WorldWideScience

Sample records for protein microcrystal diffraction

  1. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array

    Energy Technology Data Exchange (ETDEWEB)

    Lyubimov, Artem Y. [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Murray, Thomas D. [University of California, Berkeley, CA 94720 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Koehl, Antoine [Stanford University, Stanford, CA 94305 (United States); Araci, Ismail Emre [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Uervirojnangkoorn, Monarin; Zeldin, Oliver B. [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Cohen, Aina E.; Soltis, S. Michael; Baxter, Elizabeth L. [SLAC National Accelerator Laboratory, Stanford, CA 94305 (United States); Brewster, Aaron S.; Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Brunger, Axel T., E-mail: brunger@stanford.edu [Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Stanford University, Stanford, CA 94305 (United States); Berger, James M., E-mail: brunger@stanford.edu [Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Stanford University, Stanford, CA 94305 (United States)

    2015-04-01

    A microfluidic platform has been developed for the capture and X-ray analysis of protein microcrystals, affording a means to improve the efficiency of XFEL and synchrotron experiments. X-ray free-electron lasers (XFELs) promise to enable the collection of interpretable diffraction data from samples that are refractory to data collection at synchrotron sources. At present, however, more efficient sample-delivery methods that minimize the consumption of microcrystalline material are needed to allow the application of XFEL sources to a wide range of challenging structural targets of biological importance. Here, a microfluidic chip is presented in which microcrystals can be captured at fixed, addressable points in a trap array from a small volume (<10 µl) of a pre-existing slurry grown off-chip. The device can be mounted on a standard goniostat for conducting diffraction experiments at room temperature without the need for flash-cooling. Proof-of-principle tests with a model system (hen egg-white lysozyme) demonstrated the high efficiency of the microfluidic approach for crystal harvesting, permitting the collection of sufficient data from only 265 single-crystal still images to permit determination and refinement of the structure of the protein. This work shows that microfluidic capture devices can be readily used to facilitate data collection from protein microcrystals grown in traditional laboratory formats, enabling analysis when cryopreservation is problematic or when only small numbers of crystals are available. Such microfluidic capture devices may also be useful for data collection at synchrotron sources.

  2. Serial femtosecond X-ray diffraction of enveloped virus microcrystals

    Directory of Open Access Journals (Sweden)

    Robert M. Lawrence

    2015-07-01

    Full Text Available Serial femtosecond crystallography (SFX using X-ray free-electron lasers has produced high-resolution, room temperature, time-resolved protein structures. We report preliminary SFX of Sindbis virus, an enveloped icosahedral RNA virus with ∼700 Å diameter. Microcrystals delivered in viscous agarose medium diffracted to ∼40 Å resolution. Small-angle diffuse X-ray scattering overlaid Bragg peaks and analysis suggests this results from molecular transforms of individual particles. Viral proteins undergo structural changes during entry and infection, which could, in principle, be studied with SFX. This is an important step toward determining room temperature structures from virus microcrystals that may enable time-resolved studies of enveloped viruses.

  3. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Thomas D. [University of California, Berkeley, CA 94720 (United States); Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); Lyubimov, Artem Y. [Stanford University, Stanford, CA 94305 (United States); Ogata, Craig M. [Argonne National Laboratory, Argonne, IL 60439 (United States); Vo, Huy [Johns Hopkins University, Baltimore, MD 21205 (United States); Uervirojnangkoorn, Monarin; Brunger, Axel T., E-mail: brunger@stanford.edu [Stanford University, Stanford, CA 94305 (United States); Berger, James M., E-mail: brunger@stanford.edu [Johns Hopkins University School of Medicine, Baltimore, MD 21205 (United States); University of California, Berkeley, CA 94720 (United States)

    2015-09-26

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.

  4. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions

    International Nuclear Information System (INIS)

    Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.

    2015-01-01

    A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs

  5. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Hellmich, Julia; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Sellberg, Jonas; Lassalle-Kaiser, Benedikt; Gildea, Richard J.; Glatzel, Pieter; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; McQueen, Trevor A.; DiFiore, Dörte; Fry, Alan R.; Messerschmidt, Marc; Miahnahri, Alan; Schafer, Donald W.; Seibert, M. Marvin; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Messinger, Johannes; Sauter, Nicholas K.; Zouni, Athina; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.

    2012-01-01

    Most of the dioxygen on earth is generated by the oxidation of water by photosystem II (PS II) using light from the sun. This light-driven, four-photon reaction is catalyzed by the Mn4CaO5 cluster located at the lumenal side of PS II. Various X-ray studies have been carried out at cryogenic temperatures to understand the intermediate steps involved in the water oxidation mechanism. However, the necessity for collecting data at room temperature, especially for studying the transient steps during the O–O bond formation, requires the development of new methodologies. In this paper we report room temperature X-ray diffraction data of PS II microcrystals obtained using ultrashort (< 50 fs) 9 keV X-ray pulses from a hard X-ray free electron laser, namely the Linac Coherent Light Source. The results presented here demonstrate that the ”probe before destroy” approach using an X-ray free electron laser works even for the highly-sensitive Mn4CaO5 cluster in PS II at room temperature. We show that these data are comparable to those obtained in synchrotron radiation studies as seen by the similarities in the overall structure of the helices, the protein subunits and the location of the various cofactors. This work is, therefore, an important step toward future studies for resolving the structure of the Mn4CaO5 cluster without any damage at room temperature, and of the reaction intermediates of PS II during O–O bond formation. PMID:22665786

  6. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation.

    Science.gov (United States)

    Martin-Garcia, Jose M; Conrad, Chelsie E; Nelson, Garrett; Stander, Natasha; Zatsepin, Nadia A; Zook, James; Zhu, Lan; Geiger, James; Chun, Eugene; Kissick, David; Hilgart, Mark C; Ogata, Craig; Ishchenko, Andrii; Nagaratnam, Nirupa; Roy-Chowdhury, Shatabdi; Coe, Jesse; Subramanian, Ganesh; Schaffer, Alexander; James, Daniel; Ketwala, Gihan; Venugopalan, Nagarajan; Xu, Shenglan; Corcoran, Stephen; Ferguson, Dale; Weierstall, Uwe; Spence, John C H; Cherezov, Vadim; Fromme, Petra; Fischetti, Robert F; Liu, Wei

    2017-07-01

    Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX) is severely limited by the scarcity of X-ray free-electron laser (XFEL) sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX). As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS), are reported. Microcrystals (5-20 µm) of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A 2A adenosine receptor (A 2A AR), the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP) or a high-molecular-weight poly(ethylene oxide) (PEO; molecular weight 8 000 000) were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding) software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A 2A AR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A 2A AR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5-20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the planned APS

  7. Serial millisecond crystallography of membrane and soluble protein microcrystals using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Jose M. Martin-Garcia

    2017-07-01

    Full Text Available Crystal structure determination of biological macromolecules using the novel technique of serial femtosecond crystallography (SFX is severely limited by the scarcity of X-ray free-electron laser (XFEL sources. However, recent and future upgrades render microfocus beamlines at synchrotron-radiation sources suitable for room-temperature serial crystallography data collection also. Owing to the longer exposure times that are needed at synchrotrons, serial data collection is termed serial millisecond crystallography (SMX. As a result, the number of SMX experiments is growing rapidly, with a dozen experiments reported so far. Here, the first high-viscosity injector-based SMX experiments carried out at a US synchrotron source, the Advanced Photon Source (APS, are reported. Microcrystals (5–20 µm of a wide variety of proteins, including lysozyme, thaumatin, phycocyanin, the human A2A adenosine receptor (A2AAR, the soluble fragment of the membrane lipoprotein Flpp3 and proteinase K, were screened. Crystals suspended in lipidic cubic phase (LCP or a high-molecular-weight poly(ethylene oxide (PEO; molecular weight 8 000 000 were delivered to the beam using a high-viscosity injector. In-house data-reduction (hit-finding software developed at APS as well as the SFX data-reduction and analysis software suites Cheetah and CrystFEL enabled efficient on-site SMX data monitoring, reduction and processing. Complete data sets were collected for A2AAR, phycocyanin, Flpp3, proteinase K and lysozyme, and the structures of A2AAR, phycocyanin, proteinase K and lysozyme were determined at 3.2, 3.1, 2.65 and 2.05 Å resolution, respectively. The data demonstrate the feasibility of serial millisecond crystallography from 5–20 µm crystals using a high-viscosity injector at APS. The resolution of the crystal structures obtained in this study was dictated by the current flux density and crystal size, but upcoming developments in beamline optics and the

  8. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Elena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Gath, Julia [ETH Zurich, Physical Chemistry (Switzerland); Habenstein, Birgit [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Ravotti, Francesco; Szekely, Kathrin; Huber, Matthias [ETH Zurich, Physical Chemistry (Switzerland); Buchner, Lena [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany); Boeckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS/Universite de Lyon 1, Institut de Biologie et Chimie des Proteines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Guentert, Peter, E-mail: guentert@em.uni-frankfurt.de [Goethe University Frankfurt am Main, Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry (Germany)

    2013-07-15

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218-289) and {alpha}-synuclein yielded 88-97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77-90 % correctness if also assignments classified as tentative by the algorithm are included.

  9. Automated solid-state NMR resonance assignment of protein microcrystals and amyloids

    International Nuclear Information System (INIS)

    Schmidt, Elena; Gath, Julia; Habenstein, Birgit; Ravotti, Francesco; Székely, Kathrin; Huber, Matthias; Buchner, Lena; Böckmann, Anja; Meier, Beat H.; Güntert, Peter

    2013-01-01

    Solid-state NMR is an emerging structure determination technique for crystalline and non-crystalline protein assemblies, e.g., amyloids. Resonance assignment constitutes the first and often very time-consuming step to a structure. We present ssFLYA, a generally applicable algorithm for automatic assignment of protein solid-state NMR spectra. Application to microcrystals of ubiquitin and the Ure2 prion C-terminal domain, as well as amyloids of HET-s(218–289) and α-synuclein yielded 88–97 % correctness for the backbone and side-chain assignments that are classified as self-consistent by the algorithm, and 77–90 % correctness if also assignments classified as tentative by the algorithm are included

  10. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  11. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  12. Polyhedral microcrystals encapsulating bone morphogenetic protein 2 improve healing in the alveolar ridge.

    Science.gov (United States)

    Matsumoto, Goichi; Ueda, Takayo; Sugita, Yoshihiko; Kubo, Katsutoshi; Mizoguchi, Megumi; Kotani, Eiji; Oda, Naoki; Kawamata, Shin; Segami, Natsuki; Mori, Hajime

    2015-08-01

    Atelocollagen sponges incorporating polyhedra encapsulating bone morphogenetic protein 2 (BMP-2) were implanted into lateral bone defects in the mandible. Half of the bone defects on the left side were treated with atelocollagen sponges containing 1.8 × 10(7) BMP-2 polyhedra, and half were treated with sponges containing 3.6 × 10(6) BMP-2 polyhedra. As controls, we treated the right-side bone defects in each animal with an atelocollagen sponge containing 5 µg of recombinant human BMP-2 (rhBMP-2) or 1.8 × 10(7) empty polyhedral. After a healing period of six months, whole mandibles were removed for micro-computed tomography (CT) and histological analyses. Micro-CT images showed that more bone had formed at all experimental sites than at control sites. However, the density of the new bone was not significantly higher at sites with an atelocollagen sponge containing BMP-2 polyhedra than at sites with an atelocollagen sponge containing rhBMP-2 or empty polyhedra. Histological examination confirmed that the BMP-2 polyhedra almost entirely replaced the atelocollagen sponges and connected the original bone with the regenerated bone. These results show that the BMP-2 delivery system facilitates the regeneration of new bone in the mandibular alveolar bone ridge and has an advance in the technology of bone regeneration for implant site development. © The Author(s) 2015.

  13. Solving protein nanocrystals by cryo-EM diffraction: Multiple scattering artifacts

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Ganesh [Department of Materials Science and Engineering, Arizona State University, Tempe, AZ (United States); Basu, Shibom [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ (United States); Liu, Haiguang [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States); Zuo, Jian-Min [Department of Materials Science and Engineering, University of Illinois, Urbana, IL (United States); Spence, John C.H., E-mail: spence@asu.edu [Department of Physics, Arizona State University, Tempe, AZ 85287-1504 (United States)

    2015-01-15

    The maximum thickness permissible within the single-scattering approximation for the determination of the structure of perfectly ordered protein microcrystals by transmission electron diffraction is estimated for tetragonal hen-egg lysozyme protein crystals using several approaches. Multislice simulations are performed for many diffraction conditions and beam energies to determine the validity domain of the required single-scattering approximation and hence the limit on crystal thickness. The effects of erroneous experimental structure factor amplitudes on the charge density map for lysozyme are noted and their threshold limits calculated. The maximum thickness of lysozyme permissible under the single-scattering approximation is also estimated using R-factor analysis. Successful reconstruction of density maps is found to result mainly from the use of the phase information provided by modeling based on the protein data base through molecular replacement (MR), which dominates the effect of poor quality electron diffraction data at thicknesses larger than about 200 Å. For perfectly ordered protein nanocrystals, a maximum thickness of about 1000 Å is predicted at 200 keV if MR can be used, using R-factor analysis performed over a subset of the simulated diffracted beams. The effects of crystal bending, mosaicity (which has recently been directly imaged by cryo-EM) and secondary scattering are discussed. Structure-independent tests for single-scattering and new microfluidic methods for growing and sorting nanocrystals by size are reviewed. - Highlights: • Validity domain of single-scattering approximation for protein electron diffraction is assessed • Electron Diffraction for tetragonal hen-egg lysozyme is simulated using multislice. • Bias from the use of phase information in modeling by molecular replacement (MR) is evaluated. • We find an approximate upper thickness limit, if MR is used, of 100 nm. • A 35% error in structure factor magnitudes may be

  14. Magnetically responsive calcium carbonate microcrystals.

    Science.gov (United States)

    Fakhrullin, Rawil F; Bikmullin, Aidar G; Nurgaliev, Danis K

    2009-09-01

    Here we report the fabrication of magnetically responsive calcium carbonate microcrystals produced by coprecipitation of calcium carbonate in the presence of citrate-stabilized iron oxide nanoparticles. We demonstrate that the calcite microcrystals obtained possess superparamagnetic properties due to incorporated magnetite nanoparticles and can be manipulated by an external magnetic field. The microcrystals doped with magnetic nanoparticles were utilized as templates for the fabrication of hollow polyelectrolyte microcapsules, which retain the magnetic properties of the sacrificial cores and might be spatially manipulated using a permanent magnet, thus providing the magnetic-field-facilitated delivery and separation of materials templated on magnetically responsive calcite microcrystals.

  15. Immobilization of bioactive fibroblast growth factor-2 into cubic proteinous microcrystals (Bombyx mori cypovirus polyhedra) that are insoluble in a physiological cellular environment.

    Science.gov (United States)

    Mori, Hajime; Shukunami, Chisa; Furuyama, Akiko; Notsu, Hiroyuki; Nishizaki, Yuriko; Hiraki, Yuji

    2007-06-08

    The supramolecular architecture of the extracellular matrix and the disposition of its specific accessory molecules give rise to variable heterotopic signaling cues for single cells. Here we have described the successful occlusion of human fibroblast growth factor-2 (FGF-2) into the cubic inclusion bodies (FGF-2 polyhedra) of the Bombyx mori cytoplasmic polyhedrosis virus (BmCPV). The polyhedra are proteinous cubic crystals of several microns in size that are insoluble in the extracellular milieu. Purified FGF-2 polyhedra were found to stimulate proliferation and phosphorylation of p44/p42 mitogen-activated protein kinase in cultured fibroblasts. Moreover, cellular responses were blocked by a synthetic inhibitor of the FGF signaling pathway, SU5402, suggesting that FGF-2 polyhedra indeed act through FGF receptors. Furthermore, FGF-2 polyhedra retained potent growth stimulatory properties even after desiccation. We have demonstrated that BmCPV polyhedra microcrystals that occlude extracellular signaling proteins are a novel and versatile tool that can be employed to analyze cellular behavior at the single cell level.

  16. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang

    2013-04-04

    ZnO microcrystals with hierarchical structure have been synthesized by a simple solvothermal approach. The microcrystals were studied by means of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Research on the formation mechanism of the hierarchical microstructure shows that the coordination solvent and precursor concentration have considerable influence on the size and morphology of the microstructures. A possible formation mechanism of the hierarchical structure was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity in photocatalysis, the catalysis process follows first-order reaction kinetics, and the apparent rate constant k = 0.03195 min-1.

  17. Development and directions of powder diffraction on proteins

    Energy Technology Data Exchange (ETDEWEB)

    Von Dreele, R B; Besnard, C; Basso, S; Camus, F; Pattison, P; Schiltz, M; Wright, J P; Margiolaki, R; Fitch, A N; Fox, G C; Prugoveeki, S; Beckers, D; Helliwell, J R; Helliwell, M; Jones, R H; Roberts, M A; Miura, K; Kahn, R; Giacovazzo, C; Altomare, A; Caliandro, R; Camalli, M; Cuocci, C; Moliterni, A G.G.; Rizzi, R; Hinrichsen, B; Kern, A; Coelho, A A; Degen, T; Kokkinidis, M; Fadouloglou, V; Gazi, A; Panopoulos, N; Pinotsis, N; Wilmanns, M; Norrman, M; Schluckebier, G; Prugoveeki, B; Dilovic, J; Matkovic-Calogovic, D; Bill, David; Markvardsen, A; Grosse-Kunstleve, R; Rius, J; Glykos Nicholas, M; Murshudov, G N

    2007-07-01

    X-ray diffraction is one of the most important method for obtaining information about the structure of proteins and thereby for gaining insight into fundamental biological and biochemical mechanisms. This seminar was dedicated to X-ray powder diffraction and was organized around 6 sessions: 1) what can powder diffraction do for proteins?, 2) adapting experimentally to proteins, 3) interpreting powder data, 4) the world of protein crystallography, 5) advancing methods for powder data analysis, and 6) transferable methods from single crystals. This document gathers the abstracts of the 23 papers presented. (A.C.)

  18. Development and directions of powder diffraction on proteins

    International Nuclear Information System (INIS)

    Von Dreele, R.B.; Besnard, C.; Basso, S.; Camus, F.; Pattison, P.; Schiltz, M.; Wright, J.P.; Margiolaki, R.; Fitch, A.N.; Fox, G.C.; Prugoveeki, S.; Beckers, D.; Helliwell, J.R.; Helliwell, M.; Jones, R.H.; Roberts, M.A.; Miura, K.; Kahn, R.; Giacovazzo, C.; Altomare, A.; Caliandro, R.; Camalli, M.; Cuocci, C.; Moliterni, A.G.G.; Rizzi, R.; Hinrichsen, B.; Kern, A.; Coelho, A.A.; Degen, T.; Kokkinidis, M.; Fadouloglou, V.; Gazi, A.; Panopoulos, N.; Pinotsis, N.; Wilmanns, M.; Norrman, M.; Schluckebier, G.; Prugoveeki, B.; Dilovic, J.; Matkovic-Calogovic, D.; Bill, David; Markvardsen, A.; Grosse-Kunstleve, R.; Rius, J.; Glykos Nicholas, M.; Murshudov, G.N.

    2007-01-01

    X-ray diffraction is one of the most important method for obtaining information about the structure of proteins and thereby for gaining insight into fundamental biological and biochemical mechanisms. This seminar was dedicated to X-ray powder diffraction and was organized around 6 sessions: 1) what can powder diffraction do for proteins?, 2) adapting experimentally to proteins, 3) interpreting powder data, 4) the world of protein crystallography, 5) advancing methods for powder data analysis, and 6) transferable methods from single crystals. This document gathers the abstracts of the 23 papers presented. (A.C.)

  19. Powder diffraction from a continuous microjet of submicrometer protein crystals.

    Science.gov (United States)

    Shapiro, D A; Chapman, H N; Deponte, D; Doak, R B; Fromme, P; Hembree, G; Hunter, M; Marchesini, S; Schmidt, K; Spence, J; Starodub, D; Weierstall, U

    2008-11-01

    Atomic-resolution structures from small proteins have recently been determined from high-quality powder diffraction patterns using a combination of stereochemical restraints and Rietveld refinement [Von Dreele (2007), J. Appl. Cryst. 40, 133-143; Margiolaki et al. (2007), J. Am. Chem. Soc. 129, 11865-11871]. While powder diffraction data have been obtained from batch samples of small crystal-suspensions, which are exposed to X-rays for long periods of time and undergo significant radiation damage, the proof-of-concept that protein powder diffraction data from nanocrystals of a membrane protein can be obtained using a continuous microjet is shown. This flow-focusing aerojet has been developed to deliver a solution of hydrated protein nanocrystals to an X-ray beam for diffraction analysis. This method requires neither the crushing of larger polycrystalline samples nor any techniques to avoid radiation damage such as cryocooling. Apparatus to record protein powder diffraction in this manner has been commissioned, and in this paper the first powder diffraction patterns from a membrane protein, photosystem I, with crystallite sizes of less than 500 nm are presented. These preliminary patterns show the lowest-order reflections, which agree quantitatively with theoretical calculations of the powder profile. The results also serve to test our aerojet injector system, with future application to femtosecond diffraction in free-electron X-ray laser schemes, and for serial crystallography using a single-file beam of aligned hydrated molecules.

  20. Protein diffraction experiments with Atlas CCD detector

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Kovaľ, Tomáš; Dušek, Michal

    2008-01-01

    Roč. 64, Suppl. - abstracts (2008), C192 ISSN 0108-7673. [Congress of the International Union of Crystallography (IUCr) /21./. 23.08.2008-31.08.2008, Osaka] Institutional research plan: CEZ:AV0Z10100521 Keywords : x-ray data collection * CCD detectors * protein crystallography applications Subject RIV: BM - Solid Matter Physics ; Magnetism

  1. A new route to copper nitrate hydroxide microcrystals

    International Nuclear Information System (INIS)

    Niu Haixia; Yang Qing; Tang Kaibin

    2006-01-01

    A solution evaporation route has been successfully developed for the growth of copper nitrate hydroxide microcrystals using copper nitrate solution as the starting material in the absence of any surfactants or templates. The products were characterized by X-ray diffraction (XRD), infrared (IR) spectrum, scanning electron microscopy (SEM) and thermogravimetric (TG) analysis measurements. Controlled experiments suggested that the reaction temperature and solution concentration played an important role on the formation of the products. A possible formation mechanism of the products was also proposed

  2. Ag_3PO_4 Microcrystals Synthesized by Room-Temperature Solid State Reaction: Enhanced Photocatalytic Activity and Photoelectronchemistry Performance

    International Nuclear Information System (INIS)

    Hao Chen-Chun; Xu Jie; Shi Hong-Long; Fu Jun-Li; Zou Bin; Meng Shan; Wang Wen-Zhong; Jia Ying

    2015-01-01

    Ag_3PO_4 microcrystals with highly enhanced visible light photocatalytic activity are prepared by a facile and simple solid state reaction at room temperature. The composition, morphology and optical properties of the as-prepared Ag_3PO_4 microcrystals are characterized by x-ray diffraction, scanning electron microscopy and UV-vis diffuse reflectance spectra. The photocatalytic properties of Ag_3PO_4 are investigated by the degradation of both methylene blue and methyl orange dyes under visible light irradiation. The as-prepared Ag_3PO_4 microcrystals possess high photocatalytic oxygen production with the rate of 673 μmolh"−"1 g"−"1. Moreover, the as-prepared Ag_3PO_4 microcrystals show an enhanced photoelectrochemistry performance under irradiation of visible light. (paper)

  3. Preparation and spectral properties of europium hydrogen squarate microcrystals

    Science.gov (United States)

    Kolev, T.; Danchova, N.; Shandurkov, D.; Gutzov, S.

    2018-04-01

    A simple scheme for preparation of europium hydrogen squarate octahydrate microcrystals, Eu(HSq)3·8H2O is demonstrated. The microcrystalline powders obtained have a potential application as non-centrosymmetric and UV radiation - protective hybrid optical material. The site-symmetry of the Eu - ion is C2V or lower, obtained from diffuse reflectance spectra. The formation of europium hydrogen squarate is supported by IR - spectroscopy, UV-vis spectroscopy, chemical analysis and X-ray diffraction. A detailed analysis of the UV-vis and IR spectra of the micropowders prepared is presented. The reaction between europium oxide and squaric acid leads to formation of microcrystalline plate-like crystals of europium hydrogen squarate Eu(HSq)3·8H2O, a non-centrosymmetric hybrid optical material with a potential application as UV radiation - protective coatings.

  4. Correlation between protein sequence similarity and x-ray diffraction quality in the protein data bank.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng

    2009-01-01

    As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.

  5. Shape-controlled synthesis and properties of manganese sulfide microcrystals via a biomolecule-assisted hydrothermal process

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jinghui; Yu Runnan; Zhu Jianyu; Yi Ran; Qiu Guanzhou [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); He Yuehui [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu Xiaohe, E-mail: liuxh@mail.csu.edu.cn [School of Resources Processing and Bioengineering, Central South University, Changsha, Hunan 410083 (China); State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China)

    2009-06-15

    An effective biomolecule-assisted synthetic route has been successfully developed to prepare {gamma}-manganese sulfide (MnS) microtubes under hydrothermal conditions. In the synthetic system, soluble hydrated manganese chloride was employed to supply Mn source and L-cysteine was used as precipitator and complexing reagent. Sea urchin-like {gamma}-MnS and octahedron-like {alpha}-MnS microcrystals could also be selectively obtained by adjusting the process parameters such as hydrothermal temperature and reaction time. The phase structures, morphologies and properties of the as-prepared products were investigated in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and photoluminescence spectra (PL). The photoluminescence studies exhibited the correlations between the morphology, size, and shape structure of MnS microcrystals and its optical properties. The formation mechanisms of manganese sulfide microcrystals were discussed based on the experimental results.

  6. Time-resolved Laue diffraction from protein crystals: Instrumental considerations

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Cornell Univ., Ithaca, NY; Moffat, K.; Szebenyi, D.M.E.

    1984-01-01

    A serious limitation of macromolecular crystallography has been its inability to determine changes in structure on a biochemical time scale of milliseconds or less. Recently, we have shown that X-ray exposures on single crystals of macromolecules may be obtained in the millisecond time range through the use of intense, polychromatic radiation with Δlambda/lambda approx.= 0.2 derived from the Cornell High Energy Synchrotron Source, CHESS. Such radiation falling on a stationary crystal yields a Laue diffraction pattern, in which almost all Laue reflections arise from a unique set of Miller indices and where their intensities are automatically integrated over wavelength. This Laue technique requires wide band pass optics, which may be obtained by a combination of reflection and transmission mirrors, filters or layered synthetic microstructures. Time-resolved macromolecular crystallography may be achieved by several data collection schemes: 'one-shot' recording coupled to a simple streak camera, repetitive sample perturbation coupled to a detector with temporal resolution and repetitive perturbation which uses the synchrotron pulses for stroboscopic triggering and detection. These schemes are appropriate for different time scales, roughly the milli-, micro- and nanosecond regimes. It appears that time-resolved crystallography is entirely feasible, with an ultimate time resolution limited only by the length of a synchrotron light pulse, some 150 ps at CHESS. (orig.)

  7. Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Liu, Sen; Fu, Yangxi; Li, Yixian; Qiang, Xinfa

    2013-01-01

    Graphical abstract: Novel HfC microcrystal chains have been synthesized via a catalyst-assisted chemical vapor deposition process. SEM results show the chains have a periodically changing diameter and a nanoscale sharpening tip. Analysis of TEM/SAED/EELS/EDX data shows the single-crystal chains grow along a [0 0 1] direction and consist of a HfC core and a thin carbon-rich shell with embedded HfC nanocrystallites surrounding the core. This work achieves the controllable preparation of nanoscale HfC sharpening tips for application as a point electron emission source and facilitates the application of HfC ultrafast laser-triggered tips in attosecond science. Highlights: •HfC microcrystal chains were synthesized by a catalyst-assisted CVD. •The chains grow along a [0 0 1] direction and have a periodically changing diameter. •Single-crystal HfC core is sheathed by a thin carbon-rich shell. •A growth mechanism model is proposed to explain the growth of microcrystal chians. •This work achieves the controllable preparation of nanoscale HfC sharpening tips. -- Abstract: Novel hafnium carbide (HfC) microcrystal chains, with a periodically changing diameter and a nanoscale sharpening tip at the chain end, have been synthesized via a catalyst-assisted chemical vapor deposition (CVD) process. The as-synthesized chains with many octahedral microcrystals have diameters of between several hundreds of nm and 6 μm and lengths of ∼500 μm. TEM diffraction studies show that the chains are single-crystalline HfC and preferentially grow along a [0 0 1] crystal orientation. TEM/EELS/EDX analysis proves the chains are composed of a HfC core and a thin (several tens of nm to 100 nm) carbon-rich shell with the embedded HfC nanocrystallites (typically below 10 nm) surrounding the core. The growth mechanism model for the chains based on the vapor–liquid–solid process, the vapor–solid process, and the HfC crystal growth characteristics is discussed

  8. Fabrication of metallic Cd multifarious prismatic microcrystals (CMPMCs) under NH{sub 3} gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Waheed S. [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Cao, Chuanbao, E-mail: cbcao@bit.edu.cn [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Faheem K.; Ali, Zulfiqar [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Baig, Anisullah [Department of Engineering-Applied Sciences, University of California, Davis, CA 95616 (United States); Ain, Qurrat ul; Iqbal, M. Zubair [Department of Physics, School of Physics and Mathematics, University of Science and Technology Beijing, Beijing 100083 (China); Sadaf, Asma [Advance Photonics Center, Southeast University, Nanjing 210096 (China); Shah, Sajjad H. [Department of Physics, Beijing Institute of Technology, Beijing 100081 (China)

    2011-07-25

    Highlights: > Cd prismatic microcrystals are prepared by thermal reduction of CdO under NH{sub 3} gas. > Vapour-solid (VS) process based growth mechanism governs the formation of CMPMCs. > PL spectrum for CMPMCs exhibits UV band at 365 nm and visible emission at 404 nm. > This study shows the potential of CMPMCs for applications in optical devices. - Abstract: We report here highly dense and pure metallic cadmium (Cd) multifarious prismatic microcrystals (CMPMCs) fabricated by thermal decomposition of cadmium oxide (CdO) powder at 700 deg. C for 60 min under NH{sub 3} gas ambient inside horizontal tube furnace. CMPMCs were observed to be 1-1.5 {mu}m in size with interesting morphologies of various cross sections such as triangular, trapezoidal, pentagonal and hexagonal etc. having solid, hollow/semi-hollow appearances. The as-synthesized CMPMCS were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) and selected area electron diffraction (SAED). Room temperature photoluminescence (PL) spectrum for Cd metal microcrystals exhibited a prominent emission band at 365 along with a shoulder peak at 404 nm. The UV main emission band is ascribed to radiative recombination of the electrons in the s, p conduction band near the Fermi surface and holes in the d bands generated under xenon light excitation whereas shoulder peak may be owing to surface oxidation effects or induced defects. This study shows the potential of CMPMCs for applications in optical devices. Based on vapour-solid (VS) process, growth mechanism for the formation of CMPMCs is also proposed and discussed briefly.

  9. Femtosecond X-ray diffraction from two-dimensional protein crystals

    Directory of Open Access Journals (Sweden)

    Matthias Frank

    2014-03-01

    Full Text Available X-ray diffraction patterns from two-dimensional (2-D protein crystals obtained using femtosecond X-ray pulses from an X-ray free-electron laser (XFEL are presented. To date, it has not been possible to acquire transmission X-ray diffraction patterns from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permit a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy approach at the Linac Coherent Light Source, Bragg diffraction was acquired to better than 8.5 Å resolution for two different 2-D protein crystal samples each less than 10 nm thick and maintained at room temperature. These proof-of-principle results show promise for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.

  10. Calcite microcrystals in the pineal gland of the human brain: second harmonic generators and possible piezoelectric transducers

    International Nuclear Information System (INIS)

    Lang, S.B.

    2004-01-01

    Full text: A new form of biomineralization in the pineal gland of the human brain has been studied. It consists of small crystals that are less than 20 μm in length and that are completely distinct from the often-observed mulberry-type hydroxyapatite concretions. Cubic, hexagonal and cylindrical morphologies have been identified using scanning electron microscopy. Energy dispersive spectroscopy, selected-area electron diffraction and near infrared Raman spectroscopy established that the crystals were calcite. Experiments at the European Synchrotron Radiation Facility (ESRF) to study the biomineralization showed the presence of sulfur originating from both sugars and proteins. Other studies at the ESRF furnished information on the complex texture crystallization of the calcite. With the exception of the otoconia structure of the inner ear, this is the only known non-pathological occurrence of calcite in the human body. The calcite microcrystals are believed to be responsible for the previously observed second harmonic generation (SHG) in pineal tissue sections. There is a strong possibility that the complex twinned structure of the crystals may lower their symmetry and permit the existence of a piezoelectric effect

  11. Reaching (sub-)micrometer resolution of photo-immobilized proteins using diffracted light beams

    DEFF Research Database (Denmark)

    Skovsen, Esben; Neves Petersen, Teresa; Petersen, Steffen B.

    2008-01-01

    , with dimensions as small as a few micrometers. The ultimate size of the immobilized spots is dependent on the focal area of the UV beam. The technology involves light induced formation of free, reactive thiol groups in molecules containing aromatic residues nearby disulphide bridges. It is not only limited...... to immobilizing molecules according to conventional patterns like microarrays, as any bitmap motif can virtually be used a template for patterning. We now show that molecules (proteins) can be immobilized on a surface with any arbitrary pattern according to diffraction patterns of light. The pattern of photo......-immobilized proteins reproduces the diffraction pattern of light expected with the optical setup. Immobilising biomolecules according to diffraction patterns of light will allow achievement of smaller patterns with higher resolution. The flexibility of this new technology leads to any patterns of photo...

  12. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Emamzadah, Soheila; Petty, Tom J.; De Almeida, Victor; Nishimura, Taisuke; Joly, Jacques; Ferrer, Jean-Luc; Halazonetis, Thanos D.

    2009-01-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus’ molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 Å resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts

  13. Hydrogen atoms in protein structures: high-resolution X-ray diffraction structure of the DFPase

    Science.gov (United States)

    2013-01-01

    Background Hydrogen atoms represent about half of the total number of atoms in proteins and are often involved in substrate recognition and catalysis. Unfortunately, X-ray protein crystallography at usual resolution fails to access directly their positioning, mainly because light atoms display weak contributions to diffraction. However, sub-Ångstrom diffraction data, careful modeling and a proper refinement strategy can allow the positioning of a significant part of hydrogen atoms. Results A comprehensive study on the X-ray structure of the diisopropyl-fluorophosphatase (DFPase) was performed, and the hydrogen atoms were modeled, including those of solvent molecules. This model was compared to the available neutron structure of DFPase, and differences in the protein and the active site solvation were noticed. Conclusions A further examination of the DFPase X-ray structure provides substantial evidence about the presence of an activated water molecule that may constitute an interesting piece of information as regard to the enzymatic hydrolysis mechanism. PMID:23915572

  14. Hydrothermal growth of upright-standing ZnO sheet microcrystals

    International Nuclear Information System (INIS)

    Shi, Ruixia; Yang, Ping; Dong, Xiaobin; Jia, Changchao; Li, Jia

    2014-01-01

    Highlights: • Upright-standing ZnO sheet microcrystals were hydrothermally fabricated. • The ZnO sheets were prepared with sodium oxalate at 70 °C without any surfactant. • The preferable adsorption of oxalate anions causes the formation of ZnO sheet. • The continuous growth in six directions leads to the formation of hexagonal sheets. - Abstract: Large-scale upright-standing ZnO sheet microcrystals were fabricated on Zn substrate using sodium oxalate as structure-directing agent by a hydrothermal method at low temperature (70 °C) without any surfactant. The sheets are about 3–5 μm in dimension and 100–300 nm in thickness. The strong and narrow diffraction peaks of ZnO indicate that the sample has a good crystallinity and size. The morphology of sheet-like ZnO varied with the concentrations of sodium oxalate and reaction time. The sheet-like ZnO would transform into rod-like ones when sodium oxalate was substituted by equivalent sodium acetate. The formation of sheet-like ZnO is attributed to the preferable adsorption of oxalate anions on (0 0 0 1) face of ZnO, which inhibits the intrinsic growth of ZnO. Additionally, the continuous growth in six (0 1 −1 0) directions that have the lowest surface energy leads to the formation of hexagonal sheets

  15. A 7 µm mini-beam improves diffraction data from small or imperfect crystals of macromolecules

    International Nuclear Information System (INIS)

    Sanishvili, Ruslan; Nagarajan, Venugopalan; Yoder, Derek; Becker, Michael; Xu, Shenglan; Corcoran, Stephen; Akey, David L.; Smith, Janet L.; Fischetti, Robert F.

    2008-01-01

    An X-ray mini-beam of 8 × 6 µm cross-section was used to collect diffraction data from protein microcrystals with volumes as small as 150–300 µm 3 . The benefits of the mini-beam for experiments with small crystals and with large inhomogeneous crystals are investigated. A simple apparatus for achieving beam sizes in the range 5-10 µm on a synchrotron beamline was implemented in combination with a small 125 × 25 µm focus. The resulting beam had sufficient flux for crystallographic data collection from samples smaller than 10 × 10 × 10 µm. Sample data were collected representing three different scenarios: (i) a complete 2.0 Å data set from a single strongly diffracting microcrystal, (ii) a complete and redundant 1.94 Å data set obtained by merging data from six microcrystals and (iii) a complete 2.24 Å data set from a needle-shaped crystal with less than 12 × 10 µm cross-section and average diffracting power. The resulting data were of high quality, leading to well refined structures with good electron-density maps. The signal-to-noise ratios for data collected from small crystals with the mini-beam were significantly higher than for equivalent data collected from the same crystal with a 125 × 25 µm beam. Relative to this large beam, use of the mini-beam also resulted in lower refined crystal mosaicities. The mini-beam proved to be advantageous for inhomogeneous large crystals, where better ordered regions could be selected by the smaller beam

  16. A sample holder for in-house X-ray powder diffraction studies of protein powders

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Harris, Pernille; Ståhl, Kenny

    2011-01-01

    A sample holder for handling samples of protein for in-house X-ray powder diffraction (XRPD) analysis has been made and tested on lysozyme. The use of an integrated pinhole reduced the background, and good signal-to-noise ratios were obtained from only 7 l of sample, corresponding to approximatel...... 2-3 mg of dry protein. The sample holder is further adaptable to X-ray absorption spectroscopy (XAS) measurements. Both XRPD and XAS at the Zn K-edge were tested with hexameric Zn insulin....

  17. Facile synthesis and photocatalytic activity of zinc oxide hierarchical microcrystals

    KAUST Repository

    Xu, Xinjiang; Kuang, Fangcheng; Xu, Jiangping

    2013-01-01

    was suggested. Furthermore, the catalytic activity of the ZnO microcrystals was studied by treating low concentration Rhodamine B (RhB) solution under UV light, and research results show the hierarchical microstructures of ZnO display high catalytic activity

  18. Super-resolution imaging and tracking of protein-protein interactions in sub-diffraction cellular space

    Science.gov (United States)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-07-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein-protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB-EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB-EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB-EF-Tu interactions.

  19. Purification, crystallization and X-ray diffraction analysis of human dynamin-related protein 1 GTPase-GED fusion protein

    International Nuclear Information System (INIS)

    Klinglmayr, Eva; Wenger, Julia; Mayr, Sandra; Bossy-Wetzel, Ella; Puehringer, Sandra

    2012-01-01

    The crystallization and initial diffraction analysis of human Drp1 GTPase-GED fusion protein are reported. The mechano-enzyme dynamin-related protein 1 plays an important role in mitochondrial fission and is implicated in cell physiology. Dysregulation of Drp1 is associated with abnormal mitochondrial dynamics and neuronal damage. Drp1 shares structural and functional similarities with dynamin 1 with respect to domain organization, ability to self-assemble into spiral-like oligomers and GTP-cycle-dependent membrane scission. Structural studies of human dynamin-1 have greatly improved the understanding of this prototypical member of the dynamin superfamily. However, high-resolution structural information for full-length human Drp1 covering the GTPase domain, the middle domain and the GTPase effector domain (GED) is still lacking. In order to obtain mechanistic insights into the catalytic activity, a nucleotide-free GTPase-GED fusion protein of human Drp1 was expressed, purified and crystallized. Initial X-ray diffraction experiments yielded data to 2.67 Å resolution. The hexagonal-shaped crystals belonged to space group P2 1 2 1 2, with unit-cell parameters a = 53.59, b = 151.65, c = 43.53 Å, one molecule per asymmetric unit and a solvent content of 42%. Expression of selenomethionine-labelled protein is currently in progress. Here, the expression, purification, crystallization and X-ray diffraction analysis of the Drp1 GTPase-GED fusion protein are presented, which form a basis for more detailed structural and biophysical analysis

  20. X-ray diffraction analysis and in vitro characterization of the UAM2 protein from Oryza sativa

    DEFF Research Database (Denmark)

    Welner, Ditte Hededam; Tsai, Alex Yi-Lin; DeGiovanni, Andy M.

    2017-01-01

    protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low......, a requirement for a structural metal ion....

  1. Crystallization, diffraction data collection and preliminary crystallographic analysis of DING protein from Pseudomonas fluorescens

    International Nuclear Information System (INIS)

    Moniot, Sebastien; Elias, Mikael; Kim, Donghyo; Scott, Ken; Chabriere, Eric

    2007-01-01

    Crystallization of DING protein from P. fluorescens is reported. A complete data set was collected to 1.43 Å resolution. PfluDING is a phosphate-binding protein expressed in Pseudomonas fluorescens. This protein is clearly distinct from the bacterial ABC transporter soluble phosphate-binding protein PstS and is more homologous to eukaryotic DING proteins. Interestingly, bacterial DING proteins have only been detected in certain Pseudomonas species. Although DING proteins seem to be ubiquitous in eukaryotes, they are systematically absent from eukaryotic genomic databases and thus are still quite mysterious and poorly characterized. PfluDING displays mitogenic activity towards human cells and binds various ligands such as inorganic phosphate, pyrophosphate, nucleotide triphosphates and cotinine. Here, the crystallization of PfluDING is reported in a monoclinic space group (P2 1 ), with typical unit-cell parameters a = 36.7, b = 123.7, c = 40.8 Å, α = 90, β = 116.7, γ = 90°. Preliminary crystallographic analysis reveals good diffraction quality for these crystals and a 1.43 Å resolution data set has been collected

  2. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    Energy Technology Data Exchange (ETDEWEB)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter, E-mail: abrahams@chem.leidenuniv.nl [Leiden University, Einsteinweg 55, 2333 CC Leiden (Netherlands)

    2013-07-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e{sup −} Å{sup −2}), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins.

  3. A Medipix quantum area detector allows rotation electron diffraction data collection from submicrometre three-dimensional protein crystals

    International Nuclear Information System (INIS)

    Nederlof, Igor; Genderen, Eric van; Li, Yao-Wang; Abrahams, Jan Pieter

    2013-01-01

    An ultrasensitive Medipix2 detector allowed the collection of rotation electron-diffraction data from single three-dimensional protein nanocrystals for the first time. The data could be analysed using the standard X-ray crystallography programs MOSFLM and SCALA. When protein crystals are submicrometre-sized, X-ray radiation damage precludes conventional diffraction data collection. For crystals that are of the order of 100 nm in size, at best only single-shot diffraction patterns can be collected and rotation data collection has not been possible, irrespective of the diffraction technique used. Here, it is shown that at a very low electron dose (at most 0.1 e − Å −2 ), a Medipix2 quantum area detector is sufficiently sensitive to allow the collection of a 30-frame rotation series of 200 keV electron-diffraction data from a single ∼100 nm thick protein crystal. A highly parallel 200 keV electron beam (λ = 0.025 Å) allowed observation of the curvature of the Ewald sphere at low resolution, indicating a combined mosaic spread/beam divergence of at most 0.4°. This result shows that volumes of crystal with low mosaicity can be pinpointed in electron diffraction. It is also shown that strategies and data-analysis software (MOSFLM and SCALA) from X-ray protein crystallography can be used in principle for analysing electron-diffraction data from three-dimensional nanocrystals of proteins

  4. Perdeuteration, purification, crystallization and preliminary neutron diffraction of an ocean pout type III antifreeze protein

    International Nuclear Information System (INIS)

    Petit-Haertlein, Isabelle; Blakeley, Matthew P.; Howard, Eduardo; Hazemann, Isabelle; Mitschler, Andre; Haertlein, Michael; Podjarny, Alberto

    2009-01-01

    Perdeuterated type III antifreeze protein has been expressed, purified and crystallized. Preliminary neutron data collection showed diffraction to 1.85 Å resolution from a 0.13 mm 3 crystal. The highly homologous type III antifreeze protein (AFP) subfamily share the capability to inhibit ice growth at subzero temperatures. Extensive studies by X-ray crystallography have been conducted, mostly on AFPs from polar fishes. Although interactions between a defined flat ice-binding surface and a particular lattice plane of an ice crystal have now been identified, the fine structural features underlying the antifreeze mechanism still remain unclear owing to the intrinsic difficulty in identifying H atoms using X-ray diffraction data alone. Here, successful perdeuteration (i.e. complete deuteration) for neutron crystallographic studies of the North Atlantic ocean pout (Macrozoarces americanus) AFP in Escherichia coli high-density cell cultures is reported. The perdeuterated protein (AFP D) was expressed in inclusion bodies, refolded in deuterated buffer and purified by cation-exchange chromatography. Well shaped perdeuterated AFP D crystals have been grown in D 2 O by the sitting-drop method. Preliminary neutron Laue diffraction at 293 K using LADI-III at ILL showed that with a few exposures of 24 h a very low background and clear small spots up to a resolution of 1.85 Å were obtained using a ‘radically small’ perdeuterated AFP D crystal of dimensions 0.70 × 0.55 × 0.35 mm, corresponding to a volume of 0.13 mm 3

  5. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    Science.gov (United States)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; Xu, Qingping; de Waal, Parker W.; Suino-Powell, Kelly M.; Boutet, Sébastien; Williams, Garth J.; Wang, Meitian; Li, Dianfan; Caffrey, Martin; Chapman, Henry N.; Spence, John C. H.; Fromme, Petra; Weierstall, Uwe; Stevens, Raymond C.; Cherezov, Vadim; Melcher, Karsten; Xu, H. Eric

    2016-04-01

    Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.

  6. Optics for protein microcrystallography using synchrotron and laboratory X-ray sources

    International Nuclear Information System (INIS)

    Varghese, J.N.; Van Donkelaar, A.; Balaic, D.X.; Barnea, Z.

    2000-01-01

    Full text: For protein crystallography, a highly-intense focused beam overcomes a serious constraint in current biological research: the inability of many protein molecules to form crystals larger than a few tens of microns in size. High structure-resolution X-ray diffraction analysis of microcrystals is currently only being studied at synchrotron X-ray sources. We shall examine how this is being carried out, and also report the development of a novel tapered glass monocapillary toroidal-mirror optic, which achieves a high-intensity, low-divergence focused beam from a rotating-anode Xray generator. We have used this optic, which demonstrates an ∼28x intensity gain at the beam focus to solve the structure of a plant exoglucanse/inhibtor complex microcrystal to 2.8 Angstroms, with volume equivalent to a 30-micron-edge cube

  7. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals.

    Science.gov (United States)

    Lin, Hao; Xu, Dekang; Teng, Dongdong; Yang, Shenghong; Zhang, Yueli

    2015-09-01

    NaYF4 micro-crystals with various concentrations of Yb(3+) /Tm(3+) /Ho(3+) were prepared successfully via a simple and reproducible hydrothermal route using EDTA as the chelating agent. Their phase structure and surface morphology were studied using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD patterns revealed that all the samples were pure hexagonal phase NaYF4. SEM images showed that Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 were hexagonal micro-prisms. Upconversion photoluminescence spectra of Yb(3+)/Tm(3+)/Ho(3+) tri-doped NaYF4 micro-crystals with various dopant concentrations under 980 nm excitation with a 665 mW pump power were studied. Tunable multicolor (purple, purplish blue, yellowish green, green) and white light were achieved by simply adjusting the Ho(3+) concentration in 20%Yb(3+)/1%Tm(3+)/xHo(3+) tri-doped NaYF4 micro-crystals. Furthermore, white-light emissions could be obtained using different pump powers in 20%Yb(3+)/1%Tm(3+)/1%Ho(3+) tri-doped NaYF4 micro-crystals at 980 nm excitation. The pump power-dependent intensity relationship was studied and relevant energy transfer processes were discussed in detail. The results suggest that Yb(3+)/Tm(3+) Ho(3+) tri-doped NaYF4 micro-crystals have potential applications in optoelectronic devices such as photovoltaic, plasma display panel and white-light-emitting diodes. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Purification, crystallization and preliminary X-ray diffraction of fluorescence recovery protein from Synechocystis PCC 6803

    International Nuclear Information System (INIS)

    Liu, Ting; Shuai, Yingli; Zhou, Honggang

    2011-01-01

    Fluorescence recovery protein from Synechocystis PCC 6803 plays a key role in the orange carotenoid protein-related photoprotective mechanism in cyanobacteria. The full-length form and a truncated form were overexpressed, purified and crystallized, and diffraction was observed to 2.75 Å resolution. Fluorescence recovery protein (FRP), which is encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in the orange carotenoid protein-related photoprotective mechanism in cyanobacteria. As the crystal structure of FRP may provide information about the biological functions and mechanism of action of the protein, recombinant full-length FRP and a truncated form were overexpressed, purified and crystallized at 291 K using ethylene imine polymer as the precipitant. An FRP data set was collected to a resolution of 2.75 Å at low temperature (100 K). The crystal belonged to space group P4 1 2 1 2, with unit-cell parameters a = b = 61.9, c = 160.7 Å, α = β = γ = 90°. Assuming that the asymmetric unit contains three molecules, the Matthews coefficient was calculated to be 2.1 Å 3 Da −1

  9. Spectroscopy of microcrystals of CuI-AgI system

    International Nuclear Information System (INIS)

    Voll, V.A.; Barmasov, A.V.; Struts, A.V.

    1994-01-01

    By means of comparison of absorption and luminescence spectra analysis for samples with different relative component concentrations is considered obtaining in a gelatin matrix and the structure of CuI-AgI system composite microcrystals. Resonant character of excitation and its localization in the region of the interphase boundary of substrate/epitaxy is established. The most probable composition of thermally stable photolytic centers is discussed in dependence on the Cu and Ag relative content t. 25 refs

  10. Growth mechanisms, polytypism, and real structure of kaolinite microcrystals

    International Nuclear Information System (INIS)

    Samotoin, N. D.

