which presumably leads to toxicity. Quantification of cell death is consistent with this idea. Measurement of protein turnover further indicated the mutant proteins have longer half-lives than WT ubiquilin-2. Our studies provide novel insight into the mechanism by which ALS-linked mutations in UBQLN2 interfere with protein degradation.

  6. Amino acid size, charge, hydropathy indices and matrices for protein structure analysis

    Directory of Open Access Journals (Sweden)

    Biro JC

    2006-03-01

    Full Text Available Abstract Background Prediction of protein folding and specific interactions from only the sequence (ab initio is a major challenge in bioinformatics. It is believed that such prediction will prove possible if Anfinsen's thermodynamic principle is correct for all kinds of proteins, and all the information necessary to form a concrete 3D structure is indeed present in the sequence. Results We indexed the 200 possible amino acid pairs for their compatibility regarding the three major physicochemical properties – size, charge and hydrophobicity – and constructed Size, Charge and Hydropathy Compatibility Indices and Matrices (SCI & SCM, CCI & CCM, and HCI & HCM. Each index characterized the expected strength of interaction (compatibility of two amino acids by numbers from 1 (not compatible to 20 (highly compatible. We found statistically significant positive correlations between these indices and the propensity for amino acid co-locations in real protein structures (a sample containing total 34630 co-locations in 80 different protein structures: for HCI: p We tried to predict or reconstruct simple 2D representations of 3D structures from the sequence using these matrices by applying a dot plot-like method. The location and pattern of the most compatible subsequences was very similar or identical when the three fundamentally different matrices were used, which indicates the consistency of physicochemical compatibility. However, it was not sufficient to choose one preferred configuration between the many possible predicted options. Conclusion Indexing of amino acids for major physico-chemical properties is a powerful approach to understanding and assisting protein design. However, it is probably insufficient itself for complete ab initio structure prediction.

  7. Isolation and Identification of Proteins Secreted by Cells Cultured within Synthetic Hydrogel-Based Matrices.

    Science.gov (United States)

    Sawicki, Lisa A; Choe, Leila H; Wiley, Katherine L; Lee, Kelvin H; Kloxin, April M

    2018-03-12

    Cells interact with and remodel their microenvironment, degrading large extracellular matrix (ECM) proteins (e.g., fibronectin, collagens) and secreting new ECM proteins and small soluble factors (e.g., growth factors, cytokines). Synthetic mimics of the ECM have been developed as controlled cell culture platforms for use in both fundamental and applied studies. However, how cells broadly remodel these initially well-defined matrices remains poorly understood and difficult to probe. In this work, we have established methods for widely examining both large and small proteins that are secreted by cells within synthetic matrices. Specifically, human mesenchymal stem cells (hMSCs), a model primary cell type, were cultured within well-defined poly(ethylene glycol) (PEG)-peptide hydrogels, and these cell-matrix constructs were decellularized and degraded for subsequent isolation and analysis of deposited proteins. Shotgun proteomics using liquid chromatography and mass spectrometry identified a variety of proteins, including the large ECM proteins fibronectin and collagen VI. Immunostaining and confocal imaging confirmed these results and provided visualization of protein organization within the synthetic matrices. Additionally, culture medium was collected from the encapsulated hMSCs, and a Luminex assay was performed to identify secreted soluble factors, including vascular endothelial growth factor (VEGF), endothelial growth factor (EGF), basic fibroblast growth factor (FGF-2), interleukin 8 (IL-8), and tumor necrosis factor alpha (TNF-α). Together, these methods provide a unique approach for studying dynamic reciprocity between cells and synthetic microenvironments and have the potential to provide new biological insights into cell responses during three-dimensional (3D) controlled cell culture.

  8. Effect of Mutations on HP Lattice Proteins

    Science.gov (United States)

    Shi, Guangjie; Vogel, Thomas; Landau, David; Li, Ying; Wüst, Thomas

    2013-03-01

    Using Wang-Landau sampling with approriate trial moves[2], we investigate the effect of different types of mutations on lattice proteins in the HP model. While exact studies have been carried out for short HP proteins[3], the systems we investigate are of much larger size and hence not accessible for exact enumerations. Based on the estimated density of states, we systematically analyse the changes in structure and degeneracy of ground states of particular proteins and measure thermodynamic quantities like the stability of ground states and the specific heat, for example. Both, neutral mutations, which do not change the structure and stability of ground states, as well as critical mutations, which do change the thermodynamic behavior qualitatively, have been observed. Research supported by NSF

  9. Mutations in plasmalemma vesicle-associated protein cause severe syndromic protein-losing enteropathy.

    Science.gov (United States)

    Broekaert, Ilse Julia; Becker, Kerstin; Gottschalk, Ingo; Körber, Friederike; Dötsch, Jörg; Thiele, Holger; Altmüller, Janine; Nürnberg, Peter; Hünseler, Christoph; Cirak, Sebahattin

    2018-04-16

    Protein-losing enteropathy (PLE) is characterised by gastrointestinal protein leakage due to loss of mucosal integrity or lymphatic abnormalities. PLE can manifest as congenital diarrhoea and should be differentiated from other congenital diarrhoeal disorders. Primary PLEs are genetically heterogeneous and the underlying genetic defects are currently emerging. We report an infant with fatal PLE for whom we aimed to uncover the underlying pathogenic mutation. We performed whole exome sequencing (WES) for the index patient. Variants were classified based on the American College of Medical Genetics and Genomics guidelines. WES results and our detailed clinical description of the patient were compared with the literature. We discovered a novel homozygous stop mutation (c.988C>T, p.Q330*) in the Plasmalemma Vesicle-Associated Protein ( PLVAP ) gene in a newborn with fatal PLE, facial dysmorphism, and renal, ocular and cardiac anomalies. The Q330* mutation is predicted to result in complete loss of PLVAP protein expression leading to deletion of the diaphragms of endothelial fenestrae, resulting in plasma protein extravasation and PLE. Recently, another single homozygous stop mutation in PLVAP causing lethal PLE in an infant was reported. Our findings validate PLVAP mutations as a cause of syndromic PLE. Prenatal anomalies, severe PLE and syndromic features may guide the diagnosis of this rare disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Characterizing protein conformations by correlation analysis of coarse-grained contact matrices

    Science.gov (United States)

    Lindsay, Richard J.; Siess, Jan; Lohry, David P.; McGee, Trevor S.; Ritchie, Jordan S.; Johnson, Quentin R.; Shen, Tongye

    2018-01-01

    We have developed a method to capture the essential conformational dynamics of folded biopolymers using statistical analysis of coarse-grained segment-segment contacts. Previously, the residue-residue contact analysis of simulation trajectories was successfully applied to the detection of conformational switching motions in biomolecular complexes. However, the application to large protein systems (larger than 1000 amino acid residues) is challenging using the description of residue contacts. Also, the residue-based method cannot be used to compare proteins with different sequences. To expand the scope of the method, we have tested several coarse-graining schemes that group a collection of consecutive residues into a segment. The definition of these segments may be derived from structural and sequence information, while the interaction strength of the coarse-grained segment-segment contacts is a function of the residue-residue contacts. We then perform covariance calculations on these coarse-grained contact matrices. We monitored how well the principal components of the contact matrices is preserved using various rendering functions. The new method was demonstrated to assist the reduction of the degrees of freedom for describing the conformation space, and it potentially allows for the analysis of a system that is approximately tenfold larger compared with the corresponding residue contact-based method. This method can also render a family of similar proteins into the same conformational space, and thus can be used to compare the structures of proteins with different sequences.

  11. Pasting and extrusion properties of mixed carbohydrates and whey protein isolate matrices

    Science.gov (United States)

    Mixed systems of whey protein isolate (WPI) or texturized WPI (tWPI) and different starches may form weak or strong gel pastes or rigid matrices depending on interactions. The paste viscoelasticity of starches from amioca, barley, corn starch, Hylon VII, plantain, and pea starch, mixed with whey pro...

  12. Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols.

    Science.gov (United States)

    Li, Minghui; Goncearenco, Alexander; Panchenko, Anna R

    2017-01-01

    In this review we describe a protocol to annotate the effects of missense mutations on proteins, their functions, stability, and binding. For this purpose we present a collection of the most comprehensive databases which store different types of sequencing data on missense mutations, we discuss their relationships, possible intersections, and unique features. Next, we suggest an annotation workflow using the state-of-the art methods and highlight their usability, advantages, and limitations for different cases. Finally, we address a particularly difficult problem of deciphering the molecular mechanisms of mutations on proteins and protein complexes to understand the origins and mechanisms of diseases.

  13. Protein matrices for wound dressings =

    Science.gov (United States)

    Vasconcelos, Andreia Joana Costa

    Fibrous proteins such as silk fibroin (SF), keratin (K) and elastin (EL) are able to mimic the extracellular matrix (ECM) that allows their recognition under physiological conditions. The impressive mechanical properties, the environmental stability, in combination with their biocompatibility and control of morphology, provide an important basis to use these proteins in biomedical applications like protein-based wound dressings. Along time the concept of wound dressings has changed from the traditional dressings such as honey or natural fibres, used just to protect the wound from external factors, to the interactive dressings of the present. Wounds can be classified in acute that heal in the expected time frame, and chronic, which fail to heal because the orderly sequence of events is disrupted at one or more stages of the healing process. Moreover, chronic wound exudates contain high levels of tissue destructive proteolytic enzymes such as human neutrophil elastase (HNE) that need to be controlled for a proper healing. The aim of this work is to exploit the self-assemble properties of silk fibroin, keratin and elastin for the development of new protein materials to be used as wound dressings: i) evaluation of the blending effect on the physical and chemical properties of the materials; ii) development of materials with different morphologies; iii) assessment of the cytocompatibility of the protein matrices; iv) ultimately, study the ability of the developed protein matrices as wound dressings through the use of human chronic wound exudate; v) use of innovative short peptide sequences that allow to target the control of high levels of HNE found on chronic wounds. Chapter III reports the preparation of silk fibroin/keratin (SF/K) blend films by solvent casting evaporation. Two solvent systems, aqueous and acidic, were used for the preparation of films from fibroin and keratin extracted from the respective silk and wool fibres. The effect of solvent system used was

  14. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Directory of Open Access Journals (Sweden)

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  15. The point mutation process in proteins

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    An optimized scoring matrix for residue-by-residue comparisons of distantly related protein sequences has been developed. The scoring matrix is based on observed exchanges and mutabilities of amino acids in 1572 closely related sequences derived from a cross-section of protein groups. Very few superimposed or parallel mutations are included in the data. The scoring matrix is most useful for demonstrating the relatedness of proteins between 65 and 85% different.

  16. SubVis: an interactive R package for exploring the effects of multiple substitution matrices on pairwise sequence alignment

    Directory of Open Access Journals (Sweden)

    Scott Barlowe

    2017-06-01

    Full Text Available Understanding how proteins mutate is critical to solving a host of biological problems. Mutations occur when an amino acid is substituted for another in a protein sequence. The set of likelihoods for amino acid substitutions is stored in a matrix and input to alignment algorithms. The quality of the resulting alignment is used to assess the similarity of two or more sequences and can vary according to assumptions modeled by the substitution matrix. Substitution strategies with minor parameter variations are often grouped together in families. For example, the BLOSUM and PAM matrix families are commonly used because they provide a standard, predefined way of modeling substitutions. However, researchers often do not know if a given matrix family or any individual matrix within a family is the most suitable. Furthermore, predefined matrix families may inaccurately reflect a particular hypothesis that a researcher wishes to model or otherwise result in unsatisfactory alignments. In these cases, the ability to compare the effects of one or more custom matrices may be needed. This laborious process is often performed manually because the ability to simultaneously load multiple matrices and then compare their effects on alignments is not readily available in current software tools. This paper presents SubVis, an interactive R package for loading and applying multiple substitution matrices to pairwise alignments. Users can simultaneously explore alignments resulting from multiple predefined and custom substitution matrices. SubVis utilizes several of the alignment functions found in R, a common language among protein scientists. Functions are tied together with the Shiny platform which allows the modification of input parameters. Information regarding alignment quality and individual amino acid substitutions is displayed with the JavaScript language which provides interactive visualizations for revealing both high-level and low-level alignment

  17. Profiling and quantitative evaluation of three Nickel-Coated magnetic matrices for purification of recombinant proteins: lelpful hints for the optimized nanomagnetisable matrix preparation

    Directory of Open Access Journals (Sweden)

    Zarei Saeed

    2011-08-01

    Full Text Available Abstract Background Several materials are available in the market that work on the principle of protein magnetic fishing by their histidine (His tags. Little information is available on their performance and it is often quoted that greatly improved purification of histidine-tagged proteins from crude extracts could be achieved. While some commercial magnetic matrices could be used successfully for purification of several His-tagged proteins, there are some which have been proved to operate just for a few extent of His-tagged proteins. Here, we address quantitative evaluation of three commercially available Nickel nanomagnetic beads for purification of two His-tagged proteins expressed in Escherichia coli and present helpful hints for optimized purification of such proteins and preparation of nanomagnetisable matrices. Results Marked differences in the performance of nanomagnetic matrices, principally on the basis of their specific binding capacity, recovery profile, the amount of imidazole needed for protein elution and the extent of target protein loss and purity were obtained. Based on the aforesaid criteria, one of these materials featured the best purification results (SiMAG/N-NTA/Nickel for both proteins at the concentration of 4 mg/ml, while the other two (SiMAC-Nickel and SiMAG/CS-NTA/Nickel did not work well with respect to specific binding capacity and recovery profile. Conclusions Taken together, functionality of different types of nanomagnetic matrices vary considerably. This variability may not only be dependent upon the structure and surface chemistry of the matrix which in turn determine the affinity of interaction, but, is also influenced to a lesser extent by the physical properties of the protein itself. Although the results of the present study may not be fully applied for all nanomagnetic matrices, but provide a framework which could be used to profiling and quantitative evaluation of other magnetisable matrices and also

  18. Cancer3D: understanding cancer mutations through protein structures.

    Science.gov (United States)

    Porta-Pardo, Eduard; Hrabe, Thomas; Godzik, Adam

    2015-01-01

    The new era of cancer genomics is providing us with extensive knowledge of mutations and other alterations in cancer. The Cancer3D database at http://www.cancer3d.org gives an open and user-friendly way to analyze cancer missense mutations in the context of structures of proteins in which they are found. The database also helps users analyze the distribution patterns of the mutations as well as their relationship to changes in drug activity through two algorithms: e-Driver and e-Drug. These algorithms use knowledge of modular structure of genes and proteins to separately study each region. This approach allows users to find novel candidate driver regions or drug biomarkers that cannot be found when similar analyses are done on the whole-gene level. The Cancer3D database provides access to the results of such analyses based on data from The Cancer Genome Atlas (TCGA) and the Cancer Cell Line Encyclopedia (CCLE). In addition, it displays mutations from over 14,700 proteins mapped to more than 24,300 structures from PDB. This helps users visualize the distribution of mutations and identify novel three-dimensional patterns in their distribution. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    Science.gov (United States)

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein

  20. MutHTP: Mutations in Human Transmembrane Proteins.

    Science.gov (United States)

    A, Kulandaisamy; S, Binny Priya; R, Sakthivel; Tarnovskaya, Svetlana; Bizin, Ilya; Hönigschmid, Peter; Frishman, Dmitrij; Gromiha, M Michael

    2018-02-01

    We have developed a novel database, MutHTP, which contains information on 183395 disease-associated and 17827 neutral mutations in human transmembrane proteins. For each mutation site MutHTP provides a description of its location with respect to the membrane protein topology, structural environment (if available) and functional features. Comprehensive visualization, search, display and download options are available. The database is publicly available at http://www.iitm.ac.in/bioinfo/MutHTP/. The website is implemented using HTML, PHP and javascript and supports recent versions of all major browsers, such as Firefox, Chrome and Opera. gromiha@iitm.ac.in. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Mutation choice to eliminate buried free cysteines in protein therapeutics.

    Science.gov (United States)

    Xia, Xue; Longo, Liam M; Blaber, Michael

    2015-02-01

    Buried free-cysteine (Cys) residues can contribute to an irreversible unfolding pathway that promotes protein aggregation, increases immunogenic potential, and significantly reduces protein functional half-life. Consequently, mutation of buried free-Cys residues can result in significant improvement in the storage, reconstitution, and pharmacokinetic properties of protein-based therapeutics. Mutational design to eliminate buried free-Cys residues typically follows one of two common heuristics: either substitution by Ser (polar and isosteric), or substitution by Ala or Val (hydrophobic); however, a detailed structural and thermodynamic understanding of Cys mutations is lacking. We report a comprehensive structure and stability study of Ala, Ser, Thr, and Val mutations at each of the three buried free-Cys positions (Cys16, Cys83, and Cys117) in fibroblast growth factor-1. Mutation was almost universally destabilizing, indicating a general optimization for the wild-type Cys, including van der Waals and H-bond interactions. Structural response to Cys mutation characteristically involved changes to maintain, or effectively substitute, local H-bond interactions-by either structural collapse to accommodate the smaller oxygen radius of Ser/Thr, or conversely, expansion to enable inclusion of novel H-bonding solvent. Despite the diverse structural effects, the least destabilizing average substitution at each position was Ala, and not isosteric Ser. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  2. Suitability of two-dimensional electrophoretic protein separations for quantitative detection of mutations

    International Nuclear Information System (INIS)

    Taylor, J.; Anderson, N.L.; Anderson, N.G.; Gemmell, A.; Giometti, C.S.; Nance, S.L.; Tollaksen, S.L.

    1986-01-01

    Separation of proteins by two-dimensional electrophoresis (2DE) provides a powerful method for mutagenesis studies, since hundreds of proteins can be monitored simultaneously. In previous mutation studies in which 2DE has been used, only qualitative protein differences were monitored; quantitative protein variations were not evaluated. Although significant differences in protein abundance can be detected by eye, the large number of protein spots present in 2DE patterns together with the large number of individual patterns required for a mutagenesis study would necessitate the use of a computerized analysis system to detect the rare quantitative protein changes indicative of gene deletions or inactivation of genes by point mutations in regulatory genes. A pilot study to search for heritable mutations induced by treatment of mice with either ethylnitrosourea or gamma radiation is underway. Samples are being monitored for quantitative changes that reduce the amount of protein by about 50%. The results of this study indicate that the key methods to improve the application of 2DE to mutation screening are to increase the number of measurable spots (i.e., improve stain sensitivity) and to decrease the spread of values for the volume measurements. Even small improvements in these areas could greatly increase the number of monitorable spots. 9 refs., 4 figs

  3. Biomimetic mineralization of recombinant collagen type I derived protein to obtain hybrid matrices for bone regeneration.

    Science.gov (United States)

    Ramírez-Rodríguez, Gloria Belén; Delgado-López, José Manuel; Iafisco, Michele; Montesi, Monica; Sandri, Monica; Sprio, Simone; Tampieri, Anna

    2016-11-01

    Understanding the mineralization mechanism of synthetic protein has recently aroused great interest especially in the development of advanced materials for bone regeneration. Herein, we propose the synthesis of composite materials through the mineralization of a recombinant collagen type I derived protein (RCP) enriched with RGD sequences in the presence of magnesium ions (Mg) to closer mimic bone composition. The role of both RCP and Mg ions in controlling the precipitation of the mineral phase is in depth evaluated. TEM and X-ray powder diffraction reveal the crystallization of nanocrystalline apatite (Ap) in all the evaluated conditions. However, Raman spectra point out also the precipitation of amorphous calcium phosphate (ACP). This amorphous phase is more evident when RCP and Mg are at work, indicating the synergistic role of both in stabilizing the amorphous precursor. In addition, hybrid matrices are prepared to tentatively address their effectiveness as scaffolds for bone tissue engineering. SEM and AFM imaging show an homogeneous mineral distribution on the RCP matrix mineralized in presence of Mg, which provides a surface roughness similar to that found in bone. Preliminary in vitro tests with pre-osteoblast cell line show good cell-material interaction on the matrices prepared in the presence of Mg. To the best of our knowledge this work represents the first attempt to mineralize recombinant collagen type I derived protein proving the simultaneous effect of the organic phase (RCP) and Mg on ACP stabilization. This study opens the possibility to engineer, through biomineralization process, advanced hybrid matrices for bone regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Monitoring the progression of calcium and protein solubilisation as affected by calcium chelators during small-scale manufacture of casein-based food matrices.

    Science.gov (United States)

    McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores

    2017-12-15

    Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. ALS Associated Mutations in Matrin 3 Alter Protein-Protein Interactions and Impede mRNA Nuclear Export.

    Science.gov (United States)

    Boehringer, Ashley; Garcia-Mansfield, Krystine; Singh, Gurkaran; Bakkar, Nadine; Pirrotte, Patrick; Bowser, Robert

    2017-11-06

    Mutations in Matrin 3 have recently been linked to ALS, though the mechanism that induces disease in these patients is unknown. To define the protein interactome of wild-type and ALS-linked MATR3 mutations, we performed immunoprecipitation followed by mass spectrometry using NSC-34 cells expressing human wild-type or mutant Matrin 3. Gene ontology analysis identified a novel role for Matrin 3 in mRNA transport centered on proteins in the TRanscription and EXport (TREX) complex, known to function in mRNA biogenesis and nuclear export. ALS-linked mutations in Matrin 3 led to its re-distribution within the nucleus, decreased co-localization with endogenous Matrin 3 and increased co-localization with specific TREX components. Expression of disease-causing Matrin 3 mutations led to nuclear mRNA export defects of both global mRNA and more specifically the mRNA of TDP-43 and FUS. Our findings identify a potential pathogenic mechanism attributable to MATR3 mutations and further link cellular transport defects to ALS.

  6. Predicting protein folding rate change upon point mutation using residue-level coevolutionary information.

    Science.gov (United States)

    Mallik, Saurav; Das, Smita; Kundu, Sudip

    2016-01-01

    Change in folding kinetics of globular proteins upon point mutation is crucial to a wide spectrum of biological research, such as protein misfolding, toxicity, and aggregations. Here we seek to address whether residue-level coevolutionary information of globular proteins can be informative to folding rate changes upon point mutations. Generating residue-level coevolutionary networks of globular proteins, we analyze three parameters: relative coevolution order (rCEO), network density (ND), and characteristic path length (CPL). A point mutation is considered to be equivalent to a node deletion of this network and respective percentage changes in rCEO, ND, CPL are found linearly correlated (0.84, 0.73, and -0.61, respectively) with experimental folding rate changes. The three parameters predict the folding rate change upon a point mutation with 0.031, 0.045, and 0.059 standard errors, respectively. © 2015 Wiley Periodicals, Inc.

  7. Deriving a Mutation Index of Carcinogenicity Using Protein Structure and Protein Interfaces

    Science.gov (United States)

    Hakas, Jarle; Pearl, Frances; Zvelebil, Marketa

    2014-01-01

    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/. PMID:24454733

  8. Statistical theory of neutral protein evolution by random site mutations

    Indian Academy of Sciences (India)

    Administrator

    Understanding the features of the protein conformational space represents a key component to characterize ... Neutral evolution; protein design; mutations; foldability criteria. 1. Introduction ... analysis of the vast evolutionary landscape is re- ... intra-molecular interactions in the protein which may not be ... This is the main in-.

  9. Fabrication of Aligned Carbon Nanotube/Polycaprolactone/Gelatin Nanofibrous Matrices for Schwann Cell Immobilization

    Directory of Open Access Journals (Sweden)

    Shiao-Wen Tsai

    2014-01-01

    Full Text Available In this study, we utilized a mandrel rotating collector consisting of two parallel, electrically conductive pieces of tape to fabricate aligned electrospun polycaprolactone/gelatin (PG and carbon nanotube/polycaprolactone/gelatin (PGC nanofibrous matrices. Furthermore, we examined the biological performance of the PGC nanofibrous and film matrices using an in vitro culture of RT4-D6P2T rat Schwann cells. Using cell adhesion tests, we found that carbon nanotube inhibited Schwann cell attachment on PGC nanofibrous and film matrices. However, the proliferation rates of Schwann cells were higher when they were immobilized on PGC nanofibrous matrices compared to PGC film matrices. Using western blot analysis, we found that NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PG nanofibrous matrices. However, the carbon nanotube inhibited NRG1 and P0 protein expression in cells immobilized on PGC film matrices. Moreover, the NRG1 and P0 protein expression levels were higher for cells immobilized on PGC nanofibrous matrices compared to PGC film matrices. We found that the matrix topography and composition influenced Schwann cell behavior.

  10. Hereditary thrombophilia: identification of nonsense and missense mutations in the protein C gene

    International Nuclear Information System (INIS)

    Romeo, G.; Hassan, H.J.; Staempfli, S.

    1987-01-01

    The structure of the gene for protein C, an anticoagulant serine protease, was analyzed in 29 unrelated patients with hereditary thrombophilia and protein C deficiency. Gene deletion(s) or gross rearrangement(s) was not demonstrable by Southern blot hybridization to cDNA probes. However, two unrelated patients showed a variant restriction pattern after Pvu II or BamHi digestion, due to mutations in the last exon: analysis of their pedigrees, including three or seven heterozygotes, respectively, with ∼50% reduction of both enzymatic and antigen level, showed the abnormal restriction pattern in all heterozygous individuals, but not in normal relatives. Cloning of protein C gene and sequencing of the last exon allowed the authors to identify a nonsense and a missense mutation, respectively. In the first case, codon 306 (CGA, arginine) is mutated to an inframe stop codon, thus generating a new Pvu II recognition site. In the second case, a missense mutation in the BamHI palindrome (GGATCC → GCATCC) leads to substitution of a key amino acid (a tryptophan to cysteine substitution at position 402), invariantly conserved in eukaryotic serine proteases. These point mutations may explain the protein C-deficiency phenotype of heterozygotes in the two pedigrees

  11. Mutations in POGLUT1, Encoding Protein O-Glucosyltransferase 1, Cause Autosomal-Dominant Dowling-Degos Disease

    Science.gov (United States)

    Basmanav, F. Buket; Oprisoreanu, Ana-Maria; Pasternack, Sandra M.; Thiele, Holger; Fritz, Günter; Wenzel, Jörg; Größer, Leopold; Wehner, Maria; Wolf, Sabrina; Fagerberg, Christina; Bygum, Anette; Altmüller, Janine; Rütten, Arno; Parmentier, Laurent; El Shabrawi-Caelen, Laila; Hafner, Christian; Nürnberg, Peter; Kruse, Roland; Schoch, Susanne; Hanneken, Sandra; Betz, Regina C.

    2014-01-01

    Dowling-Degos disease (DDD) is an autosomal-dominant genodermatosis characterized by progressive and disfiguring reticulate hyperpigmentation. We previously identified loss-of-function mutations in KRT5 but were only able to detect pathogenic mutations in fewer than half of our subjects. To identify additional causes of DDD, we performed exome sequencing in five unrelated affected individuals without mutations in KRT5. Data analysis identified three heterozygous mutations from these individuals, all within the same gene. These mutations, namely c.11G>A (p.Trp4∗), c.652C>T (p.Arg218∗), and c.798-2A>C, are within POGLUT1, which encodes protein O-glucosyltransferase 1. Further screening of unexplained cases for POGLUT1 identified six additional mutations, as well as two of the above described mutations. Immunohistochemistry of skin biopsies of affected individuals with POGLUT1 mutations showed significantly weaker POGLUT1 staining in comparison to healthy controls with strong localization of POGLUT1 in the upper parts of the epidermis. Immunoblot analysis revealed that translation of either wild-type (WT) POGLUT1 or of the protein carrying the p.Arg279Trp substitution led to the expected size of about 50 kDa, whereas the c.652C>T (p.Arg218∗) mutation led to translation of a truncated protein of about 30 kDa. Immunofluorescence analysis identified a colocalization of the WT protein with the endoplasmic reticulum and a notable aggregating pattern for the truncated protein. Recently, mutations in POFUT1, which encodes protein O-fucosyltransferase 1, were also reported to be responsible for DDD. Interestingly, both POGLUT1 and POFUT1 are essential regulators of Notch activity. Our results furthermore emphasize the important role of the Notch pathway in pigmentation and keratinocyte morphology. PMID:24387993

  12. Missense mutation Lys18Asn in dystrophin that triggers X-linked dilated cardiomyopathy decreases protein stability, increases protein unfolding, and perturbs protein structure, but does not affect protein function.

    Directory of Open Access Journals (Sweden)

    Surinder M Singh

    Full Text Available Genetic mutations in a vital muscle protein dystrophin trigger X-linked dilated cardiomyopathy (XLDCM. However, disease mechanisms at the fundamental protein level are not understood. Such molecular knowledge is essential for developing therapies for XLDCM. Our main objective is to understand the effect of disease-causing mutations on the structure and function of dystrophin. This study is on a missense mutation K18N. The K18N mutation occurs in the N-terminal actin binding domain (N-ABD. We created and expressed the wild-type (WT N-ABD and its K18N mutant, and purified to homogeneity. Reversible folding experiments demonstrated that both mutant and WT did not aggregate upon refolding. Mutation did not affect the protein's overall secondary structure, as indicated by no changes in circular dichroism of the protein. However, the mutant is thermodynamically less stable than the WT (denaturant melts, and unfolds faster than the WT (stopped-flow kinetics. Despite having global secondary structure similar to that of the WT, mutant showed significant local structural changes at many amino acids when compared with the WT (heteronuclear NMR experiments. These structural changes indicate that the effect of mutation is propagated over long distances in the protein structure. Contrary to these structural and stability changes, the mutant had no significant effect on the actin-binding function as evident from co-sedimentation and depolymerization assays. These results summarize that the K18N mutation decreases thermodynamic stability, accelerates unfolding, perturbs protein structure, but does not affect the function. Therefore, K18N is a stability defect rather than a functional defect. Decrease in stability and increase in unfolding decrease the net population of dystrophin molecules available for function, which might trigger XLDCM. Consistently, XLDCM patients have decreased levels of dystrophin in cardiac muscle.

  13. Novel C16orf57 mutations in patients with Poikiloderma with Neutropenia: bioinformatic analysis of the protein and predicted effects of all reported mutations

    Directory of Open Access Journals (Sweden)

    Colombo Elisa A

    2012-01-01

    Full Text Available Abstract Background Poikiloderma with Neutropenia (PN is a rare autosomal recessive genodermatosis caused by C16orf57 mutations. To date 17 mutations have been identified in 31 PN patients. Results We characterize six PN patients expanding the clinical phenotype of the syndrome and the mutational repertoire of the gene. We detect the two novel C16orf57 mutations, c.232C>T and c.265+2T>G, as well as the already reported c.179delC, c.531delA and c.693+1G>T mutations. cDNA analysis evidences the presence of aberrant transcripts, and bioinformatic prediction of C16orf57 protein structure gauges the mutations effects on the folded protein chain. Computational analysis of the C16orf57 protein shows two conserved H-X-S/T-X tetrapeptide motifs marking the active site of a two-fold pseudosymmetric structure recalling the 2H phosphoesterase superfamily. Based on this model C16orf57 is likely a 2H-active site enzyme functioning in RNA processing, as a presumptive RNA ligase. According to bioinformatic prediction, all known C16orf57 mutations, including the novel mutations herein described, impair the protein structure by either removing one or both tetrapeptide motifs or by destroying the symmetry of the native folding. Finally, we analyse the geographical distribution of the recurrent mutations that depicts clusters featuring a founder effect. Conclusions In cohorts of patients clinically affected by genodermatoses with overlapping symptoms, the molecular screening of C16orf57 gene seems the proper way to address the correct diagnosis of PN, enabling the syndrome-specific oncosurveillance. The bioinformatic prediction of the C16orf57 protein structure denotes a very basic enzymatic function consistent with a housekeeping function. Detection of aberrant transcripts, also in cells from PN patients carrying early truncated mutations, suggests they might be translatable. Tissue-specific sensitivity to the lack of functionally correct protein accounts for the

  14. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins.

    Science.gov (United States)

    Bang, Marie-Louise

    2017-01-01

    The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. A structural systems biology approach for quantifying the systemic consequences of missense mutations in proteins.

    Directory of Open Access Journals (Sweden)

    Tammy M K Cheng

    Full Text Available Gauging the systemic effects of non-synonymous single nucleotide polymorphisms (nsSNPs is an important topic in the pursuit of personalized medicine. However, it is a non-trivial task to understand how a change at the protein structure level eventually affects a cell's behavior. This is because complex information at both the protein and pathway level has to be integrated. Given that the idea of integrating both protein and pathway dynamics to estimate the systemic impact of missense mutations in proteins remains predominantly unexplored, we investigate the practicality of such an approach by formulating mathematical models and comparing them with experimental data to study missense mutations. We present two case studies: (1 interpreting systemic perturbation for mutations within the cell cycle control mechanisms (G2 to mitosis transition for yeast; (2 phenotypic classification of neuron-related human diseases associated with mutations within the mitogen-activated protein kinase (MAPK pathway. We show that the application of simplified mathematical models is feasible for understanding the effects of small sequence changes on cellular behavior. Furthermore, we show that the systemic impact of missense mutations can be effectively quantified as a combination of protein stability change and pathway perturbation.

  16. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    Science.gov (United States)

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  17. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  18. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Science.gov (United States)

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  19. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Directory of Open Access Journals (Sweden)

    Didier Barradas-Bautista

    Full Text Available Next-generation sequencing (NGS technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  20. Inverse m-matrices and ultrametric matrices

    CERN Document Server

    Dellacherie, Claude; San Martin, Jaime

    2014-01-01

    The study of M-matrices, their inverses and discrete potential theory is now a well-established part of linear algebra and the theory of Markov chains. The main focus of this monograph is the so-called inverse M-matrix problem, which asks for a characterization of nonnegative matrices whose inverses are M-matrices. We present an answer in terms of discrete potential theory based on the Choquet-Deny Theorem. A distinguished subclass of inverse M-matrices is ultrametric matrices, which are important in applications such as taxonomy. Ultrametricity is revealed to be a relevant concept in linear algebra and discrete potential theory because of its relation with trees in graph theory and mean expected value matrices in probability theory. Remarkable properties of Hadamard functions and products for the class of inverse M-matrices are developed and probabilistic insights are provided throughout the monograph.

  1. Overview of xeroderma pigmentosum proteins architecture, mutations and post-translational modifications.

    Science.gov (United States)

    Feltes, Bruno César; Bonatto, Diego

    2015-01-01

    The xeroderma pigmentosum complementation group proteins (XPs), which include XPA through XPG, play a critical role in coordinating and promoting global genome and transcription-coupled nucleotide excision repair (GG-NER and TC-NER, respectively) pathways in eukaryotic cells. GG-NER and TC-NER are both required for the repair of bulky DNA lesions, such as those induced by UV radiation. Mutations in genes that encode XPs lead to the clinical condition xeroderma pigmentosum (XP). Although the roles of XPs in the GG-NER/TC-NER subpathways have been extensively studied, complete knowledge of their three-dimensional structure is only beginning to emerge. Hence, this review aims to summarize the current knowledge of mapped mutations and other structural information on XP proteins that influence their function and protein-protein interactions. We also review the possible post-translational modifications for each protein and the impact of these modifications on XP protein functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. G protein-coupled receptor mutations and human genetic disease.

    Science.gov (United States)

    Thompson, Miles D; Hendy, Geoffrey N; Percy, Maire E; Bichet, Daniel G; Cole, David E C

    2014-01-01

    Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common

  3. Basal Cell Carcinoma With Matrical Differentiation: Clinicopathologic, Immunohistochemical, and Molecular Biological Study of 22 Cases.

    Science.gov (United States)

    Kyrpychova, Liubov; Carr, Richard A; Martinek, Petr; Vanecek, Tomas; Perret, Raul; Chottová-Dvořáková, Magdalena; Zamecnik, Michal; Hadravsky, Ladislav; Michal, Michal; Kazakov, Dmitry V

    2017-06-01

    Basal cell carcinoma (BCC) with matrical differentiation is a fairly rare neoplasm, with about 30 cases documented mainly as isolated case reports. We studied a series of this neoplasm, including cases with an atypical matrical component, a hitherto unreported feature. Lesions coded as BCC with matrical differentiation were reviewed; 22 cases were included. Immunohistochemical studies were performed using antibodies against BerEp4, β-catenin, and epithelial membrane antigen (EMA). Molecular genetic studies using Ion AmpliSeq Cancer Hotspot Panel v2 by massively parallel sequencing on Ion Torrent PGM were performed in 2 cases with an atypical matrical component (1 was previously subjected to microdissection to sample the matrical and BCC areas separately). There were 13 male and 9 female patients, ranging in age from 41 to 89 years. Microscopically, all lesions manifested at least 2 components, a BCC area (follicular germinative differentiation) and areas with matrical differentiation. A BCC component dominated in 14 cases, whereas a matrical component dominated in 4 cases. Matrical differentiation was recognized as matrical/supramatrical cells (n=21), shadow cells (n=21), bright red trichohyaline granules (n=18), and blue-gray corneocytes (n=18). In 2 cases, matrical areas manifested cytologic atypia, and a third case exhibited an infiltrative growth pattern, with the tumor metastasizing to a lymph node. BerEP4 labeled the follicular germinative cells, whereas it was markedly reduced or negative in matrical areas. The reverse pattern was seen with β-catenin. EMA was negative in BCC areas but stained a proportion of matrical/supramatrical cells. Genetic studies revealed mutations of the following genes: CTNNB1, KIT, CDKN2A, TP53, SMAD4, ERBB4, and PTCH1, with some differences between the matrical and BCC components. It is concluded that matrical differentiation in BCC in most cases occurs as multiple foci. Rare neoplasms manifest atypia in the matrical areas

  4. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Evolutionary Games with Randomly Changing Payoff Matrices

    Science.gov (United States)

    Yakushkina, Tatiana; Saakian, David B.; Bratus, Alexander; Hu, Chin-Kun

    2015-06-01

    Evolutionary games are used in various fields stretching from economics to biology. In most of these games a constant payoff matrix is assumed, although some works also consider dynamic payoff matrices. In this article we assume a possibility of switching the system between two regimes with different sets of payoff matrices. Potentially such a model can qualitatively describe the development of bacterial or cancer cells with a mutator gene present. A finite population evolutionary game is studied. The model describes the simplest version of annealed disorder in the payoff matrix and is exactly solvable at the large population limit. We analyze the dynamics of the model, and derive the equations for both the maximum and the variance of the distribution using the Hamilton-Jacobi equation formalism.

  6. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  7. Mutations in Plasmalemma Vesicle Associated Protein Result in Sieving Protein-Losing Enteropathy Characterized by Hypoproteinemia, Hypoalbuminemia, and HypertriglyceridemiaSummary

    Directory of Open Access Journals (Sweden)

    Abdul Elkadri

    2015-07-01

    Full Text Available Background & Aims: Severe intestinal diseases observed in very young children are often the result of monogenic defects. We used whole-exome sequencing (WES to examine genetics in a patient with a distinct severe form of protein-losing enteropathy (PLE characterized by hypoproteinemia, hypoalbuminemia, and hypertriglyceridemia. Methods: WES was performed at the Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada, and exome library preparation was performed with the Ion Torrent AmpliSeq RDY Exome Kit. Functional studies were based on the identified mutation. Results: Using WES we identified a homozygous nonsense mutation (1072C>T; p.Arg358* in the PLVAP (plasmalemma vesicle-associated protein gene in an infant from consanguineous parents who died at 5 months of age of severe PLE. Functional studies determined that the mutated PLVAP mRNA and protein were not expressed in the patient biopsy tissues, presumably secondary to nonsense-mediated mRNA decay. Pathological analysis showed that the loss of PLVAP resulted in disruption of endothelial fenestrated diaphragms. Conclusions: The PLVAP p.Arg358* mutation resulted in the loss of PLVAP expression with subsequent deletion of the diaphragms of endothelial fenestrae, which led to plasma protein extravasation, PLE, and ultimately death. Keywords: Endothelium, Fenestrae, Hypertriglyceridemia, Hypoalbuminemia, Hypoproteinemia, Very Early Onset Inflammatory Bowel Disease, Monogenic Diseases, Protein-Losing Enteropathy, Whole-Exome Sequencing

  8. Novel APC gene mutations associated with protein alteration in diffuse type gastric cancer.

    Science.gov (United States)

    Ghatak, Souvik; Chakraborty, Payel; Sarkar, Sandeep Roy; Chowdhury, Biswajit; Bhaumik, Arup; Kumar, Nachimuthu Senthil

    2017-06-02

    The role of adenomatous polyposis coli (APC) gene in mitosis might be critical for regulation of genomic stability and chromosome segregation. APC gene mutations have been associated to have a role in colon cancer and since gastric and colon tumors share some common genetic lesions, it is relevant to investigate the role of APC tumor suppressor gene in gastric cancer. We investigated for somatic mutations in the Exons 14 and 15 of APC gene from 40 diffuse type gastric cancersamples. Rabbit polyclonal anti-APC antibody was used, which detects the wild-type APC protein and was recommended for detection of the respective protein in human tissues. Cell cycle analysis was done from tumor and adjacent normal tissue. APC immunoreactivity showed positive expression of the protein in stages I, II, III and negative expression in Stages III and IV. Two novel deleterious variations (g.127576C > A, g.127583C > T) in exon 14 sequence were found to generate stop codon (Y622* and Q625*)in the tumor samples. Due to the generation of stop codon, the APC protein might be truncated and all the regulatory features could be lost which has led to the down-regulation of protein expression. Our results indicate that aneuploidy might occurdue to the codon 622 and 625 APC-driven gastric tumorigenesis, in agreement with our cell cycle analysis. The APC gene function in mitosis and chromosomal stability might be lost and G1 might be arrested with high quantity of DNA in the S phase. Six missense somatic mutations in tumor samples were detected in exon 15 A-B, twoof which showed pathological and disease causing effects based on SIFT, Polyphen2 and SNPs & GO score and were not previously reported in the literature or the public mutation databases. The two novel pathological somatic mutations (g.127576C > A, g.127583C > T) in exon 14 might be altering the protein expression leading to development of gastric cancer in the study population. Our study showed that mutations in the APC

  9. 2-Aminobenzamide and 2-Aminobenzoic Acid as New MALDI Matrices Inducing Radical Mediated In-Source Decay of Peptides and Proteins

    Science.gov (United States)

    Smargiasso, Nicolas; Quinton, Loic; de Pauw, Edwin

    2012-03-01

    One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.

  10. CHARACTERIZATION OF ENU-INDUCED MUTATIONS IN RED BLOOD CELL STRUCTURAL PROTEINS

    Directory of Open Access Journals (Sweden)

    Katrina Kildey

    2013-03-01

    Full Text Available Murine models with modified gene function as a result of N-ethyl-N-nitrosourea (ENU mutagenesis have been used to study phenotypes resulting from genetic change. This study investigated genetic factors associated with red blood cell (RBC physiology and structural integrity that may impact on blood component storage and transfusion outcome. Forward and reverse genetic approaches were employed with pedigrees of ENU-treated mice using a homozygous recessive breeding strategy. In a “forward genetic” approach, pedigree selection was based upon identification of an altered phenotype followed by exome sequencing to identify a causative mutation. In a second strategy, a “reverse genetic” approach based on selection of pedigrees with mutations in genes of interest was utilised and, following breeding to homozygosity, phenotype assessed. Thirty-three pedigrees were screened by the forward genetic approach. One pedigree demonstrated reticulocytosis, microcytic anaemia and thrombocytosis. Exome sequencing revealed a novel single nucleotide variation (SNV in Ank1 encoding the RBC structural protein ankyrin-1 and the pedigree was designated Ank1EX34. The reticulocytosis and microcytic anaemia observed in the Ank1EX34 pedigree were similar to clinical features of hereditary spherocytosis in humans. For the reverse genetic approach three pedigrees with different point mutations in Spnb1 encoding RBC protein spectrin-1β, and one pedigree with a mutation in Epb4.1, encoding band 4.1 were selected for study. When bred to homozygosity two of the spectrin-1β pedigrees (a, b demonstrated increased RBC count, haemoglobin (Hb and haematocrit (HCT. The third Spnb1 mutation (spectrin-1β c and mutation in Epb4.1 (band 4.1 did not significantly affect the haematological phenotype, despite these two mutations having a PolyPhen score predicting the mutation may be damaging. Exome sequencing allows rapid identification of causative mutations and development of

  11. Kin-Driver: a database of driver mutations in protein kinases.

    Science.gov (United States)

    Simonetti, Franco L; Tornador, Cristian; Nabau-Moretó, Nuria; Molina-Vila, Miguel A; Marino-Buslje, Cristina

    2014-01-01

    Somatic mutations in protein kinases (PKs) are frequent driver events in many human tumors, while germ-line mutations are associated with hereditary diseases. Here we present Kin-driver, the first database that compiles driver mutations in PKs with experimental evidence demonstrating their functional role. Kin-driver is a manual expert-curated database that pays special attention to activating mutations (AMs) and can serve as a validation set to develop new generation tools focused on the prediction of gain-of-function driver mutations. It also offers an easy and intuitive environment to facilitate the visualization and analysis of mutations in PKs. Because all mutations are mapped onto a multiple sequence alignment, analogue positions between kinases can be identified and tentative new mutations can be proposed for studying by transferring annotation. Finally, our database can also be of use to clinical and translational laboratories, helping them to identify uncommon AMs that can correlate with response to new antitumor drugs. The website was developed using PHP and JavaScript, which are supported by all major browsers; the database was built using MySQL server. Kin-driver is available at: http://kin-driver.leloir.org.ar/ © The Author(s) 2014. Published by Oxford University Press.

  12. Novel mutation predicted to disrupt SGOL1 protein function

    African Journals Online (AJOL)

    Rohit Gupta

    2012-11-02

    Nov 2, 2012 ... structural consequences of mutation over folding conformation of the 3rd exon. Further we carried .... Coiled Coil domain [PDB IDs: 3FGA] was retrieved from. Protein Data ... 1.0 nm of 216 SPC water molecules. We used 2CLА ...

  13. Prediction of mutational tolerance in HIV-1 protease and reverse transcriptase using flexible backbone protein design.

    Directory of Open Access Journals (Sweden)

    Elisabeth Humphris-Narayanan

    Full Text Available Predicting which mutations proteins tolerate while maintaining their structure and function has important applications for modeling fundamental properties of proteins and their evolution; it also drives progress in protein design. Here we develop a computational model to predict the tolerated sequence space of HIV-1 protease reachable by single mutations. We assess the model by comparison to the observed variability in more than 50,000 HIV-1 protease sequences, one of the most comprehensive datasets on tolerated sequence space. We then extend the model to a second protein, reverse transcriptase. The model integrates multiple structural and functional constraints acting on a protein and uses ensembles of protein conformations. We find the model correctly captures a considerable fraction of protease and reverse-transcriptase mutational tolerance and shows comparable accuracy using either experimentally determined or computationally generated structural ensembles. Predictions of tolerated sequence space afforded by the model provide insights into stability-function tradeoffs in the emergence of resistance mutations and into strengths and limitations of the computational model.

  14. Inconsistent Distances in Substitution Matrices can be Avoided by Properly Handling Hydrophobic Residues

    Directory of Open Access Journals (Sweden)

    J. Baussand

    2008-01-01

    Full Text Available The adequacy of substitution matrices to model evolutionary relationships between amino acid sequences can be numerically evaluated by checking the mathematical property of triangle inequality for all triplets of residues. By converting substitution scores into distances, one can verify that a direct path between two amino acids is shorter than a path passing through a third amino acid in the amino acid space modeled by the matrix. If the triangle inequality is not verified, the intuition is that the evolutionary signal is not well modeled by the matrix, that the space is locally inconsistent and that the matrix construction was probably based on insufficient biological data. Previous analysis on several substitution matrices revealed that the number of triplets violating the triangle inequality increases with sequence divergence. Here, we compare matrices which are dedicated to the alignment of highly divergent proteins. The triangle inequality is tested on several classical substitution matrices as well as in a pair of “complementary” substitution matrices recording the evolutionary pressures inside and outside hydrophobic blocks in protein sequences. The analysis proves the crucial role of hydrophobic residues in substitution matrices dedicated to the alignment of distantly related proteins.

  15. Case report: a novel KERA mutation associated with cornea plana and its predicted effect on protein function

    DEFF Research Database (Denmark)

    Roos, Laura; Bertelsen, Birgitte; Harris, Pernille

    2015-01-01

    individuals, hypotrichosis was found. KERA was screened for mutations using Sanger sequencing. We detected a novel KERA variant, p.(Ile225Thr), that segregates with the disease in the homozygous form. The three-dimensional structure of keratocan protein was modelled, and we showed that this missense variation...... of the keratocan gene (KERA) on chromosome 12q22. To date, only nine different disease-associated KERA mutations, including four missense mutations, have been described. Case presentation: In this report, we present clinical data from a Turkish family with autosomal recessive cornea plana. In some of the affected...... are predicted to result in destabilization of the protein. Conclusion: We present the 10th pathogenic KERA mutation identified so far. Protein modelling is a useful tool in predicting the effect of missense mutations. This case underline the importance of the leucin rich repeat domain for the protein function...

  16. Frequency of p53 Gene Mutation and Protein Expression in Oral Squamous Cell Carcinoma

    International Nuclear Information System (INIS)

    Ara, N.; Atique, M.; Ahmed, S.; Bukhari, S. G. A.

    2014-01-01

    Objective: To determine the frequency of p53 gene mutation and protein expression in Oral Squamous Cell Carcinoma (OSCC) and to establish correlation between the two. Study Design: Analytical study. Place and Duration of Study: Histopathology Department and Molecular Biology Laboratory, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from May 2010 to May 2011. Methodology: Thirty diagnosed cases of OSCC were selected by consecutive sampling. Seventeen were retrieved from the record files of the AFIP, and 13 fresh/frozen sections were selected from patients reporting to the Oral Surgery Department, Armed Forces Institute of Dentistry (AFID). Gene p53 mutation was analyzed in all the cases using PCRSSCP analysis. DNA was extracted from the formalin-fixed and paraffin-embedded tissue sections and fresh/frozen sections. DNA thus extracted was amplified by polymerase chain reaction. The amplified products were denatured and finally analyzed by gel electrophoresis. Gene mutation was detected as electrophoretic mobility shift. The immunohistochemical marker p53 was applied to the same 30 cases and overexpression of protein p53 was recorded. Results: Immunohistochemical expression of marker p53 was positive in 67% (95% Confidence Interval (CI) 48.7 - 80.9) of the cases. Mutations of the p53 gene were detected in 23% (95% CI 11.5 - 41.2) of the OSCC. No statistically significant correlation was found between p53 gene mutation and protein p53 expression (rs = - 0.057, p = 0.765). Conclusion: A substantial number of patients have p53 gene mutation (23%) and protein p53 expression (67%) in oral squamous cell carcinoma (OSCC). (author)

  17. Nature of protein family signatures: insights from singular value analysis of position-specific scoring matrices.

    Directory of Open Access Journals (Sweden)

    Akira R Kinjo

    Full Text Available Position-specific scoring matrices (PSSMs are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in protein families.

  18. A homologous mapping method for three-dimensional reconstruction of protein networks reveals disease-associated mutations.

    Science.gov (United States)

    Huang, Sing-Han; Lo, Yu-Shu; Luo, Yong-Chun; Tseng, Yu-Yao; Yang, Jinn-Moon

    2018-03-19

    One of the crucial steps toward understanding the associations among molecular interactions, pathways, and diseases in a cell is to investigate detailed atomic protein-protein interactions (PPIs) in the structural interactome. Despite the availability of large-scale methods for analyzing PPI networks, these methods often focused on PPI networks using genome-scale data and/or known experimental PPIs. However, these methods are unable to provide structurally resolved interaction residues and their conservations in PPI networks. Here, we reconstructed a human three-dimensional (3D) structural PPI network (hDiSNet) with the detailed atomic binding models and disease-associated mutations by enhancing our PPI families and 3D-domain interologs from 60,618 structural complexes and complete genome database with 6,352,363 protein sequences across 2274 species. hDiSNet is a scale-free network (γ = 2.05), which consists of 5177 proteins and 19,239 PPIs with 5843 mutations. These 19,239 structurally resolved PPIs not only expanded the number of PPIs compared to present structural PPI network, but also achieved higher agreement with gene ontology similarities and higher co-expression correlation than the ones of 181,868 experimental PPIs recorded in public databases. Among 5843 mutations, 1653 and 790 mutations involved in interacting domains and contacting residues, respectively, are highly related to diseases. Our hDiSNet can provide detailed atomic interactions of human disease and their associated proteins with mutations. Our results show that the disease-related mutations are often located at the contacting residues forming the hydrogen bonds or conserved in the PPI family. In addition, hDiSNet provides the insights of the FGFR (EGFR)-MAPK pathway for interpreting the mechanisms of breast cancer and ErbB signaling pathway in brain cancer. Our results demonstrate that hDiSNet can explore structural-based interactions insights for understanding the mechanisms of disease

  19. Pathological rate matrices: from primates to pathogens

    Directory of Open Access Journals (Sweden)

    Knight Rob

    2008-12-01

    Full Text Available Abstract Background Continuous-time Markov models allow flexible, parametrically succinct descriptions of sequence divergence. Non-reversible forms of these models are more biologically realistic but are challenging to develop. The instantaneous rate matrices defined for these models are typically transformed into substitution probability matrices using a matrix exponentiation algorithm that employs eigendecomposition, but this algorithm has characteristic vulnerabilities that lead to significant errors when a rate matrix possesses certain 'pathological' properties. Here we tested whether pathological rate matrices exist in nature, and consider the suitability of different algorithms to their computation. Results We used concatenated protein coding gene alignments from microbial genomes, primate genomes and independent intron alignments from primate genomes. The Taylor series expansion and eigendecomposition matrix exponentiation algorithms were compared to the less widely employed, but more robust, Padé with scaling and squaring algorithm for nucleotide, dinucleotide, codon and trinucleotide rate matrices. Pathological dinucleotide and trinucleotide matrices were evident in the microbial data set, affecting the eigendecomposition and Taylor algorithms respectively. Even using a conservative estimate of matrix error (occurrence of an invalid probability, both Taylor and eigendecomposition algorithms exhibited substantial error rates: ~100% of all exonic trinucleotide matrices were pathological to the Taylor algorithm while ~10% of codon positions 1 and 2 dinucleotide matrices and intronic trinucleotide matrices, and ~30% of codon matrices were pathological to eigendecomposition. The majority of Taylor algorithm errors derived from occurrence of multiple unobserved states. A small number of negative probabilities were detected from the Pad�� algorithm on trinucleotide matrices that were attributable to machine precision. Although the Pad

  20. Stereochemical criteria for prediction of the effects of proline mutations on protein stability.

    Directory of Open Access Journals (Sweden)

    Kanika Bajaj

    2007-12-01

    Full Text Available When incorporated into a polypeptide chain, proline (Pro differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.

  1. Stereochemical criteria for prediction of the effects of proline mutations on protein stability.

    Science.gov (United States)

    Bajaj, Kanika; Madhusudhan, M S; Adkar, Bharat V; Chakrabarti, Purbani; Ramakrishnan, C; Sali, Andrej; Varadarajan, Raghavan

    2007-12-01

    When incorporated into a polypeptide chain, proline (Pro) differs from all other naturally occurring amino acid residues in two important respects. The phi dihedral angle of Pro is constrained to values close to -65 degrees and Pro lacks an amide hydrogen. Consequently, mutations which result in introduction of Pro can significantly affect protein stability. In the present work, we describe a procedure to accurately predict the effect of Pro introduction on protein thermodynamic stability. Seventy-seven of the 97 non-Pro amino acid residues in the model protein, CcdB, were individually mutated to Pro, and the in vivo activity of each mutant was characterized. A decision tree to classify the mutation as perturbing or nonperturbing was created by correlating stereochemical properties of mutants to activity data. The stereochemical properties including main chain dihedral angle phi and main chain amide H-bonds (hydrogen bonds) were determined from 3D models of the mutant proteins built using MODELLER. We assessed the performance of the decision tree on a large dataset of 163 single-site Pro mutations of T4 lysozyme, 74 nsSNPs, and 52 other Pro substitutions from the literature. The overall accuracy of this algorithm was found to be 81% in the case of CcdB, 77% in the case of lysozyme, 76% in the case of nsSNPs, and 71% in the case of other Pro substitution data. The accuracy of Pro scanning mutagenesis for secondary structure assignment was also assessed and found to be at best 69%. Our prediction procedure will be useful in annotating uncharacterized nsSNPs of disease-associated proteins and for protein engineering and design.

  2. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis.