    2008-01-01

    The mechanisms of growth of kaolinite microcrystals (0.1-5.0 μm in size) at deposits related to the cluvial weathering crust, as well as to the low-temperature and medium-temperature hydrothermal processes of transformations of minerals in different rocks in Russia, Kazakhstan, Ukraine, Czechia, Vietnam, India, Cuba, and Madagascar, are investigated using transmission electron microscopy and vacuum decoration with gold. It is established that kaolinite microcrystals grow according to two mechanisms: the mechanism of periodic formation of two-dimensional nuclei and the mechanism of spiral growth. The spiral growth of kaolinite microcrystals is dominant and occurs on steps of screw dislocations that differ in sign and magnitude of the Burgers vector along the c axis. The layered growth of kaolinite originates from a widespread source in the form of a step between polar (+ and -) dislocations, i.e., a growth analogue of the Frank-Read dislocation source. The density of growth screw dislocations varies over a wide range and can be as high as ∼10 9 cm -2 . Layered stepped kaolinite growth pyramids for all mechanisms of growth on the (001) face of kaolinite exhibit the main features of the triclinic 1Tc and real structures of this mineral.

  11. The protein micro-crystallography beamlines for targeted protein research program

    International Nuclear Information System (INIS)

    Hirata, Kunio; Yamamoto, Masaki; Matsugaki, Naohiro; Wakatsuki, Soichi

    2010-01-01

    In order to collect proper diffraction data from outstanding micro-crystals, a brand-new data collection system should be designed to provide high signal-to noise ratio in diffraction images. SPring-8 and KEK-PF are currently developing two micro-beam beamlines for Targeted Proteins Research Program by MEXT of Japan. The program aims to reveal the structure and function of proteins that are difficult to solve but have great importance in both academic research and industrial application. At SPring-8, a new 1-micron beam beamline for protein micro-crystallography, RIKEN Targeted Proteins Beamline (BL32XU), is developed. At KEK-PF a new low energy micro-beam beamline, BL-1A, is dedicated for SAD micro-crystallography. The two beamlines will start operation in the end of 2010. The present status of the research and development for protein micro-crystallography will be presented. (author)

  12. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    Energy Technology Data Exchange (ETDEWEB)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M. [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Iuliano, Rodolfo [Dipartimento di Medicina Sperimentale e Clinica, Facoltà di Medicina e Chirurgia, Università di Catanzaro, 88100 Catanzaro (Italy); Fusco, Alfredo [Dipartimento di Biologia e Patologia Cellulare e Molecolare, c/o Instituto di Endocrinologia ed Oncologia Sperimentale del CNR, Facolta di Medicina e Chirurgia, Università degli Studi di Napoli ‘Federico II’, Via Pansini 5, 80131 Naples (Italy); NOGEC (Naples Oncogenomocs Center)-CEINGE, Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples (Italy); Polikarpov, Igor, E-mail: ipolikarpov@if.sc.usp.br [Instituto de Física de São Carlos, Departamento de Física e Informática, Universidade de São Paulo, Avenida Trabalhador São Carlense 400, CEP 13566-590 São Carlos, SP (Brazil); Laboratório Nacional de Luz Síncrotron, Campinas, SP (Brazil)

    2006-09-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit.

  13. Crystallization and preliminary X-ray diffraction analysis of rat protein tyrosine phosphatase η

    International Nuclear Information System (INIS)

    Matozo, Huita C.; Nascimento, Alessandro S.; Santos, Maria A. M.; Iuliano, Rodolfo; Fusco, Alfredo; Polikarpov, Igor

    2006-01-01

    In this study, the catalytic domain of rat protein tyrosine phosphatase η was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. The rat protein tyrosine phosphatase η (rPTPη) is a cysteine-dependent phosphatase which hydrolyzes phosphoester bonds in proteins and other molecules. rPTPη and its human homologue DEP-1 are involved in neoplastic transformations. Thus, expression of the protein is reduced in all oncogene-transformed thyroid cell lines and is absent in highly malignant thyroid cells. Moreover, consistent with the suggested tumour suppression role of PTPη, inhibition of the tumorigenic process occurs after its exogenous reconstitution, suggesting that PTPη might be important for gene therapy of cancers. In this study, the catalytic domain of rPTPη was produced in Escherichia coli in soluble form and purified to homogeneity. Crystals were obtained by the hanging-drop vapour-diffusion method. Diffraction data were collected to 1.87 Å resolution. The crystal belongs to space group P2 1 2 1 2 1 , with unit-cell parameters a = 46.46, b = 63.07, c = 111.64 Å, and contains one molecule per asymmetric unit

  14. Flower-like Ag/AgCl microcrystals: Synthesis and photocatalytic activity

    International Nuclear Information System (INIS)

    Daupor, Hasan; Wongnawa, Sumpun

    2015-01-01

    Silver/silver chloride (Ag/AgCl) composites with a novel flower-like morphology were prepared via a hot precipitation assisted by the vinyl acetate monomer (VAM) route. An aqueous solution of AlCl 3 was mixed with the vinyl acetate monomer and acetic acid before adding a AgNO 3 solution at a temperature of 100 °C. The octapod shaped flower-like Ag/AgCl particles (or “flower-like Ag/AgCl” hereinafter) has eight petals each of which was about 7–11 μm in length. The flower-like octapods were formed by preferential overgrowth along the <111> directions of the cubic seeds. Detailed studies of the growth process at different AlCl 3 concentrations revealed that the concave cube developed into a Rubik's cube where eight corners grew further into the flower-like structures. The VAM and acetic acid concentration strongly affected the growth of the Ag/AgCl to the flower-like structure and their optimum concentrations were determined. The morphologies of these particles were carefully examined by scanning electron microscopy (SEM). The crystal structures and orientation relationship were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV–visible diffused reflectance spectroscopy (DRS). The flower-like Ag/AgCl microcrystals were tested for their photocatalytic degradation of orange G dye (OG) catalyzed by visible light. From comparative test runs, the flower-like Ag/AgCl exhibited better photocatalytic activity than simple and commercial Ag/AgCl particles. - Highlights: • Interesting transformation of microcrystals Ag/AgCl from concave cube via Rubik's cube to flower-like shape. • The first to use VAM as morphology control reagent. • High photocatalytic activity under visible light irradiation

  15. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    International Nuclear Information System (INIS)

    Kissick, David J.; Dettmar, Christopher M.; Becker, Michael; Mulichak, Anne M.; Cherezov, Vadim; Ginell, Stephan L.; Battaile, Kevin P.; Keefe, Lisa J.; Fischetti, Robert F.; Simpson, Garth J.

    2013-01-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β 2 adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed

  16. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Luke A., E-mail: luke@strubi.ox.ac.uk; Durrant, Benjamin P.; Barber, Michael; Harlos, Karl [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Fleurdépine, Sophie; Norbury, Chris J. [University of Oxford, South Parks Road, Oxford OX1 3RE (United Kingdom); Gilbert, Robert J. C., E-mail: luke@strubi.ox.ac.uk [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom)

    2015-02-21

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated.

  17. Improved crystallization and diffraction of caffeine-induced death suppressor protein 1 (Cid1)

    International Nuclear Information System (INIS)

    Yates, Luke A.; Durrant, Benjamin P.; Barber, Michael; Harlos, Karl; Fleurdépine, Sophie; Norbury, Chris J.; Gilbert, Robert J. C.

    2015-01-01

    The use of truncation and RNA-binding mutations of caffeine induced death suppressor protein 1 (Cid1) as a means to enhance crystallogenesis leading to an improvement of X-ray diffraction resolution by 1.5 Å is reported. The post-transcriptional addition of uridines to the 3′-end of RNAs is an important regulatory process that is critical for coding and noncoding RNA stability. In fission yeast and metazoans this untemplated 3′-uridylylation is catalysed by a single family of terminal uridylyltransferases (TUTs) whose members are adapted to specific RNA targets. In Schizosaccharomyces pombe the TUT Cid1 is responsible for the uridylylation of polyadenylated mRNAs, targeting them for destruction. In metazoans, the Cid1 orthologues ZCCHC6 and ZCCHC11 uridylate histone mRNAs, targeting them for degradation, but also uridylate microRNAs, altering their maturation. Cid1 has been studied as a model TUT that has provided insights into the larger and more complex metazoan enzyme system. In this paper, two strategies are described that led to improvements both in the crystallogenesis of Cid1 and in the resolution of diffraction by ∼1.5 Å. These advances have allowed high-resolution crystallo@@graphic studies of this TUT system to be initiated

  18. Size-affected single-slip behavior of René N5 microcrystals

    International Nuclear Information System (INIS)

    Shade, P.A.; Uchic, M.D.; Dimiduk, D.M.; Viswanathan, G.B.; Wheeler, R.; Fraser, H.L.

    2012-01-01

    Highlights: ► Microcompression testing was conducted on the single crystal superalloy René N5. ► All microcrystals exhibited size-affected plastic flow. ► Dendrite core microcrystals were stronger than those from interdendritic regions. - Abstract: Microcompression testing was conducted on the cast single crystal nickel-base superalloy René N5. Microcrystals were selectively fabricated from either dendrite core or interdendritic regions. The compression axis was oriented for single-slip deformation and microcrystal diameters ranged from 2.5 to 80 μm. All microcrystals displayed several hallmarks of size-affected plastic flow, including a size-affected and stochastic flow-stress and initial strain hardening rate, as well as an intermittent flow response. The magnitude of size-affected flow-stress scaling behavior was dependent upon the plastic strain level of the flow-stress measurement, with increasing size-dependence for increasing strain levels. TEM analysis demonstrated the activation of multiple slip-systems, despite the microcrystals being oriented for single-slip deformation. Zig-zag slip was also observed in microcrystals that achieved flow stresses of ∼1300 MPa or higher. For microcrystals fabricated within interdendritic regions the flow-stress values are, on average, lower compared to dendrite core microcrystals. This difference in flow-stress is especially pronounced for microcrystals which are 5 μm in diameter. The microcrystal diameter for which bulk-like properties are estimated to be observed is approximately 350 μm, which is approaching the measured primary dendrite arm spacing for this crystal (430 μm).

  19. Size-affected single-slip behavior of Rene N5 microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shade, P.A., E-mail: paul.shade@wpafb.af.mil [Department of Materials Science and Engineering, Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210 (United States); Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 10th Street, Wright-Patterson AFB, OH 45433 (United States); Uchic, M.D.; Dimiduk, D.M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, 2230 10th Street, Wright-Patterson AFB, OH 45433 (United States); Viswanathan, G.B.; Wheeler, R. [UES Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432 (United States); Fraser, H.L. [Department of Materials Science and Engineering, Ohio State University, 477 Watts Hall, 2041 College Road, Columbus, OH 43210 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microcompression testing was conducted on the single crystal superalloy Rene N5. Black-Right-Pointing-Pointer All microcrystals exhibited size-affected plastic flow. Black-Right-Pointing-Pointer Dendrite core microcrystals were stronger than those from interdendritic regions. - Abstract: Microcompression testing was conducted on the cast single crystal nickel-base superalloy Rene N5. Microcrystals were selectively fabricated from either dendrite core or interdendritic regions. The compression axis was oriented for single-slip deformation and microcrystal diameters ranged from 2.5 to 80 {mu}m. All microcrystals displayed several hallmarks of size-affected plastic flow, including a size-affected and stochastic flow-stress and initial strain hardening rate, as well as an intermittent flow response. The magnitude of size-affected flow-stress scaling behavior was dependent upon the plastic strain level of the flow-stress measurement, with increasing size-dependence for increasing strain levels. TEM analysis demonstrated the activation of multiple slip-systems, despite the microcrystals being oriented for single-slip deformation. Zig-zag slip was also observed in microcrystals that achieved flow stresses of {approx}1300 MPa or higher. For microcrystals fabricated within interdendritic regions the flow-stress values are, on average, lower compared to dendrite core microcrystals. This difference in flow-stress is especially pronounced for microcrystals which are 5 {mu}m in diameter. The microcrystal diameter for which bulk-like properties are estimated to be observed is approximately 350 {mu}m, which is approaching the measured primary dendrite arm spacing for this crystal (430 {mu}m).

  20. Coherent diffractive imaging of solid state reactions in zinc oxide crystals

    Science.gov (United States)

    Leake, Steven J.; Harder, Ross; Robinson, Ian K.

    2011-11-01

    We investigated the doping of zinc oxide (ZnO) microcrystals with iron and nickel via in situ coherent x-ray diffractive imaging (CXDI) in vacuum. Evaporated thin metal films were deposited onto the ZnO microcrystals. A single crystal was selected and tracked through annealing cycles. A solid state reaction was observed in both iron and nickel experiments using CXDI. A combination of the shrink wrap and guided hybrid-input-output phasing methods were applied to retrieve the electron density. The resolution was 33 nm (half order) determined via the phase retrieval transfer function. The resulting images are nevertheless sensitive to sub-angstrom displacements. The exterior of the microcrystal was found to degrade dramatically. The annealing of ZnO microcrystals coated with metal thin films proved an unsuitable doping method. In addition the observed defect structure of one crystal was attributed to the presence of an array of defects and was found to change upon annealing.

  1. Luminescent properties of BaCl2-Eu microcrystals embedded in a CsI matrix

    International Nuclear Information System (INIS)

    Pushak, A.; Vistovskyy, V.; Voloshinovskii, A.; Savchyn, P.; Antonyak, O.; Demkiv, T.; Dacyuk, Yu.; Myagkota, S.; Gektin, A.

    2013-01-01

    The spectral-luminescent properties of CsI-BaCl 2 (1 mol%)-Eu(0.02 mol%) crystalline system are studied. Europium ion doped BaCl 2 microcrystals embedded in a CsI matrix are revealed on CsI-BaCl 2 (1 mol%)-Eu(0.02 mol%) freshly cleaved surface by the scanning electron microscopy. The size of microcrystals is shown to be within 0.5–5 microns. The luminescent parameters of the BaCl 2 -Eu 2+ microcrystals are shown to be similar to ones of a single crystal analogue. The 4f → 5d absorption transitions in europium ions and the reabsorption of the intrinsic emission of the CsI host are the main excitation mechanisms of europium luminescence in the BaCl 2 microcrystals. -- Highlights: ► The formation of chloride BaCl 2 :Eu microcrystals in the case of BaCl 2 doped CsI crystal has been revealed. ► The observed size of microcrystals at BaCl 2 concentration of 1% is about 0.5–5 μm. ► Majority of Eu 2+ ions in CsI-BaCl 2 -EuCl 3 crystalline system enters into BaCl 2 microcrystals. ► The luminescent parameters of the BaCl 2 :Eu 2+ microcrystals and its bulk analogue are similar

  2. Diarylethene microcrystals make directional jumps upon ultraviolet irradiation

    International Nuclear Information System (INIS)

    Colombier, I.; Spagnoli, S.; Corval, A.; Baldeck, P. L.; Giraud, M.; Leaustic, A.; Yu, P.; Irie, M.

    2007-01-01

    Microcrystals of a diarylethene {1,2-bis[5 ' -methyl-2 ' -(2 '' -pyridyl)thiazolyl]perfluorocyclo-pentene } undergo jumps upon photoirradiation. These photochromic crystals present molecular structural changes upon irradiation with ultraviolet light because of reversible photocyclization reactions. When the energy absorbed by crystals reaches about 10 μJ, the uniaxial stress induced in the crystal lattice relaxes through directional jumps. If one prevents crystals from jumping, then parallel, equidistant cracks appear on crystal surfaces. These photomechanical effects could result from a Grinfeld surface instability

  3. In{sub 2}O{sub 3} microcrystals obtained from rapid calcination in domestic microwave oven

    Energy Technology Data Exchange (ETDEWEB)

    Motta, F.V., E-mail: fabiana@liec.ufscar.br [LIEC, IQ, UNESP, Rua Francisco Degni s/n, CEP 14801-907 Araraquara, SP (Brazil); Lima, R.C. [IQ, UFU, Av. Joao Naves de Avila, 2121, CEP 38400-902 Uberlandia, MG (Brazil); Marques, A.P.A.; Leite, E.R. [LIEC, DQ, UFSCar, Via Washington Luiz, km 235, CEP 13565-905 Sao Carlos, SP (Brazil); Varela, J.A.; Longo, E. [LIEC, IQ, UNESP, Rua Francisco Degni s/n, CEP 14801-907 Araraquara, SP (Brazil)

    2010-11-15

    The simple way to prepare In{sub 2}O{sub 3} microcrystals is reported in this paper. The precursor, In(OH){sub 3} microstructures, were obtained using the Microwave-Assisted Hydrothermal (MAH) Method. By annealing as-prepared In(OH){sub 3} precursor at 500 {sup o}C for 5 min in a domestic microwave oven (MO), In{sub 2}O{sub 3} microcrystals were prepared, inheriting the morphology of their precursor while still slightly distorted and collapsed due to the In(OH){sub 3} dehydration process which was studied by thermal analysis. The In(OH){sub 3} and In{sub 2}O{sub 3} were characterized using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and Raman spectroscopy. These techniques confirm the chemical dehydration of In(OH){sub 3} and the formation of In{sub 2}O{sub 3} powders. The domestic MO promotes a rapid structural organization as compared with a CF (conventional furnace). The MAH method and the subsequent annealing in a domestic MO were shown to be a low cost route for the production of In{sub 2}O{sub 3}, with the advantages of lower temperature and smaller time.

  4. Crystallization and preliminary electron diffraction study to 3. 7 A of DNA helix-destabilizing protein gp32*I

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, W; Hosoda, J

    1978-01-01

    A two-dimensionally large and thin crystal has been obtained from gp32*I, a proteolytically digested product of a DNA helix-destabilizing protein coded by gene 32 in bacteriophage T4. High-resolution electron diffraction patterns (approx. 3.7 A) are recorded from both unstained and stained protein crystals embedded in glucose. The crystal is of orthorhombic space group with a = 62.9 A and b = 47.3 A.

  5. Controlled synthesis and photoluminescence properties of In{sub 2}O{sub 3} rods with dodecahedron In{sub 2}O{sub 3} microcrystals on top

    Energy Technology Data Exchange (ETDEWEB)

    Ouacha, Hassan [King Abdullah Institute for Nanotechnology, King Saud University, Riyadh (Saudi Arabia); Hendaoui, Ali [Department of Physics, College of Science and General Studies, Alfaisal University, Riyadh (Saudi Arabia); Kleineberg, Ulf [Faculty of Physics, Ludwig Maximilian University of Munich, Garching (Germany); Albrithen, Hamad; Azzeer, Abdallah [Physics and Astronomy Department, King Saud University, Riyadh (Saudi Arabia)

    2017-10-15

    In{sub 2}O{sub 3} rods with dodecahedron In{sub 2}O{sub 3} microcrystals on top were synthesized in an electrical furnace via Au-catalyzed vapor transport process. A catalyst-assisted selective vapor-solid (VS) growth was proposed to explain the formation of the dodecahedron In{sub 2}O{sub 3} microcrystal, while the self-catalytic VS growth mechanism dominated the subsequent one-dimensional (1D) growth of the In{sub 2}O{sub 3} rod underneath the In{sub 2}O{sub 3} microcrystal. The structural evolution of these structures was carefully examined during the synthesis process by controlling the growth parameters. The morphologies, crystalline structures and surface chemistry were characterized by scanning electron microscopy (SEM), X-ray diffraction technique (XRD), and X-ray photoelectron spectroscopy (XPS), respectively. The photoluminescence (PL) spectrum at room temperature of the as-grown In{sub 2}O{sub 3} structures exhibited both UV and blue luminescence emission under one excitation at 260 nm, which may be related to the existence of oxygen vacancies. The synthesized multifaceted In{sub 2}O{sub 3} microcrystal has shown to contain a large number of vertices and may find many applications in developing three-dimensional (3D) resonators. This work will not only enrich the synthesis science but also will open doors for applications of such structures in optical devices. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. High-resolution diffraction from crystals of a membrane-protein complex: bacterial outer membrane protein OmpC complexed with the antibacterial eukaryotic protein lactoferrin

    International Nuclear Information System (INIS)

    Sundara Baalaji, N.; Acharya, K. Ravi; Singh, T. P.; Krishnaswamy, S.

    2005-01-01

    Crystals of the complex formed between the bacterial membrane protein OmpC and the antibacterial protein lactoferrin suitable for high-resolution structure determination have been obtained. The crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å. Crystals of the complex formed between the outer membrane protein OmpC from Escherichia coli and the eukaryotic antibacterial protein lactoferrin from Camelus dromedarius (camel) have been obtained using a detergent environment. Initial data processing suggests that the crystals belong to the hexagonal space group P6, with unit-cell parameters a = b = 116.3, c = 152.4 Å, α = β = 90, γ = 120°. This indicated a Matthews coefficient (V M ) of 3.3 Å 3 Da −1 , corresponding to a possible molecular complex involving four molecules of lactoferrin and two porin trimers in the unit cell (4832 amino acids; 533.8 kDa) with 63% solvent content. A complete set of diffraction data was collected to 3 Å resolution at 100 K. Structure determination by molecular replacement is in progress. Structural study of this first surface-exposed membrane-protein complex with an antibacterial protein will provide insights into the mechanism of action of OmpC as well as lactoferrin

  7. Preparation and characterization of gold nanocrystals and nanomultilayer mirrors for X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Slieh, Jawad

    2009-03-01

    In order to make possible studies on the dynamics of protein molecules in their natural environment Sasaki has developed in the last years a new X-ray diffraction procedure. In this procedure, which is called dynamical X-ray tracking (DXT), the diffraction occurs not directly on the protein molecule, but on a nanomirror rigidly bound to the protein molecule. Measured is hereby the time variation od the alignment of the nanocrystal, which is determined by means of the position of the Laue-diffraction points. By means of these position variations statements on structure variations of the studied protein can be derived with a high spatial accuracy in the time domain. The scientific aim of this thesis is the construction of a DXT measuring place as well as the preparation of the requireds nanocrystalline X-ray diffracting protein labels including their characterization. First a short survey about the foundations of the X radiation and their interactions with matter, especially under regardment of X-ray diffraction on crystals, is given. The measuring methods for the determination of the crystal alignment as well as the vertical and lateral crystal size are presented. In the following chapter a comprehensive survey about the different devices and analysis methods used for the fabrication and characterization of gold crystals is presented. Additionally with precise technical statements the self-constructed MBE apparature is described. This apparature has the purpose to fabricate gold nanocrystals by means of the molecular-beam-epitaxy (MBE) procedure. In the fourth chapter the construction of the DXT laboratory are presented and its beam profile in the focus, its divergence, and its beam spectrum determined. Based on this in the fifth chapter the study of the radiation damage of 2 cysteine-peroxyredoxine (2CP) proteins and the detection of this radiation damage without Au colloids and with Au colloids are presented. The main content of the sixth chapter is the precise

  8. Cloning, recombinant production, crystallization and preliminary X-ray diffraction analysis of SDF2-like protein from Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Radzimanowski, Jens; Ravaud, Stephanie; Schott, Andrea; Strahl, Sabine; Sinning, Irmgard

    2009-01-01

    Overexpression, purification, crystallization and preliminary X-ray diffraction of the stromal-cell-derived factor 2-like protein of Arabidopsis thaliana are reported. The crystals belonged to the space group P6 1 and diffracted to 1.95 Å resolution. The stromal-cell-derived factor 2-like protein of Arabidopsis thaliana (AtSDL) has been shown to be highly up-regulated in response to unfolded protein response (UPR) inducing reagents, suggesting that it plays a crucial role in the plant UPR pathway. AtSDL has been cloned, overexpressed, purified and crystallized using the vapour-diffusion method. Two crystal forms have been obtained under very similar conditions. The needle-shaped crystals did not diffract X-rays, while the other form diffracted to 1.95 Å resolution using a synchrotron-radiation source and belonged to the hexagonal space group P6 1 , with unit-cell parameters a = b = 96.1, c = 69.3 Å

  9. Purification, crystallization and preliminary X-ray diffraction study of human ribosomal protein L10 core domain

    International Nuclear Information System (INIS)

    Nishimura, Mitsuhiro; Kaminishi, Tatsuya; Kawazoe, Masahito; Shirouzu, Mikako; Takemoto, Chie; Yokoyama, Shigeyuki; Tanaka, Akiko; Sugano, Sumio; Yoshida, Takuya; Ohkubo, Tadayasu; Kobayashi, Yuji

    2007-01-01

    A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to space group P3 1 21 or P3 2 21

  10. Crystallization and preliminary X-ray diffraction analysis of protein 14 from Sulfolobus islandicus filamentous virus (SIFV)

    International Nuclear Information System (INIS)

    Goulet, Adeline; Spinelli, Silvia; Campanacci, Valérie; Porciero, Sophie; Blangy, Stéphanie; Garrett, Roger A.; Tilbeurgh, Herman van; Leulliot, Nicolas; Basta, Tamara; Prangishvili, David; Cambillau, Christian

    2006-01-01

    Crystals of S. islandicus filamentous virus (SIFV) protein 14 have been grown at 293 K. Crystals belong to space group P6 2 22 or P6 4 22 and diffract to a resolution of 2.95 Å. A large-scale programme has been embarked upon aiming towards the structural determination of conserved proteins from viruses infecting hyperthermophilic archaea. Here, the crystallization of protein 14 from the archaeal virus SIFV is reported. This protein, which contains 111 residues (MW 13 465 Da), was cloned and expressed in Escherichia coli with an N-terminal His 6 tag and purified to homogeneity. The tag was subsequently cleaved and the protein was crystallized using PEG 1000 or PEG 4000 as a precipitant. Large crystals were obtained of the native and the selenomethionine-labelled protein using sitting drops of 100–300 nl. Crystals belong to space group P6 2 22 or P6 4 22, with unit-cell parameters a = b = 68.1, c = 132.4 Å. Diffraction data were collected to a maximum acceptable resolution of 2.95 and 3.20 Å for the SeMet-labelled and native protein, respectively

  11. Simultaneous Femtosecond X-ray Spectroscopy and Diffraction of Photosystem II at Room Temperature

    Science.gov (United States)

    Kern, Jan; Alonso-Mori, Roberto; Tran, Rosalie; Hattne, Johan; Gildea, Richard J.; Echols, Nathaniel; Glöckner, Carina; Hellmich, Julia; Laksmono, Hartawan; Sierra, Raymond G.; Lassalle-Kaiser, Benedikt; Koroidov, Sergey; Lampe, Alyssa; Han, Guangye; Gul, Sheraz; DiFiore, Dörte; Milathianaki, Despina; Fry, Alan R.; Miahnahri, Alan; Schafer, Donald W.; Messerschmidt, Marc; Seibert, M. Marvin; Koglin, Jason E.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Sellberg, Jonas; Latimer, Matthew J.; Grosse-Kunstleve, Ralf W.; Zwart, Petrus H.; White, William E.; Glatzel, Pieter; Adams, Paul D.; Bogan, Michael J.; Williams, Garth J.; Boutet, Sébastien; Messinger, Johannes; Zouni, Athina; Sauter, Nicholas K.; Yachandra, Vittal K.; Bergmann, Uwe; Yano, Junko

    2013-01-01

    Intense femtosecond X-ray pulses produced at the Linac Coherent Light Source (LCLS) were used for simultaneous X-ray diffraction (XRD) and X-ray emission spectroscopy (XES) of microcrystals of Photosystem II (PS II) at room temperature. This method probes the overall protein structure and the electronic structure of the Mn4CaO5 cluster in the oxygen-evolving complex of PS II. XRD data are presented from both the dark state (S1) and the first illuminated state (S2) of PS II. Our simultaneous XRD/XES study shows that the PS II crystals are intact during our measurements at the LCLS, not only with respect to the structure of PS II, but also with regard to the electronic structure of the highly radiation sensitive Mn4CaO5 cluster, opening new directions for future dynamics studies. PMID:23413188

  12. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  13. Femtosecond X-ray diffraction from an aerosolized beam of protein nanocrystals.

    Science.gov (United States)

    Awel, Salah; Kirian, Richard A; Wiedorn, Max O; Beyerlein, Kenneth R; Roth, Nils; Horke, Daniel A; Oberthür, Dominik; Knoska, Juraj; Mariani, Valerio; Morgan, Andrew; Adriano, Luigi; Tolstikova, Alexandra; Xavier, P Lourdu; Yefanov, Oleksandr; Aquila, Andrew; Barty, Anton; Roy-Chowdhury, Shatabdi; Hunter, Mark S; James, Daniel; Robinson, Joseph S; Weierstall, Uwe; Rode, Andrei V; Bajt, Saša; Küpper, Jochen; Chapman, Henry N

    2018-02-01

    High-resolution Bragg diffraction from aerosolized single granulovirus nanocrystals using an X-ray free-electron laser is demonstrated. The outer dimensions of the in-vacuum aerosol injector components are identical to conventional liquid-microjet nozzles used in serial diffraction experiments, which allows the injector to be utilized with standard mountings. As compared with liquid-jet injection, the X-ray scattering background is reduced by several orders of magnitude by the use of helium carrier gas rather than liquid. Such reduction is required for diffraction measurements of small macromolecular nanocrystals and single particles. High particle speeds are achieved, making the approach suitable for use at upcoming high-repetition-rate facilities.

  14. Performance characteristics needed for protein crystal diffraction x-ray detectors

    International Nuclear Information System (INIS)

    Westbrook, E. M.

    1999-01-01

    During the 1990's, macromolecular crystallography became progressively more dependent on synchrotrons X-ray sources for diffraction data collection. Detectors of this diffraction data at synchrotrons beamlines have evolved over the decade, from film to image phosphor plates, and then to CCD systems. These changes have been driven by the data quality and quantity improvements each newer detector technology provided. The improvements have been significant. It is likely that newer detector technologies will be adopted at synchrotron beamlines for crystallographic diffraction data collection in the future, but these technologies will have to compete with existing CCD detector systems which are already excellent and are getting incrementally better in terms of size, speed, efficiency, and resolving power. Detector development for this application at synchrotrons must concentrate on making systems which are bigger and faster than CCDs and which can capture weak data more efficiently. And there is a need for excellent detectors which are less expensive than CCD systems

  15. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Science.gov (United States)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection. PMID:23999307

  16. Monitoring protein precipitates by in-house X-ray powder diffraction

    DEFF Research Database (Denmark)

    Ståhl, Kenny; Frankær, Christian Grundahl; Petersen, Jakob

    2013-01-01

    of such calculated powder patterns from insulin and lysozyme have been included in the powder diffraction database and successfully used for search-match identification. However, the fit could be much improved if peak asymmetry and multiple bulk-solvent corrections were included. When including a large number...

  17. Crystallization and preliminary X-ray diffraction analysis of a specific VHH domain against mouse prion protein

    International Nuclear Information System (INIS)

    Abskharon, Romany N. N.; Soror, Sameh H.; Pardon, Els; El Hassan, Hassan; Legname, Giuseppe; Steyaert, Jan; Wohlkonig, Alexandre

    2010-01-01

    The crystallization of a specific nanobody against mouse PrP C and preliminary diffraction analysis of a crystal that diffracted to 1.23 Å resolution are presented. Prion disorders are infectious diseases that are characterized by the conversion of the cellular prion protein PrP C into the pathogenic isoform PrP Sc . Specific antibodies that interact with the cellular prion protein have been shown to inhibit this transition. Recombinant VHHs (variable domain of dromedary heavy-chain antibodies) or nanobodies are single-domain antibodies, making them the smallest antigen-binding fragments. A specific nanobody (Nb-PrP-01) was raised against mouse PrP C . A crystallization condition for this recombinant nanobody was identified using high-throughput screening. The crystals were optimized using streak-seeding and the hanging-drop method. The crystals belonged to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 30.04, b = 37.15, c = 83.00 Å, and diffracted to 1.23 Å resolution using synchrotron radiation. The crystal structure of this specific nanobody against PrP C together with the known PrP C structure may help in understanding the PrP C /PrP Sc transition mechanism

  18. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    International Nuclear Information System (INIS)

    Schneider, Sabine; Paoli, Massimo

    2005-01-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding

  19. Crystallization and preliminary X-ray diffraction analysis of the haem-binding protein HemS from Yersinia enterocolitica

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Sabine; Paoli, Massimo, E-mail: max.paoli@nottingham.ac.uk [School of Pharmacy and Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2005-08-01

    The haem binding protein HemS from Y. enterocolitica has been crystallized in complex with its ligand. The crystals diffracted X-rays to 2.6 Å in-house. Bacteria have evolved strategies to acquire iron from their environment. Pathogenic microbes rely on specialized proteins to ‘steal’ haem from their host and use it as an iron source. HemS is the ultimate recipient of a molecular-relay system for haem uptake in Gram-negative species, functioning as the cytosolic carrier of haem. Soluble expression and high-quality diffraction crystals were obtained for HemS from Yersinia enterocolitica. Crystals belong to the orthorhombic space group I222, with unit-cell parameters a = 74.86, b = 77.45, c = 114.09 Å, and diffract X-rays to 2.6 Å spacing in-house. Determination of the structure of the haem–HemS complex will reveal the molecular basis of haem binding.

  20. Overproduction, purification, crystallization and preliminary X-ray diffraction analysis of Cockayne syndrome protein A in complex with DNA damage-binding protein 1

    International Nuclear Information System (INIS)

    Meulenbroek, Elisabeth M.; Pannu, Navraj S.

    2011-01-01

    Human Cockayne syndrome protein A has been cocrystallized with human DNA damage-binding protein 1 and data have been collected to 2.9 Å resolution. Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents. The crystals had unit-cell parameters a = b = 142.03, c = 250.19 Å and diffracted to 2.9 Å resolution on beamline ID14-1 at the European Synchrotron Radiation Facility

  1. Purification, isolation, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Popov, V. O.

    2017-11-01

    The spatial organization of the genome is controlled by a special class of architectural proteins, including proteins containing BTB domains that are able to dimerize or multimerize. The centrosomal protein 190 is one of such architectural proteins. The purification, crystallization, and preliminary X-ray diffraction study of the BTB domain of the centrosomal protein 190 are reported. The crystallization conditions were found by the vapor-diffusion technique. The crystals diffracted to 1.5 Å resolution and belonged to sp. gr. P3221. The structure was solved by the molecular replacement method. The structure refinement is currently underway.

  2. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.

    Science.gov (United States)

    Owen, Robin L; Yorke, Briony A; Pearson, Arwen R

    2012-05-01

    During X-ray irradiation protein crystals radiate energy in the form of small amounts of visible light. This is known as X-ray-excited optical luminescence (XEOL). The XEOL of several proteins and their constituent amino acids has been characterized using the microspectrophotometers at the Swiss Light Source and Diamond Light Source. XEOL arises primarily from aromatic amino acids, but the effects of local environment and quenching within a crystal mean that the XEOL spectrum of a crystal is not the simple sum of the spectra of its constituent parts. Upon repeated exposure to X-rays XEOL spectra decay non-uniformly, suggesting that XEOL is sensitive to site-specific radiation damage. However, rates of XEOL decay were found not to correlate to decays in diffracting power, making XEOL of limited use as a metric for radiation damage to protein crystals. © 2012 International Union of Crystallography

  3. Super-resolution imaging and tracking of protein–protein interactions in sub-diffraction cellular space

    Science.gov (United States)

    Liu, Zhen; Xing, Dong; Su, Qian Peter; Zhu, Yun; Zhang, Jiamei; Kong, Xinyu; Xue, Boxin; Wang, Sheng; Sun, Hao; Tao, Yile; Sun, Yujie

    2014-01-01

    Imaging the location and dynamics of individual interacting protein pairs is essential but often difficult because of the fluorescent background from other paired and non-paired molecules, particularly in the sub-diffraction cellular space. Here we develop a new method combining bimolecular fluorescence complementation and photoactivated localization microscopy for super-resolution imaging and single-molecule tracking of specific protein–protein interactions. The method is used to study the interaction of two abundant proteins, MreB and EF-Tu, in Escherichia coli cells. The super-resolution imaging shows interesting distribution and domain sizes of interacting MreB–EF-Tu pairs as a subpopulation of total EF-Tu. The single-molecule tracking of MreB, EF-Tu and MreB–EF-Tu pairs reveals intriguing localization-dependent heterogonous dynamics and provides valuable insights to understanding the roles of MreB–EF-Tu interactions. PMID:25030837

  4. Crystallization and preliminary X-ray diffraction analysis of central structure domains from mumps virus F protein

    International Nuclear Information System (INIS)

    Liu, Yueyong; Xu, Yanhui; Zhu, Jieqing; Qiu, Bingsheng; Rao, Zihe; Gao, George F.; Tien, Po

    2005-01-01

    Single crystals of the central structure domains from mumps virus F protein have been obtained by the hanging-drop vapour-diffusion method. A diffraction data set has been collected to 2.2 Å resolution. Fusion of members of the Paramyxoviridae family involves two glycoproteins: the attachment protein and the fusion protein. Changes in the fusion-protein conformation were caused by binding of the attachment protein to the cellular receptor. In the membrane-fusion process, two highly conserved heptad-repeat (HR) regions, HR1 and HR2, are believed to form a stable six-helix coiled-coil bundle. However, no crystal structure has yet been determined for this state in the mumps virus (MuV, a member of the Paramyxoviridae family). In this study, a single-chain protein consisting of two HR regions connected by a flexible amino-acid linker (named 2-Helix) was expressed, purified and crystallized by the hanging-drop vapour-diffusion method. A complete X-ray data set was obtained in-house to 2.2 Å resolution from a single crystal. The crystal belongs to space group C2, with unit-cell parameters a = 161.2, b = 60.8, c = 40.1 Å, β = 98.4°. The crystal structure will help in understanding the molecular mechanism of Paramyxoviridae family membrane fusion

  5. Protein crystal growth on board Shenzhou 3: a concerted effort improves crystal diffraction quality and facilitates structure determination

    International Nuclear Information System (INIS)

    Han, Y.; Cang, H.-X.; Zhou, J.-X.; Wang, Y.-P.; Bi, R.-C.; Colelesage, J.; Delbaere, L.T.J.; Nahoum, V.; Shi, R.; Zhou, M.; Zhu, D.-W.; Lin, S.-X.

    2004-01-01

    The crystallization of 16 proteins was carried out using 60 wells on board Shenzhou 3 in 2002. Although the mission was only 7 days, careful and concerted planning at all stages made it possible to obtain crystals of improved quality compared to their ground controls for some of the proteins. Significantly improved resolutions were obtained from diffracted crystals of 4 proteins. A complete data set from a space crystal of the PEP carboxykinase yielded significantly higher resolution (1.46 A vs. 1.87 A), I/sigma (22.4 vs. 15.5), and a lower average temperature factor (29.2 A 2 vs. 42.9 A 2 ) than the best ground-based control crystal. The 3-D structure of the enzyme is well improved with significant ligand density. It has been postulated that the reduced convection and absence of macromolecule sedimentation under microgravity have advantages/benefits for protein crystal growth. Improvements in experimental design for protein crystal growth in microgravity are ongoing

  6. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    International Nuclear Information System (INIS)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi

    2013-01-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection

  7. Humidity control and hydrophilic glue coating applied to mounted protein crystals improves X-ray diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Seiki; Hoshino, Takeshi; Ito, Len; Kumasaka, Takashi, E-mail: kumasaka@spring8.or.jp [Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-09-01

    A new crystal-mounting method has been developed that involves a combination of controlled humid air and polymer glue for crystal coating. This method is particularly useful when applied to fragile protein crystals that are known to be sensitive to subtle changes in their physicochemical environment. Protein crystals are fragile, and it is sometimes difficult to find conditions suitable for handling and cryocooling the crystals before conducting X-ray diffraction experiments. To overcome this issue, a protein crystal-mounting method has been developed that involves a water-soluble polymer and controlled humid air that can adjust the moisture content of a mounted crystal. By coating crystals with polymer glue and exposing them to controlled humid air, the crystals were stable at room temperature and were cryocooled under optimized humidity. Moreover, the glue-coated crystals reproducibly showed gradual transformations of their lattice constants in response to a change in humidity; thus, using this method, a series of isomorphous crystals can be prepared. This technique is valuable when working on fragile protein crystals, including membrane proteins, and will also be useful for multi-crystal data collection.

  8. Crystallization and preliminary X-ray diffraction analysis of YisP protein from Bacillus subtilis subsp. subtilis strain 168

    International Nuclear Information System (INIS)

    Hu, Yumei; Jia, Shiru; Ren, Feifei; Huang, Chun-Hsiang; Ko, Tzu-Ping; Mitchell, Douglas A.; Guo, Rey-Ting; Zheng, Yingying

    2012-01-01

    A bacteria biofilm formation involved enzyme, BsYisP, from Bacillus subtilis subsp. subtilis strain 168, was crystallized and diffracted to 1.92 Å. YisP is an enzyme involved in the pathway of biofilm formation in bacteria and is predicted to possess squalene synthase activity. A BlastP search using the YisP protein sequence from Bacillus subtilis subsp. subtilis strain 168 shows that it shares 23% identity with the dehydrosqualene synthase from Staphylococcus aureus. The YisP from B. subtilis 168 was expressed in Escherichia coli and the recombinant protein was purified and crystallized. The crystals, which belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 43.966, b = 77.576, c = 91.378 Å, were obtained by the sitting-drop vapour-diffusion method and diffracted to 1.92 Å resolution. Structure determination using MAD and MIR methods is in progress

  9. Simulation of modulated protein crystal structure and diffraction data in a supercell and in superspace

    Czech Academy of Sciences Publication Activity Database

    Lovelace, J.J.; Simone, P.D.; Petříček, Václav; Borgstahl, G.E.O.

    2013-01-01

    Roč. 69, Part 6 (2013), 1062-1072 ISSN 0907-4449 Institutional support: RVO:68378271 Keywords : protein crystallograhy * superspace approach * incommensurately modulated structures Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.232, year: 2013

  10. Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data

    Directory of Open Access Journals (Sweden)

    Karol Nass

    2016-05-01

    Full Text Available Serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs offers unprecedented possibilities for macromolecular structure determination of systems that are prone to radiation damage. However, phasing XFEL data de novo is complicated by the inherent inaccuracy of SFX data, and only a few successful examples, mostly based on exceedingly strong anomalous or isomorphous difference signals, have been reported. Here, it is shown that SFX data from thaumatin microcrystals can be successfully phased using only the weak anomalous scattering from the endogenous S atoms. Moreover, a step-by-step investigation is presented of the particular problems of SAD phasing of SFX data, analysing data from a derivative with a strong anomalous signal as well as the weak signal from endogenous S atoms.

  11. Hydrothermal synthesis of controllable size, morphology and optical properties of β-NaGdF{sub 4}: Eu{sup 3+} microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Ting; Jiang, Xiaojiao [College of Chemistry and Materials Science, Sichuan Normal University, No. 5 Jing' an Road, Jinjiang District, Chengdu 610068 (China); Zhong, Cheng [Department of Basic Education, Dazhou Vocational and Technical College, No. 448 Xu' jiaba Road, Tongchuan District, Dazhou 635001 (China); Tang, Xiaoxue; Ren, Shanshan; Zhao, Yan; Liu, Mengjiao; Lai, Xin; Bi, Jian [College of Chemistry and Materials Science, Sichuan Normal University, No. 5 Jing' an Road, Jinjiang District, Chengdu 610068 (China); Gao, Daojiang, E-mail: daojianggao@126.com [College of Chemistry and Materials Science, Sichuan Normal University, No. 5 Jing' an Road, Jinjiang District, Chengdu 610068 (China)

    2016-07-15

    Eu{sup 3+}-doped β-NaGdF{sub 4} (hexagonal NaGdF{sub 4}) microcrystals with various sizes and morphologies have been prepared via a facile hydrothermal route with and without trisodium citrate (Na{sub 3}Cit) under different Ln{sup 3+}/NaF (Ln=Gd, Eu) molar ratios and pH values. The microstructures and luminescence properties of the as-synthesized microcrystals were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence (PL) spectroscopy. Moreover, the photoluminescent properties of Eu{sup 3+}-doped β-NaGdF{sub 4} samples synthesized at different pH values were systematically discussed. As a result, monodisperse and uniform spherical and rod-like crystals were successfully synthesized by varying Ln{sup 3+}/NaF molar ratio, Ln{sup 3+}/Na{sub 3}Cit molar ratio and pH value, and the obtained feasible range of pH value is 8–11, the optimal molar ratios of Ln{sup 3+}/NaF and Ln{sup 3+}/Na{sub 3}Cit are 1:6 and 1:3, respectively. Our results show that there is an energy transfer process between the host and activator ions, emissions from high energy configurations to ground state are gradually quenched in the β-NaGdF{sub 4}: Eu{sup 3+} phosphors obtained in the strong alkaline solution. In addition, pure orange-red photoluminescent color can be obtained from β-NaGdF{sub 4}: 2 mol% Eu{sup 3+} phosphors synthesized under the obtained processing conditions. - Highlights: • A facile hydrothermal technique is used to prepare β-NaGdF{sub 4}: Eu{sup 3+} microcrystals. • Phosphors with higher performance can be obtained in proper hydrothermal conditions. • The as-synthesized β-NaGdF{sub 4}: Eu{sup 3+} microcrystals can exhibit orange-red emissions.

  12. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Rafael [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain); González, Ana; Moscoso, Miriam; García, Pedro [Departamento de Microbiología Molecular, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid (Spain); Stelter, Meike; Kahn, Richard [Institut de Biologie Structurale J.-P. Ebel CEA CNRS UJF, Laboratoire de Cristallographie Macromoléculaire, 41 Rue Jules Horowitz, 38027 Grenoble CEDEX 1 (France); Hermoso, Juan A., E-mail: xjuan@iqfr.csic.es [Grupo de Cristalografía Macromolecular y Biología Estructural, Instituto Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid (Spain)

    2007-09-01

    The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-quality orthorhombic crystals belong to space group P2{sub 1}2{sub 1}2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L{sub III} absorption edge using synchrotron radiation.

  13. Crystallization and preliminary X-ray diffraction studies of choline-binding protein F from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Molina, Rafael; González, Ana; Moscoso, Miriam; García, Pedro; Stelter, Meike; Kahn, Richard; Hermoso, Juan A.

    2007-01-01

    The modular choline-binding protein F (CbpF) from S. pneumoniae has been crystallized by the hanging-drop vapour-diffusion method. A SAD data set from a gadolinium-complex derivative has been collected to 2.1 Å resolution. Choline-binding protein F (CbpF) is a modular protein that is bound to the pneumococcal cell wall through noncovalent interactions with choline moieties of the bacterial teichoic and lipoteichoic acids. Despite being one of the more abundant proteins on the surface, along with the murein hydrolases LytA, LytB, LytC and Pce, its function is still unknown. CbpF has been crystallized using the hanging-drop vapour-diffusion method at 291 K. Diffraction-quality orthorhombic crystals belong to space group P2 1 2 1 2, with unit-cell parameters a = 49.13, b = 114.94, c = 75.69 Å. A SAD data set from a Gd-HPDO3A-derivatized CbpF crystal was collected to 2.1 Å resolution at the gadolinium L III absorption edge using synchrotron radiation

  14. Preliminary small-angle X-ray scattering and X-ray diffraction studies of the BTB domain of lola protein from Drosophila melanogaster

    Science.gov (United States)

    Boyko, K. M.; Nikolaeva, A. Yu.; Kachalova, G. S.; Bonchuk, A. N.; Dorovatovskii, P. V.; Popov, V. O.

    2017-11-01

    The Drosophila genome has several dozens of transcription factors (TTK group) containing BTB domains assembled into octamers. The LOLA protein belongs to this family. The purification, crystallization, and preliminary X-ray diffraction and small-angle X-ray scattering (SAXS) studies of the BTB domain of this protein are reported. The crystallization conditions were found by the vapor-diffusion technique. A very low diffraction resolution (8.7 Å resolution) of the crystals was insufficient for the determination of the threedimensional structure of the BTB domain. The SAXS study demonstrated that the BTB domain of the LOLA protein exists as an octamer in solution.

  15. Towards protein-crystal centering using second-harmonic generation (SHG) microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kissick, David J.; Dettmar, Christopher M. [Purdue University, West Lafayette, IN 47907 (United States); Becker, Michael [Argonne National Laboratory, Argonne, IL 60439 (United States); Mulichak, Anne M. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Cherezov, Vadim [The Scripps Research Institute, La Jolla, CA 92037 (United States); Ginell, Stephan L. [Argonne National Laboratory, Argonne, IL 60439 (United States); Battaile, Kevin P.; Keefe, Lisa J. [Hauptman–Woodward Medical Research Institute, Argonne, IL 60439 (United States); Fischetti, Robert F. [Argonne National Laboratory, Argonne, IL 60439 (United States); Simpson, Garth J., E-mail: gsimpson@purdue.edu [Purdue University, West Lafayette, IN 47907 (United States)

    2013-05-01

    The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals has been explored. The potential of second-harmonic generation (SHG) microscopy for automated crystal centering to guide synchrotron X-ray diffraction of protein crystals was explored. These studies included (i) comparison of microcrystal positions in cryoloops as determined by SHG imaging and by X-ray diffraction rastering and (ii) X-ray structure determinations of selected proteins to investigate the potential for laser-induced damage from SHG imaging. In studies using β{sub 2} adrenergic receptor membrane-protein crystals prepared in lipidic mesophase, the crystal locations identified by SHG images obtained in transmission mode were found to correlate well with the crystal locations identified by raster scanning using an X-ray minibeam. SHG imaging was found to provide about 2 µm spatial resolution and shorter image-acquisition times. The general insensitivity of SHG images to optical scatter enabled the reliable identification of microcrystals within opaque cryocooled lipidic mesophases that were not identified by conventional bright-field imaging. The potential impact of extended exposure of protein crystals to five times a typical imaging dose from an ultrafast laser source was also assessed. Measurements of myoglobin and thaumatin crystals resulted in no statistically significant differences between structures obtained from diffraction data acquired from exposed and unexposed regions of single crystals. Practical constraints for integrating SHG imaging into an active beamline for routine automated crystal centering are discussed.

  16. Crystallization of Mitochondrial Respiratory Complex II fromChicken Heart: A Membrane-Protein Complex Diffracting to 2.0Angstrom

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward A.

    2004-12-17

    Procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Angstrom with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites.

  17. High-Purity Fe3S4 Greigite Microcrystals for Magnetic and Electrochemical Performance

    NARCIS (Netherlands)

    Li, Guowei; Zhang, Baomin; Yu, Feng; Novakova, Alla A.; Krivenkov, Maxim S.; Kiseleva, Tatiana Y.; Chang, Liao; Rao, Jiancun; Polyakov, Alexey O.; Blake, Graeme R.; de Groot, Robert A.; Palstra, Thomas T. M.