    Science.gov (United States)

    Bank-Wolf, Barbara Regina; Stallkamp, Iris; Wiese, Svenja; Moritz, Andreas; Tekes, Gergely; Thiel, Heinz-Jürgen

    2014-10-10

    The genes encoding accessory proteins 3a, 3b, 3c, 7a and 7b, the S2 domain of the spike (S) protein gene and the membrane (M) protein gene of feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV) samples were amplified, cloned and sequenced. For this faeces and/or ascites samples from 19 cats suffering from feline infectious peritonitis (FIP) as well as from 20 FECV-infected healthy cats were used. Sequence comparisons revealed that 3c genes of animals with FIP were heavily affected by nucleotide deletions and point mutations compared to animals infected with FECV; these alterations resulted either in early termination or destruction of the translation initiation codon. Two ascites-derived samples of cats with FIP which displayed no alterations of ORF3c harboured mutations in the S2 domain of the S protein gene which resulted in amino acid exchanges or deletions. Moreover, changes in 3c were often accompanied by mutations in S2. In contrast, in samples obtained from faeces of healthy cats, the ORF3c was never affected by such mutations. Similarly ORF3c from faecal samples of the cats with FIP was mostly intact and showed only in a few cases the same mutations found in the respective ascites samples. The genes encoding 3a, 3b, 7a and 7b displayed no mutations linked to the feline coronavirus (FCoV) biotype. The M protein gene was found to be conserved between FECV and FIPV samples. Our findings suggest that mutations of 3c and spike protein genes correlate with the occurrence of FIP. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Search for gene mutations affecting protein structure in children of A-bomb survivors, 2

    International Nuclear Information System (INIS)

    Satoh, Chiyoko; Fujita, Mikio; Goriki, Kazuaki; Asakawa, Jun-ichi; Takahashi, Norio; Hamilton, H.B.; Hazama, Ryuji; Neel, J.V.

    1984-01-01

    Children who were born between May 1, 1946 and April 1, 1971 to survivor(s) exposed to A-bombing within 2,000 m from the hypocenter in Hiroshima and Nagasaki were selected as exposed group; their sex- and age-matched children born to survivor(s) who were exposed at 2,500 m or farther were selected as control group. When these children were in junior high school, mutation of protein structure was examined by using electrophoresis and by determining red cell enzymes with decreased activity and heat-unstable red cell enzymes. Electrophoretic study revealed a ''rare type of protein mutation'' in 635 of 12,242 individuals in the exposed group and in 448 of 10,154 individuals in the control group. The number of locuses in all proteins examined was calculated. The number of locuses per protein was corrected using the rate of parents' mutation type, and relative number of locuses were obtained. As a result, there was no difference in the mutation frequency per locus and generation between the exposed and control groups. Among children having red cell enzymes with decreased activity, mutant in triose phosphate isomerase was detected in one child in the exposed group, in whom electrophoretic pattern was normal and red cell enzymes were stable to heat. Heat-unstable red cell enzymes were seen in 9 children and their parents. However, family survey revealed genetic mutation in all instances irrespective of A-bombing. (Namekawa, K.)

  4. Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform.

    Science.gov (United States)

    Sharma, Shiwani; Burdon, Kathryn P; Dave, Alpana; Jamieson, Robyn V; Yaron, Yuval; Billson, Frank; Van Maldergem, Lionel; Lorenz, Birgit; Gécz, Jozef; Craig, Jamie E

    2008-01-01

    Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the significance of NHS-A regions for

  5. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2017-09-05

    In several years, deep learning is a modern machine learning technique using in a variety of fields with state-of-the-art performance. Therefore, utilization of deep learning to enhance performance is also an important solution for current bioinformatics field. In this study, we try to use deep learning via convolutional neural networks and position specific scoring matrices to identify electron transport proteins, which is an important molecular function in transmembrane proteins. Our deep learning method can approach a precise model for identifying of electron transport proteins with achieved sensitivity of 80.3%, specificity of 94.4%, and accuracy of 92.3%, with MCC of 0.71 for independent dataset. The proposed technique can serve as a powerful tool for identifying electron transport proteins and can help biologists understand the function of the electron transport proteins. Moreover, this study provides a basis for further research that can enrich a field of applying deep learning in bioinformatics. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Surfactant protein B deficiency and gene mutations for neonatal respiratory distress syndrome in China Han ethnic population

    Science.gov (United States)

    Yin, Xiaojuan; Meng, Fanping; wang, Yan; Xie, Lu; Kong, Xiangyong; Feng, Zhichun

    2013-01-01

    Objective: To determine whether the SP-B deficiency and gene mutations in exon 4 is associated with neonatal RDS in China Han ethnic population. Methods: The study population consisted of 40 neonates with RDS and 40 neonates with other diseases as control in China Han ethnic population. We Compared SP-B expression in lung tissue and bronchoalveolar lavage fluid with immunoblotting, and analyzed mutations in the SP-B gene with polymerase chain reaction (PCR) and gene sequencing. Results: In RDS group, low mature Surfactant protein B was found in both lung tissue and bronchoalveolar lavage fluid in 8 neonates. In control group, only 4 neonates with low mature Surfactant protein B in both lung tissue and bronchoalveolar lavage fluid. In RDS group, 20 neonates were found to have mutations in exon 4, 12 homozygous mutations with C/C genotype and 8 heterozygous mutations with C/T genotype in surfactant protein B gene+1580 polymorphism. There were 8 cases mutations in control group, 1 in C/C and 7 in C/T genotype. The frequency of homozygotes with C/C genotype was 0.3 and frequency of heterozygotes with C/T genotype was 0.02 in RDS group. In control group, frequency of homozygotes with C/C genotype was 0.025 and frequency of heterozygote with C/T genotype was 0.175. Conclusion: Low mature Surfactant protein B is associated with the pathogenesis of neonatal respiratory distress syndrome (RDS) in China Han ethnic population. Mutations in exon 4 of the surfactant protein B gene demonstrate an association between homozygous mutations with C/C genotype in SP-B gene and neonatal RDS. PMID:23330012

  7. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis.

    Directory of Open Access Journals (Sweden)

    Leslie Goo

    2017-02-01

    Full Text Available The structural flexibility or 'breathing' of the envelope (E protein of flaviviruses allows virions to sample an ensemble of conformations at equilibrium. The molecular basis and functional consequences of virus conformational dynamics are poorly understood. Here, we identified a single mutation at residue 198 (T198F of the West Nile virus (WNV E protein domain I-II hinge that regulates virus breathing. The T198F mutation resulted in a ~70-fold increase in sensitivity to neutralization by a monoclonal antibody targeting a cryptic epitope in the fusion loop. Increased exposure of this otherwise poorly accessible fusion loop epitope was accompanied by reduced virus stability in solution at physiological temperatures. Introduction of a mutation at the analogous residue of dengue virus (DENV, but not Zika virus (ZIKV, E protein also increased accessibility of the cryptic fusion loop epitope and decreased virus stability in solution, suggesting that this residue modulates the structural ensembles sampled by distinct flaviviruses at equilibrium in a context dependent manner. Although the T198F mutation did not substantially impair WNV growth kinetics in vitro, studies in mice revealed attenuation of WNV T198F infection. Overall, our study provides insight into the molecular basis and the in vitro and in vivo consequences of flavivirus breathing.

  8. Investigation of selection methods im mutation breeding of barley for protein quantity and quality

    International Nuclear Information System (INIS)

    Ulonska, E.; Gaul, H.; Baumer, M.; Gesellschaft fuer Strahlen- und Umweltforschung m.b.H., Gruenbach

    1975-01-01

    This mutation breeding programme is investigating the qualification of micro-mutations for the selection of improved protein quality and quantity. Normally, improvement of protein content in micro-mutations is rather small. Therefore, it is important to develop methods and conditions of selection being (a) capable of measuring these small deviations in protein content and quality, and (b) simple to use. In two experiments carried out in 1971 and 1972 nitrogen fertilization was found to be the most important factor in the improvement of selection conditions. There is a highly significant negative correlation between crude protein content and the standard deviation; i.e. the higher the content of crude protein, the lower the variation coefficient. This in turn leads to an increase of genetic variation necessary for better selection progress. Nitrogen fertilization, especially during ear emergence, covers environmental influences - e.g., planting space, sowing rate, growing in different plots (6, 3, 2, 1 rows or in half-ear hills) - to a great extent. Thus, by applying high doses of nitrogen dressings comparable results can be achieved. In an overall selection experiment (testing the entire crossing and mutation material available at Weihenstephan in a stepwise selection from 1971 to 1973) and two selection experiments conducted in 1971 to 1973 with micro-mutants - variety Nota, 4 times X-rayed and the naked barley strain 1606 treated once with EMS - significant selection results were found. (author)

  9. High-quality Thermodynamic Data on the Stability Changes of Proteins Upon Single-site Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Pucci, Fabrizio, E-mail: fapucci@ulb.ac.be; Bourgeas, Raphaël, E-mail: rbourgeas@ulb.ac.be; Rooman, Marianne, E-mail: mrooman@ulb.ac.be [Department of BioModeling, BioInformatics and BioProcesses, Université Libre de Bruxelles, CP 165/61, Roosevelt Avenue 50, 1050 Brussels, Belgium and Interuniversity Institute of Bioinformatics in Brussels, CP 263, Triumph Bld, 1050 Brussels (Belgium)

    2016-06-15

    We have set up and manually curated a dataset containing experimental information on the impact of amino acid substitutions in a protein on its thermal stability. It consists of a repository of experimentally measured melting temperatures (T{sub m}) and their changes upon point mutations (ΔT{sub m}) for proteins having a well-resolved x-ray structure. This high-quality dataset is designed for being used for the training or benchmarking of in silico thermal stability prediction methods. It also reports other experimentally measured thermodynamic quantities when available, i.e., the folding enthalpy (ΔH) and heat capacity (ΔC{sub P}) of the wild type proteins and their changes upon mutations (ΔΔH and ΔΔC{sub P}), as well as the change in folding free energy (ΔΔG) at a reference temperature. These data are analyzed in view of improving our insights into the correlation between thermal and thermodynamic stabilities, the asymmetry between the number of stabilizing and destabilizing mutations, and the difference in stabilization potential of thermostable versus mesostable proteins.

  10. Identification of a nuclear localization signal in the retinitis pigmentosa-mutated RP26 protein, ceramide kinase-like protein

    International Nuclear Information System (INIS)

    Inagaki, Yuichi; Mitsutake, Susumu; Igarashi, Yasuyuki

    2006-01-01

    Retinitis pigmentosa (RP) is a genetically heterogeneous disease characterized by degeneration of the retina. A mutation in a new ceramide kinase (CERK) homologous gene, named CERK-like protein (CERKL), was found to cause autosomal recessive retinitis pigmentosa (RP26). Here, we show a point mutation of one of two putative nuclear localization signal (NLS) sequences inhibited the nuclear localization of the protein. Furthermore, the tetra-GFP-tagged NLS, which cannot passively enter the nucleus, was observed not only in the nucleus but also in the nucleolus. Our results provide First evidence of the active nuclear import of CERKL and suggest that the identified NLS might be responsible for nucleolar retention of the protein. As recent studies have shown other RP-related proteins are localized in the nucleus or the nucleolus, our identification of NLS in CERKL suggests that CERKL likely plays important roles for retinal functions in the nucleus and the nucleolus

  11. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Mutation analysis of inhibitory guanine nucleotide binding protein alpha (GNAI) loci in young and familial pituitary adenomas.

    Science.gov (United States)

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15-20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1, GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.

  13. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.

    Science.gov (United States)

    Pottel, Joshua; Moitessier, Nicolas

    2015-12-28

    Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100

  14. Mutations in iron-sulfur cluster proteins that improve xylose utilization

    Science.gov (United States)

    Froehlich, Allan; Henningsen, Brooks; Covalla, Sean; Zelle, Rintze M.

    2018-03-20

    There is provided an engineered host cells comprising (a) one or more mutations in one or more endogenous genes encoding a protein associated with iron metabolism; and (b) at least one gene encoding a polypeptide having xylose isomerase activity, and methods of their use thereof.

  15. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice

    International Nuclear Information System (INIS)

    Yang Yan; Mahaffey, Connie L.; Berube, Nathalie; Nystuen, Arne; Frankel, Wayne N.

    2005-01-01

    The mouse fidget mutation is an autosomal recessive mutation that renders reduced or absent semicircular canals, microphthalmia, and various skeletal abnormalities to affected mice. We previously identified the defective gene which encodes fidgetin, a new member of the ATPases associated with diverse cellular activities (AAA proteins). Here, we report on the subcellular localization of fidgetin as well as that of two closely related proteins, fidgetin-like 1 and fidgetin-like 2. Epitope-tagging and immunostaining revealed that both fidgetin and fidgetin-like 2 were predominantly localized to the nucleus, whereas fidgetin-like 1 was both nuclear and cytoplasmic. Furthermore, deletion studies identified a putative bipartite nuclear localization signal in the middle portion of the fidgetin protein. Since AAA proteins are known to form functional hetero- or homo-hexamers, we used reciprocal immunoprecipitation to examine the potential interaction among these proteins. We found that fidgetin interacted with itself and this specific interaction was abolished when either the N- or C-terminus of the protein was truncated. Taken together, our results suggest that fidgetin is a nuclear AAA-family protein with the potential to form homo-oligomers, thus representing the first step towards the elucidation of fidgetin's cellular function and the disease mechanism in fidget mutant mice

  16. Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

    Directory of Open Access Journals (Sweden)

    C. George Priya Doss

    2012-12-01

    Full Text Available Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1 destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%, PolyPhen 2.0 (61% and SNAP (58%. From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  17. Characterization of two second-site mutations preventing wild type protein aggregation caused by a dominant negative PMA1 mutant.

    Directory of Open Access Journals (Sweden)

    Pilar Eraso

    Full Text Available The correct biogenesis and localization of Pma1 at the plasma membrane is essential for yeast growth. A subset of PMA1 mutations behave as dominant negative because they produce aberrantly folded proteins that form protein aggregates, which in turn provoke the aggregation of the wild type protein. One approach to understand this dominant negative effect is to identify second-site mutations able to suppress the dominant lethal phenotype caused by those mutant alleles. We isolated and characterized two intragenic second-site suppressors of the PMA1-D378T dominant negative mutation. We present here the analysis of these new mutations that are located along the amino-terminal half of the protein and include a missense mutation, L151F, and an in-frame 12bp deletion that eliminates four residues from Cys409 to Ala412. The results show that the suppressor mutations disrupt the interaction between the mutant and wild type enzymes, and this enables the wild type Pma1 to reach the plasma membrane.

  18. Disease-Causing Mutations in the G Protein Gαs Subvert the Roles of GDP and GTP.

    Science.gov (United States)

    Hu, Qi; Shokat, Kevan M

    2018-05-17

    The single most frequent cancer-causing mutation across all heterotrimeric G proteins is R201C in Gαs. The current model explaining the gain-of-function activity of the R201 mutations is through the loss of GTPase activity and resulting inability to switch off to the GDP state. Here, we find that the R201C mutation can bypass the need for GTP binding by directly activating GDP-bound Gαs through stabilization of an intramolecular hydrogen bond network. Having found that a gain-of-function mutation can convert GDP into an activator, we postulated that a reciprocal mutation might disrupt the normal role of GTP. Indeed, we found R228C, a loss-of-function mutation in Gαs that causes pseudohypoparathyroidism type 1a (PHP-Ia), compromised the adenylyl cyclase-activating activity of Gαs bound to a non-hydrolyzable GTP analog. These findings show that disease-causing mutations in Gαs can subvert the canonical roles of GDP and GTP, providing new insights into the regulation mechanism of G proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Prion protein amyloidosis with divergent phenotype associated with two novel nonsense mutations in PRNP

    NARCIS (Netherlands)

    Jansen, Casper; Parchi, Piero; Capellari, Sabina; Vermeij, Ad J.; Corrado, Patrizia; Baas, Frank; Strammiello, Rosaria; van Gool, Willem A.; van Swieten, John C.; Rozemuller, Annemieke J. M.

    2010-01-01

    Stop codon mutations in the gene encoding the prion protein (PRNP) are very rare and have thus far only been described in two patients with prion protein cerebral amyloid angiopathy (PrP-CAA). In this report, we describe the clinical, histopathological and pathological prion protein (PrPSc)

  20. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutreix, M.; Moreau, P.L.; Bailone, A.; Galibert, F.; Battista, J.R.; Walker, G.C.; Devoret, R.

    1989-05-01

    To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+.

  1. New recA mutations that dissociate the various RecA protein activities in Escherichia coli provide evidence for an additional role for RecA protein in UV mutagenesis

    International Nuclear Information System (INIS)

    Dutreix, M.; Moreau, P.L.; Bailone, A.; Galibert, F.; Battista, J.R.; Walker, G.C.; Devoret, R.

    1989-01-01

    To isolate strains with new recA mutations that differentially affect RecA protein functions, we mutagenized in vitro the recA gene carried by plasmid mini-F and then introduced the mini-F-recA plasmid into a delta recA host that was lysogenic for prophage phi 80 and carried a lac duplication. By scoring prophage induction and recombination of the lac duplication, we isolated new recA mutations. A strain carrying mutation recA1734 (Arg-243 changed to Leu) was found to be deficient in phi 80 induction but proficient in recombination. The mutation rendered the host not mutable by UV, even in a lexA(Def) background. Yet, the recA1734 host became mutable upon introduction of a plasmid encoding UmuD*, the active carboxyl-terminal fragment of UmuD. Although the recA1734 mutation permits cleavage of lambda and LexA repressors, it renders the host deficient in the cleavage of phi 80 repressor and UmuD protein. Another strain carrying mutation recA1730 (Ser-117 changed to Phe) was found to be proficient in phi 80 induction but deficient in recombination. The recombination defect conferred by the mutation was partly alleviated in a cell devoid of LexA repressor, suggesting that, when amplified, RecA1730 protein is active in recombination. Since LexA protein was poorly cleaved in the recA1730 strain while phage lambda was induced, we conclude that RecA1730 protein cannot specifically mediate LexA protein cleavage. Our results show that the recA1734 and recA1730 mutations differentially affect cleavage of various substrates. The recA1730 mutation prevented UV mutagenesis, even upon introduction into the host of a plasmid encoding UmuD* and was dominant over recA+

  2. Evolution of a G protein-coupled receptor response by mutations in regulatory network interactions

    DEFF Research Database (Denmark)

    Di Roberto, Raphaël B; Chang, Belinda; Trusina, Ala

    2016-01-01

    All cellular functions depend on the concerted action of multiple proteins organized in complex networks. To understand how selection acts on protein networks, we used the yeast mating receptor Ste2, a pheromone-activated G protein-coupled receptor, as a model system. In Saccharomyces cerevisiae......, Ste2 is a hub in a network of interactions controlling both signal transduction and signal suppression. Through laboratory evolution, we obtained 21 mutant receptors sensitive to the pheromone of a related yeast species and investigated the molecular mechanisms behind this newfound sensitivity. While...... demonstrate that a new receptor-ligand pair can evolve through network-altering mutations independently of receptor-ligand binding, and suggest a potential role for such mutations in disease....

  3. Functional analysis of the novel TBX5 c.1333delC mutation resulting in an extended TBX5 protein

    Directory of Open Access Journals (Sweden)

    Ekman-Joelsson Britt-Marie

    2008-10-01

    Full Text Available Abstract Background Autosomal dominant Holt-Oram syndrome (HOS is caused by mutations in the TBX5 gene and is characterized by congenital heart and preaxial radial ray upper limb defects. Most of the TBX5 mutations found in patients with HOS cause premature truncation of the primary TBX5 transcript. TBX5 missense mutations alter the three-dimensional structure of the protein and result in failed nuclear localization or reduced binding to target DNA. In this study we present our functional analyses of the novel and unusual c.1333delC mutation found in a patient with classical HOS. Methods The functional impact of this novel mutation was assessed by investigating the intracellular localization of the resulting TBX5 protein and its ability to activate the expression of its downstream target ANF. Results The deletion of the cytosine is the first TBX5 frameshift mutation predicted to result in an elongated TBX5 protein with 74 miscoding amino acids and 62 supernumerary C-terminal amino acids. The c.1333delC mutation affects neither the nuclear localization, nor its colocalization with SALL4, but severely affects the activation of the ANF promoter. Conclusion The mutation c.1333delC does not locate within functional domains, but impairs the activation of the downstream target. This suggests that misfolding of the protein prevents its biological function.

  4. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    Science.gov (United States)

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  5. Prefoldin Promotes Proteasomal Degradation of Cytosolic Proteins with Missense Mutations by Maintaining Substrate Solubility.

    Directory of Open Access Journals (Sweden)

    Sophie A Comyn

    2016-07-01

    Full Text Available Misfolded proteins challenge the ability of cells to maintain protein homeostasis and can accumulate into toxic protein aggregates. As a consequence, cells have adopted a number of protein quality control pathways to prevent protein aggregation, promote protein folding, and target terminally misfolded proteins for degradation. In this study, we employed a thermosensitive allele of the yeast Guk1 guanylate kinase as a model misfolded protein to investigate degradative protein quality control pathways. We performed a flow cytometry based screen to identify factors that promote proteasomal degradation of proteins misfolded as the result of missense mutations. In addition to the E3 ubiquitin ligase Ubr1, we identified the prefoldin chaperone subunit Gim3 as an important quality control factor. Whereas the absence of GIM3 did not impair proteasomal function or the ubiquitination of the model substrate, it led to the accumulation of the poorly soluble model substrate in cellular inclusions that was accompanied by delayed degradation. We found that Gim3 interacted with the Guk1 mutant allele and propose that prefoldin promotes the degradation of the unstable model substrate by maintaining the solubility of the misfolded protein. We also demonstrated that in addition to the Guk1 mutant, prefoldin can stabilize other misfolded cytosolic proteins containing missense mutations.

  6. Inactivation of protein translocation by cold-sensitive mutations in the yajC-secDF operon

    NARCIS (Netherlands)

    Nouwen, N; Driessen, AJM

    2005-01-01

    Most mutations in the yajC-secDF operon identified via genetic screens confer a cold-sensitive growth phenotype. Here we report that two of these mutations confer this cold-sensitive phenotype by inactivating the SecDF-YajC complex in protein translocation.

  7. Advanced method for high-throughput expression of mutated eukaryotic membrane proteins in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ito, Keisuke; Sugawara, Taishi; Shiroishi, Mitsunori; Tokuda, Natsuko; Kurokawa, Azusa; Misaka, Takumi; Makyio, Hisayoshi; Yurugi-Kobayashi, Takami; Shimamura, Tatsuro; Nomura, Norimichi; Murata, Takeshi; Abe, Keiko; Iwata, So

    2008-01-01

    Crystallization of eukaryotic membrane proteins is a challenging, iterative process. The protein of interest is often modified in an attempt to improve crystallization and diffraction results. To accelerate this process, we took advantage of a GFP-fusion yeast expression system that uses PCR to direct homologous recombination and gene cloning. We explored the possibility of employing more than one PCR fragment to introduce various mutations in a single step, and found that when up to five PCR fragments were co-transformed into yeast, the recombination frequency was maintained as the number of fragments was increased. All transformants expressed the model membrane protein, while the resulting plasmid from each clone contained the designed mutations only. Thus, we have demonstrated a technique allowing the expression of mutant membrane proteins within 5 days, combining a GFP-fusion expression system and yeast homologous recombination

  8. Mutational analysis of PVX TGBp3 links subcellular accumulation and protein turnover

    International Nuclear Information System (INIS)

    Ju, H.-J.; Ye, C.-M.; Verchot-Lubicz, Jeanmarie

    2008-01-01

    Potato virus X (PVX) TGBp3 is required for virus cell-to-cell transport, has an N-terminal transmembrane domain, and a C-terminal cytosolic domain. In the absence of virus infection TGBp3:GFP is seen in the cortical and perinuclear ER. In PVX infected cells the TGBp3:GFP fusion is also seen in the nucleoplasm indicating that events during PVX infection trigger entry into the nucleus. Mutational analysis failed to identify a nuclear targeting domain. Mutations inhibiting TGBp3 association with the ER and inhibiting virus movement did not block TGBp3:GFP in the nucleoplasm. A mutation disrupting the N-terminal transmembrane domain of TGBp3 caused the fusion to accumulate in the nucleus indicating that nuclear import is regulated by ER interactions. Tunicamycin, an ER-stress inducing chemical, caused lower levels of GFP and TGBp3:GFP to accumulate in virus infected protoplasts. MG115 and MG132 were used to demonstrate that wild-type and mutant TGBp3:GFP fusions were degraded by the 26S proteasome. These observations are consistent with an ER-associated protein degradation (ERAD) pathway suggesting that PVX TGBp3, similar to aberrant ER proteins, is translocate to the cytoplasm for degradation. Nuclear accumulation of mutant and wild-type TGBp3:GFP is independent of other PVX proteins and may be another feature of an ERAD pathway

  9. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as an Analytical Method to Investigate the Secondary Structure of a Model Protein Embedded in Solid Lipid Matrices.

    Science.gov (United States)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene; Medlicott, Natalie J

    2018-02-01

    Protein drugs may encounter conformational perturbations during the formulation processing of lipid-based solid dosage forms. In aqueous protein solutions, attenuated total reflection Fourier transform infrared (ATR FT-IR) spectroscopy can investigate these conformational changes following the subtraction of spectral interference of solvent with protein amide I bands. However, in solid dosage forms, the possible spectral contribution of lipid carriers to protein amide I band may be an obstacle to determine conformational alterations. The objective of this study was to develop an ATR FT-IR spectroscopic method for the analysis of protein secondary structure embedded in solid lipid matrices. Bovine serum albumin (BSA) was chosen as a model protein, while Precirol AT05 (glycerol palmitostearate, melting point 58 ℃) was employed as the model lipid matrix. Bovine serum albumin was incorporated into lipid using physical mixing, melting and mixing, or wet granulation mixing methods. Attenuated total reflection FT-IR spectroscopy and size exclusion chromatography (SEC) were performed for the analysis of BSA secondary structure and its dissolution in aqueous media, respectively. The results showed significant interference of Precirol ATO5 with BSA amide I band which was subtracted up to 90% w/w lipid content to analyze BSA secondary structure. In addition, ATR FT-IR spectroscopy also detected thermally denatured BSA solid alone and in the presence of lipid matrix indicating its suitability for the detection of denatured protein solids in lipid matrices. Despite being in the solid state, conformational changes occurred to BSA upon incorporation into solid lipid matrices. However, the extent of these conformational alterations was found to be dependent on the mixing method employed as indicated by area overlap calculations. For instance, the melting and mixing method imparted negligible effect on BSA secondary structure, whereas the wet granulation mixing method promoted

  10. Averaging operations on matrices

    Indian Academy of Sciences (India)

    2014-07-03

    Jul 3, 2014 ... Role of Positive Definite Matrices. • Diffusion Tensor Imaging: 3 × 3 pd matrices model water flow at each voxel of brain scan. • Elasticity: 6 × 6 pd matrices model stress tensors. • Machine Learning: n × n pd matrices occur as kernel matrices. Tanvi Jain. Averaging operations on matrices ...

  11. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability.

    Science.gov (United States)

    Smelter, Dan F; de Lange, Willem J; Cai, Wenxuan; Ge, Ying; Ralphe, J Carter

    2018-06-01

    Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of

  12. Improving protein quality of soybean through induced mutations

    International Nuclear Information System (INIS)

    Manjaya, J.G.

    2011-01-01

    Soybean is one of the most economical and nutritious food packed with basic nutrients that combat diseases stemming from mal- and under-nutrition. Despite its rich nutritional profile, use of soybean in food has been limited because soybean proteins are often associated with compounds, which could exert a negative impact on the nutritional quality of the protein. Trypsin inhibitor (TI) is one of the important anti-nutritional factors that exert negative effect by causing growth inhibition. Soybean cultivar VLS-2 was irradiated with 250 Gy gamma rays in a gamma cell (200) with 60 Co source installed at BARC to induce mutations for low trypsin inhibitor content. Three mutants with lower levels of TI content were identified and can be utilized for developing elite varieties of soybean. (author)

  13. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leder, Verena [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lummer, Martina [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Tegeler, Kathrin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Humpert, Fabian [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Lewinski, Martin [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany); Schüttpelz, Mark [Biomolecular Photonics, Faculty of Physics, Bielefeld University (Germany); Staiger, Dorothee, E-mail: dorothee.staiger@uni-bielefeld.de [Molecular Cell Physiology, Faculty of Biology, Bielefeld University (Germany)

    2014-10-10

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R{sup 49} abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K{sub d} value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R{sup 49} that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding.

  14. Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy

    International Nuclear Information System (INIS)

    Leder, Verena; Lummer, Martina; Tegeler, Kathrin; Humpert, Fabian; Lewinski, Martin; Schüttpelz, Mark; Staiger, Dorothee

    2014-01-01

    Highlights: • We use FCS to investigate binding site requirements for the hnRNP-like protein AtGRP7. • We identify three nucleotides critical for AtGRP7 binding to its own intron. • Mutation of the conserved R 49 abolishes binding altogether. • The paralogue AtGRP8 binds to an overlapping motif with different sequence requirement. • The glycine-rich stretch of a plant hnRNP-like protein contributes to binding. - Abstract: Arabidopsis thaliana glycine-rich RNA binding protein 7 (AtGRP7) is part of a negative feedback loop through which it regulates alternative splicing and steady-state abundance of its pre-mRNA. Here we use fluorescence correlation spectroscopy to investigate the requirements for AtGRP7 binding to its intron using fluorescently-labelled synthetic oligonucleotides. By systematically introducing point mutations we identify three nucleotides that lead to an increased K d value when mutated and thus are critical for AtGRP7 binding. Simultaneous mutation of all three residues abrogates binding. The paralogue AtGRP8 binds to an overlapping motif but with a different sequence preference, in line with overlapping but not identical functions of this protein pair. Truncation of the glycine-rich domain reduces the binding affinity of AtGRP7, showing for the first time that the glycine-rich stretch of a plant hnRNP-like protein contributes to binding. Mutation of the conserved R 49 that is crucial for AtGRP7 function in pathogen defence and splicing abolishes binding

  15. Two Mutations in Surfactant Protein C Gene Associated with Neonatal Respiratory Distress

    Directory of Open Access Journals (Sweden)

    Anna Tarocco

    2015-01-01

    Full Text Available Multiple mutations of surfactant genes causing surfactant dysfunction have been described. Surfactant protein C (SP-C deficiency is associated with variable clinical manifestations ranging from neonatal respiratory distress syndrome to lethal lung disease. We present an extremely low birth weight male infant with an unusual course of respiratory distress syndrome associated with two mutations in the SFTPC gene: C43-7G>A and 12T>A. He required mechanical ventilation for 26 days and was treated with 5 subsequent doses of surfactant with temporary and short-term efficacy. He was discharged at 37 weeks of postconceptional age without any respiratory support. During the first 16 months of life he developed five respiratory infections that did not require hospitalization. Conclusion. This mild course in our patient with two mutations is peculiar because the outcome in patients with a single SFTPC mutation is usually poor.

  16. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease.

    Science.gov (United States)

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD.

  17. Visualizing Mutation-Specific Differences in the Trafficking-Deficient Phenotype of Kv11.1 Proteins Linked to Long QT Syndrome Type 2.

    Science.gov (United States)

    Hall, Allison R; Anderson, Corey L; Smith, Jennifer L; Mirshahi, Tooraj; Elayi, Claude S; January, Craig T; Delisle, Brian P

    2018-01-01

    KCNH2 encodes the Kv11.1 α-subunit that underlies the rapidly activating delayed-rectifier K + current in the heart. Loss-of-function KCNH2 mutations cause long QT syndrome type 2 (LQT2), and most LQT2-linked missense mutations inhibit the trafficking of Kv11.1 channel protein to the cell surface membrane. Several trafficking-deficient LQT2 mutations (e.g., G601S) generate Kv11.1 proteins that are sequestered in a microtubule-dependent quality control (QC) compartment in the transitional endoplasmic reticulum (ER). We tested the hypothesis that the QC mechanisms that regulate LQT2-linked Kv11.1 protein trafficking are mutation-specific. Confocal imaging analyses of HEK293 cells stably expressing the trafficking-deficient LQT2 mutation F805C showed that, unlike G601S-Kv11.1 protein, F805C-Kv11.1 protein was concentrated in several transitional ER subcompartments. The microtubule depolymerizing drug nocodazole differentially affected G601S- and F805C-Kv11.1 protein immunostaining. Nocodazole caused G601S-Kv11.1 protein to distribute into peripheral reticular structures, and it increased the diffuse immunostaining of F805C-Kv11.1 protein around the transitional ER subcompartments. Proteasome inhibition also affected the immunostaining of G601S- and F805C-Kv11.1 protein differently. Incubating cells in MG132 minimally impacted G601S-Kv11.1 immunostaining, but it dramatically increased the diffuse immunostaining of F805C-Kv11.1 protein in the transitional ER. Similar results were seen after incubating cells in the proteasome inhibitor lactacystin. Differences in the cellular distribution of G601S-Kv11.1 and F805C-Kv11.1 protein persisted in transfected human inducible pluripotent stem cell derived cardiomyocytes. These are the first data to visually demonstrate mutation-specific differences in the trafficking-deficient LQT2 phenotype, and this study has identified a novel way to categorize trafficking-deficient LQT2 mutations based on differences in intracellular

  18. Mutational analysis of the genome-linked protein of cowpea mosaic virus

    NARCIS (Netherlands)

    Carette, J.E.; Kujawa, A.; Gühl, K.; Verver, J.; Wellink, J.; Kammen, van A.

    2001-01-01

    In this study we have performed a mutational analysis of the cowpea mosaic comovirus (CPMV) genome-linked protein VPg to discern the structural requirements necessary for proper functioning of VPg. Either changing the serine residue linking VPg to RNA at a tyrosine or a threonine or changing the

  19. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  20. Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R

    Directory of Open Access Journals (Sweden)

    Katsufumi Tomobe

    2016-05-01

    Full Text Available The conformational change from the cellular prion protein (PrPc to scrapie prion protein (PrPsc is a key process in prion diseases. The prion protein has buried water molecules which significantly contribute to the stability of the protein; however, there has been no report investigating the influence on the buried hydration sites by a pathogenic mutation not adjacent to the buried hydration sites. Here, we perform molecular dynamics simulations of wild type (WT PrPc and pathogenic point mutant T188R to investigate conformational changes and the buried hydration sites. In WT-PrPc, four buried hydration sites are identified by residence time and rotational relaxation analysis. However, there are no stable buried hydration sites in one of T188R simulations, which indicates that T188R sometimes makes the buried hydration sites fragile. We also find that fluctuations of subdomains S1-H1-S2 and H1-H2 increase in T188R when the buried hydration sites become unstable. Since the side chain of arginine which is replaced from threonine in T188R is larger than of threonine, the side chain cannot be embedded in the protein, which is one of the causes of the instability of subdomains. These results show correlations between the buried hydration sites and the mutation which is far from them, and provide a possible explanation for the instability by mutation.

  1. Instability of buried hydration sites increases protein subdomains fluctuations in the human prion protein by the pathogenic mutation T188R

    Science.gov (United States)

    Tomobe, Katsufumi; Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2016-05-01

    The conformational change from the cellular prion protein (PrPc) to scrapie prion protein (PrPsc) is a key process in prion diseases. The prion protein has buried water molecules which significantly contribute to the stability of the protein; however, there has been no report investigating the influence on the buried hydration sites by a pathogenic mutation not adjacent to the buried hydration sites. Here, we perform molecular dynamics simulations of wild type (WT) PrPc and pathogenic point mutant T188R to investigate conformational changes and the buried hydration sites. In WT-PrPc, four buried hydration sites are identified by residence time and rotational relaxation analysis. However, there are no stable buried hydration sites in one of T188R simulations, which indicates that T188R sometimes makes the buried hydration sites fragile. We also find that fluctuations of subdomains S1-H1-S2 and H1-H2 increase in T188R when the buried hydration sites become unstable. Since the side chain of arginine which is replaced from threonine in T188R is larger than of threonine, the side chain cannot be embedded in the protein, which is one of the causes of the instability of subdomains. These results show correlations between the buried hydration sites and the mutation which is far from them, and provide a possible explanation for the instability by mutation.

  2. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    OpenAIRE

    Strub, Caroline; Alies, Carole; Lougarre, Andrée; Ladurantie, Caroline; Czaplicki, Jerzy; Fournier, Didier

    2004-01-01

    Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful...

  3. A plastome mutation affects processing of both chloroplast and nuclear DNA-encoded plastid proteins.

    Science.gov (United States)

    Johnson, E M; Schnabelrauch, L S; Sears, B B

    1991-01-01

    Immunoblotting of a chloroplast mutant (pm7) of Oenothera showed that three proteins, cytochrome f and the 23 kDa and 16 kDa subunits of the oxygen-evolving subcomplex of photosystem II, were larger than the corresponding mature proteins of the wild type and, thus, appear to be improperly processed in pm7. The mutant is also chlorotic and has little or no internal membrane development in the plastids. The improperly processed proteins, and other proteins that are completely missing, represent products of both the plastid and nuclear genomes. To test for linkage of these defects, a green revertant of pm7 was isolated from cultures in which the mutant plastids were maintained in a nuclear background homozygous for the plastome mutator (pm) gene. In this revertant, all proteins analyzed co-reverted to the wild-type condition, indicating that a single mutation in a plastome gene is responsible for the complex phenotype of pm7. These results suggest that the defect in pm7 lies in a gene that affects a processing protease encoded in the chloroplast genome.

  4. The combination of heteroduplex analysis and protein truncation test for exact detection of the APC gene mutations

    International Nuclear Information System (INIS)

    Tomka, M.; Kirchhoff, T.; Stefurkova, V.; Zajac, V.; Kulcsar, L.

    1998-01-01

    Familial adenomatous polyposis (FAP) is usually associated with mutation in the adenomatous polyposis coli (APC) gene. To examine the occurrence of these mutations in the number of FAP suspected families from the whole Slovakia effectively, we have applied heteroduplex analysis (HDA) and protein truncation test (PTT) for the analyses of 2-5 base pair deletions and point mutations of the APC gene. In the analyzed exon 15 of the APC gene determined by the primers 15Efor-15Grev for HDA and 15ET7-15J3 for PTT more than 70% of mutations should be deletions [3, 12], which are detectable by HDA. In our collection of 5 FAP families mutations in the APC gene were found in families 10, 27 and 41 using HDA. By PTT test the formation of truncated APC protein in FAP families 2, 10, 16 and 27 were revealed. The necessity of combination of at least HDA and PTT techniques for exact detection of APC mutations in analyzed APC region is discussed. (authors)

  5. The effect of driving force on intramolecular electron transfer in proteins. Studies on single-site mutated azurins

    DEFF Research Database (Denmark)

    Farver, O; Skov, L K; van de Kamp, M

    1992-01-01

    -6972]. To further investigate the nature of this long-range electron transfer (LRET) proceeding within the protein matrix, we have now investigated it in two azurins where amino acids have been substituted by single-site mutation of the wild-type Pseudomonas aeruginosa azurin. In one mutated protein, a methionine...... the reorganization energy, lambda and electronic coupling factor, beta. The calculated values fit very well with a through-bond LRET mechanism....

  6. Truncating Plakophilin-2 Mutations in Arrhythmogenic Cardiomyopathy Are Associated with Protein Haploinsufficiency in Both Myocardium and Epidermis

    DEFF Research Database (Denmark)

    Rasmussen, Torsten Bloch; Nissen, Peter H; Palmfeldt, Johan

    2014-01-01

    BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is a hereditary cardiac condition associated with ventricular arrhythmias, heart failure, and sudden death. The disease is most often caused by mutations in the desmosomal gene for plakophilin-2 (PKP2), which is expressed in both myocardial...... and epidermal tissue. This study aimed to investigate protein expression in myocardial tissue of patients with AC carrying PKP2 mutations and elucidate whether keratinocytes of the same individuals exhibited a similar pattern of protein expression. METHODS AND RESULTS: Direct sequencing of 5 AC genes in 71...... unrelated patients with AC identified 10 different PKP2 mutations in 12 index patients. One patient, heterozygous for a PKP2 nonsense mutation, developed severe heart failure and underwent cardiac transplantation. Western blotting and immunohistochemistry of the explanted heart showed a significant decrease...

  7. Ancestral mutations as a tool for solubilizing proteins: The case of a hydrophobic phosphate-binding protein

    Directory of Open Access Journals (Sweden)

    Daniel Gonzalez

    2014-01-01

    Full Text Available Stable and soluble proteins are ideal candidates for functional and structural studies. Unfortunately, some proteins or enzymes can be difficult to isolate, being sometimes poorly expressed in heterologous systems, insoluble and/or unstable. Numerous methods have been developed to address these issues, from the screening of various expression systems to the modification of the target protein itself. Here we use a hydrophobic, aggregation-prone, phosphate-binding protein (HPBP as a case study. We describe a simple and fast method that selectively uses ancestral mutations to generate a soluble, stable and functional variant of the target protein, here named sHPBP. This variant is highly expressed in Escherichia coli, is easily purified and its structure was solved at much higher resolution than its wild-type progenitor (1.3 versus 1.9 Å, respectively.

  8. ReplacementMatrix: a web server for maximum-likelihood estimation of amino acid replacement rate matrices.

    Science.gov (United States)

    Dang, Cuong Cao; Lefort, Vincent; Le, Vinh Sy; Le, Quang Si; Gascuel, Olivier

    2011-10-01

    Amino acid replacement rate matrices are an essential basis of protein studies (e.g. in phylogenetics and alignment). A number of general purpose matrices have been proposed (e.g. JTT, WAG, LG) since the seminal work of Margaret Dayhoff and co-workers. However, it has been shown that matrices specific to certain protein groups (e.g. mitochondrial) or life domains (e.g. viruses) differ significantly from general average matrices, and thus perform better when applied to the data to which they are dedicated. This Web server implements the maximum-likelihood estimation procedure that was used to estimate LG, and provides a number of tools and facilities. Users upload a set of multiple protein alignments from their domain of interest and receive the resulting matrix by email, along with statistics and comparisons with other matrices. A non-parametric bootstrap is performed optionally to assess the variability of replacement rate estimates. Maximum-likelihood trees, inferred using the estimated rate matrix, are also computed optionally for each input alignment. Finely tuned procedures and up-to-date ML software (PhyML 3.0, XRATE) are combined to perform all these heavy calculations on our clusters. http://www.atgc-montpellier.fr/ReplacementMatrix/ olivier.gascuel@lirmm.fr Supplementary data are available at http://www.atgc-montpellier.fr/ReplacementMatrix/

  9. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-07-15

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance.

  10. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    Science.gov (United States)

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-line mutant proteins observed in patients with Li-Fraumeni syndrome, second primary neoplasms, or familial breast cancer to block the growth of malignant cells and compared the structural properties of the mutant proteins to that of the wild-type protein. Six of seven missense mutations disrupted the growth inhibitory properties and structure of the wild-type protein. One germ-line mutation retained the features of the wild-type p53. Genetic analysis of the breast cancer family in which this mutation was observed indicated that this germ-line mutation was not associated with the development of cancer. These results demonstrate that germ-line p53 mutations observed in patients with Li-Fraumeni syndrome and with second malignancies have inactivated the p53 tumor suppressor gene. The inability of the germ-line p53 mutants to block the growth of malignant cells can explain why patients with these germ-line mutations have an increased risk for cancer. The observation of a functionally silent germ-line mutation indicates that, before associating a germ-line tumor suppressor gene mutation with cancer risk, it is prudent to consider its functional significance. Images PMID:1631137

  11. Molecular Diagnostics of Copper-Transporting Protein Mutations Allows Early Onset Individual Therapy of Menkes Disease.

    Science.gov (United States)

    Králík, L; Flachsová, E; Hansíková, H; Saudek, V; Zeman, J; Martásek, P

    2017-01-01

    Menkes disease is a severe X-linked recessive disorder caused by a defect in the ATP7A gene, which encodes a membrane copper-transporting ATPase. Deficient activity of the ATP7A protein results in decreased intestinal absorption of copper, low copper level in serum and defective distribution of copper in tissues. The clinical symptoms are caused by decreased activities of copper-dependent enzymes and include neurodegeneration, connective tissue disorders, arterial changes and hair abnormalities. Without therapy, the disease is fatal in early infancy. Rapid diagnosis of Menkes disease and early start of copper therapy is critical for the effectiveness of treatment. We report a molecular biology-based strategy that allows early diagnosis of copper transport defects and implementation of individual therapies before the full development of pathological symptoms. Low serum copper and decreased activity of copperdependent mitochondrial cytochrome c oxidase in isolated platelets found in three patients indicated a possibility of functional defects in copper-transporting proteins, especially in the ATPA7 protein, a copper- transporting P-type ATPase. Rapid mutational screening of the ATP7A gene using high-resolution melting analysis of DNA indicated presence of mutations in the patients. Molecular investigation for mutations in the ATP7A gene revealed three nonsense mutations: c.2170C>T (p.Gln724Ter); c.3745G>T (p.Glu1249Ter); and c.3862C>T (p.Gln1288Ter). The mutation c.3745G>T (p.Glu1249Ter) has not been identified previously. Molecular analysis of the ATOX1 gene as a possible modulating factor of Menkes disease did not reveal presence of pathogenic mutations. Molecular diagnostics allowed early onset of individual therapies, adequate genetic counselling and prenatal diagnosis in the affected families.

  12. Vacuolar Protein Sorting Genes in Parkinson's Disease: A Re-appraisal of Mutations Detection Rate and Neurobiology of Disease

    Science.gov (United States)

    Gambardella, Stefano; Biagioni, Francesca; Ferese, Rosangela; Busceti, Carla L.; Frati, Alessandro; Novelli, Giuseppe; Ruggieri, Stefano; Fornai, Francesco

    2016-01-01

    Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN). Recently, retromer alterations have been related to the onset of Parkinson's Disease (PD) since the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35) was identified as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation. Other mutations in VPS genes have been reported in both sporadic and familial PD. These mutations are less defined. Understanding the specific prevalence of all VPS gene mutations is key to understand the relevance of retromers impairment in the onset of PD. A number of PD-related mutations despite affecting different biochemical systems (autophagy, mitophagy, proteasome, endosomes, protein folding), all converge in producing an impairment in cell clearance. This may explain how genetic predispositions to PD may derive from slightly deleterious VPS mutations when combined with environmental agents overwhelming the clearance of the cell. This manuscript reviews genetic data produced in the last 5 years to re-define the actual prevalence of VPS gene mutations in the onset of PD. The prevalence of p.Asp620Asn mutation in VPS35 is 0.286 of familial PD. This increases up to 0.548 when considering mutations affecting all VPS genes. This configures mutations in VPS genes as the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the role played by retromers in the neurobiology of PD, suggests environmentally-induced VPS alterations as crucial in the genesis of PD. PMID:27932943

  13. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G

  14. A search for mutations affecting protein structure in children of proximally and distally exposed atomic bomb survivors

    International Nuclear Information System (INIS)

    Neel, J.V.; Satoh, Chiyoko; Hamilton, H.B.; Otake, Masanori; Goriki, Kazuaki; Kageoka, Takeshi; Fujita, Mikio; Neriishi, Shotaro; Asakawa, Jun-ichi.

    1981-07-01

    A total of 289,868 locus tests based on 28 different protein phenotypes, employing one-dimensional electrophoresis to detect variant proteins, has yielded one probable mutation in the offspring of 'proximally exposed' parents, who received an estimated average gonadal exposure dose of between 31 and 39 rem from the atomic bombs in Hiroshima and Nagasaki. There were no mutations in 208,196 locus tests involving children of 'distally exposed' parents, who had essentially no radiation exposure. (author)

  15. Single Molecule Effects of Osteogenesis Imperfecta Mutations in Tropocollagen Protein Domains

    Science.gov (United States)

    2008-12-02

    Single molecule effects of osteogenesis imperfecta mutations in tropocollagen protein domains Alfonso Gautieri,1,2 Simone Vesentini,2 Alberto...2008 proteinscience.org Abstract: Osteogenesis imperfecta (OI) is a genetic disease characterized by fragile bones, skeletal deformities and, in severe...diagnosis and treatment, an effort referred to as materiomics. Keywords: steered molecular dynamics; osteogenesis imperfecta ; Young’s modulus; collagen

  16. Selective translational repression of truncated proteins from frameshift mutation-derived mRNAs in tumors.

    Directory of Open Access Journals (Sweden)

    Kwon Tae You

    2007-05-01

    Full Text Available Frameshift and nonsense mutations are common in tumors with microsatellite instability, and mRNAs from these mutated genes have premature termination codons (PTCs. Abnormal mRNAs containing PTCs are normally degraded by the nonsense-mediated mRNA decay (NMD system. However, PTCs located within 50-55 nucleotides of the last exon-exon junction are not recognized by NMD (NMD-irrelevant, and some PTC-containing mRNAs can escape from the NMD system (NMD-escape. We investigated protein expression from NMD-irrelevant and NMD-escape PTC-containing mRNAs by Western blotting and transfection assays. We demonstrated that transfection of NMD-irrelevant PTC-containing genomic DNA of MARCKS generates truncated protein. In contrast, NMD-escape PTC-containing versions of hMSH3 and TGFBR2 generate normal levels of mRNA, but do not generate detectable levels of protein. Transfection of NMD-escape mutant TGFBR2 genomic DNA failed to generate expression of truncated proteins, whereas transfection of wild-type TGFBR2 genomic DNA or mutant PTC-containing TGFBR2 cDNA generated expression of wild-type protein and truncated protein, respectively. Our findings suggest a novel mechanism of gene expression regulation for PTC-containing mRNAs in which the deleterious transcripts are regulated either by NMD or translational repression.

  17. Protein flexibility: coordinate uncertainties and interpretation of structural differences

    Energy Technology Data Exchange (ETDEWEB)

    Rashin, Alexander A., E-mail: alexander-rashin@hotmail.com [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); Rashin, Abraham H. L. [BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States); Rutgers, The State University of New Jersey, 22371 BPO WAY, Piscataway, NJ 08854-8123 (United States); Jernigan, Robert L. [LH Baker Center for Bioinformatics and Department of Biochemistry, Biophysics and Molecular Biology, 112 Office and Lab Building, Iowa State University, Ames, IA 50011-3020 (United States); BioChemComp Inc., 543 Sagamore Avenue, Teaneck, NJ 07666 (United States)

    2009-11-01

    Criteria for the interpretability of coordinate differences and a new method for identifying rigid-body motions and nonrigid deformations in protein conformational changes are developed and applied to functionally induced and crystallization-induced conformational changes. Valid interpretations of conformational movements in protein structures determined by X-ray crystallography require that the movement magnitudes exceed their uncertainty threshold. Here, it is shown that such thresholds can be obtained from the distance difference matrices (DDMs) of 1014 pairs of independently determined structures of bovine ribonuclease A and sperm whale myoglobin, with no explanations provided for reportedly minor coordinate differences. The smallest magnitudes of reportedly functional motions are just above these thresholds. Uncertainty thresholds can provide objective criteria that distinguish between true conformational changes and apparent ‘noise’, showing that some previous interpretations of protein coordinate changes attributed to external conditions or mutations may be doubtful or erroneous. The use of uncertainty thresholds, DDMs, the newly introduced CDDMs (contact distance difference matrices) and a novel simple rotation algorithm allows a more meaningful classification and description of protein motions, distinguishing between various rigid-fragment motions and nonrigid conformational deformations. It is also shown that half of 75 pairs of identical molecules, each from the same asymmetric crystallographic cell, exhibit coordinate differences that range from just outside the coordinate uncertainty threshold to the full magnitude of large functional movements. Thus, crystallization might often induce protein conformational changes that are comparable to those related to or induced by the protein function.

  18. Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

    OpenAIRE

    Pevzner, Pavel A.; Mulyukov, Zufar; Dancik, Vlado; Tang, Chris L

    2001-01-01

    Although protein identification by matching tandem mass spectra (MS/MS) against protein databases is a widespread tool in mass spectrometry, the question about reliability of such searches remains open. Absence of rigorous significance scores in MS/MS database search makes it difficult to discard random database hits and may lead to erroneous protein identification, particularly in the case of mutated or post-translationally modified peptides. This problem is especially important for high-thr...

  19. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    Science.gov (United States)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  20. MALDI matrices for low molecular weight compounds: an endless story?

    Science.gov (United States)

    Calvano, Cosima Damiana; Monopoli, Antonio; Cataldi, Tommaso R I; Palmisano, Francesco

    2018-04-23

    Since its introduction in the 1980s, matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) has gained a prominent role in the analysis of high molecular weight biomolecules such as proteins, peptides, oligonucleotides, and polysaccharides. Its application to low molecular weight compounds has remained for long time challenging due to the spectral interferences produced by conventional organic matrices in the low m/z window. To overcome this problem, specific sample preparation such as analyte/matrix derivatization, addition of dopants, or sophisticated deposition technique especially useful for imaging experiments, have been proposed. Alternative approaches based on second generation (rationally designed) organic matrices, ionic liquids, and inorganic matrices, including metallic nanoparticles, have been the object of intense and continuous research efforts. Definite evidences are now provided that MALDI MS represents a powerful and invaluable analytical tool also for small molecules, including their quantification, thus opening new, exciting applications in metabolomics and imaging mass spectrometry. This review is intended to offer a concise critical overview of the most recent achievements about MALDI matrices capable of specifically address the challenging issue of small molecules analysis. Graphical abstract An ideal Book of matrices for MALDI MS of small molecules.

  1. Three novel and the common Arg677Ter RP1 protein truncating mutations causing autosomal dominant retinitis pigmentosa in a Spanish population

    Directory of Open Access Journals (Sweden)

    Antiñolo Guillermo

    2006-04-01

    Full Text Available Abstract Background Retinitis pigmentosa (RP, a clinically and genetically heterogeneous group of retinal degeneration disorders affecting the photoreceptor cells, is one of the leading causes of genetic blindness. Mutations in the photoreceptor-specific gene RP1 account for 3–10% of cases of autosomal dominant RP (adRP. Most of these mutations are clustered in a 500 bp region of exon 4 of RP1. Methods Denaturing gradient gel electrophoresis (DGGE analysis and direct genomic sequencing were used to evaluate the 5' coding region of exon 4 of the RP1 gene for mutations in 150 unrelated index adRP patients. Ophthalmic and electrophysiological examination of RP patients and relatives according to pre-existing protocols were carried out. Results Three novel disease-causing mutations in RP1 were detected: Q686X, K705fsX712 and K722fsX737, predicting truncated proteins. One novel missense mutation, Thr752Met, was detected in one family but the mutation does not co-segregate in the family, thereby excluding this amino acid variation in the protein as a cause of the disease. We found the Arg677Ter mutation, previously reported in other populations, in two independent families, confirming that this mutation is also present in a Spanish population. Conclusion Most of the mutations reported in the RP1 gene associated with adRP are expected to encode mutant truncated proteins that are approximately one third or half of the size of wild type protein. Patients with mutations in RP1 showed mild RP with variability in phenotype severity. We also observed several cases of non-penetrant mutations.

  2. Functional implications of the p.Cys680Arg mutation in the MLH1 mismatch repair protein

    DEFF Research Database (Denmark)

    Dominguez-Valentin, Mev; Drost, Mark; Therkildsen, Christina

    2014-01-01

    >C missense mutation in exon 18 of the human MLH1 gene and biochemically characterization of the p.Cys680Arg mutant MLH1 protein to implicate it in the pathogenicity of the Lynch syndrome (LS). We show that the mutation is deficient in DNA mismatch repair and, therefore, contributing to LS in the carriers....

  3. Correlated mutations in protein sequences: Phylogenetic and structural effects

    Energy Technology Data Exchange (ETDEWEB)

    Lapedes, A.S. [Los Alamos National Lab., NM (United States). Theoretical Div.]|[Santa Fe Inst., NM (United States); Giraud, B.G. [C.E.N. Saclay, Gif/Yvette (France). Service Physique Theorique; Liu, L.C. [Los Alamos National Lab., NM (United States). Theoretical Div.; Stormo, G.D. [Univ. of Colorado, Boulder, CO (United States). Dept. of Molecular, Cellular and Developmental Biology

    1998-12-01

    Covariation analysis of sets of aligned sequences for RNA molecules is relatively successful in elucidating RNA secondary structure, as well as some aspects of tertiary structure. Covariation analysis of sets of aligned sequences for protein molecules is successful in certain instances in elucidating certain structural and functional links, but in general, pairs of sites displaying highly covarying mutations in protein sequences do not necessarily correspond to sites that are spatially close in the protein structure. In this paper the authors identify two reasons why naive use of covariation analysis for protein sequences fails to reliably indicate sequence positions that are spatially proximate. The first reason involves the bias introduced in calculation of covariation measures due to the fact that biological sequences are generally related by a non-trivial phylogenetic tree. The authors present a null-model approach to solve this problem. The second reason involves linked chains of covariation which can result in pairs of sites displaying significant covariation even though they are not spatially proximate. They present a maximum entropy solution to this classic problem of causation versus correlation. The methodologies are validated in simulation.

  4. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces.