    2014-01-01

    High-purity Fe3S4 (greigite) microcrystals with octahedral shape were synthesized via a simple hydrothermal method using a surfactant. The as-prepared samples have the inverse spinel structure with high crystallinity. The saturation magnetization (M-s) reaches 3.74 mu(B) at 5 K and 3.51 mu(B) at

  18. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst

    DEFF Research Database (Denmark)

    Sun, Jian-Hui; Dong, Shu-Ying; Wang, Yong-Kui

    2009-01-01

    achieved 68.0%, 99.0% and 98.5%, the TOC removal efficiencies achieved 43.2%, 59.4% and 70.6%, respectively. Compared to commercial ZnO, 16-22% higher TOC removal efficiency was obtained by the dumbbell-shaped ZnO. The results indicated that the prepared dumbbell-shaped ZnO microcrystal photocatalyst...

  19. Size-controllable synthesis of hierarchical copper carbodiimide microcrystals and their pronounced photoelectric response under visible light

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qihui [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Liu, Yufeng, E-mail: yfliu@mail.sitp.ac.cn [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Dai, Guozhang [Hunan Key Laboratory for Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, Hunan 410083 (China); Tian, Li [College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411101 (China); Xu, Jiayue; Zhao, Guoying; Zhang, Na; Fang, Yongzheng [School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418 (China)

    2015-12-01

    Graphical abstract: - Highlights: • A controllably aqueous method was presented to synthesize two types of CuNCN microcrystals (MCs) at room temperature. • The size and nanostructure can be tuned via controlling the ratio of [NH{sub 3}]/[Cu{sup +}]. • Moreover, prounounced photoelectric response of the as-prepared CuNCN was observed for the first time under the irradiation of visible light at room temperature. • The aqueous synthetic route can provide an inspiration to acquire the other metal carbodiimides nano/microcrystals without the aid of reducing agents. - Abstract: Similar to cupric oxides and sulfides, the nitrogen-containing analogue copper carbodiimide (CuNCN) is considered as a potentially promising photoelectric material. However, there is lack of fundamental investigations on controllable synthesis and photoelectric properties of CuNCN nano/microcrystals. Herein, a facile method was developed to synthesize high-quality CuNCN semiconductor microcrystals with different sizes and hierarchical nanostructures at room temperature. This reaction was carried out in aqueous solutions, avoiding the involvement of non-aqueous solutions and high temperature solid phase reaction during the synthesis of CuNCN microcrystals. Photoelectric response of as-prepared CuNCN microcrystals was first observed under the irradiation of visible light at room temperature. The aqueous synthetic route can also provide an inspiration to acquire other metal carbodiimides nano/microcrystals.

  20. Sub-diffraction limit localization of proteins in volumetric space using Bayesian restoration of fluorescence images from ultrathin specimens.

    Directory of Open Access Journals (Sweden)

    Gordon Wang

    Full Text Available Photon diffraction limits the resolution of conventional light microscopy at the lateral focal plane to 0.61λ/NA (λ = wavelength of light, NA = numerical aperture of the objective and at the axial plane to 1.4nλ/NA(2 (n = refractive index of the imaging medium, 1.51 for oil immersion, which with visible wavelengths and a 1.4NA oil immersion objective is -220 nm and -600 nm in the lateral plane and axial plane respectively. This volumetric resolution is too large for the proper localization of protein clustering in subcellular structures. Here we combine the newly developed proteomic imaging technique, Array Tomography (AT, with its native 50-100 nm axial resolution achieved by physical sectioning of resin embedded tissue, and a 2D maximum likelihood deconvolution method, based on Bayes' rule, which significantly improves the resolution of protein puncta in the lateral plane to allow accurate and fast computational segmentation and analysis of labeled proteins. The physical sectioning of AT allows tissue specimens to be imaged at the physical optimum of modern high NA plan-apochormatic objectives. This translates to images that have little out of focus light, minimal aberrations and wave-front distortions. Thus, AT is able to provide images with truly invariant point spread functions (PSF, a property critical for accurate deconvolution. We show that AT with deconvolution increases the volumetric analytical fidelity of protein localization by significantly improving the modulation of high spatial frequencies up to and potentially beyond the spatial frequency cut-off of the objective. Moreover, we are able to achieve this improvement with no noticeable introduction of noise or artifacts and arrive at object segmentation and localization accuracies on par with image volumes captured using commercial implementations of super-resolution microscopes.

  1. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutSβ

    International Nuclear Information System (INIS)

    Tseng, Quincy; Orans, Jillian; Hast, Michael A.; Iyer, Ravi R.; Changela, Anita; Modrich, Paul L.; Beese, Lorena S.

    2011-01-01

    Human MutSβ is a 232 kDa heterodimer (MSH2–MSH3) involved in the lesion-recognition step of mismatch repair. Here, the overexpression, purification, biochemical characterization and cocrystallization of MutSβ with a duplex DNA substrate are reported. MutSβ is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2–MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSβ. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSβ and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported

  2. Raman spectroscopy insight into Norovirus encapsulation in Bombyx mori cypovirus cubic microcrystals.

    Science.gov (United States)

    Mori, Hajime; Oda, Naoki; Abe, Satoshi; Ueno, Takafumi; Zhu, Wenliang; Pernstich, Chris; Pezzotti, Giuseppe

    2018-05-16

    Protein and amino acid structures of Norovirus-like particles (NoVLP) have been investigated by Raman spectroscopy before and after encapsulation into Bombyx mori cypovirus (BmCPV) cubic microcrystals, which are usually referred to as cubes or polyhedra. Two different types of tag were used in co-expression, namely VP3 and H1 tags. VP3 tag is derived from a capsid protein VP4 from BmCPV and H1 tag is N-terminal α-helix of BmCPV polyhedrin, respectively. A major capsid protein VP1 of NoVLP G11.4 was fused with H1 or VP3 tags, and then encapsulated into BmCPV polyhedra. Analyses of the spectroscopic data permitted the assignment of conformation-sensitive Raman bands to viral amino acid constituents and the observation of structural similarities or differences between differently tagged samples. Three separate Raman zones were attentioned, namely, the ring-mode structure region (1000-1500 cm -1 ), the CO and CC double-bond region and its surroundings (1500-1750 cm -1 ), and the high-frequency CH stretching region (2800-3100 cm -1 ). Structural fingerprints could be found in specific spectral zones for differently co-expressed samples. One clear characteristic of the H1-tagged VP1 polyhedra was the increase in tyrosine fraction, which played a critical role in binding neighboring strands through its unpaired negatively charged COO - sites. This feature could consistently be detected in different regions, but it was best represented by Raman signals associated with negatively charged COO - sites and H1 helices in the double-bond region. Such peculiar chemical features were revealed by two relatively broad bands at 1570 and 1630 cm -1 , which were assigned to COO - anti-symmetric stretching and amide I in 3 10 -helix extensions to α-helices at N-termini, respectively. These specific features did not display in the spectrum of the VP3-tagged VP1 polyhedra. Concurrently, a strong reduction of CH bond Raman signal was noticed in the high frequency stretching

  3. Increasing the X-ray Diffraction Power of Protein Crystals by Dehydration: The Case of Bovine Serum Albumin and a Survey of Literature Data

    Directory of Open Access Journals (Sweden)

    Irene Russo Krauss

    2012-03-01

    Full Text Available Serum albumin is one of the most widely studied proteins. It is the most abundant protein in plasma with a typical concentration of 5 g/100 mL and the principal transporter of fatty acids in plasma. While the crystal structures of human serum albumin (HSA free and in complex with fatty acids, hemin, and local anesthetics have been characterized, no crystallographic models are available on bovine serum albumin (BSA, presumably because of the poor diffraction power of existing hexagonal BSA crystals. Here, the crystallization and diffraction data of a new BSA crystal form, obtained by the hanging drop method using MPEG 5K as precipitating agent, are presented. The crystals belong to space group C2, with unit-cell parameters a = 216.45 Å, b = 44.72 Å, c = 140.18 Å, β = 114.5°. Dehydration was found to increase the diffraction limit of BSA crystals from ~8 Å to 3.2 Å, probably by improving the packing of protein molecules in the crystal lattice. These results, together with a survey of more than 60 successful cases of protein crystal dehydration, confirm that it can be a useful procedure to be used in initial screening as a method of improving the diffraction limits of existing crystals.

  4. Crystallization and preliminary X-ray diffraction analysis of the metalloregulatory protein DtxR from Thermoplasma acidophilum

    International Nuclear Information System (INIS)

    Yeo, Hyun Ku; Kang, Jina; Park, Young Woo; Sung, Jung-Suk; Lee, Jae Young

    2012-01-01

    Orthorhombic crystals of DtxR from T. acidophilum have been obtained. X-ray data were collected to 1.8 Å resolution using synchrotron radiation. The diphtheria toxin repressor (DtxR) is a metal-ion-dependent transcriptional regulator which regulates genes encoding proteins involved in metal-ion uptake to maintain metal-ion homeostasis. DtxR from Thermoplasma acidophilum was cloned and overexpressed in Escherichia coli. Crystals of N-terminally His-tagged DtxR were obtained by hanging-drop vapour diffusion and diffracted to 1.8 Å resolution. DtxR was crystallized at 296 K using polyethylene glycol 4000 as a precipitant. The crystals belonged to the orthorhombic space group P2 1 2 1 2, with unit-cell parameters a = 61.14, b = 84.61, c = 46.91 Å, α = β = γ = 90°. The asymmetric unit contained approximately one monomer of DtxR, giving a crystal volume per mass (V M ) of 2.22 Å 3 Da −1 and a solvent content of 44.6%

  5. Crystallization and preliminary X-ray diffraction studies of Drosophila melanogaster Gαo-subunit of heterotrimeric G protein in complex with the RGS domain of CG5036

    International Nuclear Information System (INIS)

    Tishchenko, Svetlana; Gabdulkhakov, Azat; Tin, Uliana; Kostareva, Olga; Lin, Chen; Katanaev, Vladimir L.

    2012-01-01

    D. melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization and preliminary X-ray crystallographic analysis of the complex of the two proteins are reported. Regulator of G-protein signalling (RGS) proteins negatively regulate heterotrimeric G-protein signalling through their conserved RGS domains. RGS domains act as GTPase-activating proteins, accelerating the GTP hydrolysis rate of the activated form of Gα-subunits. Although omnipresent in eukaryotes, RGS proteins have not been adequately analysed in non-mammalian organisms. The Drosophila melanogaster Gαo-subunit and the RGS domain of its interacting partner CG5036 have been overproduced and purified; the crystallization of the complex of the two proteins using PEG 4000 as a crystallizing agent and preliminary X-ray crystallographic analysis are reported. Diffraction data were collected to 2.0 Å resolution using a synchrotron-radiation source

  6. Crystallite arrangement of hydroxyapatite microcrystals in human tooth cementum as revealed by electron paramagnetic resonance (EPR)

    International Nuclear Information System (INIS)

    Skaleric, U.; Gaspirc, B.; Cevc, P.; Schara, M.

    1998-01-01

    Human dental cementum was analyzed by electron paramagnetic resonance (EPR). The measured EPR powder spectra of γ-irradiated cementum resembled those of γirradiated enamel. Both spectra were characterized by the same line shapes and g values. The position of the extreme first derivate peaks can be described by g 1 =2.0023 and g 2 =1.9971±0.0002, and are assignable to the CO 3 3- center. The angular dependence of the cementum EPR spectra indicates a different arrangement of the hydroxyapatite microcrystals compared to that of enamel. A corresponding model of cementum micro-crystal alignment has been proposed. The methodology presented can be utilized for studying the mineralization process of root cementum and other mineralized tissues. (au)

  7. Thermodynamic analysis of the tetragonal to monoclinic transformation in a constrained zirconia microcrystal

    International Nuclear Information System (INIS)

    Garvie, R.C.

    1985-01-01

    A thermodynamic analysis was made of a simple model comprising a transforming t-ZrO 2 microcrystal of size d constrained in a matrix subjected to a hydrostatic tensile stress field. The field generated a critical size range such that a t-particle transformed if dsub(cl) < d < dsub(cu). The lower limit dsub(cl) exists because at this point the maximum energy (supplied by the applied stress) which can be taken up by the crystal is insufficient to drive the transformation. The upper limit dsub(cu) is a consequence of the microcrystal being so large that it transforms spontaneously when the material is cooled to room temperature. Using the thermodynamic (Griffith) approach and assuming that transformation toughening is due to the dilational strain energy, this mechanism accounted for about one-third of the total observed effective surface energy in a peak-aged Ca-PSZ alloy. (author)

  8. Cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of an inositol monophosphatase family protein (SAS2203) from Staphylococcus aureus MSSA476

    International Nuclear Information System (INIS)

    Bhattacharyya, Sudipta; Dutta, Debajyoti; Ghosh, Ananta Kumar; Das, Amit Kumar

    2011-01-01

    The cloning, overexpression, purification, crystallization and preliminary X-ray diffraction analysis of an inositol monophosphatase family protein (SAS2203) from S. aureus MSSA476 is reported. The gene product of the sas2203 ORF of Staphylococcus aureus MSSA476 encodes a 30 kDa molecular-weight protein with a high sequence resemblance (29% identity) to tetrameric inositol monophosphatase from Thermotoga maritima. The protein was cloned, expressed, purified to homogeneity and crystallized. Crystals appeared in several conditions and good diffraction-quality crystals were obtained from 0.2 M Li 2 SO 4 , 20% PEG 3350, 0.1 M HEPES pH 7.0 using the sitting-drop vapour-diffusion method. A complete diffraction data set was collected to 2.6 Å resolution using a Rigaku MicroMax-007 HF Cu Kα X-ray generator and a Rigaku R-AXIS IV ++ detector. The diffraction data were consistent with the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.98, b = 68.35, c = 143.79 Å, α = β = γ = 90°, and the crystal contained two molecules in the asymmetric unit

  9. Preparation, crystallization and preliminary X-ray diffraction analysis of two intestinal fatty-acid binding proteins in the presence of 11-(dansylamino)undecanoic acid

    International Nuclear Information System (INIS)

    Laguerre, Aisha; Wielens, Jerome; Parker, Michael W.; Porter, Christopher J. H.; Scanlon, Martin J.

    2011-01-01

    Intestinal fatty-acid binding proteins from human and rat have been crystallized in complex with the fluorescent probe 11-(dansylamino)undecanoic acid. Diffraction data for the crystals were collected to 1.8 Å resolution (human) and 1.6 Å resolution (rat). Fatty-acid binding proteins (FABPs) are abundantly expressed proteins that bind a range of lipophilic molecules. They have been implicated in the import and intracellular distribution of their ligands and have been linked with metabolic and inflammatory responses in the cells in which they are expressed. Despite their high sequence identity, human intestinal FABP (hIFABP) and rat intestinal FABP (rIFABP) bind some ligands with different affinities. In order to address the structural basis of this differential binding, diffraction-quality crystals have been obtained of hIFABP and rIFABP in complex with the fluorescent fatty-acid analogue 11-(dansylamino)undecanoic acid

  10. Useable diffraction data from a multiple microdomain-containing crystal of Ascaris suum As-p18 fatty-acid-binding protein using a microfocus beamline

    International Nuclear Information System (INIS)

    Gabrielsen, Mads; Riboldi-Tunnicliffe, Alan; Ibáñez-Shimabukuro, Marina; Griffiths, Kate; Roe, Andrew J.; Cooper, Alan; Smith, Brian O.; Córsico, Betina; Kennedy, Malcolm W.

    2012-01-01

    As-p18, an unusual fatty-acid-binding protein from a parasitic nematode, was expressed in bacteria, purified and crystallized. The use of a microfocus beamline was essential for data collection. As-p18 is a fatty-acid-binding protein from the parasitic nematode Ascaris suum. Although it exhibits sequence similarity to mammalian intracellular fatty-acid-binding proteins, it contains features that are unique to nematodes. Crystals were obtained, but initial diffraction data analysis revealed that they were composed of a number of ‘microdomains’. Interpretable data could only be collected using a microfocus beamline with a beam size of 12 × 8 µm

  11. Diffractive interactions

    International Nuclear Information System (INIS)

    Del Duca, V.; Marage, P.

    1996-08-01

    The general framework of diffractive deep inelastic scattering is introduced and reports given in the session on diffractive interactions at the international workshop on deep-inelastic scattering and related phenomena, Rome, April 1996, are presented. (orig.)

  12. Characterizing the Secondary Protein Structure of Black Widow Dragline Silk Using Solid-State NMR & X-ray Diffraction

    Science.gov (United States)

    Jenkins, Janelle E.; Sampath, Sujatha; Butler, Emily; Kim, Jihyun; Henning, Robert W.; Holland, Gregory P.; Yarger, Jeffery L.

    2013-01-01

    This study provides a detailed secondary structural characterization of major ampullate dragline silk from Latrodectus hesperus (black widow) spiders. X-ray diffraction results show that the structure of black widow major ampullate silk fibers is comprised of stacked β-sheet nanocrystallites oriented parallel to the fiber axis and an amorphous region with oriented (anisotropic) and isotropic components. The combination of two-dimensional (2D) 13C-13C through-space and through-bond solid-state NMR experiments provide chemical shifts that are used to determine detailed information about amino acid motif secondary structure in black widow spider dragline silk. Individual amino acids are incorporated into different repetitive motifs that make up the majority of this protein-based biopolymer. From the solid-state NMR measurements, we assign distinct secondary conformations to each repetitive amino acid motif and hence to the amino acids that make up the motifs. Specifically, alanine is incorporated in β-sheet (poly(Alan) and poly(Gly-Ala)), 31-helix (poly(Gly-Gly-Xaa), and α-helix (poly(Gln-Gln-Ala-Tyr)) components. Glycine is determined to be in β-sheet (poly(Gly-Ala)) and 31-helical (poly(Gly-Gly-Xaa)) regions, while serine is present in β-sheet (poly(Gly-Ala-Ser)), 31-helix (poly(Gly-Gly-Ser)), and β-turn (poly(Gly-Pro-Ser)) structures. These various motif-specific secondary structural elements are quantitatively correlated to the primary amino acid sequence of major ampullate spidroin 1 and 2 (MaSp1 and MaSp2) and are shown to form a self-consistent model for black widow dragline silk. PMID:24024617

  13. Diffraction theory

    NARCIS (Netherlands)

    Bouwkamp, C.J.

    1954-01-01

    A critical review is presented of recent progress in classical diffraction theory. Both scalar and electromagnetic problems are discussed. The report may serve as an introduction to general diffraction theory although the main emphasis is on diffraction by plane obstacles. Various modifications of

  14. Controlled synthesis of MoO3 microcrystals by subsequent calcination of hydrothermally grown pyrazine–MoO3 nanorod hybrids and their photodecomposition properties

    International Nuclear Information System (INIS)

    Rajagopal, S.; Nataraj, D.; Khyzhun, O.Y.; Djaoued, Yahia; Robichaud, Jacques; Kim, Chang-Koo

    2013-01-01

    We present our results on successful synthesis of pyrazine–MoO 3 nanorod hybrids by using pyrazine and MoO 3 nanorods. On the first stage, MoO 3 nanorods were grown hydrothermally and, on the second stage, their mixture with pyrazine was again involved in a hydrothermal reaction to produce organic–inorganic hybrids. To understand the growth mechanism of the hybrids we varied time and temperature of the hydrothermal process. Intercalation of pyrazine was confirmed through X-ray diffraction analysis, X-ray photoelectron spectroscopy, X-ray emission spectroscopy, scanning electron microscopy methods. Upon calcinations, pyrazine was deintercalated, i.e. removed from the MoO 3 hybrid system, and the MoO 3 nanorods were found to bind together resulting in formation of MoO 3 microslabs with increased surface area. Photodecomposition performance of the MoO 3 nanorods, pyrazine–MoO 3 hybrids and MoO 3 microcrystals was studied against Procion Red MX-5B textile dye. A high photodecomposition performance was found to decrease when going from MoO 3 nanorods to MoO 3 microcrystal and, further, to pyrazine–MoO 3 hybrids. - Graphical abstract: Display Omitted - Highlights: • High aspect ratio MoO 3 nanorods were prepared through a new hydrothermal method. • Hybrids of pyrazine–MoO 3 were formed by intercalating pyrazine into MoO 3 nanorods. • Intercalation of pyrazine was confirmed in X-ray spectroscopic analysis. • After calcinations, MoO 3 crystal was retained by binding MoO 3 nanorods together. • High photodegradation performance was noticed from MoO 3 nanorods

  15. Purification, crystallization and preliminary X-ray diffraction analysis of inner membrane complex (IMC) subcompartment protein 1 (ISP1) from Toxoplasma gondii

    International Nuclear Information System (INIS)

    Tonkin, Michelle L.; Brown, Shannon; Beck, Josh R.; Bradley, Peter J.; Boulanger, Martin J.

    2012-01-01

    To characterize the ISP family of proteins present in apicomplexan parasites, ISP1 from T. gondii was expressed, purified and crystallized. Two crystal forms (cubic and orthorhombic) were analyzed by X-ray diffraction and data were processed to 2.05 and 2.1 Å resolution, respectively. The protozoan parasites of the Apicomplexa phylum are devastating global pathogens. Their success is largely due to phylum-specific proteins found in specialized organelles and cellular structures. The inner membrane complex (IMC) is a unique apicomplexan structure that is essential for motility, invasion and replication. The IMC subcompartment proteins (ISP) have recently been identified in Toxoplasma gondii and shown to be critical for replication, although their specific mechanisms are unknown. Structural characterization of TgISP1 was pursued in order to identify the fold adopted by the ISPs and to generate detailed insight into how this family of proteins functions during replication. An N-terminally truncated form of TgISP1 was purified from Escherichia coli, crystallized and subjected to X-ray diffraction analysis. Two crystal forms of TgISP1 belonging to space groups P4 1 32 or P4 3 32 and P2 1 2 1 2 1 diffracted to 2.05 and 2.1 Å resolution, respectively

  16. Purification, crystallization and preliminary X-ray diffraction analysis of GatD, a glutamine amidotransferase-like protein from Staphylococcus aureus peptidoglycan.

    Science.gov (United States)

    Vieira, Diana; Figueiredo, Teresa A; Verma, Anil; Sobral, Rita G; Ludovice, Ana M; de Lencastre, Hermínia; Trincao, Jose

    2014-05-01

    Amidation of peptidoglycan is an essential feature in Staphylococcus aureus that is necessary for resistance to β-lactams and lysozyme. GatD, a 27 kDa type I glutamine amidotransferase-like protein, together with MurT ligase, catalyses the amidation reaction of the glutamic acid residues of the peptidoglycan of S. aureus. The native and the selenomethionine-derivative proteins were crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol, sodium acetate and calcium acetate. The crystals obtained diffracted beyond 1.85 and 2.25 Å, respectively, and belonged to space group P212121. X-ray diffraction data sets were collected at Diamond Light Source (on beamlines I02 and I04) and were used to obtain initial phases.

  17. Purification, crystallization and preliminary X-ray diffraction analysis of enoyl-acyl carrier protein reductase (FabK) from Streptococcus mutans strain UA159

    International Nuclear Information System (INIS)

    Kim, Tae-O; Im, Dong-Won; Jung, Ha Yun; Kwon, Seong Jung; Heo, Yong-Seok

    2012-01-01

    Enoyl-acyl carrier protein reductase (FabK) from S. mutans strain UA159 was cloned, overexpressed, purified and crystallized. X-ray diffraction data were collected to a resolution of 2.40 Å. A triclosan-resistant flavoprotein termed FabK is the sole enoyl-acyl carrier protein reductase in Streptococcus pneumoniae and Streptococcus mutans. In this study, FabK from S. mutans strain UA159 was overexpressed in Escherichia coli, purified and crystallized. Diffraction data were collected to 2.40 Å resolution using a synchrotron-radiation source. The crystal belonged to space group P6 2 , with unit-cell parameters a = b = 105.79, c = 44.15 Å. The asymmetric unit contained one molecule, with a corresponding V M of 2.05 Å 3 Da −1 and a solvent content of 39.9%

  18. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa

    International Nuclear Information System (INIS)

    Kraschnefski, Mark J.; Scott, Stacy A.; Holloway, Gavan; Coulson, Barbara S.; Itzstein, Mark von; Blanchard, Helen

    2005-01-01

    The carbohydrate-binding component (VP8* 64–223 ) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8* 64–223 structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3 2 21 and monoclinic P2 1 ) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8* 64–223 structure by molecular replacement

  19. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa

    Energy Technology Data Exchange (ETDEWEB)

    Kraschnefski, Mark J.; Scott, Stacy A. [Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland 9726 (Australia); Holloway, Gavan; Coulson, Barbara S.; Itzstein, Mark von [Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010 (Australia); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland 9726 (Australia)

    2005-11-01

    The carbohydrate-binding component (VP8*{sub 64–223}) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8*{sub 64–223} structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3{sub 2}21 and monoclinic P2{sub 1}) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8*{sub 64–223} structure by molecular replacement.

  20. Expression, purification, crystallization and preliminary X-ray diffraction studies of the human keratin 4-binding domain of serine-rich repeat protein 1 from Streptococcus agalactiae

    International Nuclear Information System (INIS)

    Sundaresan, Ramya; Samen, Ulrike; Ponnuraj, Karthe

    2011-01-01

    Expression, purification and crystallization of Srr-1-K4BD, a human keratin 4-binding domain of serine-rich repeat protein 1 from S. agalactiae, was carried out. Native crystals of Srr-1-K4BD diffracted to 3.8 Å resolution using synchrotron radiation. Serine-rich repeat protein 1 (Srr-1) is a surface protein from Streptococcus agalactiae. A 17 kDa region of this protein has been identified to bind to human keratin 4 (K4) and is termed the Srr-1 K4-binding domain (Srr-1-K4BD). Recombinant Srr-1-K4BD was overexpressed in Escherichia coli BL21 (DE3) cells. Native and selenomethionine-substituted proteins were prepared using Luria–Bertani (LB) and M9 minimal media, respectively. A two-step purification protocol was carried out to obtain a final homogenous sample of Srr-1-K4BD. Crystals of native Srr-1-K4BD were obtained using PEG 3350 as a precipitant. The crystals diffracted to 3.8 Å resolution using synchrotron radiation and belonged to space group P2 1 , with unit-cell parameters a = 47.56, b = 59.48, c = 94.71 Å, β = 93.95°

  1. Crystallization and preliminary X-ray diffraction studies of NP24-I, an isoform of a thaumatin-like protein from ripe tomato fruits

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Raka; Chakrabarti, Chandana, E-mail: chandana.chakrabarti@saha.ac.in [Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India)

    2005-08-01

    A thaumatin-like antifungal protein, NP24-I, has been isolated from ripe tomato fruits. It was crystallized by the vapour-diffusion method and data were collected to 2.45 Å. The structure was solved by molecular replacement. NP24 is a 24 kDa (207-amino-acid) antifungal thaumatin-like protein (TLP) found in tomato fruits. An isoform of the protein, NP24-I, is reported to play a possible role in ripening of the fruit in addition to its antifungal properties. The protein has been isolated and purified and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the tetragonal space group P4{sub 3}, with unit-cell parameters a = b = 61.01, c = 62.90 Å and one molecule per asymmetric unit. X-ray diffraction data were processed to a resolution of 2.45 Å and the structure was solved by molecular replacement.

  2. Determination of the separate lipid and protein profile structures derived from the total membrane profile structure or isolated sarcoplasmic reticulum via x-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Herbette, L.; Blasie, J.K.

    1984-01-01

    Sarcoplasmic reticulum (SR) membranes were prepared to contain biosynthetically deuterated SR phospholipids utilizing specific and general phospholipid exchange proteins (PLEP). Functional measurements and freeze fracture on SR dispersions and x-ray diffraction of hydrated oriented membrane multilayers revealed that the exchanged SR membranes were very similar to unexchanged SR membranes. Low resolution (28-A) neutron diffraction studies utilizing SR membranes exchanged with either protonated or perdeuterated SR phospholipids allowed direct determination of the lipid profile within the isolated SR membrane at two different unit cell repeat distances. These lipid profile structures were found to be highly asymmetric regarding the conformation of the fatty acid chain extents and compositional distribution of phospholipid molecules in the inner vs. outer monolayer of the SR membrane bilayer. The relatively high resolution (11-A) electron-density profile from x-ray diffraction was decomposed by utilizing the asymmetry in the number of phospholipid molecules residing in the inner vs. outer monolayer of the SR lipid bilayer as obtained from the neutron diffraction study. To our knowledge, this represents the first direct determination of a lipid bilayer profile structure within an isolated membrane system

  3. Recent advances in photoelectrochemistry. Part 1. Preparation and photocatalytic activities of semiconductor microcrystals; Saikin no hikari denki kagaku. 1. Handotai chobiryushi no chosei to hikari shokubai kassei

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, H; Torimoto, T [Osaka Univ., Osaka (Japan). Faculty of Engineering

    1995-01-05

    The energy structure of semiconductor microcrystals with less than 10nm particle size is different from that of bulk semiconductor, and the reducing force of electrons and the oxidizing force of holes produced by light in microcrystals are larger than those of bulk semiconductor. Focusing on the application of semiconductor microcrystals to photocatalysis, the effects of the particle size and surface conditions of particles on photocatalytic activity are discussed. It has been shown that the change in the characteristics of semiconductor microcrystals depends on particle size, and microcrystals with narrow distribution of particle sized is necessary for the study of the characteristics of semiconductor microcrystals. An example of high efficient progress of CO2 direct reduction by the use of semiconductor microcrystals is introduced. It has been made clear that the photocatalytic activity of semiconductor is improved when a small amount of electrode catalyst is supported in it. A unique photocatalytic reaction which can not be observed with bulk particles can be progressed by the use of high oxidation and reduction ability caused by quantum size effect of semiconductor microcrystals. 26 refs., 2 figs., 1 tab.

  4. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots.

    Science.gov (United States)

    Silva, Anderson Clayton da; Santos, Priscila Dayane de Freitas; Palazzi, Nicole Campezato; Leimann, Fernanda Vitória; Fuchs, Renata Hernandez Barros; Bracht, Lívia; Gonçalves, Odinei Hess

    2017-05-24

    Nontoxic conserving agents are in demand by the food industry due to consumers concern about synthetic conservatives, especially in minimally processed food. The antimicrobial activity of curcumin, a natural phenolic compound, has been extensively investigated but hydrophobicity is an issue when applying curcumin to foodstuff. The objective of this work was to evaluate curcumin microcrystals as an antimicrobial agent in minimally processed carrots. The antimicrobial activity of curcumin microcrystals was evaluated in vitro against Gram-positive (Bacillus cereus and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) microorganisms, showing a statistically significant (p minimally processed carrots. Sensory analyses were carried out showing no significant difference (p minimally processed carrots without causing noticeable differences that could be detected by the consumer. One may conclude that the analyses of the minimally processed carrots demonstrated that curcumin microcrystals are a suitable natural compound to inhibit the natural microbiota of carrots from a statistical point of view.

  5. Research on Mechanical Behaviors of Micro-crystal Muscovite/UHMWPE Composites to Impact Loading

    Directory of Open Access Journals (Sweden)

    Hu Huarong

    2016-01-01

    Full Text Available UHMWPE composites were prepared by hot pressing process with micro-crystal muscovite as reinforced particulates. The mechanical behaviors of composites to impact loading was evaluated by split Hopkinson bar. The results demonstrated that dynamic yield stress and failure stress of UHMWPE composites were gradually increased when the filling amount was less than 20%; when the filling content of muscovite was around 15%, the energy absorption efficiency of the composite reaches maximum value. It was also found that when strain rate within 3200/s, the dynamic yield stress, failure stress and energy absorption efficiency of UHMWPE composites increased with the increase of strain rate and display strain rate enhancement effect.

  6. Crystallization and X-ray diffraction analysis of SpaE, a basal pilus protein from the gut-adapted Lactobacillus rhamnosus GG.

    Science.gov (United States)

    Mishra, Arjun K; Megta, Abhin Kumar; Palva, Airi; von Ossowski, Ingemar; Krishnan, Vengadesan

    2017-06-01

    SpaE is the predicted basal pilin subunit in the sortase-dependent SpaFED pilus from the gut-adapted and commensal Lactobacillus rhamnosus GG. Thus far, structural characterization of the cell-wall-anchoring basal pilins has remained difficult and has been limited to only a few examples from pathogenic genera and species. To gain a further structural understanding of the molecular mechanisms that are involved in the anchoring and assembly of sortase-dependent pili in less harmful bacteria, L. rhamnosus GG SpaE for crystallization was produced by recombinant expression in Escherichia coli. Although several attempts to crystallize the SpaE protein were unsuccessful, trigonal crystals that diffracted to a resolution of 3.1 Å were eventually produced using PEG 3350 as a precipitant and high protein concentrations. Further optimization with a combination of additives led to the generation of SpaE crystals in an orthorhombic form that diffracted to a higher resolution of 1.5 Å. To expedite structure determination by SAD phasing, selenium-substituted (orthorhombic) SpaE crystals were grown and X-ray diffraction data were collected to 1.8 Å resolution.

  7. Classification of projection images of proteins with structural polymorphism by manifold: A simulation study for x-ray free-electron laser diffraction imaging

    Science.gov (United States)

    Yoshidome, Takashi; Oroguchi, Tomotaka; Nakasako, Masayoshi; Ikeguchi, Mitsunori

    2015-09-01

    Coherent x-ray diffraction imaging (CXDI) enables us to visualize noncrystalline sample particles with micrometer to submicrometer dimensions. Using x-ray free-electron laser (XFEL) sources, two-dimensional diffraction patterns are collected from fresh samples supplied to the irradiation area in the "diffraction-before-destruction" scheme. A recent significant increase in the intensity of the XFEL pulse is promising and will allow us to visualize the three-dimensional structures of proteins using XFEL-CXDI in the future. For the protocol proposed for molecular structure determination using future XFEL-CXDI [T. Oroguchi and M. Nakasako, Phys. Rev. E 87, 022712 (2013), 10.1103/PhysRevE.87.022712], we require an algorithm that can classify the data in accordance with the structural polymorphism of proteins arising from their conformational dynamics. However, most of the algorithms proposed primarily require the numbers of conformational classes, and then the results are biased by the numbers. To improve this point, here we examine whether a method based on the manifold concept can classify simulated XFEL-CXDI data with respect to the structural polymorphism of a protein that predominantly adopts two states. After random sampling of the conformations of the two states and in-between states from the trajectories of molecular dynamics simulations, a diffraction pattern is calculated from each conformation. Classification was performed by using our custom-made program suite named enma, in which the diffusion map (DM) method developed based on the manifold concept was implemented. We successfully classify most of the projection electron density maps phase retrieved from diffraction patterns into each of the two states and in-between conformations without the knowledge of the number of conformational classes. We also examined the classification of the projection electron density maps of each of the three states with respect to the Euler angle. The present results suggest

  8. Identification, characterization and preliminary X-ray diffraction analysis of the rolling-circle replication initiator protein from plasmid pSTK1

    International Nuclear Information System (INIS)

    Carr, Stephen B.; Mecia, Lauren B.; Phillips, Simon E. V.; Thomas, Christopher D.

    2013-01-01

    A proteolytically stable fragment of a plasmid replication initiation protein from the thermophile G. stearothermophilus has been biochemically characterized, crystallized and diffraction data collected to a resolution of 2.5 Å. Antibiotic resistance in bacterial pathogens poses an ever-increasing risk to human health. In antibiotic-resistant strains of Staphylococcus aureus this resistance often resides in extra-chromosomal plasmids, such as those of the pT181 family, which replicate via a rolling-circle mechanism mediated by a plasmid-encoded replication initiation protein. Currently, there is no structural information available for the pT181-family Rep proteins. Here, the crystallization of a catalytically active fragment of a homologous replication initiation protein from the thermophile Geobacillus stearothermophilus responsible for the replication of plasmid pSTK1 is reported. Crystals of the RepSTK1 fragment diffracted to a resolution of 2.5 Å and belonged to space group P2 1 2 1 2 1

  9. Cloning, purification, crystallization and preliminary X-ray diffraction studies of Escherichia coli PapD-like protein (EcpD)

    International Nuclear Information System (INIS)

    Pandey, Nishant Kumar; Pal, Ravi Kant; Kashyap, Maruthi; Bhavesh, Neel Sarovar

    2012-01-01

    The Escherichia coli PapD-like protein (EcpD), from uropathogenic Escherichia coli (UPEC), which is a periplasmic chaperon of Yad fimbriae was cloned, overexpressed, purified and crystallized. The crystals obtained diffracted X-rays to 1.67 Å resolution and belonged to space group C222 1 . Many Gram-negative bacteria are characterized by hair-like proteinaceous appendages on their surface known as fimbriae. In uropathogenic strains of Escherichia coli, fimbriae mediate attachment by binding to receptors on the host cell, often contributing to virulence and disease. E. coli PapD-like protein (EcpD) is a periplasmic chaperone that plays an important role in the proper folding and guiding of Yad fimbrial proteins to the outer membrane usher protein in a process known as pilus biogenesis. EcpD is essential for pilus biogenesis in uropathogenic E. coli and plays an important role in virulence. In the present study, EcpD was cloned, overexpressed, purified and crystallized by the hanging-drop vapour-diffusion method. The crystals diffracted to 1.67 Å resolution and belonged to the orthorhombic space group C222 1 , with unit-cell parameters a = 100.3, b = 127.6, c = 45.9 Å. There was a single molecule in the asymmetric unit and the corresponding Matthews coefficient was calculated to be 3.02 Å 3 Da −1 , with 59% solvent content. Initial phases were determined by molecular replacement

  10. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein

    International Nuclear Information System (INIS)

    Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane

    2010-01-01

    In order to investigate its function in transcriptional gene silencing, the highly conserved motif 2 from A. thaliana Morpheus’ molecule 1 protein was expressed, purified and crystallized. X-ray diffraction analysis is reported to a resolution of 3.2 Å. Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3 1 21 (or P3 2 21), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing

  11. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    International Nuclear Information System (INIS)

    Warren, Anna J.; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R.; Horrell, Sam; McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-01-01

    A comparison of X-ray diffraction and radiographic techniques for the location and characterization of protein crystals is demonstrated on membrane protein crystals mounted within lipid cubic phase material. The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required

  12. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Anna J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Armour, Wes [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Oxford e-Research Centre, 7 Keble Road, Oxford OX1 3QG (United Kingdom); Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Horrell, Sam [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); University of Liverpool, Liverpool L69 3BX (United Kingdom); McAuley, Katherine E.; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2013-07-01

    A comparison of X-ray diffraction and radiographic techniques for the location and characterization of protein crystals is demonstrated on membrane protein crystals mounted within lipid cubic phase material. The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  13. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cornaby, Sterling [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Szebenyi, Doletha M. E. [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Smilgies, Detlef-M. [CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States); Schuller, David J.; Gillilan, Richard; Hao, Quan [MacCHESS (Macromolecular Diffraction Facilities at CHESS), Cornell University, Ithaca, New York (United States); Bilderback, Donald H., E-mail: dhb2@cornell.edu [School of Applied and Engineering Physics, Cornell University, Ithaca, New York (United States); CHESS (Cornell High Energy Synchrotron Source), Cornell University, Ithaca, New York (United States)

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used.

  14. Feasibility of one-shot-per-crystal structure determination using Laue diffraction

    International Nuclear Information System (INIS)

    Cornaby, Sterling; Szebenyi, Doletha M. E.; Smilgies, Detlef-M.; Schuller, David J.; Gillilan, Richard; Hao, Quan; Bilderback, Donald H.

    2010-01-01

    Structure determination was successfully carried out using single Laue exposures from a group of lysozyme crystals. The Laue method may be a viable option for collection of one-shot-per-crystal data from microcrystals. Crystal size is an important factor in determining the number of diffraction patterns which may be obtained from a protein crystal before severe radiation damage sets in. As crystal dimensions decrease this number is reduced, eventually falling to one, at which point a complete data set must be assembled using data from multiple crystals. When only a single exposure is to be collected from each crystal, the polychromatic Laue technique may be preferable to monochromatic methods owing to its simultaneous recording of a large number of fully recorded reflections per image. To assess the feasibility of solving structures using single Laue images from multiple crystals, data were collected using a ‘pink’ beam at the CHESS D1 station from groups of lysozyme crystals with dimensions of the order of 20–30 µm mounted on MicroMesh grids. Single-shot Laue data were used for structure determination by molecular replacement and correct solutions were obtained even when as few as five crystals were used

  15. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Michael Heymann

    2014-09-01

    Full Text Available An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

  16. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    International Nuclear Information System (INIS)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert; Battaile, Kevin P.; Pai, Emil F.; Chirgadze, Nickolay Y.

    2011-01-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  17. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    Energy Technology Data Exchange (ETDEWEB)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Battaile, Kevin P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Pai, Emil F.; Chirgadze, Nickolay Y., E-mail: nchirgad@uhnresearch.ca [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); University of Toronto, Toronto, Ontario M5S 1A8 (Canada)

    2011-06-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  18. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of macrophage growth locus A (MglA) protein from Francisella tularensis

    International Nuclear Information System (INIS)

    Subburaman, Priadarsini; Austin, Brian P.; Shaw, Gary X.; Waugh, David S.; Ji, Xinhua

    2010-01-01

    The macrophage growth locus A (MglA) protein from F. tularensis crystallized in the hexagonal space group P6 1 or P6 5 , with unit-cell parameters a = b = 125, c = 54 Å. Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 Å resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6 1 or P6 5 , with unit-cell parameters a = b = 125, c = 54 Å

  19. Crystallization and preliminary X-ray diffraction studies of the precursor protein of a thermostable variant of papain

    International Nuclear Information System (INIS)

    Roy, Sumana; Choudhury, Debi; Chakrabarti, Chandana; Biswas, Sampa; Dattagupta, J. K.

    2011-01-01

    The crystallization of the precursor of a thermostable variant of papain and the collection of diffraction data to 2.6 Å resolution are reported. The crystallization of a recombinant thermostable variant of pro-papain has been carried out. The mutant pro-enzyme was expressed in Escherichia coli as inclusion bodies, refolded, purified and crystallized. The crystals belonged to space group P2 1 , with unit-cell parameters a = 42.9, b = 74.8, c = 116.5 Å, β = 93.0°, and diffracted to 2.6 Å resolution using synchrotron radiation. Assuming the presence of two molecules in the asymmetric unit, the calculated Matthews coefficient is 2.28 Å 3 Da −1 , corresponding to a solvent content of 46%. Initial attempts to solve the structure using molecular-replacement techniques were successful

  20. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    Science.gov (United States)

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  1. Crystallization and preliminary X-ray diffraction analysis of the C-terminal domain of the human spliceosomal DExD/H-box protein hPrp22

    International Nuclear Information System (INIS)

    Kudlinzki, Denis; Nagel, Christian; Ficner, Ralf

    2009-01-01

    The cloning, purification and crystallization of the C-terminal domain of human hPrp22 are reported. This communication also contains data for the preliminary X-ray diffraction analysis. The Homo sapiens DExD/H-box protein hPrp22 is a crucial component of the eukaryotic pre-mRNA splicing machinery. Within the splicing cycle, it is involved in the ligation of exons and generation of the lariat and it additionally catalyzes the release of mature mRNA from the spliceosomal U5 snRNP. The yeast homologue of this protein, yPrp22, shows ATP-dependent RNA-helicase activity and is capable of unwinding RNA/RNA duplex molecules. A truncated construct coding for residues 950–1183 of human Prp22, comprising the structurally and functionally uncharacterized C-terminal domain, was cloned into an Escherichia coli expression vector. The protein was subsequently overproduced, purified and crystallized. The crystals obtained diffracted to 2.1 Å resolution, belonged to the tetragonal space group P4 1 2 1 2 or P4 3 2 1 2, with unit-cell parameters a = b = 78.2, c = 88.4 Å, and contained one molecule in the asymmetric unit

  2. Purification, crystallization and preliminary X-ray diffraction analysis of the C-terminal fragment of the MvfR protein from Pseudomonas aeruginosa

    International Nuclear Information System (INIS)

    Kefala, Katerina; Kotsifaki, Dina; Providaki, Mary; Kapetaniou, Evangelia G.; Rahme, Lawrence; Kokkinidis, Michael

    2012-01-01

    MvfRC87, a 242-residue C-terminal segment of the LysR-type transcriptional regulator MvfR, was produced in Escherichia coli, purified and crystallized. The LysR-type transcriptional regulator MvfR plays a critical role in Pseudomonas aeruginosa pathogenicity via the transcriptional regulation of multiple quorum-sensing-regulated virulence factors. The protein also controls pathogenic type VI secretion loci. MvfRC87, a 242-residue C-terminal segment of MvfR, was produced in Escherichia coli, purified and crystallized. X-ray diffraction data were collected using synchrotron radiation and crystallographic parameters were determined

  3. Purification, crystallization and preliminary X-ray diffraction analysis of an oomycete-derived Nep1-like protein

    NARCIS (Netherlands)

    Luberacki, B.; Weyand, M.; Seitz, H.U.; Koch, W.; Oecking, C.; Ottmann, C.

    2008-01-01

    The elicitor protein Nep1-like protein from the plant pathogen Pythium aphanidermatum was purified and crystallized using the hanging-drop vapour-diffusion method. A native data set was collected to 1.35 angstrom resolution at 100 K using synchrotron radiation. Since selenomethionine-labelled

  4. Diffraction dissociation

    International Nuclear Information System (INIS)

    Abarbanel, H.

    1972-01-01

    An attempt is made to analyse the present theoretical situation in the field of diffraction scattering. Two not yet fully answered questions related with a typical diffraction process AB→CD, namely: what is the structure of the transition matrix elements, and what is the structure of the exchange mechanism responsible for the scattering, are formulated and various proposals for answers are reviewed. Interesting general statement that the products (-1)sup(J)P, where J and P are respectively spin and parity, is conserved at each vertex has been discussed. The exchange mechanism in diffractive scattering has been considered using the language of the complex J-plane as the most appropriate. The known facts about the exchange mechanism are recalled and several routs to way out are proposed. The idea to consider the moving pole and associated branch points as like a particle and the associated two and many particle unitarity cuts is described in more details. (S.B.)

  5. TTF/TCNQ-based thin films and microcrystals. Growth and charge transport phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Solovyeva, Vita

    2011-05-26

    The thesis adresses several problems related to growth and charge transport phenomena in thin films of TTF-TCNQ and (BEDT-TTF)TCNQ. The following main new problems are addressed: - The influence of thin-film specific factors, such as the substrate material and growth-induced defects, on the Peierls transition temperature in TTF-TCNQ thin films was studied; - finite-size effects in TTF-TCNQ were investigated by considering transport properties in TTF-TCNQ microcrystals. The influence of the size of the crystal on the Peierls transition temperature was studied. In this context a new method of microcontact fabrication was employed to favor the measurements; - an analysis of radiation-induced defects in TTF-TCNQ thin films and microcrystals was performed. It was demonstrated than an electron beam can induce appreciable damage to the sample such that its electronic properties are strongly modified; - a bilayer growth method was established to fabricate (BEDT-TTF)TCNQ from the gas phase. This newly developed bilayer growth method was showed to be suitable for testing (BEDT-TTF)TCNQ charge-transfer phase formation; - the structure of the formed (BEDT-TTF)TCNQ charge-transfer compounds was analyzed by using a wide range of experimental techniques. An overview and the description of the basic physical principles underlying charge-transfer compounds is given in chapter 2. Experimental techniques used for the growth and characterization of thin films and microcrystals are presented in chapter 3. Chapter 4 gives an overview of the physical properties of the studied organic materials. Chapter 5 discussed the experimental study of TTF-TCNQ thin films. he Peierls transition in TTF-TCNQ is a consequence of the quasi-one-dimensional structure of the material and depends on different factors, studied in chapters 5 and 6. In contradistinction to TTF-TTCNQ, the (BEDT-TTF)TCNQ charge-transfer compound crystallizes in several different modifications with different physical properties

  6. Diffraction attraction

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'

  7. Diffractive scattering

    CERN Document Server

    De Wolf, E.A.

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken-x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wusthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed.

  8. Diffractive Scattering

    International Nuclear Information System (INIS)

    Wolf, E.A. de

    2002-01-01

    We discuss basic concepts and properties of diffractive phenomena in soft hadron collisions and in deep-inelastic scattering at low Bjorken - x. The paper is not a review of the rapidly developing field but presents an attempt to show in simple terms the close inter-relationship between the dynamics of high-energy hadronic and deep-inelastic diffraction. Using the saturation model of Golec-Biernat and Wuesthoff as an example, a simple explanation of geometrical scaling is presented. The relation between the QCD anomalous multiplicity dimension and the Pomeron intercept is discussed. (author)

  9. Diffraction attraction

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-03-15

    Elastic scattering – when colliding particles 'bounce' off each other like billiard balls – has always had a special interest for high energy physicists. While its simplicity makes for deep analogies with classical ideas like diffraction, its jbtle details also test our understanding of the intricate inner mechanisms which drive particle interactions. With a new stock of elastic scattering data now available thanks to experiments at the CERN proton-antiproton Collider, and with studies at higher energies imminent or planned, some seventy physicists gathered in the magnificent chateau at Blois, France, for a 'Workshop on Elastic and Diffractive Scattering at the Collider and Beyond'.

  10. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    International Nuclear Information System (INIS)

    Pezzoli, Fabio; Giorgioni, Anna; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Miglio, Leo; Gallacher, Kevin; Millar, Ross W.; Paul, Douglas J.; Isa, Fabio; Biagioni, Paolo; Isella, Giovanni

    2016-01-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO_2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  11. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Science.gov (United States)

    Pezzoli, Fabio; Giorgioni, Anna; Gallacher, Kevin; Isa, Fabio; Biagioni, Paolo; Millar, Ross W.; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Isella, Giovanni; Paul, Douglas J.; Miglio, Leo

    2016-06-01

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  12. Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Pezzoli, Fabio, E-mail: fabio.pezzoli@unimib.it; Giorgioni, Anna; Gatti, Eleonora; Grilli, Emanuele; Bonera, Emiliano; Miglio, Leo [LNESS and Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via Cozzi 55, I-20125 Milano (Italy); Gallacher, Kevin; Millar, Ross W.; Paul, Douglas J. [School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT (United Kingdom); Isa, Fabio [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy); Laboratory for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, CH-8093 Zürich (Switzerland); Biagioni, Paolo [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy); Isella, Giovanni [LNESS, Dipartimento di Fisica del Politecnico di Milano and IFN-CNR, Polo Territoriale di Como, Via Anzani 42, I-22100 Como (Italy)

    2016-06-27

    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO{sub 2} in passivating the surface of Ge and thus in enhancing the room temperature PL emission.

  13. Interrogation cradle and insertable containment fixture for detecting birefringent microcrystals in bile

    Science.gov (United States)

    Darrow, Chris; Seger, Tino

    2003-09-30

    A transparent flow channel fluidly communicates a fluid source and a collection reservoir. An interrogating light beam passes through a first polarizer having a first plane of polarization. The flow channel is orthogonal to the light beam. The light beam passes through a fluid sample as it flows through the flow channel, and is then filtered through a second polarizer having a second plane of polarization rotated 90.degree. from the first plane of polarization. An electronic photo-detector is aligned with the light beam, and signals the presence of birefringent microcrystals in the fluid sample by generating voltage pulses. A disposable containment fixture includes the flow channel and the collection reservoir. The fixture is adapted for removable insertion into an interrogation cradle that includes optical and data processing components. The cradle rigidly positions the centerline of the flow channel orthogonal to the light beam.

  14. Organic Microcrystal Vibronic Lasers with Full-Spectrum Tunable Output beyond the Franck-Condon Principle.

    Science.gov (United States)

    Dong, Haiyun; Zhang, Chunhuan; Liu, Yuan; Yan, Yongli; Hu, Fengqin; Zhao, Yong Sheng

    2018-03-12

    The very broad emission bands of organic semiconductor materials are, in theory, suitable for achieving versatile solid-state lasers; however, most of organic materials only lase at short wavelength corresponding to the 0-1 transition governed by the Franck-Condon (FC) principle. A strategy is developed to overcome the limit of FC principle for tailoring the output of microlasers over a wide range based on the controlled vibronic emission of organic materials at microcrystal state. For the first time, the output wavelength of organic lasers is tailored across all vibronic (0-1, 0-2, 0-3, and even 0-4) bands spanning the entire emission spectrum. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A putative siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIMB 400: cloning, expression, purification, crystallization and X-ray diffraction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, Inês B.; Fonseca, Bruno M. [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal); Matias, Pedro M. [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal); Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras (Portugal); Louro, Ricardo O.; Moe, Elin, E-mail: elinmoe@itqb.unl.pt [Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157 Oeiras (Portugal)

    2016-08-09

    The gene encoding a putative siderophore-interacting protein from the marine bacterium S. frigidimarina was successfully cloned, followed by expression and purification of the gene product. Optimized crystals diffracted to 1.35 Å resolution and preliminary crystallographic analysis is promising with respect to structure determination and increased insight into the poorly understood molecular mechanisms underlying iron acquisition. Siderophore-binding proteins (SIPs) perform a key role in iron acquisition in multiple organisms. In the genome of the marine bacterium Shewanella frigidimarina NCIMB 400, the gene tagged as SFRI-RS12295 encodes a protein from this family. Here, the cloning, expression, purification and crystallization of this protein are reported, together with its preliminary X-ray crystallographic analysis to 1.35 Å resolution. The SIP crystals belonged to the monoclinic space group P2{sub 1}, with unit-cell parameters a = 48.04, b = 78.31, c = 67.71 Å, α = 90, β = 99.94, γ = 90°, and are predicted to contain two molecules per asymmetric unit. Structure determination by molecular replacement and the use of previously determined ∼2 Å resolution SIP structures with ∼30% sequence identity as templates are ongoing.

  16. A new apatinib microcrystal formulation enhances the effect of radiofrequency ablation treatment on hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Xie H

    2018-05-01

    Full Text Available Hui Xie,1,2 Shengtao Tian,2 Haipeng Yu,1 Xueling Yang,1 Jia Liu,3 Huaming Wang,2 Fan Feng,2 Zhi Guo1 1Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, People’s Republic of China; 2Department of Interventional Therapy, 302nd Hospital of People’s Liberation Army, Beijing, People’s Republic of China; 3Department of Blood Transfusion, 302nd Hospital of People’s Liberation Army, Beijing, People’s Republic of China Introduction: Radiofrequency ablation (RFA is the foremost treatment option for advanced hepatocellular carcinoma (HCC, however, rapid and aggressive recurrence of HCC often occurs after RFA due to epithelial–mesenchymal transition process. Although combination of RFA with sorafenib, a molecular targeted agent, could attenuate the recurrence of HCC, application of this molecular targeted agent poses a heavy medical burden and oral administration of sorafenib also brings severe side effects. Materials and methods: In this study, we prepared an apatinib microcrystal formulation (Apa-MS that sustainably releases apatinib, a novel molecular targeted agent, for advanced HCC treatment. We injected apatinib solution or Apa-MS into subcutaneous HCC tumors. Results: It was found that Apa-MS exhibited slow apatinib release in vivo and in turn inhibited the epithelial–mesenchymal transition of HCC cells for extended time. Moreover, in rodent HCC model, Apa-MS enhanced the antitumor effect of RFA treatment. Conclusion: Based on these results, we conclude that Apa-MS, a slow releasing system of apatinib, allows apatinib to remain effective in tumor tissues for a long time and could enhance the antitumor effect of RFA on HCC. Keywords: apatinib microcrystals, radiofrequency ablation, sustained releasing behavior, long-acting efficiency

  17. Crystallization and preliminary X-ray diffraction analysis of iron regulatory protein 1 in complex with ferritin IRE RNA

    International Nuclear Information System (INIS)

    Selezneva, Anna I.; Cavigiolio, Giorgio; Theil, Elizabeth C.; Walden, William E.; Volz, Karl

    2006-01-01

    The iron regulatory protein IRP1 has been crystallized in a complex with ferritin IRE RNA and a complete data set has been collected to 2.8 Å resolution. Iron regulatory protein 1 (IRP1) is a bifunctional protein with activity as an RNA-binding protein or as a cytoplasmic aconitase. Interconversion of IRP1 between these mutually exclusive states is central to cellular iron regulation and is accomplished through iron-responsive assembly and disassembly of a [4Fe–4S] cluster. When in its apo form, IRP1 binds to iron responsive elements (IREs) found in mRNAs encoding proteins of iron storage and transport and either prevents translation or degradation of the bound mRNA. Excess cellular iron stimulates the assembly of a [4Fe–4S] cluster in IRP1, inhibiting its IRE-binding ability and converting it to an aconitase. The three-dimensional structure of IRP1 in its different active forms will provide details of the interconversion process and clarify the selective recognition of mRNA, Fe–S sites and catalytic activity. To this end, the apo form of IRP1 bound to a ferritin IRE was crystallized. Crystals belong to the monoclinic space group P2 1 , with unit-cell parameters a = 109.6, b = 80.9, c = 142.9 Å, β = 92.0°. Native data sets have been collected from several crystals with resolution extending to 2.8 Å and the structure has been solved by molecular replacement

  18. Powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Hart, M.

    1995-12-31

    the importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940`s, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments.

  19. Powder diffraction

    International Nuclear Information System (INIS)

    Hart, M.

    1995-01-01

    The importance of x-ray powder diffraction as an analytical tool for phase identification of materials was first pointed out by Debye and Scherrer in Germany and, quite independently, by Hull in the US. Three distinct periods of evolution lead to ubiquitous application in many fields of science and technology. In the first period, until the mid-1940's, applications were and developed covering broad categories of materials including inorganic materials, minerals, ceramics, metals, alloys, organic materials and polymers. During this formative period, the concept of quantitative phase analysis was demonstrated. In the second period there followed the blossoming of technology and commercial instruments became widely used. The history is well summarized by Parrish and by Langford and Loueer. By 1980 there were probably 10,000 powder diffractometers in routine use, making it the most widely used of all x-ray crystallographic instruments. In the third, present, period data bases became firmly established and sophisticated pattern fitting and recognition software made many aspects of powder diffraction analysis routine. High resolution, tunable powder diffractometers were developed at sources of synchrotron radiation. The tunability of the spectrum made it possible to exploit all the subtleties of x-ray spectroscopy in diffraction experiments

  20. Crystallization and preliminary X-ray diffraction analysis of prion protein bound to the Fab fragment of the POM1 antibody

    International Nuclear Information System (INIS)

    Baral, Pravas Kumar; Wieland, Barbara; Swayampakula, Mridula; Polymenidou, Magdalini; Aguzzi, Adriano; Kav, Nat N. V.; James, Michael N. G.

    2011-01-01

    The complex of MoPrP(120–232) and Fab POM1 has been crystallized (space group C2, unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°). Diffraction data to 2.30 Å resolution have been collected using synchrotron radiation. Prion diseases are neurodegenerative diseases that are characterized by the conversion of the cellular prion protein PrP c to the pathogenic isoform PrP sc . Several antibodies are known to interact with the cellular prion protein and to inhibit this transition. An antibody Fab fragment, Fab POM1, was produced that recognizes a structural motif of the C-terminal domain of mouse prion protein. To study the mechanism by which Fab POM1 recognizes and binds the prion molecule, the complex between Fab POM1 and the C-terminal domain of mouse prion (residues 120–232) was prepared and crystallized. Crystals of this binary complex belonged to the monoclinic space group C2, with unit-cell parameters a = 83.68, b = 106.9, c = 76.25 Å, β = 95.6°

  1. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of intracellular growth locus E (IglE) protein from Francisella tularensis subsp. novicida

    International Nuclear Information System (INIS)

    Robb, Craig S.; Nano, Francis E.; Boraston, Alisdair B.

    2010-01-01

    The F. tularensis protein IglE from the FPI, which is a component of the type VI-like secretion system, has been crystallized and preliminary X-ray data have been collected. Tularaemia is an uncommon but potentially dangerous zoonotic disease caused by the bacterium Francisella tularensis. As few as ten bacterial cells are sufficient to cause disease in a healthy human, making this one of the most infectious disease agents known. The virulence of this organism is dependent upon a genetic locus known as the Francisella pathogenicity island (FPI), which encodes components of a secretion system that is related to the type VI secretion system. Here, the cloning, expression, purification and preliminary X-ray diffraction statistics of the FPI-encoded protein IglE are presented. This putative lipoprotein is required for intra-macrophage growth and is thought to be a constituent of the periplasmic portion of the type VI-like protein complex that is responsible for the secretion of critical virulence factors in Francisella

  2. Purification, crystallization and preliminary X-ray diffraction analysis of the putative ABC transporter ATP-binding protein from Thermotoga maritima

    International Nuclear Information System (INIS)

    Ethayathulla, Abdul S.; Bessho, Yoshitaka; Shinkai, Akeo; Padmanabhan, Balasundaram; Singh, Tej P.; Kaur, Punit; Yokoyama, Shigeyuki

    2008-01-01

    The putative ABC transporter ATP-binding protein TM0222 from T. maritima was cloned, overproduced, purified and crystallized. A complete MAD diffraction data set has been collected to 2.3 Å resolution. Adenosine triphosphate (ATP) binding cassette transporters (ABC transporters) are ATP hydrolysis-dependent transmembrane transporters. Here, the overproduction, purification and crystallization of the putative ABC transporter ATP-binding protein TM0222 from Thermotoga maritima are reported. The protein was crystallized in the hexagonal space group P6 4 22, with unit-cell parameters a = b = 148.49, c = 106.96 Å, γ = 120.0°. Assuming the presence of two molecules in the asymmetric unit, the calculated V M is 2.84 Å 3 Da −1 , which corresponds to a solvent content of 56.6%. A three-wavelength MAD data set was collected to 2.3 Å resolution from SeMet-substituted TM0222 crystals. Data sets were collected on the BL38B1 beamline at SPring-8, Japan

  3. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus' molecule 1 protein.

    Science.gov (United States)

    Petty, Tom J; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D; Thore, Stéphane

    2010-08-01

    Of the known epigenetic control regulators found in plants, the Morpheus' molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to approximately 3.2 A resolution. They belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a=85.64, c=292.74 A. Structure determination is ongoing.

  4. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein

    Science.gov (United States)

    Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane

    2010-01-01

    Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing. PMID:20693667

  5. Versatile application of indirect Fourier transformation to structure factor analysis: from X-ray diffraction of molecular liquids to small angle scattering of protein solutions.

    Science.gov (United States)

    Fukasawa, Toshiko; Sato, Takaaki

    2011-02-28

    We highlight versatile applicability of a structure-factor indirect Fourier transformation (IFT) technique, hereafter called SQ-IFT. The original IFT aims at the pair distance distribution function, p(r), of colloidal particles from small angle scattering of X-rays (SAXS) and neutrons (SANS), allowing the conversion of the experimental form factor, P(q), into a more intuitive real-space spatial autocorrelation function. Instead, SQ-IFT is an interaction potential model-free approach to the 'effective' or 'experimental' structure factor to yield the pair correlation functions (PCFs), g(r), of colloidal dispersions like globular protein solutions for small-angle scattering data as well as the radial distribution functions (RDFs) of molecular liquids in liquid diffraction (LD) experiments. We show that SQ-IFT yields accurate RDFs of liquid H(2)O and monohydric alcohol reflecting their local intermolecular structures, in which q-weighted structure function, qH(q), conventionally utilized in many LD studies out of necessity of performing direct Fourier transformation, is no longer required. We also show that SQ-IFT applied to theoretically calculated structure factors for uncharged and charged colloidal dispersions almost perfectly reproduces g(r) obtained as a solution of the Ornstein-Zernike (OZ) equation. We further demonstrate the relevance of SQ-IFT in its practical applications, using SANS effective structure factors of lysozyme solutions reported in recent literatures which revealed the equilibrium cluster formation due to coexisting long range electrostatic repulsion and short range attraction between the proteins. Finally, we present SAXS experiments on human serum albumin (HSA) at different ionic strength and protein concentration, in which we discuss the real space picture of spatial distributions of the proteins via the interaction potential model-free route.

  6. Diffraction gauging

    International Nuclear Information System (INIS)

    Wilkens, P.H.

    1978-01-01

    This system of gauging is now being designed to fit on an Excello NC lathe to measure the form, accuracy, and size of external contoured surfaces as they approach the finish machined size. A template profile of the finished workpiece, but 0.003 in. bigger on radius, will be aligned with the workpiece using a reference diameter and face on the machining fixture to leave a gap between the profile of the template and workpiece. A helium--neon laser beam will be projected through this gap using a rotating retroreflector and a fixed laser. The resulting diffraction pattern produced by the laser beam passing through the template to workpiece gap will be reflected and focused on a fixed diode array via a second retroreflector which moves and remains in optical alignment with the first. These retroreflectors will be rotated about a center that will enable the laser beam, which is shaped in a long slit, to scan the template workpiece gap from the pole to the equator of the workpiece. The characteristic diffraction pattern will be detected by the fixed diode array, and the signal levels from this array will be processed in a mini-computer programmed to produce a best fit through the two minima of the diode signals. The separation of the two minima will yield the size of the workpiece to template gap and this information will be presented to the machine tool operator

  7. Proton diffraction

    International Nuclear Information System (INIS)

    Den Besten, J.L.; Jamieson, D.N.; Allen, L.J.

    1998-01-01

    The Lindhard theory on ion channeling in crystals has been widely accepted throughout ion beam analysis for use in simulating such experiments. The simulations use a Monte Carlo method developed by Barret, which utilises the classical 'billiard ball' theory of ions 'bouncing' between planes or tubes of atoms in the crystal. This theory is not valid for 'thin' crystals where the planes or strings of atoms can no longer be assumed to be of infinite proportions. We propose that a theory similar to that used for high energy electron diffraction can be applied to MeV ions, especially protons, in thin crystals to simulate the intensities of transmission channeling and of RBS spectra. The diffraction theory is based on a Bloch wave solution of the Schroedinger equation for an ion passing through the periodic crystal potential. The widely used universal potential for proton-nucleus scattering is used to construct the crystal potential. Absorption due to thermal diffuse scattering is included. Experimental parameters such as convergence angle, beam tilt and scanning directions are considered in our calculations. Comparison between theory and experiment is encouraging and suggests that further work is justified. (authors)

  8. Two-functional sensor of magnetic field and deformation based on Si microcrystals

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-06-01

    Full Text Available This research investigates complex studies of electrical conductivity and magnetoresistance of both strain and non-strain samples of p-type Si whiskers with different degrees of doping with boron and nickel in a wide temperature range from 4.2 to 300 K. It is established that the greatest manifestation of the piezoresistive effect is observed in the vicinity of concentrations which correspond to the metal-insulator transition. Investigation of the magnetoresistance of crystals was carried out in the range of fields with induction up to 14 T. Whiskers of silicon with a doping concentration of boron of 5·1018 cm-3 can be used as a sensitive element for two-functional deformation and magnetic field sensors in difficult operating conditions. Microwires for research were grown by chemical transport reactions with the crystallographic orientation and with the concentration of charge carriers, which corresponds to the vicinity of metal-insulator transition (5·1018 см-3. The nickel doping was conducted by the low-temperature diffusion from the precipitated film on the surface of the crystal. The uniaxial strain of Si microcrystals was carried out by fixing them on substrates with the different coefficient of thermal. The metallic-type temperature dependence on the resistivity is typical for heavily doped silicon microcrystals (with the bor concenctation >5·1018 сm-3 for both deformed and non deformed samples. Significant influence of the deformation on characteristics of microcrystals wasn't found. The maximum magnetoresistance of such samples doesn't exceed 4% in magnetic fields with induction of 14 T at the temperature of liquefied helium. The resistivity of Si crystals with ρ300К = 0.012 Оhm·сm (which corresponds to the dielectric side of MIT is reduced in several times at the the temperature of liquefied helium and under the uniaxial deformation. Decreasing of boron concentration reduces this effect. This is also confirmed by the

  9. X-ray diffraction

    International Nuclear Information System (INIS)

    Einstein, J.R.; Wei, C.H.

    1982-01-01

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  10. Threshold pressure for mechanoluminescence of macrocrystals, microcrystals and nanocrystals of doped zinc sulphide

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, B.P. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, C.G. (India); Chandra, V.K. [Department of Electrical and Electronics Engineering, Chhatrapati Shivaji Institute of Technology, Shivaji Nagar, Kolihapuri, Durg 491001, C.G. (India); Jha, Piyush, E-mail: piyushjha22@rediffmail.com [Department of Applied Physics, Raipur Institute of Technology, Chhatauna, Mandir Hasuad, Raipur 492101, C.G. (India); Sonwane, V.D. [School of Studies in Physics and Astrophysics, Pt. Ravishankar Shukla University, Raipur 492010, C.G. (India)

    2016-06-15

    The threshold pressure for elastico-mechanoluminescence (EML) of ZnS:Mn macrocrystals is 20 MPa, and ZnS:Cu,Al macrocrystals do not show ML during elastic deformation. However, the threshold pressure for EML of ZnS:Mn and ZnS:Cu,Cl microcrystals and nanocrystals is nearly 1 MPa. Thus, it seems that high concentration of defects in microcrystalline and nanocrystalline ZnS:Mn and ZnS:Cu,Cl produces disorder and distortion in lattice and changes the local crystal-structure near impurities, and consequently, the enhanced piezoelectric constant of local region produces EML for low value of applied pressure. The threshold pressure for the ML of ZnS:Mn and ZnS:Cu,Al single macrocrystals is higher because such crystals possess comparatively less number of defects near the impurities where the phase-transition is not possible and their ML is caused for high value of stress because the bulk piezoelectric constant is less. Thus, size-dependent threshold pressure for ML supports the origin of EML from piezoelectricity in local region of the crystals. The finding of present investigation may be useful in tailoring phosphors emitting intense EML of different colours.

  11. Topotactic Transformation Route to Monodisperse β-NaYF4:Ln(3+) Microcrystals with Luminescence Properties.

    Science.gov (United States)

    Shao, Baiqi; Feng, Yang; Song, Yan; Jiao, Mengmeng; Lü, Wei; You, Hongpeng

    2016-02-15

    A novel nonorganic wet route for direct synthesis of uniform hexagonal β-NaYF4:Ln(3+) (Ln = Eu, Tb, Ce/Tb, Yb/Er, and Yb/Tm) microcrystals with various morphologies has been developed wherein the intermediate routine cubic-hexagonal (α → β) phase transfer process was avoided. The morphology can be effectively tuned into hexagonal disc, prism, and novel hierarchical architectures by systematically fine manipulating the Na2CO3/F(-) feeding ratio. It has been found that the routine α → β phase transfer for NaYF4 was not detected during the growth, while NaY(CO3)F2 emerged in the initial reaction stage and fast transformed into β-NaYF4 via a novel topotactic transformation behavior. Detailed structural analysis showed that β-NaYF4 preferred the [001] epitaxial growth direction of NaY(CO3)F2 due to the structural matching of [001]NaY(CO3)F2//[0001]β-NaYF4. Besides, the potential application of the as-prepared products as phosphors is emphasized by demonstrating multicolor emissions including downconversion, upconversion, and energy transfer (Ce-Tb) process by lanthanides doping.

  12. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    Science.gov (United States)

    Basu, Raktima; Magudapathy, P.; Sardar, Manas; Pandian, Ramanathaswamy; Dhara, Sandip

    2017-11-01

    Textured VO2(0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet-visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO2. The thermochromism in VO2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO2 applicable as advanced smart windows for overall heat management of a closure.

  13. VO2 microcrystals as an advanced smart window material at semiconductor to metal transition

    International Nuclear Information System (INIS)

    Basu, Raktima; Pandian, Ramanathaswamy; Dhara, Sandip; Magudapathy, P; Sardar, Manas

    2017-01-01

    Textured VO 2 (0 1 1) microcrystals are grown in the monoclinic, M1 phase which undergoes a reversible first order semiconductor to metal transition (SMT) accompanied by a structural phase transition to rutile tetragonal, R phase. Around the phase transition, VO 2 also experiences noticeable change in its optical and electrical properties. A change in color of the VO 2 micro crystals from white to cyan around the transition temperature is observed, which is further understood by absorption of red light using temperature dependent ultraviolet–visible spectroscopic analysis and photoluminescence studies. The absorption of light in the red region is explained by the optical transition between Hubbard states, confirming the electronic correlation as the driving force for SMT in VO 2 . The thermochromism in VO 2 has been studied for smart window applications so far in the IR region, which supports the opening of the band gap in semiconducting phase; whereas there is hardly any report in the management of visible light. The filtering of blue light along with reflection of infrared above the semiconductor to metal transition temperature make VO 2 applicable as advanced smart windows for overall heat management of a closure. (paper)

  14. Threshold pressure for mechanoluminescence of macrocrystals, microcrystals and nanocrystals of doped zinc sulphide

    International Nuclear Information System (INIS)

    Chandra, B.P.; Chandra, V.K.; Jha, Piyush; Sonwane, V.D.

    2016-01-01

    The threshold pressure for elastico-mechanoluminescence (EML) of ZnS:Mn macrocrystals is 20 MPa, and ZnS:Cu,Al macrocrystals do not show ML during elastic deformation. However, the threshold pressure for EML of ZnS:Mn and ZnS:Cu,Cl microcrystals and nanocrystals is nearly 1 MPa. Thus, it seems that high concentration of defects in microcrystalline and nanocrystalline ZnS:Mn and ZnS:Cu,Cl produces disorder and distortion in lattice and changes the local crystal-structure near impurities, and consequently, the enhanced piezoelectric constant of local region produces EML for low value of applied pressure. The threshold pressure for the ML of ZnS:Mn and ZnS:Cu,Al single macrocrystals is higher because such crystals possess comparatively less number of defects near the impurities where the phase-transition is not possible and their ML is caused for high value of stress because the bulk piezoelectric constant is less. Thus, size-dependent threshold pressure for ML supports the origin of EML from piezoelectricity in local region of the crystals. The finding of present investigation may be useful in tailoring phosphors emitting intense EML of different colours.

  15. Trapping, manipulation and rapid rotation of NBD-C8 fluorescent single microcrystals in optical tweezers

    International Nuclear Information System (INIS)

    GALAUP, Jean-Pierre; RODRIGUEZ-OTAZO, Mariela; AUGIER-CALDERIN, Angel; LAMERE; Jean-Francois; FERY-FORGUES, Suzanne

    2009-01-01

    We have built an optical tweezers experiment based on an inverted microscope to trap and manipulate single crystals of micro or sub-micrometer size made from fluorescent molecules of 4-octylamino-7-nitrobenzoxadiazole (NBD-C8). These single crystals have parallelepiped shapes and exhibit birefringence properties evidenced through optical experiments between crossed polarizers in a polarizing microscope. The crystals are uniaxial with their optical axis oriented along their largest dimension. Trapped in the optical trap, the organic micro-crystals are oriented in such a way that their long axis is along the direction of the beam propagation, and their short axis follows the direction of the linear polarization. Therefore, with linearly polarized light, simply rotating the light polarization can orient the crystal. When using circularly or only elliptically polarized light, the crystal can spontaneously rotate and reach rotation speed of several hundreds of turns per second. A surprising result has been observed: when the incident power is growing up, the rotation speed increases to reach a maximum value and then decreases even when the power is still growing up. Moreover, this evolution is irreversible. Different possible explanations can be considered. The development of a 3D control of the crystals by dynamical holography using liquid crystal spatial modulators will be presented and discussed on the basis of the most recent results obtained. (Author)

  16. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    International Nuclear Information System (INIS)

    Sugimoto, Yasunobu; Takezawa, Yasunori; Matsuo, Tatsuhito; Ueno, Yutaka; Minakata, Shiho; Tanaka, Hidehiro; Wakabayashi, Katsuzo

    2008-01-01

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by ∼0.1% upon activation relative to the relaxing state and increased by ∼0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca 2+ -binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca 2+ -binding and the second induced by actomyosin interaction

  17. Visualization of membrane protein crystals in lipid cubic phase using X-ray imaging.

    Science.gov (United States)

    Warren, Anna J; Armour, Wes; Axford, Danny; Basham, Mark; Connolley, Thomas; Hall, David R; Horrell, Sam; McAuley, Katherine E; Mykhaylyk, Vitaliy; Wagner, Armin; Evans, Gwyndaf

    2013-07-01

    The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallize on much smaller scales and are frequently mounted in opaque or highly refractive materials. It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this paper, the use of X-ray microradiography and microtomography is reported as a tool for crystal visualization, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals and for crystals mounted in opaque materials such as lipid cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to that for a diffraction grid-scan, but for sample location and shape estimation alone just a few radiographic projections may be required.

  18. Adrenaline (epinephrine) microcrystal sublingual tablet formulation: enhanced absorption in a preclinical model.

    Science.gov (United States)

    Rawas-Qalaji, Mutasem; Rachid, Ousama; Mendez, Belacryst A; Losada, Annette; Simons, F Estelle R; Simons, Keith J

    2015-01-01

    For anaphylaxis treatment in community settings, adrenaline (epinephrine) administration using an auto-injector in the thigh is universally recommended. Despite this, many people at risk of anaphylaxis in community settings do not carry their prescribed auto-injectors consistently and hesitate to use them when anaphylaxis occurs.The objective of this research was to study the effect of a substantial reduction in adrenaline (Epi) particle size to a few micrometres (Epi microcrystals (Epi-MC)) on enhancing adrenaline dissolution and increasing the rate and extent of sublingual absorption from a previously developed rapidly disintegrating sublingual tablet (RDST) formulation in a validated preclinical model. The in-vivo absorption of Epi-MC 20 mg RDSTs and Epi 40 mg RDSTs was evaluated in rabbits. Epi 0.3 mg intramuscular (IM) injection in the thigh and placebo RDSTs were used as positive and negative controls, respectively. Epimean (standard deviation) area under the plasma concentration vs time curves up to 60 min and Cmax from Epi-MC 20 mg and Epi 40 mg RDSTs did not differ significantly (P > 0.05) from Epi 0.3 mg IM injection. After adrenaline, regardless of route of administration, pharmacokinetic parameters were significantly higher (P adrenaline levels). Epi-MC RDSTs facilitated a twofold increase in Epi absorption and a 50% reduction in the sublingual dose. This novel sublingual tablet formulation is potentially useful for the first-aid treatment of anaphylaxis in community settings. © 2014 Royal Pharmaceutical Society.

  19. Preparation of Microcrystals of Piroxicam Monohydrate by Antisolvent Precipitation via Microfabricated Metallic Membranes with Ordered Pore Arrays.

    Science.gov (United States)

    Othman, Rahimah; Vladisavljević, Goran T; Simone, Elena; Nagy, Zoltan K; Holdich, Richard G

    2017-12-06

    Microcrystals of piroxicam (PRX) monohydrate with a narrow size distribution were prepared from acetone/PRX solutions by antisolvent crystallization via metallic membranes with ordered pore arrays. Crystallization was achieved by controlled addition of the feed solution through the membrane pores into a well-stirred antisolvent. A complete transformation of an anhydrous form I into a monohydrate form of PRX was confirmed by Raman spectroscopy and differential scanning calorimetry. The size of the crystals was 7-34 μm and was controlled by the PRX concentration in the feed solution (15-25 g L -1 ), antisolvent/solvent volume ratio (5-30), and type of antisolvent (Milli-Q water or 0.1-0.5 wt % aqueous solutions of hydroxypropyl methyl cellulose (HPMC), poly(vinyl alcohol) or Pluronic P-123). The smallest crystals were obtained by injecting 25 g L -1 PRX solution through a stainless-steel membrane with a pore size of 10 μm into a 0.06 wt % HPMC solution stirred at 1500 rpm using an antisolvent/solvent ratio of 20. HPMC provided better steric stabilization of microcrystals against agglomeration than poly(vinyl alcohol) and Pluronic P-123, due to hydrogen bonding interactions with PRX and water. A continuous production of large PRX monohydrate microcrystals with a volume-weighted mean diameter above 75 μm was achieved in a continuous stirred membrane crystallizer. Rapid pouring of Milli-Q water into the feed solution resulted in a mixture of highly polydispersed prism-shaped and needle-shaped crystals.

  20. On the acceptor-related photoluminescence spectra of GaAs quantum-wire microcrystals: A model calculation

    International Nuclear Information System (INIS)

    Oliveira, L.E.; Porras Montenegro, N.; Latge, A.

    1992-07-01

    The acceptor-related photoluminescence spectrum of a GaAs quantum-wire microcrystal is theoretically investigated via a model calculation within the effective-mass approximation, with the acceptor envelope wave functions and binding energies calculated through a variational procedure. Typical theoretical photoluminescence spectra show two peaks associated to transitions from the n = 1 conduction subband electron gas to acceptors at the on-center and on-edge positions in the wire in good agreement with the recent experimental results by Hirum et al. (Appl. Phys. Lett. 59, 431 (1991)). (author). 14 refs, 3 figs

  1. Synchrotron radiation studies on luminescence of Eu2+-doped LaCl3 microcrystals embedded in a NaCl matrix

    International Nuclear Information System (INIS)

    Savchyn, P.V.; Vistovskyy, V.V.; Pushak, A.S.; Voloshinovskii, A.S.; Gektin, A.V.; Pankratov, V.; Popov, A.I.

    2012-01-01

    LaCl 3 :Eu 2+ microcrystals dispersed in the NaCl matrix have been obtained in the NaCl–LaCl 3 (1 mol.%)–EuCl 3 (0.1 mol.%) crystalline system. The low-temperature luminescent properties of these microcrystals have been studied upon the VUV and UV excitation by the synchrotron radiation. The spectroscopic parameters as well as decay time constants of Eu 2+ -doped LaCl 3 host have been established. The excitation mechanism of divalent europium centers through energy transfer and reabsorption is discussed.

  2. Crystallization and preliminary X-ray diffraction analysis of XAC1151, a small heat-shock protein from Xanthomonas axonopodis pv. citri belonging to the α-crystallin family

    Energy Technology Data Exchange (ETDEWEB)

    Hilario, Eduardo; Teixeira, Elaine Cristina; Pedroso, Gisele Audrei; Bertolini, Maria Célia [Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara-SP (Brazil); Medrano, Francisco Javier, E-mail: fjmedrano@yahoo.com [Departamento de Cristalografia de Proteínas, Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Caixa Postal 6192, CEP 13084-971, Campinas-SP (Brazil); Departamento de Bioquímica e Tecnologia Química, Instituto de Química, Universidade Estadual Paulista, Araraquara-SP (Brazil)

    2006-05-01

    XAC1151, a small heat-shock protein from X. axonopodis pv. citri belonging to the α-crystallin family, was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein (sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 Å resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 Å. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.

  3. Crystallization and preliminary X-ray diffraction analyses of pseudechetoxin and pseudecin, two snake-venom cysteine-rich secretory proteins that target cyclic nucleotide-gated ion channels

    International Nuclear Information System (INIS)

    Suzuki, Nobuhiro; Yamazaki, Yasuo; Fujimoto, Zui; Morita, Takashi; Mizuno, Hiroshi

    2005-01-01

    Crystals of pseudechetoxin and pseudecin, potent peptidic inhibitors of cyclic nucleotide-gated ion channels, have been prepared and X-ray diffraction data have been collected to 2.25 and 1.90 Å resolution, respectively. Cyclic nucleotide-gated (CNG) ion channels play pivotal roles in sensory transduction of retinal and olfactory neurons. The elapid snake toxins pseudechetoxin (PsTx) and pseudecin (Pdc) are the only known protein blockers of CNG channels. These toxins are structurally classified as cysteine-rich secretory proteins and exhibit structural features that are quite distinct from those of other known small peptidic channel blockers. This article describes the crystallization and preliminary X-ray diffraction analyses of these toxins. Crystals of PsTx belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 60.30, b = 61.59, c = 251.69 Å, and diffraction data were collected to 2.25 Å resolution. Crystals of Pdc also belonged to space group P2 1 2 1 2 1 , with similar unit-cell parameters a = 60.71, b = 61.67, c = 251.22 Å, and diffraction data were collected to 1.90 Å resolution

  4. Design and performance of U7B beamline and X-ray diffraction and scattering station at NSRL and its preliminary experiments in protein crystallography

    International Nuclear Information System (INIS)

    Pan Guoqiang; Xu, Chaoyin; Fan Rong; Gao Chen; Lou Xiaohua; Teng Maikun; Huang Qingqiu; Niu Liwen

    2005-01-01

    This publication describes the design and performance of the U7B beamline and X-ray diffraction and diffuse scattering station at National Synchrotron Radiation Laboratory (NSRL). The beamline optics comprise a Pt-coated toroidal focusing mirror and a double-crystal Si(1 1 1) monochromator. A preliminary experiment of diffraction data collection and processing was carried out using a commercial imaging plate detector system (Mar345). The data collected from one single crystal of acutohaemolysin, a Lys49-type PLA2 from Agkistrodon acutus venom, are of high quality

  5. Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7

    International Nuclear Information System (INIS)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S.

    2009-01-01

    This article describes the first successful crystallization of components of eukaryotic ribonucleases P/MRP. Yeast RNase MRP RNA domain P3 was crystallized in a complex with the proteins Pop6 and Pop7; the crystals diffracted to 3.25 Å resolution. Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4 2 22 (unit-cell parameters a = b = 127.2, c = 76.8 Å, α = β = γ = 90°) and diffracted to 3.25 Å resolution

  6. Protein crystallography with a micrometre-sized synchrotron-radiation beam

    International Nuclear Information System (INIS)

    Moukhametzianov, Rouslan; Burghammer, Manfred; Edwards, Patricia C.; Petitdemange, Sebastien; Popov, Dimitri; Fransen, Maikel; McMullan, Gregory; Schertler, Gebhard F. X.; Riekel, Christian

    2008-01-01

    For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. For the first time, protein microcrystallography has been performed with a focused synchrotron-radiation beam of 1 µm using a goniometer with a sub-micrometre sphere of confusion. The crystal structure of xylanase II has been determined with a flux density of about 3 × 10 10 photons s −1 µm −2 at the sample. Two sets of diffraction images collected from different sized crystals were shown to comprise data of good quality, which allowed a 1.5 Å resolution xylanase II structure to be obtained. The main conclusion of this experiment is that a high-resolution diffraction pattern can be obtained from 20 µm 3 crystal volume, corresponding to about 2 × 10 8 unit cells. Despite the high irradiation dose in this case, it was possible to obtain an excellent high-resolution map and it could be concluded from the individual atomic B-factor patterns that there was no evidence of significant radiation damage. The photoelectron escape from a narrow diffraction channel is a possible reason for reduced radiation damage as indicated by Monte Carlo simulations. These results open many new opportunities in scanning protein microcrystallography and make random data collection from microcrystals a real possibility, therefore enabling structures to be solved from much smaller crystals than previously anticipated as long as the crystallites are well ordered

  7. Diffraction coherence in optics

    CERN Document Server

    Françon, M; Green, L L

    2013-01-01

    Diffraction: Coherence in Optics presents a detailed account of the course on Fraunhofer diffraction phenomena, studied at the Faculty of Science in Paris. The publication first elaborates on Huygens' principle and diffraction phenomena for a monochromatic point source and diffraction by an aperture of simple form. Discussions focus on diffraction at infinity and at a finite distance, simplified expressions for the field, calculation of the path difference, diffraction by a rectangular aperture, narrow slit, and circular aperture, and distribution of luminous flux in the airy spot. The book th

  8. Crystallization and preliminary X-ray diffraction analysis of the P3 RNA domain of yeast ribonuclease MRP in a complex with RNase P/MRP protein components Pop6 and Pop7.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-01-01

    Eukaryotic ribonucleases P and MRP are closely related RNA-based enzymes which contain a catalytic RNA component and several protein subunits. The roles of the protein subunits in the structure and function of eukaryotic ribonucleases P and MRP are not clear. Crystals of a complex that included a circularly permuted 46-nucleotide-long P3 domain of the RNA component of Saccharomyces cerevisiae ribonuclease MRP and selenomethionine derivatives of the shared ribonuclease P/MRP protein components Pop6 (18.2 kDa) and Pop7 (15.8 kDa) were obtained using the sitting-drop vapour-diffusion method. The crystals belonged to space group P4(2)22 (unit-cell parameters a = b = 127.2, c = 76.8 A, alpha = beta = gamma = 90 degrees ) and diffracted to 3.25 A resolution.

  9. Phase behavior in diffraction

    International Nuclear Information System (INIS)

    Checon, A.

    1983-01-01

    Theoretical formulation of a straight edge diffraction shows a phase difference of π/2 between the incoming and diffracted waves. Experiments using two straight edges do not confirm the π/2 difference but suggest that the incoming wave is in phase with the wave diffracted into the shadowed region of the edge and out of phase by a factor of π with the wave diffracted into the illuminated region. (Author) [pt

  10. A novel noncovalent complex of chorismate mutase and DAHP synthase from Mycobacterium tuberculosis: protein purification, crystallization and X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Ökvist, Mats; Sasso, Severin; Roderer, Kathrin; Kast, Peter; Krengel, Ute

    2009-01-01

    Two shikimate-pathway enzymes from M. tuberculosis, the intracellular chorismate mutase (MtCM) and DAHP synthase (MtDS), were produced recombinantly and purified. MtCM was crystallized alone and in complex with MtDS and analyzed by X-ray diffraction. Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM–MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM–MtDS complex diffracted to 1.6 and 2.1 Å resolution, respectively

  11. Crystallization and preliminary X-ray diffraction studies of the ubiquitin-like (UbL) domain of the human homologue A of Rad23 (hHR23A) protein.

    Science.gov (United States)

    Chen, Yu Wai; Tajima, Toshitaka; Rees, Martin; Garcia-Maya, Mitla

    2009-09-01

    Human homologue A of Rad23 (hHR23A) plays dual roles in DNA repair as well as serving as a shuttle vehicle targeting polyubiquitinated proteins for degradation. Its N-terminal ubiquitin-like (UbL) domain interacts with the 19S proteasomal cap and provides the docking mechanism for protein delivery. Pyramidal crystals of the UbL domain of hHR23A were obtained by the hanging-drop vapour-diffusion method with ammonium sulfate as the crystallizing agent. The crystals diffracted to beyond 2 A resolution and belonged to the hexagonal space group P6(5)22, with unit-cell parameters a = b = 78.48, c = 63.57 A. The structure was solved by molecular replacement using the UbL domain of yeast Dsk2 as the search model.

  12. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    Science.gov (United States)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  13. Albendazole Microcrystal Formulations Based on Chitosan and Cellulose Derivatives: Physicochemical Characterization and In Vitro Parasiticidal Activity in Trichinella spiralis Adult Worms.

    Science.gov (United States)

    Priotti, Josefina; Codina, Ana V; Leonardi, Darío; Vasconi, María D; Hinrichsen, Lucila I; Lamas, María C

    2017-05-01

    The oral route has notable advantages to administering dosage forms. One of the most important questions to solve is the poor solubility of most drugs which produces low bioavailability and delivery problems, a major challenge for the pharmaceutical industry. Albendazole is a benzimidazole carbamate extensively used in oral chemotherapy against intestinal parasites, due to its extended spectrum activity and low cost. Nevertheless, the main disadvantage is the poor bioavailability due to its very low solubility in water. The main objective of this study was to prepare microcrystal formulations by the bottom-up technology to increase albendazole dissolution rate, in order to enhance its antiparasitic activity. Thus, 20 novel microstructures based on chitosan, cellulose derivatives, and poloxamer as a surfactant were produced and characterized by their physicochemical properties and in vitro biological activity. To determine the significance of type and concentration of polymer, and presence or absence of surfactant in the crystals, the variables area under the curve, albendazole microcrystal solubility, and drug released (%) at 30 min were analyzed with a three-way ANOVA. This analysis indicated that the microcrystals made with hydroxyethylcellulose or chitosan appear to be the best options to optimize oral absorption of the active pharmaceutical ingredient. The in vitro evaluation of anthelmintic activity on adult forms of Trichinella spiralis identified system S10A as the most effective, of choice for testing therapeutic efficacy in vivo.

  14. Project in determination of crystal structure of nitrogen fixation proteins from azospirilum brasiliense and herbaspirilum seropedicae by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Barbosa, Valma M.; Leggs, Luciana A.; Delboni, Luis F.; Chubatsu, LedaS.; Souza, Emanuel M.; Machado, Hidevaldo B.; Yates, Geoffrey M.; Pedrosa, Fabio O.

    1996-01-01

    Full text. Biological nitrogen fixation is essential for maintaining the nitrogen cycle on earth and of high importance for Brazilian agriculture. The nitrogenase enzyme system, which provides the biochemical machinery for nitrogen fixation, consists of two component metalloproteins, the molybdenumiron (Mo Fe) protein and the iron (Fe) protein. Nitrogen fixation is a very energy-intensive process, requiring around 16 moles of ATP for each mol of N 2 fixed (reduced). As a consequence, synthesis and activity of nitrogenase is tighty regulated at two levels: general and specific. The general level regulation is mediated by the ntr (nitrogen regulation) system. Two gene products are involved: the ntrB gene product (NtrB) is responsible for the activation of the ntrC gene product (NtrC) by phosphorylating a conserved Asp54, which activates the expression of the nifA gene. The nif specific control system is mediated by the NifA protein, which binds to a DNA specific sequence (UAS, Upstream Activator Sequence) and activates nif promoter transcriptions by RNA polymerase- α54 , following ATP hydrolysis. The aim of this project is to solve the crystal structure of dinitrogenase reductase (iron protein) and dinitrogenase (molybdenum-iron protein) from Azospirilim brasiliense and the regulatory proteins NifA from Herbaspirillum seropedicae and NtrC Azospirillum brasiliense. The three dimensional structure of the proteins involved in this project will allow a better understanding of the mechanism of biological nitrogen fixation. To this end, the data collection will probably be done at the LNLS facilities which will be available in the near future. (author)

  15. Project in determination of crystal structure of nitrogen fixation proteins from azospirilum brasiliense and herbaspirilum seropedicae by synchrotron x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Valma M.; Leggs, Luciana A.; Delboni, Luis F.; Chubatsu, LedaS.; Souza, Emanuel M.; Machado, Hidevaldo B.; Yates, Geoffrey M.; Pedrosa, Fabio O. [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica

    1996-12-31

    Full text. Biological nitrogen fixation is essential for maintaining the nitrogen cycle on earth and of high importance for Brazilian agriculture. The nitrogenase enzyme system, which provides the biochemical machinery for nitrogen fixation, consists of two component metalloproteins, the molybdenumiron (Mo Fe) protein and the iron (Fe) protein. Nitrogen fixation is a very energy-intensive process, requiring around 16 moles of ATP for each mol of N{sub 2} fixed (reduced). As a consequence, synthesis and activity of nitrogenase is tighty regulated at two levels: general and specific. The general level regulation is mediated by the ntr (nitrogen regulation) system. Two gene products are involved: the ntrB gene product (NtrB) is responsible for the activation of the ntrC gene product (NtrC) by phosphorylating a conserved Asp54, which activates the expression of the nifA gene. The nif specific control system is mediated by the NifA protein, which binds to a DNA specific sequence (UAS, Upstream Activator Sequence) and activates nif promoter transcriptions by RNA polymerase-{sup {alpha}54}, following ATP hydrolysis. The aim of this project is to solve the crystal structure of dinitrogenase reductase (iron protein) and dinitrogenase (molybdenum-iron protein) from Azospirilim brasiliense and the regulatory proteins NifA from Herbaspirillum seropedicae and NtrC Azospirillum brasiliense. The three dimensional structure of the proteins involved in this project will allow a better understanding of the mechanism of biological nitrogen fixation. To this end, the data collection will probably be done at the LNLS facilities which will be available in the near future. (author)

  16. Diffraction at TOTEM

    OpenAIRE

    Giani, S; Niewiadomski, H; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage...

  17. Diffraction at TOTEM

    OpenAIRE

    Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.

    2008-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral...

  18. Preparation of chromatographically pure specimens, crystallization, and X-ray diffraction study of the periplasmatic chaperone protein Caf1M from Y. Pestis

    International Nuclear Information System (INIS)

    Mikhailov, A.M.; Vainshtein, B.K.; Chernovskaya, T.V.; Vasil'ev, A.M.; Rudenko, E.G.; Abramov, V.M.; Zav'yalov, V.P.; Kornev, A.N.; Kornilov, V.V.; Karlyshev, A.V.; MacIntyre, Sh.

    1999-01-01

    The for growing conditions perfect single crystals of the protein Caf1M have been established. The unit-cell parameters of the crystals are (a=112.6 A, b=78.1 A, c=65.3 A, sp. gr. P2 1 2 1 2 1 ), molecular weight is 28 kDa), which is a representative of molecular periplasmatic chaperones, were found. This investigation is the first necessary stage of determination the three-dimensional structure of this biomacromolecule at atomic resolution. Taking into account that the primary amino acid sequences of the protein Caf1M and of the structurally studied protein PapD and also their secondary structures are homologous, the phase problem can be solved by the molecular replacement method

  19. LiFePO4 microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G.

    Science.gov (United States)

    Li, Zhan Jun; Ali, Ghafar; Kim, Hyun Jin; Yoo, Seong Ho; Cho, Sung Oh

    2014-01-01

    We present a novel heterogeneous Fenton-like catalyst of LiFePO4 (LFP). LFP has been widely used as an electrode material of a lithium ion battery, but we observed that commercial LFP (LFP-C) could act as a good Fenton-like catalyst to decompose rhodamine 6G. The catalytic activity of LFP-C microparticles was much higher than a popular catalyst, magnetite nanoparticles. Furthermore, we found that the catalytic activity of LFP-C could be further increased by increasing the specific surface area. The reaction rate constant of the hydrothermally synthesized LFP microcrystals (LFP-H) is at least 18 times higher than that of magnetite nanoparticles even though the particle size of LFP is far larger than magnetite nanoparticles. The LFP catalysts also exhibited a good recycling behavior and high stability under an oxidizing environment. The effects of the experimental parameters such as the concentration of the catalysts, pH, and the concentration of hydrogen peroxide on the catalytic activity of LFP were also analyzed.

  20. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of AHP2, a signal transmitter protein from Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Degtjarik, O.; Dopitová, R.; Puehringer, S.; Nejedlá, E.; Kutý, Michal; Weiss, M.S.; Hejatko, J.; Janda, L.; Kutá-Smatanová, Ivana

    2013-01-01

    Roč. 69, FEB 2013 (2013), s. 158-161 ISSN 1744-3091 Institutional support: RVO:67179843 Keywords : AHP2 * Arabidopsis thaliana * histidine phosphotransfer proteins * multi-step phosphorelay Subject RIV: CE - Biochemistry Impact factor: 0.568, year: 2013

  1. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of universal stress protein F (YnaF) from Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Sagurthi, Someswar Rao; Panigrahi, Rashmi Rekha; Gowda, Giri [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012 (India)

    2007-11-01

    The cloning, purification and crystallization of YnaF from S. typhimurium are reported along with preliminary X-ray crystallographic studies. The universal stress protein UspF (YnaF) is a small cytoplasmic bacterial protein. The expression of stress proteins is enhanced when cells are exposed to heat shock, nutrition starvation and certain other stress-inducing agents. YnaF promotes cell survival during prolonged exposure to stress and may activate a general mechanism for stress endurance. This manuscript reports preliminary crystallographic studies on YnaF from Salmonella typhimurium. The gene coding for YnaF was cloned and overexpressed and the protein was purified by Ni–NTA affinity chromatography. Purified YnaF was crystallized using vapour-diffusion and microbatch methods. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 37.51, b = 77.18, c = 56.34 Å, β = 101.8°. A data set was collected to 2.5 Å resolution with 94.6% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. Attempts to determine the structure are in progress.

  2. A novel noncovalent complex of chorismate mutase and DAHP synthase from Mycobacterium tuberculosis: protein purification, crystallization and X-ray diffraction analysis

    Science.gov (United States)

    Ökvist, Mats; Sasso, Severin; Roderer, Kathrin; Kast, Peter; Krengel, Ute

    2009-01-01

    Chorismate mutase catalyzes a key step in the shikimate-biosynthetic pathway and hence is an essential enzyme in bacteria, plants and fungi. Mycobacterium tuberculosis contains two chorismate mutases, a secreted and an intracellular one, the latter of which (MtCM; Rv0948c; 90 amino-acid residues; 10 kDa) is the subject of this work. Here are reported the gene expression, purification and crystallization of MtCM alone and of its complex with another shikimate-pathway enzyme, DAHP synthase (MtDS; Rv2178c; 472 amino-acid residues; 52 kDa), which has been shown to enhance the catalytic efficiency of MtCM. The MtCM–MtDS complex represents the first noncovalent enzyme complex from the common shikimate pathway to be structurally characterized. Soaking experiments with a transition-state analogue are also reported. The crystals of MtCM and the MtCM–MtDS complex diffracted to 1.6 and 2.1 Å resolution, respectively. PMID:19851019

  3. Observables of QCD diffraction

    Science.gov (United States)

    Mieskolainen, Mikael; Orava, Risto

    2017-03-01

    A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.