    NARCIS (Netherlands)

    Venselaar, H.; Beek, T.A.H. te; Kuipers, R.K.P.; Hekkelman, M.L.; Vriend, G.

    2010-01-01

    BACKGROUND: Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of

  5. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces

    NARCIS (Netherlands)

    Venselaar, H.; Beek, T.A.H.; Kuipers, R.K.P.; Hekkelman, M.L.; Vriend, G.

    2010-01-01

    Background: Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of

  6. Mutations within the nuclear localization signal of the porcine reproductive and respiratory syndrome virus nucleocapsid protein attenuate virus replication

    International Nuclear Information System (INIS)

    Lee, Changhee; Hodgins, Douglas; Calvert, Jay G.; Welch, Siao-Kun W.; Jolie, Rika; Yoo, Dongwan

    2006-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an RNA virus replicating in the cytoplasm, but the nucleocapsid (N) protein is specifically localized to the nucleus and nucleolus in virus-infected cells. A 'pat7' motif of 41-PGKK(N/S)KK has previously been identified in the N protein as the functional nuclear localization signal (NLS); however, the biological consequences of N protein nuclear localization are unknown. In the present study, the role of N protein nuclear localization during infection was investigated in pigs using an NLS-null mutant virus. When two lysines at 43 and 44 at the NLS locus were substituted to glycines, the modified NLS with 41-PGGGNKK restricted the N protein to the cytoplasm. This NLS-null mutation was introduced into a full-length infectious cDNA clone of PRRSV. Upon transfection of cells, the NLS-null full-length clone induced cytopathic effects and produced infectious progeny. The NLS-null virus grew to a titer 100-fold lower than that of wild-type virus. To examine the response to NLS-null PRRSV in the natural host, three groups of pigs, consisting of seven animals per group, were intranasally inoculated with wild-type, placebo, or NLS-null virus, and the animals were maintained for 4 weeks. The NLS-null-infected pigs had a significantly shorter mean duration of viremia than wild-type-infected pigs but developed significantly higher titers of neutralizing antibodies. Mutations occurred at the NLS locus in one pig during viremia, and four types of mutations were identified: 41-PGRGNKK, 41-PGGRNKK, and 41-PGRRNKK, and 41-PGKKSKK. Both wild-type and NLS-null viruses persisted in the tonsils for at least 4 weeks, and the NLS-null virus persisting in the tonsils was found to be mutated to either 41-PGRGNKK or 41-PGGRNKK in all pigs. No other mutation was found in the N gene. All types of reversions which occurred during viremia and persistence were able to translocate the mutated N proteins to the nucleus, indicating a

  7. Coat Protein Mutations That Alter the Flux of Morphogenetic Intermediates through the ϕX174 Early Assembly Pathway.

    Science.gov (United States)

    Blackburn, Brody J; Li, Shuaizhi; Roznowski, Aaron P; Perez, Alexis R; Villarreal, Rodrigo H; Johnson, Curtis J; Hardy, Margaret; Tuckerman, Edward C; Burch, April D; Fane, Bentley A

    2017-12-15

    Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability. IMPORTANCE Genetic analyses have been

  8. Infinite matrices and sequence spaces

    CERN Document Server

    Cooke, Richard G

    2014-01-01

    This clear and correct summation of basic results from a specialized field focuses on the behavior of infinite matrices in general, rather than on properties of special matrices. Three introductory chapters guide students to the manipulation of infinite matrices, covering definitions and preliminary ideas, reciprocals of infinite matrices, and linear equations involving infinite matrices.From the fourth chapter onward, the author treats the application of infinite matrices to the summability of divergent sequences and series from various points of view. Topics include consistency, mutual consi

  9. Complex Wedge-Shaped Matrices: A Generalization of Jacobi Matrices

    Czech Academy of Sciences Publication Activity Database

    Hnětynková, Iveta; Plešinger, M.

    2015-01-01

    Roč. 487, 15 December (2015), s. 203-219 ISSN 0024-3795 R&D Projects: GA ČR GA13-06684S Keywords : eigenvalues * eigenvector * wedge-shaped matrices * generalized Jacobi matrices * band (or block) Krylov subspace methods Subject RIV: BA - General Mathematics Impact factor: 0.965, year: 2015

  10. A novel germline mutation in the aryl hydrocarbon receptor-interacting protein (AIP) gene in an Italian family with gigantism.

    Science.gov (United States)

    Urbani, C; Russo, D; Raggi, F; Lombardi, M; Sardella, C; Scattina, I; Lupi, I; Manetti, L; Tomisti, L; Marcocci, C; Martino, E; Bogazzi, F

    2014-10-01

    Acromegaly usually occurs as a sporadic disease, but it may be a part of familial pituitary tumor syndromes in rare cases. Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene have been associated with a predisposition to familial isolated pituitary adenoma. The aim of the present study was to evaluate the AIP gene in a patient with gigantism and in her relatives. Direct sequencing of AIP gene was performed in fourteen members of the family, spanning among three generations. The index case was an 18-year-old woman with gigantism due to an invasive GH-secreting pituitary adenoma and a concomitant tall-cell variant of papillary thyroid carcinoma. A novel germline mutation in the AIP gene (c.685C>T, p.Q229X) was identified in the proband and in two members of her family, who did not present clinical features of acromegaly or other pituitary disorders. Eleven subjects had no mutation in the AIP gene. Two members of the family with clinical features of acromegaly refused either the genetic or the biochemical evaluation. The Q229X mutation was predicted to generate a truncated AIP protein, lacking the last two tetratricopeptide repeat domains and the final C-terminal α-7 helix. We identified a new AIP germline mutation predicted to produce a truncated AIP protein, lacking its biological properties due to the disruption of the C-terminus binding sites for both the chaperones and the client proteins of AIP.

  11. Nucleolar localization of cirhin, the protein mutated in North American Indian childhood cirrhosis

    International Nuclear Information System (INIS)

    Yu, Bin; Mitchell, Grant A.; Richter, Andrea

    2005-01-01

    Cirhin (NP 1 16219), the product of the CIRH1A gene is mutated in North American Indian childhood cirrhosis (NAIC/CIRH1A, OMIM 604901), a severe autosomal recessive intrahepatic cholestasis. It is a 686-amino-acid WD40-repeat containing protein of unknown function that is predicted to contain multiple targeting signals, including an N-terminal mitochondrial targeting signal, a C-terminal monopartite nuclear localization signal (NLS) and a bipartite nuclear localization signal (BNLS). We performed the direct determination of subcellular localization of cirhin as a crucial first step in unraveling its biological function. Using EGFP and His-tagged cirhin fusion proteins expressed in HeLa and HepG2, cells we show that cirhin is a nucleolar protein and that the R565W mutation, for which all NAIC patients are homozygous, has no effect on subcellular localization. Cirhin has an active C-terminal monopartite nuclear localization signal (NLS) and a unique nucleolar localization signal (NrLS) between residues 315 and 432. The nucleolus is not known to be important specifically for intrahepatic cholestasis. These observations provide a new dimension in the study of hereditary cholestasis

  12. Mutations in the Bacterial Ribosomal Protein L3 and Their Association with Antibiotic Resistance

    Science.gov (United States)

    Klitgaard, Rasmus N.; Ntokou, Eleni; Nørgaard, Katrine; Biltoft, Daniel; Hansen, Lykke H.; Trædholm, Nicolai M.; Kongsted, Jacob

    2015-01-01

    Different groups of antibiotics bind to the peptidyl transferase center (PTC) in the large subunit of the bacterial ribosome. Resistance to these groups of antibiotics has often been linked with mutations or methylations of the 23S rRNA. In recent years, there has been a rise in the number of studies where mutations have been found in the ribosomal protein L3 in bacterial strains resistant to PTC-targeting antibiotics but there is often no evidence that these mutations actually confer antibiotic resistance. In this study, a plasmid exchange system was used to replace plasmid-carried wild-type genes with mutated L3 genes in a chromosomal L3 deletion strain. In this way, the essential L3 gene is available for the bacteria while allowing replacement of the wild type with mutated L3 genes. This enables investigation of the effect of single mutations in Escherichia coli without a wild-type L3 background. Ten plasmid-carried mutated L3 genes were constructed, and their effect on growth and antibiotic susceptibility was investigated. Additionally, computational modeling of the impact of L3 mutations in E. coli was used to assess changes in 50S structure and antibiotic binding. All mutations are placed in the loops of L3 near the PTC. Growth data show that 9 of the 10 mutations were well accepted in E. coli, although some of them came with a fitness cost. Only one of the mutants exhibited reduced susceptibility to linezolid, while five exhibited reduced susceptibility to tiamulin. PMID:25845869

  13. Symptomatic type 1 protein C deficiency caused by a de novo Ser270Leu mutation in the catalytic domain

    DEFF Research Database (Denmark)

    Lind, B; Koefoed, P; Thorsen, S

    2001-01-01

    the intracellular content of mutant and wild-type protein was similar. Northern blot analysis of total mRNA from transfected cells showed no reduction of the mutant protein C mRNA compared with wild-type protein C mRNA. Collectively, these results indicate that the Ser270Leu mutation in the affected family caused......Heterozygosity for a C8524T transition in the protein C gene converting Ser270(TCG) to Leu(TTG) in the protease domain was identified in a family with venous thrombosis. The mutation was associated with parallel reduction in plasma levels of protein C anticoagulant activity and protein C antigen......, which is consistent with a type 1 deficiency. Transient expression of mutant protein C cDNA in human kidney 293 cells and analysis of protein C antigen in culture media and cell lysates showed that the secretion of mutant protein compared with wild-type protein was reduced by at least 97% while...

  14. Identification of the first nonsense CDSN mutation with expression of a truncated protein causing peeling skin syndrome type B.

    Science.gov (United States)

    Mallet, A; Kypriotou, M; George, K; Leclerc, E; Rivero, D; Mazereeuw-Hautier, J; Serre, G; Huber, M; Jonca, N; Hohl, D

    2013-12-01

    Peeling skin disease (PSD), a generalized inflammatory form of peeling skin syndrome, is caused by autosomal recessive nonsense mutations in the corneodesmosin gene (CDSN). To investigate a novel mutation in CDSN. A 50-year-old white woman showed widespread peeling with erythema and elevated serum IgE. DNA sequencing, immunohistochemistry, Western blot and real-time polymerase chain reaction analyses of skin biopsies were performed in order to study the genetics and to characterize the molecular profile of the disease. Histology showed hyperkeratosis and acanthosis of the epidermis, and inflammatory infiltrates in the dermis. DNA sequencing revealed a homozygous mutation leading to a premature termination codon in CDSN: p.Gly142*. Protein analyses showed reduced expression of a 16-kDa corneodesmosin mutant in the upper epidermal layers, whereas the full-length protein was absent. These results are interesting regarding the genotype-phenotype correlations in diseases caused by CDSN mutations. The PSD-causing CDSN mutations identified heretofore result in total corneodesmosin loss, suggesting that PSD is due to full corneodesmosin deficiency. Here, we show for the first time that a mutant corneodesmosin can be stably expressed in some patients with PSD, and that this truncated protein is very probably nonfunctional. © 2013 British Association of Dermatologists.

  15. A novel mutation (C1425Y) in the FBN2 gene in a father and son with congenital contractural arachnodactyly.

    Science.gov (United States)

    Chen, Ying; Lei, Yun-Ping; Zheng, Hong-Xiang; Wang, Wei; Cheng, Hong-Bo; Zhang, Jing; Wang, Hong-Yan; Jin, Li; Li, Hong

    2009-06-01

    Congenital contractural arachnodactyly (Beals syndrome) is a rare autosomal dominantly inherited connective tissue disorder characterized by flexion contractures, arachnodactyly, crumpled ears, and mild muscular hypoplasia. Here, a father and son with congenital contractural arachnodactyly features were identified. After sequencing 15 exons (22 to 36) of the FBN2 gene, a novel mutation (C1425Y) was found in exon 33. This de novo mutation presented first in the father and was transmitted to his son, but not in the other 14 unaffected family members and 365 normal people. The C1425Y mutation occurs at the 19th cbEGF domain. Cysteines in this cbEGF domain are rather conserved in species, from human down to ascidian. The cbEGF12-13 in human FBN1 was employed as the template to perform homology modeling of cbEGF18-19 of human FBN2 protein. The mutation has also been evaluated by further prediction tools, for example, SIFT, Blosum62, biochemical Yu's matrice, and UMD-Predictor tool. In all analysis, the mutation is predicted to be pathogenic. Thus, the structure destabilization by C1425Y might be the cause of the disorder.

  16. Neutral evolution of proteins: The superfunnel in sequence space and its relation to mutational robustness

    Science.gov (United States)

    Noirel, Josselin; Simonson, Thomas

    2008-11-01

    Following Kimura's neutral theory of molecular evolution [M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983) (reprinted in 1986)], it has become common to assume that the vast majority of viable mutations of a gene confer little or no functional advantage. Yet, in silico models of protein evolution have shown that mutational robustness of sequences could be selected for, even in the context of neutral evolution. The evolution of a biological population can be seen as a diffusion on the network of viable sequences. This network is called a "neutral network." Depending on the mutation rate μ and the population size N, the biological population can evolve purely randomly (μN ≪1) or it can evolve in such a way as to select for sequences of higher mutational robustness (μN ≫1). The stringency of the selection depends not only on the product μN but also on the exact topology of the neutral network, the special arrangement of which was named "superfunnel." Even though the relation between mutation rate, population size, and selection was thoroughly investigated, a study of the salient topological features of the superfunnel that could affect the strength of the selection was wanting. This question is addressed in this study. We use two different models of proteins: on lattice and off lattice. We compare neutral networks computed using these models to random networks. From this, we identify two important factors of the topology that determine the stringency of the selection for mutationally robust sequences. First, the presence of highly connected nodes ("hubs") in the network increases the selection for mutationally robust sequences. Second, the stringency of the selection increases when the correlation between a sequence's mutational robustness and its neighbors' increases. The latter finding relates a global characteristic of the neutral network to a local one, which is attainable through experiments or molecular

  17. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces.

    Science.gov (United States)

    Venselaar, Hanka; Te Beek, Tim A H; Kuipers, Remko K P; Hekkelman, Maarten L; Vriend, Gert

    2010-11-08

    Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools. In this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the protein's 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (bio)medical researchers. We tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPE's results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.

  18. Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces

    Directory of Open Access Journals (Sweden)

    Hekkelman Maarten L

    2010-11-01

    Full Text Available Abstract Background Many newly detected point mutations are located in protein-coding regions of the human genome. Knowledge of their effects on the protein's 3D structure provides insight into the protein's mechanism, can aid the design of further experiments, and eventually can lead to the development of new medicines and diagnostic tools. Results In this article we describe HOPE, a fully automatic program that analyzes the structural and functional effects of point mutations. HOPE collects information from a wide range of information sources including calculations on the 3D coordinates of the protein by using WHAT IF Web services, sequence annotations from the UniProt database, and predictions by DAS services. Homology models are built with YASARA. Data is stored in a database and used in a decision scheme to identify the effects of a mutation on the protein's 3D structure and function. HOPE builds a report with text, figures, and animations that is easy to use and understandable for (biomedical researchers. Conclusions We tested HOPE by comparing its output to the results of manually performed projects. In all straightforward cases HOPE performed similar to a trained bioinformatician. The use of 3D structures helps optimize the results in terms of reliability and details. HOPE's results are easy to understand and are presented in a way that is attractive for researchers without an extensive bioinformatics background.

  19. Three genes for mitochondrial proteins suppress null-mutations in both Afg3 and Rca1 when over-expressed.

    Science.gov (United States)

    Rep, M; Nooy, J; Guélin, E; Grivell, L A

    1996-08-01

    The AFG3 gene of Saccharomyces cerevisiae encodes a mitochondrial inner membrane protein with ATP-dependent protease activity. To gain more insight into the function of this protein, multi-copy suppressors of an afg3-null mutation were isolated. Three genes were found that restored partial growth on non-fermentable carbon sources, all of which affect the biogenesis of respiratory competent mitochondria: PIM1(LON) encodes a matrix-localized ATP-dependent protease involved in the turnover of matrix proteins; OXA1(PET1402) encodes a putative mitochondrial inner membrane protein involved in the biogenesis of the respiratory chain; and MBA1 encodes a mitochondrial protein required for optimal respiratory growth. All three genes also suppressed a null mutation in a related gene, RCA1, as well as in the combination of afg3- and rca1-null.

  20. Comparative genomic analysis identified a mutation related to enhanced heterologous protein production in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Jin, Feng-Jie; Katayama, Takuya; Maruyama, Jun-Ichi; Kitamoto, Katsuhiko

    2016-11-01

    Genomic mapping of mutations using next-generation sequencing technologies has facilitated the identification of genes contributing to fundamental biological processes, including human diseases. However, few studies have used this approach to identify mutations contributing to heterologous protein production in industrial strains of filamentous fungi, such as Aspergillus oryzae. In a screening of A. oryzae strains that hyper-produce human lysozyme (HLY), we previously isolated an AUT1 mutant that showed higher production of various heterologous proteins; however, the underlying factors contributing to the increased heterologous protein production remained unclear. Here, using a comparative genomic approach performed with whole-genome sequences, we attempted to identify the genes responsible for the high-level production of heterologous proteins in the AUT1 mutant. The comparative sequence analysis led to the detection of a gene (AO090120000003), designated autA, which was predicted to encode an unknown cytoplasmic protein containing an alpha/beta-hydrolase fold domain. Mutation or deletion of autA was associated with higher production levels of HLY. Specifically, the HLY yields of the autA mutant and deletion strains were twofold higher than that of the control strain during the early stages of cultivation. Taken together, these results indicate that combining classical mutagenesis approaches with comparative genomic analysis facilitates the identification of novel genes involved in heterologous protein production in filamentous fungi.

  1. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation.

    Science.gov (United States)

    Negahdar, Maria; Aukrust, Ingvild; Molnes, Janne; Solheim, Marie H; Johansson, Bente B; Sagen, Jørn V; Dahl-Jørgensen, Knut; Kulkarni, Rohit N; Søvik, Oddmund; Flatmark, Torgeir; Njølstad, Pål R; Bjørkhaug, Lise

    2014-01-25

    GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. A nonadaptive origin of a beneficial trait: in silico selection for free energy of folding leads to the neutral emergence of mutational robustness in single domain proteins.

    Science.gov (United States)

    Pagan, Rafael F; Massey, Steven E

    2014-02-01

    Proteins are regarded as being robust to the deleterious effects of mutations. Here, the neutral emergence of mutational robustness in a population of single domain proteins is explored using computer simulations. A pairwise contact model was used to calculate the ΔG of folding (ΔG folding) using the three dimensional protein structure of leech eglin C. A random amino acid sequence with low mutational robustness, defined as the average ΔΔG resulting from a point mutation (ΔΔG average), was threaded onto the structure. A population of 1,000 threaded sequences was evolved under selection for stability, using an upper and lower energy threshold. Under these conditions, mutational robustness increased over time in the most common sequence in the population. In contrast, when the wild type sequence was used it did not show an increase in robustness. This implies that the emergence of mutational robustness is sequence specific and that wild type sequences may be close to maximal robustness. In addition, an inverse relationship between ∆∆G average and protein stability is shown, resulting partly from a larger average effect of point mutations in more stable proteins. The emergence of mutational robustness was also observed in the Escherichia coli colE1 Rop and human CD59 proteins, implying that the property may be common in single domain proteins under certain simulation conditions. The results indicate that at least a portion of mutational robustness in small globular proteins might have arisen by a process of neutral emergence, and could be an example of a beneficial trait that has not been directly selected for, termed a "pseudaptation."

  3. On reflectionless equi-transmitting matrices

    Directory of Open Access Journals (Sweden)

    Pavel Kurasov

    2014-01-01

    Full Text Available Reflectionless equi-transmitting unitary matrices are studied in connection to matching conditions in quantum graphs. All possible such matrices of size 6 are described explicitly. It is shown that such matrices form 30 six-parameter families intersected along 12 five-parameter families closely connected to conference matrices.

  4. Identification of a Novel HADHB Gene Mutation in an Iranian Patient with Mitochondrial Trifunctional Protein Deficiency.

    Science.gov (United States)

    Shahrokhi, Mahdiyeh; Shafiei, Mohammad; Galehdari, Hamid; Shariati, Gholamreza

    2017-01-01

    Mitochondrial trifunctional protein (MTP) is a hetero-octamer composed of eight parts (subunits): four α-subunits containing LCEH (long-chain 2,3-enoyl-CoA  hydratase) and LCHAD (long-chain 3-hydroxyacyl CoA dehydrogenase) activity, and four β-subunits that possess LCKT (long-chain  3-ketoacyl-CoA thiolase) activity which catalyzes three out of four steps in β-oxidation spiral of long-chain fatty acid. Its deficiency is an autosomal recessive disorder that causes a clinical spectrum of diseases. A blood spot was collected from the patient's original newborn screening card with parental informed consent. A newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS were performed. After isolation of DNA and Amplification of all exons of the HADHA and HADHB, directly Sequence analyses of all exons and the flanking introns both of genes were performed. Here, we report a novel mutation in a patient with MTP deficiency diagnosed with newborn screening test and quantity plasma acylcarnitine profile analysis by MS/MS and then confirmed by enzyme analysis in cultured fibroblasts and direct sequencing of the HADHA and HADHB genes. Molecular analysis of causative genes showed a missense mutation (p.Q385P) c.1154A > C in exon 14 of HADHB gene. Since this mutation was not found in 50 normal control cases; so it was concluded that c.1154A > C mutation was a causative mutation. Phenotype analysis of this mutation predicted pathogenesis which reduces the stability of the MTP protein complex.

  5. Natural loss-of-function mutation of myeloid differentiation protein 88 disrupts its ability to form Myddosomes

    NARCIS (Netherlands)

    Nagpal, K.; Plantinga, T.S.; Sirois, C.M.; Monks, B.G.; Latz, E.; Netea, M.G.; Golenbock, D.T.

    2011-01-01

    Myeloid differentiation protein 88 (MyD88) is a key signaling adapter in Toll-like receptor (TLR) signaling. MyD88 is also one of the most polymorphic adapter proteins. We screened the reported nonsynonymous coding mutations in MyD88 to identify variants with altered function. In reporter assays, a

  6. Mutation of exposed hydrophobic amino acids to arginine to increase protein stability

    Directory of Open Access Journals (Sweden)

    Czaplicki Jerzy

    2004-07-01

    Full Text Available Abstract Background One strategy to increase the stability of proteins is to reduce the area of water-accessible hydrophobic surface. Results In order to test it, we replaced 14 solvent-exposed hydrophobic residues of acetylcholinesterase by arginine. The stabilities of the resulting proteins were tested using denaturation by high temperature, organic solvents, urea and by proteolytic digestion. Conclusion Altough the mutational effects were rather small, this strategy proved to be successful since half of the mutants showed an increased stability. This stability may originate from the suppression of unfavorable interactions of nonpolar residues with water or from addition of new hydrogen bonds with the solvent. Other mechanisms may also contribute to the increased stability observed with some mutants. For example, introduction of a charge at the surface of the protein may provide a new coulombic interaction on the protein surface.

  7. Correlation between the Insertion/Deletion Mutations of Prion Protein Gene and BSE Susceptibility and Milk Performance in Dairy Cows

    Directory of Open Access Journals (Sweden)

    Hu Shen-rong

    2013-12-01

    Full Text Available Objective To investigate the 23 bp and 12 bp insertion/deletion (indel mutations within the bovine prion protein (PRNP gene in Chinese dairy cows, and to detect the associations of two indel mutations with BSE susceptibility and milk performance.

  8. Mutational robustness of gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Mutational robustness of gene regulatory networks refers to their ability to generate constant biological output upon mutations that change network structure. Such networks contain regulatory interactions (transcription factor-target gene interactions but often also protein-protein interactions between transcription factors. Using computational modeling, we study factors that influence robustness and we infer several network properties governing it. These include the type of mutation, i.e. whether a regulatory interaction or a protein-protein interaction is mutated, and in the case of mutation of a regulatory interaction, the sign of the interaction (activating vs. repressive. In addition, we analyze the effect of combinations of mutations and we compare networks containing monomeric with those containing dimeric transcription factors. Our results are consistent with available data on biological networks, for example based on evolutionary conservation of network features. As a novel and remarkable property, we predict that networks are more robust against mutations in monomer than in dimer transcription factors, a prediction for which analysis of conservation of DNA binding residues in monomeric vs. dimeric transcription factors provides indirect evidence.

  9. Amino-Acid Network Clique Analysis of Protein Mutation Non-Additive Effects: A Case Study of Lysozme

    Directory of Open Access Journals (Sweden)

    Dengming Ming

    2018-05-01

    Full Text Available Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k-cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.

  10. Seed protein improvement in wheat by mutation breeding

    International Nuclear Information System (INIS)

    Muhammed, A.; Shakoor, A.; Tahir Nadeem, M.; Ali, A.; Ifzal, S.M.; Sadiq, M.

    1976-01-01

    Several nutritional surveys conducted in different areas in Pakistan have shown the prevalence of protein-calorie malnutrition, especially among young children. However, there is no evidence of overall deficiency of protein resources in the country on a national basis. The available data are entirely inadequate to draw a definite conclusion about the extent of malnutrition in the country, and to plan a strategy for improving the diet of vulnerable groups. The common meal of the low income groups consists of Dal-Roti, which is a spiced pulse soup and pan bread. It is therefore essential to improve the protein content of the pulses and wheat in order to overcome malnutrition. The average yield per acre of pulses in Pakistan is very low, and it is particularly important to evolve high yielding, improved grain quality varieties of the popular pulses which have been hitherto largely neglected. Studies on the improvement of various local and exotic varieties of wheat (Triticum aestivum) and mung (Phaseolus aureus), through induced mutation, have yielded several high yielding and high protein mutants. These mutant lines are being further investigated for the confirmation of their variant traits. Single plant selections of mung bean made from the M 2 generation on the basis of their plant type, habit of growth, maturity time, grain yield and disease resistance are under critical observation. Other pulses, e.g. Cicer arietinum, Lens esculenta and Phaseolus mungo have also been included in the programme; however the breeding work on these crops is still in the preliminary stages. (author)

  11. Mutations in the VLGR1 Gene Implicate G-Protein Signaling in the Pathogenesis of Usher Syndrome Type II

    Science.gov (United States)

    Weston, Michael D.; Luijendijk, Mirjam W. J.; Humphrey, Kurt D.; Möller, Claes; Kimberling, William J.

    2004-01-01

    Usher syndrome type II (USH2) is a genetically heterogeneous autosomal recessive disorder with at least three genetic subtypes (USH2A, USH2B, and USH2C) and is classified phenotypically as congenital hearing loss and progressive retinitis pigmentosa. The VLGR1 (MASS1) gene in the 5q14.3-q21.1 USH2C locus was considered a likely candidate on the basis of its protein motif structure and expressed-sequence-tag representation from both cochlear and retinal subtracted libraries. Denaturing high-performance liquid chromatography and direct sequencing of polymerase-chain-reaction products amplified from 10 genetically independent patients with USH2C and 156 other patients with USH2 identified four isoform-specific VLGR1 mutations (Q2301X, I2906FS, M2931FS, and T6244X) from three families with USH2C, as well as two sporadic cases. All patients with VLGR1 mutations are female, a significant deviation from random expectations. The ligand(s) for the VLGR1 protein is unknown, but on the basis of its potential extracellular and intracellular protein-protein interaction domains and its wide mRNA expression profile, it is probable that VLGR1 serves diverse cellular and signaling processes. VLGR1 mutations have been previously identified in both humans and mice and are associated with a reflex-seizure phenotype in both species. The identification of additional VLGR1 mutations to test whether a phenotype/genotype correlation exists, akin to that shown for other Usher syndrome disease genes, is warranted. PMID:14740321

  12. The clinical presentation and genotype of protein C deficiency with double mutations of the protein C gene.

    Science.gov (United States)

    Inoue, Hirofumi; Terachi, Shin-Ichi; Uchiumi, Takeshi; Sato, Tetsuji; Urata, Michiyo; Ishimura, Masataka; Koga, Yui; Hotta, Taeko; Hara, Toshiro; Kang, Dongchon; Ohga, Shouichi

    2017-07-01

    Severe protein C (PC) deficiency is a rare heritable thrombophilia leading to thromboembolic events during the neonatal period. It remains unclear how individuals with complete PC gene (PROC) defects develop or escape neonatal stroke or purpura fulminans (PF). We studied the onset of disease and the genotype of 22 PC-deficient patients with double mutations in PROC based on our cohort (n = 12) and the previous reports (n = 10) in Japan. Twenty-two patients in 20 unrelated families had 4 homozygous and 18 compound heterozygous mutations. Sixteen newborns presented with PF (n = 11, 69%), intracranial thromboembolism and hemorrhage (n = 13, 81%), or both (n = 8, 50%), with most showing a plasma PC activity of <10%. Six others first developed overt thromboembolism when they were over 15 years of age, showing a median PC activity of 31% (range: 19-52%). Fifteen of the 22 patients (68%) had the five major mutations (G423VfsX82, V339M, R211W, M406I, and F181V) or two others (E68K and K193del) that have been reported in Japan. Three of the six late-onset cases, but none of the 16 neonatal cases, had the K193del mutation, which has been reported to be the most common variant of Chinese thrombophilia. A novel mutation of A309V was determined in a family of two patients with late onset. The genotype of double-PROC mutants might show less diversity than heterozygous mutants in terms of the timing of the onset of thrombophilia (newborn onset or late onset). © 2017 Wiley Periodicals, Inc.

  13. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein.

    Science.gov (United States)

    Chandler, Josephine R; Truong, Thao T; Silva, Patricia M; Seyedsayamdost, Mohammad R; Carr, Gavin; Radey, Matthew; Jacobs, Michael A; Sims, Elizabeth H; Clardy, Jon; Greenberg, E Peter

    2012-12-18

    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). Currently available antibiotics target surprisingly few cellular functions, and there is a need to identify novel antibiotic targets. We have been interested in the Burkholderia thailandensis bactobolins, and we sought to learn about the target of bactobolin activity by mapping spontaneous resistance mutations in the bactobolin-sensitive Bacillus subtilis. Our results indicate that the bactobolin target is the 50S ribosome-associated L2 protein or a region of the ribosome affected by L2. Bactobolin-resistant mutants are not resistant to other known ribosome inhibitors. Our evidence indicates that bactobolins

  14. Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment.

    Science.gov (United States)

    Lamothe, Sophie; Azimy, Naheed; Bazinet, Laurent; Couillard, Charles; Britten, Michel

    2014-10-01

    The consumption of polyphenols in green tea has been associated with beneficial health effects. Although polyphenols are unstable in the intestinal environment, they may be protected by interactions with dairy proteins during digestion. The objectives of this study were to evaluate the effect of a green tea extract on the digestibility of different dairy matrices and to monitor the antioxidant activity of these matrices with or without the green tea extract during digestion in a simulated gastrointestinal environment. Milk, yogurt and cheese with similar fat-to-protein ratios were subjected to simulated digestion. Matrix degradation, protein and fat hydrolysis, polyphenol concentration and radical scavenging activity were analyzed during gastric and intestinal digestion phases. Cheese was the matrix most resistant to protein and fat digestion. The addition of the green tea extract significantly decreased proteolysis in the gastric phase but had no effect in the intestinal phase. The kinetics of fatty acid release was reduced by the presence of the green tea extract. Transition from the gastric phase to the intestinal phase induced a 50% decrease in the antioxidant activity of the control (tea extract dispersed in water) due to the degradation of polyphenols. The presence of dairy matrices significantly improved polyphenol stability in the intestinal phase and increased the antioxidant activity by 29% (cheese) to 42% (milk) compared to the control. These results suggest that simultaneous consumption of green tea and dairy products helps to maintain the integrity and antioxidant activity of polyphenols during digestion.

  15. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    International Nuclear Information System (INIS)

    Hoshiba, Takashi; Tanaka, Masaru

    2013-01-01

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression

  16. Breast cancer cell behaviors on staged tumorigenesis-mimicking matrices derived from tumor cells at various malignant stages

    Energy Technology Data Exchange (ETDEWEB)

    Hoshiba, Takashi [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Tanaka, Masaru, E-mail: tanaka@yz.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2013-09-20

    Highlights: •Models mimicking ECM in tumor with different malignancy were prepared. •Cancer cell proliferation was suppressed on benign tumor ECM. •Benign tumor cell proliferation was suppressed on cancerous ECM. •Chemoresistance of cancer cell was enhanced on cancerous ECM. -- Abstract: Extracellular matrix (ECM) has been focused to understand tumor progression in addition to the genetic mutation of cancer cells. Here, we prepared “staged tumorigenesis-mimicking matrices” which mimic in vivo ECM in tumor tissue at each malignant stage to understand the roles of ECM in tumor progression. Breast tumor cells, MDA-MB-231 (invasive), MCF-7 (non-invasive), and MCF-10A (benign) cells, were cultured to form their own ECM beneath the cells and formed ECM was prepared as staged tumorigenesis-mimicking matrices by decellularization treatment. Cells showed weak attachment on the matrices derived from MDA-MB-231 cancer cells. The proliferations of MDA-MB-231 and MCF-7 was promoted on the matrices derived from MDA-MB-231 cancer cells whereas MCF-10A cell proliferation was not promoted. MCF-10A cell proliferation was promoted on the matrices derived from MCF-10A cells. Chemoresistance of MDA-MB-231 cells against 5-fluorouracil increased on only matrices derived from MDA-MB-231 cells. Our results showed that the cells showed different behaviors on staged tumorigenesis-mimicking matrices according to the malignancy of cell sources for ECM preparation. Therefore, staged tumorigenesis-mimicking matrices might be a useful in vitro ECM models to investigate the roles of ECM in tumor progression.

  17. Protein model discrimination using mutational sensitivity derived from deep sequencing.

    Science.gov (United States)

    Adkar, Bharat V; Tripathi, Arti; Sahoo, Anusmita; Bajaj, Kanika; Goswami, Devrishi; Chakrabarti, Purbani; Swarnkar, Mohit K; Gokhale, Rajesh S; Varadarajan, Raghavan

    2012-02-08

    A major bottleneck in protein structure prediction is the selection of correct models from a pool of decoys. Relative activities of ∼1,200 individual single-site mutants in a saturation library of the bacterial toxin CcdB were estimated by determining their relative populations using deep sequencing. This phenotypic information was used to define an empirical score for each residue (RankScore), which correlated with the residue depth, and identify active-site residues. Using these correlations, ∼98% of correct models of CcdB (RMSD ≤ 4Å) were identified from a large set of decoys. The model-discrimination methodology was further validated on eleven different monomeric proteins using simulated RankScore values. The methodology is also a rapid, accurate way to obtain relative activities of each mutant in a large pool and derive sequence-structure-function relationships without protein isolation or characterization. It can be applied to any system in which mutational effects can be monitored by a phenotypic readout. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fungible Correlation Matrices: A Method for Generating Nonsingular, Singular, and Improper Correlation Matrices for Monte Carlo Research.

    Science.gov (United States)

    Waller, Niels G

    2016-01-01

    For a fixed set of standardized regression coefficients and a fixed coefficient of determination (R-squared), an infinite number of predictor correlation matrices will satisfy the implied quadratic form. I call such matrices fungible correlation matrices. In this article, I describe an algorithm for generating positive definite (PD), positive semidefinite (PSD), or indefinite (ID) fungible correlation matrices that have a random or fixed smallest eigenvalue. The underlying equations of this algorithm are reviewed from both algebraic and geometric perspectives. Two simulation studies illustrate that fungible correlation matrices can be profitably used in Monte Carlo research. The first study uses PD fungible correlation matrices to compare penalized regression algorithms. The second study uses ID fungible correlation matrices to compare matrix-smoothing algorithms. R code for generating fungible correlation matrices is presented in the supplemental materials.

  19. On the group theoretical background of assigning stepwise mutations onto phylogenies

    NARCIS (Netherlands)

    Fischer, Mareike; Klaere, Steffen; Minh Anh Thi Nguyen, [No Value; von Haeseler, Arndt

    2012-01-01

    Recently one step mutation matrices were introduced to model the impact of substitutions on arbitrary branches of a phylogenetic tree on an alignment site. This concept works nicely for the four-state nucleotide alphabet and provides an efficient procedure conjectured to compute the minimal number

  20. Vacuolar Protein Sorting genes in Parkinson’s Disease: a re-appraisal of mutations detection rate and neurobiology of disease

    Directory of Open Access Journals (Sweden)

    Stefano Gambardella

    2016-11-01

    Full Text Available Mammalian retromers play a critical role in protein trans-membrane sorting from endosome to the trans-Golgi network (TGN. Recently, retromers have been linked to Parkinson's Disease (PD since the identification of the variant p.Asp620Asn in VPS35 (Vacuolar Protein Sorting 35 as a cause of late onset PD. This variant causes a primary defect in endosomal trafficking and retromers formation, which represent critical steps in the molecular mechanisms of disease. Other slightly penetrant and mildly deleterious mutations in VPS genes have been reported in both sporadic and familial PD. Therefore, understanding the actual prevalence of the whole range of VPS gene mutations is key to understand the relevance of retromers impairment in PD. This scenario indicates a plethora of mutations occurring in different pathways (autophagy, mitophagy, proteasome, endosomes, protein misfolding all converging to cell clearing systems. This may explain how genetic predispositions to PD may derive from slightly deleterious mutations when combining with heterogeneous environmental factors. This manuscript is a re-appraisal of genetic data produced in the last five years redefining the prevalence of VPS mutations in PD. The prevalence of p.Asp620Asn in VPS35 is 0.286 of familial PD. This data increases up to 0.548 considering mutations affecting all VPS genes, thus representing the second most frequent autosomal dominant PD genotype. This high prevalence, joined with increased awareness of the key role of retromers alterations in PD, strongly candidate environmentally-induced VPS alterations as key molecular mechanisms in the genesis of PD. rations as key molecular mechanisms in the genesis of PD.

  1. Repeat Sequence Proteins as Matrices for Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Drummy, L.; Koerner, H; Phillips, D; McAuliffe, J; Kumar, M; Farmer, B; Vaia, R; Naik, R

    2009-01-01

    Recombinant protein-inorganic nanocomposites comprised of exfoliated Na+ montmorillonite (MMT) in a recombinant protein matrix based on silk-like and elastin-like amino acid motifs (silk elastin-like protein (SELP)) were formed via a solution blending process. Charged residues along the protein backbone are shown to dominate long-range interactions, whereas the SELP repeat sequence leads to local protein/MMT compatibility. Up to a 50% increase in room temperature modulus and a comparable decrease in high temperature coefficient of thermal expansion occur for cast films containing 2-10 wt.% MMT.

  2. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3.

    Science.gov (United States)

    Bøsling, Jacob; Poulsen, Susan M; Vester, Birte; Long, Katherine S

    2003-09-01

    The antibiotic tiamulin targets the 50S subunit of the bacterial ribosome and interacts at the peptidyl transferase center. Tiamulin-resistant Escherichia coli mutants were isolated in order to elucidate mechanisms of resistance to the drug. No mutations in the rRNA were selected as resistance determinants using a strain expressing only a plasmid-encoded rRNA operon. Selection in a strain with all seven chromosomal rRNA operons yielded a mutant with an A445G mutation in the gene coding for ribosomal protein L3, resulting in an Asn149Asp alteration. Complementation experiments and sequencing of transductants demonstrate that the mutation is responsible for the resistance phenotype. Chemical footprinting experiments show a reduced binding of tiamulin to mutant ribosomes. It is inferred that the L3 mutation, which points into the peptidyl transferase cleft, causes tiamulin resistance by alteration of the drug-binding site. This is the first report of a mechanism of resistance to tiamulin unveiled in molecular detail.

  3. Characterization of novel StAR (steroidogenic acute regulatory protein mutations causing non-classic lipoid adrenal hyperplasia.

    Directory of Open Access Journals (Sweden)

    Christa E Flück

    Full Text Available CONTEXT: Steroidogenic acute regulatory protein (StAR is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH. OBJECTIVE: StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported. DESIGN: To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature. SETTING: Collaboration between the University Children's Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d'Hebron, Autonomous University, Barcelona, Spain. PATIENTS: Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age. RESULTS: StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30% and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol. CONCLUSIONS: StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.

  4. Double stochastic matrices in quantum mechanics

    International Nuclear Information System (INIS)

    Louck, J.D.

    1997-01-01

    The general set of doubly stochastic matrices of order n corresponding to ordinary nonrelativistic quantum mechanical transition probability matrices is given. Lande's discussion of the nonquantal origin of such matrices is noted. Several concrete examples are presented for elementary and composite angular momentum systems with the focus on the unitary symmetry associated with such systems in the spirit of the recent work of Bohr and Ulfbeck. Birkhoff's theorem on doubly stochastic matrices of order n is reformulated in a geometrical language suitable for application to the subset of quantum mechanical doubly stochastic matrices. Specifically, it is shown that the set of points on the unit sphere in cartesian n'-space is subjective with the set of doubly stochastic matrices of order n. The question is raised, but not answered, as to what is the subset of points of this unit sphere that correspond to the quantum mechanical transition probability matrices, and what is the symmetry group of this subset of matrices

  5. Combining structural modeling with ensemble machine learning to accurately predict protein fold stability and binding affinity effects upon mutation.

    Directory of Open Access Journals (Sweden)

    Niklas Berliner

    Full Text Available Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.

  6. Deterministic matrices matching the compressed sensing phase transitions of Gaussian random matrices

    Science.gov (United States)

    Monajemi, Hatef; Jafarpour, Sina; Gavish, Matan; Donoho, David L.; Ambikasaran, Sivaram; Bacallado, Sergio; Bharadia, Dinesh; Chen, Yuxin; Choi, Young; Chowdhury, Mainak; Chowdhury, Soham; Damle, Anil; Fithian, Will; Goetz, Georges; Grosenick, Logan; Gross, Sam; Hills, Gage; Hornstein, Michael; Lakkam, Milinda; Lee, Jason; Li, Jian; Liu, Linxi; Sing-Long, Carlos; Marx, Mike; Mittal, Akshay; Monajemi, Hatef; No, Albert; Omrani, Reza; Pekelis, Leonid; Qin, Junjie; Raines, Kevin; Ryu, Ernest; Saxe, Andrew; Shi, Dai; Siilats, Keith; Strauss, David; Tang, Gary; Wang, Chaojun; Zhou, Zoey; Zhu, Zhen

    2013-01-01

    In compressed sensing, one takes samples of an N-dimensional vector using an matrix A, obtaining undersampled measurements . For random matrices with independent standard Gaussian entries, it is known that, when is k-sparse, there is a precisely determined phase transition: for a certain region in the (,)-phase diagram, convex optimization typically finds the sparsest solution, whereas outside that region, it typically fails. It has been shown empirically that the same property—with the same phase transition location—holds for a wide range of non-Gaussian random matrix ensembles. We report extensive experiments showing that the Gaussian phase transition also describes numerous deterministic matrices, including Spikes and Sines, Spikes and Noiselets, Paley Frames, Delsarte-Goethals Frames, Chirp Sensing Matrices, and Grassmannian Frames. Namely, for each of these deterministic matrices in turn, for a typical k-sparse object, we observe that convex optimization is successful over a region of the phase diagram that coincides with the region known for Gaussian random matrices. Our experiments considered coefficients constrained to for four different sets , and the results establish our finding for each of the four associated phase transitions. PMID:23277588

  7. Mutations in Alström protein impair terminal differentiation of cardiomyocytes.

    Science.gov (United States)

    Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P

    2014-03-04

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.

  8. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  9. [FANCA gene mutation analysis in Fanconi anemia patients].

    Science.gov (United States)

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  10. Mutations in complement regulatory proteins predispose to preeclampsia: a genetic analysis of the PROMISSE cohort.

    Directory of Open Access Journals (Sweden)

    Jane E Salmon

    2011-03-01

    Full Text Available Pregnancy in women with systemic lupus erythematosus (SLE or antiphospholipid antibodies (APL Ab--autoimmune conditions characterized by complement-mediated injury--is associated with increased risk of preeclampsia and miscarriage. Our previous studies in mice indicate that complement activation targeted to the placenta drives angiogenic imbalance and placental insufficiency.We use PROMISSE, a prospective study of 250 pregnant patients with SLE and/or APL Ab, to test the hypothesis in humans that impaired capacity to limit complement activation predisposes to preeclampsia. We sequenced genes encoding three complement regulatory proteins--membrane cofactor protein (MCP, complement factor I (CFI, and complement factor H (CFH--in 40 patients who had preeclampsia and found heterozygous mutations in seven (18%. Five of these patients had risk variants in MCP or CFI that were previously identified in atypical hemolytic uremic syndrome, a disease characterized by endothelial damage. One had a novel mutation in MCP that impairs regulation of C4b. These findings constitute, to our knowledge, the first genetic defects associated with preeclampsia in SLE and/or APL Ab. We confirmed the association of hypomorphic variants of MCP and CFI in a cohort of non-autoimmune preeclampsia patients in which five of 59 were heterozygous for mutations.The presence of risk variants in complement regulatory proteins in patients with SLE and/or APL Ab who develop preeclampsia, as well as in preeclampsia patients lacking autoimmune disease, links complement activation to disease pathogenesis and suggests new targets for treatment of this important public health problem.ClinicalTrials.gov NCT00198068.

  11. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality

    Directory of Open Access Journals (Sweden)

    Rooman Marianne

    2011-05-01

    Full Text Available Abstract Background The rational design of modified proteins with controlled stability is of extreme importance in a whole range of applications, notably in the biotechnological and environmental areas, where proteins are used for their catalytic or other functional activities. Future breakthroughs in medical research may also be expected from an improved understanding of the effect of naturally occurring disease-causing mutations on the molecular level. Results PoPMuSiC-2.1 is a web server that predicts the thermodynamic stability changes caused by single site mutations in proteins, using a linear combination of statistical potentials whose coefficients depend on the solvent accessibility of the mutated residue. PoPMuSiC presents good prediction performances (correlation coefficient of 0.8 between predicted and measured stability changes, in cross validation, after exclusion of 10% outliers. It is moreover very fast, allowing the prediction of the stability changes resulting from all possible mutations in a medium size protein in less than a minute. This unique functionality is user-friendly implemented in PoPMuSiC and is particularly easy to exploit. Another new functionality of our server concerns the estimation of the optimality of each amino acid in the sequence, with respect to the stability of the structure. It may be used to detect structural weaknesses, i.e. clusters of non-optimal residues, which represent particularly interesting sites for introducing targeted mutations. This sequence optimality data is also expected to have significant implications in the prediction and the analysis of particular structural or functional protein regions. To illustrate the interest of this new functionality, we apply it to a dataset of known catalytic sites, and show that a much larger than average concentration of structural weaknesses is detected, quantifying how these sites have been optimized for function rather than stability. Conclusion The

  12. Lambda-matrices and vibrating systems

    CERN Document Server

    Lancaster, Peter; Stark, M; Kahane, J P

    1966-01-01

    Lambda-Matrices and Vibrating Systems presents aspects and solutions to problems concerned with linear vibrating systems with a finite degrees of freedom and the theory of matrices. The book discusses some parts of the theory of matrices that will account for the solutions of the problems. The text starts with an outline of matrix theory, and some theorems are proved. The Jordan canonical form is also applied to understand the structure of square matrices. Classical theorems are discussed further by applying the Jordan canonical form, the Rayleigh quotient, and simple matrix pencils with late

  13. Manin matrices and Talalaev's formula

    International Nuclear Information System (INIS)

    Chervov, A; Falqui, G

    2008-01-01

    In this paper we study properties of Lax and transfer matrices associated with quantum integrable systems. Our point of view stems from the fact that their elements satisfy special commutation properties, considered by Yu I Manin some 20 years ago at the beginning of quantum group theory. These are the commutation properties of matrix elements of linear homomorphisms between polynomial rings; more explicitly these read: (1) elements of the same column commute; (2) commutators of the cross terms are equal: [M ij , M kl ] [M kj , M il ] (e.g. [M 11 , M 22 ] = [M 21 , M 12 ]). The main aim of this paper is twofold: on the one hand we observe and prove that such matrices (which we call Manin matrices in short) behave almost as well as matrices with commutative elements. Namely, the theorems of linear algebra (e.g., a natural definition of the determinant, the Cayley-Hamilton theorem, the Newton identities and so on and so forth) have a straightforward counterpart in the case of Manin matrices. On the other hand, we remark that such matrices are somewhat ubiquitous in the theory of quantum integrability. For instance, Manin matrices (and their q-analogs) include matrices satisfying the Yang-Baxter relation 'RTT=TTR' and the so-called Cartier-Foata matrices. Also, they enter Talalaev's remarkable formulae: det(∂ z -L gaudin (z)), det(1-e -∂z T Yangian (z)) for the 'quantum spectral curve', and appear in the separation of variables problem and Capelli identities. We show that theorems of linear algebra, after being established for such matrices, have various applications to quantum integrable systems and Lie algebras, e.g. in the construction of new generators in Z(U crit (gl-hat n )) (and, in general, in the construction of quantum conservation laws), in the Knizhnik-Zamolodchikov equation, and in the problem of Wick ordering. We propose, in the appendix, a construction of quantum separated variables for the XXX-Heisenberg system

  14. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-01-01

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  15. Introduction into Hierarchical Matrices

    KAUST Repository

    Litvinenko, Alexander

    2013-12-05

    Hierarchical matrices allow us to reduce computational storage and cost from cubic to almost linear. This technique can be applied for solving PDEs, integral equations, matrix equations and approximation of large covariance and precision matrices.

  16. Skin equivalent tissue-engineered construct: co-cultured fibroblasts/ keratinocytes on 3D matrices of sericin hope cocoons.

    Directory of Open Access Journals (Sweden)

    Sunita Nayak

    Full Text Available The development of effective and alternative tissue-engineered skin replacements to autografts, allografts and xenografts has became a clinical requirement due to the problems related to source of donor tissue and the perceived risk of disease transmission. In the present study 3D tissue engineered construct of sericin is developed using co-culture of keratinocytes on the upper surface of the fabricated matrices and with fibroblasts on lower surface. Sericin is obtained from "Sericin Hope" silkworm of Bombyx mori mutant and is extracted from cocoons by autoclave. Porous sericin matrices are prepared by freeze dried method using genipin as crosslinker. The matrices are characterized biochemically and biophysically. The cell proliferation and viability of co-cultured fibroblasts and keratinocytes on matrices for at least 28 days are observed by live/dead assay, Alamar blue assay, and by dual fluorescent staining. The growth of the fibroblasts and keratinocytes in co-culture is correlated with the expression level of TGF-β, b-FGF and IL-8 in the cultured supernatants by enzyme-linked immunosorbent assay. The histological analysis further demonstrates a multi-layered stratified epidermal layer of uninhibited keratinocytes in co-cultured constructs. Presence of involucrin, collagen IV and the fibroblast surface protein in immuno-histochemical stained sections of co-cultured matrices indicates the significance of paracrine signaling between keratinocytes and fibroblasts in the expression of extracellular matrix protein for dermal repair. No significant amount of pro inflammatory cytokines (TNF-α, IL-1β and nitric oxide production are evidenced when macrophages grown on the sericin matrices. The results all together depict the potentiality of sericin 3D matrices as skin equivalent tissue engineered construct in wound repair.

  17. Altered intracellular localization and mobility of SBDS protein upon mutation in Shwachman-Diamond syndrome.

    Directory of Open Access Journals (Sweden)

    Claudia Orelio

    Full Text Available Shwachman-Diamond Syndrome (SDS is a rare inherited disease caused by mutations in the SBDS gene. Hematopoietic defects, exocrine pancreas dysfunction and short stature are the most prominent clinical features. To gain understanding of the molecular properties of the ubiquitously expressed SBDS protein, we examined its intracellular localization and mobility by live cell imaging techniques. We observed that SBDS full-length protein was localized in both the nucleus and cytoplasm, whereas patient-related truncated SBDS protein isoforms localize predominantly to the nucleus. Also the nucleo-cytoplasmic trafficking of these patient-related SBDS proteins was disturbed. Further studies with a series of SBDS mutant proteins revealed that three distinct motifs determine the intracellular mobility of SBDS protein. A sumoylation motif in the C-terminal domain, that is lacking in patient SBDS proteins, was found to play a pivotal role in intracellular motility. Our structure-function analyses provide new insight into localization and motility of the SBDS protein, and show that patient-related mutant proteins are altered in their molecular properties, which may contribute to the clinical features observed in SDS patients.

  18. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    Science.gov (United States)

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  19. MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Balonin

    2014-05-01

    Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by

  20. Mutations in the RNA-binding domains of tombusvirus replicase proteins affect RNA recombination in vivo

    International Nuclear Information System (INIS)

    Panaviene, Zivile; Nagy, Peter D.

    2003-01-01

    RNA recombination, which is thought to occur due to replicase errors during viral replication, is one of the major driving forces of virus evolution. In this article, we show evidence that the replicase proteins of Cucumber necrosis virus, a tombusvirus, are directly involved in RNA recombination in vivo. Mutations within the RNA-binding domains of the replicase proteins affected the frequency of recombination observed with a prototypical defective-interfering (DI) RNA, a model template for recombination studies. Five of the 17 replicase mutants tested showed delay in the formation of recombinants when compared to the wild-type helper virus. Interestingly, two replicase mutants accelerated recombinant formation and, in addition, these mutants also increased the level of subgenomic RNA synthesis (Virology 308 (2003), 191-205). A trans-complementation system was used to demonstrate that mutation in the p33 replicase protein resulted in altered recombination rate. Isolated recombinants were mostly imprecise (nonhomologous), with the recombination sites clustered around a replication enhancer region and a putative cis-acting element, respectively. These RNA elements might facilitate the proposed template switching events by the tombusvirus replicase. Together with data in the article cited above, results presented here firmly establish that the conserved RNA-binding motif of the replicase proteins is involved in RNA replication, subgenomic RNA synthesis, and RNA recombination

  1. Identification of a Novel Dentin Matrix Protein-1 (DMP-1) Mutation and Dental Anomalies in a Kindred with Autosomal Recessive Hypophosphatemia

    OpenAIRE

    Turan, Serap; Aydin, Cumhur; Bereket, Abdullah; Akcay, Teoman; Güran, Tülay; Yaralioglu, Betul Akmen; Bastepe, Murat; Jüppner, Harald

    2009-01-01

    An autosomal recessive form of hypophosphatemia (ARHP) was recently shown to be caused by homozygous mutations in DMP1, the gene encoding dentin matrix protein-1 (DMP-1), a non-collagenous bone matrix protein with an important role in the development and mineralization of bone and teeth. Here, we report a previously not reported consanguineous ARHP kindred in which the three affected individuals carry a novel homozygous DMP-1 mutation. The index case presented at the age of 3 years with bowin...

  2. BRAF mutation in hairy cell leukemia

    Directory of Open Access Journals (Sweden)

    Ahmad Ahmadzadeh

    2014-09-01

    Full Text Available BRAF is a serine/threonine kinase with a regulatory role in the mitogen-activated protein kinase (MAPK signaling pathway. A mutation in the RAF gene, especially in BRAF protein, leads to an increased stimulation of this cascade, causing uncontrolled cell division and development of malignancy. Several mutations have been observed in the gene coding for this protein in a variety of human malignancies, including hairy cell leukemia (HCL. BRAF V600E is the most common mutation reported in exon15 of BRAF, which is observed in almost all cases of classic HCL, but it is negative in other B-cell malignancies, including the HCL variant. Therefore it can be used as a marker to differentiate between these B-cell disorders. We also discuss the interaction between miRNAs and signaling pathways, including MAPK, in HCL. When this mutation is present, the use of BRAF protein inhibitors may represent an effective treatment. In this review we have evaluated the role of the mutation of the BRAF gene in the pathogenesis and progression of HCL.

  3. LDL receptor-GFP fusion proteins: new tools for the characterization of disease-causing mutations in the LDL receptor gene

    DEFF Research Database (Denmark)

    Holst, Henrik Uffe; Dagnæs-Hansen, Frederik; Corydon, Thomas Juhl

    2001-01-01

    . In cultured liver cells this mutation was found to inhibit the transport of LDL receptor GFP fusion protein to the cell surface, thus leading to impaired internalisation of fluorescent labelled LDL. Co-locallisation studies confirmed the retention of the mutant protein in the endoplasmic reticulum....