  4. Ultrafast electron diffraction using an ultracold source

    Directory of Open Access Journals (Sweden)

    M. W. van Mourik

    2014-05-01

    Full Text Available The study of structural dynamics of complex macromolecular crystals using electrons requires bunches of sufficient coherence and charge. We present diffraction patterns from graphite, obtained with bunches from an ultracold electron source, based on femtosecond near-threshold photoionization of a laser-cooled atomic gas. By varying the photoionization wavelength, we change the effective source temperature from 300 K to 10 K, resulting in a concomitant change in the width of the diffraction peaks, which is consistent with independently measured source parameters. This constitutes a direct measurement of the beam coherence of this ultracold source and confirms its suitability for protein crystal diffraction.

  5. New methods for indexing multi-lattice diffraction data

    International Nuclear Information System (INIS)

    Gildea, Richard J.; Waterman, David G.; Parkhurst, James M.; Axford, Danny; Sutton, Geoff; Stuart, David I.; Sauter, Nicholas K.; Evans, Gwyndaf; Winter, Graeme

    2014-01-01

    A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of data. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from microcrystals of ∼1 µm in size. A new indexing method is presented which is capable of indexing multiple crystal lattices from narrow wedges of diffraction data. The method takes advantage of a simplification of Fourier transform-based methods that is applicable when the unit-cell dimensions are known a priori. The efficacy of this method is demonstrated with both semi-synthetic multi-lattice data and real multi-lattice data recorded from crystals of ∼1 µm in size, where it is shown that up to six lattices can be successfully indexed and subsequently integrated from a 1° wedge of data. Analysis is presented which shows that improvements in data-quality indicators can be obtained through accurate identification and rejection of overlapping reflections prior to scaling

  6. Production, crystallization and X-ray diffraction analysis of two nanobodies against the Duffy binding-like (DBL) domain DBL6∊-FCR3 of the Plasmodium falciparum VAR2CSA protein

    International Nuclear Information System (INIS)

    Vuchelen, Anneleen; Pardon, Els; Steyaert, Jan; Gamain, Benoît; Loris, Remy; Nuland, Nico A. J. van; Ramboarina, Stéphanie

    2013-01-01

    Two nanobodies generated against the VAR2CSA DBL6∊-FCR3 domain involved in pregnancy-associated malaria were selected, expressed, purified and crystallized. The VAR2CSA protein has been closely associated with pregnancy-associated malaria and is recognized as the main adhesin exposed on the surface of Plasmodium falciparum-infected erythrocytes. Chondroitin sulfate A was identified as the main host receptor in the placenta. Single-domain heavy-chain camelid antibodies, more commonly called nanobodies, were selected and produced against the DBL6∊-FCR3 domain of VAR2CSA. Crystals of two specific nanobodies, Nb2907 and Nb2919, identified as strong binders to DBL6∊-FCR3 and the full-length VAR2CSA exposed on the surface of FCR3 P. falciparum-infected erythrocytes, were obtained. Crystals of Nb2907 diffract to 2.45 Å resolution and belong to space group C2 with unit-cell parameters a = 136.1, b = 78.5, c = 103.4 Å, β = 118.8°, whereas Nb2919 crystals diffract to 2.15 Å resolution and belong to space group P4 3 2 1 2 with unit-cell parameters a = b = 62.7, c = 167.2 Å

  7. Crystallization and preliminary X-ray diffraction analysis of phospholipid-bound Sfh1p, a member of the Saccharomyces cerevisiae Sec14p-like phosphatidylinositol transfer protein family

    International Nuclear Information System (INIS)

    Schaaf, Gabriel; Betts, Laurie; Garrett, Teresa A.; Raetz, Christian R. H.; Bankaitis, Vytas A.

    2006-01-01

    Yeast Sfh1p, a close homolog of the Sec14p phosphatidylinositol transfer protein, was crystallized in the absence of detergent. X-ray data have been collected to 2.5 Å. Sec14p is the major phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein in the budding yeast Saccharomyces cerevisiae and is the founding member of a large eukaryotic protein superfamily. This protein catalyzes the exchange of either PtdIns or PtdCho between membrane bilayers in vitro and this exchange reaction requires no external input of energy or of other protein cofactors. Despite the previous elucidation of the crystal structure of a detergent-bound form of Sec14p, the conformational changes that accompany the phospholipid-exchange reaction remain undefined. Moreover, a structural appreciation of how Sec14p or its homologs bind their various phospholipid substrates remains elusive. Here, the purification and crystallization of yeast Sfh1p, the protein most closely related to Sec14p, are reported. A combination of electrospray ionization mass-spectrometry and collision-induced decomposition mass-spectrometry methods indicate that recombinant Sfh1p loads predominantly with phosphatidylethanolamine. Unlike phospholipid-bound forms of Sec14p, this form of Sfh1p crystallizes readily in the absence of detergent. Sfh1p crystals diffract to 2.5 Å and belong to the orthorhombic primitive space group P2 1 2 1 2 1 , with unit-cell parameters a = 49.40, b = 71.55, c = 98.21 Å, α = β = γ = 90°. One Sfh1p molecule is present in the asymmetric unit (V M = 2.5 Å 3 Da −1 ; V s = 50%). Crystallization of a phospholipid-bound Sec14p-like protein is a critical first step in obtaining the first high-resolution picture of how proteins of the Sec14p superfamily bind their phospholipid ligands. This information will significantly extend our current understanding of how Sec14p-like proteins catalyze phospholipid exchange

  8. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  9. Coherent Diffractive Imaging at LCLS

    Science.gov (United States)

    Schulz, Joachim

    2010-03-01

    Soft x-ray FEL light sources produce ultrafast x-ray pulses with outstanding high peak brilliance. This might enable the structure determination of proteins that cannot be crystallized. The deposited energy would destroy the molecules completely, but owing to the short pulses the destruction will ideally only happen after the termination of the pulse. In order to address the many challenges that we face in attempting molecular diffraction, we have carried out experiments in coherent diffraction from protein nanocrystals at the Linac Coherent Light Source (LCLS) at SLAC. The periodicity of these objects gives us much higher scattering signals than uncrystallized proteins would. The crystals are filtered to sizes less than 2 micron, and delivered to the pulsed X-ray beam in a liquid jet. The effects of pulse duration and fluence on the high-resolution structure of the crystals have been studied. Diffraction patterns are recorded at a repetition rate of 30 Hz with pnCCD detectors. This allows us to take 108,000 images per hour. With 2-mega-pixel-detectors this gives a data-rate of more than 400 GB per hour. The automated sorting and evaluation of hundreds of thousands images is another challenge of this kind of experiments. Preliminary results will be presented on our first LCLS experiments. This work was carried out as part of a collaboration, for which Henry Chapman is the spokesperson. The collaboration consists of CFEL DESY, Arizona State University, SLAC, Uppsala University, LLNL, The University of Melbourne, LBNL, the Max Planck Institute for Medical Research, and the Max Planck Advanced Study Group (ASG) at the CFEL. The experiments were carried out using the CAMP apparatus, which was designed and built by the Max Planck ASG at CFEL. The LCLS is operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences.

  10. Preparation and characterization of gold nanocrystals and nanomultilayer mirrors for X-ray diffraction experiments; Praeparation und Charakterisierung von Goldnanokristallen und Nanomultilayerspiegeln fuer Roentgenbeugungsexperimente

    Energy Technology Data Exchange (ETDEWEB)

    Slieh, Jawad

    2009-03-15

    In order to make possible studies on the dynamics of protein molecules in their natural environment Sasaki has developed in the last years a new X-ray diffraction procedure. In this procedure, which is called dynamical X-ray tracking (DXT), the diffraction occurs not directly on the protein molecule, but on a nanomirror rigidly bound to the protein molecule. Measured is hereby the time variation od the alignment of the nanocrystal, which is determined by means of the position of the Laue-diffraction points. By means of these position variations statements on structure variations of the studied protein can be derived with a high spatial accuracy in the time domain. The scientific aim of this thesis is the construction of a DXT measuring place as well as the preparation of the requireds nanocrystalline X-ray diffracting protein labels including their characterization. First a short survey about the foundations of the X radiation and their interactions with matter, especially under regardment of X-ray diffraction on crystals, is given. The measuring methods for the determination of the crystal alignment as well as the vertical and lateral crystal size are presented. In the following chapter a comprehensive survey about the different devices and analysis methods used for the fabrication and characterization of gold crystals is presented. Additionally with precise technical statements the self-constructed MBE apparature is described. This apparature has the purpose to fabricate gold nanocrystals by means of the molecular-beam-epitaxy (MBE) procedure. In the fourth chapter the construction of the DXT laboratory are presented and its beam profile in the focus, its divergence, and its beam spectrum determined. Based on this in the fifth chapter the study of the radiation damage of 2 cysteine-peroxyredoxine (2CP) proteins and the detection of this radiation damage without Au colloids and with Au colloids are presented. The main content of the sixth chapter is the precise

  11. Diffraction. Powder, amorphous, liquid

    International Nuclear Information System (INIS)

    Sosnowska, I.M.

    1999-01-01

    Neutron powder diffraction is a unique tool to observe all possible diffraction effects appearing in crystal. High-resolution neutron diffractometers have to be used in this study. Analysis of the magnetic structure of polycrystalline materials requires the use of high-resolution neutron diffraction in the range of large interplanar distances. As distinguished from the double axis diffractometers (DAS), which show high resolution only at small interplanar distances, TOF (time-of-flight) diffractometry offers the best resolution at large interplanar distances. (K.A.)

  12. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  13. High energy diffraction

    International Nuclear Information System (INIS)

    Berger, C.

    1995-11-01

    Recent experiments on total hadronic cross sections are reviewed together with results on photo- and electroproduction of vector mesons. New data on diffractive deep inelastic scattering shed light on the nature of the pomeron. (orig.)

  14. Diffraction at TOTEM

    CERN Document Server

    Antchev, G.; Avati, V.; Bagliesi, M.G.; Berardi, V.; Berretti, M.; Bottigli, U.; Bozzo, M.; Brucken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Catanesi, M.G.; Catastini, P.L.; Cecchi, R.; Ciocci, M.A.; Deile, M.; Dimovasili, E.; Eggert, K.; Eremin, V.; Ferro, F.; Garcia, F.; Giani, S.; Greco, V.; Heino, J.; Hilden, T.; Kaspar, J.; Kopal, J.; Kundrat, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajicek, M.; Lo Vetere, M.; Lucas Rodriguez, F.; Macri, M.; Magazzu, G.; Meucci, M.; Minutoli, S.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Osterberg, K.; Palazzi, P.; Pedreschi, E.; Petajajarvi, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Trummal, A.; Turini, N.; Whitmore, J.; Wu, J.

    2009-01-01

    The TOTEM experiment at the LHC measures the total proton-proton cross section with the luminosity-independent method and the elastic proton-proton cross-section over a wide |t|-range. It also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximize its physics reach. This contribution describes the main features of the TOTEM physics programme including measurements to be made in the early LHC runs. In addition, a novel scheme to extend the diffractive proton acceptance for high luminosity runs by installing proton detectors at IP3 is described.

  15. Diffraction at TOTEM

    CERN Document Server

    Giani, S; Antchev, G; Aspell, P; Avati, V; Bagliesi, M G; Berardi, V; Berretti, M; Besta, M; Bozzo, M; Brücken, E; Buzzo, A; Cafagna, F; Calicchio, M; Catanesi, M G; Cecchi, R; Ciocci, M A; Dadel, P; Deile, M; Dimovasili, E; Eggert, K; Eremin, V; Ferro, F; Fiergolski, A; García, F; Greco, V; Grzanka, L; Heino, J; Hildén, T; Kaspar, J; Kopal, J; Kundrát, V; Kurvinen, K; Lami, S; Latino, G; Lauhakangas, R; Leszko, R; Lippmaa, E; Lokajícek, M; Lo Vetere, M; Lucas Rodriguez, F; Macrí, M; Magazzù, G; Meucci, M; Minutoli, S; Notarnicola, G; Oliveri, E; Oljemark, F; Orava, R; Oriunno, M; Österberg, K; Pedreschi, E; Petäjäjärvi, J; Prochazka, J; Quinto, M; Radermacher, E; Radicioni, E; Ravotti, F; Rella, G; Robutti, E; Ropelewski, L; Rostkowski, M; Ruggiero, G; Rummel, A; Saarikko, H; Sanguinetti, G; Santroni, A; Scribano, A; Sette, G; Snoeys, W; Spinella, F; Ster, A; Taylor, C; Trummal, A; Turini, N; Whitmore, J; Wu, J; Zalewski, M

    2010-01-01

    The primary objective of the TOTEM experiment at the LHC is the measurement of the total proton-proton cross section with the luminosity-independent method and the study of elastic proton-proton cross-section over a wide |t|-range. In addition TOTEM also performs a comprehensive study of diffraction, spanning from cross-section measurements of individual diffractive processes to the analysis of their event topologies. Hard diffraction will be studied in collaboration with CMS taking advantage of the large common rapidity coverage for charged and neutral particle detection and the large variety of trigger possibilities even at large luminosities. TOTEM will take data under all LHC beam conditions including standard high luminosity runs to maximise its physics reach. This contribution describes the main features of the TOTEM diffractive physics programme including measurements to be made in the early LHC runs.

  16. Duality in diffraction dissociations

    International Nuclear Information System (INIS)

    Santoro, Alberto.

    1977-01-01

    Diffractive dissociations (aN→a*πN) are naturally explained and a model that accounts for the three-variable correlation (mass-transfer-Jackson angle correlation) is presented. This model takes into account the three possible exchanges: t (pion), u(a*) and s(a) channel exchanger. The physical consequences of the model are: a strong mass-slope correlation due to the zeros of the amplitude, a factorization of diffractive dissociations (factorization of the Pomeron), the possibility of extending this model to double diffractive dissociation and diffraction by nuclei. This model was applied to the NN→NπN reaction. Using the usual parameters of the Deck model, a comparison is made with experiments for all available distributions. the strong slope of the peak at 1400 MeV is naturally explained [fr

  17. DIFFRACTION SYNCHRONIZATION OF LASERS,

    Science.gov (United States)

    semiconductor lasers while suppressing parasitic generation in the plane of the mirror. The diffraction coupling coefficient of open resonators is calculated, and the stability conditions of the synchronized system is determined.

  18. Carbon-based micro-ball and micro-crystal deposition using filamentary pulsed atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Pothiraja, Ramasamy; Bibinov, Nikita; Awakowicz, Peter

    2014-01-01

    Thin plasma filaments are produced by the propagation of ionization waves from a spiked driven electrode in a quartz tube in an argon/methane gas mixture (2400 sccm/2 sccm) at atmospheric pressure. The position of the touch point of filaments on the substrate surface is controlled in our experiment by applying various suitable substrate configurations and geometries of the grounded electrode. The gas conditions at the touch point are varied from argon to ambient air. Based on microphotography and discharge current waveforms, the duration of the filament touching the substrate is estimated to be about one microsecond. Carbon-based materials are deposited during this time at the touch points on the substrate surface. Micro-balls are produced if the filament touch points are saved from ambient air by the argon flow. Under an air admixture, micro-crystals are formed. The dimension of both materials is approximately one micrometre (0.5–2 µm) and corresponds to about 10 10 –10 12 carbon atoms. Neither the diffusion of neutral species nor drift of ions can be reason for the formation of such a big micro-material during this short period of filament–substrate interaction. It is possible that charged carbon-based materials are formed in the plasma channel and transported to the surface of the substrate. The mechanism of this transport and characterization of micro-materials, which are formed under different gas conditions in our experiment, will be studied in the future. (paper)

  19. X-ray diffraction 2 - diffraction principles

    International Nuclear Information System (INIS)

    O'Connor, B.

    1999-01-01

    Full text: The computation of powder diffraction intensities is based on the principle that the powder pattern comprises the summation of the intensity contributions from each of the crystallites (or single crystals) in the material. Therefore, it is of value for powder diffractionists to appreciate the form of the expression for calculating single crystal diffraction pattern intensities. This knowledge is especially important for Rietveld analysis practitioners in terms of the (i) mathematics of the method and (ii) retrieving single crystal structure data from the literature. We consider the integrated intensity from a small single crystal being rotated at velocity ω through the Bragg angle θ for reflection (hkl).... I(hkl) = [l o /ω]. [e 4 /m 2 c 4 ]. [λ 3 δV F(hkl) 2 /υ 2 ].[(1+cos 2 2θ)/2sin2θ] where e, m and c are the usual fundamental constants; λ is the x-ray wavelength, δV is the crystallite volume; F(hkl) is the structure factor; υ is the unit cell volume; and (1+cos 2 θ)/2sin2θ] is the Lorentz-polarisation factor for an unpolarised incident beam. The expression does not include a contribution for extinction. The influence of factors λ, δV, F(hkl) and υ on the intensities should be appreciated by powder diffractionists, especially the structure factor, F(hkl), which is responsible for the fingerprint nature of diffraction patterns, such as the rise and fall of intensity from peak to peak. The structure factor expression represents the summation of the scattered waves from each of the j scattering centres (i e atoms) in the unit cell: F(hkl) Σ f j exp[2πi (h.x j +k.y i +l. z i )] T j . Symbol f is the scattering factor (representing the atom-type scattering efficiency); (x, y, z) are the fractional position coordinates of atom j within the unit cell; and T is the thermal vibration factor for the atom given by: T j = 8π 2 2 > sin 2 θ/λ 2 with 2 > being the mean-square vibration amplitude of the atom (assumed to be isotropic). The

  20. Preliminary X-ray diffraction analysis of YcdB from Escherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport

    International Nuclear Information System (INIS)

    Cartron, Michaël L.; Mitchell, Sue A.; Woodhall, Mark R.; Andrews, Simon C.; Watson, Kimberly A.

    2006-01-01

    The crystallization and structure determination of the apo form of a novel haem-containing Tat substrate, YcdB from E. coli, has been solved to 2.0 Å resolution. The preliminary structure shows similarity to other haem-dependent peroxidases, despite low sequence homology. YcdB is a periplasmic haem-containing protein from Escherichia coli that has a potential role in iron transport. It is currently the only reported haem-containing Tat-secreted substrate. Here, the overexpression, purification, crystallization and structure determination at 2.0 Å resolution are reported for the apo form of the protein. The apo-YcdB structure resembles those of members of the haem-dependent peroxidase family and thus confirms that YcdB is also a member of this family. Haem-soaking experiments with preformed apo-YcdB crystals have been optimized to successfully generate haem-containing YcdB crystals that diffract to 2.9 Å. Completion of model building and structure refinement are under way

  1. Diffraction. Single crystal, magnetic

    International Nuclear Information System (INIS)

    Heger, G.

    1999-01-01

    The analysis of crystal structure and magnetic ordering is usually based on diffraction phenomena caused by the interaction of matter with X-rays, neutrons, or electrons. Complementary information is achieved due to the different character of X-rays, neutrons and electrons, and hence their different interactions with matter and further practical aspects. X-ray diffraction using conventional laboratory equipment and/or synchrotron installations is the most important method for structure analyses. The purpose of this paper is to discuss special cases, for which, in addition to this indispensable part, neutrons are required to solve structural problems. Even though the huge intensity of modern synchrotron sources allows in principle the study of magnetic X-ray scattering the investigation of magnetic structures is still one of the most important applications of neutron diffraction. (K.A.)

  2. Diffraction in nuclear scattering

    International Nuclear Information System (INIS)

    Wojciechowski, H.

    1986-01-01

    The elastic scattering amplitudes for charged and neutral particles have been decomposed into diffractive and refractive parts by splitting the nuclear elastic scattering matrix elements into components responsible for these effects. It has been shown that the pure geometrical diffractive effect which carries no information about the nuclear interaction is always predominant at forward angle of elastic angular distributions. This fact suggests that for strongly absorbed particles only elastic cross section at backward angles, i.e. the refractive cross section, can give us basic information about the central nuclear potential. 12 refs., 4 figs., 1 tab. (author)

  3. Dynamics from diffraction

    International Nuclear Information System (INIS)

    Goodwin, Andrew L.; Tucker, Matthew G.; Cope, Elizabeth R.; Dove, Martin T.; Keen, David A.

    2006-01-01

    We explore the possibility that detailed dynamical information might be extracted from powder diffraction data. Our focus is a recently reported technique that employs statistical analysis of atomistic configurations to calculate dynamical properties from neutron total scattering data. We show that it is possible to access the phonon dispersion of low-frequency modes using such an approach, without constraining the results in terms of some pre-defined dynamical model. The high-frequency regions of the phonon spectrum are found to be less well preserved in the diffraction data

  4. Diffraction at collider energies

    International Nuclear Information System (INIS)

    Frankfurt, L.L.

    1992-01-01

    Lessons with ''soft'' hadron physics to explain (a) feasibility to observe and to investigate color transparency, color opacity effects at colliders; (b) significant probability and specific features of hard diffractive processes; (c) feasibility to investigate components of parton wave functions of hadrons with minimal number of constituents. This new physics would be more important with increase of collision energy

  5. Diffraction through partial identity

    International Nuclear Information System (INIS)

    Blum, W.

    1981-06-01

    A model of diffraction dissociation is proposed in which the quantum-mechanical interference between the incoming and the outgoing wave determines the cross-section. This interference occurs due to the finite life-time of the excited state. (orig.)

  6. Diffractive optics for industrial and commercial applications

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, J. [Joensuu Univ. (Finland); Wyrowski, F. [eds.] [Jena Univ. (Germany)

    1997-12-31

    The following topics were dealt with: diffractive optics, diffraction gratings, optical system design with diffractive optics, continuous-relief diffractive lenses and microlens arrays, diffractive bifocal intraocular lenses, diffractive laser resonators, diffractive optics for semiconductor lasers, diffractive elements for optical image processing, photorefractive crystals in optical measurement systems, subwavelenth-structured elements, security applications, diffractive optics for solar cells, holographic microlithography. 999 refs.

  7. Report from the neutron diffraction work group

    International Nuclear Information System (INIS)

    1978-08-01

    This progress report of the neutron diffraction group at the Hahn Meitner Institute in Berlin comprises the following contributions: Three-dimensional critical properties of CsNiF 3 around the Neel point; Spin waves in CsNiF 3 with an applied magnetic field; Solitons in CsNiF 3 : Their experimental evidence and their thermodynamics; Neutron diffraction study of DAG at very low temperatures and in external magnetic field; Neutron diffraction investigation of tricritical behaviour in DyPO 4 ; Crystalline modifications and structural phase transitions of NaOH; Gitterdynamik von Cerhydrid; Investigation of the ferroelectric-ferroelastic phase transition in KH 2 PO 4 and RbH 2 PO 4 by means of γ-ray diffractometry; A γ-ray diffractometer for systematic measurements of absolute structure factors; Electron density in pyrite by combined γ-ray and neutron diffraction measurements: Thermal parameters from short wavelength neutron data; Accurate determination of temperature parameters from neutron diffraction data: Direct observation of the thermal diffuse scattering from silicon using perfect crystals; A Compton spectrometer for momentum density studies using 412 keV γ-radiation; Investigation of the electronic structure of Niobiumhydrides by means of gamma-ray Compton scattering; Interpretation of Compton profile data in position space; High resolution neutron scattering measurements on single crystals using a horizontally bent monochromator and a multidetecter; Statistical analysis of neutron diffraction studies of proteins. (orig.) [de

  8. Profiling an electrospray plume by laser-induced fluorescence and Fraunhofer diffraction combined to mass spectrometry: influence of size and composition of droplets on charge-state distributions of electrosprayed proteins.

    Science.gov (United States)

    Girod, Marion; Dagany, Xavier; Boutou, Véronique; Broyer, Michel; Antoine, Rodolphe; Dugourd, Philippe; Mordehai, Alex; Love, Craig; Werlich, Mark; Fjeldsted, John; Stafford, George

    2012-07-14

    We investigated how physico-chemical properties of charged droplets are affected by the electrospray process, using simultaneous in situ measurements by laser-induced fluorescence (LIF), Fraunhofer diffraction and mass spectrometry. For this purpose, we implemented a laser-induced-fluorescence profiling setup in conjunction with a fast, high-resolution particle sizing scheme on a modified Agilent Jet Stream electrospray source coupled to a single quadrupole mass analyser. The optical setup permits us to profile the solvent fractionation and the size of the droplets as they evaporate in an electrospray plume by measuring both the angular scattering pattern and emission spectra of a solvatochromic fluorescent dye. Mass spectra are recorded simultaneously. These mass spectrometry and optical spectroscopy investigations allow us to study the relation between the observed charge-state distributions of protein anions and physico-chemical properties of evaporating droplets in the spray plume. By mixing water with methanol, a refolding of cytochrome C is observed as the water percentage increases in the plume due to the preponderant evaporation of volatile methanol.

  9. Crystal Growth of High-Quality Protein Crystals under the Presence of an Alternant Electric Field in Pulse-Wave Mode, and a Strong Magnetic Field with Radio Frequency Pulses Characterized by X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adela Rodríguez-Romero

    2017-06-01

    Full Text Available The first part of this research was devoted to investigating the effect of alternate current (AC using four different types of wave modes (pulse-wave at 2 Hz on the crystal growth of lysozyme in solution. The best results, in terms of size and crystal quality, were obtained when protein crystals were grown under the influence of electric fields in a very specific wave mode (“breathing” wave, giving the highest resolution up to 1.34 Å in X-ray diffraction analysis compared with controls and with those crystals grown in gel. In the second part, we evaluated the effect of a strong magnetic field of 16.5 Tesla combined with radiofrequency pulses of 0.43 μs on the crystal growth in gels of tetragonal hen egg white (HEW lysozyme. The lysozyme crystals grown, both in solution applying breathing-wave and in gel under the influence of this strong magnetic field with pulses of radio frequencies, produced the larger-in-size crystals and the highest resolution structures. Data processing and refinement statistics are very good in terms of the resolution, mosaicity and Wilson B factor obtained for each crystal. Besides, electron density maps show well-defined and distinctly separated atoms at several selected tryptophan residues for the crystal grown using the “breathing wave pulses”.

  10. Contribution to diffraction theory

    International Nuclear Information System (INIS)

    Chako, N.

    1966-11-01

    In a first part, we have given a general and detailed treatment of the modern theory of diffraction. The rigorous theory is formulated as a boundary value problem of the wave equation or Maxwell equations. However, up to the present time, such a program of treating diffraction by optical systems, even for simple optical instruments, has not been realized due to the complicated character of the boundary conditions. The recent developments show clearly the nature of the approximation of the classical theories originally due to Fresnel and Young, later formulated in a rigorous manner by Kirchhoff and Rubinowicz, respectively and, at the same time the insufficiency of these theories in explaining a number of diffraction phenomena. Furthermore, we have made a study of the limitations of the approximate theories and the recent attempts to improve these. The second part is devoted to a general mathematical treatment of the theory of diffraction of optical systems including aberrations. After a general and specific analysis of geometrical and wave aberrations along classical and modern (Nijboer) lines, we have been able to evaluate the diffraction integrals representing the image field at any point in image space explicitly, when the aberrations are small. Our formulas are the generalisations of all anterior results obtained by previous investigators. Moreover, we have discussed the Zernike-Nijboer theory of aberration and generalised it not only for rotational systems, but also for non-symmetric systems as well, including the case of non circular apertures. The extension to non-circular apertures is done by introducing orthogonal functions or polynomials over such aperture shapes. So far the results are valid for small aberrations, that is to say, where the deformation of the real wave front emerging from the optical system is less than a wave length of light or of the electromagnetic wave from the ideal wave front. If the aberrations are large, then one must employ the

  11. Diffraction by disordered polycrystalline fibers

    International Nuclear Information System (INIS)

    Stroud, W.J.; Millane, R.P.

    1995-01-01

    X-ray diffraction patterns from some polycrystalline fibers show that the constituent microcrystallites are disordered. The relationship between the crystal structure and the diffracted intensities is then quite complicated and depends on the precise kind and degree of disorder present. The effects of disorder on diffracted intensities must be included in structure determinations using diffraction data from such specimens. Theory and algorithms are developed here that allow the full diffraction pattern to be calculated for a disordered polycrystalline fiber made up of helical molecules. The model accommodates various kinds of disorder and includes the effects of finite crystallite size and cylindrical averaging of the diffracted intensities from a fiber. Simulations using these methods show how different kinds, or components, of disorder produce particular diffraction effects. General properties of disordered arrays of helical molecules and their effects on diffraction patterns are described. Implications for structure determination are discussed. (orig.)

  12. X-ray diffraction

    International Nuclear Information System (INIS)

    Vries, J.L. de.

    1976-01-01

    The seventh edition of Philips' Review of literature on X-ray diffraction begins with a list of conference proceedings on the subject, organised by the Philips' organisation at regular intervals in various European countries. This is followed by a list of bulletins. The bibliography is divided according to the equipment (cameras, diffractometers, monochromators) and its applications. The applications are subdivided into sections for high/low temperature and pressure, effects due to the equipment, small angle scattering and a part for stress, texture and phase analyses of metals and quantitative analysis of minerals

  13. Developments in diffraction databases

    International Nuclear Information System (INIS)

    Jenkins, R.

    1999-01-01

    Full text: There are a number of databases available to the diffraction community. Two of the more important of these are the Powder Diffraction File (PDF) maintained by the International Centre for Diffraction Data (ICDD), and the Inorganic Crystal Structure Database (ICSD) maintained by Fachsinformationzentrum (FIZ, Karlsruhe). In application, the PDF has been used as an indispensable tool in phase identification and identification of unknowns. The ICSD database has extensive and explicit reference to the structures of compounds: atomic coordinates, space group and even thermal vibration parameters. A similar database, but for organic compounds, is maintained by the Cambridge Crystallographic Data Centre. These databases are often used as independent sources of information. However, little thought has been given on how to exploit the combined properties of structural database tools. A recently completed agreement between ICDD and FIZ, plus ICDD and Cambridge, provides a first step in complementary use of the PDF and the ICSD databases. The focus of this paper (as indicated below) is to examine ways of exploiting the combined properties of both databases. In 1996, there were approximately 76,000 entries in the PDF and approximately 43,000 entries in the ICSD database. The ICSD database has now been used to calculate entries in the PDF. Thus, to derive d-spacing and peak intensity data requires the synthesis of full diffraction patterns, i.e., we use the structural data in the ICSD database and then add instrumental resolution information. The combined data from PDF and ICSD can be effectively used in many ways. For example, we can calculate PDF data for an ideally random crystal distribution and also in the absence of preferred orientation. Again, we can use systematic studies of intermediate members in solid solutions series to help produce reliable quantitative phase analyses. In some cases, we can study how solid solution properties vary with composition and

  14. Diffractive DIS: Where are we?

    International Nuclear Information System (INIS)

    Nikolaev, N.N.

    2001-01-01

    A brief review of the modern QCD theory of diffractive DIS is given. The recent progress has been remarkably rapid, all the principal predictions from the color dipole approach to diffraction - the (Q 2 + m V 2 ) scaling, the pattern of SCHNC, shrinkage of the diffraction cone in hard diffractive DIS, the strong impact of longitudinal gluons in inclusive J/Ψ production at Tevatron - have been confirmed experimentally

  15. Eu3+/Tb3+-doped La2O2CO3/La2O3 nano/microcrystals with multiform morphologies: facile synthesis, growth mechanism, and luminescence properties.

    Science.gov (United States)

    Li, Guogang; Peng, Chong; Zhang, Cuimiao; Xu, Zhenhe; Shang, Mengmeng; Yang, Dongmei; Kang, Xiaojiao; Wang, Wenxin; Li, Chunxia; Cheng, Ziyong; Lin, Jun

    2010-11-15

    LaCO(3)OH nano/microcrystals with a variety of morphologies/sizes including nanoflakes, microflowers, nano/microrhombuses, two-double microhexagrams sandwichlike microspindles, and peach-nucleus-shaped microcrystals have been synthesized via a facile homogeneous precipitation route under mild conditions. A series of controlled experiments indicate that the pH values in the initial reaction systems, carbon sources, and simple ions (NH(4)(+) and Na(+)) were responsible for the shape determination of the LaCO(3)OH products. A possible formation mechanism for these products with diverse architectures has been presented. After annealing at suitable temperatures, LaCO(3)OH was easily converted to La(2)O(2)CO(3) and La(2)O(3) with the initial morphologies. A systematic study on the photoluminescence and cathodoluminescence properties of Eu(3+)- or Tb(3+)-doped La(2)O(2)CO(3)/La(2)O(3) samples has been performed in detail. The excitation and site-selective emission spectra were recorded to investigate the microstructure, site symmetry, and difference in the (5)D(0) → (7)F(2) transition of Eu(3+) ions in La(2)O(2)CO(3) and La(2)O(3) host lattices. In addition, the dependence of the luminescent intensity on the morphology for the as-prepared La(2)O(2)CO(3)/La(2)O(3):Ln(3+) (Ln = Eu, Tb) samples has been investigated. The ability of generating diverse morphologies and multiemitting colors for different rare-earth activator ion (Ln = Eu, Tb) doped La(2)O(2)CO(3)/La(2)O(3) nano/microstructures provides a great opportunity for the systematic evaluation of morphology-dependent luminescence properties, as well as the full exploration of their application in many types of color display fields.

  16. Birefringent coherent diffraction imaging

    Science.gov (United States)

    Karpov, Dmitry; dos Santos Rolo, Tomy; Rich, Hannah; Kryuchkov, Yuriy; Kiefer, Boris; Fohtung, E.

    2016-10-01

    Directional dependence of the index of refraction contains a wealth of information about anisotropic optical properties in semiconducting and insulating materials. Here we present a novel high-resolution lens-less technique that uses birefringence as a contrast mechanism to map the index of refraction and dielectric permittivity in optically anisotropic materials. We applied this approach successfully to a liquid crystal polymer film using polarized light from helium neon laser. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of emergent brilliant X-ray sources. Applications of this novel imaging technique are in disruptive technologies, including novel electronic devices, in which both charge and spin carry information as in multiferroic materials and photonic materials such as light modulators and optical storage.

  17. Diffraction and Unitarity

    Science.gov (United States)

    Dremin, I. M.

    I begin with a tribute to V.N. Gribov and then come to a particular problem which would be of interest for him. His first paper on reggeology was devoted to elastic scatterings of hadrons. Here, using the unitarity relation in combination with experimental data about the elastic scattering in the diffraction cone, I show how the shape and the darkness of the interaction region of colliding protons change with the increase of their energies. In particular, the collisions become fully absorptive at small impact parameters at LHC energies that results in some special features of inelastic processes as well. The possible evolution with increasing energy of the shape from the dark core at the LHC to the fully transparent one at higher energies is discussed. It implies that the terminology of the black disk would be replaced by the black torus.

  18. Boundary diffraction wave integrals for diffraction modeling of external occulters

    OpenAIRE

    Cady, E.

    2012-01-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly...

  19. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  20. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  1. CMS results on hard diffraction

    CERN Document Server

    INSPIRE-00107098

    2013-01-01

    In these proceedings we present CMS results on hard diffraction. Diffractive dijet production in pp collisions at $\\sqrt{s}$=7 TeV is discussed. The cross section for dijet production is presented as a function of $\\tilde{\\xi}$, representing the fractional momentum loss of the scattered proton in single-diffractive events. The observation of W and Z boson production in events with a large pseudo-rapidity gap is also presented.

  2. Causal aspects of diffraction

    International Nuclear Information System (INIS)

    Crawford, G.N.

    1981-01-01

    The analysis is directed at a causal description of photon diffraction, which is explained in terms of a wave exerting real forces and providing actual guidance to each quantum of energy. An undulatory PSI wave is associated with each photon, and this wave is assumed to imply more than an informative probability function, so that it actually carries real energy, in much the same way as does an electro-magnetic wave. Whether or not it may be in some way related to the electromagnetic wave is left as a matter of on-going concern. A novel application of the concept of a minimum energy configuration is utilized; that is, a system of energy quanta seeks out relative positions and orientations of least mutual energy, much as an electron seeks its Bohr radius as a position of least mutual energy. Thus the concept implies more a guiding interaction of the PSI waves than an interfering cancellation of these waves. Similar concepts have been suggested by L. de Broglie and D. Bohm

  3. Study of optical Laue diffraction

    International Nuclear Information System (INIS)

    Chakravarthy, Giridhar; Allam, Srinivasa Rao; Satyanarayana, S. V. M.; Sharan, Alok

    2014-01-01

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known

  4. Gluon radiation in diffractive electroproduction

    International Nuclear Information System (INIS)

    Buchmueller, W.; McDermott, M.F.; Hebecker, A.

    1996-07-01

    Order α s -correlations to the diffractive structure functions F L D and F 2 D at large Q 2 and small x are evaluated in the semiclassical approach, where the initial proton is treated as a classical colour field. The diffractive final state contains a fast gluon in addition to a quark-antiquark pair. Two of these partons may have large transverse momentum. Our calculations lead to an intuitive picture of deep-inelastic diffractive processes which is very similar to Bjorken's aligned-jet model. Both diffractive structure functions contain leading twist contributions from high-p perpendicular to jets. (orig.)

  5. Study of optical Laue diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Giridhar, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Allam, Srinivasa Rao, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Satyanarayana, S. V. M., E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com; Sharan, Alok, E-mail: cgiridhar84@gmail.com, E-mail: aloksharan@email.com [Department of Physics, Pondicherry University, Puducherry-605014 (India)

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  6. Suspended DNA structural characterization by TEM diffraction

    KAUST Repository

    Marini, Monica

    2017-12-01

    In this work, micro-fabrication, super-hydrophobic properties and a physiologically compatible preparation step are combined and tailored to obtain background free biological samples to be investigated by Transmission Electron Microscopy (TEM) diffraction technique. The validation was performed evaluating a well-known parameter such as the DNA interbases value. The diffraction spacing measured is in good agreement with those obtained by HRTEM direct metrology and by traditional X-Ray diffraction. This approach addresses single molecule studies in a simplified and reproducible straightforward way with respect to more conventional and widely used techniques. In addition, it overcomes the need of long and elaborated samples preparations: the sample is in its physiological environment and the HRTEM data acquisition occurs without any background interference, coating, staining or additional manipulation. The congruence in the results reported in this paper makes the application of this approach extremely promising towards those molecules for which crystallization remains a hurdle, such as cell membrane proteins and fibrillar proteins.

  7. Suspended DNA structural characterization by TEM diffraction

    KAUST Repository

    Marini, Monica; Allione, Marco; Lopatin, Sergei; Moretti, Manola; Giugni, Andrea; Torre, Bruno; Di Fabrizio, Enzo M.

    2017-01-01

    In this work, micro-fabrication, super-hydrophobic properties and a physiologically compatible preparation step are combined and tailored to obtain background free biological samples to be investigated by Transmission Electron Microscopy (TEM) diffraction technique. The validation was performed evaluating a well-known parameter such as the DNA interbases value. The diffraction spacing measured is in good agreement with those obtained by HRTEM direct metrology and by traditional X-Ray diffraction. This approach addresses single molecule studies in a simplified and reproducible straightforward way with respect to more conventional and widely used techniques. In addition, it overcomes the need of long and elaborated samples preparations: the sample is in its physiological environment and the HRTEM data acquisition occurs without any background interference, coating, staining or additional manipulation. The congruence in the results reported in this paper makes the application of this approach extremely promising towards those molecules for which crystallization remains a hurdle, such as cell membrane proteins and fibrillar proteins.

  8. Diffractive optics and nanophotonics resolution below the diffraction limit

    CERN Document Server

    Minin, Igor

    2016-01-01

    In this book the authors present several examples of techniques used to overcome the Abby diffraction limit using flat and 3D diffractive optical elements, photonic crystal lenses, photonic jets, and surface plasmon diffractive optics. The structures discussed can be used in the microwave and THz range and also as scaled models for optical frequencies. Such nano-optical microlenses can be integrated, for example, into existing semiconductor heterostructure platforms for next-generation optoelectronic applications. Chapter 1 considers flat diffractive lenses and innovative 3D radiating structures including a conical millimeter-wave Fresnel zone plate (FZP) lens proposed for subwavelength focusing. In chapter 2 the subwavelength focusing properties of diffractive photonic crystal lenses are considered and it is shown that at least three different types of photonic crystal lens are possible.  With the aim of achieving subwavelength focusing, in chapter 3 an alternative mechanism to produce photonic jets at Tera...

  9. Electron diffraction from carbon nanotubes

    International Nuclear Information System (INIS)

    Qin, L-C

    2006-01-01

    The properties of a carbon nanotube are dependent on its atomic structure. The atomic structure of a carbon nanotube can be defined by specifying its chiral indices (u, v), that specify its perimeter vector (chiral vector), with which the diameter and helicity are also determined. The fine electron beam available in a modern transmission electron microscope (TEM) offers a unique probe to reveal the atomic structure of individual nanotubes. This review covers two aspects related to the use of the electron probe in the TEM for the study of carbon nanotubes: (a) to understand the electron diffraction phenomena for inter-pretation of the electron diffraction patterns of carbon nanotubes and (b) to obtain the chiral indices (u, v), of the carbon nanotubes from the electron diffraction patterns. For a nanotube of a given structure, the electron scattering amplitude from the carbon nanotube is first described analytically in closed form using the helical diffraction theory. From a known structure as given by the chiral indices (u, v), its electron diffraction pattern can be calculated and understood. The reverse problem, i.e. assignment of the chiral indices from an electron diffraction pattern of a carbon nanotube, is approached from the relationship between the electron scattering intensity distribution and the chiral indices (u, v). We show that electron diffraction patterns can provide an accurate and unambiguous assignment of the chiral indices of carbon nanotubes. The chiral indices (u, v) can be read indiscriminately with a high accuracy from the intensity distribution on the principal layer lines in an electron diffraction pattern. The symmetry properties of electron diffraction from carbon nanotubes and the electron diffraction from deformed carbon nanotubes are also discussed in detail. It is shown that 2mm symmetry is always preserved for single-walled carbon nanotubes, but it can break down for multiwalled carbon nanotubes under some special circumstances

  10. Tolerance analysis on diffraction efficiency and polychromatic integral diffraction efficiency for harmonic diffractive optics

    Science.gov (United States)

    Shan, Mao

    2016-10-01

    In this dissertation, the mathematical model of effect of manufacturing errors including microstructure relative height error and relative width error on diffraction efficiency for the harmonic diffractive optical elements (HDEs) is set up. According to the expression of the phase delay and diffraction efficiency of the HDEs, the expression of diffraction efficiency of refraction and diffractive optical element with the microstructure height and periodic width errors in fabrication process is presented in this paper. Furthermore, the effect of manufacturing errors on diffraction efficiency for the harmonic diffractive optical elements is studied, and diffraction efficiency change is analyzed as the relative microstructure height-error in the same and in the opposite sign as well as relative width-error in the same and in the opposite sign. Example including infrared wavelength with materials GE has been discussed in this paper. Two kinds of manufacturing errors applied in 3.7 4.3um middle infrared and 8.7-11.5um far infrared optical system which results in diffraction efficiency and PIDE of HDEs are studied. The analysis results can be used for manufacturing error control in micro-structure height and periodic width. Results can be used for HDEs processing.

  11. Computer Simulation of Diffraction Patterns.

    Science.gov (United States)

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  12. A public database of macromolecular diffraction experiments.

    Science.gov (United States)

    Grabowski, Marek; Langner, Karol M; Cymborowski, Marcin; Porebski, Przemyslaw J; Sroka, Piotr; Zheng, Heping; Cooper, David R; Zimmerman, Matthew D; Elsliger, Marc André; Burley, Stephen K; Minor, Wladek

    2016-11-01

    The low reproducibility of published experimental results in many scientific disciplines has recently garnered negative attention in scientific journals and the general media. Public transparency, including the availability of `raw' experimental data, will help to address growing concerns regarding scientific integrity. Macromolecular X-ray crystallography has led the way in requiring the public dissemination of atomic coordinates and a wealth of experimental data, making the field one of the most reproducible in the biological sciences. However, there remains no mandate for public disclosure of the original diffraction data. The Integrated Resource for Reproducibility in Macromolecular Crystallography (IRRMC) has been developed to archive raw data from diffraction experiments and, equally importantly, to provide related metadata. Currently, the database of our resource contains data from 2920 macromolecular diffraction experiments (5767 data sets), accounting for around 3% of all depositions in the Protein Data Bank (PDB), with their corresponding partially curated metadata. IRRMC utilizes distributed storage implemented using a federated architecture of many independent storage servers, which provides both scalability and sustainability. The resource, which is accessible via the web portal at http://www.proteindiffraction.org, can be searched using various criteria. All data are available for unrestricted access and download. The resource serves as a proof of concept and demonstrates the feasibility of archiving raw diffraction data and associated metadata from X-ray crystallographic studies of biological macromolecules. The goal is to expand this resource and include data sets that failed to yield X-ray structures in order to facilitate collaborative efforts that will improve protein structure-determination methods and to ensure the availability of `orphan' data left behind for various reasons by individual investigators and/or extinct structural genomics

  13. Analysis of an industrial production suspension of Bacillus lentus subtilisin crystals by powder diffraction: a powerful quality-control tool.

    Science.gov (United States)

    Frankaer, Christian G; Moroz, Olga V; Turkenburg, Johan P; Aspmo, Stein I; Thymark, Majbritt; Friis, Esben P; Stahl, Kenny; Nielsen, Jens E; Wilson, Keith S; Harris, Pernille

    2014-04-01

    A microcrystalline suspension of Bacillus lentus subtilisin (Savinase) produced during industrial large-scale production was analysed by X-ray powder diffraction (XRPD) and X-ray single-crystal diffraction (MX). XRPD established that the bulk microcrystal sample representative of the entire production suspension corresponded to space group P212121, with unit-cell parameters a = 47.65, b = 62.43, c = 75.74 Å, equivalent to those for a known orthorhombic crystal form (PDB entry 1ndq). MX using synchrotron beamlines at the Diamond Light Source with beam dimensions of 20 × 20 µm was subsequently used to study the largest crystals present in the suspension, with diffraction data being collected from two single crystals (∼20 × 20 × 60 µm) to resolutions of 1.40 and 1.57 Å, respectively. Both structures also belonged to space group P2(1)2(1)2(1), but were quite distinct from the dominant form identified by XRPD, with unit-cell parameters a = 53.04, b = 57.55, c = 71.37 Å and a = 52.72, b = 57.13, c = 65.86 Å, respectively, and refined to R = 10.8% and Rfree = 15.5% and to R = 14.1% and Rfree = 18.0%, respectively. They are also different from any of the forms previously reported in the PDB. A controlled crystallization experiment with a highly purified Savinase sample allowed the growth of single crystals of the form identified by XRPD; their structure was solved and refined to a resolution of 1.17 Å with an R of 9.2% and an Rfree of 11.8%. Thus, there are at least three polymorphs present in the production suspension, albeit with the 1ndq-like microcrystals predominating. It is shown how the two techniques can provide invaluable and complementary information for such a production suspension and it is proposed that XRPD provides an excellent quality-control tool for such suspensions.

  14. Optical Characterization of Nano- and Microcrystals of EuPO₄ Created by One-Step Synthesis of Antimony-Germanate-Silicate Glass Modified by P₂O₅.

    Science.gov (United States)

    Zmojda, Jacek; Kochanowicz, Marcin; Miluski, Piotr; Baranowska, Agata; Pisarski, Wojciech A; Pisarska, Joanna; Jadach, Renata; Sitarz, Maciej; Dorosz, Dominik

    2017-09-09

    Technology of active glass-ceramics (GC) is an important part of luminescent materials engineering. The classic method to obtain GC is based on annealing of parent glass in proper temperature and different time periods. Generally, only the bulk materials are investigated as a starting host for further applications. However, the effect of an additional heat-treatment process on emission and structural properties during GC processing is omitted. Here, we focus on the possibility of obtaining transparent glass-ceramic doped with europium ions directly with a melt-quenching method. The influence of phosphate concentration (up to 10 mol %) on the inversion symmetry of local environment of Eu 3+ ions in antimony-germanate-silicate (SGS) glass has been investigated. The Stark splitting of luminescence spectra and the local asymmetry ratio estimated by relation of (⁵D₀→⁷F₂)/(⁵D₀→⁷F₁) transitions in fabricated glass confirms higher local symmetry around Eu 3+ ions. Based on XRD and SEM/EDX measurements, the EuPO₄ nano- and microcrystals with monoclinic geometry were determined. Therefore, in our experiment, we confirmed possibility of one-step approach to fabricate crystalline structures (glass-ceramic) in Eu-doped SGS glass without additional annealing process.

  15. High Catalysis Activity of Cu2O Microcrystals to the Electrochemiluminesence of Luminol and H2O2

    DEFF Research Database (Denmark)

    Zhang, Ling; Xu, Guobao; Zhang, Jingdong

    Cuprous oxide (Cu2O) is a classical p-type semiconductor with a direct band gap of 2.17 eV, which is wildly used for solar energy conversion, CO oxidation, and photo catalytic water splitting for the low cost and environmental friendliness. For the energy band positions are favorable to the hydro......Cuprous oxide (Cu2O) is a classical p-type semiconductor with a direct band gap of 2.17 eV, which is wildly used for solar energy conversion, CO oxidation, and photo catalytic water splitting for the low cost and environmental friendliness. For the energy band positions are favorable...... to the hydrogen evolution and oxygen evolution potentials, Cu2O materials also catalyze the reduction of hydrogen peroxide (H2O2), which is an critical molecule in the bodies’ metabolism processes or the industrial catalysis reactions. To improve detection sensitivity of H2O2, people have composed Cu2O materials...... that Cu2O semiconductor microcrystal possess the good catalytic performance to this ECL reaction, which is important to develop the high-efficient and lowcost biosensors....

  16. Classification using diffraction patterns for single-particle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hongli; Zhang, Kaiming [Department of Biophysics, the Health Science Centre, Peking University, Beijing 100191 (China); Meng, Xing, E-mail: xmeng101@gmail.com [Wadsworth Centre, New York State Department of Health, Albany, New York 12201 (United States)

    2016-05-15

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  17. Classification using diffraction patterns for single-particle analysis

    International Nuclear Information System (INIS)

    Hu, Hongli; Zhang, Kaiming; Meng, Xing

    2016-01-01

    An alternative method has been assessed; diffraction patterns derived from the single particle data set were used to perform the first round of classification in creating the initial averages for proteins data with symmetrical morphology. The test protein set was a collection of Caenorhabditis elegans small heat shock protein 17 obtained by Cryo EM, which has a tetrahedral (12-fold) symmetry. It is demonstrated that the initial classification on diffraction patterns is workable as well as the real-space classification that is based on the phase contrast. The test results show that the information from diffraction patterns has the enough details to make the initial model faithful. The potential advantage using the alternative method is twofold, the ability to handle the sets with poor signal/noise or/and that break the symmetry properties. - Highlights: • New classification method. • Create the accurate initial model. • Better in handling noisy data.

  18. Grazing incidence diffraction : A review

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, B [LTPCM, ENSEEG. St. Martin d` Heres. (France)

    1996-09-01

    Different Grazing Incidence Diffraction (GID) methods for the analysis of thin films and multilayer structures are reviewed in three sections: the reflectivity is developed in the first one, which includes the non-specular diffuse scattering. The second one is devoted to the extremely asymmetric Bragg diffraction and the third one to the in-plane Bragg diffraction. Analytical formulations of the scattered intensities are developed for each geometry, in the framework of the kinetical analysis as well as the dynamical theory. Experimental examples are given to illustrate the quantitative possibility of the GID techniques.

  19. Diffraction dissociation at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Jenkovszky, Laszlo [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680, Ukraine and Wigner Research Centre for Physics, Hungarian Academy of Sciences 1525 Budapest, POB 49 (Hungary); Orava, Risto [Institute of Physics, Division of Elementary Particle Physics, P.O. Box 64 (Gustaf Haellstroeminkatu 2a), FI-00014 University of Helsinki, Finland and CERN, CH-1211 Geneva 23 (Switzerland); Salii, Andrii [Bogolyubov Institute for Theoretical Physics (BITP), Ukrainian National Academy of Sciences 14-b, Metrolohichna str., Kiev, 03680 (Ukraine)

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  20. Diffraction dissociation at the LHC

    International Nuclear Information System (INIS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-01-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  1. The diffractive achromat full spectrum computational imaging with diffractive optics

    KAUST Repository

    Peng, Yifan

    2016-07-11

    Diffractive optical elements (DOEs) have recently drawn great attention in computational imaging because they can drastically reduce the size and weight of imaging devices compared to their refractive counterparts. However, the inherent strong dispersion is a tremendous obstacle that limits the use of DOEs in full spectrum imaging, causing unacceptable loss of color fidelity in the images. In particular, metamerism introduces a data dependency in the image blur, which has been neglected in computational imaging methods so far. We introduce both a diffractive achromat based on computational optimization, as well as a corresponding algorithm for correction of residual aberrations. Using this approach, we demonstrate high fidelity color diffractive-only imaging over the full visible spectrum. In the optical design, the height profile of a diffractive lens is optimized to balance the focusing contributions of different wavelengths for a specific focal length. The spectral point spread functions (PSFs) become nearly identical to each other, creating approximately spectrally invariant blur kernels. This property guarantees good color preservation in the captured image and facilitates the correction of residual aberrations in our fast two-step deconvolution without additional color priors. We demonstrate our design of diffractive achromat on a 0.5mm ultrathin substrate by photolithography techniques. Experimental results show that our achromatic diffractive lens produces high color fidelity and better image quality in the full visible spectrum. © 2016 ACM.

  2. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  3. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 5. Diffraction at a Straight Edge: A Gem from Sommerfeld's Work in Classical Physics. Rajaram Nityananda. General Article Volume 20 Issue 5 May 2015 pp 389-400 ...

  4. Neutron Powder Diffraction in Sweden

    International Nuclear Information System (INIS)

    Tellgren, R.

    1986-01-01

    Neutron powder diffraction in Sweden has developed around the research reactor R2 in Studsvik. The article describes this facility and presents a historical review of research results obtained. It also gives some ideas of plans for future development

  5. Tomography with energy dispersive diffraction

    Science.gov (United States)

    Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.

    2017-09-01

    X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.

  6. Diffraction at a Straight Edge

    Indian Academy of Sciences (India)

    IAS Admin

    teaching and understanding physics. ... and mathematical footing, using electromagnetic theory and the proper ... this article, we will use the word diffraction to cover all experiments ..... PES Institute of Technology. Campus ... communication!)

  7. Experimental studies of diffractive phenomena

    International Nuclear Information System (INIS)

    Cool, R.L.

    1984-01-01

    The coherent inelastic scattering process, usually called inclusive diffraction dissociation, is discussed. Topics include: t and M/sub x/ dependence, factorization, finite mass sum rule and charged particle multiplicities. 6 references, 14 figures

  8. Diffractive production and hadron structure

    International Nuclear Information System (INIS)

    Nussinov, S.; Szwed, J.

    1979-01-01

    Analysis of diffractive production on nuclei implied cross sections of the diffractively produced system on nucleons which are smaller than the corresponding projectile nucleon cross sections. A natural explanation for this feature is provided in the Good-Walker coherent production formalism. A specific realization of the Good-Walker formalism stated in terms of quarks and connecting electric flux tubes and some ensuing consequences are also discussed briefly. (Auth.)

  9. CONFERENCE: Elastic and diffractive scattering

    Energy Technology Data Exchange (ETDEWEB)

    White, Alan

    1989-09-15

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago.

  10. Theoretical review of diffractive phenomena

    International Nuclear Information System (INIS)

    Golec-Biernat, K.

    2005-01-01

    We review QCD based descriptions of diffractive deep inelastic scattering emphasising the role of models with parton saturation. These models provide natural explanation of such experimentally observed facts as the constant ratio of σ diff /σ tot as a function of the Bjorken variable x, and Regge factorization of diffractive parton distributions. The Ingelman-Schlein model and the soft color interaction model are also presented

  11. The Diffraction Response Interpolation Method

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Pedersen, Peder C.

    1998-01-01

    Computer modeling of the output voltage in a pulse-echo system is computationally very demanding, particularly whenconsidering reflector surfaces of arbitrary geometry. A new, efficient computational tool, the diffraction response interpolationmethod (DRIM), for modeling of reflectors in a fluid...... medium, is presented. The DRIM is based on the velocity potential impulseresponse method, adapted to pulse-echo applications by the use of acoustical reciprocity. Specifically, the DRIM operates bydividing the reflector surface into planar elements, finding the diffraction response at the corners...

  12. Diffraction by DNA, carbon nanotubes and other helical nanostructures

    International Nuclear Information System (INIS)

    Lucas, Amand A; Lambin, Philippe

    2005-01-01

    This review discusses the diffraction patterns of x-rays or electrons scattered by fibres of helical biological molecules and by carbon nanotubes (CNTs) from the unified point of view of the Fourier-Bessel transform of an atomic helix. This paper is intended for scientists who are not professional crystallographers. X-ray fibre diffraction patterns of Pauling's protein α-helix and of Crick and Pauling's protein coiled-coil are revisited. This is followed by a non-technical comparison between the historic x-ray diffraction patterns of the A and B conformations of DNA, which were crucial for the discovery of the double helix. The qualitative analysis of the diffraction images is supported by novel optical simulation experiments designed to pinpoint the gross structural informational content of the patterns. The spectacular helical structure of the tobacco mosaic virus determined by Rosalind Franklin and co-workers will then be described as an early example of the great power of x-ray crystallography in determining the structure of a large biomolecular edifice. After these mostly historical and didactic case studies, this paper will consider electron diffraction and transmission electron microscopy of CNTs of great current interest, focusing particularly on recent data obtained for single-wall, double-wall and scrolled nanotubes. Several points of convergence between the interpretations of the diffraction patterns of biological helices and CNTs will be emphasized

  13. Angle-resolved diffraction grating biosensor based on porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Changwu; Li, Peng [School of Physical Science and Technology, Xinjiang University, Urumqi 830046 (China); Jia, Zhenhong, E-mail: jzhh@xju.edu.cn; Liu, Yajun; Mo, Jiaqing; Lv, Xiaoyi [College of Information Science and Engineering, Xinjiang University, Urumqi 830046 (China)

    2016-03-07

    In this study, an optical biosensor based on a porous silicon composite structure was fabricated using a simple method. This structure consists of a thin, porous silicon surface diffraction grating and a one-dimensional porous silicon photonic crystal. An angle-resolved diffraction efficiency spectrum was obtained by measuring the diffraction efficiency at a range of incident angles. The angle-resolved diffraction efficiency of the 2nd and 3rd orders was studied experimentally and theoretically. The device was sensitive to the change of refractive index in the presence of a biomolecule indicated by the shift of the diffraction efficiency spectrum. The sensitivity of this sensor was investigated through use of an 8 base pair antifreeze protein DNA hybridization. The shifts of the angle-resolved diffraction efficiency spectrum showed a relationship with the change of the refractive index, and the detection limit of the biosensor reached 41.7 nM. This optical device is highly sensitive, inexpensive, and simple to fabricate. Using shifts in diffraction efficiency spectrum to detect biological molecules has not yet been explored, so this study establishes a foundation for future work.

  14. Reconstructing an icosahedral virus from single-particle diffraction experiments

    Science.gov (United States)

    Saldin, D. K.; Poon, H.-C.; Schwander, P.; Uddin, M.; Schmidt, M.

    2011-08-01

    The first experimental data from single-particle scattering experiments from free electron lasers (FELs) are now becoming available. The first such experiments are being performed on relatively large objects such as viruses, which produce relatively low-resolution, low-noise diffraction patterns in so-called ``diffract-and-destroy'' experiments. We describe a very simple test on the angular correlations of measured diffraction data to determine if the scattering is from an icosahedral particle. If this is confirmed, the efficient algorithm proposed can then combine diffraction data from multiple shots of particles in random unknown orientations to generate a full 3D image of the icosahedral particle. We demonstrate this with a simulation for the satellite tobacco necrosis virus (STNV), the atomic coordinates of whose asymmetric unit is given in Protein Data Bank entry 2BUK.

  15. Neutron diffraction and oxide research

    International Nuclear Information System (INIS)

    Hunter, B.; Howard, C.J.; Kennedy, B.J.

    1999-01-01

    Oxide compounds form a large class of interesting materials that have a diverse range of mechanical and electronic properties. This diversity and its commercial implications has had a significant impact on physics research. This is particularly evident in the fields of superconductivity magnetoresistivity and ferroelectricity, where discoveries in the last 15 years have given rise to significant shifts in research activities. Historically, oxides have been studied for many years, but it is only recently that significant effort has been diverted to the study of oxide materials for their application to mechanical and electronic devices. An important property of such materials is the atomic structure, for the determination of which diffraction techniques are ideally suited. Recent examples of structure determinations using neutron diffraction in oxide based systems are high temperature superconductors, where oxygen defects are a key factor. Here, neutron diffraction played a major role in determining the effect of oxygen on the superconducting properties. Similarly, neutron diffraction has enjoyed much success in the determination of the structures of the manganate based colossal magnetoresistive (CMR) materials. In both these cases the structure plays a pivotal role in determining theoretical models of the electronic properties. The neutron scattering group at ANSTO has investigated several oxide systems using neutron powder diffraction. Two such systems are presented in this paper; the zirconia-based materials that are used as engineering materials, and the perovskite-based oxides that include the well known cuprate superconductors and the manganate CMR materials

  16. High-energy particle diffraction

    International Nuclear Information System (INIS)

    Barone, V.; Predazzi, E.

    2002-01-01

    This monograph gives a comprehensive and up-to-date overview of soft and hard diffraction processes in strong interaction physics. The first part covers the general formalism (the optical analogy, the eikonal picture, high-energy kinematics, S-matrix theory) and soft hadron-hadron scattering (including the Regge theory) in a complete and mature presentation. It can be used as a textbook in particle physics classes. The remainder of the book is devoted to the 'new diffraction': the pomeron in QCD, low-x physics, diffractive deep inelastic scattering and related processes, jet production etc. It presents recent results and experimental findings and their phenomenological interpretations. This part addresses graduate students as well as researchers. (orig.)

  17. Diffraction of high energy electrons

    International Nuclear Information System (INIS)

    Bourret, A.

    1981-10-01

    The diffraction of electrons by a crystal is examined to study its structure. As the electron-substance interaction is strong, it must be treated in a dynamic manner. Using the N waves theory and physical optics the base equations giving the wave at the outlet are deduced for a perfect crystal and their equivalence is shown. The more complex case of an imperfect crystal is then envisaged in these two approaches. In both cases, only the diffraction of high energy electrons ( > 50 KeV) are considered since in the diffraction of slow electrons back scattering cannot be ignored. Taking into account an increasingly greater number of beams, through fast calculations computer techniques, enables images to be simulated in very varied conditions. The general use of the Fast Fourier Transform has given a clear cut practical advantage to the multi-layer method [fr

  18. Hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Brandt, A.

    1995-09-01

    The field of hard diffraction, which studies events with a rapidity gap and a hard scattering, has expanded dramatically recently. A review of new results from CDF, D OE, H1 and ZEUS will be given. These results include diffractive jet production, deep-inelastic scattering in large rapidity gap events, rapidity gaps between high transverse energy jets, and a search for diffractive W-boson production. The combination of these results gives new insight into the exchanged object, believed to be the pomeron. The results axe consistent with factorization and with a hard pomeron that contains both quarks and gluons. There is also evidence for the exchange of a strongly interacting color singlet in high momentum transfer (36 2 ) events

  19. Serial Millisecond Crystallography of Membrane Proteins.

    Science.gov (United States)

    Jaeger, Kathrin; Dworkowski, Florian; Nogly, Przemyslaw; Milne, Christopher; Wang, Meitian; Standfuss, Joerg

    2016-01-01

    Serial femtosecond crystallography (SFX) at X-ray free-electron lasers (XFELs) is a powerful method to determine high-resolution structures of pharmaceutically relevant membrane proteins. Recently, the technology has been adapted to carry out serial millisecond crystallography (SMX) at synchrotron sources, where beamtime is more abundant. In an injector-based approach, crystals grown in lipidic cubic phase (LCP) or embedded in viscous medium are delivered directly into the unattenuated beam of a microfocus beamline. Pilot experiments show the application of microjet-based SMX for solving the structure of a membrane protein and compatibility of the method with de novo phasing. Planned synchrotron upgrades, faster detectors and software developments will go hand-in-hand with developments at free-electron lasers to provide a powerful methodology for solving structures from microcrystals at room temperature, ligand screening or crystal optimization for time-resolved studies with minimal or no radiation damage.

  20. Light diffraction through a feather

    Directory of Open Access Journals (Sweden)

    Pérez García, Hugo;

    2012-01-01

    Full Text Available We have used a feather to study light diffraction, in a qualitative as well as in a quantitative manner. Experimental measurement of the separation between the bright spots obtained with a laser pointer allowed the determination of the space between feather's barbs and barbules. The results we have obtained agree satisfactorily with those corresponding to a typical feather. Due to the kind of materials, the related concepts and the experimental results, this activity becomes an excellent didactic resource suitable for studying diffraction, both in introductory undergraduate as well as in secondary school physics courses.

  1. CONFERENCE: Elastic and diffractive scattering

    International Nuclear Information System (INIS)

    White, Alan

    1989-01-01

    Elastic scattering, when particles appear to 'bounce' off each other, and the related phenomena of diffractive scattering are currently less fashionable than the study of hard scattering processes. However this could change rapidly if unexpected results from the UA4 experiment at the CERN Collider are confirmed and their implications tested. These questions were highlighted at the third 'Blois Workshop' on Elastic and Diffractive Scattering, held early in May on the Evanston campus of Northwestern University, near Chicago

  2. Dynamical theory of neutron diffraction

    International Nuclear Information System (INIS)

    Sears, V.F.

    1978-01-01

    We present a review of the dynamical theory of neutron diffraction by macroscopic bodies which provides the theoretical basis for the study of neutron optics. We consider both the theory of dispersion, in which it is shown that the coherent wave in the medium satisfies a macroscopic one-body Schroedinger equation, and the theory of reflection, refraction, and diffraction in which the above equation is solved for a number of special cases of interest. The theory is illustrated with the help of experimental results obtained over the past 10 years by a number of new techniques such as neutron gravity refractometry. Pendelloesung interference, and neutron interferometry. (author)

  3. Diffractive dissociation and new quarks

    International Nuclear Information System (INIS)

    White, A.R.

    1983-04-01

    We argue that the chiral limit of QCD can be identified with the strong (diffractive dissociation) coupling limit of reggeon field theory. Critical Pomeron scaling at high energy must then be directly related to an infra-red fixed-point of massless QCD and so requires a large number of flavors. This gives a direct argument that the emergence of diffraction-peak scaling, KNO scaling etc. at anti p-p colliders are evidence of a substantial quark structure still to be discovered

  4. CMS results on soft diffraction

    CERN Document Server

    INSPIRE-00086121

    2013-01-01

    We present measurements of soft single- and double-diffractive cross sections, as well as of forward rapidity gap cross sections at 7 TeV at the LHC, and compare the results to other measurements and to theoretical predictions implemented in various Monte Carlo simulations.

  5. LEED (Low Energy Electron Diffraction)

    International Nuclear Information System (INIS)

    Aberdam, M.

    1973-01-01

    The various types of systems studied by LEED, and for which the geometry of diffraction patterns is exploited, are reviewed, intensity profiles being another source of information. Two representative approaches of the scattering phenomenon are examined; the band structure theory and the T matrix approach [fr

  6. A QCD analysis of ZEUS diffractive data

    Energy Technology Data Exchange (ETDEWEB)

    Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2009-11-15

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  7. A QCD analysis of ZEUS diffractive data

    International Nuclear Information System (INIS)

    Chekanov, S.; Derrick, M.; Magill, S.

    2009-11-01

    ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)

  8. Electro-optic diffraction grating tuned laser

    International Nuclear Information System (INIS)

    Hughes, R.S.

    1975-01-01

    An electro-optic diffraction grating tuned laser comprising a laser medium, output mirror, retro-reflective grating and an electro-optic diffraction grating beam deflector positioned between the laser medium and the reflective diffraction grating is described. An optional angle multiplier may be used between the electro-optic diffraction grating and the reflective grating. (auth)

  9. Diffraction efficiency calculations of polarization diffraction gratings with surface relief

    Science.gov (United States)

    Nazarova, D.; Sharlandjiev, P.; Berberova, N.; Blagoeva, B.; Stoykova, E.; Nedelchev, L.

    2018-03-01

    In this paper, we evaluate the optical response of a stack of two diffraction gratings of equal one-dimensional periodicity. The first one is a surface-relief grating structure; the second, a volume polarization grating. This model is based on our experimental results from polarization holographic recordings in azopolymer films. We used films of commercially available azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt]), shortly denoted as PAZO. During the recording process, a polarization grating in the volume of the material and a relief grating on the film surface are formed simultaneously. In order to evaluate numerically the optical response of this “hybrid” diffraction structure, we used the rigorous coupled-wave approach (RCWA). It yields stable numerical solutions of Maxwell’s vector equations using the algebraic eigenvalue method.

  10. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    Science.gov (United States)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  11. Neutron diffraction on pulsed sources

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Balagurov, A.M.

    2016-01-01

    The possibilities currently offered and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades has been mainly the emergence of third generation pulsed sources with a MW time-averaged power and advances in neutron-optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method by F.L.Shapiro whose 100th birth anniversary was celebrated in 2015. The state of the art with respect to neutron sources for studies on output beams is reviewed in a special section. [ru

  12. Industrial applications of neutron diffraction

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1989-01-01

    Neutron diffraction (or, to be more general, neutron scattering) is a most versatile and universal tool, which has been widely employed to probe the structure, the dynamics and the magnetism of condensed matter. Traditionally used for fundamental research in solid state physics, this technique more recently has been applied to problems of immediate industrial interest, as illustrated in examples covering the main fields of endeavour. 14 refs., 14 figs

  13. Neutron diffraction and Vitamin E

    Energy Technology Data Exchange (ETDEWEB)

    Harroun, T A; Marquardt, D; Katsaras, J; Atkinson, J, E-mail: tharroun@brocku.ca

    2010-11-01

    It is generally accepted that neutron diffraction from model membrane systems is an effective biophysical technique for determining membrane structure. Here we describe an example of how deuterium labelling can elucidate the location of specific membrane soluble molecules, including a brief discussion of the technique itself. We show that deuterium labelled {alpha}-tocopherol sits upright in the bilayer, as might be expected, but at very different locations within the bilayer, depending on the degree of lipid chain unsaturation.

  14. Diffraction dissociation and elastic scattering

    International Nuclear Information System (INIS)

    Verebryusov, V.S.; Ponomarev, L.A.; Smorodinskaya, N.Ya.

    1987-01-01

    In the framework of Regge scheme with supercritical pomeron a model is suggested for the NN-scattering amplitude which takes into account the contribution introduced to the intermediate state by diffraction dissociation (DD) processes. The DD amplitude is written in terms of the Deck model which has been previously applied to describing the main DD features. The calculated NN cross sections are compared with those obtained experimentally. Theoretical predictions for higher energy are presented

  15. Submicron X-ray diffraction

    International Nuclear Information System (INIS)

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-01-01

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample

  16. Diffraction Techniques in Structural Biology

    Science.gov (United States)

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  17. Neutron diffraction and lattice defects

    International Nuclear Information System (INIS)

    Hamaguchi, Yoshikazu

    1974-01-01

    Study on lattice defects by neutron diffraction technique is described. Wave length of neutron wave is longer than that of X-ray, and absorption cross-section is small. Number of defects observed by ESR is up to several defects, and the number studied with electron microscopes is more than 100. Information obtained by neutron diffraction concerns the number of defects between these two ranges. For practical analysis, several probable models are selected from the data of ESR or electron microscopes, and most probable one is determined by calculation. Then, defect concentration is obtained from scattering cross section. It is possible to measure elastic scattering exclusively by neutron diffraction. Minimum detectable concentration estimated is about 0.5% and 10 20 - 10 21 defects per unit volume. A chopper and a time of flight system are used as a measuring system. Cold neutrons are obtained from the neutron sources inserted into reactors. Examples of measurements by using similar equipments to PTNS-I system of Japan Atomic Energy Research Institute are presented. Interstitial concentration in the graphite irradiated by fast neutrons is shown. Defects in irradiated MgO were also investigated by measuring scattering cross section. Study of defects in Ge was made by measuring total cross section, and model analysis was performed in comparison with various models. (Kato, T.)

  18. Nanoflow electrospinning serial femtosecond crystallography

    Science.gov (United States)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min−1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min−1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption. PMID:23090408

  19. Insights into Photosystem II from Isomorphous Difference Fourier Maps of Femtosecond X-ray Diffraction Data and Quantum Mechanics/Molecular Mechanics Structural Models.

    Science.gov (United States)

    Wang, Jimin; Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-02-10

    Understanding structure-function relations in photosystem II (PSII) is important for the development of biomimetic photocatalytic systems. X-ray crystallography, computational modeling, and spectroscopy have played central roles in elucidating the structure and function of PSII. Recent breakthroughs in femtosecond X-ray crystallography offer the possibility of collecting diffraction data from the X-ray free electron laser (XFEL) before radiation damage of the sample, thereby overcoming the main challenge of conventional X-ray diffraction methods. However, the interpretation of XFEL data from PSII intermediates is challenging because of the issues regarding data-processing, uncertainty on the precise positions of light oxygen atoms next to heavy metal centers, and different kinetics of the S-state transition in microcrystals compared to solution. Here, we summarize recent advances and outstanding challenges in PSII structure-function determination with emphasis on the implementation of quantum mechanics/molecular mechanics techniques combined with isomorphous difference Fourier maps, direct methods, and high-resolution spectroscopy.

  20. Diffractive dijet and W production in CDF

    International Nuclear Information System (INIS)

    Goulianos, K.

    1998-01-01

    Results on diffractive dijet and W-boson production from CDF are reviewed and compared with predictions based on factorization of the diffractive structure function of the proton measured in deep inelastic scattering at HERA

  1. A theoretical overview on single hard diffraction

    International Nuclear Information System (INIS)

    Wuesthoff, M.

    1996-01-01

    The concept of the Pomeron structure function and its application in Single Hard Diffraction at hadron colliders and in diffractive Deep Inelastic Scattering is critically reviewed. Some alternative approaches are briefly surveyed with a focus on QCD inspired models

  2. An experiment in diffractive physics

    International Nuclear Information System (INIS)

    Santoro, Alberto

    2001-01-01

    The purpose of this talk is to show one of the next future experiment in diffractive Physics which will be installed at the DO experiment at Tevatron/Fermilab for run II, and the importance for Quantum Chromodynamics (QCD) as the theory of the strong interactions. The apparatus that we have developed is the Forward Proton Detector (FPD) to be introduced on the beam line of the Tevatron at both sides of the DO detector. The FPD is composed by a set of Roman Pots as we will see in the text below

  3. Magnetic structures: neutron diffraction studies

    International Nuclear Information System (INIS)

    Bouree-Vigneron, F.

    1990-01-01

    Neutron diffraction is often an unequivocal method for determining magnetic structures. Here we present some typical examples, stressing the sequence through experiments, data analysis, interpretation and modelisation. Two series of compounds are chosen: Tb Ni 2 Ge 2 and RBe 13 (R = Gd, Tb, Dy, Ho, Er). Depending on the nature of the elements, the magnetic structures produced can be commensurate, incommensurate or even show a transition between two such phases as a function of temperature. A model, taking magnetic exchange and anisotropy into account, will be presented in the case of commensurate-incommensurate magnetic transitions in RBe 13

  4. Hard scattering and a diffractive trigger

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-02-01

    Conclusions concerning the properties of hard scattering in diffractively produced systems are summarized. One motivation for studying diffractive hard scattering is to investigate the interface between Regge theory and perturbative QCD. Another is to see whether diffractive triggering can result in an improvement in the signal-to-background ratio of measurements of production of very heavy quarks. 5 refs

  5. Diffractive optical elements for space communication terminals

    OpenAIRE

    Herzig, Hans-Peter; Ehbets, Peter; Teijido, Juan M.; Weible, Kenneth J.; Heimbeck, Hans-Joerg

    2007-01-01

    The potential of diffractive optical elements for advanced laser communication terminals has been investigated. Applications include beam shaping of high- power laser diode arrays, optical filter elements for position detection and hybrid (refractive/diffractive) elements. In addition, we present a design example of a miniaturized terminal including diffractive optics.

  6. Undergraduate Experiment with Fractal Diffraction Gratings

    Science.gov (United States)

    Monsoriu, Juan A.; Furlan, Walter D.; Pons, Amparo; Barreiro, Juan C.; Gimenez, Marcos H.

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics…

  7. Dynamical diffraction in periodic multilayers

    CERN Document Server

    Sears, V F

    1997-01-01

    Exact reflectivity curves are calculated numerically for various periodic multilayers using the optical matrix method in order to test the dynamical theory of diffraction. The theory is generally valid for values of the bilayer thickness d up to about 100 A. For somewhat larger values of d, where the theory begins to break down, the initial discrepancy is in the phase of the oscillations in the wings of the peaks. For very large values of d, where the first-order Bragg peak approaches the edge of the mirror reflection, two general types of multilayers can be distinguished. In the first (typified in the present work by Ni/Ti), there is a large (30% or more) reduction in the actual value of the critical wave vector for total reflection while, in the second (typified here by Fe/Ge), there is very little reduction (3 % or so). The origin of these two very different types of behavior is explained. It is also shown that, within the dynamical theory of diffraction, the change in the position of the center of the Dar...

  8. The analysis of powder diffraction data

    International Nuclear Information System (INIS)

    David, W.I.F.; Harrison, W.T.A.

    1986-01-01

    The paper reviews neutron powder diffraction data analysis, with emphasis on the structural aspects of powder diffraction and the future possibilities afforded by the latest generation of very high resolution neutron and x-ray powder diffractometers. Traditional x-ray powder diffraction techniques are outlined. Structural studies by powder diffraction are discussed with respect to the Rietveld method, and a case study in the Rietveld refinement method and developments of the Rietveld method are described. Finally studies using high resolution powder diffraction at the Spallation Neutron Source, ISIS at the Rutherford Appleton Laboratory are summarized. (U.K.)

  9. High multi-photon visible upconversion emissions of Er3+ singly doped BiOCl microcrystals: A photon avalanche of Er3+ induced by 980 nm excitation

    International Nuclear Information System (INIS)

    Li, Yongjin; Song, Zhiguo; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi

    2013-01-01

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the 2 H 11/2 / 4 S 3/2 (green) and 4 F 9/2 (red) levels of Er 3+ ions were observed from Er 3+ singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er 3+ ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er 3+ ions doping

  10. High multi-photon visible upconversion emissions of Er{sup 3+} singly doped BiOCl microcrystals: A photon avalanche of Er{sup 3+} induced by 980 nm excitation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yongjin; Song, Zhiguo, E-mail: songzg@kmust.edu.cn; Li, Chen; Wan, Ronghua; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi; Yang, Yong; Zhou, Dacheng; Wang, Qi [School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2013-12-02

    Under 980 nm excitation, high multi-photon upconversion (UC) emission from the {sup 2}H{sub 11/2}/{sup 4}S{sub 3/2} (green) and {sup 4}F{sub 9/2} (red) levels of Er{sup 3+} ions were observed from Er{sup 3+} singly doped BiOCl microcrystals. These high-energy excited states were populated by a three to ten photon UC process conditionally, which depended on the pump power density and the Er{sup 3+} ion doping concentration, characterizing as a hetero-looping enhanced energy transfer avalanche UC process. UC emission lifetime and Raman analysis suggest that the unusual UC phenomena are initiated by the new and intense phonon vibration modes of BiOCl lattices due to Er{sup 3+} ions doping.

  11. Automated determination of fibrillar structures by simultaneous model building and fiber diffraction refinement.

    Science.gov (United States)

    Potrzebowski, Wojciech; André, Ingemar

    2015-07-01

    For highly oriented fibrillar molecules, three-dimensional structures can often be determined from X-ray fiber diffraction data. However, because of limited information content, structure determination and validation can be challenging. We demonstrate that automated structure determination of protein fibers can be achieved by guiding the building of macromolecular models with fiber diffraction data. We illustrate the power of our approach by determining the structures of six bacteriophage viruses de novo using fiber diffraction data alone and together with solid-state NMR data. Furthermore, we demonstrate the feasibility of molecular replacement from monomeric and fibrillar templates by solving the structure of a plant virus using homology modeling and protein-protein docking. The generated models explain the experimental data to the same degree as deposited reference structures but with improved structural quality. We also developed a cross-validation method for model selection. The results highlight the power of fiber diffraction data as structural constraints.

  12. Axial channeling in electron diffraction

    International Nuclear Information System (INIS)

    Ichimiya, A.; Lehmpfuhl, G.

    1978-01-01

    Kossel patterns from Silicon and Niobium were obtained with a convergent electron beam. An intensity maximum in the direction of the zone axes [001] and [111] of Nb was interpreted as axial channeling. The intensity distribution in Kossel patterns was calculated by means of the Bloch wave picture of the dynamical theory of electron diffraction. Particularly zone axis patterns were calculated for different substance-energy combinations and they were compared with experimental observations. The intensity distribution in the calculated Kossel patterns was very sensitive to the model of absorption and it was found that a treatment of the absorption close to the model of Humphreys and Hirsch [Phil. Mag. 18, 115 (1968)] gave the best agreement with the experimental observations. Furthermore it is shown which Bloch waves are important for the intensity distribution in the Kossel patterns, how they are absorbed and how they change with energy. (orig.) [de

  13. Diffractive X-Ray Telescopes

    International Nuclear Information System (INIS)

    Skinner, G.K.; Skinner, G.K

    2010-01-01

    Diffractive X-ray telescopes using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution several orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro arc seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the supermassive black holes in the center of active galaxies What then is precluding their immediate adoption Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed atmospheric absorption

  14. Encapsulation process for diffraction gratings.

    Science.gov (United States)

    Ratzsch, Stephan; Kley, Ernst-Bernhard; Tünnermann, Andreas; Szeghalmi, Adriana

    2015-07-13

    Encapsulation of grating structures facilitates an improvement of the optical functionality and/or adds mechanical stability to the fragile structure. Here, we introduce novel encapsulation process of nanoscale patterns based on atomic layer deposition and micro structuring. The overall size of the encapsulated structured surface area is only restricted by the size of the available microstructuring and coating devices; thus, overcoming inherent limitations of existing bonding processes concerning cleanliness, roughness, and curvature of the components. Finally, the process is demonstrated for a transmission grating. The encapsulated grating has 97.5% transmission efficiency in the -1st diffraction order for TM-polarized light, and is being limited by the experimental grating parameters as confirmed by rigorous coupled wave analysis.

  15. Bragg's Law diffraction simulations for electron backscatter diffraction analysis

    International Nuclear Information System (INIS)

    Kacher, Josh; Landon, Colin; Adams, Brent L.; Fullwood, David

    2009-01-01

    In 2006, Angus Wilkinson introduced a cross-correlation-based electron backscatter diffraction (EBSD) texture analysis system capable of measuring lattice rotations and elastic strains to high resolution. A variation of the cross-correlation method is introduced using Bragg's Law-based simulated EBSD patterns as strain free reference patterns that facilitates the use of the cross-correlation method with polycrystalline materials. The lattice state is found by comparing simulated patterns to collected patterns at a number of regions on the pattern using the cross-correlation function and calculating the deformation from the measured shifts of each region. A new pattern can be simulated at the deformed state, and the process can be iterated a number of times to converge on the absolute lattice state. By analyzing an iteratively rotated single crystal silicon sample and recovering the rotation, this method is shown to have an angular resolution of ∼0.04 o and an elastic strain resolution of ∼7e-4. As an example of applications, elastic strain and curvature measurements are used to estimate the dislocation density in a single grain of a compressed polycrystalline Mg-based AZ91 alloy.

  16. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO2 laser polishing

    International Nuclear Information System (INIS)

    Choi, Hun-Kook; Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak; Kim, Jin-Tae; Ahsan, Shamim

    2014-01-01

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO 2 laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO 2 laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO 2 laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  17. Inelastic nucleon diffraction at high energy

    International Nuclear Information System (INIS)

    Goggi, G.

    1975-01-01

    Experiments carried out at ISR and at FNAL which have yielded a substantial amount of data on double diffraction processes, which were unambiguously indentified and measured and which provide new tools to study the dynamical properties shared by different classes of diffractive reactions are identified. In this review interest is focused on the experimental aspects of inclusive and exclusive results both on single and double diffraction and on the problems arising from their comparison. Problems covered include; inclusive and semi-inclusive diffraction, multiparticle inclusive studies, single-particle inclusive studies, resonance region, high mass region, exclusive single diffractive reactions, mass spectra, cross sections, t-dependence, decay angular properties, and double diffraction. (U.K.)

  18. Diffraction of polarized light on periodic structures

    International Nuclear Information System (INIS)

    Bukanina, V; Divakov, D; Tyutyunnik, A; Hohlov, A

    2012-01-01

    Periodic structures as photonic crystals are widely used in modern laser devices, communication technologies and for creating various beam splitters and filters. Diffraction gratings are applied for creating 3D television sets, DVD and Blu-ray drives and reflective structures (Berkley mirror). It is important to simulate diffraction on such structures to design optical systems with predetermined properties based on photonic crystals and diffraction gratings. Methods of simulating diffraction on periodic structures uses theory of Floquet-Bloch and rigorous coupled-wave analysis (RCWA). Current work is dedicated to analysis of photonic band gaps and simulating diffraction on one-dimensional binary diffraction grating using RCWA. The Maxwell's equations for isotropic media and constitutive relations based on the cgs system were used as a model.

  19. Theory of edge diffraction in electromagnetics

    CERN Document Server

    Ufimtsev, Pyotr

    2009-01-01

    This book is an essential resource for researchers involved in designing antennas and RCS calculations. It is also useful for students studying high frequency diffraction techniques. It contains basic original ideas of the Physical Theory of Diffraction (PTD), examples of its practical application, and its validation by the mathematical theory of diffraction. The derived analytic expressions are convenient for numerical calculations and clearly illustrate the physical structure of the scattered field.

  20. Nonlinear diffraction from a virtual beam

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2010-01-01

    We observe experimentally a novel type of nonlinear diffraction in the process of two-wave mixing on a nonlinear quadratic grating.We demonstrate that when the nonlinear grating is illuminated simultaneously by two noncollinear beams, a second-harmonic diffraction pattern is generated by a virtual...... beam propagating along the bisector of the two pump beams. The observed iffraction phenomena is a purely nonlinear effect that has no analogue in linear diffraction...

  1. Diffraction limit of refractive compound lens

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A compound X-ray and neutron lenses is an array of lenses with a common axis. The resolution limited by aberration and by diffraction. Diffraction limit comes from theory based on absorption aperture of the compound refractive lenses. Beam passing through transparent lenses form Airy pattern. Results of calculation of diffraction resolution limit for non-transparent X-ray and neutron lenses are discussed. (authors)

  2. Diffractive variable beam splitter: optimal design.

    Science.gov (United States)

    Borghi, R; Cincotti, G; Santarsiero, M

    2000-01-01

    The analytical expression of the phase profile of the optimum diffractive beam splitter with an arbitrary power ratio between the two output beams is derived. The phase function is obtained by an analytical optimization procedure such that the diffraction efficiency of the resulting optical element is the highest for an actual device. Comparisons are presented with the efficiency of a diffractive beam splitter specified by a sawtooth phase function and with the pertinent theoretical upper bound for this type of element.

  3. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1995-06-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). (orig.)

  4. High-energy electron diffraction and microscopy

    CERN Document Server

    Peng, L M; Whelan, M J

    2011-01-01

    This book provides a comprehensive introduction to high energy electron diffraction and elastic and inelastic scattering of high energy electrons, with particular emphasis on applications to modern electron microscopy. Starting from a survey of fundamental phenomena, the authors introduce the most important concepts underlying modern understanding of high energy electron diffraction. Dynamical diffraction in transmission (THEED) and reflection (RHEED) geometries is treated using ageneral matrix theory, where computer programs and worked examples are provided to illustrate the concepts and to f

  5. Twenty years of diffraction at the Tevatron

    International Nuclear Information System (INIS)

    Goulianos, K.; Rockefeller U.

    2005-01-01

    Results on diffractive particle interactions from the Fermilab Tevatron (bar p)p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held

  6. Theory of hard diffraction and rapidity gaps

    International Nuclear Information System (INIS)

    Del Duca, V.

    1996-01-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). copyright 1996 American Institute of Physics

  7. Diffractive charm and jet production at HERA

    International Nuclear Information System (INIS)

    Savin, Alexander A.

    2003-01-01

    A new high precision inclusive measurement of the diffractive production of D* ± (2010) mesons in deep inelastic scattering (DIS) in the kinematic region Q 2 >1.5 GeV 2 , 0.02 IP 2 2 , 165 2 , χ IP < 0.03 are presented. Diffractive parton densities extracted using a NLO DGLAP QCD fit are used for comparisons with diffractive DIS and PHP dijet and open charm cross sections at HERA and the Tevatron, thus testing the factorization properties of hard diffraction

  8. Undergraduate experiment with fractal diffraction gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Furlan, Walter D; Pons, Amparo; Barreiro, Juan C; Gimenez, Marcos H

    2011-01-01

    We present a simple diffraction experiment with fractal gratings based on the triadic Cantor set. Diffraction by fractals is proposed as a motivating strategy for students of optics in the potential applications of optical processing. Fraunhofer diffraction patterns are obtained using standard equipment present in most undergraduate physics laboratories and compared with those obtained with conventional periodic gratings. It is shown that fractal gratings produce self-similar diffraction patterns which can be evaluated analytically. Good agreement is obtained between experimental and numerical results.

  9. Diffractive interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Goulianos, K.

    1982-01-01

    Elastic scattering, inclusive single diffraction dissociation and total cross section results are reviewed, with emphasis on the inter-relationship among the parameters that characterize these processes

  10. Crystallization and preliminary X-ray diffraction analysis of the middle domain of Paip1

    International Nuclear Information System (INIS)

    Kanaan, Ahmad Seif; Frank, Filipp; Maedler-Kron, Chelsea; Verma, Karan; Sonenberg, Nahum; Nagar, Bhushan

    2009-01-01

    The crystallization of the putative MIF4G domain of Paip1 is described. The crystals belonged to the monoclinic space group P2 1 and diffracted X-rays to beyond 2.2 Å resolution. The poly(A)-binding protein (PABP) simultaneously interacts with the poly(A) tail of mRNAs and the scaffolding protein eIF4G to mediate mRNA circularization, resulting in stimulation of protein translation. PABP is regulated by the PABP-interacting protein Paip1. Paip1 is thought to act as a translational activator in 5′ cap-dependent translation by interacting with PABP and the initiation factors eIF4A and eIF3. Here, the crystallization and preliminary diffraction analysis of the middle domain of Paip1 (Paip1M), which produces crystals that diffract to a resolution of 2.2 Å, are presented

  11. Evaluating diffraction-based overlay

    Science.gov (United States)

    Li, Jie; Tan, Asher; Jung, JinWoo; Goelzer, Gary; Smith, Nigel; Hu, Jiangtao; Ham, Boo-Hyun; Kwak, Min-Cheol; Kim, Cheol-Hong; Nam, Suk-Woo

    2012-03-01

    We evaluate diffraction-based overlay (DBO) metrology using two test wafers. The test wafers have different film stacks designed to test the quality of DBO data under a range of film conditions. We present DBO results using traditional empirical approach (eDBO). eDBO relies on linear response of the reflectance with respect to the overlay displacement within a small range. It requires specially designed targets that consist of multiple pads with programmed shifts. It offers convenience of quick recipe setup since there is no need to establish a model. We measure five DBO targets designed with different pitches and programmed shifts. The correlations of five eDBO targets and the correlation of eDBO to image-based overlay are excellent. The targets of 800nm and 600nm pitches have better dynamic precision than targets of 400nm pitch, which agrees with simulated results on signal/noise ratio. 3σ of less than 0.1nm is achieved for both wafers using the best configured targets. We further investigate the linearity assumption of eDBO algorithm. Simulation results indicate that as the pitch of DBO targets gets smaller, the nonlinearity error, i.e., the error in the overlay measurement results caused by deviation from ideal linear response, becomes bigger. We propose a nonlinearity correction (NLC) by including higher order terms in the optical response. The new algorithm with NLC improves measurement consistency for DBO targets of same pitch but different programmed shift, due to improved accuracy. The results from targets with different pitches, however, are improved marginally, indicating the presence of other error sources.

  12. Structure determination of modulated structures by powder X-ray diffraction and electron diffraction

    Czech Academy of Sciences Publication Activity Database

    Zhou, Z.Y.; Palatinus, Lukáš; Sun, J.L.

    2016-01-01

    Roč. 3, č. 11 (2016), s. 1351-1362 ISSN 2052-1553 Institutional support: RVO:68378271 Keywords : electron diffraction * incommensurate structure * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.036, year: 2016

  13. Expression, purification and preliminary diffraction studies of PhnP

    International Nuclear Information System (INIS)

    Podzelinska, Kateryna; He, Shumei; Soares, Alexei; Zechel, David; Hove-Jensen, Bjarne; Jia, Zongchao

    2008-01-01

    PhnP, a member of the C—P lyase pathway, was crystallized by the sitting-drop vapour-diffusion method and the initial diffraction-pattern analysis is reported. PhnP belongs to a 14-gene operon that supports the growth of Escherichia coli on alkylphosphonates as a sole source of phosphorus; however, the exact biochemistry of phosphonate degradation by this pathway is poorly understood. The protein was recombinantly expressed in Escherichia coli and purified to homogeneity. Sitting-drop vapour diffusion in combination with microseeding was used to obtain crystals that were suitable for X-ray diffraction. Data were collected to 1.3 Å and the crystals belonged to space group C2, with unit-cell parameters a = 111.65, b = 75.41, c = 83.23 Å, α = γ = 90, β = 126.3°

  14. X-ray topography and multiple diffraction

    International Nuclear Information System (INIS)

    Chang, S.-L.

    1983-01-01

    A short summary on X-ray topography, which is based on the dynamical theory of X-ray diffraction, is made. The applications and properties related to the use of the multiple diffraction technique are analized and discussed. (L.C.) [pt

  15. Diffraction of radiation from channelled charged particles

    International Nuclear Information System (INIS)

    Baryshevskij, V.G.; Grubich, A.O.; Dubovskaya, I.Ya.

    1978-01-01

    An explicit expression for cross-section and radiation spectrum at diffraction is calculated. It is shown that photons emitted by channelled particles form a typical diffraction pattern which contains information about the crystal structure. It is also shown that the change of the longitudinal energy of the particle caused by the radiation braking becomes important when the particle energy is increased. (author)

  16. Classical system underlying a diffracting quantum billiard

    Indian Academy of Sciences (India)

    Manan Jain

    2018-01-05

    Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.

  17. Non-diffractive optically variable security devices

    NARCIS (Netherlands)

    Renesse, R.L. van

    1991-01-01

    At the past optical security conferences attention was focused on diffractive structures, e.g. holograms, embossed gratings and thin—film devices, as security elements on valuable documents. The main reasons for this emphasis are, that the iridescent effect of such diffractive optically variable

  18. Correlations in the hadronic double diffractive dissociation

    International Nuclear Information System (INIS)

    Goldegol, Alexandre.

    1991-05-01

    A given reaction of double diffractive dissociation is studied based on the three-component Deck Model. The correlations among the diffractive slope, the effective mass of the dissociated particle sub-system and the dissociation angle in the Gottfried-Jackson are studied based in this model. 9 refs, 19 figs

  19. Uniform asymptotic theory of edge diffraction

    NARCIS (Netherlands)

    Lewis, R.M.; Boersma, J.; Oughstun, K.E.

    1992-01-01

    Geometrical optics fails to account for the phenomenon of diffraction, i.e., the existence of nonzero fields in the geometrical shadow. Keller's geometrical theory of diffraction accounts for this phenomenon by providing correction terms to the geometrical optics field, in the form of a

  20. Uniform asymptotic theory of edge diffraction

    NARCIS (Netherlands)

    Lewis, R.M.; Boersma, J.

    1969-01-01

    Geometrical optics fails to account for the phenomenon of diffraction, i.e., the existence of nonzero fields in the geometrical shadow. Keller's geometrical theory of diffraction accounts for this phenomenon by providing correction terms to the geometrical optics field, in the form of a

  1. Restoration of diffracted far field at the output of circular diffraction waveplate

    International Nuclear Information System (INIS)

    Hovhannisyan, D; Margaryan, H; Abrahamyan, V; Hakobyan, N; Tabiryan, N

    2014-01-01

    The light propagation in an anisotropic periodic media, such us circular diffraction waveplate (CDW) by a finite-difference time-domain (FDTD) technique is studied. The FDTD numerical simulation and the subsequent Fourier transform of the diffracted electric near field was been used for study of ability of CDW to diffract a laser beam and simultaneously convert polarization state. The FDTD simulation results used to restore the diffracted electric far field at the CDW output. an abstract

  2. Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals.

    Science.gov (United States)

    Shieh, Fa-Kuen; Wang, Shao-Chun; Yen, Chia-I; Wu, Chang-Cheng; Dutta, Saikat; Chou, Lien-Yang; Morabito, Joseph V; Hu, Pan; Hsu, Ming-Hua; Wu, Kevin C-W; Tsung, Chia-Kuang

    2015-04-08

    We develop a new concept to impart new functions to biocatalysts by combining enzymes and metal-organic frameworks (MOFs). The proof-of-concept design is demonstrated by embedding catalase molecules into uniformly sized ZIF-90 crystals via a de novo approach. We have carried out electron microscopy, X-ray diffraction, nitrogen sorption, electrophoresis, thermogravimetric analysis, and confocal microscopy to confirm that the ~10 nm catalase molecules are embedded in 2 μm single-crystalline ZIF-90 crystals with ~5 wt % loading. Because catalase is immobilized and sheltered by the ZIF-90 crystals, the composites show activity in hydrogen peroxide degradation even in the presence of protease proteinase K.

  3. Uniting Electron Crystallography and Powder Diffraction

    CERN Document Server

    Shankland, Kenneth; Meshi, Louisa; Avilov, Anatoly; David, William

    2012-01-01

    The polycrystalline and nanocrystalline states play an increasingly important role in exploiting the properties of materials, encompassing applications as diverse as pharmaceuticals, catalysts, solar cells and energy storage. A knowledge of the three-dimensional atomic and molecular structure of materials is essential for understanding and controlling their properties, yet traditional single-crystal X-ray diffraction methods lose their power when only polycrystalline and nanocrystalline samples are available. It is here that powder diffraction and single-crystal electron diffraction techniques take over, substantially extending the range of applicability of the crystallographic principles of structure determination.  This volume, a collection of teaching contributions presented at the Crystallographic Course in Erice in 2011, clearly describes the fundamentals and the state-of-the-art of powder diffraction and electron diffraction methods in materials characterisation, encompassing a diverse range of discipl...

  4. Diffraction contrast imaging using virtual apertures

    International Nuclear Information System (INIS)

    Gammer, Christoph; Burak Ozdol, V.; Liebscher, Christian H.; Minor, Andrew M.

    2015-01-01

    Two methods on how to obtain the full diffraction information from a sample region and the associated reconstruction of images or diffraction patterns using virtual apertures are demonstrated. In a STEM-based approach, diffraction patterns are recorded for each beam position using a small probe convergence angle. Similarly, a tilt series of TEM dark-field images is acquired. The resulting datasets allow the reconstruction of either electron diffraction patterns, or bright-, dark- or annular dark-field images using virtual apertures. The experimental procedures of both methods are presented in the paper and are applied to a precipitation strengthened and creep deformed ferritic alloy with a complex microstructure. The reconstructed virtual images are compared with conventional TEM images. The major advantage is that arbitrarily shaped virtual apertures generated with image processing software can be designed without facing any physical limitations. In addition, any virtual detector that is specifically designed according to the underlying crystal structure can be created to optimize image contrast. - Highlights: • A dataset containing all structural information of a given position is recorded. • The dataset allows reconstruction of virtual diffraction patterns or images. • Specific virtual apertures are designed to image precipitates in a complex alloy. • Virtual diffraction patterns from arbitrarily small regions can be established. • Using STEM diffraction to record the dataset is more efficient than TEM dark-field

  5. Two-dimensional x-ray diffraction

    CERN Document Server

    He, Bob B

    2009-01-01

    Written by one of the pioneers of 2D X-Ray Diffraction, this useful guide covers the fundamentals, experimental methods and applications of two-dimensional x-ray diffraction, including geometry convention, x-ray source and optics, two-dimensional detectors, diffraction data interpretation, and configurations for various applications, such as phase identification, texture, stress, microstructure analysis, crystallinity, thin film analysis and combinatorial screening. Experimental examples in materials research, pharmaceuticals, and forensics are also given. This presents a key resource to resea

  6. A scattering approach to sea wave diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L., E-mail: letizia.corradini@unicam.it; Garbuglia, M., E-mail: milena.garbuglia@unicam.it; Maponi, P., E-mail: pierluigi.maponi@unicam.it [University of Camerino, via Madonna delle Carceri, 9, 62032, Camerino (Italy); Ruggeri, M., E-mail: ru.marco@faggiolatipumps.it [Faggiolati Pumps S.p.A., Z.Ind Sforzacosta, 62100, Macerata (Italy)

    2016-06-08

    This paper intends to show a model for the diffraction of sea waves approaching an OWC device, which converts the sea waves motion into mechanical energy and then electrical energy. This is a preliminary study to the optimisation of the device, in fact the computation of sea waves diffraction around the device allows the estimation of the sea waves energy which enters into the device. The computation of the diffraction phenomenon is the result of a sea waves scattering problem, solved with an integral equation method.