  4. Biochemical Composition and Assembly of Biosilica-associated Insoluble Organic Matrices from the Diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Kotzsch, Alexander; Pawolski, Damian; Milentyev, Alexander; Shevchenko, Anna; Scheffel, André; Poulsen, Nicole; Shevchenko, Andrej; Kröger, Nils

    2016-03-04

    The nano- and micropatterned biosilica cell walls of diatoms are remarkable examples of biological morphogenesis and possess highly interesting material properties. Only recently has it been demonstrated that biosilica-associated organic structures with specific nanopatterns (termed insoluble organic matrices) are general components of diatom biosilica. The model diatom Thalassiosira pseudonana contains three types of insoluble organic matrices: chitin meshworks, organic microrings, and organic microplates, the latter being described in the present study for the first time. To date, little is known about the molecular composition, intracellular assembly, and biological functions of organic matrices. Here we have performed structural and functional analyses of the organic microrings and organic microplates from T. pseudonana. Proteomics analysis yielded seven proteins of unknown function (termed SiMat proteins) together with five known silica biomineralization proteins (four cingulins and one silaffin). The location of SiMat1-GFP in the insoluble organic microrings and the similarity of tyrosine- and lysine-rich functional domains identifies this protein as a new member of the cingulin protein family. Mass spectrometric analysis indicates that most of the lysine residues of cingulins and the other insoluble organic matrix proteins are post-translationally modified by short polyamine groups, which are known to enhance the silica formation activity of proteins. Studies with recombinant cingulins (rCinY2 and rCinW2) demonstrate that acidic conditions (pH 5.5) trigger the assembly of mixed cingulin aggregates that have silica formation activity. Our results suggest an important role for cingulins in the biogenesis of organic microrings and support the hypothesis that this type of insoluble organic matrix functions in biosilica morphogenesis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Intrinsic character of Stokes matrices

    Science.gov (United States)

    Gagnon, Jean-François; Rousseau, Christiane

    2017-02-01

    Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.

  6. Hierarchical matrices algorithms and analysis

    CERN Document Server

    Hackbusch, Wolfgang

    2015-01-01

    This self-contained monograph presents matrix algorithms and their analysis. The new technique enables not only the solution of linear systems but also the approximation of matrix functions, e.g., the matrix exponential. Other applications include the solution of matrix equations, e.g., the Lyapunov or Riccati equation. The required mathematical background can be found in the appendix. The numerical treatment of fully populated large-scale matrices is usually rather costly. However, the technique of hierarchical matrices makes it possible to store matrices and to perform matrix operations approximately with almost linear cost and a controllable degree of approximation error. For important classes of matrices, the computational cost increases only logarithmically with the approximation error. The operations provided include the matrix inversion and LU decomposition. Since large-scale linear algebra problems are standard in scientific computing, the subject of hierarchical matrices is of interest to scientists ...

  7. Transforming activity and therapeutic targeting of C-terminal-binding protein 2 in Apc-mutated neoplasia.

    Science.gov (United States)

    Sumner, E T; Chawla, A T; Cororaton, A D; Koblinski, J E; Kovi, R C; Love, I M; Szomju, B B; Korwar, S; Ellis, K C; Grossman, S R

    2017-08-17

    Overexpression of the transcriptional coregulators C-terminal binding proteins 1 and 2 (CtBP1 and 2) occurs in many human solid tumors and is associated with poor prognosis. CtBP modulates oncogenic gene expression programs and is an emerging drug target, but its oncogenic role is unclear. Consistent with this oncogenic potential, exogenous CtBP2 transformed primary mouse and human cells to anchorage independence similarly to mutant H-Ras. To investigate CtBP's contribution to in vivo tumorigenesis, Apc min/+ mice, which succumb to massive intestinal polyposis, were bred to Ctbp2 +/- mice. CtBP interacts with adenomatous polyposis coli (APC) protein, and is stabilized in both APC-mutated human colon cancers and Apc min/+ intestinal polyps. Ctbp2 heterozygosity increased the median survival of Apc min/+ mice from 21 to 48 weeks, and reduced polyp formation by 90%, with Ctbp2 +/- polyps exhibiting reduced levels of β-catenin and its oncogenic transcriptional target, cyclin D1. CtBP's potential as a therapeutic target was studied by treating Apc min/+ mice with the CtBP small-molecule inhibitors 4-methylthio-2-oxobutyric acid and 2-hydroxy-imino phenylpyruvic acid, both of which reduced polyposis by more than half compared with vehicle treatment. Phenocopying Ctbp2 deletion, both Ctbp inhibitors caused substantial decreases in the protein level of Ctbp2, as well its oncogenic partner β-catenin, and the effects of the inhibitors on CtBP and β-catenin levels could be modeled in an APC-mutated human colon cancer cell line. CtBP2 is thus a druggable transforming oncoprotein critical for the evolution of neoplasia driven by Apc mutation.

  8. Features of 5'-splice-site efficiency derived from disease-causing mutations and comparative genomics

    DEFF Research Database (Denmark)

    Roca, Xavier; Olson, Andrew J; Rao, Atmakuri R

    2008-01-01

    Many human diseases, including Fanconi anemia, hemophilia B, neurofibromatosis, and phenylketonuria, can be caused by 5'-splice-site (5'ss) mutations that are not predicted to disrupt splicing, according to position weight matrices. By using comparative genomics, we identify pairwise dependencies...

  9. AUTO-MUTE 2.0: A Portable Framework with Enhanced Capabilities for Predicting Protein Functional Consequences upon Mutation.

    Science.gov (United States)

    Masso, Majid; Vaisman, Iosif I

    2014-01-01

    The AUTO-MUTE 2.0 stand-alone software package includes a collection of programs for predicting functional changes to proteins upon single residue substitutions, developed by combining structure-based features with trained statistical learning models. Three of the predictors evaluate changes to protein stability upon mutation, each complementing a distinct experimental approach. Two additional classifiers are available, one for predicting activity changes due to residue replacements and the other for determining the disease potential of mutations associated with nonsynonymous single nucleotide polymorphisms (nsSNPs) in human proteins. These five command-line driven tools, as well as all the supporting programs, complement those that run our AUTO-MUTE web-based server. Nevertheless, all the codes have been rewritten and substantially altered for the new portable software, and they incorporate several new features based on user feedback. Included among these upgrades is the ability to perform three highly requested tasks: to run "big data" batch jobs; to generate predictions using modified protein data bank (PDB) structures, and unpublished personal models prepared using standard PDB file formatting; and to utilize NMR structure files that contain multiple models.

  10. AUTO-MUTE 2.0: A Portable Framework with Enhanced Capabilities for Predicting Protein Functional Consequences upon Mutation

    Directory of Open Access Journals (Sweden)

    Majid Masso

    2014-01-01

    Full Text Available The AUTO-MUTE 2.0 stand-alone software package includes a collection of programs for predicting functional changes to proteins upon single residue substitutions, developed by combining structure-based features with trained statistical learning models. Three of the predictors evaluate changes to protein stability upon mutation, each complementing a distinct experimental approach. Two additional classifiers are available, one for predicting activity changes due to residue replacements and the other for determining the disease potential of mutations associated with nonsynonymous single nucleotide polymorphisms (nsSNPs in human proteins. These five command-line driven tools, as well as all the supporting programs, complement those that run our AUTO-MUTE web-based server. Nevertheless, all the codes have been rewritten and substantially altered for the new portable software, and they incorporate several new features based on user feedback. Included among these upgrades is the ability to perform three highly requested tasks: to run “big data” batch jobs; to generate predictions using modified protein data bank (PDB structures, and unpublished personal models prepared using standard PDB file formatting; and to utilize NMR structure files that contain multiple models.

  11. Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum

    Science.gov (United States)

    2014-01-01

    Background Among other advantages, recombinant antibody-binding fragments (Fabs) hold great clinical and commercial potential, owing to their efficient tissue penetration compared to that of full-length IgGs. Although production of recombinant Fab using microbial expression systems has been reported, yields of active Fab have not been satisfactory. We recently developed the Corynebacterium glutamicum protein expression system (CORYNEX®) and demonstrated improved yield and purity for some applications, although the system has not been applied to Fab production. Results The Fab fragment of human anti-HER2 was successfully secreted by the CORYNEX® system using the conventional C. glutamicum strain YDK010, but the productivity was very low. To improve the secretion efficiency, we investigated the effects of deleting cell wall-related genes. Fab secretion was increased 5.2 times by deletion of pbp1a, encoding one of the penicillin-binding proteins (PBP1a), mediating cell wall peptidoglycan (PG) synthesis. However, this Δpbp1a mutation did not improve Fab secretion in the wild-type ATCC13869 strain. Because YDK010 carries a mutation in the cspB gene encoding a surface (S)-layer protein, we evaluated the effect of ΔcspB mutation on Fab secretion from ATCC13869. The Δpbp1a mutation showed a positive effect on Fab secretion only in combination with the ΔcspB mutation. The ΔcspBΔpbp1a double mutant showed much greater sensitivity to lysozyme than either single mutant or the wild-type strain, suggesting that these mutations reduced cell wall resistance to protein secretion. Conclusion There are at least two crucial permeability barriers to Fab secretion in the cell surface structure of C. glutamicum, the PG layer, and the S-layer. The ΔcspBΔpbp1a double mutant allows efficient Fab production using the CORYNEX® system. PMID:24731213

  12. Platform comparison for evaluation of ALK protein immunohistochemical expression, genomic copy number and hotspot mutation status in neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Benedict Yan

    Full Text Available ALK is an established causative oncogenic driver in neuroblastoma, and is likely to emerge as a routine biomarker in neuroblastoma diagnostics. At present, the optimal strategy for clinical diagnostic evaluation of ALK protein, genomic and hotspot mutation status is not well-studied. We evaluated ALK immunohistochemical (IHC protein expression using three different antibodies (ALK1, 5A4 and D5F3 clones, ALK genomic status using single-color chromogenic in situ hybridization (CISH, and ALK hotspot mutation status using conventional Sanger sequencing and a next-generation sequencing platform (Ion Torrent Personal Genome Machine (IT-PGM, in archival formalin-fixed, paraffin-embedded neuroblastoma samples. We found a significant difference in IHC results using the three different antibodies, with the highest percentage of positive cases seen on D5F3 immunohistochemistry. Correlation with ALK genomic and hotspot mutational status revealed that the majority of D5F3 ALK-positive cases did not possess either ALK genomic amplification or hotspot mutations. Comparison of sequencing platforms showed a perfect correlation between conventional Sanger and IT-PGM sequencing. Our findings suggest that D5F3 immunohistochemistry, single-color CISH and IT-PGM sequencing are suitable assays for evaluation of ALK status in future neuroblastoma clinical trials.

  13. Special matrices of mathematical physics stochastic, circulant and Bell matrices

    CERN Document Server

    Aldrovandi, R

    2001-01-01

    This book expounds three special kinds of matrices that are of physical interest, centering on physical examples. Stochastic matrices describe dynamical systems of many different types, involving (or not) phenomena like transience, dissipation, ergodicity, nonequilibrium, and hypersensitivity to initial conditions. The main characteristic is growth by agglomeration, as in glass formation. Circulants are the building blocks of elementary Fourier analysis and provide a natural gateway to quantum mechanics and noncommutative geometry. Bell polynomials offer closed expressions for many formulas co

  14. A new mutation in the prion protein gene: A patient with dementia and white matter changes

    NARCIS (Netherlands)

    Van Harten, B.; Van Gool, W.A.; Van Langen, I.M.; Deekman, J.M.; Meijerink, P.H.S.; Weinstein, H.C.

    2000-01-01

    The authors describe the clinical characteristics, MRI abnormalities, and molecular findings in a patient with a novel variant of a two-octarepeat insertion mutation in the prion protein gene. This patient presented with moderately progressive dementia of presenile onset and gait ataxia. MRI showed

  15. Gene-specific function prediction for non-synonymous mutations in monogenic diabetes genes.

    Directory of Open Access Journals (Sweden)

    Quan Li

    Full Text Available The rapid progress of genomic technologies has been providing new opportunities to address the need of maturity-onset diabetes of the young (MODY molecular diagnosis. However, whether a new mutation causes MODY can be questionable. A number of in silico methods have been developed to predict functional effects of rare human mutations. The purpose of this study is to compare the performance of different bioinformatics methods in the functional prediction of nonsynonymous mutations in each MODY gene, and provides reference matrices to assist the molecular diagnosis of MODY. Our study showed that the prediction scores by different methods of the diabetes mutations were highly correlated, but were more complimentary than replacement to each other. The available in silico methods for the prediction of diabetes mutations had varied performances across different genes. Applying gene-specific thresholds defined by this study may be able to increase the performance of in silico prediction of disease-causing mutations.

  16. A mutation in human VAP-B--MSP domain, present in ALS patients, affects the interaction with other cellular proteins.

    Science.gov (United States)

    Mitne-Neto, M; Ramos, C R R; Pimenta, D C; Luz, J S; Nishimura, A L; Gonzales, F A; Oliveira, C C; Zatz, M

    2007-09-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset Motor Neuron Disease (MND), characterized by motor neurons death in the cortex, brainstem and spinal cord. Ten loci linked to Familial ALS have been mapped. ALS8 is caused by a substitution of a proline by a serine in the Vesicle-Associated Membrane Protein-Associated protein-B/C (VAP-B/C). VAP-B belongs to a highly conserved family of proteins implicated in Endoplasmic Reticulum-Golgi and intra-Golgi transport and microtubules stabilization. Previous studies demonstrated that the P56S mutation disrupts the subcellular localization of VAP-B and that this position would be essential for Unfolded Protein Response (UPR) induced by VAP-B. In the present work we expressed and purified recombinant wild-type and P56S mutant VAP-B-MSP domain for the analysis of its interactions with other cellular proteins. Our findings suggest that the P56S mutation may lead to a less stable interaction of this endoplasmic reticulum protein with at least two other proteins: tubulin and GAPDH. These two proteins have been previously related to other forms of neurodegenerative diseases and are potential key points to understand ALS8 pathogenesis and other forms of MND. Understanding the role of these protein interactions may help the treatment of this devastating disease in the future.

  17. Congenital syndactyly in cattle: four novel mutations in the low density lipoprotein receptor-related protein 4 gene (LRP4

    Directory of Open Access Journals (Sweden)

    Höltershinken Martin

    2007-02-01

    Full Text Available Abstract Background Isolated syndactyly in cattle, also known as mulefoot, is inherited as an autosomal recessive trait with variable penetrance in different cattle breeds. Recently, two independent mutations in the bovine LRP4 gene have been reported as the primary cause of syndactyly in the Holstein and Angus cattle breeds. Results We confirmed the previously described LRP4 exon 33 two nucleotide substitution in most of the affected Holstein calves and revealed additional evidence for allelic heterogeneity by the identification of four new LRP4 non-synonymous point mutations co-segregating in Holstein, German Simmental and Simmental-Charolais families. Conclusion We confirmed a significant role of LRP4 mutations in the pathogenesis of congenital syndactyly in cattle. The newly detected missense mutations in the LRP4 gene represent independent mutations affecting different conserved protein domains. However, the four newly described LRP4 mutations do still not explain all analyzed cases of syndactyly.

  18. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    International Nuclear Information System (INIS)

    Kousparou, Christina A; Yiacoumi, Efthymia; Deonarain, Mahendra P; Epenetos, Agamemnon A

    2012-01-01

    A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp) and wild-type, full-length p21 (Antp-p21). This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model) with differing p21 or p53 status. Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology

  19. Generation of a selectively cytotoxic fusion protein against p53 mutated cancers

    Directory of Open Access Journals (Sweden)

    Kousparou Christina A

    2012-08-01

    Full Text Available Abstract Background A significant number of cancers are caused by defects in p21 causing functional defects in p21 or p53 tumour-suppressor proteins. This has led to many therapeutic approaches including restoration by gene therapy with wild-type p53 or p21 using viral or liposomal vectors, which have toxicity or side-effect limitations. We set out to develop a safer, novel fusion protein which has the ability to reconstitute cancer cell lines with active p21 by protein transduction. Methods The fusion protein was produced from the cell-translocating peptide Antennapedia (Antp and wild-type, full-length p21 (Antp-p21. This was expressed and refolded from E. coli and tested on a variety of cell lines and tumours (in a BALB/c nude xenograft model with differing p21 or p53 status. Results Antp-p21 penetrated and killed cancer cells that do not express wild type p53 or p21. This included cells that were matched to cogenic parental cell lines. Antp-p21 killed cancer cells selectively that were malignant as a result of mutations or nuclear exclusion of the p53 and p21 genes and over-expression of MDM2. Non-specific toxicity was excluded by showing that Antp-p21 penetrated but did not kill p53- or p21- wild-type cells. Antp-p21 was not immunogenic in normal New Zealand White rabbits. Recombinant Antp peptide alone was not cytotoxic, showing that killing was due to the transduction of the p21 component of Antp-p21. Antp-p21 was shown to penetrate cancer cells engrafted in vivo and resulted in tumour eradication when administered with conventionally-used chemotherapeutic agents, which alone were unable to produce such an effect. Conclusions Antp-p21 may represent a new and promising targeted therapy for patients with p53-associated cancers supporting the concept that rational design of therapies directed against specific cancer mutations will play a part in the future of medical oncology.

  20. Mutations in DZIP1L, which encodes a ciliary transition zone protein, cause autosomal recessive polycystic kidney disease

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C. Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P. Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D.; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H.; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C.; Wright, Graham D.; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A.; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-01-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in the DAZ interacting protein 1-like (DZIP1L) gene in patients with ARPKD, findings we have further validated by loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and at the distal end of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. Consistent with a defect in the diffusion barrier, we found that the ciliary membrane translocation of the PKD proteins, polycystin-1 and −2, is compromised in DZIP1L mutant cells. Together, these data provide the first conclusive evidence that ARPKD is not a homogeneous disorder, and establishes DZIP1L as a second gene involved in its pathogenesis. PMID:28530676

  1. Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease.

    Science.gov (United States)

    Lu, Hao; Galeano, Maria C Rondón; Ott, Elisabeth; Kaeslin, Geraldine; Kausalya, P Jaya; Kramer, Carina; Ortiz-Brüchle, Nadina; Hilger, Nadescha; Metzis, Vicki; Hiersche, Milan; Tay, Shang Yew; Tunningley, Robert; Vij, Shubha; Courtney, Andrew D; Whittle, Belinda; Wühl, Elke; Vester, Udo; Hartleben, Björn; Neuber, Steffen; Frank, Valeska; Little, Melissa H; Epting, Daniel; Papathanasiou, Peter; Perkins, Andrew C; Wright, Graham D; Hunziker, Walter; Gee, Heon Yung; Otto, Edgar A; Zerres, Klaus; Hildebrandt, Friedhelm; Roy, Sudipto; Wicking, Carol; Bergmann, Carsten

    2017-07-01

    Autosomal recessive polycystic kidney disease (ARPKD), usually considered to be a genetically homogeneous disease caused by mutations in PKHD1, has been associated with ciliary dysfunction. Here, we describe mutations in DZIP1L, which encodes DAZ interacting protein 1-like, in patients with ARPKD. We further validated these findings through loss-of-function studies in mice and zebrafish. DZIP1L localizes to centrioles and to the distal ends of basal bodies, and interacts with septin2, a protein implicated in maintenance of the periciliary diffusion barrier at the ciliary transition zone. In agreement with a defect in the diffusion barrier, we found that the ciliary-membrane translocation of the PKD proteins polycystin-1 and polycystin-2 is compromised in DZIP1L-mutant cells. Together, these data provide what is, to our knowledge, the first conclusive evidence that ARPKD is not a homogeneous disorder and further establish DZIP1L as a second gene involved in ARPKD pathogenesis.

  2. Maize Arabinoxylan Gels as Protein Delivery Matrices

    Directory of Open Access Journals (Sweden)

    Ana Luisa Martínez-López

    2009-04-01

    Full Text Available The laccase induced gelation of maize bran arabinoxylans at 2.5% (w/v in the presence of insulin or β-lactoglobulin at 0.1% (w/v was investigated. Insulin and β-lacto-globulin did not modify either the gel elasticity (9 Pa or the cross-links content (0.03 and 0.015 mg di- and triferulic acids/mg arabinoxylan, respectively. The protein release capability of the gel was also investigated. The rate of protein release from gels was dependent on the protein molecular weight. The apparent diffusion coefficient was 0.99 × 10-7 and 0.79 × 10-7 cm2/s for insulin (5 kDa and β-lactoglobulin (18 kDa, respectively. The results suggest that maize bran arabinoxylan gels can be potential candidates for the controlled release of proteins.

  3. Functional characterization of the protein C A267T mutation: evidence for impaired secretion due to defective intracellular transport

    Directory of Open Access Journals (Sweden)

    Tjeldhorn Lena

    2010-09-01

    Full Text Available Abstract Background Activated protein C (PC is a serine protease that regulates blood coagulation by inactivating coagulation factors Va and VIIIa. PC deficiency is an autosomally inherited disorder associated with a high risk of recurrent venous thrombosis. The aim of the study was to explore the mechanisms responsible for severe PC deficiency in a patient with the protein C A267T mutation by in-vitro expression studies. Results Huh7 and CHO-K1 cells were transiently transfected with expression vectors containing wild-type (WT PC and mutated PC (A267T PC cDNAs. PC mRNA levels were assessed by qRT-PCR and the PC protein levels were measured by ELISA. The mRNA levels of WT PC and A267T PC were similar, while the intracellular protein level of A267T PC was moderately decreased compared to WT PC. The secretion of A267T PC into the medium was severely impaired. No differences in molecular weights were observed between WT and A267T PC before and after treatment with endo-β-N-acetylglucosaminidase. Proteasomal and lysosomal degradations were examined using lactacystin and bafilomycin, respectively, and revealed that A267T PC was slightly more susceptible for proteasomal degradation than WT PC. Intracellular co-localization analysis indicated that A267T PC was mainly located in the endoplasmic reticulum (ER, whereas WT PC was observed in both ER and Golgi. Conclusions In contrast to what has been reported for other PC mutants, intracellular degradation of A267T PC was not the main/dominant mechanism underlying the reduced intracellular and secretion levels of PC. Our results indicate that the A267T mutation most likely caused misfolding of PC, which might lead to increased retention of the mutated PC in ER.

  4. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2018-05-01

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  5. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, R.J.; Bobrow, M.; Roberts, R.G. [St. Thomas`s Hospitals, London (United Kingdom)

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  6. Mutational Analysis on Membrane Associated Transporter Protein (MATP) and Their Structural Consequences in Oculocutaeous Albinism Type 4 (OCA4)-A Molecular Dynamics Approach.

    Science.gov (United States)

    Kamaraj, Balu; Purohit, Rituraj

    2016-11-01

    Oculocutaneous albinism type IV (OCA4) is an autosomal recessive inherited disorder which is characterized by reduced biosynthesis of melanin pigmentation in skin, hair, and eyes and caused by the genetic mutations in the membrane-associated transporter protein (MATP) encoded by SLC45A2 gene. The MATP protein consists of 530 amino acids which contains 12 putative transmembrane domains and plays an important role in pigmentation and probably functions as a membrane transporter in melanosomes. We scrutinized the most OCA4 disease-associated mutation and their structural consequences on SLC45A2 gene. To understand the atomic arrangement in 3D space, the native and mutant structures were modeled. Further the structural behavior of native and mutant MATP protein was investigated by molecular dynamics simulation (MDS) approach in explicit lipid and water background. We found Y317C as the most deleterious and disease-associated SNP on SLC45A2 gene. In MDS, mutations in MATP protein showed loss of stability and became more flexible, which alter its structural conformation and function. This phenomenon has indicated a significant role in inducing OCA4. Our study explored the understanding of molecular mechanism of MATP protein upon mutation at atomic level and further helps in the field of pharmacogenomics to develop a personalized medicine for OCA4 disorder. J. Cell. Biochem. 117: 2608-2619, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Calreticulin Mutations in Myeloproliferative Neoplasms

    Directory of Open Access Journals (Sweden)

    Noa Lavi

    2014-10-01

    Full Text Available With the discovery of the JAK2V617F mutation in patients with Philadelphia chromosome-negative (Ph− myeloproliferative neoplasms (MPNs in 2005, major advances have been made in the diagnosis of MPNs, in understanding of their pathogenesis involving the JAK/STAT pathway, and finally in the development of novel therapies targeting this pathway. Nevertheless, it remains unknown which mutations exist in approximately one-third of patients with non-mutated JAK2 or MPL essential thrombocythemia (ET and primary myelofibrosis (PMF. At the end of 2013, two studies identified recurrent mutations in the gene encoding calreticulin (CALR using whole-exome sequencing. These mutations were revealed in the majority of ET and PMF patients with non-mutated JAK2 or MPL but not in polycythemia vera patients. Somatic 52-bp deletions (type 1 mutations and recurrent 5-bp insertions (type 2 mutations in exon 9 of the CALR gene (the last exon encoding the C-terminal amino acids of the protein calreticulin were detected and found always to generate frameshift mutations. All detected mutant calreticulin proteins shared a novel amino acid sequence at the C-terminal. Mutations in CALR are acquired early in the clonal history of the disease, and they cause activation of JAK/STAT signaling. The CALR mutations are the second most frequent mutations in Ph− MPN patients after the JAK2V617F mutation, and their detection has significantly improved the diagnostic approach for ET and PMF. The characteristics of the CALR mutations as well as their diagnostic, clinical, and pathogenesis implications are discussed in this review.

  8. Frequency filtering decompositions for unsymmetric matrices and matrices with strongly varying coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, C.

    1996-12-31

    In 1992, Wittum introduced the frequency filtering decompositions (FFD), which yield a fast method for the iterative solution of large systems of linear equations. Based on this method, the tangential frequency filtering decompositions (TFFD) have been developed. The TFFD allow the robust and efficient treatment of matrices with strongly varying coefficients. The existence and the convergence of the TFFD can be shown for symmetric and positive definite matrices. For a large class of matrices, it is possible to prove that the convergence rate of the TFFD and of the FFD is independent of the number of unknowns. For both methods, schemes for the construction of frequency filtering decompositions for unsymmetric matrices have been developed. Since, in contrast to Wittums`s FFD, the TFFD needs only one test vector, an adaptive test vector can be used. The TFFD with respect to the adaptive test vector can be combined with other iterative methods, e.g. multi-grid methods, in order to improve the robustness of these methods. The frequency filtering decompositions have been successfully applied to the problem of the decontamination of a heterogeneous porous medium by flushing.

  9. A mutation in the glutamate-rich region of RNA-binding motif protein 20 causes dilated cardiomyopathy through missplicing of titin and impaired Frank-Starling mechanism

    DEFF Research Database (Denmark)

    Beqqali, Abdelaziz; Bollen, I. A. E.; Rasmussen, T. B.

    2016-01-01

    Mutations in the RS-domain of RNA-binding motif protein 20 (RBM20) have recently been identified to segregate with aggressive forms of familial dilated cardiomyopathy (DCM). Loss of RBM20 in rats results in missplicing of the sarcomeric gene titin (TTN). The functional and physiological consequen......Mutations in the RS-domain of RNA-binding motif protein 20 (RBM20) have recently been identified to segregate with aggressive forms of familial dilated cardiomyopathy (DCM). Loss of RBM20 in rats results in missplicing of the sarcomeric gene titin (TTN). The functional and physiological...... consequences of RBM20 mutations outside the mutational hotspot of RBM20 have not been explored to date. In this study, we investigated the pathomechanism of DCM caused by a novel RBM20 mutation in human cardiomyocytes. We identified a family with DCM carrying a mutation (RBM20(E913K/+)) in a glutamate...... to the early onset, and malignant course of DCM caused by RBM20 mutations. Altogether, our results demonstrate that heterozygous loss of RBM20 suffices to profoundly impair myocyte biomechanics by its disturbance of TTN splicing....

  10. Fibroblast Growth Factor Receptor 3 (FGFR3–Analyses of the S249C Mutation and Protein Expression in Primary Cervical Carcinomas

    Directory of Open Access Journals (Sweden)

    Haiyan Dai

    2001-01-01

    Full Text Available Fibroblast growth factor receptor 3 (FGFR3 seems to play an inhibitory role in bone development, as activating mutations in the gene underlie disorders such as achondroplasia and thanatophoric dysplasia. Findings from multiple myeloma (MM indicate that FGFR3 also can act as an oncogene, and mutation of codon 249 in the fibroblast growth factor receptor 3 (FGFR3 gene was recently detected in 3/12 primary cervical carcinomas. We have analysed 91 cervical carcinomas for this specific S249C mutation using amplification created restriction site methodology (ACRS, and detected no mutations. Immunohistochemistry was performed on 73 of the tumours. Reduced protein staining was seen in 43 (58.8% samples. Six of the tumours (8.2% revealed increased protein staining compared with normal cervical tissue. These patients had a better prognosis than those with reduced or normal levels, although not statistically significant. This report weakens the hypothesis of FGFR3 as an oncogene of importance in cervical carcinomas.

  11. Introduction to matrices and vectors

    CERN Document Server

    Schwartz, Jacob T

    2001-01-01

    In this concise undergraduate text, the first three chapters present the basics of matrices - in later chapters the author shows how to use vectors and matrices to solve systems of linear equations. 1961 edition.

  12. An XPA gene splicing mutation resulting in trace protein expression in an elderly patient with xeroderma pigmentosum group A without neurological abnormalities.

    Science.gov (United States)

    Takahashi, Y; Endo, Y; Kusaka-Kikushima, A; Nakamaura, S; Nakazawa, Y; Ogi, T; Uryu, M; Tsuji, G; Furue, M; Moriwaki, S

    2017-07-01

    A certain relationship between XPA gene mutations and the severity of symptoms has been observed in patients with xeroderma pigmentosum group A (XP-A). Patients with mutations within the DNA-binding domain usually exhibit severe symptoms, whereas splicing mutations in the same domain sometimes cause very mild symptoms. This inconsistency can be explained by a small amount of functional XPA protein produced from normally spliced transcripts. We herein report the case of an adult Japanese patient with XP-A with unusually mild symptoms. We identified a homozygous c.529G>A mutation in exon 4 of the XPA gene, which resulted in aberrant splicing with a 29-bp deletion in exon 4 causing a frameshift. Intact mRNA was observable, but a Western blot analysis failed to detect any normal XPA protein. We therefore evaluated the DNA repair capacity in normal cells in which the XPA expression was artificially diminished. The repair capacity was still present in cells with trace levels of the XPA protein. The repair capacity of the cells derived from our patient with mild symptoms was poor by comparison, but still significant compared with that of the cells derived from a patient with XP-A with severe symptoms. These results provide strong evidence that a trace level of XPA protein can still exert a relatively strong repair capacity, resulting in only a mild phenotype. © 2016 British Association of Dermatologists.

  13. A disease-causing mutation illuminates the protein membrane topology of the kidney-expressed prohibitin homology (PHB) domain protein podocin.

    Science.gov (United States)

    Schurek, Eva-Maria; Völker, Linus A; Tax, Judit; Lamkemeyer, Tobias; Rinschen, Markus M; Ungrue, Denise; Kratz, John E; Sirianant, Lalida; Kunzelmann, Karl; Chalfie, Martin; Schermer, Bernhard; Benzing, Thomas; Höhne, Martin

    2014-04-18

    Mutations in the NPHS2 gene are a major cause of steroid-resistant nephrotic syndrome, a severe human kidney disorder. The NPHS2 gene product podocin is a key component of the slit diaphragm cell junction at the kidney filtration barrier and part of a multiprotein-lipid supercomplex. A similar complex with the podocin ortholog MEC-2 is required for touch sensation in Caenorhabditis elegans. Although podocin and MEC-2 are membrane-associated proteins with a predicted hairpin-like structure and amino and carboxyl termini facing the cytoplasm, this membrane topology has not been convincingly confirmed. One particular mutation that causes kidney disease in humans (podocin(P118L)) has also been identified in C. elegans in genetic screens for touch insensitivity (MEC-2(P134S)). Here we show that both mutant proteins, in contrast to the wild-type variants, are N-glycosylated because of the fact that the mutant C termini project extracellularly. Podocin(P118L) and MEC-2(P134S) did not fractionate in detergent-resistant membrane domains. Moreover, mutant podocin failed to activate the ion channel TRPC6, which is part of the multiprotein-lipid supercomplex, indicative of the fact that cholesterol recruitment to the ion channels, an intrinsic function of both proteins, requires C termini facing the cytoplasmic leaflet of the plasma membrane. Taken together, this study demonstrates that the carboxyl terminus of podocin/MEC-2 has to be placed at the inner leaflet of the plasma membrane to mediate cholesterol binding and contribute to ion channel activity, a prerequisite for mechanosensation and the integrity of the kidney filtration barrier.

  14. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX.

    Science.gov (United States)

    Argentaro, Anthony; Yang, Ji-Chun; Chapman, Lynda; Kowalczyk, Monika S; Gibbons, Richard J; Higgs, Douglas R; Neuhaus, David; Rhodes, Daniela

    2007-07-17

    The chromatin-associated protein ATRX was originally identified because mutations in the ATRX gene cause a severe form of syndromal X-linked mental retardation associated with alpha-thalassemia. Half of all of the disease-associated missense mutations cluster in a cysteine-rich region in the N terminus of ATRX. This region was named the ATRX-DNMT3-DNMT3L (ADD) domain, based on sequence homology with a family of DNA methyltransferases. Here, we report the solution structure of the ADD domain of ATRX, which consists of an N-terminal GATA-like zinc finger, a plant homeodomain finger, and a long C-terminal alpha-helix that pack together to form a single globular domain. Interestingly, the alpha-helix of the GATA-like finger is exposed and highly basic, suggesting a DNA-binding function for ATRX. The disease-causing mutations fall into two groups: the majority affect buried residues and hence affect the structural integrity of the ADD domain; another group affects a cluster of surface residues, and these are likely to perturb a potential protein interaction site. The effects of individual point mutations on the folding state and stability of the ADD domain correlate well with the levels of mutant ATRX protein in patients, providing insights into the molecular pathophysiology of ATR-X syndrome.

  15. Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss

    OpenAIRE

    Shahin, Hashem; Walsh, Tom; Sobe, Tama; Abu Sa’ed, Judeh; Abu Rayan, Amal; Lynch, Eric D.; Lee, Ming K.; Avraham, Karen B.; King, Mary-Claire; Kanaan, Moein

    2005-01-01

    In a large consanguineous Palestinian kindred, we previously mapped DFNB28—a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment—to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious mi...

  16. Spectra of sparse random matrices

    International Nuclear Information System (INIS)

    Kuehn, Reimer

    2008-01-01

    We compute the spectral density for ensembles of sparse symmetric random matrices using replica. Our formulation of the replica-symmetric ansatz shares the symmetries of that suggested in a seminal paper by Rodgers and Bray (symmetry with respect to permutation of replica and rotation symmetry in the space of replica), but uses a different representation in terms of superpositions of Gaussians. It gives rise to a pair of integral equations which can be solved by a stochastic population-dynamics algorithm. Remarkably our representation allows us to identify pure-point contributions to the spectral density related to the existence of normalizable eigenstates. Our approach is not restricted to matrices defined on graphs with Poissonian degree distribution. Matrices defined on regular random graphs or on scale-free graphs, are easily handled. We also look at matrices with row constraints such as discrete graph Laplacians. Our approach naturally allows us to unfold the total density of states into contributions coming from vertices of different local coordinations and an example of such an unfolding is presented. Our results are well corroborated by numerical diagonalization studies of large finite random matrices

  17. Autoantibodies directed to centromere protein F in a patient with BRCA1 gene mutation

    OpenAIRE

    Moghaddas, Fiona; Joshua, Fredrick; Taylor, Roberta; Fritzler, Marvin J.; Toh, Ban Hock

    2016-01-01

    Background Autoantibodies directed to centromere protein F were first reported in 1993 and their association with malignancy has been well documented. Case We present the case of a 48-year-old Caucasian female with a BRCA1 gene mutation associated with bilateral breast cancer. Antinuclear autoantibody immunofluorescence performed for workup of possible inflammatory arthropathy showed a high titre cell cycle related nuclear speckled pattern, with subsequent confirmation by addressable laser be...

  18. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Whole exome sequencing followed by expanded familial validation by Sanger sequencing. We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  19. Molecular genetics of the Usher syndrome in Lebanon: identification of 11 novel protein truncating mutations by whole exome sequencing.

    Directory of Open Access Journals (Sweden)

    Ramesh Reddy

    Full Text Available Usher syndrome (USH is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II.Whole exome sequencing followed by expanded familial validation by Sanger sequencing.We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98.Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.

  20. Molecular Genetics of the Usher Syndrome in Lebanon: Identification of 11 Novel Protein Truncating Mutations by Whole Exome Sequencing

    Science.gov (United States)

    Reddy, Ramesh; Fahiminiya, Somayyeh; El Zir, Elie; Mansour, Ahmad; Megarbane, Andre; Majewski, Jacek; Slim, Rima

    2014-01-01

    Background Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. Methods Whole exome sequencing followed by expanded familial validation by Sanger sequencing. Results We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. Conclusion Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes. PMID:25211151

  1. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  2. Phenotypic heterogeneity associated with a novel mutation (Gly112Glu) in the Norrie disease protein.

    Science.gov (United States)

    Allen, R C; Russell, S R; Streb, L M; Alsheikheh, A; Stone, E M

    2006-02-01

    To determine the molecular pathology and clinical severity of two pedigrees with a history of early retinal detachment and peripheral retinal vascular abnormalities. Longitudinal cohort study. A longitudinal clinical study and DNA analysis was performed on 49 family members of two pedigrees. Nine individuals were found to be hemizygous for a mutation at codon 112 (Gly112Glu) of the Norrie disease protein (NDP) in one pedigree. Significant phenotypic heterogeneity was found. The proband presented with a unilateral subtotal retinal detachment at the age of 3 years, and subsequently developed a slowly progressive tractional retinal detachment involving the macula in the contralateral eye at the age of 4 years. One individual had only mild peripheral retinal pigmentary changes with normal vision at the age of 79 years. The remaining seven individuals had varying degrees of peripheral retinal vascular abnormalities and anterior segment findings. Seven affected members of a second pedigree affected by a previously reported mutation, Arg74Cys, also demonstrated wide ocular phenotypic variation. A novel mutation (Gly112Glu), which represents the most carboxy located, NDP mutation reported, results in significant phenotypic heterogeneity. These data support the contention that the spectrum of ocular disease severity associated with these NDP mutations is broad. Use of terms that characterize this entity by phenotypic appearance, such as familial exudative vitreoretinopathy, do not adequately communicate the potential spectrum of severity of this disorder to affected or carrier family members.

  3. FET Proteins TAF15 and EWS Are Selective Markers that Distinguish FTLD with FUS Pathology from Amyotrophic Lateral Sclerosis with "FUS" Mutations

    Science.gov (United States)

    Neumann, Manuela; Bentmann, Eva; Dormann, Dorothee; Jawaid, Ali; DeJesus-Hernandez, Mariely; Ansorge, Olaf; Roeber, Sigrun; Kretzschmar, Hans A.; Munoz, David G.; Kusaka, Hirofumi; Yokota, Osamu; Ang, Lee-Cyn; Bilbao, Juan; Rademakers, Rosa; Haass, Christian; Mackenzie, Ian R. A.

    2011-01-01

    Accumulation of the DNA/RNA binding protein fused in sarcoma as cytoplasmic inclusions in neurons and glial cells is the pathological hallmark of all patients with amyotrophic lateral sclerosis with mutations in "FUS" as well as in several subtypes of frontotemporal lobar degeneration, which are not associated with "FUS" mutations. The mechanisms…

  4. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    Science.gov (United States)

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chemiluminescence in cryogenic matrices

    Science.gov (United States)

    Lotnik, S. V.; Kazakov, Valeri P.

    1989-04-01

    The literature data on chemiluminescence (CL) in cryogenic matrices have been classified and correlated for the first time. The role of studies on phosphorescence and CL at low temperatures in the development of cryochemistry is shown. The features of low-temperature CL in matrices of nitrogen and inert gases (fine structure of spectra, matrix effects) and the data on the mobility and reactivity of atoms and radicals at very low temperatures are examined. The trends in the development of studies on CL in cryogenic matrices, such as the search for systems involving polyatomic molecules and extending the forms of CL reactions, are followed. The reactions of active nitrogen with hydrocarbons that are accompanied by light emission and CL in the oxidation of carbenes at T >= 77 K are examined. The bibliography includes 112 references.

  6. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins.

    Science.gov (United States)

    Frederix, Marijke; Edwards, Anne; Swiderska, Anna; Stanger, Andrew; Karunakaran, Ramakrishnan; Williams, Alan; Abbruscato, Pamela; Sanchez-Contreras, Maria; Poole, Philip S; Downie, J Allan

    2014-08-01

    In Rhizobium leguminosarum bv. viciae, quorum-sensing is regulated by CinR, which induces the cinIS operon. CinI synthesizes an AHL, whereas CinS inactivates PraR, a repressor. Mutation of praR enhanced biofilms in vitro. We developed a light (lux)-dependent assay of rhizobial attachment to roots and demonstrated that mutation of praR increased biofilms on pea roots. The praR mutant out-competed wild-type for infection of pea nodules in mixed inoculations. Analysis of gene expression by microarrays and promoter fusions revealed that PraR represses its own transcription and mutation of praR increased expression of several genes including those encoding secreted proteins (the adhesins RapA2, RapB and RapC, two cadherins and the glycanase PlyB), the polysaccharide regulator RosR, and another protein similar to PraR. PraR bound to the promoters of several of these genes indicating direct repression. Mutations in rapA2, rapB, rapC, plyB, the cadherins or rosR did not affect the enhanced root attachment or nodule competitiveness of the praR mutant. However combinations of mutations in rapA, rapB and rapC abolished the enhanced attachment and nodule competitiveness. We conclude that relief of PraR-mediated repression determines a lifestyle switch allowing the expression of genes that are important for biofilm formation on roots and the subsequent initiation of infection of legume roots. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  7. Germ-line mutations of the p53 tumor suppressor gene in patients with high risk for cancer inactivate the p53 protein.

    OpenAIRE

    Frebourg, T; Kassel, J; Lam, K T; Gryka, M A; Barbier, N; Andersen, T I; Børresen, A L; Friend, S H

    1992-01-01

    Germ-line mutations in the p53 tumor suppressor gene have been observed in patients with Li-Fraumeni syndrome, brain tumors, second malignancies, and breast cancers. It is unclear whether all of these mutations have inactivated p53 and thereby provide an increased risk for cancer. Therefore, it is necessary to establish the biological significance of these germ-line mutations by the functional and structural analysis of the resulting mutant p53 proteins. We analyzed the ability of seven germ-...

  8. Mutations in the Norrie disease gene.

    Science.gov (United States)

    Schuback, D E; Chen, Z Y; Craig, I W; Breakefield, X O; Sims, K B

    1995-01-01

    We report our experience to date in mutation identification in the Norrie disease (ND) gene. We carried out mutational analysis in 26 kindreds in an attempt to identify regions presumed critical to protein function and potentially correlated with generation of the disease phenotype. All coding exons, as well as noncoding regions of exons 1 and 2, 636 nucleotides in the noncoding region of exon 3, and 197 nucleotides of 5' flanking sequence, were analyzed for single-strand conformation polymorphisms (SSCP) by polymerase chain reaction (PCR) amplification of genomic DNA. DNA fragments that showed altered SSCP band mobilities were sequenced to locate the specific mutations. In addition to three previously described submicroscopic deletions encompassing the entire ND gene, we have now identified 6 intragenic deletions, 8 missense (seven point mutations, one 9-bp deletion), 6 nonsense (three point mutations, three single bp deletions/frameshift) and one 10-bp insertion, creating an expanded repeat in the 5' noncoding region of exon 1. Thus, mutations have been identified in a total of 24 of 26 (92%) of the kindreds we have studied to date. With the exception of two different mutations, each found in two apparently unrelated kindreds, these mutations are unique and expand the genotype database. Localization of the majority of point mutations at or near cysteine residues, potentially critical in protein tertiary structure, supports a previous protein model for norrin as member of a cystine knot growth factor family (Meitinger et al., 1993). Genotype-phenotype correlations were not evident with the limited clinical data available, except in the cases of larger submicroscopic deletions associated with a more severe neurologic syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling.

    Science.gov (United States)

    Hashimoto, Yuichi; Toyama, Yuka; Kusakari, Shinya; Nawa, Mikiro; Matsuoka, Masaaki

    2016-06-03

    A missense mutation (T835M) in the uncoordinated-5C (UNC5C) netrin receptor gene increases the risk of late-onset Alzheimer disease (AD) and also the vulnerability of neurons harboring the mutation to various insults. The molecular mechanisms underlying T835M-UNC5C-induced death remain to be elucidated. In this study, we show that overexpression of wild-type UNC5C causes low-grade death, which is intensified by an AD-linked mutation T835M. An AD-linked survival factor, calmodulin-like skin protein (CLSP), and a natural ligand of UNC5C, netrin1, inhibit this death. T835M-UNC5C-induced neuronal cell death is mediated by an intracellular death-signaling cascade, consisting of death-associated protein kinase 1/protein kinase D/apoptosis signal-regulating kinase 1 (ASK1)/JNK/NADPH oxidase/caspases, which merges at ASK1 with a death-signaling cascade, mediated by amyloid β precursor protein (APP). Notably, netrin1 also binds to APP and partially inhibits the death-signaling cascade, induced by APP. These results may provide new insight into the amyloid β-independent pathomechanism of AD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Secretory leukocyte protease inhibitor protein regulates the penetrance of frontotemporal lobar degeneration in progranulin mutation carriers.

    Science.gov (United States)

    Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa

    2014-01-01

    The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.

  11. Mutation in Parkinson disease-associated, G-protein-coupled receptor 37 (GPR37/PaelR is related to autism spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Eriko Fujita-Jimbo

    Full Text Available Little is known about the molecular pathogenesis of Autism spectrum disorder (ASD, a neurodevelopmental disorder. Here we identified two mutations in the G-protein-coupled receptor 37 gene (GPR37 localized on chromosome 7q31-33, called the AUTS1 region, of ASD patients; 1585-1587 ttc del (Del312F in one Japanese patient and G2324A (R558Q in one Caucasian patient. The Del312F was located in the conserved transmembrane domain, and the R558Q was located in a conserved region just distal to the last transmembrane domain. In addition, a potential ASD-related GPR37 variant, T589M, was found in 7 affected Caucasian men from five different families. Our results suggested that some alleles in GPR37 were related to the deleterious effect of ASD. GPR37 is associated with the dopamine transporter to modulate dopamine uptake, and regulates behavioral responses to dopaminergic drugs. Thus, dopaminergic neurons may be involved in the ASD. However, we also detected the Del321F mutation in the patient's unaffected father and R558Q in not only an affected brother but also an unaffected mother. The identification of unaffected parents that carried the mutated alleles suggested that the manifestation of ASD was also influenced by factors other than these mutations, including endoplasmic reticulum stress of the mutated proteins or gender. Our study will provide the new insight into the molecular pathogenesis of ASD.

  12. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  13. The invariant theory of matrices

    CERN Document Server

    Concini, Corrado De

    2017-01-01

    This book gives a unified, complete, and self-contained exposition of the main algebraic theorems of invariant theory for matrices in a characteristic free approach. More precisely, it contains the description of polynomial functions in several variables on the set of m\\times m matrices with coefficients in an infinite field or even the ring of integers, invariant under simultaneous conjugation. Following Hermann Weyl's classical approach, the ring of invariants is described by formulating and proving the first fundamental theorem that describes a set of generators in the ring of invariants, and the second fundamental theorem that describes relations between these generators. The authors study both the case of matrices over a field of characteristic 0 and the case of matrices over a field of positive characteristic. While the case of characteristic 0 can be treated following a classical approach, the case of positive characteristic (developed by Donkin and Zubkov) is much harder. A presentation of this case...

  14. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  15. Mutations in a Novel Isoform of TRIOBP That Encodes a Filamentous-Actin Binding Protein Are Responsible for DFNB28 Recessive Nonsyndromic Hearing Loss

    Science.gov (United States)

    Shahin, Hashem; Walsh, Tom; Sobe, Tama; Abu Sa’ed, Judeh; Abu Rayan, Amal; Lynch, Eric D.; Lee, Ming K.; Avraham, Karen B.; King, Mary-Claire; Kanaan, Moein

    2006-01-01

    In a large consanguineous Palestinian kindred, we previously mapped DFNB28—a locus associated with recessively inherited, prelingual, profound sensorineural hearing impairment—to chromosome 22q13.1. We report here that mutations in a novel 218-kDa isoform of TRIOBP (TRIO and filamentous actin [F-actin] binding protein) are associated with DFNB28 hearing loss in a total of nine Palestinian families. Two nonsense mutations (R347X and Q581X) truncate the protein, and a potentially deleterious missense mutation (G1019R) occurs in a conserved motif in a putative SH3-binding domain. In seven families, 27 deaf individuals are homozygous for one of the nonsense mutations; in two other families, 3 deaf individuals are compound heterozygous for the two nonsense mutations or for Q581X and G1019R. The novel long isoform of TRIOBP has a restricted expression profile, including cochlea, retina, and fetal brain, whereas the original short isoform is widely expressed. Antibodies to TRIOBP reveal expression in sensory cells of the inner ear and colocalization with F-actin along the length of the stereocilia. PMID:16385458

  16. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates.

    Science.gov (United States)

    Pringle, Märit; Poehlsgaard, Jacob; Vester, Birte; Long, Katherine S

    2004-12-01

    The pleuromutilin antibiotic tiamulin binds to the ribosomal peptidyl transferase centre. Three groups of Brachyspira spp. isolates with reduced tiamulin susceptibility were analysed to define resistance mechanisms to the drug. Mutations were identified in genes encoding ribosomal protein L3 and 23S rRNA at positions proximal to the peptidyl transferase centre. In two groups of laboratory-selected mutants, mutations were found at nucleotide positions 2032, 2055, 2447, 2499, 2504 and 2572 of 23S rRNA (Escherichia coli numbering) and at amino acid positions 148 and 149 of ribosomal protein L3 (Brachyspira pilosicoli numbering). In a third group of clinical B. hyodysenteriae isolates, only a single mutation at amino acid 148 of ribosomal protein L3 was detected. Chemical footprinting experiments show a reduced binding of tiamulin to ribosomal subunits from mutants with decreased susceptibility to the drug. This reduction in drug binding is likely the resistance mechanism for these strains. Hence, the identified mutations located near the tiamulin binding site are predicted to be responsible for the resistance phenotype. The positions of the mutated residues relative to the bound drug advocate a model where the mutations affect tiamulin binding indirectly through perturbation of nucleotide U2504.

  17. Enhancing Understanding of Transformation Matrices

    Science.gov (United States)

    Dick, Jonathan; Childrey, Maria

    2012-01-01

    With the Common Core State Standards' emphasis on transformations, teachers need a variety of approaches to increase student understanding. Teaching matrix transformations by focusing on row vectors gives students tools to create matrices to perform transformations. This empowerment opens many doors: Students are able to create the matrices for…

  18. No evidence for association of autism with rare heterozygous point mutations in Contactin-Associated Protein-Like 2 (CNTNAP2, or in Other Contactin-Associated Proteins or Contactins.

    Directory of Open Access Journals (Sweden)

    John D Murdoch

    2015-01-01

    Full Text Available Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2 in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk.

  19. Hyperthermia-induced alteration of yeast susceptibility to mutation

    International Nuclear Information System (INIS)

    Mitchel, R.E.J.; Morrison, D.P.

    1985-01-01

    Diploid yeast (s. cerevisiae) were examined for alterations in susceptibility to induced mutation following hyperthermia treatment. In cells grown at 23 0 C, a non-lethal heat exposure (38 0 C, 30 min) markedly suppressed mutation induced by a subsequent non-killing dose of MNNG of MNU. Mutation by ENU, 8-MOP + UVA, or γ-rays was not affected. An intermediate level of mutation suppression was observed for mutation by 254nm UV or MMS. Mutation by MNNG was not suppressed by the same heat treatment delivered after the mutagen exposure. In a split dose experiment (two MNNG treatments separated by a heat exposure) no suppression of mutation was observed. Treatment with cycloheximide mimicked the effect of heat treatment. These data suggest that mutation induction by MNNG or MNU is protein synthesis dependent, i.e. an error-prone repair system is induced by exposure to MNNG or MNU but not by ENU, 8-MOP+UVA or γ-irradiation. We propose that hyperthermia treatment, by inducing stress protein synthesis at the expense of normal protein synthesis, precludes induction of this error-prone system. Therefore, in heat treated cells, DNA lesions produced by MNNG or MNU exposure must be resolved by an essentially constitutive system which is less error-prone than the inducible one

  20. Group inverses of M-matrices and their applications

    CERN Document Server

    Kirkland, Stephen J

    2013-01-01

    Group inverses for singular M-matrices are useful tools not only in matrix analysis, but also in the analysis of stochastic processes, graph theory, electrical networks, and demographic models. Group Inverses of M-Matrices and Their Applications highlights the importance and utility of the group inverses of M-matrices in several application areas. After introducing sample problems associated with Leslie matrices and stochastic matrices, the authors develop the basic algebraic and spectral properties of the group inverse of a general matrix. They then derive formulas for derivatives of matrix f

  1. Investigation on Secondary Structure Perturbations of Proteins Embedded in Solid Lipid Matrices as a Novel Indicator of their Biological Activity upon In Vitro Release

    DEFF Research Database (Denmark)

    Zeeshan, Farrukh; Tabbassum, Misbah; Jorgensen, Lene

    2018-01-01

    encased in solid lipid matrices as a novel indicator of their stability upon in vitro release. Model proteins namely catalase and lysozyme were incorporated into lipid namely Precirol® AT05 (glycerol palmitostearate, melting point 58°C) at 30% w/w loading using melting and mixing and wet granulation...... aggregation for catalase which was increased using wet granulation. The biological activity of catalase was statistically different from that of control and was affected by the incorporation method and was found to be in alignment with ATR spectral changes and extent of aggregation. In conclusion, ATR...

  2. Interactions between Food Additive Silica Nanoparticles and Food Matrices

    Directory of Open Access Journals (Sweden)

    Mi-Ran Go

    2017-06-01

    Full Text Available Nanoparticles (NPs have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food

  3. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import.

    Science.gov (United States)

    Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K

    2017-10-20

    Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.

  4. Extensive overproduction of the AdhE protein by rng mutations depends on mutations in the cra gene or in the Cra-box of the adhE promoter.

    Science.gov (United States)

    Kaga, Naoko; Umitsuki, Genryou; Clark, David P; Nagai, Kazuo; Wachi, Masaaki

    2002-07-05

    Escherichia coli RNase G encoded by the rng gene is involved in degradation of adhE mRNA. Overproduction of the AdhE protein by rng mutants was found to depend on the genetic background of strains derived from DC272 (adhC81) or MC1061. We found that DC272 carried a point mutation in the Cra-binding site of the adhE promoter. The Cra protein encoded by the cra gene is known to act as a repressor of adhE. P1-phage-mediated transduction and lacZ fusion analysis with the mutant adhE promoter confirmed that this mutation is responsible for overproduction. On the other hand, Southern hybridization revealed that MC1061 had a 0.85-kb deletion of the cra gene. Overproduction of AdhE in the MC1061 background was reversed to the wild-type levels by introduction of a plasmid carrying the cra(+) gene. These results indicated that expression of the adhE gene was regulated transcriptionally by Cra and posttranscriptionally by RNase G. (c) 2002 Elsevier Science (USA).

  5. Conduction block and tonic pupils in Charcot-Marie-Tooth disease caused by a myelin protein zero p.Ile112Thr mutation.

    LENUS (Irish Health Repository)

    Murphy, Sinéad M

    2011-03-01

    We report a patient with Charcot-Marie-Tooth disease (CMT) due to the p.Ile112Thr mutation in myelin protein zero (MPZ) who presented with a patchy neuropathy with conduction block and tonic pupils. Conduction block is unusual in inherited neuropathies, while pupil abnormalities are recognised to occur in CMT especially due to MPZ mutations. This case highlights that patchy demyelinating neuropathy with conduction block may occur in p.Ile112Thr MPZ mutations. Involvement of the pupils, as in this case, may be a pointer towards a genetic rather than inflammatory cause of neuropathy.

  6. Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report

    International Nuclear Information System (INIS)

    Neel, J.V.; Satoh, Chiyoko; Goriki, Kazuaki; Asakawa, Jun-ichi; Fujita, Mikio; Takahashi, Norio; Kageoka, Takeshi; Hazama, Ryuji.

    1990-04-01

    A sample of children whose parents were proximally exposed at the time of the atomic bombings of Hiroshima and Nagasaki (i.e., within 2,000 m of the hypocenter) and a suitable comparison group have been examined for the occurrence of mutations altering the electrophoretic mobility or activity of a series of 30 proteins. The examination of the equivalent of 667,404 locus products in the children of proximally exposed persons yielded three mutations altering electrophoretic mobility; the corresponding figure for the comparison group was three mutations in 466,881 tests. The examination of a subset of 60,529 locus products for loss of enzyme activity in the children of proximally exposed persons yielded one mutation; no mutations were encountered in 61,741 determinations on the children of the comparison group. Combining these two series, the mutation rate observed in the children of proximally exposed is thus 0.60 x 10 -5 /locus/generation, with 95 % confidence intervals between 0.2 and 1.5 x 10 -5 , and in the comparison children, 0.64 x 10 -5 /locus/generation, with 95 % intervals between 0.1 and 1.9 x 10 -5 . The average conjoint gonad doses of the proximally exposed parents are estimated to be 0.437 Gy of gamma radiation and 0.002 Gy of neutron radiation. Assigning a relative biological effectiveness of 20 to the neutron radiation, the combined total gonad dose of the parents becomes 0.477 Sv. (author)

  7. Inference for High-dimensional Differential Correlation Matrices.

    Science.gov (United States)

    Cai, T Tony; Zhang, Anru

    2016-01-01

    Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.