  7. Diffraction enhanced x-ray imaging

    International Nuclear Information System (INIS)

    Thomlinson, W.; Zhong, Z.; Johnston, R.E.; Sayers, D.

    1997-09-01

    Diffraction enhanced imaging (DEI) is a new x-ray radiographic imaging modality using synchrotron x-rays which produces images of thick absorbing objects that are almost completely free of scatter. They show dramatically improved contrast over standard imaging applied to the same phantoms. The contrast is based not only on attenuation but also the refraction and diffraction properties of the sample. The diffraction component and the apparent absorption component (absorption plus extinction contrast) can each be determined independently. This imaging method may improve the image quality for medical applications such as mammography

  8. Accurate Charge Densities from Powder Diffraction

    DEFF Research Database (Denmark)

    Bindzus, Niels; Wahlberg, Nanna; Becker, Jacob

    Synchrotron powder X-ray diffraction has in recent years advanced to a level, where it has become realistic to probe extremely subtle electronic features. Compared to single-crystal diffraction, it may be superior for simple, high-symmetry crystals owing to negligible extinction effects and minimal...... peak overlap. Additionally, it offers the opportunity for collecting data on a single scale. For charge densities studies, the critical task is to recover accurate and bias-free structure factors from the diffraction pattern. This is the focal point of the present study, scrutinizing the performance...

  9. Diffraction and diffusion in room acoustics

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit

    1996-01-01

    Diffraction and diffusion are two phenomena that are both related to the wave nature of sound. Diffraction due to the finite size of reflecting surfaces and the design of single reflectors and reflector arrays are discussed. Diffusion is the result of scattering of sound reflected from surfaces...... that are not plane but curved or irregular. The importance of diffusion has been demonstrated in concert halls. Methods for the design of diffusing surfaces and the development of new types of diffusers are reviewed. Finally, the importance of diffraction and diffusion in room acoustic computer models is discussed....

  10. Hard diffraction at HERA and Tevatron

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    2001-01-01

    A relation between hard diffraction at HERA and Tevatron is discussed. A model, which takes into account unitarity effects is developed for interaction of high-energy virtual photons with nucleons. It is shown that this model gives a good description of HERA data on both total γ* p total cross section and diffractive dissociation of virtual photons in a broad region of Q 2 . It is shown how to describe the CDF data on diffractive jet production at Tevatron using an information on distribution of partons in the Pomeron from HERA experiments

  11. Novel Aspects of Hard Diffraction in QCD

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2005-01-01

    Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, and nuclear shadowing and antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency

  12. New diffractive results from the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  13. Diffraction tomography for plasma refractive index measurements

    International Nuclear Information System (INIS)

    Howard, J.; Nazikian, R.; Sharp, L.E.

    1989-01-01

    Measurement of the properties of probing beams of coherent electromagnetic radiation yields essential information about the line of sight integrated plasma refractive index. Presented is a scalar diffraction treatment of forward angle scattering plasma diagnostics based on the diffraction projection theorem first presented by E. Wolf in 1969. New results are obtained for near field scattering from probing Gaussian beams and it is demonstrated that the effects of diffraction need to be addressed for tomographic inversion of near field scattering and interferometry data. 33 refs., 10 figs

  14. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  15. Neutron Larmor diffraction measurements for materials science

    International Nuclear Information System (INIS)

    Repper, J.; Keller, T.; Hofmann, M.; Krempaszky, C.; Petry, W.; Werner, E.

    2010-01-01

    Neutron Larmor diffraction (LD) is a high-resolution diffraction technique based on the Larmor precession of polarized neutrons. In contrast to conventional diffraction, LD does not depend on the accurate measurement of Bragg angles, and thus the resolution is independent of the beam collimation and monochromaticity. At present, a relative resolution for the determination of the crystal lattice spacing d of Δd/d∼10 -6 is achieved, i.e. at least one order of magnitude superior to conventional neutron or X-ray techniques. This work is a first step to explore the application of LD to high-resolution problems in the analysis of residual stresses, where both the accurate measurement of absolute d values and the possibility of measuring type II and III stresses may provide additional information beyond those accessible by conventional diffraction techniques. Data obtained from Inconel 718 samples are presented.

  16. ALADIN - Advanced Laue Diffraction Instruments using Neutrons

    International Nuclear Information System (INIS)

    Lemee-Cailleau, M.H.; Ouladdiaf, B.; McIntyre, G.J.

    2011-01-01

    Laue diffraction techniques have proven to be very attractive to a broad user community interested in obtaining detailed structural information on very small single-crystal samples or needing data collection speeds comparable to those available with the powder diffraction technique. However our experience has clearly demonstrated the negative effect of up-stream monochromatic instruments on the quality of Laue data. In order to obtain Laue diffraction data with a statistical accuracy similar to that achieved on a monochromatic instrument (neutron or X-rays), the project ALADIN (for Advanced Laue Diffraction Instruments using Neutrons) aims to: -) construct a Laue-dedicated thermal neutron guide, with m=2 super-mirror coating, providing access to the desirable wavelength bandwidth; -) installation of one of the ILL Laue diffractometers (VIVALDI or CYCLOPS) on this new guide. (authors)

  17. Diffraction analysis of the microstructure of materials

    CERN Document Server

    Scardi, Paolo

    2004-01-01

    Diffraction Analysis of the Microstructure of Materials provides an overview of diffraction methods applied to the analysis of the microstructure of materials. Since crystallite size and the presence of lattice defects have a decisive influence on the properties of many engineering materials, information about this microstructure is of vital importance in developing and assessing materials for practical applications. The most powerful and usually non-destructive evaluation techniques available are X-ray and neutron diffraction. The book details, among other things, diffraction-line broadening methods for determining crystallite size and atomic-scale strain due, e.g. to dislocations, and methods for the analysis of residual (macroscale) stress. The book assumes only a basic knowledge of solid-state physics and supplies readers sufficient information to apply the methods themselves.

  18. Nonlinearity management and diffraction management for the ...

    Indian Academy of Sciences (India)

    Variational equations and partial differential equation have been simulated numerically. Analytical and numerical studies have shown that nonlinearity management and diffraction management stabilize the pulse against decay or collapse providing undisturbed propagation even for larger energies of the incident beam.

  19. Diffractive optics: design, fabrication, and test

    National Research Council Canada - National Science Library

    O'Shea, Donald C

    2004-01-01

    This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs...

  20. The logarithmic slope in diffractive DIS

    International Nuclear Information System (INIS)

    Gay Ducati, M.B.; Goncalves, V.P.; Machado, M.V.T.

    2002-01-01

    The logarithmic slope of diffractive structure function is a potential observable to separate the hard and soft contributions in diffraction, allowing to disentangle the QCD dynamics at small-x region. In this paper we extend our previous analyzes and calculate the diffractive logarithmic slope for three current approaches in the literature: (i) the Bartels-Wusthoff model, based on perturbative QCD, (ii) the CKMT model, based on Regge theory and (iii) the Golec-Biernat-Wusthoff model which assumes that the saturation phenomena is present in the HERA kinematic region. We analyze the transition region of small to large momentum transfer and verify that future experimental results on the diffractive logarithmic slope could discriminate between these approaches

  1. Neutron Larmor diffraction measurements for materials science

    Energy Technology Data Exchange (ETDEWEB)

    Repper, J., E-mail: julia_repper@web.de [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Keller, T. [Max-Planck-Institut fuer Festkoerperforschung, 70569 Stuttgart (Germany)] [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Hofmann, M. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Krempaszky, C. [Christian-Doppler-Labor fuer Werkstoffmechanik von Hochleistungslegierungen, TU Muenchen, 85747 Garching (Germany); Petry, W. [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU Muenchen, 85747 Garching (Germany); Werner, E. [Lehrstuhl fuer Werkstoffkunde und Werkstoffmechanik, TU Muenchen, 85747 Garching (Germany)

    2010-05-15

    Neutron Larmor diffraction (LD) is a high-resolution diffraction technique based on the Larmor precession of polarized neutrons. In contrast to conventional diffraction, LD does not depend on the accurate measurement of Bragg angles, and thus the resolution is independent of the beam collimation and monochromaticity. At present, a relative resolution for the determination of the crystal lattice spacing d of {Delta}d/d{approx}10{sup -6} is achieved, i.e. at least one order of magnitude superior to conventional neutron or X-ray techniques. This work is a first step to explore the application of LD to high-resolution problems in the analysis of residual stresses, where both the accurate measurement of absolute d values and the possibility of measuring type II and III stresses may provide additional information beyond those accessible by conventional diffraction techniques. Data obtained from Inconel 718 samples are presented.

  2. Jets and diffraction results from HERA

    International Nuclear Information System (INIS)

    Buniatyan, A.

    2014-01-01

    The latest results on precision measurements of jet and diffractive cross sections obtained by the H1 and ZEUS experiments at HERA are reported. The inclusive jet and multi-jet cross-sections are used in QCD calculations at next-to-leading order (NLO) to determine the strong coupling α s . The cross-section measurements for diffractive inclusive DIS processes with a leading proton in the final state are combined for the H1 and ZEUS experiments in order to improve the precision and extend the kinematic range. The di-jet cross sections are measured in diffractive DIS with a leading proton and compared with QCD predictions based on diffractive parton densities in the proton. The cross sections for exclusive heavy vector meson photoproduction are studied in terms of the momentum transfer at the proton vertex and of the photon-proton centre-of-mass energy. (author)

  3. Diffraction analysis of customized illumination technique

    Science.gov (United States)

    Lim, Chang-Moon; Kim, Seo-Min; Eom, Tae-Seung; Moon, Seung Chan; Shin, Ki S.

    2004-05-01

    Various enhancement techniques such as alternating PSM, chrome-less phase lithography, double exposure, etc. have been considered as driving forces to lead the production k1 factor towards below 0.35. Among them, a layer specific optimization of illumination mode, so-called customized illumination technique receives deep attentions from lithographers recently. A new approach for illumination customization based on diffraction spectrum analysis is suggested in this paper. Illumination pupil is divided into various diffraction domains by comparing the similarity of the confined diffraction spectrum. Singular imaging property of individual diffraction domain makes it easier to build and understand the customized illumination shape. By comparing the goodness of image in each domain, it was possible to achieve the customized shape of illumination. With the help from this technique, it was found that the layout change would not gives the change in the shape of customized illumination mode.

  4. Diffraction by m-bonacci gratings

    International Nuclear Information System (INIS)

    Monsoriu, Juan A; Giménez, Marcos H; Furlan, Walter D; Barreiro, Juan C; Saavedra, Genaro

    2015-01-01

    We present a simple diffraction experiment with m-bonacci gratings as a new interesting generalization of the Fibonacci ones. Diffraction by these non-conventional structures is proposed as a motivational strategy to introduce students to basic research activities. The Fraunhofer diffraction patterns are obtained with the standard equipment present in most undergraduate physics labs and are compared with those obtained with regular periodic gratings. We show that m-bonacci gratings produce discrete Fraunhofer patterns characterized by a set of diffraction peaks which positions are related to the concept of a generalized golden mean. A very good agreement is obtained between experimental and numerical results and the students’ feedback is discussed. (paper)

  5. Diffractive beauty production at the LHC

    International Nuclear Information System (INIS)

    Eggert, K.; Morsch, A.

    1994-01-01

    Using the framework of Pomeron exchange to describe diffractive pp collisions at the LHC we discuss beauty production in those events. The cross sections for beauty production at different diffractive masses and the topology for the beauty particles and the underlying event are given. When triggering on large diffractive masses, the beauty system is boosted into the Pomeron hemisphere opposite the underlying event, which tends to follow the excited proton direction. This may offer some advantages for the acceptance of beauty and its reconstruction in forward spectrometers. For the identification of diffractive events at the LHC collider, we present a scheme to measure the momentum loss of forward protons in the range 2x10 -3 < Δp/p <0.1. This momentum loss can be determined with a precision of about 10%. ((orig.))

  6. Diffraction enhanced imaging: a simple model

    International Nuclear Information System (INIS)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu

    2006-01-01

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser

  7. Diffraction enhanced imaging: a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Peiping; Yuan Qingxi; Huang Wanxia; Wang Junyue; Shu Hang; Chen Bo; Liu Yijin; Li Enrong; Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2006-10-07

    Based on pinhole imaging and conventional x-ray projection imaging, a more general DEI (diffraction enhanced imaging) equation is derived using simple concepts in this paper. Not only can the new DEI equation explain all the same problems as with the DEI equation proposed by Chapman, but also some problems that cannot be explained with the old DEI equation, such as the noise background caused by small angle scattering diffracted by the analyser.

  8. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  9. Bragg diffraction of fermions at optical potentials

    International Nuclear Information System (INIS)

    Deh, Benjamin

    2008-01-01

    This thesis describes the Bragg diffraction of ultracold fermions at an optical potential. A moving optical lattice was created, by overlaying two slightly detuned lasers. Atoms can be diffracted at this lattice if the detuning fulfills the Bragg condition for resting atoms. This Bragg diffraction is analyzed systematically in this thesis. To this end Rabi oscillations between the diffraction states were driven, as well in the weakly interacting Bragg regime, as in the strongly interacting Kapitza-Dirac regime. Simulations, based on a driven two-, respectively multilevel-system describe the observed effects rather well. Furthermore, the temporal evolution of the diffracted states in the magnetic trapping potential was studied. The anharmonicity of the trap in use and the scattering cross section for p-wave collisions in a 6 Li system was determined from the movement of these states. Moreover the momentum distribution of the fermions was measured with Bragg spectroscopy and first signs of Fermi degeneracy were found. Finally an interferometer with fermions was build, exhibiting a coherence time of more than 100 μs. With this, the possibility for measurement and manipulation of ultracold fermions with Bragg diffraction could bee shown. (orig.)

  10. When fast atom diffraction turns 3D

    International Nuclear Information System (INIS)

    Zugarramurdi, Asier; Borisov, Andrei G.

    2013-01-01

    Fast atom diffraction at surfaces (FAD) in grazing incidence geometry is characterized by the slow motion in the direction perpendicular to the surface and fast motion parallel to the surface plane along a low index direction. It is established experimentally that for the typical surfaces the FAD reveals the 2D diffraction patterns associated with exchange of the reciprocal lattice vector perpendicular to the direction of fast motion. The reciprocal lattice vector exchange along the direction of fast motion is negligible. The usual approximation made in the description of the experimental data is then to assume that the effective potential leading to the diffraction results from the averaging of the 3D surface potential along the atomic strings forming the axial channel. In this work we use full quantum wave packet propagation calculations to study theoretically the possibility to observe the 3D diffraction in FAD experiments. We show that for the surfaces with large unit cell, such as can be the case for reconstructed or vicinal surfaces, the 3D diffraction can be observed. The reciprocal lattice vector exchange along the direction of fast motion leads to several Laue circles in the diffraction pattern

  11. The dynamics of diffracted rays in foams

    Energy Technology Data Exchange (ETDEWEB)

    Tufaile, A., E-mail: tufaile@usp.br; Tufaile, A.P.B.

    2015-12-18

    We have studied some aspects of the optics of the light scattering in foams. This paper describes the difference between rays and diffracted rays from the point of view of geometrical theory of diffraction. We have represented some bifurcations of light rays using dynamical systems. Based on our observations of foams, we created a solid optical device. The interference patterns of light scattering in foams forming Airy fringes were explored observing the pattern named as the eye of Horus. In the cases we examine, these Airy fringes are associated with light scattering in curved surfaces, while the halo formation is related to the law of edge diffraction. We are proposing a Pohl interferometer using a three-sided bubble/Plateau border system. - Highlights: • We obtained halos scattering light in foams. • We model the light scattering in foams using the geometrical theory of diffraction. • We examine the difference between rays and the diffracted rays. • We developed optical devices for diffracted rays.

  12. Diffraction-based BioCD biosensor for point-of-care diagnostics

    Science.gov (United States)

    Choi, H.; Chang, C.; Savran, C.; Nolte, D.

    2018-02-01

    The BioCD platform technology uses spinning-disk interferometry to detect molecular binding to target molecular probes in biological samples. Interferometric configurations have included differential phase contrast and in-line quadrature detection. For the detection of extremely low analyte concentrations, nano- or microparticles can enhance the signal through background-free diffraction detection. Diffraction signal measurements on BioCD biosensors are achieved by forming gratings on a disc surface. The grating pattern was printed with biotinylated bovine serum albumin (BSA) and streptavidin coated beads were deployed. The diameter of the beads was 1 micron and strong protein bonding occurs between BSA and streptavidin-coated beads at the printed location. The wavelength for the protein binding detection was 635 nm. The periodic pattern on the disc amplified scattered light into the first-order diffraction position. The diffracted signal contains Mie scattering and a randomly-distributed-bead noise contributions. Variation of the grating pattern periodicity modulates the diffraction efficiency. To test multiple spatial frequencies within a single scan, we designed a fan-shaped grating to perform frequency filter multiplexing on a diffraction-based BioCD.

  13. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars

    2017-01-08

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  14. Blazed Grating Resonance Conditions and Diffraction Efficiency Optical Transfer Function

    KAUST Repository

    Stegenburgs, Edgars; Alias, Mohd Sharizal B.; Ng, Tien Khee; Ooi, Boon S.

    2017-01-01

    We introduce a general approach to study diffraction harmonics or resonances and resonance conditions for blazed reflecting gratings providing knowledge of fundamental diffraction pattern and qualitative understanding of predicting parameters for the most efficient diffraction.

  15. Protein crystal structure analysis using synchrotron radiation at atomic resolution

    International Nuclear Information System (INIS)

    Nonaka, Takamasa

    1999-01-01

    We can now obtain a detailed picture of protein, allowing the identification of individual atoms, by interpreting the diffraction of X-rays from a protein crystal at atomic resolution, 1.2 A or better. As of this writing, about 45 unique protein structures beyond 1.2 A resolution have been deposited in the Protein Data Bank. This review provides a simplified overview of how protein crystallographers use such diffraction data to solve, refine, and validate protein structures. (author)

  16. Quantitative phase analysis by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chang Hee; Song, Su Ho; Lee, Jin Ho; Shim, Hae Seop [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-06-01

    This study is to apply quantitative phase analysis (QPA) by neutron diffraction to the round robin samples provided by the International Union of Crystallography(IUCr). We measured neutron diffraction patterns for mixed samples which have several different weight percentages and their unique characteristic features. Neutron diffraction method has been known to be superior to its complementary methods such as X-ray or Synchrotron, but it is still accepted as highly reliable under limited conditions or samples. Neutron diffraction has strong capability especially on oxides due to its scattering cross-section of the oxygen and it can become a more strong tool for analysis on the industrial materials with this quantitative phase analysis techniques. By doing this study, we hope not only to do one of instrument performance tests on our HRPD but also to improve our ability on the analysis of neutron diffraction data by comparing our QPA results with others from any advanced reactor facilities. 14 refs., 4 figs., 6 tabs. (Author)

  17. Hard Diffraction - from Blois 1985 to 2005

    Energy Technology Data Exchange (ETDEWEB)

    Gunnar, Ingelman [Uppsala Univ., High Energy Physics (Sweden)

    2005-07-01

    The idea of diffractive processes with a hard scale involved, to resolve the underlying parton dynamics, was presented at the first Blois conference in 1985 and experimentally verified a few years later. Today hard diffraction is an attractive research field with high-quality data and new theoretical models. The trend from Regge-based pomeron models to QCD-based parton level models has given insights on QCD dynamics involving perturbative gluon exchange mechanisms. In the new QCD-based models, the pomeron is not part of the proton wave function, but diffraction is an effect of the scattering process. Models based on interactions with a colour background field provide an interesting approach which avoids conceptual problems of pomeron-based models, such as the pomeron flux, and provide a basis for common theoretical framework for all final states, diffractive gap events as well as non-diffractive events. Finally, the new process of gaps between jets provides strong evidence for the BFKL dynamics as predicted since long by QCD, but so far hard to establish experimentally.

  18. Surface diffusion studies by optical diffraction techniques

    International Nuclear Information System (INIS)

    Xiao, X.D.

    1992-11-01

    The newly developed optical techniques have been combined with either second harmonic (SH) diffraction or linear diffraction off a monolayer adsorbate grating for surface diffusion measurement. Anisotropy of surface diffusion of CO on Ni(l10) was used as a demonstration for the second harmonic dim reaction method. The linear diffraction method, which possesses a much higher sensitivity than the SH diffraction method, was employed to study the effect of adsorbate-adsorbate interaction on CO diffusion on Ni(l10) surface. Results showed that only the short range direct CO-CO orbital overlapping interaction influences CO diffusion but not the long range dipole-dipole and CO-NI-CO interactions. Effects of impurities and defects on surface diffusion were further explored by using linear diffraction method on CO/Ni(110) system. It was found that a few percent S impurity can alter the CO diffusion barrier height to a much higher value through changing the Ni(110) surface. The point defects of Ni(l10) surface seem to speed up CO diffusion significantly. A mechanism with long jumps over multiple lattice distance initiated by CO filled vacancy is proposed to explain the observed defect effect

  19. Deep-inelastic electron-proton diffraction

    International Nuclear Information System (INIS)

    Dainton, J.B.

    1995-11-01

    Recent measurements by the H1 collaboration at HERA of the cross section for deep-inelastic electron-proton scattering in which the proton interacts with minimal energy transfer and limited 4-momentum transfer squared are presented in the form of the contribution F 2 D(3) to the proton structure function F 2 . By parametrising the cross section phenomenologically in terms of a leading effective Regge pole exchange and comparing the result with a similar parametrisation of hadronic pp physics, the proton interaction is demonstrated to be dominantly of a diffractive nature. The quantitative interpretation of the parametrisation in terms of the properties of an effective leading Regge pole exchange, the pomeron (IP), shows that there is no evidence for a 'harder' BFKL-motivated IP in such deep-inelastic proton diffraction. The total contribution of proton diffraction to deep-inelastic electron-proton scattering is measured to be ∝10% and to be rather insensitive to Bjorken-x and Q 2 . A first measurement of the partonic structure of diffractive exchange is presented. It is shown to be readily interpreted in terms of the exchange of gluons, and to suggest that the bulk of diffractive momentum transfer is carried by a leading gluon. (orig.)

  20. Hard diffraction and deep inelastic scattering

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the open-quotes legoclose quotes phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width Δη does not have a power-law decrease with increasing subenergy s=e Δη , but behaves at most like some power of pseudorapidity Δη∼log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space

  1. Neutron-diffraction measurements of stress

    International Nuclear Information System (INIS)

    Holden, T.M.

    1995-01-01

    Experiments on bent steam-generator tubing have shown that different diffraction peaks, (1 1 1) or (0 0 2), give different results for the sign and magnitude of the stress and strain. From an engineering standpoint, the macroscopic stress field cannot be both positive and negative in the same volume, so this difference must be due to intergranular effects superposed on the macroscopic stress field. Uniaxial tensile test experiments with applied stresses beyond the 0.2% offset yield stress, help to understand this anomaly, by demonstrating the different strain response to applied stress along different crystallographic axes.When Zr-alloys are cooled from elevated temperatures, thermal stresses always develop, so that it is difficult to obtain a stress-free lattice spacing from which residual strains may be derived. From measurements of the temperature dependence of lattice spacing, the temperature at which the thermal stresses vanish may be found. From the lattice spacing at this temperature the stress-free lattice spacings at room temperature can be obtained readily.To interpret the measured strains in terms of macroscopic stress fields it is necessary to know the diffraction elastic constants. Neutron diffraction measurements of the diffraction elastic constants in a ferritic steel for the [1 1 0], [0 0 2] and [2 2 2] crystallographic axes, in directions parallel and perpendicular to the applied stress are compared with theoretical diffraction elastic constants. (orig.)

  2. Diffractive corrections to the muon Bremsstrahlung

    International Nuclear Information System (INIS)

    Kel'ner, S.R.; Fedotov, A.M.

    1999-01-01

    The corrections to the muon Bremsstrahlung cross section due to diffraction of hard photons on nuclei are obtained. In this process the momentum is transmitted to a nucleus not by a charged particle but by the photon the interaction of which with the nucleus can be considered as diffraction on weakly absorbing ball. The amplitude of the process interferes with the usual Bremsstrahlung amplitude, therefore in the cross section together with the diffraction correction the interference term also appears, possessing different sings for μ + and μ - . The photon emission cross section also depends on the sing of muon charge and for muon energy about 10 TeV the difference between the cross section may reach 10%. The corrections to the radiation energy loss are also calculated [ru

  3. Adaptable Diffraction Gratings With Wavefront Transformation

    Science.gov (United States)

    Iazikov, Dmitri; Mossberg, Thomas W.; Greiner, Christoph M.

    2010-01-01

    Diffraction gratings are optical components with regular patterns of grooves, which angularly disperse incoming light by wavelength. Traditional diffraction gratings have static planar, concave, or convex surfaces. However, if they could be made so that they can change the surface curvature at will, then they would be able to focus on particular segments, self-calibrate, or perform fine adjustments. This innovation creates a diffraction grating on a deformable surface. This surface could be bent at will, resulting in a dynamic wavefront transformation. This allows for self-calibration, compensation for aberrations, enhancing image resolution in a particular area, or performing multiple scans using different wavelengths. A dynamic grating gives scientists a new ability to explore wavefronts from a variety of viewpoints.

  4. Diffractive elements performance in chromatic confocal microscopy

    International Nuclear Information System (INIS)

    Garzon, J; Duque, D; Alean, A; Toledo, M; Meneses, J; Gharbi, T

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  5. The design of macromolecular crystallography diffraction experiments

    International Nuclear Information System (INIS)

    Evans, Gwyndaf; Axford, Danny; Owen, Robin L.

    2011-01-01

    Thoughts about the decisions made in designing macromolecular X-ray crystallography experiments at synchrotron beamlines are presented. The measurement of X-ray diffraction data from macromolecular crystals for the purpose of structure determination is the convergence of two processes: the preparation of diffraction-quality crystal samples on the one hand and the construction and optimization of an X-ray beamline and end station on the other. Like sample preparation, a macromolecular crystallography beamline is geared to obtaining the best possible diffraction measurements from crystals provided by the synchrotron user. This paper describes the thoughts behind an experiment that fully exploits both the sample and the beamline and how these map into everyday decisions that users can and should make when visiting a beamline with their most precious crystals

  6. Rietveld analysis, powder diffraction and cement

    International Nuclear Information System (INIS)

    Peterson, V.

    2002-01-01

    Full text: Phase quantification of cement is essential in its industrial use, however many methods are inaccurate and/or time consuming. Powder diffraction is one of the more accurate techniques used for quantitative phase analysis of cement. There has been an increase in the use of Rietveld refinement and powder diffraction for the analysis and phase quantification of cement and its components in recent years. The complex nature of cement components, existence of solid solutions, polymorphic variation of phases and overlapping phase peaks in diffraction patterns makes phase quantification of cements by powder diffraction difficult. The main phase in cement is alite, a solid solution of tricalcium silicate. Tricalcium silicate has been found to exist in seven modifications in three crystal systems, including triclinic, monoclinic, and rhombohedral structures. Hence, phase quantification of cements using Rietveld methods usually involves the simultaneous modelling of several tricalcium silicate structures to fit the complex alite phase. An industry ordinary Portland cement, industry and standard clinker, and a synthetic tricalcium silicate were characterised using neutron, laboratory x-ray and synchrotron powder diffraction. Diffraction patterns were analysed using full-profile Rietveld refinement. This enabled comparison of x-ray, neutron and synchrotron data for phase quantification of the cement and examination of the tricalcium silicate. Excellent Rietveld fits were achieved, however the results showed that the quantitative phase analysis results differed for some phases in the same clinker sample between various data sources. This presentation will give a short introduction about cement components including polymorphism, followed by the presentation of some problems in phase quantification of cements and the role of Rietveld refinement in solving these problems. Copyright (2002) Australian X-ray Analytical Association Inc

  7. Explanation and observability of diffraction in time

    International Nuclear Information System (INIS)

    Torrontegui, E.; Muga, J. G.; Munoz, J.; Ban, Yue

    2011-01-01

    Diffraction in time (DIT) is a fundamental phenomenon in quantum dynamics due to time-dependent obstacles and slits. It is formally analogous to diffraction of light, and is expected to play an increasing role in the design of coherent matter wave sources, as in the atom laser, to analyze time-of-flight information and emission from ultrafast pulsed excitations, and in applications of coherent matter waves in integrated atom-optical circuits. We demonstrate that DIT emerges robustly in quantum waves emitted by an exponentially decaying source and provide a simple explanation of the phenomenon, as an interference of two characteristic velocities. This allows for its controllability and optimization.

  8. Glancing angle synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Cernik, R J [Daresbury Lab., Warrington, WA (United States)

    1996-09-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school.

  9. Film thickness determination by grazing incidence diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, G A; Gerbasi, R [CNR, Padua (Italy). Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati

    1996-09-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive.

  10. Fundamentals of the physical theory of diffraction

    CERN Document Server

    Ufimtsev, Pyotr Ya

    2014-01-01

    A complete presentation of the modern physical theory of diffraction and its applications, by the world's leading authority on the topicExtensive revisions and additions to the first edition yield a second edition that is 492 pages in length, with 122 figuresNew sections examine the nature of polarization coupling, and extend the theory of shadow radiation and reflection to opaque objectsThis book features end-of-chapter problems and a solutions manual for university professors and graduate studentsMATLAB codes presented in appendices allow for quick numeric calculations of diffracted waves

  11. X-ray diffraction and chemical bonding

    International Nuclear Information System (INIS)

    Bats, J.W.

    1976-01-01

    Chemical bonds are investigated in sulfamic acid (H 3 N-SO 3 ), sodium sulfonlate dihydrate (H 2 NC 6 H 4 SO 3 Na.2H 2 O), 2,5-dimercaptothiadiazole (HS-C 2 N 2 S-SH), sodium cyanide dihydrate (NaCN.2H 2 O), sodium thiocyanate (NaSCN) and ammonium thiocyanate (NH 4 SCN) by X-ray diffraction, and if necessary completed with neutron diffraction. Crystal structures and electron densities are determined together with bond length and angles. Also the effects of thermal motion are discussed

  12. Multiorder nonlinear diffraction in frequency doubling processes

    DEFF Research Database (Denmark)

    Saltiel, Solomon M.; Neshev, Dragomir N.; Krolikowski, Wieslaw

    2009-01-01

    We analyze experimentally light scattering from 2 nonlinear gratings and observe two types of second-harmonic frequency-scattering processes. The first process is identified as Raman–Nath type nonlinear diffraction that is explained by applying only transverse phase-matching conditions. The angular...... position of this type of diffraction is defined by the ratio of the second-harmonic wavelength and the grating period. In contrast, the second type of nonlinear scattering process is explained by the longitudinal phase matching only, being insensitive to the nonlinear grating...

  13. Glancing angle synchrotron X-ray diffraction

    International Nuclear Information System (INIS)

    Cernik, R.J.

    1996-01-01

    This paper describes in basic detail some of the techniques that can be used to study thin films and surfaces. These are all in the X-ray region and cover reflectivity, diffraction form polycrystalline films, textured films and single crystal films. Other effects such as fluorescence and diffuse scattering are mentioned but not discussed in detail. Two examples of the reflectivity from multilayers and the diffraction from iron oxide films are discussed. The advantages of the synchrotron for these studies is stressed and the experimental geometries that can be employed are described i detail. A brief bibliography is provided at the end to accompany this part of the 1996 Frascati school

  14. Light-scattering theory of diffraction.

    Science.gov (United States)

    Guo, Wei

    2010-03-01

    Since diffraction is a scattering process in principle, light propagation through one aperture in a screen is discussed in the light-scattering theory. Through specific calculation, the expression of the electric field observed at an observation point is obtained and is used not only to explain why Kirchhoff's diffraction theory is a good approximation when the screen is both opaque and sufficiently thin but also to demonstrate that the mathematical and physical problems faced by Kirchhoff's theory are avoided in the light-scattering theory.

  15. Film thickness determination by grazing incidence diffraction

    International Nuclear Information System (INIS)

    Battiston, G. A.; Gerbasi, R.

    1996-01-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive

  16. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.

    1987-07-01

    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  17. X-ray Laue diffraction with allowance for second derivatives of amplitudes in dynamical diffraction equations

    International Nuclear Information System (INIS)

    Balyan, M.K.

    2014-01-01

    Asymmetrical Laue diffraction in a perfect crystal with a plane entrance surface is considered. The second derivatives of amplitudes in the direction, perpendicular to diffraction plane in the dynamical diffraction equations are taken into account. Using the corresponding Green function a general form for the amplitude of diffracted wave in the crystal is derived. The sizes of the source in both directions as well as the source of crystal distance and non-monochromaticity of the radiation incident on the crystal are taken into account. On the basis of obtained expression the coherent properties of the field depending on the sizes of the source and on the width of the spectrum of the incident radiation are analyzed. Taking into account the second derivatives of amplitudes with respect to the direction, perpendicular to the diffraction plane, the time dependent propagation equations for an X-ray pulse in a perfect crystal are given

  18. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto

    OpenAIRE

    Yanagisawa, Yasuhide; Chatake, Toshiyuki; Chiba-Kamoshida, Kaori; Naito, Sawa; Ohsugi, Tadanori; Sumi, Hiroyuki; Yasuda, Ichiro; Morimoto, Yukio

    2010-01-01

    Nattokinase, a protein found in high levels in the traditional Japanese food natto, has been reported to have high thrombolytic activity. In the present study, the crystallization of native nattokinase and the collection of X-ray diffraction date from a nattokinase crystal to a resolution of 1.74 Å are reported.

  19. Quasi-Bragg diffraction of atoms

    NARCIS (Netherlands)

    Domen, K.F.E.M.; Jansen, M.A.H.M.; Leeuwen, van K.A.H.

    2006-01-01

    We report on a novel atomic beamsplitter. It combines the advantages of Bragg scattering (transfer possible into a single, very high diffraction order due to adiabatic conservation of ‘transverse kinetic energy’) with the convenience of tuning the splitting angle simply by adjusting a magnetic

  20. Polarity of wurtzite crystals by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Romanyuk, Olexandr

    2014-01-01

    Roč. 315, OCT (2014), s. 506-509 ISSN 0169-4332 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : wurtzite semiconductors * surface polarity * X-ray photoelectron diffraction * XPD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S016943321400066X

  1. Phase Transitions, Diffraction Studies and Marginal Dimensionality

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    Continuous phase transitions and the associated critical phenomena have been one of the most active areas of research in condensed matter physics for several decades. This short review is only one cut through this huge subject and the author has chosen to emphasize diffraction studies as a basic ...

  2. Crystallographic structures of absorbates and neutron diffraction

    International Nuclear Information System (INIS)

    Marti, C.; Thorel, P.

    1975-01-01

    The advantage of neutron diffraction is that it is possible to work at any pressure and therefore to study an adsorbant-adsorbate couple within a wide pressure and temperature range and at thermodynamic equilibrium. Nitrogen adsorbed on graphite and CF 4 adsorbed on graphite were measured [fr

  3. Modern techniques of structural neutron diffraction

    International Nuclear Information System (INIS)

    Aksenov, V.L.; )

    1997-01-01

    Modern techniques of neutron diffraction for structural investigations are analyzed. The time-of-flight method and the reverse time-of-flight method are considered briefly. Characteristics of two-crystal and time-of-flight neutron diffractometers are compared. It is pointed that in the future, the great importance will be possessed the development of high-resolution Fourier neutron diffractometers [ru

  4. Diffraction in ALICE and trigger efficiencies

    CERN Document Server

    Navin, Sparsh; Lietava, Roman

    ALICE is built to measure the properties of strongly interacting matter created in heavy-ion collisions. In addition, taking advantage of the low pT acceptance in the central barrel, ALICE is playing an important role in understanding pp collisions with minimum bias triggers at LHC energies. The work presented in this thesis is based on pp data simulated by the ALICE collaboration and early data collected at a center-of-mass energy of 7 TeV. A procedure to calculate trigger efficiencies and an estimate of the systematic uncertainty due to the limited acceptance of the detector are shown. A kinematic comparison between Monte Carlo event generators, PYTHIA 6, PYTHIA 8 and PHOJET is also presented. To improve the description of diffraction in PYTHIA, a hard diffractive component was added to PYTHIA 8 in 2009, which is described. Finally a trigger with a high efficiency for picking diffractive events is used to select a sample with an enhanced diffractive component from pp data. These data are compared to Monte ...

  5. Applications of the fresnel diffraction of neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Opat, G.I.

    1978-01-01

    The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with very small specimens; focussing of long wavelength neutron beams using zone plates

  6. Applications of the Fresnel diffraction of neutrons

    International Nuclear Information System (INIS)

    Klein, A.G.; Opat, G.I.

    1978-01-01

    The place of Fresnel diffraction in the overall scheme of neutron interference experiments is outlined and possible applications are discussed in the areas of: magnetic domain visualisation; measurement of nuclear scattering lengths with very small specimens; focussing of long wavelength neutron beams using zone plates

  7. Neutron diffraction in a frustrated ferrite

    International Nuclear Information System (INIS)

    Mirebeau, I.; Iancu, G.; Gavoille, G.; Hubsch, J.

    1994-01-01

    The competition between a long range ordered ferrimagnetic lattice and small fluctuating clusters have been probed by neutron diffraction in a titanium magnesium frustrated ferrite. The description of the system is then compared to the predictions of several theoretical models for frustrated systems. 3 figs., 8 refs

  8. Reactor applications of quantitative diffraction analysis

    International Nuclear Information System (INIS)

    Feguson, I.F.

    1976-09-01

    Current work in quantitative diffraction analysis was presented under the main headings of: thermal systems, fast reactor systems, SGHWR applications and irradiation damage. Preliminary results are included on a comparison of various new instrumental methods of boron analysis as well as preliminary new results on Zircaloy corrosion, and materials transfer in liquid sodium. (author)

  9. A Study of Simple Diffraction Models

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    1997-01-01

    Three different models for calculating edge diffraction are examined. The methods of Vanderkooy, Terai and Biot & Tolstoy are compared with measurements. Although a good agreement is obtained, the measurements also show that none of the methods work completely satisfactorily. The desired properties...

  10. A Study of Simple Diffraction Models

    DEFF Research Database (Denmark)

    Agerkvist, Finn

    In this paper two simple methods for cabinet edge diffraction are examined. Calculations with both models are compared with more sophisticated theoretical models and with measured data. The parameters involved are studied and their importance for normal loudspeaker box designs is examined....

  11. Corner diffraction coefficients for the quarter plane

    DEFF Research Database (Denmark)

    Hansen, Thorkild B.

    1991-01-01

    that the corner current for the right-angled corner, illuminated from a forward direction, consists mainly of two edge waves propagating along the edges forming the corner. Analytical expressions for these edge wave currents are constructed from the numerical results. A corner diffracted field is calculated...

  12. Neutron forward diffraction by single crystal prisms

    Indian Academy of Sciences (India)

    We have derived analytic expressions for the deflection as well as transmitted fraction of monochromatic neutrons forward diffracted by a single crystal prism. In the vicinity of a Bragg reflection, the neutron deflection deviates sharply from that for an amorphous prism, exhibiting three orders of magnitude greater sensitivity to ...

  13. Nuclear Bragg diffraction using synchrotron radiation

    International Nuclear Information System (INIS)

    Rueffer, R.; Gerdau, E.; Grote, M.; Hollatz, R.; Roehlsberger, R.; Rueter, H.D.; Sturhahn, W.

    1990-01-01

    Nuclear Bragg diffraction with synchrotron radiation as source will become a powerful new X-ray source in the A-region. This source exceeds by now the brilliance of conventional Moessbauer sources giving hyperfine spectroscopy further momentum. As examples applications to yttrium iron garnet (YIG) and iron borate will be discussed. (author)

  14. Neutron diffraction of γ-aluminium oxynitride

    NARCIS (Netherlands)

    Willems, H.X.; With, de G.; Metselaar, R.; Helmholdt, R.B.; Petersen, K.K.

    1993-01-01

    Neutron diffraction expts. were performed on Al oxynitride (Alon) powders with compns. corresponding to 67.5, 73 and 77.5 mol.% Al2O3. The 73 mol.% powder was produced by reacting Al2O3 and AlN powders for 3 h at 1750 Deg. After reaction the resultant powder was ground with a mortar and pestle to

  15. Single Hit Energy-resolved Laue Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew [Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Comley, Andrew J.; Foster, John M. [Atomic Weapons Establishment, Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-05-15

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation.

  16. Single Hit Energy-resolved Laue Diffraction

    International Nuclear Information System (INIS)

    Patel, Shamim; Suggit, Matthew J.; Stubley, Paul G.; Ciricosta, Orlando; Wark, Justin S.; Higginbotham, Andrew; Hawreliak, James A.; Collins, Gilbert W.; Eggert, Jon H.; Comley, Andrew J.; Foster, John M.

    2015-01-01

    In situ white light Laue diffraction has been successfully used to interrogate the structure of single crystal materials undergoing rapid (nanosecond) dynamic compression up to megabar pressures. However, information on strain state accessible via this technique is limited, reducing its applicability for a range of applications. We present an extension to the existing Laue diffraction platform in which we record the photon energy of a subset of diffraction peaks. This allows for a measurement of the longitudinal and transverse strains in situ during compression. Consequently, we demonstrate measurement of volumetric compression of the unit cell, in addition to the limited aspect ratio information accessible in conventional white light Laue. We present preliminary results for silicon, where only an elastic strain is observed. VISAR measurements show the presence of a two wave structure and measurements show that material downstream of the second wave does not contribute to the observed diffraction peaks, supporting the idea that this material may be highly disordered, or has undergone large scale rotation

  17. Neutron Powder Diffraction and Constrained Refinement

    DEFF Research Database (Denmark)

    Pawley, G. S.; Mackenzie, Gordon A.; Dietrich, O. W.

    1977-01-01

    The first use of a new program, EDINP, is reported. This program allows the constrained refinement of molecules in a crystal structure with neutron diffraction powder data. The structures of p-C6F4Br2 and p-C6F4I2 are determined by packing considerations and then refined with EDINP. Refinement is...

  18. Accessing the diffracted wavefield by coherent subtraction

    Science.gov (United States)

    Schwarz, Benjamin; Gajewski, Dirk

    2017-10-01

    Diffractions have unique properties which are still rarely exploited in common practice. Aside from containing subwavelength information on the scattering geometry or indicating small-scale structural complexity, they provide superior illumination compared to reflections. While diffraction occurs arguably on all scales and in most realistic media, the respective signatures typically have low amplitudes and are likely to be masked by more prominent wavefield components. It has been widely observed that automated stacking acts as a directional filter favouring the most coherent arrivals. In contrast to other works, which commonly aim at steering the summation operator towards fainter contributions, we utilize this directional selection to coherently approximate the most dominant arrivals and subtract them from the data. Supported by additional filter functions which can be derived from wave front attributes gained during the stacking procedure, this strategy allows for a fully data-driven recovery of faint diffractions and makes them accessible for further processing. A complex single-channel field data example recorded in the Aegean sea near Santorini illustrates that the diffracted background wavefield is surprisingly rich and despite the absence of a high channel count can still be detected and characterized, suggesting a variety of applications in industry and academia.

  19. SPADE - software package to aid diffraction experiments

    International Nuclear Information System (INIS)

    Farren, J.; Giltrap, J.W.

    1978-10-01

    A software package is described which enables the DEC PDP-11/03 microcomputer to execute several different X-ray diffraction experiments and other similar experiments where stepper motors are driven and data is gathered and processed in real time. (author)

  20. Geometrical optics and the diffraction phenomenon

    International Nuclear Information System (INIS)

    Timofeev, Aleksandr V

    2005-01-01

    This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)

  1. Diffractive hard scattering and the SSC

    International Nuclear Information System (INIS)

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-01-01

    Events in high energy hadron collisions are discussed that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 12 refs., 6 figs

  2. Hard diffraction and small-x

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    In the United States, phrases such as ''small-x evolution'', ''the BFKL Pomeron'', ''deep-inelastic rapiditygap events'' and ''hard-diffraction'' do not generate the same intensity of discussion amongst high-energy physicists that they do in Europe. However, for three days in the fall such discussion filled the air at Fermilab. The ''2nd Workshop on Small-x and Diffractive Physics at the Tevatron'' was a review of the rapid theoretical and experimental progress taking place in this field. Although Quantum Chromo-dynamics (QCD) has been established as the theory of strong interactions for twenty years, as yet neither perturbative high-energy calculations nor low-energy non-perturbative techniques have been successfully extended to the mixture of high energy and low transverse momenta which characterize traditional ''soft'' diffractive processes. The simplest soft diffractive process is elastic scattering. In this case it is easiest to accept that there is an exchanged ''pomeron'', which can be pictured as a virtual entity with no electric charge or strong charge (colour), perhaps like an excitation of the vacuum. The same pomeron is expected to appear in all diffractive processes. Understanding the pomeron in QCD is a fundamental theoretical and experimental challenge. In the last two or three years the ''frontier'' in this challenging area of QCD has been pushed back significantly in both theory and experiment. Progress has been achieved by studying the evolution of hard collisions to relatively smaller constituent momenta (small x) and by studying ''hard'' diffractive collisions containing simultaneous signatures of diffraction and hard perturbative processes. The hard processes have included high transverse momentum jet production, deep inelastic lepton scattering, and (most recently) W

  3. Diffraction and signal processing experiments with a liquid crystal microdisplay

    International Nuclear Information System (INIS)

    MartInez, Jose Luis; Moreno, Ignacio; Ahouzi, Esmail

    2006-01-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms

  4. Diffraction and signal processing experiments with a liquid crystal microdisplay

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, Jose Luis [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Moreno, Ignacio [Departamento de Ciencia y TecnologIa de Materiales, Universidad Miguel Hernandez de Elche, Alicante (Spain); Ahouzi, Esmail [Institut National des Postes et Telecomunications (INTP), Madinat Al Irfane, Rabat (Morocco)

    2006-09-01

    In this work, we show some diffraction experiments performed with a liquid crystal display (LCD) that shows how useful this device can be to teach and experience diffraction optics and signal processing experiments. The LCD acts as a programmable pixelated diffractive mask. The Fourier spectrum of the image displayed in the LCD is visualized through a simple free propagation diffraction experiment. This optical system allows easy testing of different diffractive elements. As a demonstration we include experimental results with well-known diffractive elements like diffraction gratings or Fresnel lenses, and with more complicated elements like computer-generated holograms.

  5. Diffraction patterns from 7-Angstroms tubular halloysite

    International Nuclear Information System (INIS)

    Eggleton, T.

    1998-01-01

    Full text: The diffraction patterns from 7-Angstroms tubular halloysite are superficially like those from kaolinite. Diffraction from a tubular aggregate of atoms, however, differs from that from a crystal because there is no linear repetition in two of the three conventional crystallographic directions. In tubular halloysite, the tube axis is [010] or [110] and in this direction the unit cell repeats in the normal linear fashion. The x-axis, by contrast, changes direction tangentially around the tube circumference, and there can be no true z-axis, because unit cells in the radial direction do not superimpose, since each successive tubular layer has a larger radius than its predecessor and therefore must contain more unit cells than its predecessor. Because tubular 'crystals' do not have a lattice repeat, use of Bragg 'hkl' indices is not appropriate. In the xy plane, a small area of the structure approximates a flat layer silicate, and hk indices may been used to label diffraction maxima. Similarly, successive 1:1 layers tangential to the tube walls yield a series of apparent 001 diffraction maxima. Measurement of these shows that the d-spacings do not form an exact integral series. The reason for this lies in the curvature of the structure. Calculated electron and powder X-ray diffraction patterns, based on a model of concentric 1:1 layers with no regular relation between them other than the 7.2 Angstroms spacing, closely simulate the observed data. Evidence for the 2-layer structure that is generally accepted may need to be reassessed in the light of these results

  6. Diffractive interference optical analyzer (DiOPTER)

    Science.gov (United States)

    Sasikumar, Harish; Prasad, Vishnu; Pal, Parama; Varma, Manoj M.

    2016-03-01

    This report demonstrates a method for high-resolution refractometric measurements using, what we have termed as, a Diffractive Interference Optical Analyzer (DiOpter). The setup consists of a laser, polarizer, a transparent diffraction grating and Si-photodetectors. The sensor is based on the differential response of diffracted orders to bulk refractive index changes. In these setups, the differential read-out of the diffracted orders suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6x10-7 RIU was achieved in glass. This work focuses on devices with integrated sample well, made on low-cost PDMS. As the detection methodology is experimentally straightforward, it can be used across a wide array of applications, ranging from detecting changes in surface adsorbates via binding reactions to estimating refractive index (and hence concentration) variations in bulk samples. An exciting prospect of this technique is the potential integration of this device to smartphones using a simple interface based on transmission mode configuration. In a transmission configuration, we were able to achieve an LoD of 4x10-4 RIU which is sufficient to explore several applications in food quality testing and related fields. We are envisioning the future of this platform as a personal handheld optical analyzer for applications ranging from environmental sensing to healthcare and quality testing of food products.

  7. Acquiring the fundamentals: an accredited powder diffraction course on the internet

    International Nuclear Information System (INIS)

    Crockcroft, J.K.; Barnes, P.; Attfield, M.P.; Cranswick, L.M.D.

    2002-01-01

    Full text: In August 1999, building on accredited academic-based crystallographic web courses pioneered by Birkbeck College, University of London, for Protein Crystallography and Principles of Protein Structure, a new 'Advanced Certificate in Powder Diffraction' was officially announced at the International Union of Crystallography congress in Glasgow. Offering tuition via the Internet on the fundamentals in powder diffraction, it is now running successfully into its third year. The background of student intake ranges from new PhD students to scientists, technicians and X-ray analysts in commercial companies. The work for this 1 year long course, takes around 6 to 8 hours a week to complete; and should not be considered equivalent to recreational web browsing, but as serious study. If this course is done as part of staff training and development, it is important that the employer recognize this; and that adequate training time is set aside as part of the working week. The 'Advanced Certificate in Powder Diffraction' is assessed by a mixture of 'coursework', computer based data analysis project and a formal written exam taken at a local university. To obtain the full qualification, the exam must be taken, but it is optional if only training and no formal qualification is required. The course content covers a broad range of knowledge required for an 'understanding' of powder diffraction. These include the Internet Skills required to do the course, Diffraction Instrumentation, Laboratory Methods, Synchrotron Sources and Methods, Neutron Sources, Diffraction Theory, Electron Scattering to Structure Factors, Structure Factors to Diffraction Intensities, the concept of Symmetry to 3-D Symmetry Elements, Point Groups, Space Groups, Space-Group Determination, Interpreting the IUCr International Tables, Qualitative Analysis, Quantitative Analysis, Indexing, Unit-Cell Refinement, Peak Shapes, Structure Refinement and the Rietveld Method, Modern Techniques and Applications

  8. Diffractive production off nuclei-shadow of hadronic bremsstrahlung

    International Nuclear Information System (INIS)

    Bialas, A.; Czyz, W.