  8. Optimized Mitochondrial Targeting of Proteins Encoded by Modified mRNAs Rescues Cells Harboring Mutations in mtATP6

    Directory of Open Access Journals (Sweden)

    Randall Marcelo Chin

    2018-03-01

    Full Text Available Summary: Mitochondrial disease may be caused by mutations in the protein-coding genes of the mitochondrial genome. A promising strategy for treating such diseases is allotopic expression—the translation of wild-type copies of these proteins in the cytosol, with subsequent translocation into the mitochondria, resulting in rescue of mitochondrial function. In this paper, we develop an automated, quantitative, and unbiased screening platform to evaluate protein localization and mitochondrial morphology. This platform was used to compare 31 mitochondrial targeting sequences and 15 3′ UTRs in their ability to localize up to 9 allotopically expressed proteins to the mitochondria and their subsequent impact on mitochondrial morphology. Taking these two factors together, we synthesized chemically modified mRNAs that encode for an optimized allotopic expression construct for mtATP6. These mRNAs were able to functionally rescue a cell line harboring the 8993T > G point mutation in the mtATP6 gene. : Allotopic expression of proteins normally encoded by mtDNA is a promising therapy for mitochondrial disease. Chin et al. use an unbiased and high-content imaging-based screening platform to optimize allotopic expression. Modified mRNAs encoding for the optimized allotopic expression constructs rescued the respiration and growth of mtATP6-deficient cells. Keywords: mitochondria, mitochondrial disease, mRNA, modified mRNA, ATP6, allotopic expression, rare disease, gene therapy, screening, high content imaging

  9. Mutation of a cuticular protein, BmorCPR2, alters larval body shape and adaptability in silkworm, Bombyx mori.

    Science.gov (United States)

    Qiao, Liang; Xiong, Gao; Wang, Ri-xin; He, Song-zhen; Chen, Jie; Tong, Xiao-ling; Hu, Hai; Li, Chun-lin; Gai, Ting-ting; Xin, Ya-qun; Liu, Xiao-fan; Chen, Bin; Xiang, Zhong-huai; Lu, Cheng; Dai, Fang-yin

    2014-04-01

    Cuticular proteins (CPs) are crucial components of the insect cuticle. Although numerous genes encoding cuticular proteins have been identified in known insect genomes to date, their functions in maintaining insect body shape and adaptability remain largely unknown. In the current study, positional cloning led to the identification of a gene encoding an RR1-type cuticular protein, BmorCPR2, highly expressed in larval chitin-rich tissues and at the mulberry leaf-eating stages, which is responsible for the silkworm stony mutant. In the Dazao-stony strain, the BmorCPR2 allele is a deletion mutation with significantly lower expression, compared to the wild-type Dazao strain. Dysfunctional BmorCPR2 in the stony mutant lost chitin binding ability, leading to reduced chitin content in larval cuticle, limitation of cuticle extension, abatement of cuticle tensile properties, and aberrant ratio between internodes and intersegmental folds. These variations induce a significant decrease in cuticle capacity to hold the growing internal organs in the larval development process, resulting in whole-body stiffness, tightness, and hardness, bulging intersegmental folds, and serious defects in larval adaptability. To our knowledge, this is the first study to report the corresponding phenotype of stony in insects caused by mutation of RR1-type cuticular protein. Our findings collectively shed light on the specific role of cuticular proteins in maintaining normal larval body shape and will aid in the development of pest control strategies for the management of Lepidoptera.

  10. Phenomenological mass matrices with a democratic warp

    International Nuclear Information System (INIS)

    Kleppe, A.

    2018-01-01

    Taking into account all available data on the mass sector, we obtain unitary rotation matrices that diagonalize the quark matrices by using a specific parametrization of the Cabibbo-Kobayashi-Maskawa mixing matrix. In this way, we find mass matrices for the up- and down-quark sectors of a specific, symmetric form, with traces of a democratic texture.

  11. Mutations induced in plant breeding

    International Nuclear Information System (INIS)

    Barriga B, P.

    1984-01-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented. (Author)

  12. Mutations induced in plant breeding

    Energy Technology Data Exchange (ETDEWEB)

    Barriga B, P. (Universidad Austral de Chile, Valdivia. Inst. de Produccion y Sanidad Vegetal)

    1984-10-01

    The most significant aspects of the use of ionizing radiations in plant breeding are reviewed. Aspects such as basic principles of mutation, expression and selection in obtention of mutants, methods for using induced mutations and sucess achieved with this methodology in plant breeding are reviewed. Results obtained in a program of induced mutation on wheat for high content of protein and lysine at the Universidad Austral de Chile are presented.

  13. A functional proteogenomic analysis of endometrioid and clear cell carcinomas using reverse phase protein array and mutation analysis: protein expression is histotype-specific and loss of ARID1A/BAF250a is associated with AKT phosphorylation

    International Nuclear Information System (INIS)

    Wiegand, Kimberly C; Lu, Yiling; Zhang, Fan; Anglesio, Michael S; Gilks, Blake; Mills, Gordon B; Huntsman, David G; Carey, Mark S; Hennessy, Bryan T; Leung, Samuel; Wang, Yemin; Ju, Zhenlin; McGahren, Mollianne; Kalloger, Steve E; Finlayson, Sarah; Stemke-Hale, Katherine

    2014-01-01

    Ovarian cancer is now recognized as a number of distinct diseases primarily defined by histological subtype. Both clear cell ovarian carcinomas (CCC) and ovarian endometrioid carcinomas (EC) may arise from endometriosis and frequently harbor mutations in the ARID1A tumor suppressor gene. We studied the influence of histological subtype on protein expression with reverse phase protein array (RPPA) and assessed proteomic changes associated with ARID1A mutation/BAF250a expression in EC and CCC. Immunohistochemistry (IHC) for BAF250a expression was performed on 127 chemotherapy-naive ovarian carcinomas (33 CCC, 29 EC, and 65 high-grade serous ovarian carcinomas (HGSC)). Whole tumor lysates were prepared from frozen banked tumor samples and profiled by RPPA using 116 antibodies. ARID1A mutations were identified by exome sequencing, and PIK3CA mutations were characterized by MALDI-TOF mass spectrometry. SAM (Significance Analysis of Microarrays) was performed to determine differential protein expression by histological subtype and ARID1A mutation status. Multivariate logistic regression was used to assess the impact of ARID1A mutation status/BAF250a expression on AKT phosphorylation (pAKT). PIK3CA mutation type and PTEN expression were included in the model. BAF250a knockdown was performed in 3 clear cell lines using siRNA to ARID1A. Marked differences in protein expression were observed that are driven by histotype. Compared to HGSC, SAM identified over 50 proteins that are differentially expressed in CCC and EC. These included PI3K/AKT pathway proteins, those regulating the cell cycle, apoptosis, transcription, and other signaling pathways including steroid hormone signaling. Multivariate models showed that tumors with loss of BAF250a expression showed significantly higher levels of AKT-Thr 308 and AKT-Ser 473 phosphorylation (p < 0.05). In 31 CCC cases, pAKT was similarly significantly increased in tumors with BAF250a loss on IHC. Knockdown of BAF250a by siRNA in

  14. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    Science.gov (United States)

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  15. On the behavior of the leading eigenvalue of Eigen's evolutionary matrices.

    Science.gov (United States)

    Semenov, Yuri S; Bratus, Alexander S; Novozhilov, Artem S

    2014-12-01

    We study general properties of the leading eigenvalue w¯(q) of Eigen's evolutionary matrices depending on the replication fidelity q. This is a linear algebra problem that has various applications in theoretical biology, including such diverse fields as the origin of life, evolution of cancer progression, and virus evolution. We present the exact expressions for w¯(q),w¯(')(q),w¯('')(q) for q = 0, 0.5, 1 and prove that the absolute minimum of w¯(q), which always exists, belongs to the interval (0, 0.5]. For the specific case of a single peaked landscape we also find lower and upper bounds on w¯(q), which are used to estimate the critical mutation rate, after which the distribution of the types of individuals in the population becomes almost uniform. This estimate is used as a starting point to conjecture another estimate, valid for any fitness landscape, and which is checked by numerical calculations. The last estimate stresses the fact that the inverse dependence of the critical mutation rate on the sequence length is not a generally valid fact. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Diagonalization of the mass matrices

    International Nuclear Information System (INIS)

    Rhee, S.S.

    1984-01-01

    It is possible to make 20 types of 3x3 mass matrices which are hermitian. We have obtained unitary matrices which could diagonalize each mass matrix. Since the three elements of mass matrix can be expressed in terms of the three eigenvalues, msub(i), we can also express the unitary matrix in terms of msub(i). (Author)

  17. Structural and dynamic characterization of the C313Y mutation in Myostatin dimeric protein, responsible for the double muscle phenotype in Piedmontese cattle

    Directory of Open Access Journals (Sweden)

    Silvia eBongiorno

    2016-02-01

    Full Text Available The knowledge of the molecular effects of the C313Y mutation, responsible for the double muscle phenotype in Piedmontese cattle, can help understanding the actual mechanism of phenotype determination and paves the route for a better modulation of the positive effects of this economic important phenotype in the beef industry, while minimizing the negative side effects, now inevitably intersected.The structure and dynamic behaviour of the active dimeric form of Myostatin in cattle was analyzed by means of three state-of-the-art Molecular Dynamics simulations, 200-ns long, of wild-type and C313Y mutants. Our results highlight a role for the conserved Arg333 in establishing a network of short and long range interactions between the two monomers in the wild-type protein that is destroyed upon the C313Y mutation even in a single monomer. Furthermore, the native protein shows an asymmetry in residue fluctuation that is absent in the double monomer mutant. Time window analysis on further 200-ns of simulation demonstrates that this is a characteristic behaviour of the protein, likely depended from the long range communications between monomers. The same behaviour, in fact, has already been observed in other mutated dimers. Finally, the mutation does not produce alterations in the secondary structure elements that compose the characteristic TGF-β cystine-knot motif.

  18. A targeted mutation within the feline leukemia virus (FeLV) envelope protein immunosuppressive domain to improve a canarypox virus-vectored FeLV vaccine.

    Science.gov (United States)

    Schlecht-Louf, Géraldine; Mangeney, Marianne; El-Garch, Hanane; Lacombe, Valérie; Poulet, Hervé; Heidmann, Thierry

    2014-01-01

    We previously delineated a highly conserved immunosuppressive (IS) domain within murine and primate retroviral envelope proteins that is critical for virus propagation in vivo. The envelope-mediated immunosuppression was assessed by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to allow these cells to escape, at least transiently, immune rejection. Using this approach, we identified key residues whose mutation (i) specifically abolishes immunosuppressive activity without affecting the "mechanical" function of the envelope protein and (ii) significantly enhances humoral and cellular immune responses elicited against the virus. The objective of this work was to study the immunosuppressive activity of the envelope protein (p15E) of feline leukemia virus (FeLV) and evaluate the effect of its abolition on the efficacy of a vaccine against FeLV. Here we demonstrate that the FeLV envelope protein is immunosuppressive in vivo and that this immunosuppressive activity can be "switched off" by targeted mutation of a specific amino acid. As a result of the introduction of the mutated envelope sequence into a previously well characterized canarypox virus-vectored vaccine (ALVAC-FeLV), the frequency of vaccine-induced FeLV-specific gamma interferon (IFN-γ)-producing cells was increased, whereas conversely, the frequency of vaccine-induced FeLV-specific interleukin-10 (IL-10)-producing cells was reduced. This shift in the IFN-γ/IL-10 response was associated with a higher efficacy of ALVAC-FeLV against FeLV infection. This study demonstrates that FeLV p15E is immunosuppressive in vivo, that the immunosuppressive domain of p15E can modulate the FeLV-specific immune response, and that the efficacy of FeLV vaccines can be enhanced by inhibiting the immunosuppressive activity of the IS domain through an appropriate mutation.

  19. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  20. Bilateral persistent fetal vasculature due to a mutation in the Norrie disease protein gene.

    Science.gov (United States)

    Payabvash, Seyedmehdi; Anderson, Jill S; Nascene, David R

    2015-12-01

    We report a case of a 7-week-old boy with bilateral leukocoria and asymmetric microphthalmia who was found to have Norrie disease. Symmetrically hyperdense globes with no evidence of calcification were seen on CT scan. The MRI showed bilateral retinal hemorrhages resulting in conical vitreous chambers-narrow at the optic disc and widened toward the lens-characteristic of persistent fetal vasculature. Genetic evaluation revealed a previously undescribed mutation in the Norrie disease protein gene. © The Author(s) 2015.

  1. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo (Egypt); Che, Xibing; Sung, Phillip; Sommer, Marvin H. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States); Hay, John [Department of Microbiology and Immunology, School of Medicine and Biomedical Science, University at Buffalo, Buffalo, NY (United States); Arvin, Ann M. [Departments of Pediatrics and Microbiology & Immunology, Stan ford University School of Medicine, Stanford, CA (United States)

    2016-05-15

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  2. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    International Nuclear Information System (INIS)

    Khalil, Mohamed I.; Che, Xibing; Sung, Phillip; Sommer, Marvin H.; Hay, John; Arvin, Ann M.

    2016-01-01

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This study mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.

  3. New Mutations of Penicillin-Binding Proteins in Streptococcus agalactiae Isolates from Cattle with Decreased Susceptibility to Penicillin.

    Science.gov (United States)

    Hu, Yun; Kan, Yunchao; Zhang, Zhengtian; Lu, Zhanning; Li, Yanqiu; Leng, Chaoliang; Ji, Jun; Song, Shiyang; Shi, Hongfei

    2018-02-23

    Streptococcus agalactiae is a causal agent of bovine mastitis and is treated by β-lactam antibiotics (BLAs). Compared to penicillin-resistant S. agalactiae from humans, resistant strains in bovine are rarely reported. In this study, we aimed to investigate BLA resistance and mutations in penicillin-binding proteins (PBPs) of S. agalactiae in central and northeast China. The minimum inhibitory concentrations (MICs) of 129 penicillin-resistant S. agalactiae isolates from cows with mastitis were determined, and the related PBP genes were detected and sequenced. All strains were unsusceptible to penicillin G and mostly resistant to ampicillin, cefalexin, and ceftiofur sodium. One hundred twenty-nine strains were divided into 4 clonal groups and 8 sequence types by multilocus sequence typing analysis. We found a set of new substitutions in PBP1B, PBP2B, and PBP2X from most strains isolated from three provinces. The strains with high PBP mutations showed a broader unsusceptible spectrum and higher MICs than those with few or single mutation. Our research indicates unpredicted mutations in the PBP genes of S. agalactiae isolated from cows with mastitis treated by BLAs. This screening is the first of S. agalactiae from cattle.

  4. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    Science.gov (United States)

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  5. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Viteri Santiago

    2010-12-01

    Full Text Available Abstract Background Immunohistochemistry (IHC with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93% patients with exon 21 EGFR mutations (all with L858R but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients.

  6. The construction of factorized S-matrices

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1981-01-01

    We study the relationships between factorized S-matrices given as representations of the Zamolodchikov algebra and exactly solvable models constructed using the Baxter method. Several new examples of symmetric and non-symmetric factorized S-matrices are proposed. (orig.)

  7. Using protein design algorithms to understand the molecular basis of disease caused by protein-DNA interactions: the Pax6 example

    DEFF Research Database (Denmark)

    Alibes, A.; Nadra, A.; De Masi, Federico

    2010-01-01

    diseases such as aniridia. The validity of FoldX to deal with protein-DNA interactions was demonstrated by showing that high levels of accuracy can be achieved for mutations affecting these interactions. Also we showed that protein-design algorithms can accurately reproduce experimental DNA-binding logos......Quite often a single or a combination of protein mutations is linked to specific diseases. However, distinguishing from sequence information which mutations have real effects in the protein's function is not trivial. Protein design tools are commonly used to explain mutations that affect protein...... stability, or protein-protein interaction, but not for mutations that could affect protein-DNA binding. Here, we used the protein design algorithm FoldX to model all known missense mutations in the paired box domain of Pax6, a highly conserved transcription factor involved in eye development and in several...

  8. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling, E-mail: biomater@mail.tsinghua.edu.c [State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH{sub 2} and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH{sub 2} and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  9. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization

    International Nuclear Information System (INIS)

    Ren Dongni; Li Zhuo; Gao Yonghua; Feng Qingling

    2010-01-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH 2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH 2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  10. Effects of functional groups and soluble matrices in fish otolith on calcium carbonate mineralization.

    Science.gov (United States)

    Ren, Dongni; Li, Zhuo; Gao, Yonghua; Feng, Qingling

    2010-10-01

    Calcium carbonate mineralization is significantly influenced by organic matrices in vivo. The effect mainly relies on functional groups in proteins. In order to study the influence of functional groups on calcium carbonate mineralization, -OH, -NH2 and -COOH groups were grafted onto single crystal silicon chips, and such modified chips were used as substrates in in vitro mineralization experiments. An x-ray photoelectron spectroscopy (XPS) test was conducted to examine the grafting efficiency, and the three groups were successfully grafted. Calcium carbonate mineralization on a modified silicon substrate was examined by a scanning electron microscope (SEM) and x-ray diffraction (XRD), and the results showed that the effects of -OH, -NH2 and -COOH groups were quite different. Furthermore, a water-soluble protein matrix (WSM) and an acid-soluble protein matrix (ASM) extracted from fish otolith were adsorbed onto the -COOH-modified silicon substrate, and the effects of the protein matrices on calcium carbonate mineralization were studied. The results showed that both WSM and ASM of lapillus could mediate aragonite crystallization, but the size and morphology of the formed crystals were different. The WSM and ASM of asteriscus adsorbed on the silicon substrate had little effect on calcium carbonate mineralization; almost all the crystals were calcite, while both asteriscus WSM and ASM in solution could mediate vaterite crystals, and the morphologies of vaterite crystal aggregates were different.

  11. Matrices in Engineering Problems

    CERN Document Server

    Tobias, Marvin

    2011-01-01

    This book is intended as an undergraduate text introducing matrix methods as they relate to engineering problems. It begins with the fundamentals of mathematics of matrices and determinants. Matrix inversion is discussed, with an introduction of the well known reduction methods. Equation sets are viewed as vector transformations, and the conditions of their solvability are explored. Orthogonal matrices are introduced with examples showing application to many problems requiring three dimensional thinking. The angular velocity matrix is shown to emerge from the differentiation of the 3-D orthogo

  12. Biallelic mutation of UNC50, encoding a protein involved in AChR trafficking, is responsible for arthrogryposis.

    Science.gov (United States)

    Abiusi, Emanuela; D'Alessandro, Manuela; Dieterich, Klaus; Quevarec, Loic; Turczynski, Sandrina; Valfort, Aurore-Cecile; Mezin, Paulette; Jouk, Pierre Simon; Gut, Marta; Gut, Ivo; Bessereau, Jean Louis; Melki, Judith

    2017-10-15

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Homozygosity mapping of disease loci combined with whole exome sequencing in a consanguineous family presenting with lethal AMC allowed the identification of a homozygous frameshift deletion in UNC50 gene (c.750_751del:p.Cys251Phefs*4) in the index case. To assess the effect of the mutation, an equivalent mutation in the Caenorhabditis elegans orthologous gene was created using CRISPR/Cas9. We demonstrated that unc-50(kr331) modification caused the loss of acetylcholine receptor (AChR) expression in C. elegans muscle. unc-50(kr331) animals were as resistant to the cholinergic agonist levamisole as unc-50 null mutants suggesting that AChRs were no longer expressed in this animal model. This was confirmed by using a knock-in strain in which a red fluorescent protein was inserted into the AChR locus: no signal was detected in unc-50(kr331) background, suggesting that UNC-50, a protein known to be involved in AChR trafficking, was no longer functional. These data indicate that biallelic mutation in the UNC50 gene underlies AMC through a probable loss of AChR expression at the neuromuscular junction which is essential for the cholinergic transmission during human muscle development. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A Brief Historical Introduction to Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the ancient origin of matrices, and the system of linear equations. Included are algebraic properties of matrices, determinants, linear transformations, and Cramer's Rule for solving the system of algebraic equations. Special attention is given to some special matrices, including matrices in graph theory and electrical…

  14. Probing the role of backbone hydrogen bonds in protein-peptide interactions by amide-to-ester mutations

    DEFF Research Database (Denmark)

    Eildal, Jonas N N; Hultqvist, Greta; Balle, Thomas

    2013-01-01

    -protein interactions, those of the PDZ domain family involve formation of intermolecular hydrogen bonds: C-termini or internal linear motifs of proteins bind as β-strands to form an extended antiparallel β-sheet with the PDZ domain. Whereas extensive work has focused on the importance of the amino acid side chains...... of the protein ligand, the role of the backbone hydrogen bonds in the binding reaction is not known. Using amide-to-ester substitutions to perturb the backbone hydrogen-bonding pattern, we have systematically probed putative backbone hydrogen bonds between four different PDZ domains and peptides corresponding...... to natural protein ligands. Amide-to-ester mutations of the three C-terminal amides of the peptide ligand severely affected the affinity with the PDZ domain, demonstrating that hydrogen bonds contribute significantly to ligand binding (apparent changes in binding energy, ΔΔG = 1.3 to >3.8 kcal mol(-1...

  15. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  16. Functional analysis of HNPCC-related missense mutations in MSH2

    International Nuclear Information System (INIS)

    Luetzen, Anne; Wind, Niels de; Georgijevic, Dubravka; Nielsen, Finn Cilius; Rasmussen, Lene Juel

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions

  17. Functional analysis of HNPCC-related missense mutations in MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Luetzen, Anne [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Wind, Niels de; Georgijevic, Dubravka [Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Nielsen, Finn Cilius [Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen (Denmark); Rasmussen, Lene Juel [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)], E-mail: ljr@ruc.dk

    2008-10-14

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.

  18. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.

    Science.gov (United States)

    Suplatov, Dmitry; Sharapova, Yana; Timonina, Daria; Kopylov, Kirill; Švedas, Vytas

    2018-04-01

    The visualCMAT web-server was designed to assist experimental research in the fields of protein/enzyme biochemistry, protein engineering, and drug discovery by providing an intuitive and easy-to-use interface to the analysis of correlated mutations/co-evolving residues. Sequence and structural information describing homologous proteins are used to predict correlated substitutions by the Mutual information-based CMAT approach, classify them into spatially close co-evolving pairs, which either form a direct physical contact or interact with the same ligand (e.g. a substrate or a crystallographic water molecule), and long-range correlations, annotate and rank binding sites on the protein surface by the presence of statistically significant co-evolving positions. The results of the visualCMAT are organized for a convenient visual analysis and can be downloaded to a local computer as a content-rich all-in-one PyMol session file with multiple layers of annotation corresponding to bioinformatic, statistical and structural analyses of the predicted co-evolution, or further studied online using the built-in interactive analysis tools. The online interactivity is implemented in HTML5 and therefore neither plugins nor Java are required. The visualCMAT web-server is integrated with the Mustguseal web-server capable of constructing large structure-guided sequence alignments of protein families and superfamilies using all available information about their structures and sequences in public databases. The visualCMAT web-server can be used to understand the relationship between structure and function in proteins, implemented at selecting hotspots and compensatory mutations for rational design and directed evolution experiments to produce novel enzymes with improved properties, and employed at studying the mechanism of selective ligand's binding and allosteric communication between topologically independent sites in protein structures. The web-server is freely available at https

  19. Mutation in the novel nuclear-encoded mitochondrial protein CHCHD10 in a family with autosomal dominant mitochondrial myopathy.

    Science.gov (United States)

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E; Mootha, Vamsi K; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J; Heiman-Patterson, Terry D; Siddique, Teepu

    2015-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of the previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established chromosome 22 open reading frame 16 (C22orf16) (later designated as CHCHD10) as the only high-scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double-missense mutation (R15S and G58R) in cis in CHCHD10 which encodes a coiled coil-helix-coiled coil-helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1,481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that the expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria.

  20. Viscous hydrophilic injection matrices for serial crystallography

    Directory of Open Access Journals (Sweden)

    Gabriela Kovácsová

    2017-07-01

    Full Text Available Serial (femtosecond crystallography at synchrotron and X-ray free-electron laser (XFEL sources distributes the absorbed radiation dose over all crystals used for data collection and therefore allows measurement of radiation damage prone systems, including the use of microcrystals for room-temperature measurements. Serial crystallography relies on fast and efficient exchange of crystals upon X-ray exposure, which can be achieved using a variety of methods, including various injection techniques. The latter vary significantly in their flow rates – gas dynamic virtual nozzle based injectors provide very thin fast-flowing jets, whereas high-viscosity extrusion injectors produce much thicker streams with flow rates two to three orders of magnitude lower. High-viscosity extrusion results in much lower sample consumption, as its sample delivery speed is commensurate both with typical XFEL repetition rates and with data acquisition rates at synchrotron sources. An obvious viscous injection medium is lipidic cubic phase (LCP as it is used for in meso membrane protein crystallization. However, LCP has limited compatibility with many crystallization conditions. While a few other viscous media have been described in the literature, there is an ongoing need to identify additional injection media for crystal embedding. Critical attributes are reliable injection properties and a broad chemical compatibility to accommodate samples as heterogeneous and sensitive as protein crystals. Here, the use of two novel hydrogels as viscous injection matrices is described, namely sodium carboxymethyl cellulose and the thermo-reversible block polymer Pluronic F-127. Both are compatible with various crystallization conditions and yield acceptable X-ray background. The stability and velocity of the extruded stream were also analysed and the dependence of the stream velocity on the flow rate was measured. In contrast with previously characterized injection media, both new

  1. HNPCC: Six new pathogenic mutations

    Directory of Open Access Journals (Sweden)

    Epplen Joerg T

    2004-06-01

    Full Text Available Abstract Background Hereditary non-polyposis colorectal cancer (HNPCC is an autosomal dominant disease with a high risk for colorectal and endometrial cancer caused by germline mutations in DNA mismatch-repair genes (MMR. HNPCC accounts for approximately 2 to 5% of all colorectal cancers. Here we present 6 novel mutations in the DNA mismatch-repair genes MLH1, MSH2 and MSH6. Methods Patients with clinical diagnosis of HNPCC were counselled. Tumor specimen were analysed for microsatellite instability and immunohistochemistry for MLH1, MSH2 and MSH6 protein was performed. If one of these proteins was not detectable in the tumor mutation analysis of the corresponding gene was carried out. Results We identified 6 frameshift mutations (2 in MLH1, 3 in MSH2, 1 in MSH6 resulting in a premature stop: two mutations in MLH1 (c.2198_2199insAACA [p.N733fsX745], c.2076_2077delTG [p.G693fsX702], three mutations in MSH2 (c.810_811delGT [p.C271fsX282], c.763_766delAGTGinsTT [p.F255fsX282], c.873_876delGACT [p.L292fsX298] and one mutation in MSH6 (c.1421_1422dupTG [p.C475fsX480]. All six tumors tested for microsatellite instability showed high levels of microsatellite instability (MSI-H. Conclusions HNPCC in families with MSH6 germline mutations may show an age of onset that is comparable to this of patients with MLH1 and MSH2 mutations.

  2. Hypercyclic Abelian Semigroups of Matrices on Cn

    International Nuclear Information System (INIS)

    Ayadi, Adlene; Marzougui, Habib

    2010-07-01

    We give a complete characterization of existence of dense orbit for any abelian semigroup of matrices on C n . For finitely generated semigroups, this characterization is explicit and is used to determine the minimal number of matrices in normal form over C which forms a hypercyclic abelian semigroup on C n . In particular, we show that no abelian semigroup generated by n matrices on C n can be hypercyclic. (author)

  3. Generalized Perron--Frobenius Theorem for Nonsquare Matrices

    OpenAIRE

    Avin, Chen; Borokhovich, Michael; Haddad, Yoram; Kantor, Erez; Lotker, Zvi; Parter, Merav; Peleg, David

    2013-01-01

    The celebrated Perron--Frobenius (PF) theorem is stated for irreducible nonnegative square matrices, and provides a simple characterization of their eigenvectors and eigenvalues. The importance of this theorem stems from the fact that eigenvalue problems on such matrices arise in many fields of science and engineering, including dynamical systems theory, economics, statistics and optimization. However, many real-life scenarios give rise to nonsquare matrices. A natural question is whether the...

  4. Somatic PTPN11 Mutation in a Child With Neuroblastoma and Protein Losing Enteropathy.

    Science.gov (United States)

    Obasaju, Patience; Brondon, Jennifer; Mir, Sabina; Fordham, Lynn A; Lee, Sang; Blatt, Julie

    2018-05-01

    Neuroblastoma and protein losing enteropathy (PLE) are diagnoses commonly seen by oncologists and gastroenterologists, respectively. The concurrence of these 2 entities is rare, and not well explained. We describe the sixth case of PLE in a child with neuroblastoma, and the first for which genetic information is available. Tumor DNA had a mutation in the PTPN11 gene, which has been described in neuroblastoma, and in Noonan syndrome-a diagnosis in which neuroblastoma and PLE independently have been reported. Constitutional DNA was normal. Genetic studies in future patients will be needed to support the link between neuroblastoma and PLE.

  5. Formal matrices

    CERN Document Server

    Krylov, Piotr

    2017-01-01

    This monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a sol...

  6. ESTIMATION OF FUNCTIONALS OF SPARSE COVARIANCE MATRICES.

    Science.gov (United States)

    Fan, Jianqing; Rigollet, Philippe; Wang, Weichen

    High-dimensional statistical tests often ignore correlations to gain simplicity and stability leading to null distributions that depend on functionals of correlation matrices such as their Frobenius norm and other ℓ r norms. Motivated by the computation of critical values of such tests, we investigate the difficulty of estimation the functionals of sparse correlation matrices. Specifically, we show that simple plug-in procedures based on thresholded estimators of correlation matrices are sparsity-adaptive and minimax optimal over a large class of correlation matrices. Akin to previous results on functional estimation, the minimax rates exhibit an elbow phenomenon. Our results are further illustrated in simulated data as well as an empirical study of data arising in financial econometrics.

  7. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  8. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Holst, B; Tachibana, C; Winther, Jakob R.

    1997-01-01

    Aspects of protein disulfide isomerase (PDI) function have been studied in yeast in vivo. PDI contains two thioredoxin-like domains, a and a', each of which contains an active-site CXXC motif. The relative importance of the two domains was analyzed by rendering each one inactive by mutation to SGAS....... Such mutations had no significant effect on growth. The domains however, were not equivalent since the rate of folding of carboxypeptidase Y (CPY) in vivo was reduced by inactivation of the a domain but not the a' domain. To investigate the relevance of PDI redox potential, the G and H positions of each CGHC......-deleted strains overexpressing the yeast PDI homologue EUG1 are viable. Exchanging the wild-type Eug1p C(L/I)HS active site sequences for C(L/I)HC increased the growth rate significantly, however, further highlighting the importance of the oxidizing function for optimal growth....

  9. THE ALGORITHM AND PROGRAM OF M-MATRICES SEARCH AND STUDY

    Directory of Open Access Journals (Sweden)

    Y. N. Balonin

    2013-05-01

    Full Text Available The algorithm and software for search and study of orthogonal bases matrices – minimax matrices (M-matrix are considered. The algorithm scheme is shown, comments on calculation blocks are given, and interface of the MMatrix software system developed with participation of the authors is explained. The results of the universal algorithm work are presented as Hadamard matrices, Belevitch matrices (C-matrices, conference matrices and matrices of even and odd orders complementary and closely related to those ones by their properties, in particular, the matrix of the 22-th order for which there is no C-matrix. Examples of portraits for alternative matrices of the 255-th and the 257-th orders are given corresponding to the sequences of Mersenne and Fermat numbers. A new way to get Hadamard matrices is explained, different from the previously known procedures based on iterative processes and calculations of Lagrange symbols, with theoretical and practical meaning.

  10. Domain-restricted mutation analysis to identify novel driver events in human cancer

    Directory of Open Access Journals (Sweden)

    Sanket Desai

    2017-10-01

    Full Text Available Analysis of mutational spectra across various cancer types has given valuable insights into tumorigenesis. Different approaches have been used to identify novel drivers from the set of somatic mutations, including the methods which use sequence conservation, geometric localization and pathway information. Recent computational methods suggest use of protein domain information for analysis and understanding of the functional consequence of non-synonymous mutations. Similarly, evidence suggests recurrence at specific position in proteins is robust indicators of its functional impact. Building on this, we performed a systematic analysis of TCGA exome derived somatic mutations across 6089 PFAM domains and significantly mutated domains were identified using randomization approach. Multiple alignment of individual domain allowed us to prioritize for conserved residues mutated at analogous positions across different proteins in a statistically disciplined manner. In addition to the known frequently mutated genes, this analysis independently identifies low frequency Meprin and TRAF-Homology (MATH domain in Speckle Type BTB/POZ (SPOP protein, in prostate adenocarcinoma. Results from this analysis will help generate hypotheses about the downstream molecular mechanism resulting in cancer phenotypes.

  11. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  12. Mutations in the Schmallenberg Virus Gc Glycoprotein Facilitate Cellular Protein Synthesis Shutoff and Restore Pathogenicity of NSs Deletion Mutants in Mice.

    Science.gov (United States)

    Varela, Mariana; Pinto, Rute Maria; Caporale, Marco; Piras, Ilaria M; Taggart, Aislynn; Seehusen, Frauke; Hahn, Kerstin; Janowicz, Anna; de Souza, William Marciel; Baumgärtner, Wolfgang; Shi, Xiaohong; Palmarini, Massimo

    2016-06-01

    Serial passage of viruses in cell culture has been traditionally used to attenuate virulence and identify determinants of viral pathogenesis. In a previous study, we found that a strain of Schmallenberg virus (SBV) serially passaged in tissue culture (termed SBVp32) unexpectedly displayed increased pathogenicity in suckling mice compared to wild-type SBV. In this study, we mapped the determinants of SBVp32 virulence to the viral genome M segment. SBVp32 virulence is associated with the capacity of this virus to reach high titers in the brains of experimentally infected suckling mice. We also found that the Gc glycoprotein, encoded by the M segment of SBVp32, facilitates host cell protein shutoff in vitro Interestingly, while the M segment of SBVp32 is a virulence factor, we found that the S segment of the same virus confers by itself an attenuated phenotype to wild-type SBV, as it has lost the ability to block the innate immune system of the host. Single mutations present in the Gc glycoprotein of SBVp32 are sufficient to compensate for both the attenuated phenotype of the SBVp32 S segment and the attenuated phenotype of NSs deletion mutants. Our data also indicate that the SBVp32 M segment does not act as an interferon (IFN) antagonist. Therefore, SBV mutants can retain pathogenicity even when they are unable to fully control the production of IFN by infected cells. Overall, this study suggests that the viral glycoprotein of orthobunyaviruses can compensate, at least in part, for the function of NSs. In addition, we also provide evidence that the induction of total cellular protein shutoff by SBV is determined by multiple viral proteins, while the ability to control the production of IFN maps to the NSs protein. The identification of viral determinants of pathogenesis is key to the development of prophylactic and intervention measures. In this study, we found that the bunyavirus Gc glycoprotein is a virulence factor. Importantly, we show that mutations in the Gc

  13. Effect of T- and C-loop mutations on the Herbaspirillum seropedicae GlnB protein in nitrogen signalling.

    Science.gov (United States)

    Bonatto, Ana C; Souza, Emanuel M; Pedrosa, Fábio O; Yates, M Geoffrey; Benelli, Elaine M

    2005-01-01

    Proteins of the PII family are found in species of all kingdoms. Although these proteins usually share high identity, their functions are specific to the different organisms. Comparison of structural data from Escherichia coli GlnB and GlnK and Herbaspirillum seropedicae GlnB showed that the T-loop and C-terminus were variable regions. To evaluate the role of these regions in signal transduction by the H. seropedicae GlnB protein, four mutants were constructed: Y51F, G108A/P109a, G108W and Q3R/T5A. The activities of the native and mutated proteins were assayed in an E. coli background constitutively expressing the Klebsiella pneumoniae nifLA operon. The results suggested that the T-loop and C-terminus regions of H. seropedicae GlnB are involved in nitrogen signal transduction.

  14. The modified Gauss diagonalization of polynomial matrices

    International Nuclear Information System (INIS)

    Saeed, K.

    1982-10-01

    The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)

  15. Human Splicing Finder: an online bioinformatics tool to predict splicing signals.

    Science.gov (United States)

    Desmet, François-Olivier; Hamroun, Dalil; Lalande, Marine; Collod-Béroud, Gwenaëlle; Claustres, Mireille; Béroud, Christophe

    2009-05-01

    Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-beta Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5' and 3' splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.

  16. Quantum Hilbert matrices and orthogonal polynomials

    DEFF Research Database (Denmark)

    Andersen, Jørgen Ellegaard; Berg, Christian

    2009-01-01

    Using the notion of quantum integers associated with a complex number q≠0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when |q|<1 , and for the special value they are closely related to Hankel matrice...

  17. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  18. SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS.

    Science.gov (United States)

    Inoue, D; Kitaura, J; Matsui, H; Hou, H-A; Chou, W-C; Nagamachi, A; Kawabata, K C; Togami, K; Nagase, R; Horikawa, S; Saika, M; Micol, J-B; Hayashi, Y; Harada, Y; Harada, H; Inaba, T; Tien, H-F; Abdel-Wahab, O; Kitamura, T

    2015-04-01

    Mutations in ASXL1 are frequent in patients with myelodysplastic syndrome (MDS) and are associated with adverse survival, yet the molecular pathogenesis of ASXL1 mutations (ASXL1-MT) is not fully understood. Recently, it has been found that deletion of Asxl1 or expression of C-terminal-truncating ASXL1-MTs inhibit myeloid differentiation and induce MDS-like disease in mice. Here, we find that SET-binding protein 1 (SETBP1) mutations (SETBP1-MT) are enriched among ASXL1-mutated MDS patients and associated with increased incidence of leukemic transformation, as well as shorter survival, suggesting that SETBP1-MT play a critical role in leukemic transformation of MDS. We identify that SETBP1-MT inhibit ubiquitination and subsequent degradation of SETBP1, resulting in increased expression. Expression of SETBP1-MT, in turn, inhibited protein phosphatase 2A activity, leading to Akt activation and enhanced expression of posterior Hoxa genes in ASXL1-mutant cells. Biologically, SETBP1-MT augmented ASXL1-MT-induced differentiation block, inhibited apoptosis and enhanced myeloid colony output. SETBP1-MT collaborated with ASXL1-MT in inducing acute myeloid leukemia in vivo. The combination of ASXL1-MT and SETBP1-MT activated a stem cell signature and repressed the tumor growth factor-β signaling pathway, in contrast to the ASXL1-MT-induced MDS model. These data reveal that SETBP1-MT are critical drivers of ASXL1-mutated MDS and identify several deregulated pathways as potential therapeutic targets in high-risk MDS.

  19. Human elastin polypeptides improve the biomechanical properties of three-dimensional matrices through the regulation of elastogenesis.

    Science.gov (United States)

    Boccafoschi, Francesca; Ramella, Martina; Sibillano, Teresa; De Caro, Liberato; Giannini, Cinzia; Comparelli, Roberto; Bandiera, Antonella; Cannas, Mario

    2015-03-01

    The replacement of diseased tissues with biological substitutes with suitable biomechanical properties is one of the most important goal in tissue engineering. Collagen represents a satisfactory choice for scaffolds. Unfortunately, the lack of elasticity represents a restriction to a wide use of collagen for several applications. In this work, we studied the effect of human elastin-like polypeptide (HELP) as hybrid collagen-elastin matrices. In particular, we studied the biomechanical properties of collagen/HELP scaffolds considering several components involved in ECM remodeling (elastin, collagen, fibrillin, lectin-like receptor, metalloproteinases) and cell phenotype (myogenin, myosin heavy chain) with particular awareness for vascular tissue engineering applications. Elastin and collagen content resulted upregulated in collagen-HELP matrices, even showing an improved structural remodeling through the involvement of proteins to a ECM remodeling activity. Moreover, the hybrid matrices enhanced the contractile activity of C2C12 cells concurring to improve the mechanical properties of the scaffold. Finally, small-angle X-ray scattering analyses were performed to enable a very detailed analysis of the matrices at the nanoscale, comparing the scaffolds with native blood vessels. In conclusion, our work shows the use of recombinant HELP, as a very promising complement able to significantly improve the biomechanical properties of three-dimensional collagen matrices in terms of tensile stress and elastic modulus. © 2014 Wiley Periodicals, Inc.

  20. Evaluating the efficacy of a structure-derived amino acid substitution matrix in detecting protein homologs by BLAST and PSI-BLAST.

    Science.gov (United States)

    Goonesekere, Nalin Cw

    2009-01-01

    The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP) database. We show that when incorporated into the homology search algorithms BLAST and PSI-blast, the structure-based substitution matrices enhance the efficacy of detecting remote homologs.

  1. Abel-grassmann's groupoids of modulo matrices

    International Nuclear Information System (INIS)

    Javaid, Q.; Awan, M.D.; Naqvi, S.H.A.

    2016-01-01

    The binary operation of usual addition is associative in all matrices over R. However, a binary operation of addition in matrices over Z/sub n/ of a nonassociative structures of AG-groupoids and AG-groups are defined and investigated here. It is shown that both these structures exist for every integer n >≥ 3. Various properties of these structures are explored like: (i) Every AG-groupoid of matrices over Z/sub n/ is transitively commutative AG-groupoid and is a cancellative AG-groupoid if n is prime. (ii) Every AG-groupoid of matrices over Z/sub n/ of Type-II is a T/sup 3/-AG-groupoid. (iii) An AG-groupoid of matrices over Z/sub n/ ; G /sub nAG/(t,u), is an AG-band, if t+u=1(mod n). (author)

  2. CSB-PGBD3 Mutations Cause Premature Ovarian Failure.

    Directory of Open Access Journals (Sweden)

    Yingying Qin

    2015-07-01

    Full Text Available Premature ovarian failure (POF is a rare, heterogeneous disorder characterized by cessation of menstruation occurring before the age of 40 years. Genetic etiology is responsible for perhaps 25% of cases, but most cases are sporadic and unexplained. In this study, through whole exome sequencing in a non-consanguineous family having four affected members with POF and Sanger sequencing in 432 sporadic cases, we identified three novel mutations in the fusion gene CSB-PGBD3. Subsequently functional studies suggest that mutated CSB-PGBD3 fusion protein was impaired in response to DNA damage, as indicated by delayed or absent recruitment to damaged sites. Our data provide the first evidence that mutations in the CSB-PGBD3 fusion protein can cause human disease, even in the presence of functional CSB, thus potentially explaining conservation of the fusion protein for 43 My since marmoset. The localization of the CSB-PGBD3 fusion protein to UVA-induced nuclear DNA repair foci further suggests that the CSB-PGBD3 fusion protein, like many other proteins that can cause POF, modulates or participates in DNA repair.

  3. The functional importance of disease-associated mutation

    Directory of Open Access Journals (Sweden)

    Klein Teri E

    2002-09-01

    Full Text Available Abstract Background For many years, scientists believed that point mutations in genes are the genetic switches for somatic and inherited diseases such as cystic fibrosis, phenylketonuria and cancer. Some of these mutations likely alter a protein's function in a manner that is deleterious, and they should occur in functionally important regions of the protein products of genes. Here we show that disease-associated mutations occur in regions of genes that are conserved, and can identify likely disease-causing mutations. Results To show this, we have determined conservation patterns for 6185 non-synonymous and heritable disease-associated mutations in 231 genes. We define a parameter, the conservation ratio, as the ratio of average negative entropy of analyzable positions with reported mutations to that of every analyzable position in the gene sequence. We found that 84.0% of the 231 genes have conservation ratios less than one. 139 genes had eleven or more analyzable mutations and 88.0% of those had conservation ratios less than one. Conclusions These results indicate that phylogenetic information is a powerful tool for the study of disease-associated mutations. Our alignments and analysis has been made available as part of the database at http://cancer.stanford.edu/mut-paper/. Within this dataset, each position is annotated with the analysis, so the most likely disease-causing mutations can be identified.

  4. Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling.

    Science.gov (United States)

    Kishore, Ayush; Hall, Randy A

    2017-06-09

    Mutations to the adhesion G protein-coupled receptor ADGRG1 (G1; also known as GPR56) underlie the neurological disorder bilateral frontoparietal polymicrogyria. Disease-associated mutations in G1 studied to date are believed to induce complete loss of receptor function through disruption of either receptor trafficking or signaling activity. Given that N-terminal truncation of G1 and other adhesion G protein-coupled receptors has been shown to significantly increase the receptors' constitutive signaling, we examined two different bilateral frontoparietal polymicrogyria-inducing extracellular loop mutations (R565W and L640R) in the context of both full-length and N-terminally truncated (ΔNT) G1. Interestingly, we found that these mutations reduced surface expression of full-length G1 but not G1-ΔNT in HEK-293 cells. Moreover, the mutations ablated receptor-mediated activation of serum response factor luciferase, a classic measure of Gα 12/13 -mediated signaling, but had no effect on G1-mediated signaling to nuclear factor of activated T cells (NFAT) luciferase. Given these differential signaling results, we sought to further elucidate the pathway by which G1 can activate NFAT luciferase. We found no evidence that ΔNT activation of NFAT is dependent on Gα q/11 -mediated or β-arrestin-mediated signaling but rather involves liberation of Gβγ subunits and activation of calcium channels. These findings reveal that disease-associated mutations to the extracellular loops of G1 differentially alter receptor trafficking, depending on the presence of the N terminus, and differentially alter signaling to distinct downstream pathways. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Free probability and random matrices

    CERN Document Server

    Mingo, James A

    2017-01-01

    This volume opens the world of free probability to a wide variety of readers. From its roots in the theory of operator algebras, free probability has intertwined with non-crossing partitions, random matrices, applications in wireless communications, representation theory of large groups, quantum groups, the invariant subspace problem, large deviations, subfactors, and beyond. This book puts a special emphasis on the relation of free probability to random matrices, but also touches upon the operator algebraic, combinatorial, and analytic aspects of the theory. The book serves as a combination textbook/research monograph, with self-contained chapters, exercises scattered throughout the text, and coverage of important ongoing progress of the theory. It will appeal to graduate students and all mathematicians interested in random matrices and free probability from the point of view of operator algebras, combinatorics, analytic functions, or applications in engineering and statistical physics.

  6. Heterozygous Null Bone Morphogenetic Protein Receptor Type 2 Mutations Promote SRC Kinase-dependent Caveolar Trafficking Defects and Endothelial Dysfunction in Pulmonary Arterial Hypertension*

    Science.gov (United States)

    Prewitt, Allison R.; Ghose, Sampa; Frump, Andrea L.; Datta, Arumima; Austin, Eric D.; Kenworthy, Anne K.; de Caestecker, Mark P.

    2015-01-01

    Hereditary pulmonary arterial hypertension (HPAH) is a rare, fatal disease of the pulmonary vasculature. The majority of HPAH patients inherit mutations in the bone morphogenetic protein type 2 receptor gene (BMPR2), but how these promote pulmonary vascular disease is unclear. HPAH patients have features of pulmonary endothelial cell (PEC) dysfunction including increased vascular permeability and perivascular inflammation associated with decreased PEC barrier function. Recently, frameshift mutations in the caveolar structural protein gene Caveolin-1 (CAV-1) were identified in two patients with non-BMPR2-associated HPAH. Because caveolae regulate endothelial function and vascular permeability, we hypothesized that defects in caveolar function might be a common mechanism by which BMPR2 mutations promote pulmonary vascular disease. To explore this, we isolated PECs from mice carrying heterozygous null Bmpr2 mutations (Bmpr2+/−) similar to those found in the majority of HPAH patients. We show that Bmpr2+/− PECs have increased numbers and intracellular localization of caveolae and caveolar structural proteins CAV-1 and Cavin-1 and that these defects are reversed after blocking endocytosis with dynasore. SRC kinase is also constitutively activated in Bmpr2+/− PECs, and localization of CAV-1 to the plasma membrane is restored after treating Bmpr2+/− PECs with the SRC kinase inhibitor 3-(4-chlorophenyl)-1-(1,1-dimethylethyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP2). Late outgrowth endothelial progenitor cells isolated from HPAH patients show similar increased activation of SRC kinase. Moreover, Bmpr2+/− PECs have impaired endothelial barrier function, and barrier function is restored after treatment with PP2. These data suggest that heterozygous null BMPR2 mutations promote SRC-dependent caveolar trafficking defects in PECs and that this may contribute to pulmonary endothelial barrier dysfunction in HPAH patients. PMID:25411245

  7. The IARC TP53 mutation database: a resource for studying the significance of TP53 mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Magali Olivier

    2007-02-01

    Full Text Available

    The tumor suppressor gene TP53 is frequently inactivated by gene mutations in many types of human sporadic cancers, and inherited TP53 mutations predispose to a wide spectrum of early-onset tumors (Li-Fraumeni et Li-Fraumenilike Syndromes. All TP53 gene variations (somatic and germline mutations, as well as polymorphisms that are reported in the scientific literature or in SNP databases are compiled in the IARC TP53 Database. This database provides structured data and analysis tools to study mutation patterns in human cancers and cell-lines and to investigate the clinical impact of mutations. It contains annotations related to the clinical and pathological characteristics of tumors, as well as the demographics and carcinogen exposure of patients. The IARC TP53 web site (http://www-p53.iarc.fr/ provides a search interface for the core database and includes a comprehensive user guide, a slideshow on TP53 mutations in human cancer, protocols and references for sequencing TP53 gene, and links to relevant publications and bioinformatics databases. The database interface allows download of entire data sets and propose various tools for the selection, analysis and downloads of specific sets of data according to user's query.

    Recently, new annotations on the functional properties of mutant p53 proteins have been integrated in this database. Indeed, the most frequent TP53 alterations observed in cancers (75% are missense mutations that result in the production of a mutant protein that differ from the wildtype by one single amino-acid. The characterization of the biological activities of these mutant proteins is thus very important. Over the last ten years, a great amount of systematic data has been generated from experimental assays performed in

  8. Quantum matrices in two dimensions

    International Nuclear Information System (INIS)

    Ewen, H.; Ogievetsky, O.; Wess, J.

    1991-01-01

    Quantum matrices in two-dimensions, admitting left and right quantum spaces, are classified: they fall into two families, the 2-parametric family GL p,q (2) and a 1-parametric family GL α J (2). Phenomena previously found for GL p,q (2) hold in this general situation: (a) powers of quantum matrices are again quantum and (b) entries of the logarithm of a two-dimensional quantum matrix form a Lie algebra. (orig.)

  9. Familial Alzheimer's disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage.

    Science.gov (United States)

    Zhang, Can; Browne, Andrew; Kim, Doo Yeon; Tanzi, Rudolph E

    2010-02-01

    Alzheimer's disease (AD) is an insidious and progressive disease with a genetically complex and heterogenous etiology. More than 200 fully penetrant mutations in the amyloid beta-protein precursor (APP), presenilin 1 (or PSEN1), and presenilin 2 (PSEN2) have been linked to early-onset familial AD (FAD). 177 PSEN1 FAD mutations have been identified so far and account for more than approximately 80% of all FAD mutations. All PSEN1 FAD mutations can increase the Abeta42:Abeta40 ratio with seemingly different and incompletely understood mechanisms. A recent study has shown that the 286 amino acid N-terminal fragment of APP (N-APP), a proteolytic product of beta-secretase-derived secreted form of APP (sAPPbeta), could bind the death receptor, DR6, and lead to neurodegeneration. Here we asked whether PSEN1 FAD mutations lead to neurodegeneration by modulating sAPPbeta levels. All four different PSEN1 FAD mutations tested (in three mammalian cell lines) did not alter sAPPbeta levels. Therefore PS1 mutations do not appear to contribute to AD pathogenesis via altered production of sAPPbeta.

  10. Optimal protein library design using recombination or point mutations based on sequence-based scoring functions.

    Science.gov (United States)

    Pantazes, Robert J; Saraf, Manish C; Maranas, Costas D

    2007-08-01

    In this paper, we introduce and test two new sequence-based protein scoring systems (i.e. S1, S2) for assessing the likelihood that a given protein hybrid will be functional. By binning together amino acids with similar properties (i.e. volume, hydrophobicity and charge) the scoring systems S1 and S2 allow for the quantification of the severity of mismatched interactions in the hybrids. The S2 scoring system is found to be able to significantly functionally enrich a cytochrome P450 library over other scoring methods. Given this scoring base, we subsequently constructed two separate optimization formulations (i.e. OPTCOMB and OPTOLIGO) for optimally designing protein combinatorial libraries involving recombination or mutations, respectively. Notably, two separate versions of OPTCOMB are generated (i.e. model M1, M2) with the latter allowing for position-dependent parental fragment skipping. Computational benchmarking results demonstrate the efficacy of models OPTCOMB and OPTOLIGO to generate high scoring libraries of a prespecified size.

  11. IFITM5 mutations and osteogenesis imperfecta.

    Science.gov (United States)

    Hanagata, Nobutaka

    2016-03-01

    Interferon-induced transmembrane protein 5 (IFITM5) is an osteoblast-specific membrane protein that has been shown to be a positive regulatory factor for mineralization in vitro. However, Ifitm5 knockout mice do not exhibit serious bone abnormalities, and thus the function of IFITM5 in vivo remains unclear. Recently, a single point mutation (c.-14C>T) in the 5' untranslated region of IFITM5 was identified in patients with osteogenesis imperfecta type V (OI-V). Furthermore, a single point mutation (c.119C>T) in the coding region of IFITM5 was identified in OI patients with more severe symptoms than patients with OI-V. Although IFITM5 is not directly involved in the formation of bone in vivo, the reason why IFITM5 mutations cause OI remains a major mystery. In this review, the current state of knowledge of OI pathological mechanisms due to IFITM5 mutations will be reviewed.

  12. [Mechanisms of endogenous drug resistance acquisition by spontaneous chromosomal gene mutation].

    Science.gov (United States)

    Fukuda, H; Hiramatsu, K

    1997-05-01

    Endogenous resistance in bacteria is caused by a change or loss of function and generally genetically recessive. However, this type of resistance acquisition are now prevalent in clinical setting. Chromosomal genes that afford endogenous resistance are the genes correlated with the target of the drug, the drug inactivating enzymes, and permeability of the molecules including the antibacterial agents. Endogenous alteration of the drug target are mediated by the spontaneous mutation of their structural gene. This mutation provides much lower affinity of the drugs for the target. Gene expression of the inactivating enzymes, such as class C beta-lactamase, is generally regulated by regulatory genes. Spontaneous mutations in the regulatory genes cause constitutive enzyme production and provides the resistant to the agent which is usually stable for such enzymes. Spontaneous mutation in the structural gene gives the enzyme extra-spectrum substrate specificity, like ESBL (Extra-Spectrum-beta-Lactamase). Expression of structural genes encoding the permeability systems are also regulated by some regulatory genes. The spontaneous mutation of the regulatory genes reduce an amount of porin protein. This mutation causes much lower influx of the drug in the cell. Spontaneous mutation in promoter region of the structural gene of efflux protein was observed. This mutation raised the gene transcription and overproduced efflux protein. This protein progresses the drug efflux from the cell.

  13. Synchronous correlation matrices and Connes’ embedding conjecture

    Energy Technology Data Exchange (ETDEWEB)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, Texas 77843-3368 (United States); Paulsen, Vern, E-mail: vern@math.uh.edu [Department of Mathematics, University of Houston, Houston, Texas 77204 (United States)

    2016-01-15

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove that if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.

  14. Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays

    NARCIS (Netherlands)

    Bults, Peter; van de Merbel, Nico C; Bischoff, Rainer

    2015-01-01

    The quantification of proteins (biopharmaceuticals or biomarkers) in complex biological samples such as blood plasma requires exquisite sensitivity and selectivity, as all biological matrices contain myriads of proteins that are all made of the same 20 proteinogenic amino acids, notwithstanding

  15. Mutation Breeding Newsletter. No. 39

    International Nuclear Information System (INIS)

    1992-01-01

    This newsletter contains brief articles on the use of radiation to induce mutations in plants; radiation-induced mutants in Chrysanthemum; disrupting the association between oil and protein content in soybean seeds; mutation studies on bougainvillea; a new pepper cultivar; and the use of mutation induction to improve the quality of yam beans. A short review of the seminar on the use of mutation and related biotechnology for crop improvement in the Middle East and Mediterranean regions, and a description of a Co-ordinated Research Programme on the application of DNA-based marker mutations for the improvement of cereals and other sexually reproduced crop species are also included. Two tables are given: these are based on the ''FAO/IAEA Mutant Varieties Database'' and show the number of mutated varieties and the number of officially released mutant varieties in particular crops/species. Refs and tabs

  16. EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus

    International Nuclear Information System (INIS)

    Nijs, Laurence de; Lakaye, Bernard; Coumans, Bernard; Leon, Christine; Ikeda, Takashi; Delgado-Escueta, Antonio V.; Grisar, Thierry; Chanas, Grazyna

    2006-01-01

    A novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome. During mitosis EGFP-EFHC1 colocalized with the mitotic spindle, especially at spindle poles and with the midbody during cytokinesis. Using a specific antibody, we demonstrated the same distribution of the endogenous protein. Deletion analyses revealed that the N-terminal region of EFHC1 is crucial for the association with the mitotic spindle and the midbody. Our results suggest that EFHC1 could play an important role during cell division

  17. Realm of Matrices

    Indian Academy of Sciences (India)

    IAS Admin

    harmonic analysis and complex analysis, in ... gebra describes not only the study of linear transforma- tions and .... special case of the Jordan canonical form of matrices. ..... Richard Bronson, Schaum's Outline Series Theory And Problems Of.

  18. Virial expansion for almost diagonal random matrices

    Science.gov (United States)

    Yevtushenko, Oleg; Kravtsov, Vladimir E.

    2003-08-01

    Energy level statistics of Hermitian random matrices hat H with Gaussian independent random entries Higeqj is studied for a generic ensemble of almost diagonal random matrices with langle|Hii|2rangle ~ 1 and langle|Hi\

  19. Ovarian metastasis from uveal melanoma with MLH1/PMS2 protein loss in a patient with germline MLH1 mutated Lynch syndrome: consequence or coincidence?

    Science.gov (United States)

    Lobo, João; Pinto, Carla; Freitas, Micaela; Pinheiro, Manuela; Vizcaino, Rámon; Oliva, Esther; Teixeira, Manuel R; Jerónimo, Carmen; Bartosch, Carla

    2017-03-01

    Currently, uveal melanoma is not considered within the Lynch syndrome tumor spectrum. However, there are studies suggesting a contribution of microsatellite instability in sporadic uveal melanoma tumorigenesis. We report a 45-year-old woman who was referred for genetic counseling due to a family history of Lynch syndrome caused by a MLH1 mutation. She originally underwent enucleation of the right eye secondary to a uveal spindle cell melanoma diagnosed at age 25. The tumor recurred 22 years later presenting as an ovarian metastasis and concurrently a microscopic endometrial endometrioid carcinoma, grade 1/3 was diagnosed. Subsequent studies highlighted that the uveal melanoma showed high microsatellite instability and loss of MLH1 and PMS2 protein expression, with no MLH1 promoter methylation or BRAF mutation. Additionally, a GNAQ mutation was found. We conclude that our patient's uveal melanoma is most likely related to MLH1 germline mutation and thus Lynch syndrome related. To the best of our knowledge, this is the first report of uveal melanoma showing MLH1/PMS2 protein loss in the context of Lynch syndrome.

  20. The LMNA mutation p.Arg321Ter associated with dilated cardiomyopathy leads to reduced expression and a skewed ratio of lamin A and lamin C proteins

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saaidi, Rasha [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Rasmussen, Torsten B. [Department of Cardiology, Aarhus University Hospital, Aarhus (Denmark); Palmfeldt, Johan [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark); Nissen, Peter H. [Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus (Denmark); Beqqali, Abdelaziz [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Hansen, Jakob [Department of Forensic Medicine, Bioanalytical Unit, University of Aarhus (Denmark); Pinto, Yigal M. [Heart Failure Research Center, Academic Medical Center, Amsterdam (Netherlands); Boesen, Thomas [Department of Molecular Biology and Genetics, University of Aarhus (Denmark); Mogensen, Jens [Department of Cardiology, Odense University Hospital, Odense (Denmark); Bross, Peter, E-mail: peter.bross@ki.au.dk [Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Aarhus (Denmark)

    2013-11-15

    Dilated cardiomyopathy (DCM) is a disease of the heart muscle characterized by cardiac chamber enlargement and reduced systolic function of the left ventricle. Mutations in the LMNA gene represent the most frequent known genetic cause of DCM associated with disease of the conduction systems. The LMNA gene generates two major transcripts encoding the nuclear lamina major components lamin A and lamin C by alternative splicing. Both haploinsuffiency and dominant negative effects have been proposed as disease mechanism for premature termination codon (PTC) mutations in LMNA. These mechanisms however are still not clearly established. In this study, we used a representative LMNA nonsense mutation, p.Arg321Ter, to shed light on the molecular disease mechanisms. Cultured fibroblasts from three DCM patients carrying this mutation were analyzed. Quantitative reverse transcriptase PCR and sequencing of these PCR products indicated that transcripts from the mutant allele were degraded by the nonsense-mediated mRNA decay (NMD) mechanism. The fact that no truncated mutant protein was detectable in western blot (WB) analysis strengthens the notion that the mutant transcript is efficiently degraded. Furthermore, WB analysis showed that the expression of lamin C protein was reduced by the expected approximately 50%. Clearly decreased lamin A and lamin C levels were also observed by immunofluorescence microscopy analysis. However, results from both WB and nano-liquid chromatography/mass spectrometry demonstrated that the levels of lamin A protein were more reduced suggesting an effect on expression of lamin A from the wild type allele. PCR analysis of the ratio of lamin A to lamin C transcripts showed unchanged relative amounts of lamin A transcript suggesting that the effect on the wild type allele was operative at the protein level. Immunofluorescence microscopy analysis showed no abnormal nuclear morphology of patient fibroblast cells. Based on these data, we propose that

  1. An improved approach to the analysis of drug-protein binding by distance geometry

    Science.gov (United States)

    Goldblum, A.; Kieber-Emmons, T.; Rein, R.

    1986-01-01

    The calculation of side chain centers of coordinates and the subsequent generation of side chain-side chain and side chain-backbone distance matrices is suggested as an improved method for viewing interactions inside proteins and for the comparison of protein structures. The use of side chain distance matrices is demonstrated with free PTI, and the use of difference distance matrices for side chains is shown for free and trypsin-bound PTI as well as for the X-ray structures of trypsin complexes with PTI and with benzamidine. It is found that conformational variations are reflected in the side chain distance matrices much more than in the standard C-C distance representations.

  2. Conditional Function of Autoaggregative Protein Cah and Common cah Mutations in Shiga Toxin-Producing Escherichia coli.

    Science.gov (United States)

    Carter, Michelle Qiu; Brandl, Maria T; Kudva, Indira T; Katani, Robab; Moreau, Matthew R; Kapur, Vivek

    2018-01-01

    Cah is a calcium-binding autotransporter protein involved in autoaggregation and biofilm formation. Although cah is widespread in Shiga toxin-producing Escherichia coli (STEC), we detected mutations in cah at a frequency of 31.3% in this pathogen. In STEC O157:H7 supershedder strain SS17, a large deletion results in a smaller coding sequence, encoding a protein lacking the C-terminal 71 amino acids compared with Cah in STEC O157:H7 strain EDL933. We examined the function of Cah in biofilm formation and host colonization to better understand the selective pressures for cah mutations. EDL933-Cah played a conditional role in biofilm formation in vitro : it enhanced E. coli DH5α biofilm formation on glass surfaces under agitated culture conditions that prevented autoaggregation but inhibited biofilm formation under hydrostatic conditions that facilitated autoaggregation. This function appeared to be strain dependent since Cah-mediated biofilm formation was diminished when an EDL933 cah gene was expressed in SS17. Deletion of cah in EDL933 enhanced bacterial attachment to spinach leaves and altered the adherence pattern of EDL933 to bovine recto-anal junction squamous epithelial (RSE) cells. In contrast, in trans expression of EDL933 cah in SS17 increased its attachment to leaf surfaces, and in DH5α, it enhanced its adherence to RSE cells. Hence, the ecological function of Cah appears to be modulated by environmental conditions and other bacterial strain-specific properties. Considering the prevalence of cah in STEC and its role in attachment and biofilm formation, cah mutations might be selected in ecological niches in which inactivation of Cah would result in an increased fitness in STEC during colonization of plants or animal hosts. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) harbors genes encoding diverse adhesins, and many of these are known to play an important role in bacterial attachment and host colonization. We demonstrated here that the

  3. Chequered surfaces and complex matrices

    International Nuclear Information System (INIS)

    Morris, T.R.; Southampton Univ.

    1991-01-01

    We investigate a large-N matrix model involving general complex matrices. It can be reinterpreted as a model of two hermitian matrices with specific couplings, and as a model of positive definite hermitian matrices. Large-N perturbation theory generates dynamical triangulations in which the triangles can be chequered (i.e. coloured so that neighbours are opposite colours). On a sphere there is a simple relation between such triangulations and those generated by the single hermitian matrix model. For the torus (and a quartic potential) we solve the counting problem for the number of triangulations that cannot be quechered. The critical physics of chequered triangulations is the same as that of the hermitian matrix model. We show this explicitly by solving non-perturbatively pure two-dimensional ''chequered'' gravity. The interpretative framework given here applies to a number of other generalisations of the hermitian matrix model. (orig.)

  4. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    Science.gov (United States)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  5. A point mutation in the DNA-binding domain of HPV-2 E2 protein increases its DNA-binding capacity and reverses its transcriptional regulatory activity on the viral early promoter

    Directory of Open Access Journals (Sweden)

    Gao Chen

    2012-02-01

    Full Text Available Abstract Background The human papillomavirus (HPV E2 protein is a multifunctional DNA-binding protein. The transcriptional activity of HPV E2 is mediated by binding to its specific binding sites in the upstream regulatory region of the HPV genomes. Previously we reported a HPV-2 variant from a verrucae vulgaris patient with huge extensive clustered cutaneous, which have five point mutations in its E2 ORF, L118S, S235P, Y287H, S293R and A338V. Under the control of HPV-2 LCR, co-expression of the mutated HPV E2 induced an increased activity on the viral early promoter. In the present study, a series of mammalian expression plasmids encoding E2 proteins with one to five amino acid (aa substitutions for these mutations were constructed and transfected into HeLa, C33A and SiHa cells. Results CAT expression assays indicated that the enhanced promoter activity was due to the co-expressions of the E2 constructs containing A338V mutation within the DNA-binding domain. Western blots analysis demonstrated that the transiently transfected E2 expressing plasmids, regardless of prototype or the A338V mutant, were continuously expressed in the cells. To study the effect of E2 mutations on its DNA-binding activity, a serial of recombinant E2 proteins with various lengths were expressed and purified. Electrophoresis mobility shift assays (EMSA showed that the binding affinity of E2 protein with A338V mutation to both an artificial probe with two E2 binding sites or HPV-2 and HPV-16 promoter-proximal LCR sequences were significantly stronger than that of the HPV-2 prototype E2. Furthermore, co-expression of the construct containing A338V mutant exhibited increased activities on heterologous HPV-16 early promoter P97 than that of prototype E2. Conclusions These results suggest that the mutation from Ala to Val at aa 338 is critical for E2 DNA-binding and its transcriptional regulation.

  6. Mutational breeding and genetic engineering in the development of high grain protein content.

    Science.gov (United States)

    Wenefrida, Ida; Utomo, Herry S; Linscombe, Steve D

    2013-12-04

    Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important

  7. A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD machinery.

    Directory of Open Access Journals (Sweden)

    Kaisa Kyöstilä

    Full Text Available Inherited ataxias are characterized by degeneration of the cerebellar structures, which results in progressive motor incoordination. Hereditary ataxias occur in many species, including humans and dogs. Several mutations have been found in humans, but the genetic background has remained elusive in dogs. The Finnish Hound suffers from an early-onset progressive cerebellar ataxia. We have performed clinical, pathological, and genetic studies to describe the disease phenotype and to identify its genetic cause. Neurological examinations on ten affected dogs revealed rapidly progressing generalized cerebellar ataxia, tremors, and failure to thrive. Clinical signs were present by the age of 3 months, and cerebellar shrinkage was detectable through MRI. Pathological and histological examinations indicated cerebellum-restricted neurodegeneration. Marked loss of Purkinje cells was detected in the cerebellar cortex with secondary changes in other cortical layers. A genome-wide association study in a cohort of 31 dogs mapped the ataxia gene to a 1.5 Mb locus on canine chromosome 8 (p(raw = 1.1x10(-7, p(genome = 7.5x10(-4. Sequencing of a functional candidate gene, sel-1 suppressor of lin-12-like (SEL1L, revealed a homozygous missense mutation, c.1972T>C; p.Ser658Pro, in a highly conserved protein domain. The mutation segregated fully in the recessive pedigree, and a 10% carrier frequency was indicated in a population cohort. SEL1L is a component of the endoplasmic reticulum (ER-associated protein degradation (ERAD machinery and has not been previously associated to inherited ataxias. Dysfunctional protein degradation is known to cause ER stress, and we found a significant increase in expression of nine ER stress responsive genes in the cerebellar cortex of affected dogs, supporting the pathogenicity of the mutation. Our study describes the first early-onset neurodegenerative ataxia mutation in dogs, establishes an ERAD-mediated neurodegenerative

  8. Intrinsic Density Matrices of the Nuclear Shell Model

    International Nuclear Information System (INIS)

    Deveikis, A.; Kamuntavichius, G.

    1996-01-01

    A new method for calculation of shell model intrinsic density matrices, defined as two-particle density matrices integrated over the centre-of-mass position vector of two last particles and complemented with isospin variables, has been developed. The intrinsic density matrices obtained are completely antisymmetric, translation-invariant, and do not employ a group-theoretical classification of antisymmetric states. They are used for exact realistic density matrix expansion within the framework of the reduced Hamiltonian method. The procedures based on precise arithmetic for calculation of the intrinsic density matrices that involve no numerical diagonalization or orthogonalization have been developed and implemented in the computer code. (author). 11 refs., 2 tabs

  9. Mutagenesis Objective Search and Selection Tool (MOSST: an algorithm to predict structure-function related mutations in proteins

    Directory of Open Access Journals (Sweden)

    Asenjo Juan A

    2011-04-01

    Full Text Available Abstract Background Functionally relevant artificial or natural mutations are difficult to assess or predict if no structure-function information is available for a protein. This is especially important to correctly identify functionally significant non-synonymous single nucleotide polymorphisms (nsSNPs or to design a site-directed mutagenesis strategy for a target protein. A new and powerful methodology is proposed to guide these two decision strategies, based only on conservation rules of physicochemical properties of amino acids extracted from a multiple alignment of a protein family where the target protein belongs, with no need of explicit structure-function relationships. Results A statistical analysis is performed over each amino acid position in the multiple protein alignment, based on different amino acid physical or chemical characteristics, including hydrophobicity, side-chain volume, charge and protein conformational parameters. The variances of each of these properties at each position are combined to obtain a global statistical indicator of the conservation degree of each property. Different types of physicochemical conservation are defined to characterize relevant and irrelevant positions. The differences between statistical variances are taken together as the basis of hypothesis tests at each position to search for functionally significant mutable sites and to identify specific mutagenesis targets. The outcome is used to statistically predict physicochemical consensus sequences based on different properties and to calculate the amino acid propensities at each position in a given protein. Hence, amino acid positions are identified that are putatively responsible for function, specificity, stability or binding interactions in a family of proteins. Once these key functional positions are identified, position-specific statistical distributions are applied to divide the 20 common protein amino acids in each position of the protein

  10. Combined Effect of the Cfr Methyltransferase and Ribosomal Protein L3 Mutations on Resistance to Ribosome-Targeting Antibiotics.

    Science.gov (United States)

    Pakula, Kevin K; Hansen, Lykke H; Vester, Birte

    2017-09-01

    Several groups of antibiotics inhibit bacterial growth by binding to bacterial ribosomes. Mutations in ribosomal protein L3 have been associated with resistance to linezolid and tiamulin, which both bind at the peptidyl transferase center in the ribosome. Resistance to these and other antibiotics also occurs through methylation of 23S rRNA at position A2503 by the methyltransferase Cfr. The mutations in L3 and the cfr gene have been found together in clinical isolates, raising the question of whether they have a combined effect on antibiotic resistance or growth. We transformed a plasmid-borne cfr gene into a uL3-depleted Escherichia coli strain containing either wild-type L3 or L3 with one of seven mutations, G147R, Q148F, N149S, N149D, N149R, Q150L, or T151P, expressed from plasmid-carried rplC genes. The L3 mutations are well tolerated, with small to moderate growth rate decreases. The presence of Cfr has a very minor influence on the growth rate. The resistance of the transformants to linezolid, tiamulin, florfenicol, and Synercid (a combination of quinupristin and dalfopristin [Q-D]) was measured by MIC assays. The resistance from Cfr was, in all cases, stronger than the effects of the L3 mutations, but various effects were obtained with the combinations of Cfr and L3 mutations ranging from a synergistic to an antagonistic effect. Linezolid and tiamulin susceptibility varied greatly among the L3 mutations, while no significant effects on florfenicol and Q-D susceptibility were seen. This study underscores the complex interplay between various resistance mechanisms and cross-resistance, even from antibiotics with overlapping binding sites. Copyright © 2017 American Society for Microbiology.

  11. Search for mutations altering protein charge and/or function in children of atomic bomb survivors: final report

    International Nuclear Information System (INIS)

    Neel, J.V.; Satoh, C.; Goriki, K.; Asakawa, J.; Fujita, M.; Takahashi, N.; Kageoka, T.; Hazama, R.

    1988-01-01

    A sample of (1) children whose parents had been proximally exposed (i.e., less than 2000 m from the hypocenter) at the time of the atomic bombings of Hiroshima and Nagasaki and (2) a suitable comparison group have been examined for the occurrence of mutations altering the electrophoretic mobility or activity of a series of 30 proteins. The examination of the equivalent of 667,404 locus products in the children of proximally exposed persons yielded three mutations altering electrophoretic mobility; the corresponding figure for the comparison group was three mutations in 466,881 tests. The examination of a subset of 60,529 locus products for loss of enzyme activity in the children of proximally exposed persons yielded one mutation; no mutations were encountered in 61,741 determinations on the children of the comparison group. When these two series are compared, the mutation rate observed in the children of proximally exposed persons is thus 0.60 x 10(-5)/locus/generation, with 95% confidence intervals between 0.2 and 1.5 x 10(-5), and that in the comparison children is 0.64 x 10(-5)/locus/generation, with 95% intervals between 0.1 and 1.9 x 10(-5). The average conjoint gonad doses for the proximally exposed parents are estimated to be 0.437 Gy of gamma radiation and 0.002 Gy of neutron radiation. If a relative biological effectiveness of 20 is assigned to the neutron radiation, the combined total gonad dose for the parents becomes 0.477 Sv. (Organ absorbed doses are expressed in gray [1 Gy = 100 rad]; where dose is a mixture of gamma and neutron radiation, it is necessary because of the differing relative biological effectiveness of gamma and neutron radiation to express the combined gamma-neutron gonad exposures in sieverts [1 Sv = 100 rem])

  12. Mutations in FLNB cause boomerang dysplasia.

    Science.gov (United States)

    Bicknell, L S; Morgan, T; Bonafé, L; Wessels, M W; Bialer, M G; Willems, P J; Cohn, D H; Krakow, D; Robertson, S P

    2005-07-01

    Boomerang dysplasia (BD) is a perinatal lethal osteochondrodysplasia, characterised by absence or underossification of the limb bones and vertebrae. The BD phenotype is similar to a group of disorders including atelosteogenesis I, atelosteogenesis III, and dominantly inherited Larsen syndrome that we have recently shown to be associated with mutations in FLNB, the gene encoding the actin binding cytoskeletal protein, filamin B. We report the identification of mutations in FLNB in two unrelated individuals with boomerang dysplasia. The resultant substitutions, L171R and S235P, lie within the calponin homology 2 region of the actin binding domain of filamin B and occur at sites that are evolutionarily well conserved. These findings expand the phenotypic spectrum resulting from mutations in FLNB and underline the central role this protein plays during skeletogenesis in humans.

  13. Creutzfeldt-Jakob Disease with a prion protein gene codon 180 mutation presenting asymmetric cortical high-intensity on magnetic resonance imaging.

    Science.gov (United States)

    Amano, Yuko; Kimura, Noriyuki; Hanaoka, Takuya; Aso, Yasuhiro; Hirano, Teruyuki; Murai, Hiroyuki; Satoh, Katsuya; Matsubara, Etsuro

    2015-01-01

    Here we report a genetically confirmed case of Creutzfeldt-Jakob disease with a prion protein gene codon 180 mutation presenting atypical magnetic resonance imaging findings. The present case exhibited an acute onset and lateralized neurologic signs, and progressive cognitive impairment. No myoclonus or periodic synchronous discharges on electroencephalography were observed. Diffusion-weighted images revealed areas of high signal intensity in the right frontal and temporal cortices at onset that extended to the whole cortex and basal ganglia of the right cerebral hemisphere at 3 months. Although the cerebrospinal fluid (CSF) was initially negative for neuron specific enolase, tau protein, 14-3-3 protein, and abnormal prion protein, the CSF was positive for these brain-derived proteins at 3 months after onset.

  14. Random matrices and random difference equations

    International Nuclear Information System (INIS)

    Uppuluri, V.R.R.

    1975-01-01

    Mathematical models leading to products of random matrices and random difference equations are discussed. A one-compartment model with random behavior is introduced, and it is shown how the average concentration in the discrete time model converges to the exponential function. This is of relevance to understanding how radioactivity gets trapped in bone structure in blood--bone systems. The ideas are then generalized to two-compartment models and mammillary systems, where products of random matrices appear in a natural way. The appearance of products of random matrices in applications in demography and control theory is considered. Then random sequences motivated from the following problems are studied: constant pulsing and random decay models, random pulsing and constant decay models, and random pulsing and random decay models

  15. Quantum Entanglement and Reduced Density Matrices

    Science.gov (United States)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  16. New insights into the functions of enamel matrices in calcified tissues

    Directory of Open Access Journals (Sweden)

    Satoshi Fukumoto

    2014-05-01

    Full Text Available Ameloblasts secrete enamel matrix proteins, including amelogenin, ameloblastin, enamelin, amelotin, and Apin/odontogenic ameloblast-associated protein (Apin/ODAM. Amelogenin is the major protein component of the enamel matrix. Amelogenin, ameloblastin, and enamelin are expressed during the secretory stage of ameloblast, while amelotin and Apin/ODAM are expressed during the maturation. Amelogenin and ameloblastin are also expressed in osteoblasts, and they regulate bone formation. In addition, recent studies show the importance of protein–protein interactions between enamel matrix components for enamel formation. In a mouse model mimicking a mutation of the amelogenin gene in amelogenesis imperfect (AI in humans, the mutated amelogenin forms a complex with ameloblastin, which accumulates in the endoplasmic reticulum/Golgi apparatus and causes ameloblast dysfunction resulting in AI phenotypes. Ameloblastin is a cell adhesion molecule that regulates cell proliferation. It inhibits odontogenic tumor formation and regulates osteoblast differentiation through binding to CD63. Amelotin interacts with Apin/ODAM, but not ameloblastin, while Apin/ODAM binds to ameloblastin. These interactions may be important for enamel mineralization during amelogenesis. The enamel matrix genes are clustered on human chromosome 4 except for the amelogenin genes located on the sex chromosomes. Genes for these enamel matrix proteins evolved from a common ancestral gene encoding secretory calcium-binding phosphoprotein.

  17. Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Rejto Paul A

    2010-01-01

    Full Text Available Abstract Background Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Results We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors. Conclusions Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

  18. Evaluating the efficacy of a structure-derived amino acid substitution matrix in detecting protein homologs by BLAST and PSI-BLAST

    Directory of Open Access Journals (Sweden)

    Nalin CW Goonesekere

    2009-06-01

    Full Text Available Nalin CW GoonesekereDepartment of Chemistry and Biochemistry, University of Northern iowa, Cedar Falls, IA, USAAbstract: The large numbers of protein sequences generated by whole genome sequencing projects require rapid and accurate methods of annotation. The detection of homology through computational sequence analysis is a powerful tool in determining the complex evolutionary and functional relationships that exist between proteins. Homology search algorithms employ amino acid substitution matrices to detect similarity between proteins sequences. The substitution matrices in common use today are constructed using sequences aligned without reference to protein structure. Here we present amino acid substitution matrices constructed from the alignment of a large number of protein domain structures from the structural classification of proteins (SCOP database. We show that when incorporated into the homology search algorithms BLAST and PSI-blaST, the structure-based substitution matrices enhance the efficacy of detecting remote homologs. Keywords: computational biology, protein homology, amino acid substitution matrix, protein structure

  19. Studies of human mutation rates, December 1, 1985--November 30, 1986

    International Nuclear Information System (INIS)

    Neel, J.V.

    1985-01-01

    This program seeks to quantify native human mutation rates and to determine how man's activities may affect these rates. The program is divided into six tasks, i.e. The American Indian mutation rate, monitoring populations for frequency of mutation by electrophoresis of blood proteins, application of molecular biological approaches to the detection and study of mutational events in human populations, development of two-dimensional electrophoresis for identification of mutant proteins, co-operative program with the Radiation Effects Research Foundation in Hiroshima and Nagasaki, Japan, and statistical problems associated with the estimation of mutation rates. Progress of each of the above tasks is related in detail. (DT)

  20. SAAFEC: Predicting the Effect of Single Point Mutations on Protein Folding Free Energy Using a Knowledge-Modified MM/PBSA Approach.

    Science.gov (United States)

    Getov, Ivan; Petukh, Marharyta; Alexov, Emil

    2016-04-07

    Folding free energy is an important biophysical characteristic of proteins that reflects the overall stability of the 3D structure of macromolecules. Changes in the amino acid sequence, naturally occurring or made in vitro, may affect the stability of the corresponding protein and thus could be associated with disease. Several approaches that predict the changes of the folding free energy caused by mutations have been proposed, but there is no method that is clearly superior to the others. The optimal goal is not only to accurately predict the folding free energy changes, but also to characterize the structural changes induced by mutations and the physical nature of the predicted folding free energy changes. Here we report a new method to predict the Single Amino Acid Folding free Energy Changes (SAAFEC) based on a knowledge-modified Molecular Mechanics Poisson-Boltzmann (MM/PBSA) approach. The method is comprised of two main components: a MM/PBSA component and a set of knowledge based terms delivered from a statistical study of the biophysical characteristics of proteins. The predictor utilizes a multiple linear regression model with weighted coefficients of various terms optimized against a set of experimental data. The aforementioned approach yields a correlation coefficient of 0.65 when benchmarked against 983 cases from 42 proteins in the ProTherm database. the webserver can be accessed via http://compbio.clemson.edu/SAAFEC/.

  1. Protein truncation test: analysis of two novel point mutations at the carboxy-terminus of the human dystrophin gene associated with mental retardation.

    Science.gov (United States)

    Tuffery, S; Lenk, U; Roberts, R G; Coubes, C; Demaille, J; Claustres, M

    1995-01-01

    Approximately one-third of the mutations responsible for Duchenne muscular dytrophy (DMD) do not involve gross rearrangements of the dystrophin gene. Methods for intensive mutation screening have recently been applied to this immense gene, which resulted in the identification of a number of point mutations in DMD patients, mostly translation-terminating mutations. A number of data raised the possibility that the C-terminal region of dystrophin might be involved in some cases of mental retardation associated with DMD. Using single-strand conformation analysis of products amplified by polymerase chain reaction (PCR-SSCA) to screen the terminal domains of the dystrophin gene (exons 60-79) of 20 unrelated patients with DMD or BMD, we detected two novel point mutations in two mentally retarded DMD patients: a 1-bp deletion in exon 70 (10334delC) and a 5' splice donor site alteration in intron 69 (10294 + 1G-->T). Both mutations should result in a premature translation termination of dystrophin. The possible effects on the reading frame were analyzed by the study of reverse transcripts amplified from peripheral blood lymphocytes mRNA and by the protein truncation test.

  2. Malware analysis using visualized image matrices.

    Science.gov (United States)

    Han, KyoungSoo; Kang, BooJoong; Im, Eul Gyu

    2014-01-01

    This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API) calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  3. Malware Analysis Using Visualized Image Matrices

    Directory of Open Access Journals (Sweden)

    KyoungSoo Han

    2014-01-01

    Full Text Available This paper proposes a novel malware visual analysis method that contains not only a visualization method to convert binary files into images, but also a similarity calculation method between these images. The proposed method generates RGB-colored pixels on image matrices using the opcode sequences extracted from malware samples and calculates the similarities for the image matrices. Particularly, our proposed methods are available for packed malware samples by applying them to the execution traces extracted through dynamic analysis. When the images are generated, we can reduce the overheads by extracting the opcode sequences only from the blocks that include the instructions related to staple behaviors such as functions and application programming interface (API calls. In addition, we propose a technique that generates a representative image for each malware family in order to reduce the number of comparisons for the classification of unknown samples and the colored pixel information in the image matrices is used to calculate the similarities between the images. Our experimental results show that the image matrices of malware can effectively be used to classify malware families both statically and dynamically with accuracy of 0.9896 and 0.9732, respectively.

  4. Production and characterization of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices

    Energy Technology Data Exchange (ETDEWEB)

    Zepon, Karine Modolon [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Petronilho, Fabricia [FICEXP, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil); Soldi, Valdir [POLIMAT, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Salmoria, Gean Vitor [CIMJECT, Departamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Kanis, Luiz Alberto, E-mail: luiz.kanis@unisul.br [TECFARMA, Universidade do Sul de Santa Catarina, 88704-900 Tubarão, SC (Brazil)

    2014-11-01

    The production and evaluation of cornstarch/cellulose acetate/silver sulfadiazine extrudate matrices are reported herein. The matrices were melt extruded under nine different conditions, altering the temperature and the screw speed values. The surface morphology of the matrices was examined by scanning electron microscopy. The micrographs revealed the presence of non-melted silver sulfadiazine microparticles in the matrices extruded at lower temperature and screw speed values. The thermal properties were evaluated and the results for both the biopolymer and the drug indicated no thermal degradation during the melt extrusion process. The differential scanning analysis of the extrudate matrices showed a shift to lower temperatures for the silver sulfadiazine melting point compared with the non-extruded drug. The starch/cellulose acetate matrices containing silver sulfadiazine demonstrated significant inhibition of the growth of Pseudomonas aeruginosa and Staphylococcus aureus. In vivo inflammatory response tests showed that the extrudate matrices, with or without silver sulfadiazine, did not trigger chronic inflammatory processes. - Highlights: • Melt extruded bio-based matrices containing silver sulfadiazine was produced. • The silver sulfadiazine is stable during melt-extrusion. • The extrudate matrices shown bacterial growth inhibition. • The matrices obtained have potential to development wound healing membranes.

  5. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    Science.gov (United States)

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  6. The relationship between thrombophilic mutations and preeclampsia: a prospective case-control study

    International Nuclear Information System (INIS)

    Yalinkaya, A.; Erdemoglu, M.; Akdeniz, N.; Kale, A.; Kale, E.

    2006-01-01

    Preeclampsia and its association with thrombophillia remain controversial, due to inconsistent results in different studies, which different ethnic groups, selection criteria, and patient numbers. The aim of this study was to determine the relationship between thrombophillia and preeclamptic patients in our region. In a prospective case-control study, we compared 100 consecutive women with preeclampsia and eclampsia (group 1) with 100 normal pregnant women (group 2). All women were tested two months after delivery for mutations of factor V Leiden, methylenetetrahydrofolate reductase (MTHFR), and prothrombin gene mutation mutataion as well as for deficiencies of protein C, protein S, and antithrmbin III. A thrombophilic mutation was found in 42 (42%) and 28(28%) women in group I and group II, respectively (P+0.27, OR 1.5, 95% CI 1.0-2.2). The incidence of Factor V Leiden mutation (heterozygous), prothrombin mutation (heterozygous), prothrombin mutation (homozygous), MTHFR mutation (homozygous) was not statistically significant in group 1 compared with group 2 (P>0.05). Also, deficiencies of protein S, protein c and antithrombin III were not statistically significant in group I com pared with group II (P>0.05). There was no difference in thrombophilic mutations between preeclamptic patients and normal pregnant women in our region. Therefore, we suggest that preeclamptic patients should not be tested for thrombophilia. (author)

  7. Polynomial sequences generated by infinite Hessenberg matrices

    Directory of Open Access Journals (Sweden)

    Verde-Star Luis

    2017-01-01

    Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.

  8. Bi-directional SIFT predicts a subset of activating mutations.

    Directory of Open Access Journals (Sweden)

    William Lee

    Full Text Available Advancements in sequencing technologies have empowered recent efforts to identify polymorphisms and mutations on a global scale. The large number of variations and mutations found in these projects requires high-throughput tools to identify those that are most likely to have an impact on function. Numerous computational tools exist for predicting which mutations are likely to be functional, but none that specifically attempt to identify mutations that result in hyperactivation or gain-of-function. Here we present a modified version of the SIFT (Sorting Intolerant from Tolerant algorithm that utilizes protein sequence alignments with homologous sequences to identify functional mutations based on evolutionary fitness. We show that this bi-directional SIFT (B-SIFT is capable of identifying experimentally verified activating mutants from multiple datasets. B-SIFT analysis of large-scale cancer genotyping data identified potential activating mutations, some of which we have provided detailed structural evidence to support. B-SIFT could prove to be a valuable tool for efforts in protein engineering as well as in identification of functional mutations in cancer.

  9. Expanding CEP290 mutational spectrum in ciliopathies

    NARCIS (Netherlands)

    Travaglini, Lorena; Brancati, Francesco; Attie-Bitach, Tania; Audollent, Sophie; Bertini, Enrico; Kaplan, Josseline; Perrault, Isabelle; Iannicelli, Miriam; Mancuso, Brunella; Rigoli, Luciana; Rozet, Jean-Michel; Swistun, Dominika; Tolentino, Jerlyn; Dallapiccola, Bruno; Gleeson, Joseph G.; Valente, Enza Maria; Zankl, A.; Leventer, R.; Grattan-Smith, P.; Janecke, A.; D'Hooghe, M.; Sznajer, Y.; van Coster, R.; Demerleir, L.; Dias, K.; Moco, C.; Moreira, A.; Kim, C. Ae; Maegawa, G.; Petkovic, D.; Abdel-Salam, G. M. H.; Abdel-Aleem, A.; Zaki, M. S.; Marti, I.; Quijano-Roy, S.; Sigaudy, S.; de Lonlay, P.; Romano, S.; Touraine, R.; Koenig, M.; Lagier-Tourenne, C.; Messer, J.; Collignon, P.; Wolf, N.; Philippi, H.; Kitsiou Tzeli, S.; Halldorsson, S.; Johannsdottir, J.; Ludvigsson, P.; Phadke, S. R.; Udani, V.; Stuart, B.; Magee, A.; Lev, D.; Michelson, M.; Ben-Zeev, B.; Fischetto, R.; Benedicenti, F.; Stanzial, F.; Borgatti, R.; Accorsi, P.; Battaglia, S.; Fazzi, E.; Giordano, L.; Pinelli, L.; Boccone, L.; Bigoni, S.; Ferlini, A.; Donati, M. A.; Caridi, G.; Divizia, M. T.; Faravelli, F.; Ghiggeri, G.; Pessagno, A.; Briguglio, M.; Briuglia, S.; Salpietro, C. D.; Tortorella, G.; Adami, A.; Castorina, P.; Lalatta, F.; Marra, G.; Riva, D.; Scelsa, B.; Spaccini, L.; Uziel, G.; del Giudice, E.; Laverda, A. M.; Ludwig, K.; Permunian, A.; Suppiej, A.; Signorini, S.; Uggetti, C.; Battini, R.; Di Giacomo, M.; Cilio, M. R.; Di Sabato, M. L.; Leuzzi, V.; Parisi, P.; Pollazzon, M.; Silengo, M.; de Vescovi, R.; Greco, D.; Romano, C.; Cazzagon, M.; Simonati, A.; Al-Tawari, A. A.; Bastaki, L.; Mégarbané, A.; Sabolic Avramovska, V.; de Jong, M. M.; Stromme, P.; Koul, R.; Rajab, A.; Azam, M.; Barbot, C.; Martorell Sampol, L.; Rodriguez, B.; Pascual-Castroviejo, I.; Teber, S.; Anlar, B.; Comu, S.; Karaca, E.; Kayserili, H.; Yüksel, A.; Akcakus, M.; Al Gazali, L.; Sztriha, L.; Nicholl, D.; Woods, C. G.; Bennett, C.; Hurst, J.; Sheridan, E.; Barnicoat, A.; Hennekam, R.; Lees, M.; Blair, E.; Bernes, S.; Sanchez, H.; Clark, A. E.; DeMarco, E.; Donahue, C.; Sherr, E.; Hahn, J.; Sanger, T. D.; Gallager, T. E.; Dobyns, W. B.; Daugherty, C.; Krishnamoorthy, K. S.; Sarco, D.; Walsh, C. A.; McKanna, T.; Milisa, J.; Chung, W. K.; de Vivo, D. C.; Raynes, H.; Schubert, R.; Seward, A.; Brooks, D. G.; Goldstein, A.; Caldwell, J.; Finsecke, E.; Maria, B. L.; Holden, K.; Cruse, R. P.; Swoboda, K. J.; Viskochil, D.

    2009-01-01

    Ciliopathies are an expanding group of rare conditions characterized by multiorgan involvement, that are caused by mutations in genes encoding for proteins of the primary cilium or its apparatus. Among these genes, CEP290 bears an intriguing allelic spectrum, being commonly mutated in Joubert

  10. S-matrices and integrability

    International Nuclear Information System (INIS)

    Bombardelli, Diego

    2016-01-01

    In these notes we review the S-matrix theory in (1+1)-dimensional integrable models, focusing mainly on the relativistic case. Once the main definitions and physical properties are introduced, we discuss the factorization of scattering processes due to integrability. We then focus on the analytic properties of the two-particle scattering amplitude and illustrate the derivation of the S-matrices for all the possible bound states using the so-called bootstrap principle. General algebraic structures underlying the S-matrix theory and its relation with the form factors axioms are briefly mentioned. Finally, we discuss the S-matrices of sine-Gordon and SU (2), SU (3) chiral Gross–Neveu models. (topical review)

  11. Matrices Aléatoires Tri-diagonales et Par Blocs.

    OpenAIRE

    MEKKI, Slimane

    2014-01-01

    Dans ce mémoire l'étude porte sur la densité de matrice aléatoire, les densités des valeurs propres d'une matrice pour les trois ensembles G.O.E, G.U.E, G.S.E. Après nous avons explicité les formules des densités de valeurs propres des matrices tri-diagonales dans les cas HERMITE et LAGUERRE Des simulations sur les constantes de normalisations pour les densités des matrices aléatoires ou des valeurs propres sont présentées.

  12. Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions.

    Science.gov (United States)

    Xiao, Wenwu; Li, Qingtao; He, Huimin; Li, Wenxiu; Cao, Xiaodong; Dong, Hua

    2018-03-14

    Precise manipulation of biomolecule distribution and functions via biomolecule-matrix interaction is very important and challenging for tissue engineering and regenerative medicine. As a well-known biomimetic matrix, electrospun fibers often lack the unique spatial complexity compared to their natural counterparts in vivo and thus cannot deliver fully the regulatory cues to biomolecules. In this paper, we report a facile and reliable method to fabricate micro- and nanostructured poly(l-lactic acid) (PLLA) fibrous matrices with spatial complexity by a combination of advanced electrospinning and agarose hydrogel stamp-based micropatterning. Specifically, advanced electrospinning is used to construct multi-nanostructures of fibrous matrices while solvent-loaded agarose hydrogel stamps are used to create microstructures. Compared with other methods, our method shows extreme simplicity and flexibility originated from the mono-/multi-spinneret conversion and limitless micropatterns of agarose hydrogel stamps. Three types of PLLA fibrous matrices including patterned nano-Ag/PLLA hybrid fibers, patterned bicompartment polyethylene terephthalate/PLLA fibers, and patterned hollow PLLA fibers are fabricated and their capability to manipulate biomolecule distribution and functions, that is, bacterial distribution and antibacterial performance, cell patterning and adhesion/spreading behaviors, and protein adsorption and delivery, is demonstrated in detail. The method described in our paper provides a powerful tool to restore spatial complexity in biomimetic matrices and would have promising applications in the field of biomedical engineering.

  13. Dominant Red Coat Color in Holstein Cattle Is Associated with a Missense Mutation in the Coatomer Protein Complex, Subunit Alpha (COPA Gene.

    Directory of Open Access Journals (Sweden)

    Ben Dorshorst

    Full Text Available Coat color in Holstein dairy cattle is primarily controlled by the melanocortin 1 receptor (MC1R gene, a central determinant of black (eumelanin vs. red/brown pheomelanin synthesis across animal species. The major MC1R alleles in Holsteins are Dominant Black (MC1RD and Recessive Red (MC1Re. A novel form of dominant red coat color was first observed in an animal born in 1980. The mutation underlying this phenotype was named Dominant Red and is epistatic to the constitutively activated MC1RD. Here we show that a missense mutation in the coatomer protein complex, subunit alpha (COPA, a gene with previously no known role in pigmentation synthesis, is completely associated with Dominant Red in Holstein dairy cattle. The mutation results in an arginine to cysteine substitution at an amino acid residue completely conserved across eukaryotes. Despite this high level of conservation we show that both heterozygotes and homozygotes are healthy and viable. Analysis of hair pigment composition shows that the Dominant Red phenotype is similar to the MC1R Recessive Red phenotype, although less effective at reducing eumelanin synthesis. RNA-seq data similarly show that Dominant Red animals achieve predominantly pheomelanin synthesis by downregulating genes normally required for eumelanin synthesis. COPA is a component of the coat protein I seven subunit complex that is involved with retrograde and cis-Golgi intracellular coated vesicle transport of both protein and RNA cargo. This suggests that Dominant Red may be caused by aberrant MC1R protein or mRNA trafficking within the highly compartmentalized melanocyte, mimicking the effect of the Recessive Red loss of function MC1R allele.

  14. HYDROGEL-BASED NANOCOMPOSITES OF THERAPEUTIC PROTEINS FOR TISSUE REPAIR.

    Science.gov (United States)

    Zhu, Suwei; Segura, Tatiana

    2014-05-01

    The ability to design artificial extracellular matrices as cell instructive scaffolds has opened the door to technologies capable of studying cell fates in vitro and to guide tissue repair in vivo . One main component of the design of artificial extracellular matrices is the incorporation of protein-based biochemical cues to guide cell phenotypes and multicellular organizations. However, promoting the long-term bioactivity, controlling the bioavailability and understanding how the physical presentations of these proteins impacts cellular fates are among the challenges of the field. Nanotechnolgy has advanced to meet the challenges of protein therapeutics. For example, the approaches to incorporating proteins into tissue repairing scaffolds have ranged from bulk encapsulations to smart nanodepots that protect proteins from degradations and allow opportunities for controlled release.

  15. Hierarchical quark mass matrices

    International Nuclear Information System (INIS)

    Rasin, A.

    1998-02-01

    I define a set of conditions that the most general hierarchical Yukawa mass matrices have to satisfy so that the leading rotations in the diagonalization matrix are a pair of (2,3) and (1,2) rotations. In addition to Fritzsch structures, examples of such hierarchical structures include also matrices with (1,3) elements of the same order or even much larger than the (1,2) elements. Such matrices can be obtained in the framework of a flavor theory. To leading order, the values of the angle in the (2,3) plane (s 23 ) and the angle in the (1,2) plane (s 12 ) do not depend on the order in which they are taken when diagonalizing. We find that any of the Cabbibo-Kobayashi-Maskawa matrix parametrizations that consist of at least one (1,2) and one (2,3) rotation may be suitable. In the particular case when the s 13 diagonalization angles are sufficiently small compared to the product s 12 s 23 , two special CKM parametrizations emerge: the R 12 R 23 R 12 parametrization follows with s 23 taken before the s 12 rotation, and vice versa for the R 23 R 12 R 23 parametrization. (author)

  16. Laminin active peptide/agarose matrices as multifunctional biomaterials for tissue engineering.

    Science.gov (United States)

    Yamada, Yuji; Hozumi, Kentaro; Aso, Akihiro; Hotta, Atsushi; Toma, Kazunori; Katagiri, Fumihiko; Kikkawa, Yamato; Nomizu, Motoyoshi

    2012-06-01

    Cell adhesive peptides derived from extracellular matrix components are potential candidates to afford bio-adhesiveness to cell culture scaffolds for tissue engineering. Previously, we covalently conjugated bioactive laminin peptides to polysaccharides, such as chitosan and alginate, and demonstrated their advantages as biomaterials. Here, we prepared functional polysaccharide matrices by mixing laminin active peptides and agarose gel. Several laminin peptide/agarose matrices showed cell attachment activity. In particular, peptide AG73 (RKRLQVQLSIRT)/agarose matrices promoted strong cell attachment and the cell behavior depended on the stiffness of agarose matrices. Fibroblasts formed spheroid structures on the soft AG73/agarose matrices while the cells formed a monolayer with elongated morphologies on the stiff matrices. On the stiff AG73/agarose matrices, neuronal cells extended neuritic processes and endothelial cells formed capillary-like networks. In addition, salivary gland cells formed acini-like structures on the soft matrices. These results suggest that the peptide/agarose matrices are useful for both two- and three-dimensional cell culture systems as a multifunctional biomaterial for tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Sequence analysis of the L protein of the Ebola 2014 outbreak: Insight into conserved regions and mutations.

    Science.gov (United States)

    Ayub, Gohar; Waheed, Yasir

    2016-06-01

    The 2014 Ebola outbreak was one of the largest that have occurred; it started in Guinea and spread to Nigeria, Liberia and Sierra Leone. Phylogenetic analysis of the current virus species indicated that this outbreak is the result of a divergent lineage of the Zaire ebolavirus. The L protein of Ebola virus (EBOV) is the catalytic subunit of the RNA‑dependent RNA polymerase complex, which, with VP35, is key for the replication and transcription of viral RNA. Earlier sequence analysis demonstrated that the L protein of all non‑segmented negative‑sense (NNS) RNA viruses consists of six domains containing conserved functional motifs. The aim of the present study was to analyze the presence of these motifs in 2014 EBOV isolates, highlight their function and how they may contribute to the overall pathogenicity of the isolates. For this purpose, 81 2014 EBOV L protein sequences were aligned with 475 other NNS RNA viruses, including Paramyxoviridae and Rhabdoviridae viruses. Phylogenetic analysis of all EBOV outbreak L protein sequences was also performed. Analysis of the amino acid substitutions in the 2014 EBOV outbreak was conducted using sequence analysis. The alignment demonstrated the presence of previously conserved motifs in the 2014 EBOV isolates and novel residues. Notably, all the mutations identified in the 2014 EBOV isolates were tolerant, they were pathogenic with certain examples occurring within previously determined functional conserved motifs, possibly altering viral pathogenicity, replication and virulence. The phylogenetic analysis demonstrated that all sequences with the exception of the 2014 EBOV sequences were clustered together. The 2014 EBOV outbreak has acquired a great number of mutations, which may explain the reasons behind this unprecedented outbreak. Certain residues critical to the function of the polymerase remain conserved and may be targets for the development of antiviral therapeutic agents.

  18. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Elena eIlina

    2013-07-01

    Full Text Available Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant ribosomal protein S5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation (ca. 10-5 CFUs indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer.

  19. The study of human mutation rates

    International Nuclear Information System (INIS)

    Neel, J.V.

    1992-01-01

    We will describe recent developments regarding the question of induced mutations in the survivors of the atomic bombings of Hiroshima and Nagasaki. As part of that work we, describe some developments with respect to the Amerindian blood samples collected under DoE sponsorship between 1964 and 1982. Then developments regarding the application of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to the study of genetic variation and mutation affecting protein characteristics. In particular, we will report on the identification and isolation of genes of especial interest as reflected in the behavior of the proteins which they encode

  20. The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Janczar, Szymon; Janczar, Karolina; Pastorczak, Agata; Harb, Hani; Paige, Adam J. W.; Zalewska-Szewczyk, Beata; Danilewicz, Marian; Mlynarski, Wojciech

    2017-01-01

    While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis. PMID:28054944

  1. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia.

    Directory of Open Access Journals (Sweden)

    Lijie Ma

    Full Text Available Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys' thick ascending limb (TAL caused unfolded protein response in younger (1-month old mice and apoptosis in older (12-month old mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies.

  2. Point mutation in D8C domain of Tamm-Horsfall protein/uromodulin in transgenic mice causes progressive renal damage and hyperuricemia

    Science.gov (United States)

    Landry, Nichole K.; El-Achkar, Tarek M.; Lieske, John C.

    2017-01-01

    Hereditary mutations in Tamm-Horsfall protein (THP/uromodulin) gene cause autosomal dominant kidney diseases characterized by juvenile-onset hyperuricemia, gout and progressive kidney failure, although the disease pathogenesis remains unclear. Here we show that targeted expression in transgenic mice of a mutation within the domain of 8 cysteines of THP in kidneys’ thick ascending limb (TAL) caused unfolded protein response in younger (1-month old) mice and apoptosis in older (12-month old) mice. While the young mice had urine concentration defects and polyuria, such defects progressively reversed in the older mice to marked oliguria, highly concentrated urine, fibrotic kidneys and reduced creatinine clearance. Both the young and the old transgenic mice had significantly higher serum uric acid and its catabolic product, allantoin, than age-matched wild-type mice. This THP mutation apparently caused primary defects in TAL by compromising the luminal translocation and reabsorptive functions of NKCC2 and ROMK and secondary responses in proximal tubules by upregulating NHE3 and URAT1. Our results strongly suggest that the progressive worsening of kidney functions reflects the accumulation of the deleterious effects of the misfolded mutant THP and the compensatory responses. Transgenic mice recapitulating human THP/uromodulin-associated kidney diseases could be used to elucidate their pathogenesis and test novel therapeutic strategies. PMID:29145399

  3. Involvement of p53 Mutation and Mismatch Repair Proteins Dysregulation in NNK-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Ying Shen

    2014-01-01

    Full Text Available Genome integrity is essential for normal cellular functions and cell survival. Its instability can cause genetic aberrations and is considered as a hallmark of most cancers. To investigate the carcinogenesis process induced by tobacco-specific carcinogen NNK, we studied the dynamic changes of two important protectors of genome integrity, p53 and MMR system, in malignant transformation of human bronchial epithelial cells after NNK exposure. Our results showed that the expression of MLH1, one of the important MMR proteins, was decreased early and maintained the downregulation during the transformation in a histone modification involved and DNA methylation-independent manner. Another MMR protein PMS2 also displayed a declined expression while being in a later stage of transformation. Moreover, we conducted p53 mutation analysis and revealed a mutation at codon 273 which led to the replacement of arginine by histidine. With the mutation, DNA damage-induced activation of p53 was significantly impaired. We further reintroduced the wild-type p53 into the transformed cells, and the malignant proliferation can be abrogated by inducing cell cycle arrest and apoptosis. These findings indicate that p53 and MMR system play an important role in the initiation and progression of NNK-induced transformation, and p53 could be a potential therapeutic target for tobacco-related cancers.

  4. Serial MRI in early Creutzfeldt-Jacob disease with a point mutation of prion protein at codon 180

    International Nuclear Information System (INIS)

    Ishida, S.; Sugino, M.; Shinoda, K.; Ohsawa, N.; Koizumi, N.; Ohta, T.; Kitamoto, T.; Tateishi, J.

    1995-01-01

    We report a 66-year-old woman with histologically diagnosed Creutzfeld-Jacob disease (CJD), followed with MRI from an early clinical stage. MRI demonstrated expansion of the high cortical signal on T2-weighted images, which differs from previous MRI reports of CJD. This patient followed an atypical clinical course: 16 months had passed before she developed akinetic mutism, and periodic sharp waves had not been detected on EEG after 2 years in spite of her akinetic mutism. Brain biopsy showed primary spongiform changes in the grey matter, and a point mutation of the prion protein gene at codon 180 was discovered using polymerase chain reaction direct sequencing and Tth 111 I cutting. This is the first case with the point mutation of the codon 180 variant with an atypical clinical course and characteristic MRI findings. (orig.)

  5. Accelerating Matrix-Vector Multiplication on Hierarchical Matrices Using Graphical Processing Units

    KAUST Repository

    Boukaram, W.

    2015-03-25

    Large dense matrices arise from the discretization of many physical phenomena in computational sciences. In statistics very large dense covariance matrices are used for describing random fields and processes. One can, for instance, describe distribution of dust particles in the atmosphere, concentration of mineral resources in the earth\\'s crust or uncertain permeability coefficient in reservoir modeling. When the problem size grows, storing and computing with the full dense matrix becomes prohibitively expensive both in terms of computational complexity and physical memory requirements. Fortunately, these matrices can often be approximated by a class of data sparse matrices called hierarchical matrices (H-matrices) where various sub-blocks of the matrix are approximated by low rank matrices. These matrices can be stored in memory that grows linearly with the problem size. In addition, arithmetic operations on these H-matrices, such as matrix-vector multiplication, can be completed in almost linear time. Originally the H-matrix technique was developed for the approximation of stiffness matrices coming from partial differential and integral equations. Parallelizing these arithmetic operations on the GPU has been the focus of this work and we will present work done on the matrix vector operation on the GPU using the KSPARSE library.

  6. MT-CYB mutations in hypertrophic cardiomyopathy

    DEFF Research Database (Denmark)

    Hagen, Christian M; Aidt, Frederik H; Havndrup, Ole

    2013-01-01

    Mitochondrial dysfunction is a characteristic of heart failure. Mutations in mitochondrial DNA, particularly in MT-CYB coding for cytochrome B in complex III (CIII), have been associated with isolated hypertrophic cardiomyopathy (HCM). We hypothesized that MT-CYB mutations might play an important...... and m.15482T>C; p.S246P were identified. Modeling showed that the p.C93Y mutation leads to disruption of the tertiary structure of Cytb by helix displacement, interfering with protein-heme interaction. The p.S246P mutation induces a diproline structure, which alters local secondary structure and induces...... of HCM patients. We propose that further patients with HCM should be examined for mutations in MT-CYB in order to clarify the role of these variants....

  7. Spectrum of small mutations in the dystrophin coding region

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Bartolo, C.; Pearl, D.K. [Ohio State Univ., Columbus, OH (United States)] [and others

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5` and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened {approximately} 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3` of exon 55. The extent of protein truncation caused by the 3` mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. 71 refs., 2 figs., 2 tabs.

  8. Mutation breeding in peas

    Energy Technology Data Exchange (ETDEWEB)

    Jaranowski, J [Institute of Genetics and Plant Breeding, Academy of Agriculture, Poznan (Poland); Micke, A [Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, International Atomic Energy Agency, Vienna (Austria)

    1985-02-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  9. Mutation breeding in peas

    International Nuclear Information System (INIS)

    Jaranowski, J.; Micke, A.

    1985-01-01

    The pea as an ancient crop plant still today has wide uses and is an import source of food protein. It is also an important object for genetic studies and as such has been widely used in mutation induction experiments. However, in comparison with cereals this ancient crop plant (like several other grain legumes) has gained relatively little from advances in breeding. The review focuses on the prospects of genetic improvement of pea by induced mutations, discusses principles and gives methodological information. (author)

  10. The Antitriangular Factorization of Saddle Point Matrices

    KAUST Repository

    Pestana, J.

    2014-01-01

    Mastronardi and Van Dooren [SIAM J. Matrix Anal. Appl., 34 (2013), pp. 173-196] recently introduced the block antitriangular ("Batman") decomposition for symmetric indefinite matrices. Here we show the simplification of this factorization for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated into the factorization and give bounds on the eigenvalues of matrices important in saddle point theory. We show the relation of this factorization to constraint preconditioning and how it transforms but preserves the structure of block diagonal and block triangular preconditioners. © 2014 Society for Industrial and Applied Mathematics.

  11. MET amplification, expression, and exon 14 mutations in colorectal adenocarcinoma.

    Science.gov (United States)

    Zhang, Meng; Li, Guichao; Sun, Xiangjie; Ni, Shujuan; Tan, Cong; Xu, Midie; Huang, Dan; Ren, Fei; Li, Dawei; Wei, Ping; Du, Xiang

    2018-04-08

    MET amplification, expression, and splice mutations at exon 14 result in dysregulation of the MET signaling pathway. The aim of this study was to identify the relationship between MET amplification, protein or mRNA expression, and mutations in colorectal cancer (CRC). MET immunohistochemistry (IHC) was used for MET protein expression analysis and fluorescence in situ hybridization (FISH) was used for MET amplification detection. Both analyses were performed in tissue microarrays (TMA) containing 294 of colorectal adenocarcinoma tissue samples and 131 samples of adjacent normal epithelial tissue. MET mRNA expression was examined by real-time quantitative polymerase chain reaction (qRT-PCR) in 72 fresh colorectal adenocarcinoma tissue samples and adjacent normal colon tissue. PCR sequencing was performed to screen for MET exon 14 splice mutations in 59 fresh CRC tissue samples. Our results showed that MET protein expression was higher in colorectal tumor tissue than in adjacent normal intestinal epithelium. Positive MET protein expression was associated with significantly poorer overall survival (OS) and disease-free survival (DFS). Multivariate analysis revealed that positive MET protein expression was an independent risk factor for DFS, but not for OS. MET mRNA expression was upregulated in tumor tissues compared with the adjacent normal tissues. The incidence of MET amplification was 4.4%. None of the patients was positive for MET mutation. Collectively, MET was overexpressed in colorectal adenocarcinoma, and its positive protein expression predicted a poorer outcome in CRC patients. Furthermore, according to our results, MET amplification and 14 exon mutation are extremely rare events in colorectal adenocarcinoma. Copyright © 2018. Published by Elsevier Inc.

  12. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study

    NARCIS (Netherlands)

    Janssen, H. L.; Meinardi, J. R.; Vleggaar, F. P.; van Uum, S. H.; Haagsma, E. B.; van der Meer, F. J.; van Hattum, J.; Chamuleau, R. A.; Adang, R. P.; Vandenbroucke, J. P.; van Hoek, B.; Rosendaal, F. R.

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT). We compared 43 BCS

  13. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis : results of a case-control study

    NARCIS (Netherlands)

    Janssen, HLA; Meinardi, [No Value; Vleggaar, FP; van Uum, SHM; Haagsma, EB; van der Meer, FJM; van Hattum, J; Chamuleau, RAFM; Adang, RP; Vandenbroucke, JP; van Hoek, B; Rosendaal, FR

    2000-01-01

    In a collaborative multicenter case-control study, we investigated the effect of factor V Leiden mutation, prothrombin gene mutation, and inherited deficiencies of protein C, protein S, and antithrombin on the risk of Budd-Chiari syndrome (BCS) and portal vein thrombosis (PVT), We compared 43 BCS

  14. Impact of kinase activating and inactivating patient mutations on binary PKA interactions.

    Science.gov (United States)

    Röck, Ruth; Mayrhofer, Johanna E; Bachmann, Verena; Stefan, Eduard

    2015-01-01

    The second messenger molecule cAMP links extracellular signals to intracellular responses. The main cellular cAMP effector is the compartmentalized protein kinase A (PKA). Upon receptor initiated cAMP-mobilization, PKA regulatory subunits (R) bind cAMP thereby triggering dissociation and activation of bound PKA catalytic subunits (PKAc). Mutations in PKAc or RIa subunits manipulate PKA dynamics and activities which contribute to specific disease patterns. Mutations activating cAMP/PKA signaling contribute to carcinogenesis or hormone excess, while inactivating mutations cause hormone deficiency or resistance. Here we extended the application spectrum of a Protein-fragment Complementation Assay based on the Renilla Luciferase to determine binary protein:protein interactions (PPIs) of the PKA network. We compared time- and dose-dependent influences of cAMP-elevation on mutually exclusive PPIs of PKAc with the phosphotransferase inhibiting RIIb and RIa subunits and the protein kinase inhibitor peptide (PKI). We analyzed PKA dynamics following integration of patient mutations into PKAc and RIa. We observed that oncogenic modifications of PKAc(L206R) and RIa(Δ184-236) as well as rare disease mutations in RIa(R368X) affect complex formation of PKA and its responsiveness to cAMP elevation. With the cell-based PKA PPI reporter platform we precisely quantified the mechanistic details how inhibitory PKA interactions and defined patient mutations contribute to PKA functions.

  15. Complementation pattern of lexB and recA mutations in Escherichia coli K12; mapping of tif-1, lexB and recA mutations

    International Nuclear Information System (INIS)

    Morand, P.; Goze, A.; Devoret, R.

    1977-01-01

    Three lexB mutations, whose phenotypes have been previously characterized, are studied here in relation to a few recA mutations as to their complementation pattern and relative location. The restoration of resistance to UV-light and to X-rays in the hetero-allelic diploid bacteria was used as a test for dominance and complementation. The wild type allele was always dominant over the mutant allele. Only partial complementation was found between lexB and two rexA alleles. There was no complementation between the recA alleles. All the data taken together strongly suggest that the complementations found are intragenic: lexB and recA mutations are in one gene. Mapping of lexB, recA and tif-1 mutations in relation to srl-1 and cysC by phage P1 transduction shows that lexB and the tif-1 mutations form a cluster proximal to srl-1 whereas recA mutations are located at the other extremity of the gene. Variability with temperature of cotransduction frequencies as well as their extended range of values prevent a meaningful calculation of the length of the recA gene. Our hypothesis is that the recA protein has two functional regions called A and B respectively defined at the genetical level by recA and lexB mutations and that it is, in vivo, an oligomeric protein forming a complex with the lexA protein. This complex is postulated to be multifunctional: recombination and control of exonuclease V are effected by the A region while the B region and lexA protein effect induced DNA repair and lysogenic induction. (orig.) [de

  16. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  17. Bayesian Nonparametric Clustering for Positive Definite Matrices.

    Science.gov (United States)

    Cherian, Anoop; Morellas, Vassilios; Papanikolopoulos, Nikolaos

    2016-05-01

    Symmetric Positive Definite (SPD) matrices emerge as data descriptors in several applications of computer vision such as object tracking, texture recognition, and diffusion tensor imaging. Clustering these data matrices forms an integral part of these applications, for which soft-clustering algorithms (K-Means, expectation maximization, etc.) are generally used. As is well-known, these algorithms need the number of clusters to be specified, which is difficult when the dataset scales. To address this issue, we resort to the classical nonparametric Bayesian framework by modeling the data as a mixture model using the Dirichlet process (DP) prior. Since these matrices do not conform to the Euclidean geometry, rather belongs to a curved Riemannian manifold,existing DP models cannot be directly applied. Thus, in this paper, we propose a novel DP mixture model framework for SPD matrices. Using the log-determinant divergence as the underlying dissimilarity measure to compare these matrices, and further using the connection between this measure and the Wishart distribution, we derive a novel DPM model based on the Wishart-Inverse-Wishart conjugate pair. We apply this model to several applications in computer vision. Our experiments demonstrate that our model is scalable to the dataset size and at the same time achieves superior accuracy compared to several state-of-the-art parametric and nonparametric clustering algorithms.

  18. A coarse-grained elastic network atom contact model and its use in the simulation of protein dynamics and the prediction of the effect of mutations.

    Directory of Open Access Journals (Sweden)

    Vincent Frappier

    2014-04-01

    Full Text Available Normal mode analysis (NMA methods are widely used to study dynamic aspects of protein structures. Two critical components of NMA methods are coarse-graining in the level of simplification used to represent protein structures and the choice of potential energy functional form. There is a trade-off between speed and accuracy in different choices. In one extreme one finds accurate but slow molecular-dynamics based methods with all-atom representations and detailed atom potentials. On the other extreme, fast elastic network model (ENM methods with Cα-only representations and simplified potentials that based on geometry alone, thus oblivious to protein sequence. Here we present ENCoM, an Elastic Network Contact Model that employs a potential energy function that includes a pairwise atom-type non-bonded interaction term and thus makes it possible to consider the effect of the specific nature of amino-acids on dynamics within the context of NMA. ENCoM is as fast as existing ENM methods and outperforms such methods in the generation of conformational ensembles. Here we introduce a new application for NMA methods with the use of ENCoM in the prediction of the effect of mutations on protein stability. While existing methods are based on machine learning or enthalpic considerations, the use of ENCoM, based on vibrational normal modes, is based on entropic considerations. This represents a novel area of application for NMA methods and a novel approach for the prediction of the effect of mutations. We compare ENCoM to a large number of methods in terms of accuracy and self-consistency. We show that the accuracy of ENCoM is comparable to that of the best existing methods. We show that existing methods are biased towards the prediction of destabilizing mutations and that ENCoM is less biased at predicting stabilizing mutations.

  19. Noonan syndrome: Severe phenotype and PTPN11 mutations.

    Science.gov (United States)

    Carrasco Salas, Pilar; Gómez-Molina, Gertrudis; Carreto-Alba, Páxedes; Granell-Escobar, Reyes; Vázquez-Rico, Ignacio; León-Justel, Antonio

    2018-04-24

    Noonan syndrome (NS) is a genetic disorder characterized by a wide range of distinctive features and health problems. It caused in 50% of cases by missense mutations in PTPN11 gene. It has been postulated that it is possible to predict the disease course based into the impact of mutations on the protein. We report two cases of severe NS phenotype including hydrops fetalis. PTPN11 gene was studied in germinal cells of both patients by sequencing. Two different mutations (p.Gly503Arg and p.Met504Val) was detected in PTPN11 gene. These mutations have been reported previously, and when they were germinal variants, patients presented classic NS, NS with other malignancies and recently, p.Gly503Arg has been also observed in a patient with severe NS and hydrops fetalis, as our cases. Therefore, these observations shade light on that it is not always possibly to determine the genotype-phenotype relation based into the impact of mutations on the protein in NS patients with PTPN11 mutations. Copyright © 2018 Elsevier España, S.L.U. All rights reserved.

  20. Optimal neighborhood indexing for protein similarity search.

    Science.gov (United States)

    Peterlongo, Pierre; Noé, Laurent; Lavenier, Dominique; Nguyen, Van Hoa; Kucherov, Gregory; Giraud, Mathieu

    2008-12-16

    Similarity inference, one of the main bioinformatics tasks, has to face an exponential growth of the biological data. A classical approach used to cope with this data flow involves heuristics with large seed indexes. In order to speed up this technique, the index can be enhanced by storing additional information to limit the number of random memory accesses. However, this improvement leads to a larger index that may become a bottleneck. In the case of protein similarity search, we propose to decrease the index size by reducing the amino acid alphabet. The paper presents two main contributions. First, we show that an optimal neighborhood indexing combining an alphabet reduction and a longer neighborhood leads to a reduction of 35% of memory involved into the process, without sacrificing the quality of results nor the computational time. Second, our approach led us to develop a new kind of substitution score matrices and their associated e-value parameters. In contrast to usual matrices, these matrices are rectangular since they compare amino acid groups from different alphabets. We describe the method used for computing those matrices and we provide some typical examples that can be used in such comparisons. Supplementary data can be found on the website http://bioinfo.lifl.fr/reblosum. We propose a practical index size reduction of the neighborhood data, that does not negatively affect the performance of large-scale search in protein sequences. Such an index can be used in any study involving large protein data. Moreover, rectangular substitution score matrices and their associated statistical parameters can have applications in any study involving an alphabet reduction.

  1. Optimal neighborhood indexing for protein similarity search

    Directory of Open Access Journals (Sweden)

    Nguyen Van

    2008-12-01

    Full Text Available Abstract Background Similarity inference, one of the main bioinformatics tasks, has to face an exponential growth of the biological data. A classical approach used to cope with this data flow involves heuristics with large seed indexes. In order to speed up this technique, the index can be enhanced by storing additional information to limit the number of random memory accesses. However, this improvement leads to a larger index that may become a bottleneck. In the case of protein similarity search, we propose to decrease the index size by reducing the amino acid alphabet. Results The paper presents two main contributions. First, we show that an optimal neighborhood indexing combining an alphabet reduction and a longer neighborhood leads to a reduction of 35% of memory involved into the process, without sacrificing the quality of results nor the computational time. Second, our approach led us to develop a new kind of substitution score matrices and their associated e-value parameters. In contrast to usual matrices, these matrices are rectangular since they compare amino acid groups from different alphabets. We describe the method used for computing those matrices and we provide some typical examples that can be used in such comparisons. Supplementary data can be found on the website http://bioinfo.lifl.fr/reblosum. Conclusion We propose a practical index size reduction of the neighborhood data, that does not negatively affect the performance of large-scale search in protein sequences. Such an index can be used in any study involving large protein data. Moreover, rectangular substitution score matrices and their associated statistical parameters can have applications in any study involving an alphabet reduction.

  2. The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation

    Directory of Open Access Journals (Sweden)

    Litscher Eveline S

    2006-04-01

    Full Text Available Abstract Background Hundreds of extracellular proteins polymerise into filaments and matrices by using zona pellucida (ZP domains. ZP domain proteins perform highly diverse functions, ranging from structural to receptorial, and mutations in their genes are responsible for a number of severe human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that share sequence homology with the N-terminal half of the ZP domain (ZP-N, but not with its C-terminal half (ZP-C. The functional significance of this partial conservation is unknown. Results By exploiting a highly engineered bacterial strain, we expressed in soluble form the PLAC1-homology region of mammalian sperm receptor ZP3 as a fusion to maltose binding protein. Mass spectrometry showed that the 4 conserved Cys residues within the ZP-N moiety of the fusion protein adopt the same disulfide bond connectivity as in full-length native ZP3, indicating that it is correctly folded, and electron microscopy and biochemical analyses revealed that it assembles into filaments. Conclusion These findings provide a function for PLAC1-like proteins and, by showing that ZP-N is a biologically active folding unit, prompt a re-evaluation of the architecture of the ZP domain and its polymers. Furthermore, they suggest that ZP-C might play a regulatory role in the assembly of ZP domain protein complexes.

  3. Hypomorphic mutations in PGAP2, encoding a GPI-anchor-remodeling protein, cause autosomal-recessive intellectual disability

    DEFF Research Database (Denmark)

    Hansen, Lars; Tawamie, Hasan; Murakami, Yoshiko

    2013-01-01

    PGAP2 encodes a protein involved in remodeling the glycosylphosphatidylinositol (GPI) anchor in the Golgi apparatus. After synthesis in the endoplasmic reticulum (ER), GPI anchors are transferred to the proteins and are remodeled while transported through the Golgi to the cell membrane. Germline...... mutations in six genes (PIGA, PIGL, PIGM, PIGV, PIGN, and PIGO) in the ER-located part of the GPI-anchor-biosynthesis pathway have been reported, and all are associated with phenotypes extending from malformation and lethality to severe intellectual disability, epilepsy, minor dysmorphisms, and elevated...... alkaline phosphatase (ALP). We performed autozygosity mapping and ultra-deep sequencing followed by stringent filtering and identified two homozygous PGAP2 alterations, p.Tyr99Cys and p.Arg177Pro, in seven offspring with nonspecific autosomal-recessive intellectual disability from two consanguineous...

  4. Mutational specificity of SOS mutagenesis

    International Nuclear Information System (INIS)

    Kato, Takeshi

    1986-01-01

    In an approach to the isolation of mutants of E. coli unable to produce mutations by ultraviolet light, the author has found new umuC-mutants. Their properties could be explained by ''SOS hypothesis of Radman and Witkin'', which has now been justified by many investigators. Analysis of the umuC region of E. coli chromosome cloned in pSK 100 has led to the conclusion that two genes, umuD and umuC, having the capacity of mutation induction express in the same mechanism as that of SOS genes, which is known to be inhibited by LexA protein bonding to ''SOS box'' found at promotor region. Suppressor analysis for mutational specificity has revealed: (i) umuDC-independent mutagens, such as EMS and (oh) 4 Cy, induce selected base substitution alone; and (ii) umuDC-dependent mutagens, such as X-rays and gamma-rays, induce various types of base substitution simultaneously, although they have mutational specificity. In the umuDC-dependent processes of basechange mutagenesis, the spectra of base substitution were a mixture of base substitution reflecting the specific base damages induced by individual mutagens and nonspecific base substitution. In conclusion, base substitution plays the most important role in umuDC-dependent mutagenesis, although mutagenesis of umuDC proteins remains uncertain. (Namekawa, K.)

  5. On Skew Circulant Type Matrices Involving Any Continuous Fibonacci Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    inverse matrices of them by constructing the transformation matrices. Furthermore, the maximum column sum matrix norm, the spectral norm, the Euclidean (or Frobenius norm, and the maximum row sum matrix norm and bounds for the spread of these matrices are given, respectively.

  6. Inherited protein S deficiency due to a novel nonsense mutation in the PROS1 gene in the patient with recurrent vascular access thrombosis: A case report

    Directory of Open Access Journals (Sweden)

    Eun Jin Cho

    2012-03-01

    Full Text Available Vascular access thrombosis is one of the major causes of morbidity in patients maintained on chronic hemodialysis. Thrombophilia has been recognized as a risk factor of vascular access thrombosis. The authors report a case of inherited protein S deficiency associated with vascular access thrombotic events. DNA sequence analysis of the PROS1 gene identified a novel heterozygous nonsense mutation in exon 10 by transition of AAG (lysine to TAG (stop codon at codon 473 (c.1417A>T, p.K473X. Results from the study suggest that the inherited protein S deficiency due to a PROS1 gene mutation may cause vascular access thrombosis in hemodialysis patients.

  7. Immanant Conversion on Symmetric Matrices

    Directory of Open Access Journals (Sweden)

    Purificação Coelho M.

    2014-01-01

    Full Text Available Letr Σn(C denote the space of all n χ n symmetric matrices over the complex field C. The main objective of this paper is to prove that the maps Φ : Σn(C -> Σn (C satisfying for any fixed irre- ducible characters X, X' -SC the condition dx(A +aB = dχ·(Φ(Α + αΦ(Β for all matrices A,В ε Σ„(С and all scalars a ε C are automatically linear and bijective. As a corollary of the above result we characterize all such maps Φ acting on ΣИ(С.

  8. Mutations in valosin-containing protein (VCP) decrease ADP/ATP translocation across the mitochondrial membrane and impair energy metabolism in human neurons.

    Science.gov (United States)

    Ludtmann, Marthe H R; Arber, Charles; Bartolome, Fernando; de Vicente, Macarena; Preza, Elisavet; Carro, Eva; Houlden, Henry; Gandhi, Sonia; Wray, Selina; Abramov, Andrey Y

    2017-05-26

    Mutations in the gene encoding valosin-containing protein (VCP) lead to multisystem proteinopathies including frontotemporal dementia. We have previously shown that patient-derived VCP mutant fibroblasts exhibit lower mitochondrial membrane potential, uncoupled respiration, and reduced ATP levels. This study addresses the underlying basis for mitochondrial uncoupling using VCP knockdown neuroblastoma cell lines, induced pluripotent stem cells (iPSCs), and iPSC-derived cortical neurons from patients with pathogenic mutations in VCP Using fluorescent live cell imaging and respiration analysis we demonstrate a VCP mutation/knockdown-induced dysregulation in the adenine nucleotide translocase, which results in a slower rate of ADP or ATP translocation across the mitochondrial membranes. This deregulation can explain the mitochondrial uncoupling and lower ATP levels in VCP mutation-bearing neurons via reduced ADP availability for ATP synthesis. This study provides evidence for a role of adenine nucleotide translocase in the mechanism underlying altered mitochondrial function in VCP-related degeneration, and this new insight may inform efforts to better understand and manage neurodegenerative disease and other proteinopathies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. MUTATIONS IN CALMODULIN GENES

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an isolated polynucleotide encoding at least a part of calmodulin and an isolated polypeptide comprising at least a part of a calmodulin protein, wherein the polynucleotide and the polypeptide comprise at least one mutation associated with a cardiac disorder. The ...... the binding of calmodulin to ryanodine receptor 2 and use of such compound in a treatment of an individual having a cardiac disorder. The invention further provides a kit that can be used to detect specific mutations in calmodulin encoding genes....

  10. Novel mutation predicted to disrupt SGOL1 protein function | Gupta ...

    African Journals Online (AJOL)

    L54Q, a mutation predicted as deleterious in this study was found to be located in N-terminal coiled coil domain which is effectively involved in the proper localization of PP2A to centromere. We further examined the effect of this mutation over the translational efficiency of the SGOL1 coding gene. Our analysis revealed ...

  11. A Novel Homozygous MYO7A Mutation: Case Report

    Directory of Open Access Journals (Sweden)

    Mahsa Ahmadi

    2018-05-01

    Full Text Available MYO7A is an unconventional myosin that is essential for ordinary hearing and vision; mutations in the MYO7A gene result in Usher syndrome type 1B and other disorders. In this manuscript, we reported a mutation (c.4705delA in exon 35, causing the alteration of a Ser amino acid to Ala at codon 1569 (p.H2027del located within the first FERMdomain of the human protein myosin VIIA. This mutation involved in the pathogenesis of hearing loss, congenital night blindness, muscular weakness, skin problem, and difficulty in keeping balance in the 13-year-old female. After checkup the patient’s DNA was extracted from peripheral blood and amplification was performed by PCR. Sequencing method was performed for identification of the mutation. The c.4705delA mutation in exon 35 was found in the patient in heterozygosis form; this means that her mother and father were carriers. This mutation is located on the tail of the myosinVIIA protein and is associated with several disorders.

  12. Prion protein gene analysis in three kindreds with fatal familial insomnia (FFI): Codon 178 mutation and codon 129 polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Medori, R.; Tritschler, H.J. (Universita di Bologna (Italy))

    1993-10-01

    Fatal familial insomnia (FFI) is a disease linked to a GAC(Asp) [yields] AAC(Asn) mutation in codon 178 of the prion protein (PrP) gene. FFI is characterized clinically by untreatable progressive insomnia, dysautonomia, and motor dysfunctions and is characterized pathologically by selective thalamic atrophy. The authors confirmed the 178[sup Asn] mutation in the PrP gene of a third FFI family of French ancestry. Three family members who are under 40 years of age and who inherited the mutation showed only reduced perfusion in the basal ganglia on single photon emission computerized tomography. Some FFI features differ from the clinical and neuropathologic findings associated with 178[sup Asn] reported elsewhere. However, additional intragenic mutations accounting for the phenotypic differences were not observed in two affected individuals. In other sporadic and familial forms of Creutzfeldt-Jakob disease and Gerstmann-Straeussler syndrome, Met or Val homozygosity at polymorphic codon 129 is associated with a more severe phenotype, younger age at onset, and faster progression. In FFI, young and old individuals at disease onset had 129[sup Met/Val]. Moreover, of five 178[sup Asn] individuals who are above age-at-onset range and who are well, two have 129[sup Met] and three have 129[sup Met/Val], suggesting that polymorphic site 129 does not modulate FFI phenotypic expression. Genetic heterogeneity and environment may play an important role in inter- and intrafamilial variability of the 178[sup Asn] mutation. 32 refs., 5 figs., 1 tab.

  13. The 'golden' matrices and a new kind of cryptography

    International Nuclear Information System (INIS)

    Stakhov, A.P.

    2007-01-01

    We consider a new class of square matrices called the 'golden' matrices. They are a generalization of the classical Fibonacci Q-matrix for continuous domain. The 'golden' matrices can be used for creation of a new kind of cryptography called the 'golden' cryptography. The method is very fast and simple for technical realization and can be used for cryptographic protection of digital signals (telecommunication and measurement systems)

  14. Advanced incomplete factorization algorithms for Stiltijes matrices

    Energy Technology Data Exchange (ETDEWEB)

    Il`in, V.P. [Siberian Division RAS, Novosibirsk (Russian Federation)

    1996-12-31

    The modern numerical methods for solving the linear algebraic systems Au = f with high order sparse matrices A, which arise in grid approximations of multidimensional boundary value problems, are based mainly on accelerated iterative processes with easily invertible preconditioning matrices presented in the form of approximate (incomplete) factorization of the original matrix A. We consider some recent algorithmic approaches, theoretical foundations, experimental data and open questions for incomplete factorization of Stiltijes matrices which are {open_quotes}the best{close_quotes} ones in the sense that they have the most advanced results. Special attention is given to solving the elliptic differential equations with strongly variable coefficients, singular perturbated diffusion-convection and parabolic equations.

  15. Finding Relational Associations in HIV Resistance Mutation Data

    Science.gov (United States)

    Richter, Lothar; Augustin, Regina; Kramer, Stefan

    HIV therapy optimization is a hard task due to rapidly evolving mutations leading to drug resistance. Over the past five years, several machine learning approaches have been developed for decision support, mostly to predict therapy failure from the genotypic sequence of viral proteins and additional factors. In this paper, we define a relational representation for an important part of the data, namely the sequences of a viral protein (reverse transcriptase), their mutations, and the drug resistance(s) associated with those mutations. The data were retrieved from the Los Alamos National Laboratories' (LANL) HIV databases. In contrast to existing work in this area, we do not aim directly for predictive modeling, but take one step back and apply descriptive mining methods to develop a better understanding of the correlations and associations between mutations and resistances. In our particular application, we use the Warmr algorithm to detect non-trivial patterns connecting mutations and resistances. Our findings suggest that well-known facts can be rediscovered, but also hint at the potential of discovering yet unknown associations.

  16. On the Eigenvalues and Eigenvectors of Block Triangular Preconditioned Block Matrices

    KAUST Repository

    Pestana, Jennifer

    2014-01-01

    Block lower triangular matrices and block upper triangular matrices are popular preconditioners for 2×2 block matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned matrices are related. © 2014 Society for Industrial and Applied Mathematics.

  17. SAAMBE: Webserver to Predict the Charge of Binding Free Energy Caused by Amino Acids Mutations.

    Science.gov (United States)

    Petukh, Marharyta; Dai, Luogeng; Alexov, Emil

    2016-04-12

    Predicting the effect of amino acid substitutions on protein-protein affinity (typically evaluated via the change of protein binding free energy) is important for both understanding the disease-causing mechanism of missense mutations and guiding protein engineering. In addition, researchers are also interested in understanding which energy components are mostly affected by the mutation and how the mutation affects the overall structure of the corresponding protein. Here we report a webserver, the Single Amino Acid Mutation based change in Binding free Energy (SAAMBE) webserver, which addresses the demand for tools for predicting the change of protein binding free energy. SAAMBE is an easy to use webserver, which only requires that a coordinate file be inputted and the user is provided with various, but easy to navigate, options. The user specifies the mutation position, wild type residue and type of mutation to be made. The server predicts the binding free energy change, the changes of the corresponding energy components and provides the energy minimized 3D structure of the wild type and mutant proteins for download. The SAAMBE protocol performance was tested by benchmarking the predictions against over 1300 experimentally determined changes of binding free energy and a Pearson correlation coefficient of 0.62 was obtained. How the predictions can be used for discriminating disease-causing from harmless mutations is discussed. The webserver can be accessed via http://compbio.clemson.edu/saambe_webserver/.

  18. Tumor cell invasion of collagen matrices requires coordinate lipid agonist-induced G-protein and membrane-type matrix metalloproteinase-1-dependent signaling

    Directory of Open Access Journals (Sweden)

    Anthis Nicholas J

    2006-12-01

    Full Text Available Abstract Background Lysophosphatidic acid (LPA and sphingosine 1-phosphate (S1P are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D and invasion of three-dimensional (3D collagen matrices and, in particular, evaluated the role of MT1-MMP in this process. Results LPA stimulated while S1P inhibited migration of most tumor lines in Boyden chamber assays. Conversely, HT1080 fibrosarcoma cells migrated in response to both lipids. HT1080 cells also markedly invaded 3D collagen matrices (~700 μm over 48 hours in response to either lipid. siRNA targeting of LPA1 and Rac1, or S1P1, Rac1, and Cdc42 specifically inhibited LPA- or S1P-induced HT1080 invasion, respectively. Analysis of LPA-induced HT1080 motility on 2D substrates vs. 3D matrices revealed that synthetic MMP inhibitors markedly reduced the distance (~125 μm vs. ~45 μm and velocity of invasion (~0.09 μm/min vs. ~0.03 μm/min only when cells navigated 3D matrices signifying a role for MMPs exclusively in invasion. Additionally, tissue inhibitors of metalloproteinases (TIMPs-2, -3, and -4, but not TIMP-1, blocked lipid agonist-induced invasion indicating a role for membrane-type (MT-MMPs. Furthermore, MT1-MMP expression in several tumor lines directly correlated with LPA-induced invasion. HEK293s, which neither express MT1-MMP nor invade in the presence of LPA, were transfected with MT1-MMP cDNA, and subsequently invaded in response to LPA. When HT1080 cells were seeded on top of or within collagen matrices, siRNA targeting of MT1-MMP, but not other MMPs, inhibited lipid agonist-induced invasion establishing a requisite role for MT1-MMP in this process. Conclusion LPA is a

  19. On Investigating GMRES Convergence using Unitary Matrices

    Czech Academy of Sciences Publication Activity Database

    Duintjer Tebbens, Jurjen; Meurant, G.; Sadok, H.; Strakoš, Z.

    2014-01-01

    Roč. 450, 1 June (2014), s. 83-107 ISSN 0024-3795 Grant - others:GA AV ČR(CZ) M100301201; GA MŠk(CZ) LL1202 Institutional support: RVO:67985807 Keywords : GMRES convergence * unitary matrices * unitary spectra * normal matrices * Krylov residual subspace * Schur parameters Subject RIV: BA - General Mathematics Impact factor: 0.939, year: 2014

  20. UBIAD1 mutation alters a mitochondrial prenyltransferase to cause Schnyder corneal dystrophy.

    Directory of Open Access Journals (Sweden)

    Michael L Nickerson

    2010-05-01

    Full Text Available Mutations in a novel gene, UBIAD1, were recently found to cause the autosomal dominant eye disease Schnyder corneal dystrophy (SCD. SCD is characterized by an abnormal deposition of cholesterol and phospholipids in the cornea resulting in progressive corneal opacification and visual loss. We characterized lesions in the UBIAD1 gene in new SCD families and examined protein homology, localization, and structure.We characterized five novel mutations in the UBIAD1 gene in ten SCD families, including a first SCD family of Native American ethnicity. Examination of protein homology revealed that SCD altered amino acids which were highly conserved across species. Cell lines were established from patients including keratocytes obtained after corneal transplant surgery and lymphoblastoid cell lines from Epstein-Barr virus immortalized peripheral blood mononuclear cells. These were used to determine the subcellular localization of mutant and wild type protein, and to examine cholesterol metabolite ratios. Immunohistochemistry using antibodies specific for UBIAD1 protein in keratocytes revealed that both wild type and N102S protein were localized sub-cellularly to mitochondria. Analysis of cholesterol metabolites in patient cell line extracts showed no significant alteration in the presence of mutant protein indicating a potentially novel function of the UBIAD1 protein in cholesterol biochemistry. Molecular modeling was used to develop a model of human UBIAD1 protein in a membrane and revealed potentially critical roles for amino acids mutated in SCD. Potential primary and secondary substrate binding sites were identified and docking simulations indicated likely substrates including prenyl and phenolic molecules.Accumulating evidence from the SCD familial mutation spectrum, protein homology across species, and molecular modeling suggest that protein function is likely down-regulated by SCD mutations. Mitochondrial UBIAD1 protein appears to have a highly

  1. "G.P.S Matrices" programme: A method to improve the mastery level of social science students in matrices operations

    Science.gov (United States)

    Lee, Ken Voon

    2013-04-01

    The purpose of this action research was to increase the mastery level of Form Five Social Science students in Tawau II National Secondary School in the operations of addition, subtraction and multiplication of matrices in Mathematics. A total of 30 students were involved. Preliminary findings through the analysis of pre-test results and questionnaire had identified the main problem faced in which the students felt confused with the application of principles of the operations of matrices when performing these operations. Therefore, an action research was conducted using an intervention programme called "G.P.S Matrices" to overcome the problem. This programme was divided into three phases. 'Gift of Matrices' phase aimed at forming matrix teaching aids. The second and third phases were 'Positioning the Elements of Matrices' and 'Strenghtening the Concept of Matrices'. These two phases were aimed at increasing the level of understanding and memory of the students towards the principles of matrix operations. Besides, this third phase was also aimed at creating an interesting learning environment. A comparison between the results of pre-test and post-test had shown a remarkable improvement in students' performances after implementing the programme. In addition, the analysis of interview findings also indicated a positive feedback on the changes in students' attitude, particularly in the aspect of students' understanding level. Moreover, the level of students' memory also increased following the use of the concrete matrix teaching aids created in phase one. Besides, teachers felt encouraging when conducive learning environment was created through students' presentation activity held in third phase. Furthermore, students were voluntarily involved in these student-centred activities. In conclusion, this research findings showed an increase in the mastery level of students in these three matrix operations and thus the objective of the research had been achieved.

  2. Distinct Mechanisms of Pathogenic DJ-1 Mutations in Mitochondrial Quality Control

    Directory of Open Access Journals (Sweden)

    Daniela Strobbe

    2018-03-01

    Full Text Available The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in PARK7, encoding DJ-1, are associated with early-onset familial Parkinson’s disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein–protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation. We report that the DJ-1M26I mutant influences DJ-1 interactions with SUMO-1, in turn enhancing removal of mitochondria and conferring increased cellular susceptibility to dopamine toxicity. By contrast, the DJ-1D149A mutant does not influence mitophagy, but instead impairs Ca2+ dynamics and free radical homeostasis by disrupting DJ-1 interactions with a mitochondrial accessory protein known as DJ-1-binding protein (DJBP/EFCAB6. Thus, individual DJ-1 mutations have different effects on mitochondrial function and quality control, implying mutation-specific pathomechanisms converging on impaired mitochondrial homeostasis.

  3. Mutational Analysis of Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Erstad, Derek J. [Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Cusack, James C. Jr., E-mail: jcusack@mgh.harvard.edu [Division of Surgical Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States)

    2014-10-17

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge.

  4. Mutational Analysis of Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Erstad, Derek J.; Cusack, James C. Jr.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge

  5. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    Science.gov (United States)

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  6. Structural stability of human protein tyrosine phosphatase ρ catalytic domain: effect of point mutations.

    Directory of Open Access Journals (Sweden)

    Alessandra Pasquo

    Full Text Available Protein tyrosine phosphatase ρ (PTPρ belongs to the classical receptor type IIB family of protein tyrosine phosphatase, the most frequently mutated tyrosine phosphatase in human cancer. There are evidences to suggest that PTPρ may act as a tumor suppressor gene and dysregulation of Tyr phosphorylation can be observed in diverse diseases, such as diabetes, immune deficiencies and cancer. PTPρ variants in the catalytic domain have been identified in cancer tissues. These natural variants are nonsynonymous single nucleotide polymorphisms, variations of a single nucleotide occurring in the coding region and leading to amino acid substitutions. In this study we investigated the effect of amino acid substitution on the structural stability and on the activity of the membrane-proximal catalytic domain of PTPρ. We expressed and purified as soluble recombinant proteins some of the mutants of the membrane-proximal catalytic domain of PTPρ identified in colorectal cancer and in the single nucleotide polymorphisms database. The mutants show a decreased thermal and thermodynamic stability and decreased activation energy relative to phosphatase activity, when compared to wild- type. All the variants show three-state equilibrium unfolding transitions similar to that of the wild- type, with the accumulation of a folding intermediate populated at ~4.0 M urea.

  7. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis.

    Science.gov (United States)

    Jin, Shengfang; Chen, Jiang; Chen, Lizao; Histen, Gavin; Lin, Zhizhong; Gross, Stefan; Hixon, Jeffrey; Chen, Yue; Kung, Charles; Chen, Yiwei; Fu, Yufei; Lu, Yuxuan; Lin, Hui; Cai, Xiujun; Yang, Hua; Cairns, Rob A; Dorsch, Marion; Su, Shinsan M; Biller, Scott; Mak, Tak W; Cang, Yong

    2015-07-21

    Mitochondrial aldehyde dehydrogenase 2 (ALDH2) in the liver removes toxic aldehydes including acetaldehyde, an intermediate of ethanol metabolism. Nearly 40% of East Asians inherit an inactive ALDH2*2 variant, which has a lysine-for-glutamate substitution at position 487 (E487K), and show a characteristic alcohol flush reaction after drinking and a higher risk for gastrointestinal cancers. Here we report the characterization of knockin mice in which the ALDH2(E487K) mutation is inserted into the endogenous murine Aldh2 locus. These mutants recapitulate essentially all human phenotypes including impaired clearance of acetaldehyde, increased sensitivity to acute or chronic alcohol-induced toxicity, and reduced ALDH2 expression due to a dominant-negative effect of the mutation. When treated with a chemical carcinogen, these mutants exhibit increased DNA damage response in hepatocytes, pronounced liver injury, and accelerated development of hepatocellular carcinoma (HCC). Importantly, ALDH2 protein levels are also significantly lower in patient HCC than in peritumor or normal liver tissues. Our results reveal that ALDH2 functions as a tumor suppressor by maintaining genomic stability in the liver, and the common human ALDH2 variant would present a significant risk factor for hepatocarcinogenesis. Our study suggests that the ALDH2*2 allele-alcohol interaction may be an even greater human public health hazard than previously appreciated.

  8. Novel mutations in TARDBP (TDP-43 in patients with familial amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Nicola J Rutherford

    2008-09-01

    Full Text Available The TAR DNA-binding protein 43 (TDP-43 has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U, defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V were identified in the analysis of 92 familial ALS patients (3.3%, while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.

  9. Mutation breeding in chickpea

    International Nuclear Information System (INIS)

    2009-01-01

    Chickpea is an important food legume in Turkey. Turkey is one of the most important gene centers in the world for legumes. The most widely known characteristic of chickpea is that it is an important vegetable protein source used in human and animal nutrition. However, the dry grains of chickpea, has 2-3 times more protein than our traditional food of wheat. In addition, cheakpea is also energy source because of its high carbohydrate content. It is very rich in some vitamin and mineral basis. In the plant breeding, mutation induction has become an effective way of supplementing existing germplasm and improving cultivars. Many successful examples of mutation induction have proved that mutation breeding is an effective and important approach to food legume improvement. The induced mutation technique in chickpea has proved successful and good results have been attained. Realizing the potential of induced mutations, a mutation breeding programme was initiated at the Nuclear Agriculture Section of the Saraykoey Nuclear Research and Training Center in 1994. The purpose of the study was to obtain high yielding chickpea mutants with large seeds, good cooking quality and high protein content. Beside this some characters such as higher adaptation ability, tolerant to cold and drought, increased machinery harvest type, higher yield, resistant to diseases especially to antracnose and pest were investigated too. Parents varieties were ILC-482, AK-7114 and AKCIN-91 (9 % seed moisture content and germination percentage 98 %) in these experiments. The irradiation doses were 0 (control), 50, 100, 150, 200, 250, 300, 350, 400, 500 ve 600 Gy for greenhouse experiments and 0 (control), 50, 100, 150, 200, 250, 300, 350 ve 400 Gy for field experiments, respectively. One thousand seeds for per treatment were sown in the field for the M 1 . At maturity, 3500 single plants were harvested and 20 seeds were taken from each M 1 plant and planted in the following season. During plant growth

  10. CONVERGENCE OF POWERS OF CONTROLLABLE INTUITIONISTIC FUZZY MATRICES

    OpenAIRE

    Riyaz Ahmad Padder; P. Murugadas

    2016-01-01

    Convergences of powers of controllable intuitionistic fuzzy matrices have been stud¬ied. It is shown that they oscillate with period equal to 2, in general. Some equalities and sequences of inequalities about powers of controllable intuitionistic fuzzy matrices have been obtained.

  11. Loop diagrams without γ matrices

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Rebhan, A.

    1993-01-01

    By using a quantum-mechanical path integral to compute matrix elements of the form left-angle x|exp(-iHt)|y right-angle, radiative corrections in quantum-field theory can be evaluated without encountering loop-momentum integrals. In this paper we demonstrate how Dirac γ matrices that occur in the proper-time ''Hamiltonian'' H lead to the introduction of a quantum-mechanical path integral corresponding to a superparticle analogous to one proposed recently by Fradkin and Gitman. Direct evaluation of this path integral circumvents many of the usual algebraic manipulations of γ matrices in the computation of quantum-field-theoretical Green's functions involving fermions

  12. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome.

    Science.gov (United States)

    Das, Dhanjit Kumar; Mehta, Bhakti; Menon, Shyla R; Raha, Sarbani; Udani, Vrajesh

    2013-03-01

    Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for

  13. Classification en référence à une matrice stochastique

    OpenAIRE

    Verdun , Stéphane; Cariou , Véronique; Qannari , El Mostafa

    2009-01-01

    International audience; Etant donné un tableau de données X portant sur un ensemble de n objets, et une matrice stochastique S qui peut être assimilée à une matrice de transition d'une chaîne de Markov, nous proposons une méthode de partitionnement consistant à appliquer la matrice S sur X de manière itérative jusqu'à convergence. Les classes formant la partition sont déterminées à partir des états stationnaires de la matrice stochastique. Cette matrice stochastique peut être issue d'une matr...

  14. Microparticulated whey proteins for improving dairy product texture

    DEFF Research Database (Denmark)

    Ipsen, Richard

    2017-01-01

    Use of microparticulated whey protein (MWP) was patented in 1988; since then much research has been conducted on use of MWP. This review provides an overview of the use and functionality of MWP in dairy applications and discusses how MWP interacts with other components in dairy matrices. For ferm......Use of microparticulated whey protein (MWP) was patented in 1988; since then much research has been conducted on use of MWP. This review provides an overview of the use and functionality of MWP in dairy applications and discusses how MWP interacts with other components in dairy matrices...

  15. Capture Matrices Handbook

    Science.gov (United States)

    2014-04-01

    materials, the affinity ligand would need identification , as well as chemistries that graft the affinity ligand onto the surface of magnetic...ACTIVE CAPTURE MATRICES FOR THE DETECTION/ IDENTIFICATION OF PHARMACEUTICALS...6 As shown in Figure 2.3-1a, the spectra exhibit similar baselines and the spectral peaks lineup . Under these circumstances, the spectral

  16. Binary Positive Semidefinite Matrices and Associated Integer Polytopes

    DEFF Research Database (Denmark)

    Letchford, Adam N.; Sørensen, Michael Malmros

    2012-01-01

    We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...

  17. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  18. Chain of matrices, loop equations and topological recursion

    CERN Document Server

    Orantin, Nicolas

    2009-01-01

    Random matrices are used in fields as different as the study of multi-orthogonal polynomials or the enumeration of discrete surfaces. Both of them are based on the study of a matrix integral. However, this term can be confusing since the definition of a matrix integral in these two applications is not the same. These two definitions, perturbative and non-perturbative, are discussed in this chapter as well as their relation. The so-called loop equations satisfied by integrals over random matrices coupled in chain is discussed as well as their recursive solution in the perturbative case when the matrices are Hermitean.

  19. HSJ1-related hereditary neuropathies: novel mutations and extended clinical spectrum.

    Science.gov (United States)

    Gess, Burkhard; Auer-Grumbach, Michaela; Schirmacher, Anja; Strom, Tim; Zitzelsberger, Manuela; Rudnik-Schöneborn, Sabine; Röhr, Dominik; Halfter, Hartmut; Young, Peter; Senderek, Jan

    2014-11-04

    To determine the nature and frequency of HSJ1 mutations in patients with hereditary motor and hereditary motor and sensory neuropathies. Patients were screened for mutations by genome-wide or targeted linkage and homozygosity studies, whole-exome sequencing, and Sanger sequencing. RNA and protein studies of skin fibroblasts were used for functional characterization. We describe 2 additional mutations in the HSJ1 gene in a cohort of 90 patients with autosomal recessive distal hereditary motor neuropathy (dHMN) and Charcot-Marie-Tooth disease type 2 (CMT2). One family with a dHMN phenotype showed the homozygous splice-site mutation c.229+1G>A, which leads to retention of intron 4 in the HSJ1 messenger RNA with a premature stop codon and loss of protein expression. Another family, presenting with a CMT2 phenotype, carried the homozygous missense mutation c.14A>G (p.Tyr5Cys). This mutation was classified as likely disease-related by several automatic algorithms for prediction of possible impact of an amino acid substitution on the structure and function of proteins. Both mutations cosegregated with autosomal recessive inheritance of the disease and were absent from the general population. Taken together, in our cohort of 90 probands, we confirm that HSJ1 mutations are a rare but detectable cause of autosomal recessive dHMN and CMT2. We provide clinical and functional information on an HSJ1 splice-site mutation and report the detailed phenotype of 2 patients with CMT2, broadening the phenotypic spectrum of HSJ1-related neuropathies. © 2014 American Academy of Neurology.

  20. Theoretical Properties for Neural Networks with Weight Matrices of Low Displacement Rank

    OpenAIRE

    Zhao, Liang; Liao, Siyu; Wang, Yanzhi; Li, Zhe; Tang, Jian; Pan, Victor; Yuan, Bo

    2017-01-01

    Recently low displacement rank (LDR) matrices, or so-called structured matrices, have been proposed to compress large-scale neural networks. Empirical results have shown that neural networks with weight matrices of LDR matrices, referred as LDR neural networks, can achieve significant reduction in space and computational complexity while retaining high accuracy. We formally study LDR matrices in deep learning. First, we prove the universal approximation property of LDR neural networks with a ...

  1. Mutations of C19orf12, coding for a transmembrane glycine zipper containing mitochondrial protein, cause mis-localization of the protein, inability to respond to oxidative stress and increased mitochondrial Ca2+.

    Directory of Open Access Journals (Sweden)

    Paola eVenco

    2015-05-01

    Full Text Available Mutations in C19orf12 have been identified in patients affected by Neurodegeneration with Brain Iron Accumulation (NBIA, a clinical entity characterized by iron accumulation in the basal ganglia. By using western blot analysis with specific antibody and confocal studies, we showed that wild-type C19orf12 protein was not exclusively present in mitochondria, but also in the Endoplasmic Reticulum (ER and MAM (Mitochondria Associated Membrane, while mutant C19orf12 variants presented a different localization. Moreover, after induction of oxidative stress, a GFP-tagged C19orf12 wild-type protein was able to relocate to the cytosol. On the contrary, mutant isoforms were not able to respond to oxidative stress. High mitochondrial calcium concentration and increased H2O2 induced apoptosis were found in fibroblasts derived from one patient as compared to controls.C19orf12 protein is a 17kDa mitochondrial membrane-associated protein whose function is still unknown. Our in silico investigation suggests that, the glycine zipper motifs of C19orf12 form helical regions spanning the membrane. The N- and C-terminal regions with respect to the transmembrane portion, on the contrary, are predicted to rearrange in a structural domain, which is homologues to the N-terminal regulatory domain of the magnesium transporter MgtE, suggesting that C19orf12 may act as a regulatory protein for human MgtE transporters. The mutations here described affect respectively one glycine residue of the glycine zipper motifs, which are involved in dimerization of transmembrane helices and predicted to impair the correct localization of the protein into the membranes, and one residue present in the regulatory domain, which is important for protein-protein interaction.

  2. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels.

    Science.gov (United States)

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B; Morris, John C; Goate, Alison

    2011-05-01

    To test whether rs1990622 (TMEM106B) is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy, elderly individuals. Rs1990622 (TMEM106B) was identified as a risk factor for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP) in a recent genome-wide association. Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier method and a Cox proportional hazards model. Alzheimer's Disease Research Center. Subjects  We analyzed 50 affected and unaffected GRN mutation carriers from 4 previously reported FTLD-TDP families (HDDD1, FD1, HDDD2, and the Karolinska family). The GRN plasma levels were also measured in 73 healthy, elderly individuals. Age at onset and GRN plasma levels. The risk allele of rs1990622 was associated with a mean decrease of the AAO of 13 years (P = 9.9 × 10(-7)) and with lower plasma GRN levels in both healthy older adults (P = 4 × 10(-4)) and GRN mutation carriers (P = .0027). Analysis of the HapMap database identified a nonsynonymous single-nucleotide polymorphism rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. The association of rs1990622 with AAO explains, in part, the wide range in the AAO of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN.

  3. TMEM106B gene polymorphism is associated with age at onset in granulin mutation carriers and plasma granulin protein levels

    Science.gov (United States)

    Cruchaga, Carlos; Graff, Caroline; Chiang, Huei-Hsin; Wang, Jun; Hinrichs, Anthony L.; Spiegel, Noah; Bertelsen, Sarah; Mayo, Kevin; Norton, Joanne B.; Morris, John C.; Goate, Alison

    2011-01-01

    Objective A recent genome-wide association study for frontotemporal lobar degeneration with TAR DNA-binding protein inclusions (FTLD-TDP), identified rs1990622 (TMEM106B) as a risk factor for FTLD-TDP. In this study we tested whether rs1990622 is associated with age at onset (AAO) in granulin (GRN) mutation carriers and with plasma GRN levels in mutation carriers and healthy elderly individuals. Design Rs1990622 was genotyped in GRN mutation carriers and tested for association with AAO using the Kaplan-Meier and a Cox proportional hazards model. Subjects We analyzed 50 affected and unaffected GRN mutation carriers from four previously reported FTLD-TDP families (HDDD1, FD1, HDDD2 and the Karolinska family). GRN plasma levels were also measured in 73 healthy, elderly individuals. Results The risk allele of rs1990622 is associated with a mean decrease of the age at onset of thirteen years (p=9.9×10−7), with lower plasma granulin levels in both healthy older adults (p = 4×10−4) and GRN mutation carriers (p=0.0027). Analysis of the HAPMAP database identified a non-synonymous single nucleotide polymorphism, rs3173615 (T185S) in perfect linkage disequilibrium with rs1990622. Conclusions The association of rs1990622 with AAO explains, in part, the wide range in the age at onset of disease among GRN mutation carriers. We hypothesize that rs1990622 or another variant in linkage disequilibrium could act in a manner similar to APOE in Alzheimer’s disease, increasing risk for disease in the general population and modifying AAO in mutation carriers. Our results also suggest that genetic variation in TMEM106B may influence risk for FTLD-TDP by modulating secreted levels of GRN. PMID:21220649

  4. The Modern Origin of Matrices and Their Applications

    Science.gov (United States)

    Debnath, L.

    2014-01-01

    This paper deals with the modern development of matrices, linear transformations, quadratic forms and their applications to geometry and mechanics, eigenvalues, eigenvectors and characteristic equations with applications. Included are the representations of real and complex numbers, and quaternions by matrices, and isomorphism in order to show…

  5. Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II.

    Science.gov (United States)

    Zhang, Hua; Chen, Hongsheng; Luo, Hunjin; An, Jing; Sun, Lin; Mei, Lingyun; He, Chufeng; Jiang, Lu; Jiang, Wen; Xia, Kun; Li, Jia-Da; Feng, Yong

    2012-03-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four subtypes (WS1-WS4) based on additional symptoms. PAX3 and SOX10 are two transcription factors that can activate the expression of microphthalmia-associated transcription factor (MITF), a critical transcription factor for melanocyte development. Mutations of PAX3 are associated with WS1 and WS3, while mutations of SOX10 cause WS2 and WS4. Recently, we identified some novel WS-associated mutations in PAX3 and SOX10 in a cohort of Chinese WS patients. Here, we further identified an E248fsX30 SOX10 mutation in a family of WS2. We analyzed the subcellular distribution, expression and in vitro activity of two PAX3 mutations (p.H80D, p.H186fsX5) and four SOX10 mutations (p.E248fsX30, p.G37fsX58, p.G38fsX69 and p.R43X). Except H80D PAX3, which retained partial activity, the other mutants were unable to activate MITF promoter. The H80D PAX3 and E248fsX30 SOX10 were localized in the nucleus as wild type (WT) proteins, whereas the other mutant proteins were distributed in both cytoplasm and nucleus. Furthermore, E248fsX30 SOX10 protein retained the DNA-binding activity and showed dominant-negative effect on WT SOX10. However, E248fsX30 SOX10 protein seems to decay faster than the WT one, which may underlie the mild WS2 phenotype caused by this mutation.

  6. Flux Jacobian Matrices For Equilibrium Real Gases

    Science.gov (United States)

    Vinokur, Marcel

    1990-01-01

    Improved formulation includes generalized Roe average and extension to three dimensions. Flux Jacobian matrices derived for use in numerical solutions of conservation-law differential equations of inviscid flows of ideal gases extended to real gases. Real-gas formulation of these matrices retains simplifying assumptions of thermodynamic and chemical equilibrium, but adds effects of vibrational excitation, dissociation, and ionization of gas molecules via general equation of state.

  7. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris

    2017-06-26

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  8. Data depth and rank-based tests for covariance and spectral density matrices

    KAUST Repository

    Chau, Joris; Ombao, Hernando; Sachs, Rainer von

    2017-01-01

    In multivariate time series analysis, objects of primary interest to study cross-dependences in the time series are the autocovariance or spectral density matrices. Non-degenerate covariance and spectral density matrices are necessarily Hermitian and positive definite, and our primary goal is to develop new methods to analyze samples of such matrices. The main contribution of this paper is the generalization of the concept of statistical data depth for collections of covariance or spectral density matrices by exploiting the geometric properties of the space of Hermitian positive definite matrices as a Riemannian manifold. This allows one to naturally characterize most central or outlying matrices, but also provides a practical framework for rank-based hypothesis testing in the context of samples of covariance or spectral density matrices. First, the desired properties of a data depth function acting on the space of Hermitian positive definite matrices are presented. Second, we propose two computationally efficient pointwise and integrated data depth functions that satisfy each of these requirements. Several applications of the developed methodology are illustrated by the analysis of collections of spectral matrices in multivariate brain signal time series datasets.

  9. A nonsense mutation in cGMP-dependent type II protein kinase (PRKG2) causes dwarfism in American Angus cattle.

    Science.gov (United States)

    Koltes, James E; Mishra, Bishnu P; Kumar, Dinesh; Kataria, Ranjit S; Totir, Liviu R; Fernando, Rohan L; Cobbold, Rowland; Steffen, David; Coppieters, Wouter; Georges, Michel; Reecy, James M

    2009-11-17

    Historically, dwarfism was the major genetic defect in U.S. beef cattle. Aggressive culling and sire testing were used to minimize its prevalence; however, neither of these practices can eliminate a recessive genetic defect. We assembled a 4-generation pedigree to identify the mutation underlying dwarfism in American Angus cattle. An adaptation of the Elston-Steward algorithm was used to overcome small pedigree size and missing genotypes. The dwarfism locus was fine-mapped to BTA6 between markers AFR227 and BM4311. Four candidate genes were sequenced, revealing a nonsense mutation in exon 15 of cGMP-dependant type II protein kinase (PRKG2). This C/T transition introduced a stop codon (R678X) that truncated 85 C-terminal amino acids, including a large portion of the kinase domain. Of the 75 mutations discovered in this region, only this mutation was 100% concordant with the recessive pattern of inheritance in affected and carrier individuals (log of odds score = 6.63). Previous research has shown that PRKG2 regulates SRY (sex-determining region Y) box 9 (SOX9)-mediated transcription of collagen 2 (COL2). We evaluated the ability of wild-type (WT) or R678X PRKG2 to regulate COL2 expression in cell culture. Real-time PCR results confirmed that COL2 is overexpressed in cells that overexpressed R678X PRKG2 as compared with WT PRKG2. Furthermore, COL2 and COL10 mRNA expression was increased in dwarf cattle compared with unaffected cattle. These experiments indicate that the R678X mutation is functional, resulting in a loss of PRKG2 regulation of COL2 and COL10 mRNA expression. Therefore, we present PRKG2 R678X as a causative mutation for dwarfism cattle.

  10. ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta.

    Science.gov (United States)

    Wang, Shih-Kai; Choi, Murim; Richardson, Amelia S; Reid, Bryan M; Lin, Brent P; Wang, Susan J; Kim, Jung-Wook; Simmer, James P; Hu, Jan C-C

    2014-04-15

    Integrins are cell-surface adhesion receptors that bind to extracellular matrices (ECM) and mediate cell-ECM interactions. Some integrins are known to play critical roles in dental enamel formation. We recruited two Hispanic families with generalized hypoplastic amelogenesis imperfecta (AI). Analysis of whole-exome sequences identified three integrin beta 6 (ITGB6) mutations responsible for their enamel malformations. The female proband of Family 1 was a compound heterozygote with an ITGB6 transition mutation in Exon 4 (g.4545G > A c.427G > A p.Ala143Thr) and an ITGB6 transversion mutation in Exon 6 (g.27415T > A c.825T > A p.His275Gln). The male proband of Family 2 was homozygous for an ITGB6 transition mutation in Exon 11 (g.73664C > T c.1846C > T p.Arg616*) and hemizygous for a transition mutation in Exon 6 of Nance-Horan Syndrome (NHS Xp22.13; g.355444T > C c.1697T > C p.Met566Thr). These are the first disease-causing ITGB6 mutations to be reported. Immunohistochemistry of mouse mandibular incisors localized ITGB6 to the distal membrane of differentiating ameloblasts and pre-ameloblasts, and then ITGB6 appeared to be internalized by secretory stage ameloblasts. ITGB6 expression was strongest in the maturation stage and its localization was associated with ameloblast modulation. Our findings demonstrate that early and late amelogenesis depend upon cell-matrix interactions. Our approach (from knockout mouse phenotype to human disease) demonstrates the power of mouse reverse genetics in mutational analysis of human genetic disorders and attests to the need for a careful dental phenotyping in large-scale knockout mouse projects.

  11. Almost commuting self-adjoint matrices: The real and self-dual cases

    Science.gov (United States)

    Loring, Terry A.; Sørensen, Adam P. W.

    2016-08-01

    We show that a pair of almost commuting self-adjoint, symmetric matrices is close to a pair of commuting self-adjoint, symmetric matrices (in a uniform way). Moreover, we prove that the same holds with self-dual in place of symmetric and also for paths of self-adjoint matrices. Since a symmetric, self-adjoint matrix is real, we get a real version of Huaxin Lin’s famous theorem on almost commuting matrices. Similarly, the self-dual case gives a version for matrices over the quaternions. To prove these results, we develop a theory of semiprojectivity for real C*-algebras and also examine various definitions of low-rank for real C*-algebras.

  12. The mutational spectrum in Treacher Collins syndrome reveals a predominance of mutations that create a premature-termination codon

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, S.J.; Gladwin, A.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)

    1997-03-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development, the features of which include conductive hearing loss and cleft palate. The TCS locus has been mapped to human chromosome 5q31.3-32 and the mutated gene identified. In the current investigation, 25 previously undescribed mutations, which are spread throughout the gene, are presented. This brings the total reported to date to 35, which represents a detection rate of 60%. Of the mutations that have been reported to date, all but one result in the introduction of a premature-termination codon into the predicted protein, treacle. Moreover, the mutations are largely family specific, although a common 5-bp deletion in exon 24 (seven different families) and a recurrent splicing mutation in intron 3 (two different families) have been identified. This mutational spectrum supports the hypothesis that TCS results from haploin-sufficiency. 49 refs., 4 figs., 3 tabs.

  13. Magnetic matrices used in high gradient magnetic separation (HGMS: A review

    Directory of Open Access Journals (Sweden)

    Wei Ge

    Full Text Available HGMS is effective in separating or filtering fine and weakly magnetic particles and widely applied in mineral processing, water treatment, cell and protein purification. The magnetic matrix is a crucial device used in magnetic separator to generate high magnetic field gradient and provide surface sites for capturing magnetic particles. The material, geometry, size and arrangement of the matrix elements can significantly affect the gradient and distribution of the magnetic field, and the separating or filtrating performance. In this paper, the researches and developments of magnetic matrices used in HGMS are reviewed. Keywords: Magnetic matrix, HGMS, Review

  14. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    Science.gov (United States)

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Forecasting Covariance Matrices: A Mixed Frequency Approach

    DEFF Research Database (Denmark)

    Halbleib, Roxana; Voev, Valeri

    This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows for flexi......This paper proposes a new method for forecasting covariance matrices of financial returns. The model mixes volatility forecasts from a dynamic model of daily realized volatilities estimated with high-frequency data with correlation forecasts based on daily data. This new approach allows...... for flexible dependence patterns for volatilities and correlations, and can be applied to covariance matrices of large dimensions. The separate modeling of volatility and correlation forecasts considerably reduces the estimation and measurement error implied by the joint estimation and modeling of covariance...

  16. Propositional matrices as alternative representation of truth values ...

    African Journals Online (AJOL)

    The paper considered the subject of representation of truth values in symbolic logic. An alternative representation was given based on the rows and columns properties of matrices, with the operations involving the logical connectives subjected to the laws of algebra of propositions. Matrices of various propositions detailing ...

  17. Disease-Causing Mutations in BEST1 Gene Are Associated with Altered Sorting of Bestrophin-1 Protein

    Science.gov (United States)

    Doumanov, Jordan A.; Zeitz, Christina; Gimenez, Paloma Dominguez; Audo, Isabelle; Krishna, Abhay; Alfano, Giovanna; Diaz, Maria Luz Bellido; Moskova-Doumanova, Veselina; Lancelot, Marie-Elise; Sahel, José-Alain; Nandrot, Emeline F.; Bhattacharya, Shomi S.

    2013-01-01

    Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery. PMID:23880862

  18. EDAR mutation in autosomal dominant hypohidrotic ectodermal dysplasia in two Swedish families

    Directory of Open Access Journals (Sweden)

    Schmitt-Egenolf Marcus

    2006-11-01

    Full Text Available Abstract Background Hypohidrotic ectodermal dysplasia (HED is a genetic disorder characterized by defective development of teeth, hair, nails and eccrine sweat glands. Both autosomal dominant and autosomal recessive forms of HED have previously been linked to mutations in the ectodysplasin 1 anhidrotic receptor (EDAR protein that plays an important role during embryogenesis. Methods The coding DNA sequence of the EDAR gene was analyzed in two large Swedish three-generational families with autosomal dominant HED. Results A non-sense C to T mutation in exon 12 was identified in both families. This disease-specific mutation changes an arginine amino acid in position 358 of the EDAR protein into a stop codon (p.Arg358X, thereby truncating the protein. In addition to the causative mutation two polymorphisms, not associated with the HED disorder, were also found in the EDAR gene. Conclusion The finding of the p.Arg358X mutation in the Swedish families is the first corroboration of a previously described observation in an American family. Thus, our study strengthens the role of this particular mutation in the aetiology of autosomal dominant HED and confirms the importance of EDAR for the development of HED.

  19. Wishart and anti-Wishart random matrices

    International Nuclear Information System (INIS)

    Janik, Romuald A; Nowak, Maciej A

    2003-01-01

    We provide a compact exact representation for the distribution of the matrix elements of the Wishart-type random matrices A † A, for any finite number of rows and columns of A, without any large N approximations. In particular, we treat the case when the Wishart-type random matrix contains redundant, non-random information, which is a new result. This representation is of interest for a procedure for reconstructing the redundant information hidden in Wishart matrices, with potential applications to numerous models based on biological, social and artificial intelligence networks

  20. The second activating glucokinase mutation (A456V)

    DEFF Research Database (Denmark)

    Christesen, Henrik B T; Jacobsen, Bendt B; Odili, Stella

    2002-01-01

    for mutations in candidate genes revealed a heterozygous glucokinase mutation in exon 10, substituting valine for alanine at codon 456 (A456V) in the proband and his mother. The purified recombinant glutathionyl S-transferase fusion protein of the A456V glucokinase revealed a decreased glucose S(0.5) (the...

  1. Information geometry of density matrices and state estimation

    International Nuclear Information System (INIS)

    Brody, Dorje C

    2011-01-01

    Given a pure state vector |x) and a density matrix ρ-hat, the function p(x|ρ-hat)= defines a probability density on the space of pure states parameterised by density matrices. The associated Fisher-Rao information measure is used to define a unitary invariant Riemannian metric on the space of density matrices. An alternative derivation of the metric, based on square-root density matrices and trace norms, is provided. This is applied to the problem of quantum-state estimation. In the simplest case of unitary parameter estimation, new higher-order corrections to the uncertainty relations, applicable to general mixed states, are derived. (fast track communication)

  2. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee [Korea Atomic Energy Research Institute (KAERI), Daejeon (Korea, Republic of). Radioisotope Research Div.

    2016-04-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with {sup 125}I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  3. A new scintillation proximity assay-based approach for the detection of KRAS mutations

    International Nuclear Information System (INIS)

    Lee, So-Young; Lim, Jae-Cheong; Cho, Eun-Ha; Jung, Sung-Hee

    2016-01-01

    KRAS is very commonly mutated resulting in a constitutively activated protein, which is independent of epidermal growth factor receptor (EGFR) ligand binding and resistant to anti-EGFR therapy. Although KRAS is frequently studied, there is still no uniform standard for detecting of KRAS mutations. In this report, a new scintillation proximity assay-based approach is described that determines the relative affinities of wild-type and mutated KRAS to the anti-KRAS antibody. We performed in vitro experiments using normal human colonic cells (CCD18Co), KRAS wild type (Caco-2) and KRAS mutant (HCT 116) cell lines to determine the relative affinities of wild type or mutated KRAS toward an anti-KRAS monoclonal antibody. The process consists of two primary steps: immunoprecipitation from cell lysate to enrich the KRAS protein and the scintillation proximity assay of the immunoprecipitant to determine the relative affinity against the antibody. A fixed concentration of cell lysates was purified by the immunoprecipitation method. The expressions of the KRAS protein in all cell lines was quantitatively confirmed by western blot analysis. For the scintillation proximity assay, the KRAS standard protein was radiolabeled with 125 I by a simple mixing process in the iodogen tube immediately at room temperature immediately before use. The obtained CPM (count per minute) values of were used to calculate the KRAS concentration using purified KRAS as the standard. The calculated relative affinities of 7 μg of Caco-2 and HCT 116 immunoprecipitants for the anti-KRAS antibody were 77 and 0%, respectively. The newly developed scintillation proximity assay-based strategy determines the relative affinities of wild-type or mutated KRAS towards the anti-KRAS monoclonal antibody. This determination can help distinguish mutated KRAS from the wild type protein. The new SPA based approach for detecting KRAS mutations is applicable to many other cancer-related mutations.

  4. A Mild Version of Danon Disease Caused by a Newly Recognized Mutation in the Lysosome-associated Membrane Protein-2 Gene.

    Science.gov (United States)

    Kyaw, Htoo; Shaik, Fatima; Lin, Aung Naing; Shinnar, Meir

    2018-02-04

    We present the case of a patient with dilated cardiomyopathy caused by a novel mutation in the lysosome-associated membrane protein-2 (LAMP-2) gene. Patients with pathogenic mutations of this gene typically suffer from Danon disease - a condition that leads to cognitive decline, severe skeletal myopathy, and severe hypertrophic cardiomyopathy. Our patient's presentation and clinical course, however, is different and much less severe than other patients with this disease. He did not suffer from neurologic and musculoskeletal complications. He is also possibly the longest-known survivor of this disease without a heart transplant. This disease is unfamiliar to many physicians, and our case highlights the importance of an awareness of this disorder, particularly because of its implications for both the patient and his family.

  5. Mutation and polymorphism of the prion protein gene in Libyan Jews with Creutzfeldt-Jakob disease (CJD)

    Energy Technology Data Exchange (ETDEWEB)

    Gabizon, R.; Rosenmann, H.; Meiner, Z.; Kahana, I. (Hadassah Univ., Jerusalem (Israel)); Kahana, E. (Barzilai Medical Center, Ashkelon (Israel)); Shugart, Y.; Ott, J. (Columbia Univ., New York, NY (United States)); Prusiner, S.B. (Univ. of California, San Francisco, CA (United States))

    1993-10-01

    The inherited prion diseases are neurodegenerative disorders which are not only genetic but also transmissible. More than a dozen mutations in the prion protein gene that result in nonconservative amino acid substitutions segregate with the inherited prion diseases including familial Creutzfeldt-Jakob disease (CJD). In Israel, the incidence of CJD is about 1 case/10[sup 4] Libyan Jews. A Lys[sub 200] substitution segregates with CJD and is reported here to be genetically linked to CJD with a lod score of >4.8. Some healthy elderly Lys[sub 200] carriers > age 65 years were identified, suggesting the possibility of incomplete penetrance. In contrast, no linkage was found between the development of familial CJD and a polymorphism encoding either Met[sub 129] or Val[sub 129]. All Libyan Jewish CJD patients with the Lys[sub 200] mutation encode a Met[sub 129] on the mutant allele. Homozygosity for Met[sub 129] did not correlate with age at disease onset or the duration of illness. The frequency of the Met[sub 129] allele was higher in the affected pedigrees than in a control population of Libyan Jews. The frequency of the Met[sub 129] and Val[sub 129] alleles in the control Libyan population was similar to that found in the general Caucasian population. The identification of three Libyan Jews homozygous for the Lys[sub 200] mutation suggests frequent intrafamilial marriages, a custom documented by genealogical investigations. 26 refs., 3 figs., 6 tabs.

  6. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  7. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome.

    Science.gov (United States)

    Khateb, Samer; Zelinger, Lina; Mizrahi-Meissonnier, Liliana; Ayuso, Carmen; Koenekoop, Robert K; Laxer, Uri; Gross, Menachem; Banin, Eyal; Sharon, Dror

    2014-07-01

    Usher syndrome (USH) is a heterogeneous group of inherited retinitis pigmentosa (RP) and sensorineural hearing loss (SNHL) caused by mutations in at least 12 genes. Our aim is to identify additional USH-related genes. Clinical examination included visual acuity test, funduscopy and electroretinography. Genetic analysis included homozygosity mapping and whole exome sequencing (WES). A combination of homozygosity mapping and WES in a large consanguineous family of Iranian Jewish origin revealed nonsense mutations in two ciliary genes: c.3289C>T (p.Q1097*) in C2orf71 and c.3463C>T (p.R1155*) in centrosome-associated protein CEP250 (C-Nap1). The latter has not been associated with any inherited disease and the c.3463C>T mutation was absent in control chromosomes. Patients who were double homozygotes had SNHL accompanied by early-onset and severe RP, while patients who were homozygous for the CEP250 mutation and carried a single mutant C2orf71 allele had SNHL with mild retinal degeneration. No ciliary structural abnormalities in the respiratory system were evident by electron microscopy analysis. CEP250 expression analysis of the mutant allele revealed the generation of a truncated protein lacking the NEK2-phosphorylation region. A homozygous nonsense CEP250 mutation, in combination with a heterozygous C2orf71 nonsense mutation, causes an atypical form of USH, characterised by early-onset SNHL and a relatively mild RP. The severe retinal involvement in the double homozygotes indicates an additive effect caused by nonsense mutations in genes encoding ciliary proteins. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Contribution of TARDBP mutations to sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Daoud, H; Valdmanis, P N; Kabashi, E; Dion, P; Dupré, N; Camu, W; Meininger, V; Rouleau, G A

    2009-02-01

    Mutations in the TARDBP gene, which encodes the TAR DNA binding protein (TDP-43), have been described in individuals with familial and sporadic amyotrophic lateral sclerosis (ALS). We screened the TARDBP gene in 285 French sporadic ALS patients to assess the frequency of TARDBP mutations in ALS. Six individuals had potentially deleterious mutations of which three were novel including a Y374X truncating mutation and P363A and A382P missense mutations. This suggests that TARDBP mutations may predispose to ALS in approximately 2% of the individuals followed in this study. Our findings, combined with those from other collections, brings the total number of mutations in unrelated ALS patients to 17, further suggesting that mutations in the TARDBP gene have an important role in the pathogenesis of ALS.

  9. Mice with a Mutation in the Mdm2 Gene That Interferes with MDM2/Ribosomal Protein Binding Develop a Defect in Erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Takuya Kamio

    Full Text Available MDM2, an E3 ubiquitin ligase, is an important negative regulator of tumor suppressor p53. In turn the Mdm2 gene is a transcriptional target of p53, forming a negative feedback loop that is important in cell cycle control. It has recently become apparent that the ubiquitination of p53 by MDM2 can be inhibited when certain ribosomal proteins, including RPL5 and RPL11, bind to MDM2. This inhibition, and the resulting increase in p53 levels has been proposed to be responsible for the red cell aplasia seen in Diamond-Blackfan anemia (DBA and in 5q- myelodysplastic syndrome (MDS. DBA and 5q- MDS are associated with inherited (DBA or acquired (5q- MDS haploinsufficiency of ribosomal proteins. A mutation in Mdm2 causing a C305F amino acid substitution blocks the binding of ribosomal proteins. Mice harboring this mutation (Mdm2C305F, retain a normal p53 response to DNA damage, but lack the p53 response to perturbations in ribosome biogenesis. While studying the interaction between RP haploinsufficiency and the Mdm2C305F mutation we noticed that Mdm2C305F homozygous mice had altered hematopoiesis. These mice developed a mild macrocytic anemia with reticulocytosis. In the bone marrow (BM, these mice showed a significant decrease in Ter119hi cells compared to wild type (WT littermates, while no decrease in the number of mature erythroid cells (Ter119hiCD71low was found in the spleen, which showed compensated bone marrow hematopoiesis. In methylcellulose cultures, BFU-E colonies from the mutant mice were slightly reduced in number and there was a significant reduction in CFU-E colony numbers in mutant mice compared with WT controls (p < 0.01. This erythropoietic defect was abrogated by concomitant p53 deficiency (Trp53ko/ko. Further investigation revealed that in Mdm2C305F animals, there was a decrease in Lin-Sca-1+c-Kit+ (LSK cells, accompanied by significant decreases in multipotent progenitor (MPP cells (p < 0.01. Competitive BM repopulation experiments

  10. Y682 mutation of amyloid precursor protein promotes endo-lysosomal dysfunction by disrupting APP-SorLA interaction

    Directory of Open Access Journals (Sweden)

    Luca Rosario La Rosa

    2015-04-01

    Full Text Available The intracellular transport and localization of amyloid precursor protein (APP are critical determinants of APP processing and β-amyloid peptide production, thus crucially important for the pathophysiology of Alzheimer’s disease (AD. Notably, the C-terminal Y682ENPTY687 domain of APP binds to specific adaptors controlling APP trafficking and sorting in neurons. Mutation on the Y682 residue to glycine (Y682G leads to altered APP sorting in hippocampal neurons that favors its accumulation in intracellular compartments and the release of soluble APPα. Such alterations induce premature aging and learning and cognitive deficits in APP Y682G mutant mice (APPYG/YG. Here, we report that Y682G mutation affects formation of the APP complex with sortilin-related receptor (SorLA, resulting in endo-lysosomal dysfunctions and neuronal degeneration. Moreover, disruption of the APP/SorLA complex changes the trafficking pathway of SorLA, with its consequent increase in secretion outside neurons. Mutations in the SorLA gene are a prognostic factor in AD, and increases in SorLA levels in cerebrospinal fluid are predictive of AD in humans. These results might open new possibilities in comprehending the role played by SorLA in its interaction with APP and in the progression of neuronal degeneration. In addition, they further underline the crucial role played by Y682 residue in controlling APP trafficking in neurons.

  11. A novel CDKL5 mutation in a Japanese patient with atypical Rett syndrome.

    Science.gov (United States)

    Christianto, Antonius; Katayama, Syouichi; Kameshita, Isamu; Inazu, Tetsuya

    2016-08-01

    Rett syndrome (RTT) is a severe X-linked dominant inheritance disorder with a wide spectrum of clinical manifestations. Mutations in Methyl CpG binding protein 2 (MECP2), Cyclin dependent kinase-like 5 (CDKL5) and Forkhead box G1 (FOXG1) have been associated with classic and/or variant RTT. This study was conducted to identify the responsible gene(s) in atypical RTT patient, and to examine the effect of the mutation on protein function. DNA sequence analysis showed a novel heterozygous mutation in CDKL5 identified as c.530A>G which resulted in an amino acid substitution at position 177, from tyrosine to cysteine. Genotyping analysis indicated that the mutation was not merely a single nucleotide polymorphism (SNP). We also revealed that patient's blood lymphocytes had random X-chromosome inactivation (XCI) pattern. Further examination by bioinformatics analysis demonstrated the mutation caused damage or deleterious in its protein. In addition, we demonstrated in vitro kinase assay of mutant protein showed impairment of its activity. Taken together, the results suggested the mutant CDKL5 was responsible for the disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The effect of charge-introduction mutations on E. coli thioredoxin stability.

    Science.gov (United States)

    Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2005-04-01

    Technological applications of proteins are often hampered by their low-stability and, consequently, the development of procedures for protein stabilization is of considerable biotechnological interest. Here, we use simple electrostatics to determine positions in E. coli thioredoxin at which mutations that introduce new charged residues are expected to lead to stability enhancement. We also obtain the corresponding mutants and characterize their stability using differential scanning calorimetry. The results are interpreted in terms of the accessibility in the native structure of the mutated residues and the potential effect of the mutations on the residual structure of the denatured state.

  13. Protein fold recognition using geometric kernel data fusion.

    Science.gov (United States)

    Zakeri, Pooya; Jeuris, Ben; Vandebril, Raf; Moreau, Yves

    2014-07-01

    Various approaches based on features extracted from protein sequences and often machine learning methods have been used in the prediction of protein folds. Finding an efficient technique for integrating these different protein features has received increasing attention. In particular, kernel methods are an interesting class of techniques for integrating heterogeneous data. Various methods have been proposed to fuse multiple kernels. Most techniques for multiple kernel learning focus on learning a convex linear combination of base kernels. In addition to the limitation of linear combinations, working with such approaches could cause a loss of potentially useful information. We design several techniques to combine kernel matrices by taking more involved, geometry inspired means of these matrices instead of convex linear combinations. We consider various sequence-based protein features including information extracted directly from position-specific scoring matrices and local sequence alignment. We evaluate our methods for classification on the SCOP PDB-40D benchmark dataset for protein fold recognition. The best overall accuracy on the protein fold recognition test set obtained by our methods is ∼ 86.7%. This is an improvement over the results of the best existing approach. Moreover, our computational model has been developed by incorporating the functional domain composition of proteins through a hybridization model. It is observed that by using our proposed hybridization model, the protein fold recognition accuracy is further improved to 89.30%. Furthermore, we investigate the performance of our approach on the protein remote homology detection problem by fusing multiple string kernels. The MATLAB code used for our proposed geometric kernel fusion frameworks are publicly available at http://people.cs.kuleuven.be/∼raf.vandebril/homepage/software/geomean.php?menu=5/. © The Author 2014. Published by Oxford University Press.

  14. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  15. TARDBP and FUS mutations associated with amyotrophic lateral sclerosis: summary and update.

    Science.gov (United States)

    Lattante, Serena; Rouleau, Guy A; Kabashi, Edor

    2013-06-01

    Mutations in the TAR DNA Binding Protein gene (TARDBP), encoding the protein TDP-43, were identified in amyotrophic lateral sclerosis (ALS) patients. Interestingly, TDP-43 positive inclusion bodies were first discovered in ubiquitin-positive, tau-negative ALS and frontotemporal dementia (FTD) inclusion bodies, and subsequently observed in the majority of neurodegenerative disorders. To date, 47 missense and one truncating mutations have been described in a large number of familial (FALS) and sporadic (SALS) patients. Fused in sarcoma (FUS) was found to be responsible for a previously identified ALS6 locus, being mutated in both FALS and SALS patients. TARDBP and FUS have a structural and functional similarity and most of mutations in both genes are also clustered in the C-terminus of the proteins. The molecular mechanisms through which mutant TDP-43 and FUS may cause motor neuron degeneration are not well understood. Both proteins play an important role in mRNA transport, axonal maintenance, and motor neuron development. Functional characterization of these mutations in in vitro and in vivo systems is helping to better understand how motor neuron degeneration occurs. This report summarizes the biological and clinical relevance of TARDBP and FUS mutations in ALS. All the data reviewed here have been submitted to a database based on the Leiden Open (source) Variation Database (LOVD) and is accessible online at www.lovd.nl/TARDBP, www.lovd.nl/FUS. © 2013 Wiley Periodicals, Inc.

  16. Meet and Join Matrices in the Poset of Exponential Divisors

    Indian Academy of Sciences (India)

    ... exponential divisor ( G C E D ) and the least common exponential multiple ( L C E M ) do not always exist. In this paper we embed this poset in a lattice. As an application we study the G C E D and L C E M matrices, analogues of G C D and L C M matrices, which are both special cases of meet and join matrices on lattices.

  17. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  18. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect

    International Nuclear Information System (INIS)

    Wang Hu; Wang Jizheng; Zheng Weiyue; Wang Xiaojian; Wang Shuxia; Song Lei; Zou Yubao; Yao Yan; Hui Rutai

    2006-01-01

    Dilated cardiomyopathy is a form of heart muscle disease characterized by impaired systolic function and ventricular dilation. The mutations in lamin A/C gene have been linked to dilated cardiomyopathy. We screened genetic mutations in a large Chinese family of 50 members including members with dilated cardiomyopathy and found a Glu82Lys substitution mutation in the rod domain of the lamin A/C protein in eight family members, three of them have been diagnosed as dilated cardiomyopathy, one presented with heart dilation. The pathogenic mechanism of lamin A/C gene defect is poorly understood. Glu82Lys mutated lamin A/C and wild type protein was transfected into HEK293 cells. The mutated protein was not properly localized at the inner nuclear membrane and the emerin protein, which interacts with lamin A/C, was also aberrantly distributed. The nuclear membrane structure was disrupted and heterochromatin was aggregated aberrantly in the nucleus of the HEK293 cells stably transfected with mutated lamin A/C gene as determined by transmission electron microscopy

  19. A mutation in the β-myosin rod associated with hypertrophic cardiomyopathy has an unexpected molecular phenotype

    International Nuclear Information System (INIS)

    Armel, Thomas Z.; Leinwand, Leslie A.

    2010-01-01

    Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding β-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the β-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the β-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.

  20. A mutation in the {beta}-myosin rod associated with hypertrophic cardiomyopathy has an unexpected molecular phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Armel, Thomas Z. [Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309 (United States); Leinwand, Leslie A., E-mail: leslie.leinwand@colorado.edu [Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309 (United States)

    2010-01-01

    Hypertrophic cardiomyopathy (HCM) is a common, autosomal dominant disorder primarily characterized by left ventricular hypertrophy and is the leading cause of sudden cardiac death in youth. HCM is caused by mutations in several sarcomeric proteins, with mutations in MYH7, encoding {beta}-MyHC, being the most common. While many mutations in the globular head region of the protein have been reported and studied, analysis of HCM-causing mutations in the {beta}-MyHC rod domain has not yet been reported. To address this question, we performed an array of biochemical and biophysical assays to determine how the HCM-causing E1356K mutation affects the structure, stability, and function of the {beta}-MyHC rod. Surprisingly, the E1356K mutation appears to thermodynamically destabilize the protein, rather than alter the charge profile know to be essential for muscle filament assembly. This thermodynamic instability appears to be responsible for the decreased ability of the protein to form filaments and may be responsible for the HCM phenotype seen in patients.

  1. Challenging a dogma: co-mutations exist in MAPK pathway genes in colorectal cancer.

    Science.gov (United States)

    Grellety, Thomas; Gros, Audrey; Pedeutour, Florence; Merlio, Jean-Philippe; Duranton-Tanneur, Valerie; Italiano, Antoine; Soubeyran, Isabelle

    2016-10-01

    Sequencing of genes encoding mitogen-activated protein kinase (MAPK) pathway proteins in colorectal cancer (CRC) has established as dogma that of the genes in a pathway only a single one is ever mutated. We searched for cases with a mutation in more than one MAPK pathway gene (co-mutations). Tumor tissue samples of all patients presenting with CRC, and referred between 01/01/2008 and 01/06/2015 to three French cancer centers for determination of mutation status of RAS/RAF+/-PIK3CA, were retrospectively screened for co-mutations using Sanger sequencing or next-generation sequencing. We found that of 1791 colorectal patients with mutations in the MAPK pathway, 20 had a co-mutation, 8 of KRAS/NRAS, and some even with a third mutation. More than half of the mutations were in codons 12 and 13. We also found 3 cases with a co-mutation of NRAS/BRAF and 9 with a co-mutation of KRAS/BRAF. In 2 patients with a co-mutation of KRAS/NRAS, the co-mutation existed in the primary as well as in a metastasis, which suggests that co-mutations occur early during carcinogenesis and are maintained when a tumor disseminates. We conclude that co-mutations exist in the MAPK genes but with low frequency and as yet with unknown outcome implications.

  2. PYCR2 Mutations cause a lethal syndrome of microcephaly and failure to thrive.

    Science.gov (United States)

    Zaki, Maha S; Bhat, Gifty; Sultan, Tipu; Issa, Mahmoud; Jung, Hea-Jin; Dikoglu, Esra; Selim, Laila; G Mahmoud, Imam; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada; Marin-Valencia, Isaac; Gleeson, Joseph G

    2016-07-01

    A study was undertaken to characterize the clinical features of the newly described hypomyelinating leukodystrophy type 10 with microcephaly. This is an autosomal recessive disorder mapped to chromosome 1q42.12 due to mutations in the PYCR2 gene, encoding an enzyme involved in proline synthesis in mitochondria. From several international clinics, 11 consanguineous families were identified with PYCR2 mutations by whole exome or targeted sequencing, with detailed clinical and radiological phenotyping. Selective mutations from patients were tested for effect on protein function. The characteristic clinical presentation of patients with PYCR2 mutations included failure to thrive, microcephaly, craniofacial dysmorphism, progressive psychomotor disability, hyperkinetic movements, and axial hypotonia with variable appendicular spasticity. Patients did not survive beyond the first decade of life. Brain magnetic resonance imaging showed global brain atrophy and white matter T2 hyperintensities. Routine serum metabolic profiles were unremarkable. Both nonsense and missense mutations were identified, which impaired protein multimerization. PYCR2-related syndrome represents a clinically recognizable condition in which PYCR2 mutations lead to protein dysfunction, not detectable on routine biochemical assessments. Mutations predict a poor outcome, probably as a result of impaired mitochondrial function. Ann Neurol 2016;80:59-70. © 2016 American Neurological Association.

  3. Glucose-6-Phosphate Dehydrogenase: Update and Analysis of New Mutations around the World

    Science.gov (United States)

    Gómez-Manzo, Saúl; Marcial-Quino, Jaime; Vanoye-Carlo, America; Serrano-Posada, Hugo; Ortega-Cuellar, Daniel; González-Valdez, Abigail; Castillo-Rodríguez, Rosa Angélica; Hernández-Ochoa, Beatriz; Sierra-Palacios, Edgar; Rodríguez-Bustamante, Eduardo; Arreguin-Espinosa, Roberto

    2016-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) is a key regulatory enzyme in the pentose phosphate pathway which produces nicotinamide adenine dinucleotide phosphate (NADPH) to maintain an adequate reducing environment in the cells and is especially important in red blood cells (RBC). Given its central role in the regulation of redox state, it is understandable that mutations in the gene encoding G6PD can cause deficiency of the protein activity leading to clinical manifestations such as neonatal jaundice and acute hemolytic anemia. Recently, an extensive review has been published about variants in the g6pd gene; recognizing 186 mutations. In this work, we review the state of the art in G6PD deficiency, describing 217 mutations in the g6pd gene; we also compile information about 31 new mutations, 16 that were not recognized and 15 more that have recently been reported. In order to get a better picture of the effects of new described mutations in g6pd gene, we locate the point mutations in the solved three-dimensional structure of the human G6PD protein. We found that class I mutations have the most deleterious effects on the structure and stability of the protein. PMID:27941691

  4. CodonShuffle: a tool for generating and analyzing synonymously mutated sequences

    OpenAIRE

    Jorge, Daniel Macedo de Melo; Mills, Ryan E.; Lauring, Adam S.

    2015-01-01

    Because synonymous mutations do not change the amino acid sequence of a protein, they are generally considered to be selectively neutral. Empiric data suggest, however, that a significant fraction of viral mutational fitness effects may be attributable to synonymous mutation. Bias in synonymous codon usage in viruses may result from selection for translational efficiency, mutational bias, base pairing requirements in RNA structures, or even selection against specific dinucleotides by innate i...

  5. Novel FANCI mutations in Fanconi anemia with VACTERL association.

    Science.gov (United States)

    Savage, Sharon A; Ballew, Bari J; Giri, Neelam; Chandrasekharappa, Settara C; Ameziane, Najim; de Winter, Johan; Alter, Blanche P

    2016-02-01

    Fanconi anemia (FA) is an inherited bone marrow failure syndrome caused by mutations in DNA repair genes; some of these patients may have features of the VACTERL association. Autosomal recessive mutations in FANCI are a rare cause of FA. We identified FANCI mutations by next generation sequencing in three patients in our FA cohort among several whose mutated gene was unknown. Four of the six mutations are novel and all mutations are likely deleterious to protein function. There are now 16 reported cases of FA due to FANCI of whom 7 have at least 3 features of the VACTERL association (44%). This suggests that the VACTERL association in patients with FA may be seen in patients with FANCI mutations more often than previously recognized. © 2015 Wiley Periodicals, Inc.

  6. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism.

    Science.gov (United States)

    Tang, Qingling; Fenton, Aron W

    2017-09-01

    Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms. © 2017 Wiley Periodicals, Inc.

  7. Epilepsy caused by CDKL5 mutations.

    Science.gov (United States)

    Castrén, Maija; Gaily, Eija; Tengström, Carola; Lähdetie, Jaana; Archer, Hayley; Ala-Mello, Sirpa

    2011-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been identified in female patients with early onset epileptic encephalopathy and severe mental retardation with a Rett-like phenotype. Subsequently CDKL5 mutations were shown to be associated with more diverse phenotypes including mild epilepsy and autism without epilepsy. Furthermore, CDKL5 mutations were found in patients with Angelman-like phenotype. The severity of epilepsy associated with CDKL5 mutations was recently shown to correlate with the type of CDKL5 mutations and epilepsy was identified to involve three distinct sequential stages. Here, we describe the phenotype of a severe form of neurodevelopmental disease in a female patient with a de novo nonsense mutation of the CDKL5 gene c.175C > T (p.R59X) affecting the catalytic domain of CDKL5 protein. Mutations in the CDKL5 gene are less common in males and can be associated with a genomic deletion as found in our male patient with a deletion of 0.3 Mb at Xp22.13 including the CDKL5 gene. We review phenotypes associated with CDKL5 mutations and examine putative relationships between the clinical epilepsy phenotype and the type of the mutation in the CDKL5 gene. © 2010 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  8. Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

    Science.gov (United States)

    2014-01-01

    Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (Ptriglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.) PMID:24941081

  9. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  10. Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site

    Science.gov (United States)

    Liang, Chen; Rong, Liwei; Quan, Yudong; Laughrea, Michael; Kleiman, Lawrence; Wainberg, Mark A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only

  11. Joint Estimation of Multiple Precision Matrices with Common Structures.

    Science.gov (United States)

    Lee, Wonyul; Liu, Yufeng

    Estimation of inverse covariance matrices, known as precision matrices, is important in various areas of statistical analysis. In this article, we consider estimation of multiple precision matrices sharing some common structures. In this setting, estimating each precision matrix separately can be suboptimal as it ignores potential common structures. This article proposes a new approach to parameterize each precision matrix as a sum of common and unique components and estimate multiple precision matrices in a constrained l 1 minimization framework. We establish both estimation and selection consistency of the proposed estimator in the high dimensional setting. The proposed estimator achieves a faster convergence rate for the common structure in certain cases. Our numerical examples demonstrate that our new estimator can perform better than several existing methods in terms of the entropy loss and Frobenius loss. An application to a glioblastoma cancer data set reveals some interesting gene networks across multiple cancer subtypes.

  12. [Epigenome: what we learned from Rett syndrome, a neurological disease caused by mutation of a methyl-CpG binding protein].

    Science.gov (United States)

    Kubota, Takeo

    2013-01-01

    Epigenome is defined as DNA and histone modification-dependent gene regulation system. Abnormalities in this system are known to cause various neuro-developmental diseases. We recently reported that neurological symptoms of Rett syndrome, which is an autistic disorder caused by mutations in methyl-CpG binding protein 2 (MeCP2), was associated with failure of epigenomic gene regulation in neuronal cells, and that clinical differences in the identical twins with Rett syndrome in the differences in DNA methylation in neuronal genes, but not caused by DNA sequence differences. Since central nervus system requires precise gene regulation, neurological diseases including Alzheimer and Parkinson diseases may be caused by acquired DNA modification (epigenomic) changes that results in aberrant gene regulation as well as DNA sequence changes congenitally occurred (mutation).

  13. Latex allergy and filaggrin null mutations

    DEFF Research Database (Denmark)

    Carlsen, Berit C; Meldgaard, Michael; Hamann, Dathan

    2011-01-01

    to aeroallergens and it is possible that filaggrin null mutations also increase the risk of latex allergy. The aim of this paper was to examine the association between filaggrin null mutations and type I latex allergy. Methods Twenty latex allergic and 24 non-latex allergic dentists and dental assistants...... in the cases in this study may not have occurred through direct skin contact but through the respiratory organs via latex proteins that are absorbed in glove powder and aerosolized...

  14. Different visible colors and green fluorescence were obtained from the mutated purple chromoprotein isolated from sea anemone.

    Science.gov (United States)

    Chiang, Cheng-Yi; Chen, Yi-Lin; Tsai, Huai-Jen

    2014-08-01

    Green fluorescent protein (GFP)-like proteins have been studied with the aim of developing fluorescent proteins. Since the property of color variation is understudied, we isolated a novel GFP-like chromoprotein from the carpet anemone Stichodactyla haddoni, termed shCP. Its maximum absorption wavelength peak (λ(max)) is located at 574 nm, resulting in a purple color. The shCP protein consists of 227 amino acids (aa), sharing 96 % identity with the GFP-like chromoprotein of Heteractis crispa. We mutated aa residues to examine any alteration in color. When E63, the first aa of the chromophore, was replaced by serine (E63S), the λ(max) of the mutated protein shCP-E63S was shifted to 560 nm and exhibited a pink color. When Q39, T194, and I196, which reside in the surrounding 5 Å of the chromophore's microenvironment, were mutated, we found that (1) the λ(max) of the mutated protein shCP-Q39S was shifted to 518 nm and exhibited a red color, (2) shCP-T194I exhibited a purple-blue color, and (3) an additional mutation at I196H of the mutated protein shCP-E63L exhibited green fluorescence. In contrast, when the aa located neither at the chromophore nor within its microenvironment were mutated, the resultant proteins shCP-L122H, -E138G, -S137D, -T95I, -D129N, -T194V, -E138Q, -G75E, -I183V, and -I70V never altered their purple color, suggesting that mutations at the shCP chromophore and the surrounding 5 Å microenvironment mostly control changes in color expression or cause fluorescence to develop. Additionally, we found that the cDNAs of shCP and its mutated varieties are faithfully and stably expressed both in Escherichia coli and zebrafish embryos.

  15. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Lalime, Erin N.; Pekosz, Andrew, E-mail: apekosz@jhsph.edu

    2014-06-15

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function.

  16. The R35 residue of the influenza A virus NS1 protein has minimal effects on nuclear localization but alters virus replication through disrupting protein dimerization

    International Nuclear Information System (INIS)

    Lalime, Erin N.; Pekosz, Andrew

    2014-01-01

    The influenza A virus NS1 protein has a nuclear localization sequence (NLS) in the amino terminal region. This NLS overlaps sequences that are important for RNA binding as well as protein dimerization. To assess the significance of the NS1 NLS on influenza virus replication, the NLS amino acids were individually mutated to alanines and recombinant viruses encoding these mutations were rescued. Viruses containing NS1 proteins with mutations at R37, R38 and K41 displayed minimal changes in replication or NS1 protein nuclear localization. Recombinant viruses encoding NS1 R35A were not recovered but viruses containing second site mutations at position D39 in addition to the R35A mutation were isolated. The mutations at position 39 were shown to partially restore NS1 protein dimerization but had minimal effects on nuclear localization. These data indicate that the amino acids in the NS1 NLS region play a more important role in protein dimerization compared to nuclear localization. - Highlights: • Mutations were introduced into influenza NS1 NLS1. • NS1 R37A, R38A, K41A viruses had minimal changes in replication and NS1 localization. • Viruses from NS1 R35A rescue all contained additional mutations at D39. • NS1 R35A D39X mutations recover dimerization lost in NS1 R35A mutations. • These results reaffirm the importance of dimerization for NS1 protein function

  17. C2 Domains as Protein-Protein Interaction Modules in the Ciliary Transition Zone

    Directory of Open Access Journals (Sweden)

    Kim Remans

    2014-07-01

    Full Text Available RPGR-interacting protein 1 (RPGRIP1 is mutated in the eye disease Leber congenital amaurosis (LCA and its structural homolog, RPGRIP1-like (RPGRIP1L, is mutated in many different ciliopathies. Both are multidomain proteins that are predicted to interact with retinitis pigmentosa G-protein regulator (RPGR. RPGR is mutated in X-linked retinitis pigmentosa and is located in photoreceptors and primary cilia. We solved the crystal structure of the complex between the RPGR-interacting domain (RID of RPGRIP1 and RPGR and demonstrate that RPGRIP1L binds to RPGR similarly. RPGRIP1 binding to RPGR affects the interaction with PDEδ, the cargo shuttling factor for prenylated ciliary proteins. RPGRIP1-RID is a C2 domain with a canonical β sandwich structure that does not bind Ca2+ and/or phospholipids and thus constitutes a unique type of protein-protein interaction module. Judging from the large number of C2 domains in most of the ciliary transition zone proteins identified thus far, the structure presented here seems to constitute a cilia-specific module that is present in multiprotein transition zone complexes.

  18. Phenotypic Variability in a Family with Acrodysostosis Type 2 Caused by a Novel PDE4D Mutation Affecting the Serine Target of Protein Kinase-A Phosphorylation

    Science.gov (United States)

    Hoppmann, Julia; Gesing, Julia; Silve, Caroline; Leroy, Chrystel; Bertsche, Astrid; Hirsch, Franz Wolfgang; Kiess, Wieland; Pfäffle, Roland; Schuster, Volker

    2017-01-01

    Acrodysostosis is a very rare congenital multisystem condition characterized by skeletal dysplasia with severe brachydactyly, midfacial hypoplasia, and short stature, varying degrees of intellectual disability, and possible resistance to multiple G protein-coupled receptor signalling hormones. Two distinct subtypes are differentiated: acrodysostosis type 1 resulting from defects in protein kinase type 1-α regulatory subunit and acrodysostosis type 2 caused by mutations in phosphodiesterase 4D (PDE4D). Most cases are sporadic. We report on a rare multigenerational familial case of acrodysostosis type 2 due to a novel autosomal dominantly inherited PDE4D mutation. A 3.5-year-old boy presented with short stature, midfacial hypoplasia, severe brachydactyly, developmental delay, and behavioural problems. Laboratory investigations revealed mild thyrotropin resistance. His mother shared some characteristic features, such as midfacial hypoplasia and severe brachydactyly, but did not show short stature, intellectual disability or hormonal resistance. Genetic analysis identified the identical, novel heterozygous missense mutation of the PDE4D gene c.569C>T (p.Ser190Phe) in both patients. This case illustrates the significant phenotypic variability of acrodysostosis even within one family with identical mutations. Hence, a specific clinical diagnosis of acrodysostosis remains challenging because of great interindividual variability and a substantial overlap of the two subtypes as well as with other related Gsα-cAMP-signalling-linked disorders. PMID:28515031

  19. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    Science.gov (United States)

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  20. Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis.

    Science.gov (United States)

    Johnson, Janel O; Pioro, Erik P; Boehringer, Ashley; Chia, Ruth; Feit, Howard; Renton, Alan E; Pliner, Hannah A; Abramzon, Yevgeniya; Marangi, Giuseppe; Winborn, Brett J; Gibbs, J Raphael; Nalls, Michael A; Morgan, Sarah; Shoai, Maryam; Hardy, John; Pittman, Alan; Orrell, Richard W; Malaspina, Andrea; Sidle, Katie C; Fratta, Pietro; Harms, Matthew B; Baloh, Robert H; Pestronk, Alan; Weihl, Conrad C; Rogaeva, Ekaterina; Zinman, Lorne; Drory, Vivian E; Borghero, Giuseppe; Mora, Gabriele; Calvo, Andrea; Rothstein, Jeffrey D; Drepper, Carsten; Sendtner, Michael; Singleton, Andrew B; Taylor, J Paul; Cookson, Mark R; Restagno, Gabriella; Sabatelli, Mario; Bowser, Robert; Chiò, Adriano; Traynor, Bryan J

    2014-05-01

    MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.

  1. Mutations in Membrin/GOSR2 Reveal Stringent Secretory Pathway Demands of Dendritic Growth and Synaptic Integrity

    Directory of Open Access Journals (Sweden)

    Roman Praschberger

    2017-10-01

    Full Text Available Mutations in the Golgi SNARE (SNAP [soluble NSF attachment protein] receptor protein Membrin (encoded by the GOSR2 gene cause progressive myoclonus epilepsy (PME. Membrin is a ubiquitous and essential protein mediating ER-to-Golgi membrane fusion. Thus, it is unclear how mutations in Membrin result in a disorder restricted to the nervous system. Here, we use a multi-layered strategy to elucidate the consequences of Membrin mutations from protein to neuron. We show that the pathogenic mutations cause partial reductions in SNARE-mediated membrane fusion. Importantly, these alterations were sufficient to profoundly impair dendritic growth in Drosophila models of GOSR2-PME. Furthermore, we show that Membrin mutations cause fragmentation of the presynaptic cytoskeleton coupled with transsynaptic instability and hyperactive neurotransmission. Our study highlights how dendritic growth is vulnerable even to subtle secretory pathway deficits, uncovers a role for Membrin in synaptic function, and provides a comprehensive explanatory basis for genotype-phenotype relationships in GOSR2-PME.

  2. Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices

    Science.gov (United States)

    Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.

    2017-11-01

    Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.

  3. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    Directory of Open Access Journals (Sweden)

    Udhaya H Kotecha

    2014-01-01

    Full Text Available Background & objectives: Multiple suphphatase deficiency (MSD is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1. We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E substitution in exon 3 and a single base insertion mutation (c.690_691 InsT in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein.

  4. Detection of genetic mutations associated with macrolide resistance of Mycoplasma pneumoniae

    Directory of Open Access Journals (Sweden)

    Chi Eun Oh

    2010-02-01

    Full Text Available Purpose : The aim of this study was to identify mutations associated with macrolide resistance in Mycoplasma pneumoniae (MP and to establish a cultural method to determine antimicrobial susceptibility. Methods : Nasopharyngeal aspirates (NPAs were collected from 62 children diagnosed with MP pneumonia by a serologic method or polymerase chain reaction. The 23S rRNA and L4 ribosomal protein genes of MP were amplified and sequenced. To identify mutations in these 2 genes, their nucleotide sequences were compared to those of the reference strain M129. MP cultivation was carried out for 32 (28 frozen and 5 refrigerated NPAs and M129 strain using Chanock’s glucose broth and agar plate in a 5% CO2 incubator at 37?#608;and examined at 2-3 day intervals for 6 weeks. Results : Among the 62 specimens, 17 had M144V mutations in ribosomal protein L4. The A2064G mutation was observed in 1 specimen; its 23S rRNA gene was successfully sequenced. Culture for MP was successful from the M129 strain and 2 of the 5 NPAs that were refrigerated for no longer than 3 days. However, MP did not grow from the 28 NPAs that were kept frozen at -80?#608;since 2003. Conclusion : We found the M144V mutation of L4 protein to be common and that of domain V of 23S rRNA gene was relatively rare among MP. Studies on the prevalence of macrolide-resistant MP and the relationship between the mutations of 23S rRNA gene and ribosomal protein L4 will aid in understanding the mechanism of macrolide resistance in MP.

  5. On the norms of r-circulant matrices with generalized Fibonacci numbers

    Directory of Open Access Journals (Sweden)

    Amara Chandoul

    2017-01-01

    Full Text Available In this paper, we obtain a generalization of [6, 8]. Firstly, we consider the so-called r-circulant matrices with generalized Fibonacci numbers and then found lower and upper bounds for the Euclidean and spectral norms of these matrices. Afterwards, we present some bounds for the spectral norms of Hadamard and Kronecker product of these matrices.

  6. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  7. Simulating evolution of protein complexes through gene duplication and co-option.

    Science.gov (United States)

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Oxidative Stress in Dilated Cardiomyopathy Caused by MYBPC3 Mutation

    Directory of Open Access Journals (Sweden)

    Thomas L. Lynch

    2015-01-01

    Full Text Available Cardiomyopathies can result from mutations in genes encoding sarcomere proteins including MYBPC3, which encodes cardiac myosin binding protein-C (cMyBP-C. However, whether oxidative stress is augmented due to contractile dysfunction and cardiomyocyte damage in MYBPC3-mutated cardiomyopathies has not been elucidated. To determine whether oxidative stress markers were elevated in MYBPC3-mutated cardiomyopathies, a previously characterized 3-month-old mouse model of dilated cardiomyopathy (DCM expressing a homozygous MYBPC3 mutation (cMyBP-C(t/t was used, compared to wild-type (WT mice. Echocardiography confirmed decreased percentage of fractional shortening in DCM versus WT hearts. Histopathological analysis indicated a significant increase in myocardial disarray and fibrosis while the second harmonic generation imaging revealed disorganized sarcomeric structure and myocyte damage in DCM hearts when compared to WT hearts. Intriguingly, DCM mouse heart homogenates had decreased glutathione (GSH/GSSG ratio and increased protein carbonyl and lipid malondialdehyde content compared to WT heart homogenates, consistent with elevated oxidative stress. Importantly, a similar result was observed in human cardiomyopathy heart homogenate samples. These results were further supported by reduced signals for mitochondrial semiquinone radicals and Fe-S clusters in DCM mouse hearts measured using electron paramagnetic resonance spectroscopy. In conclusion, we demonstrate elevated oxidative stress in MYPBC3-mutated DCM mice, which may exacerbate the development of heart failure.

  9. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  10. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    Science.gov (United States)

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion. © 2010 Blackwell Publishing Ltd.

  11. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    International Nuclear Information System (INIS)

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S.

    2015-01-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain

  12. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    Directory of Open Access Journals (Sweden)

    B. Aquino

    2015-08-01

    Full Text Available NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  13. Effect of point mutations on Herbaspirillum seropedicae NifA activity.

    Science.gov (United States)

    Aquino, B; Stefanello, A A; Oliveira, M A S; Pedrosa, F O; Souza, E M; Monteiro, R A; Chubatsu, L S

    2015-08-01

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  14. Effect of point mutations on Herbaspirillum seropedicae NifA activity

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, B.; Stefanello, A.A.; Oliveira, M.A.S.; Pedrosa, F.O.; Souza, E.M.; Monteiro, R.A.; Chubatsu, L.S. [Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR (Brazil)

    2015-07-10

    NifA is the transcriptional activator of the nif genes in Proteobacteria. It is usually regulated by nitrogen and oxygen, allowing biological nitrogen fixation to occur under appropriate conditions. NifA proteins have a typical three-domain structure, including a regulatory N-terminal GAF domain, which is involved in control by fixed nitrogen and not strictly required for activity, a catalytic AAA+ central domain, which catalyzes open complex formation, and a C-terminal domain involved in DNA-binding. In Herbaspirillum seropedicae, a β-proteobacterium capable of colonizing Graminae of agricultural importance, NifA regulation by ammonium involves its N-terminal GAF domain and the signal transduction protein GlnK. When the GAF domain is removed, the protein can still activate nif genes transcription; however, ammonium regulation is lost. In this work, we generated eight constructs resulting in point mutations in H. seropedicae NifA and analyzed their effect on nifH transcription in Escherichia coli and H. seropedicae. Mutations K22V, T160E, M161V, L172R, and A215D resulted in inactive proteins. Mutations Q216I and S220I produced partially active proteins with activity control similar to wild-type NifA. However, mutation G25E, located in the GAF domain, resulted in an active protein that did not require GlnK for activity and was partially sensitive to ammonium. This suggested that G25E may affect the negative interaction between the N-terminal GAF domain and the catalytic central domain under high ammonium concentrations, thus rendering the protein constitutively active, or that G25E could lead to a conformational change comparable with that when GlnK interacts with the GAF domain.

  15. The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Tayebeh Hamzehloie

    2012-03-01

    Full Text Available The gene TP53 (also known as protein 53 or tumor protein 53, encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. The main function of P53 is to organize cell defense against cancerous transformation. P53 is a potent transcription factor that is activated in response to diverse stresses, leading to the induction of cell cycle arrest, apoptosis or senescence. The P53 tumor suppressor is negatively regulated in cells by the murine double minute 2 (MDM2 protein. Murine double minute 2 favors its nuclear export, and stimulates its degradation. Inhibitors of the P53-MDM2 interaction might be attractive new anticancer agents that could be used to activate wild-type P53 in tumors. Down regulation of MDM2 using an small interfering RNA (siRNA approach has recently provided evidence for a new role of MDM2 in the P53 response, by modulating the inhibition of the cyclin dependent kinase 2 (cdk2 by P21/WAF1 (also known as cyclin-dependent kinase inhibitor 1 or CDK-interacting protein 1.

  16. Complete-proteome mapping of human influenza A adaptive mutations: implications for human transmissibility of zoonotic strains.

    Science.gov (United States)

    Miotto, Olivo; Heiny, A T; Albrecht, Randy; García-Sastre, Adolfo; Tan, Tin Wee; August, J Thomas; Brusic, Vladimir

    2010-02-03

    There is widespread concern that H5N1 avian influenza A viruses will emerge as a pandemic threat, if they become capable of human-to-human (H2H) transmission. Avian strains lack this capability, which suggests that it requires important adaptive mutations. We performed a large-scale comparative analysis of proteins from avian and human strains, to produce a catalogue of mutations associated with H2H transmissibility, and to detect their presence in avian isolates. We constructed a dataset of influenza A protein sequences from 92,343 public database records. Human and avian sequence subsets were compared, using a method based on mutual information, to identify characteristic sites where human isolates present conserved mutations. The resulting catalogue comprises 68 characteristic sites in eight internal proteins. Subtype variability prevented the identification of adaptive mutations in the hemagglutinin and neuraminidase proteins. The high number of sites in the ribonucleoprotein complex suggests interdependence between mutations in multiple proteins. Characteristic sites are often clustered within known functional regions, suggesting their functional roles in cellular processes. By isolating and concatenating characteristic site residues, we defined adaptation signatures, which summarize the adaptive potential of specific isolates. Most adaptive mutations emerged within three decades after the 1918 pandemic, and have remained remarkably stable thereafter. Two lineages with stable internal protein constellations have circulated among humans without reassorting. On the contrary, H5N1 avian and swine viruses reassort frequently, causing both gains and losses of adaptive mutations. Human host adaptation appears to be complex and systemic, involving nearly all influenza proteins. Adaptation signatures suggest that the ability of H5N1 strains to infect humans is related to the presence of an unusually high number of adaptive mutations. However, these mutations appear

  17. Dia-Interacting Protein (DIP) Imposes Migratory Plasticity in mDia2-Dependent Tumor Cells in Three-Dimensional Matrices

    Science.gov (United States)

    Wyse, Meghan M.; Lei, Jun; Nestor-Kalinoski, Andrea L.; Eisenmann, Kathryn M.

    2012-01-01

    Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s) driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells. PMID:23024796

  18. Dia-interacting protein (DIP imposes migratory plasticity in mDia2-dependent tumor cells in three-dimensional matrices.

    Directory of Open Access Journals (Sweden)

    Meghan M Wyse

    Full Text Available Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells.

  19. Hypersymmetric functions and Pochhammers of 2×2 nonautonomous matrices

    Directory of Open Access Journals (Sweden)

    A. F. Antippa

    2004-01-01

    Full Text Available We introduce the hypersymmetric functions of 2×2 nonautonomous matrices and show that they are related, by simple expressions, to the Pochhammers (factorial polynomials of these matrices. The hypersymmetric functions are generalizations of the associated elementary symmetric functions, and for a specific class of 2×2 matrices, having a high degree of symmetry, they reduce to these latter functions. This class of matrices includes rotations, Lorentz boosts, and discrete time generators for the harmonic oscillators. The hypersymmetric functions are defined over four sets of independent indeterminates using a triplet of interrelated binary partitions. We work out the algebra of this triplet of partitions and then make use of the results in order to simplify the expressions for the hypersymmetric functions for a special class of matrices. In addition to their obvious applications in matrix theory, in coupled difference equations, and in the theory of symmetric functions, the results obtained here also have useful applications in problems involving successive rotations, successive Lorentz transformations, discrete harmonic oscillators, and linear two-state systems.

  20. Maillard-reaction-induced modification and aggregation of proteins and hardening of texture in protein bar model systems.

    Science.gov (United States)

    Zhou, Peng; Guo, Mufan; Liu, Dasong; Liu, Xiaoming; Labuza, Teodore P

    2013-03-01

    The hardening of high-protein bars causes problems in their acceptability to consumers. The objective of this study was to determine the progress of the Maillard reaction in model systems of high-protein nutritional bars containing reducing sugars, and to illustrate the influences of the Maillard reaction on the modification and aggregation of proteins and the hardening of bar matrices during storage. The progress of the Maillard reaction, glycation, and aggregation of proteins, and textural changes in bar matrices were investigated during storage at 25, 35, and 45 °C. The initial development of the Maillard reaction caused little changes in hardness; however, further storage resulted in dramatic modification of protein with formation of high-molecular-weight polymers, resulting in the hardening in texture. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula minimized the changes in texture. The hardening of high-protein bars causes problems in their acceptability to consumers. Maillard reaction is one of the mechanisms contributing to the hardening of bar matrix, particularly for the late stage of storage. The replacement of reducing sugars with nonreducing ingredients such as sugar alcohols in the formula will minimize the changes in texture. © 2013 Institute of Food Technologists®