    1974-01-01

    Diffractive production on nuclei is calculated using as an input a specific model for diffractive production on nucleons. In this model diffractive production is described as a shadow of non-diffractive multiple production of particles. The mechanism for non-diffractive production is taken to be hadronic bremsstrahlung of independently produced clusters. It is shown that such a model naturally explains the strikingly simple pattern of absorption observed in coherent production on nuclei. Possible generalizations of these results are indicated. (author)

  9. A method of combining STEM image with parallel beam diffraction and electron-optical conditions for diffractive imaging

    International Nuclear Information System (INIS)

    He Haifeng; Nelson, Chris

    2007-01-01

    We describe a method of combining STEM imaging functionalities with nanoarea parallel beam electron diffraction on a modern TEM. This facilitates the search for individual particles whose diffraction patterns are needed for diffractive imaging or structural studies of nanoparticles. This also lays out a base for 3D diffraction data collection

  10. Expression, purification and preliminary diffraction studies of CmlS

    International Nuclear Information System (INIS)

    Latimer, Ryan; Podzelinska, Kateryna; Soares, Alexei; Bhattacharya, Anupam; Vining, Leo C.; Jia, Zongchao; Zechel, David L.

    2009-01-01

    CmlS from S. venezuelae is a flavin-dependent halogenase that is involved in the biosynthesis of the widely used antibiotic chloramphenicol. Here, the crystallization of CmlS and analysis of the initial diffraction data are reported. CmlS, a flavin-dependent halogenase (FDH) present in the chloramphenicol-biosynthetic pathway in Streptomyces venezuelae, directs the dichlorination of an acetyl group. The reaction mechanism of CmlS is of considerable interest as it will help to explain how the FDH family can halogenate a wide range of substrates through a common mechanism. The protein has been recombinantly expressed in Escherichia coli and purified to homogeneity. The hanging-drop vapour-diffusion method was used to produce crystals that were suitable for X-ray diffraction. Data were collected to 2.0 Å resolution. The crystal belonged to space group C2, with unit-cell parameters a = 208.1, b = 57.7, c = 59.9 Å, β = 97.5°

  11. When holography meets coherent diffraction imaging.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Fink, Hans-Werner

    2012-12-17

    The phase problem is inherent to crystallographic, astronomical and optical imaging where only the intensity of the scattered signal is detected and the phase information is lost and must somehow be recovered to reconstruct the object's structure. Modern imaging techniques at the molecular scale rely on utilizing novel coherent light sources like X-ray free electron lasers for the ultimate goal of visualizing such objects as individual biomolecules rather than crystals. Here, unlike in the case of crystals where structures can be solved by model building and phase refinement, the phase distribution of the wave scattered by an individual molecule must directly be recovered. There are two well-known solutions to the phase problem: holography and coherent diffraction imaging (CDI). Both techniques have their pros and cons. In holography, the reconstruction of the scattered complex-valued object wave is directly provided by a well-defined reference wave that must cover the entire detector area which often is an experimental challenge. CDI provides the highest possible, only wavelength limited, resolution, but the phase recovery is an iterative process which requires some pre-defined information about the object and whose outcome is not always uniquely-defined. Moreover, the diffraction patterns must be recorded under oversampling conditions, a pre-requisite to be able to solve the phase problem. Here, we report how holography and CDI can be merged into one superior technique: holographic coherent diffraction imaging (HCDI). An inline hologram can be recorded by employing a modified CDI experimental scheme. We demonstrate that the amplitude of the Fourier transform of an inline hologram is related to the complex-valued visibility, thus providing information on both, the amplitude and the phase of the scattered wave in the plane of the diffraction pattern. With the phase information available, the condition of oversampling the diffraction patterns can be relaxed, and the

  12. Quantitative measurement of phase variation amplitude of ultrasonic diffraction grating based on diffraction spectral analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Meiyan, E-mail: yphantomohive@gmail.com; Zeng, Yingzhi; Huang, Zuohua, E-mail: zuohuah@163.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China)

    2014-09-15

    A new method based on diffraction spectral analysis is proposed for the quantitative measurement of the phase variation amplitude of an ultrasonic diffraction grating. For a traveling wave, the phase variation amplitude of the grating depends on the intensity of the zeroth- and first-order diffraction waves. By contrast, for a standing wave, this amplitude depends on the intensity of the zeroth-, first-, and second-order diffraction waves. The proposed method is verified experimentally. The measured phase variation amplitude ranges from 0 to 2π, with a relative error of approximately 5%. A nearly linear relation exists between the phase variation amplitude and driving voltage. Our proposed method can also be applied to ordinary sinusoidal phase grating.

  13. Inclusive transverse momentum distributions of charged particles in diffractive and non-diffractive photoproduction at HERA

    International Nuclear Information System (INIS)

    Derrick, M.; Krakauer, D.; Magill, S.

    1995-03-01

    Inclusive transverse momentum spectra of charged particles in photoproduction events in the laboratory pseudorapidity range -1.2 T =8 GeV using the ZEUS detector. Diffractive and non-diffractive reactions have been selected with an average γp centre of mass (c.m.) energy of =180 GeV. For diffractive reactions, the p T spectra of the photon dissociation events have been measured in two intervals of the dissociated photon mass with mean values X >=5 GeV and 10 GeV. The inclusive transverse momentum spectra fall exponentially in the low p T region. The non-diffractive data show a pronounced high p T tail departing from the exponential shape. The p T distributions are compared to lower energy photoproduction data and to hadron-hadron collisions at a similar c.m. energy. The data are also compared to the results of a next-to-leading order QCD calculation. (orig.)

  14. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  15. Strategies for processing diffraction data from randomly oriented particles

    International Nuclear Information System (INIS)

    Elser, Veit

    2011-01-01

    The high intensity of free-electron X-ray light sources may enable structure determinations of viruses or even individual proteins without the encumbrance of first forming crystals. This note compares two schemes of non-crystalline diffraction data collection that have been proposed: serial single-shot data from individual particles, and averaged cross-correlation data from particle ensembles. The information content of these schemes is easily compared and we show that the single-shot approach, although experimentally more challenging, is always superior in this respect. In fact, for 3D structure determination a constraint counting argument shows that the cross-correlation scheme suffers from data deficiency. -- Research Highlights: →We compare two data collection schemes for imaging single particles with x-rays. →Cross-correlation data suffers an information deficit relative to single-shot data. →We recognize John Spence for his many contributions to single particle imaging.

  16. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    International Nuclear Information System (INIS)

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.

    1994-01-01

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  17. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray...... crystallography and X-ray absorption spectroscopy (XAS) applied to studying different hexameric insulin conformations. (iii) The structures of polymorphs of strontium ranelate and the distribution of strontium in bone tissue. A procedure for fast identification and verification of protein powders using XRPD...... was correction for disordered bulk-solvent, but also correction for background and optimization of unit cell parameters have to be taken into account. A sample holder was designed for collecting powder diffraction data on a standard laboratory X-ray powder diffractometer. The background was reduced by use...

  18. Neutron diffraction on polymorphic phases of phospholipids

    International Nuclear Information System (INIS)

    Adachi, Tomohiro; Furusaka, Michihiro; Otomo, Toshiya; Hatta, Ichiro

    2001-01-01

    Small angle neutron diffraction experiments were performed in DPPC and DPPC/cholesterol systems. We investigated the DPPC-d62 bilayers without cholesterol and the DPPC-d75 bilayers with 5 and 15 mol% cholesterol. For DPPC-d62 systems, in the gel and fluid phase, the reflections up to third order from lamellar structure were observed. Scattering length density profiles of these systems were generated. They show that the packing density of hydrocarbon chain in gel phase is higher than in fluid phase. We show that the neutron diffraction experiment is effective on observing the packing and the scattering length density of the hydrocarbon chain. On the other hand, for DPPC-d75/cholesterol systems, only the reflection from the ripple structure was observed. It shows that cholesterol is periodically localized in accordance with ripple structure forming a periodic bandlike structure parallel to a ridge of the ripple structure. (author)

  19. Neutron Diffraction and Inorganic Materials Discovery

    International Nuclear Information System (INIS)

    Rosseinsky, M.J.

    2005-01-01

    Full text: The discovery of complex inorganic materials is an important academic and technological challenge because of the opportunities these systems offer for observation of new phenomena, and the questions they pose for fundamental understanding. This presentation will illustrate the key role of neutron powder diffraction in enabling the discovery of new classes of materials, and in evaluating their properties and the conditions under which they need to be processed to optimise their behaviour in devices for applications. New chemistry is illustrated by the transition metal oxide hydrides, where both structure and ionic mobility required neutron scattering characterisation. The relationship between chemistry, structure and properties will be addressed by considering the difficulties in inducing superconductivity in analogues of magnesium diboride. The role of both neutron and X-ray diffraction in evaluating the processing of microwave dielectric ceramics will be highlighted, with the discovery of new phases shown to be a useful bonus in this type of in-situ study. (author)

  20. Time-resolved Neutron Powder Diffraction

    International Nuclear Information System (INIS)

    Pannetier, J.

    1986-01-01

    The use of a high-flux neutron source together with a large position sensitive detector (PSD) allows a powder diffraction pattern to be recorded at a time-scale of a few minutes so that crystalline systems under non-equilibrium conditions may now conveniently be investigated. This introduces a new dimension into powder diffraction (the time and transient phenomena like heterogeneous chemical reactions can now be easily studied. The instrumental parameters relevant for the design of such time-dependent experiments are briefly surveyed and the current limits of the method are discussed. The applications are illustrated by two kinds of experiment in the field of inorganic solid state chemistry: true kinetic studies of heterogeneous chemical reactions and thermodiffractometry experiments

  1. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  2. Diffraction by an immersed elastic wedge

    CERN Document Server

    Croisille, Jean-Pierre

    1999-01-01

    This monograph presents the mathematical description and numerical computation of the high-frequency diffracted wave by an immersed elastic wave with normal incidence. The mathematical analysis is based on the explicit description of the principal symbol of the pseudo-differential operator connected with the coupled linear problem elasticity/fluid by the wedge interface. This description is subsequently used to derive an accurate numerical computation of diffraction diagrams for different incoming waves in the fluid, and for different wedge angles. The method can be applied to any problem of coupled waves by a wedge interface. This work is of interest for any researcher concerned with high frequency wave scattering, especially mathematicians, acousticians, engineers.

  3. Laser diffraction analysis of colloidal crystals

    International Nuclear Information System (INIS)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi

    2001-01-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure → random layer structure → layer structure with one sliding degree of freedom → stacking disorder structure → stacking structure with multivariant periodicity → fcc twin structure with twin plane (111) → normal fcc structure → bcc twin structure with twin plane (11-bar2) or (1-bar12) → normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  4. Periodically distributed objects with quasicrystalline diffraction pattern

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Janusz, E-mail: wolny@fis.agh.edu.pl; Strzalka, Radoslaw [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Kuczera, Pawel [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Krakow (Poland); Laboratory of Crystallography, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)

    2015-03-30

    It is possible to construct fully periodically distributed objects with a diffraction pattern identical to the one obtained for quasicrystals. These objects are probability distributions of distances obtained in the statistical approach to aperiodic structures distributed periodically. The diffraction patterns have been derived by using a two-mode Fourier transform—a very powerful method not used in classical crystallography. It is shown that if scaling is present in the structure, this two-mode Fourier transform can be reduced to a regular Fourier transform with appropriately rescaled scattering vectors and added phases. Detailed case studies for model sets 1D Fibonacci chain and 2D Penrose tiling are discussed. Finally, it is shown that crystalline, quasicrystalline, and approximant structures can be treated in the same way.

  5. Polarisation resonance in X-ray diffraction

    International Nuclear Information System (INIS)

    Goodman, P.; Paterson, D.; Matheson, S.

    1994-01-01

    The study of crystal structures by means of dynamic X-ray diffraction has placed a challenge to theoreticians to revise the X-ray diffraction theory based on Maxwell's equation. In this paper the feasibility of using 'polarisation resonance' as a tool in the determination of absolute configuration for asymmetric structures is investigated. Two (left- and right-handed), σ + and σ- , circular polarization states for 3-beam conditions are considered. Moreover, extending interaction into the 3 rd. dimension (normal to the beam) opens the possibility of absolute configuration determination of asymmetric structures in 3 dimensions. The computational scheme used is shown in terms of scattering diagrams. 7 refs., 1 tab., 6 figs

  6. Diffractive Hyperbola of a Skin Layer

    Science.gov (United States)

    Yakubov, V. P.; Vaiman, E. V.; Shipilov, S. È.; Prasath, A. K.

    2018-03-01

    Based on an analysis of physics of the phase transition from the quasistatic state field to the running wave field of elementary electric and magnetic dipoles located in absorbing media, it is concluded that the skin layer is formed at the boundary of this phase transition. The possibility is considered of obtaining the diffractive hyperbola of the skin layer and its subsequent application for sensing of objects in strongly absorbing media.

  7. Basic of X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Giacovazzo, C [Bari Univ. (Italy). Dip. Geomineralogico

    1996-09-01

    The basic concepts of X-ray diffraction may be more easily understood if it is made preliminary use of a mathematical background. In these pages the authors will first define the delta function and its use for the representation of a lattice. Then the concepts of Fourier transform and convolution are given. At the end of this talk one should realize that a crystal is the convolution of the lattice with a function representing the content of the unit cell.

  8. Determination of textures by neutron diffraction

    International Nuclear Information System (INIS)

    Dervin, P.; Penelle, R.

    1989-01-01

    In virtue of the low absorption coefficient of most materials in regard to neutrons, neutron diffraction is particularly well adapted for high-precision characterizing of the gross texture of massive fine-grained or coarse-grained specimens of the order of the cubic centimeter. The firt part of this paper is devoted to a description of the distribution of crystalline orientations, and the second part to experimental identification of textures [fr

  9. Basic of X-ray diffraction

    International Nuclear Information System (INIS)

    Giacovazzo, C.

    1996-01-01

    The basic concepts of X-ray diffraction may be more easily understood if it is made preliminary use of a mathematical background. In these pages the authors will first define the delta function and its use for the representation of a lattice. Then the concepts of Fourier transform and convolution are given. At the end of this talk one should realize that a crystal is the convolution of the lattice with a function representing the content of the unit cell

  10. Exact and approximate multiple diffraction calculations

    International Nuclear Information System (INIS)

    Alexander, Y.; Wallace, S.J.; Sparrow, D.A.

    1976-08-01

    A three-body potential scattering problem is solved in the fixed scatterer model exactly and approximately to test the validity of commonly used assumptions of multiple scattering calculations. The model problem involves two-body amplitudes that show diffraction-like differential scattering similar to high energy hadron-nucleon amplitudes. The exact fixed scatterer calculations are compared to Glauber approximation, eikonal-expansion results and a noneikonal approximation

  11. Powder Neutron Diffraction and Magnetic structures

    International Nuclear Information System (INIS)

    Vigneron, F.

    1986-01-01

    The determination of the magnetic structures of materials (ferromagnetic, antiferromagnetic, helimagnetic, .) can be achieved only by neutron diffraction. A general survey of the powder technique is given: 2-axis spectrometer and analysis of the magnetic data. For the REBe/sb13/ intermetallic compounds (RE = Rare Earth), commensurate and/or incommensurate magnetic structures are observed and discussed as a function of RE (Gd, Tb, Dy, Ho, Er)

  12. Diffractive Optics for Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Bunkowski, A; Burmeister, O; Clausnitzer, T; Kley, E-B; Tuennermann, A; Danzmann, K; Schnabel, R

    2006-01-01

    All-reflective interferometry based on nano-structured diffraction gratings offers new possibilities for gravitational wave detection. We investigate an all-reflective Fabry-Perot interferometer concept in 2nd order Littrow mount. The input-output relations for such a resonator are derived treating the grating coupler by means of a scattering matrix formalism. A low loss dielectric reflection grating has been designed and manufactured to test the properties of such a grating cavity

  13. QCD and hard diffraction at the LHC

    International Nuclear Information System (INIS)

    Albrow, Michael G.; Fermilab

    2005-01-01

    As an introduction to QCD at the LHC I given an overview of QCD at the Tevatron, emphasizing the high Q 2 frontier which will be taken over by the LHC. After describing briefly the LHC detectors I discuss high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. I introduce the FP420 project to measure the scattered protons 420 m downstream of ATLAS and CMS

  14. New Forward and Diffractive Physics at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, Alberto, E-mail: alberto.santoro@cern.ch [Departamento de Fisica Nuclear e Altas Energias Instituto de Fisica Universidade do Estado do Rio de Janeiro Rua Sao Francisco Xavier, 524 - Maracana 20559-900 - Rio de Janeiro - RJ (Brazil)

    2011-04-01

    Forward and Diffractive Physics (FWP) in LHC is a new open window to understand this type of strong interactions. We will present a didactic description of the topics being developed at CMS. As we know there still is no new results to present for FWP. We are accumulating data to have soon new results. We will show a number of topics and the detectors properties to do the observation of several topologies. We expect to give an optimistic view of the area.

  15. ATLAS results on diffraction and exclusive production

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00224260; The ATLAS collaboration

    2017-01-01

    Various aspects of forward physics have been studied by the ATLAS collaboration using data from Run I at the LHC. In this text, main results of three published analyses are summarized, based on data from proton-proton collisions at $\\sqrt{s} = 7$ or 8 TeV collected between 2010 and 2012. One analysis deals with diffractive signature with at least two jets in the final state, the other two study exclusive production of a pair of leptons or W bosons.

  16. Holographic analysis of diffraction structure factors

    International Nuclear Information System (INIS)

    Marchesini, S.; Bucher, J.J.; Shuh, D.K.; Fabris, L.; Press, M.J.; West, M.W.; Hussain, Z.; Mannella, N.; Fadley, C.S.; Van Hove, M.A.; Stolte, W.C.

    2002-01-01

    We combine the theory of inside-source/inside-detector x-ray fluorescence holography and Kossel lines/ x ray standing waves in kinematic approximation to directly obtain the phases of the diffraction structure factors. The influence of Kossel lines and standing waves on holography is also discussed. We obtain partial phase determination from experimental data obtaining the sign of the real part of the structure factor for several reciprocal lattice vectors of a vanadium crystal

  17. Elastic wave diffraction by infinite wedges

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Larissa; Zernov, Victor [Sound Mathematics Ltd., Cambridge CB4 2AS (United Kingdom); Gautesen, Arthur [Mathematics Department, Iowa State University and Ames Laboratory (United States); Darmon, Michel, E-mail: l.fradkin@soundmathematics.com [CEA-LIST, CEA-Saclay, 91191 Gif-sur-Yvette (France)

    2011-01-01

    We compare two recently developed semi-analytical approaches to the classical problem of diffraction by an elastic two dimensional wedge, one based on the reciprocity principle and Fourier Transform and another, on the representations of the elastodynamic potentials in the form of Sommerfeld Integrals. At present, in their common region of validity, the approaches are complementary, one working better than the other at some isolated angles of incidence.

  18. Identifying diffraction effects in measured reflectances

    OpenAIRE

    Holzschuch , Nicolas; Pacanowski , Romain

    2015-01-01

    International audience; There are two different physical models connecting the micro-geometry of a surface and its physical reflectance properties (BRDF). The first, Cook-Torrance, assumes geometrical optics: light is reflected and masked by the micro-facets. In this model, the BRDF depends on the probability distribution of micro-facets normals. The second, Church-Takacs, assumes diffraction by the micro-geometry. In this model, the BRDF depends on the power spectral distribution of the surf...

  19. Zeolite function studied by neutron diffraction

    International Nuclear Information System (INIS)

    Newsam, J.M.

    1988-01-01

    Some recent figures relating to industrial uses of zeolites are summarized. Recent advances in the application of neutron diffraction to zeolite science are overviewed, with particular emphasis on powder diffraction (PND) results. Single crystal neutron diffraction studies of some 17 hydrated natural and synthetic zeolites have now appeared and they provide a consistent picture of zeolite-water interactions. Complete PND studies of hydrated synthetic ABW- and SOD-framework zeolites have also been reported. Other PND studies have explored the structural consequences of non-framework cation exchange, of framework modification by dealumination, and of framework cation substitution. Relatively simple zeolite-hydrocarbon sorbate complexes that have been studied include benzene in zeolite Y, and benzene and pyridine in zeolite L. Areas that are well poised for further development include further extensions to lower symmetry systems, the use of PND data for zeolite structure solution, studies at elevated temperatures and pressures, and further studies of zeolite sorbate complexes. (author) 68 refs., 7 figs

  20. DNA hydration studied by neutron fiber diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix.

  1. TOF neutron diffraction study of archaeological ceramics

    International Nuclear Information System (INIS)

    Kockelmann, W.; Kirfel, A.

    1999-01-01

    Complete text of publication follows. The time-of flight (TOF) neutron diffractometer ROTAX [1] at ISIS has been used for identification and quantitative phase analysis of archaeological pottery. Neutron diffraction yields mineral phase fractions which, in parallel with information obtained from other archaeometric examination techniques, can provide a fingerprint that can be used to identify provenance and reconstruct methods of manufacturing of an archaeological ceramic product. Phase fractions obtained from a 13th century Rhenish stoneware jar compare well with those obtained from a powder sample prepared from the same fragment. This indicates that reliable results can be obtained by illuminating a large piece or even an intact ceramic object making TOF neutron diffraction a truly non-destructive examination technique. In comparison to X-ray diffraction, information from the bulk sample rather than from surface regions is obtained. ROTAX allows for a simple experimental set-up, free of sample movements. Programmes of archaeological study on ROTAX involve Russian samples (Upper-Volga culture, 5000-2000 BC), Greek pottery, (Agora/Athens, 500-300 BC), and medieval German earthenware and stoneware ceramics (Siegburg waster heap, 13-15th century). (author)

  2. Miniaturized diffraction based interferometric distance measurement sensor

    Science.gov (United States)

    Kim, Byungki

    In this thesis, new metrology hardware is designed, fabricated, and tested to provide improvements over current MEMS metrology. The metrology system is a micromachined scanning interferometer (muSI) having a sub-nm resolution in a compact design. The proposed microinterferometer forms a phase sensitive diffraction grating with interferomeric sensitivity, while adding the capability of better lateral resolution by focusing the laser to a smaller spot size. A detailed diffraction model of the microinterferometer was developed to simulate the device performance and to suggest the location of photo detectors for integrated optoelectronics. A particular device is fabricated on a fused silica substrate using aluminum to form the deformable diffraction grating fingers and AZ P4620 photo resist (PR) for the microlens. The details of the fabrication processes are presented. The structure also enables optoelectronics to be integrated so that the interferometer with photo detectors can fit in an area that is 1 mm x 1 mm. The scanning results using a fixed grating muSI demonstrated that it could measure vibration profile as well as static vertical (less than a half wave length) and lateral dimension of MEMS. The muSI, which is integrated with photo diodes, demonstrated its operation by scanning a cMUT. The PID control has been tested and resulted in improvement in scanned images. The integrated muSI demonstrated that the deformable grating could be used to tune the measurement keep the interferometer in quadrature for highest sensitivity.

  3. Diffraction, chopping, and background subtraction for LDR

    Science.gov (United States)

    Wright, Edward L.

    1988-01-01

    The Large Deployable Reflector (LDR) will be an extremely sensitive infrared telescope if the noise due to the photons in the large thermal background is the only limiting factor. For observations with a 3 arcsec aperture in a broadband at 100 micrometers, a 20-meter LDR will emit 10(exp 12) per second, while the photon noise limited sensitivity in a deep survey observation will be 3,000 photons per second. Thus the background subtraction has to work at the 1 part per billion level. Very small amounts of scattered or diffracted energy can be significant if they are modulated by the chopper. The results are presented for 1-D and 2-D diffraction calculations for the lightweight, low-cost LDR concept that uses an active chopping quaternary to correct the wavefront errors introduced by the primary. Fourier transforms were used to evaluate the diffraction of 1 mm waves through this system. Unbalanced signals due to dust and thermal gradients were also studied.

  4. Neutron diffraction from holographic gratings in PMMA

    International Nuclear Information System (INIS)

    Havermeyer, F.; Kraetzig, E.; Rupp, R.A.; Schubert, D.W.

    1999-01-01

    Complete text of publication follows. By definition photorefractive materials change the refractive index for light under the action of light. Using the spatially modulated light intensity pattern from the interference of two plane waves, volume phase gratings with accurately defined spacings can be produced. Depending on the material there are many physical origins for these gratings, but in most cases they are linked to a density modulation and, consequently, to a refractive index grating for neutrons. By diffraction of light or neutrons from such gratings even small refractive index changes down to Δn ∼ 10 -7 - 10 -9 can be measured. In our photopolymer system PMMA/MMA (poly(methyl methacrylate) with a content of 10-20% of the residual monomer methyl methacrylate) inhomogeneous illumination leads to local post-polymerisation processes of the residual monomer. The resulting light-optical refractive index grating is caused by the modulation of the monomer/polymer ratio as well as by the modulation of the total density. Only by the unique combination of methods for light and neutron diffraction, available at HOLONS (Holography and Neutron Scattering, instrument at the GKSS research centre), both contributions can be separated. We discuss the angular dependence of the neutron diffraction efficiency for weakly and strongly (efficiencies up to 60% have been achieved) modulated gratings and propose a simple model for the evaluation of the gratings. (author)

  5. Shock Wave Diffraction Phenomena around Slotted Splitters

    Directory of Open Access Journals (Sweden)

    Francesca Gnani

    2015-01-01

    Full Text Available In the field of aerospace engineering, the study of the characteristics of vortical flows and their unsteady phenomena finds numerous engineering applications related to improvements in the design of tip devices, enhancement of combustor performance, and control of noise generation. A large amount of work has been carried out in the analysis of the shock wave diffraction around conventional geometries such as sharp and rounded corners, but the employment of splitters with lateral variation has hardly attracted the attention of researchers. The investigation of this phenomenon around two-dimensional wedges has allowed the understanding of the basic physical principles of the flow features. On the other hand, important aspects that appear in the third dimension due to the turbulent nature of the vortices are omitted. The lack of studies that use three-dimensional geometries has motivated the current work to experimentally investigate the evolution of the shock wave diffraction around two splitters with spike-shaped structures for Mach numbers of 1.31 and 1.59. Schlieren photography was used to obtain an insight into the sequential diffraction processes that take place in different planes. Interacting among them, these phenomena generate a complicated turbulent cloud with a vortical arrangement.

  6. Revisit to diffraction anomalous fine structure

    International Nuclear Information System (INIS)

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure method has been revisited by applying this measurement technique to polycrystalline samples and using an analytical method with the logarithmic dispersion relation. The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe 3 O 4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method

  7. DNA hydration studied by neutron fiber diffraction

    International Nuclear Information System (INIS)

    Fuller, W.; Forsyth, V.T.; Mahendrasingam, A.; Langan, P.; Pigram, W.J.

    1994-01-01

    The development of neutron high angle fiber diffraction to investigate the location of water around the deoxyribonucleic acid (DNA) double-helix is described. The power of the technique is illustrated by its application to the D and A conformations of DNA using the single crystal diffractometer, D19, at the Institute Laue-Langevin, Grenoble and the time of flight diffractometer, SXD, at the Rutherford Appleton ISIS Spallation Neutron Source. These studies show the existence of bound water closely associated with the DNA. The patterns of hydration in these two DNA conformations are quite distinct and are compared to those observed in X-ray single crystal studies of two-stranded oligodeoxynucleotides. Information on the location of water around the DNA double-helix from the neutron fiber diffraction studies is combined with that on the location of alkali metal cations from complementary X-ray high angle fiber diffraction studies at the Daresbury Laboratory SRS using synchrotron radiation. These analyses emphasize the importance of viewing DNA, water and ions as a single system with specific interactions between the three components and provide a basis for understanding the effect of changes in the concentration of water and ions in inducing conformations] transitions in the DNA double-helix

  8. High Resolution Powder Diffraction and Structure Determination

    International Nuclear Information System (INIS)

    Cox, D. E.

    1999-01-01

    It is clear that high-resolution synchrotrons X-ray powder diffraction is a very powerful and convenient tool for material characterization and structure determination. Most investigations to date have been carried out under ambient conditions and have focused on structure solution and refinement. The application of high-resolution techniques to increasingly complex structures will certainly represent an important part of future studies, and it has been seen how ab initio solution of structures with perhaps 100 atoms in the asymmetric unit is within the realms of possibility. However, the ease with which temperature-dependence measurements can be made combined with improvements in the technology of position-sensitive detectors will undoubtedly stimulate precise in situ structural studies of phase transitions and related phenomena. One challenge in this area will be to develop high-resolution techniques for ultra-high pressure investigations in diamond anvil cells. This will require highly focused beams and very precise collimation in front of the cell down to dimensions of 50 (micro)m or less. Anomalous scattering offers many interesting possibilities as well. As a means of enhancing scattering contrast it has applications not only to the determination of cation distribution in mixed systems such as the superconducting oxides discussed in Section 9.5.3, but also to the location of specific cations in partially occupied sites, such as the extra-framework positions in zeolites, for example. Another possible application is to provide phasing information for ab initio structure solution. Finally, the precise determination of f as a function of energy through an absorption edge can provide useful information about cation oxidation states, particularly in conjunction with XANES data. In contrast to many experiments at a synchrotron facility, powder diffraction is a relatively simple and user-friendly technique, and most of the procedures and software for data analysis

  9. Diffraction efficiency enhancement of femtosecond laser-engraved diffraction gratings due to CO{sub 2} laser polishing

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hun-Kook [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Chosun University, Gwangju (Korea, Republic of); Jung, Deok; Sohn, Ik-Bu; Noh, Young-Chul; Lee, Yong-Tak [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kim, Jin-Tae [Chosun University, Gwangju (Korea, Republic of); Ahsan, Shamim [Khulna University, Khulna (Bangladesh)

    2014-11-15

    This research demonstrates laser-assisted fabrication of high-efficiency diffraction gratings in fused-silica glass samples. Initially, femtosecond laser pulses are used to engrave diffraction gratings on the glass surfaces. Then, these micro-patterned glass samples undergo CO{sub 2} laser polishing process. unpolished diffraction gratings encoded in the glass samples show an overall diffraction efficiency of 18.1%. diffraction gratings imprinted on the glass samples and then polished four times by using a CO{sub 2} laser beam attain a diffraction efficiency of 32.7%. We also investigate the diffraction patterns of the diffraction gratings encoded on fused-silica glass surfaces. The proposed CO{sub 2} laser polishing technique shows great potential in patterning high-efficiency diffraction gratings on the surfaces of various transparent materials.

  10. Electron crystallography of three dimensional protein crystals

    NARCIS (Netherlands)

    Georgieva, Dilyana

    2008-01-01

    This thesis describes an investigation of the potential of electron diffraction for studying three dimensional sub-micro-crystals of proteins and pharmaceuticals. A prerequisite for using electron diffraction for structural studies is the predictable availability of tiny crystals. A method for

  11. Nanoflow electrospinning serial femtosecond crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Sierra, Raymond G.; Laksmono, Hartawan [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Kern, Jan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Tran, Rosalie; Hattne, Johan [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Alonso-Mori, Roberto [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Lassalle-Kaiser, Benedikt [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glöckner, Carina; Hellmich, Julia [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Schafer, Donald W. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sellberg, Jonas [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stockholm University, S-106 91 Stockholm (Sweden); McQueen, Trevor A. [Stanford University, Stanford, CA 94025 (United States); Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zwart, Petrus H. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Glatzel, Pieter [European Synchrotron Radiation Facility, Grenoble (France); Milathianaki, Despina; White, William E. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Williams, Garth J.; Boutet, Sébastien [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Zouni, Athina [Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin (Germany); Messinger, Johannes [Umeå Universitet, Umeå (Sweden); Sauter, Nicholas K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bergmann, Uwe [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Yano, Junko; Yachandra, Vittal K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bogan, Michael J., E-mail: mbogan@slac.stanford.edu [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-11-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min{sup −1} to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min{sup −1} and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption.

  12. Nanoflow electrospinning serial femtosecond crystallography

    International Nuclear Information System (INIS)

    Sierra, Raymond G.; Laksmono, Hartawan; Kern, Jan; Tran, Rosalie; Hattne, Johan; Alonso-Mori, Roberto; Lassalle-Kaiser, Benedikt; Glöckner, Carina; Hellmich, Julia; Schafer, Donald W.; Echols, Nathaniel; Gildea, Richard J.; Grosse-Kunstleve, Ralf W.; Sellberg, Jonas; McQueen, Trevor A.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Hampton, Christina Y.; Starodub, Dmitri; Loh, N. Duane; Sokaras, Dimosthenis; Weng, Tsu-Chien; Zwart, Petrus H.; Glatzel, Pieter; Milathianaki, Despina; White, William E.; Adams, Paul D.; Williams, Garth J.; Boutet, Sébastien; Zouni, Athina; Messinger, Johannes; Sauter, Nicholas K.; Bergmann, Uwe; Yano, Junko; Yachandra, Vittal K.; Bogan, Michael J.

    2012-01-01

    A low flow rate liquid microjet method for delivery of hydrated protein crystals to X-ray lasers is presented. Linac Coherent Light Source data demonstrates serial femtosecond protein crystallography with micrograms, a reduction of sample consumption by orders of magnitude. An electrospun liquid microjet has been developed that delivers protein microcrystal suspensions at flow rates of 0.14–3.1 µl min −1 to perform serial femtosecond crystallography (SFX) studies with X-ray lasers. Thermolysin microcrystals flowed at 0.17 µl min −1 and diffracted to beyond 4 Å resolution, producing 14 000 indexable diffraction patterns, or four per second, from 140 µg of protein. Nanoflow electrospinning extends SFX to biological samples that necessitate minimal sample consumption

  13. Comparative study of macrotexture analysis using X-ray diffraction and electron backscattered diffraction techniques

    International Nuclear Information System (INIS)

    Serna, Marilene Morelli

    2002-01-01

    The macrotexture is one of the main characteristics in metallic materials, which the physical properties depend on the crystallographic direction. The analysis of the macrotexture to middles of the decade of 80 was just accomplished by the techniques of Xray diffraction and neutrons diffraction. The possibility of the analysis of the macrotexture using, the technique of electron backscattering diffraction in the scanning electronic microscope, that allowed to correlate the measure of the orientation with its location in the micro structure, was a very welcome tool in the area of engineering of materials. In this work it was studied the theoretical aspects of the two techniques and it was used of both techniques for the analysis of the macrotexture of aluminum sheets 1050 and 3003 with intensity, measured through the texture index 'J', from 2.00 to 5.00. The results obtained by the two techniques were shown reasonably similar, being considered that the statistics of the data obtained by the technique of electron backscatter diffraction is much inferior to the obtained by the X-ray diffraction. (author)

  14. Improving the diffraction of apoA-IV crystals through extreme dehydration

    International Nuclear Information System (INIS)

    Deng, Xiaodi; Davidson, W. Sean; Thompson, Thomas B.

    2011-01-01

    Apolipoprotein A-IV crystals consisted of a long unit-cell edge (540 Å) with a high mosaic spread, making them intractable for X-ray diffraction analysis. Extreme dehydration in 60% PEG 3350 was utilized as a post-crystallization treatment as well a screening method to significantly sharpen the mosaic spread and increase the overall resolution of diffraction. Apolipoproteins are the protein component of high-density lipoproteins (HDL), which are necessary for mobilizing lipid-like molecules throughout the body. Apolipoproteins undergo self-association, especially at higher concentrations, making them difficult to crystallize. Here, the crystallization and diffraction of the core fragment of apolipoprotein A-IV (apoA-IV), consisting of residues 64–335, is presented. ApoA-IV 64–335 crystallized readily in a variety of hexagonal (P6) morphologies with similar unit-cell parameters, all containing a long axis of nearly 550 Å in length. Preliminary diffraction experiments with the different crystal morphologies all resulted in limited streaky diffraction to 3.5 Å resolution. Crystal dehydration was applied to the different morphologies with variable success and was also used as a quality indicator of crystal-growth conditions. The results show that the morphologies that withstood the most extreme dehydration conditions showed the greatest improvement in diffraction. One morphology in particular was able to withstand dehydration in 60% PEG 3350 for over 12 h, which resulted in well defined intensities to 2.7 Å resolution. These results suggest that the approach of integrating dehydration with variation in crystal-growth conditions might be a general technique to optimize diffraction

  15. Studies of diffraction with the ATLAS detector

    International Nuclear Information System (INIS)

    Trzebinski, Maciej

    2013-01-01

    The thesis is devoted to the study of diffractive physics with the ATLAS detector at the LHC. After a short introduction to diffractive physics including soft and hard diffraction, we discuss Jet-Gap-Jet production at the LHC which is particularly interesting for testing the Balitski Fadin Kuraev Lipatov QCD evolution equation. Using the signal selection requirements and a gap definition based on tracks reconstructed in the ATLAS Inner Detector, we observe a clear signal of Jet-Gap-Jet events in the data. Starting from the half-gap size of 0.8 the data cannot be properly described using only the Jet Monte Carlo sample without gaps. Furthermore, we demonstrated that DPE JGJ production, with both protons tagged in the AFP stations, should provide a significant test of the BFKL theory, once the 300 pb -1 of integrated luminosity is collected. In the last part of the thesis, we discussed the processes of Central Exclusive Jet and Exclusive π + π - production. After the data selection, the signal to background ratio is found to be of about 5/9 (1/13) for μ= 23 (46). For a collected integrated luminosity of 40(300) fb -1 (for pile-up of 23(46)) this measurement will deliver ten times better constraints on the theoretical models than the most recent ones. The additional measurement of exclusive pion production, relying on the use of the ALFA stations, allows to constrain further the exclusive models. We demonstrated that a data sample collected by the ALFA detectors should be sufficient to measure the cross section and to study various distributions, especially the invariant mass of the pion-pion system. (author) [fr

  16. A preliminary neutron diffraction study of rasburicase, a recombinant urate oxidase enzyme, complexed with 8-azaxanthin

    Energy Technology Data Exchange (ETDEWEB)

    Budayova-Spano, Monika, E-mail: spano@embl-grenoble.fr [European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France); Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble (France); Bonneté, Françoise; Ferté, Natalie [Centre de Recherche en Matière Condensée et Nanosciences, Campus de Luminy, Case 913, 13288 Marseille (France); El Hajji, Mohamed [Sanofi-Aventis, 371 Rue du Professeur Blayac, 34184 Montpellier (France); Meilleur, Flora [Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble (France); Blakeley, Matthew Paul [European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France); Castro, Bertrand [Sanofi-Aventis, 371 Rue du Professeur Blayac, 34184 Montpellier (France); European Molecular Biology Laboratory Grenoble Outstation, 6 Rue Jules Horowitz, 38042 Grenoble (France)

    2006-03-01

    Neutron diffraction data of hydrogenated recombinant urate oxidase enzyme (Rasburicase), complexed with a purine-type inhibitor 8-azaxanthin, was collected to 2.1 Å resolution from a crystal grown in D{sub 2}O by careful control and optimization of crystallization conditions via knowledge of the phase diagram. Deuterium atoms were clearly seen in the neutron-scattering density map. Crystallization and preliminary neutron diffraction measurements of rasburicase, a recombinant urate oxidase enzyme expressed by a genetically modified Saccharomyces cerevisiae strain, complexed with a purine-type inhibitor (8-azaxanthin) are reported. Neutron Laue diffraction data were collected to 2.1 Å resolution using the LADI instrument from a crystal (grown in D{sub 2}O) with volume 1.8 mm{sup 3}. The aim of this neutron diffraction study is to determine the protonation states of the inhibitor and residues within the active site. This will lead to improved comprehension of the enzymatic mechanism of this important enzyme, which is used as a protein drug to reduce toxic uric acid accumulation during chemotherapy. This paper illustrates the high quality of the neutron diffraction data collected, which are suitable for high-resolution structural analysis. In comparison with other neutron protein crystallography studies to date in which a hydrogenated protein has been used, the volume of the crystal was relatively small and yet the data still extend to high resolution. Furthermore, urate oxidase has one of the largest primitive unit-cell volumes (space group I222, unit-cell parameters a = 80, b = 96, c = 106 Å) and molecular weights (135 kDa for the homotetramer) so far successfully studied with neutrons.

  17. International Centre for Diffraction Data (ICDD)

    International Nuclear Information System (INIS)

    Hubbard, C.R.; O'Connor, B.H.

    2002-01-01

    Full text: The ICDD is a not-for-profit organisation comprising approximately 300 of the world's leading x-ray scientists. It is dedicated to collecting, editing, publishing and distributing powder diffraction data for the identification of crystalline materials. The membership of the ICDD consists of worldwide representation from academe, government and industry. It is our mission to continue as the world centre for quality x-ray powder diffraction data to meet the needs of the technical community. Through the combined efforts of the members and its staff of 40 at ICDD Headquarters, the organisation serves the x-ray analysis community (i) by producing the ICDD Powder Diffraction File (PDF) and other data base products for materials characterisation; (ii) through x-ray analysis education programs and conference management (including the Denver X-ray Conference); and (iii) through philanthropic initiatives such as scholarship support for postgraduate students working in the field. The current Release 2001 of the PDF (PDF-2) contains 87,500 measured patterns and 49,000 patterns calculated from the ICSD database. The number of PDF patterns in this latest release has increased by approximately 3,000, including some 2,500 measured patterns. The quality of the database is being continuously improved through the organisation's Grant-in-Aid program whereby diffractionists around the world contribute to the measurement of patterns for new materials and to the improvement of existing PDF data. The organisation is devoting much attention to the needs of the bioscience community. The database will soon feature a much-expanded set of patterns for organic, polymer, pharmaceutical and biomaterials. The ICDD is about to release a relational database (RDB) version of the PDF (PDF-4) which will give users a very sophisticated tool for data mining. The PDF-4 will provide a quantum leap in data mining techniques, and will soon lead to the PDF being cross-linked to other diffraction

  18. Coherent diffractive imaging methods for semiconductor manufacturing

    Science.gov (United States)

    Helfenstein, Patrick; Mochi, Iacopo; Rajeev, Rajendran; Fernandez, Sara; Ekinci, Yasin

    2017-12-01

    The paradigm shift of the semiconductor industry moving from deep ultraviolet to extreme ultraviolet lithography (EUVL) brought about new challenges in the fabrication of illumination and projection optics, which constitute one of the core sources of cost of ownership for many of the metrology tools needed in the lithography process. For this reason, lensless imaging techniques based on coherent diffractive imaging started to raise interest in the EUVL community. This paper presents an overview of currently on-going research endeavors that use a number of methods based on lensless imaging with coherent light.

  19. Fast, inexpensive, diffraction limited cylindrical microlenses

    International Nuclear Information System (INIS)

    Synder, J.J.; Reichert, P.

    1991-01-01

    We have developed a technique for fabricating fast, well corrected cylindrical microlenses. With this technique we have made a number of different microlenses with dimensions and focal lengths in the range of few hundred μm, and diffraction limited numerical apertures as high as 0.9. The microlenses are specifically designed for applications where they can increase the radiance or otherwise enhance the optical characteristics of laser diode light. The fabrication method we use is very versatile, and the microlenses produced this way would be very inexpensive in production quantities. 6 refs., 4 figs

  20. The basics of crystallography and diffraction

    CERN Document Server

    Hammond, C

    2015-01-01

    This title provides a clear and very broadly based introduction to crystallography, light, X-ray, and electron diffraction; a knowledge of which is essential to students in a wide range of scientific disciplines but which is otherwise generally covered in subject-specific and more mathematically detailed texts. The book is also designed to appeal to the more general reader since it shows, by historical and biographical references, how the subject has developed from the work and insights of successive generations of crystallographers and scientists.

  1. Accidental exposition with xray diffraction equipment

    International Nuclear Information System (INIS)

    Montanez, O.; Blanco, D.

    1991-01-01

    The plug fault Xray diffraction equipment promoted searcher irradiation.The film dosemeter who he carried was over exposed (D.O.>4.5). The reconstruction of the accident for value the operator dose received and future effects of him. The troubled received the following dose: 350-700 rad in 1 to 2 minutes in thorax and probably face level,this one measured with X ray chamber as low energy. The involved tissue were: skin, thyroids and crystalline of the eye. As conclusion a partial dose received for the worker had not threshold value for produce deterministic effects

  2. Observation of diffraction effects in positron channeling

    International Nuclear Information System (INIS)

    Palathingal, J.C.; Peng, J.P.; Lynn, K.G.; Wu, X.Y.; Schultz, P.J.

    1994-01-01

    An experimental investigation of positron channeling was made with a high-angular resolution apparatus, employing positrons of kinetic energy 1 MeV, derived from the Brookhaven National Laboratory Dynamitron. The pattern of transmission through a Si (100) single crystal of thickness 0.245 μm was investigated for a number of major planes. The authors have observed for the first time, in excellent detail, the fine structure of the channeling pattern expected to arise from the particle diffraction effects, theoretically explainable in terms of the quantum-mechanical many-beam calculations

  3. Neutron diffraction from lead germanate glasses

    International Nuclear Information System (INIS)

    Umesaki, Norimasa; Brunier, T.M.; Wright, A.C.; Hannon, A.C.; Scinclair, R.N.

    1993-01-01

    High resolution neutron diffraction data have been collected on the PbO-GeO 2 glasses and on GeO 2 for comparison. These neutron data have revealed the existence of 6-fold coordinated germanium (GeO 6 octahedra) by virtue of the shift in the first peak in the obtained total correlation function T(r) and increase in the coordination. The neutron results also indicate that PbO exits as PbO 4 pyramids, as found in the orthorhombic form of PbO crystal, in the studied PbO-GeO 2 glasses. (author)

  4. Results of Soft-Diffraction at LHCb

    CERN Document Server

    Meissner, Marco

    2013-01-01

    The LHCb detector with its unique pseudorapidity coverage allows to perform soft-QCD measurements in the kinematic forward region where QCD models have large uncertainties. Selected analyses related to soft-Diffraction will be summarised in these proceedings. Energy flow and charged particle multiplicity have been measured separately in different event classes. They give input for modelling the underlying event in $pp$ collisions. Prompt hadron ratios are important for hadronisation models, while the $p/p$ ratio is a good observable to test models of baryon number transport.

  5. Sensitive visual test for concave diffraction gratings.

    Science.gov (United States)

    Bruner, E. C., Jr.

    1972-01-01

    A simple visual test for the evaluation of concave diffraction gratings is described. It is twice as sensitive as the Foucault knife edge test, from which it is derived, and has the advantage that the images are straight and free of astigmatism. It is particularly useful for grating with high ruling frequency where the above image faults limit the utility of the Foucault test. The test can be interpreted quantitatively and can detect zonal grating space errors of as little as 0.1 A.

  6. Mineralogical applications of electron diffraction. 1. Theory and techniques

    Science.gov (United States)

    Ross, Malcolm; Christ, C.L.

    1958-01-01

    The small wavelengths used in electron-diffraction experiments and the thinness of the crystals necessary for the transmission of the electron beam combine to require a somewhat different diffraction geometry for the interpretation of electron-diffraction patterns than is used in the interpretation of X-ray diffraction patterns. This geometry, based on the reciprocal lattice concept and geometrical construction of Ewald, needed for the interpretation.

  7. On Babinet's principle and diffraction associated with an arbitrary particle.

    Science.gov (United States)

    Sun, Bingqiang; Yang, Ping; Kattawar, George W; Mishchenko, Michael I

    2017-12-01

    Babinet's principle is widely used to compute the diffraction by a particle. However, the diffraction by a 3-D object is not totally the same as that simulated with Babinet's principle. This Letter uses a surface integral equation to exactly formulate the diffraction by an arbitrary particle and illustrate the condition for the applicability of Babinet's principle. The present results may serve to close the debate on the diffraction formalism.

  8. Development of positron diffraction and holography at LLNL

    International Nuclear Information System (INIS)

    Hamza, A.; Asoka-Kumar, P.; Stoeffl, W.; Howell, R.; Miller, D.; Denison, A.

    2003-01-01

    A low-energy positron diffraction and holography spectrometer is currently being constructed at the Lawrence Livermore National Laboratory (LLNL) to study surfaces and adsorbed structures. This instrument will operate in conjunction with the LLNL intense positron beam produced by the 100 MeV LINAC allowing data to be acquired in minutes rather than days. Positron diffraction possesses certain advantages over electron diffraction which are discussed. Details of the instrument based on that of low-energy electron diffraction are described

  9. A pipeline for comprehensive and automated processing of electron diffraction data in IPLT.

    Science.gov (United States)

    Schenk, Andreas D; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas

    2013-05-01

    Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library and Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Axial and focal-plane diffraction catastrophe integrals

    International Nuclear Information System (INIS)

    Berry, M V; Howls, C J

    2010-01-01

    Exact expressions in terms of Bessel functions are found for some of the diffraction catastrophe integrals that decorate caustics in optics and mechanics. These are the axial and focal-plane sections of the elliptic and hyperbolic umbilic diffraction catastrophes, and symmetric elliptic and hyperbolic unfoldings of the X 9 diffraction catastrophes. These representations reveal unexpected relations between the integrals.

  11. Light distribution in diffractive multifocal optics and its optimization.

    Science.gov (United States)

    Portney, Valdemar

    2011-11-01

    To expand a geometrical model of diffraction efficiency and its interpretation to the multifocal optic and to introduce formulas for analysis of far and near light distribution and their application to multifocal intraocular lenses (IOLs) and to diffraction efficiency optimization. Medical device consulting firm, Newport Coast, California, USA. Experimental study. Application of a geometrical model to the kinoform (single focus diffractive optical element) was expanded to a multifocal optic to produce analytical definitions of light split between far and near images and light loss to other diffraction orders. The geometrical model gave a simple interpretation of light split in a diffractive multifocal IOL. An analytical definition of light split between far, near, and light loss was introduced as curve fitting formulas. Several examples of application to common multifocal diffractive IOLs were developed; for example, to light-split change with wavelength. The analytical definition of diffraction efficiency may assist in optimization of multifocal diffractive optics that minimize light loss. Formulas for analysis of light split between different foci of multifocal diffractive IOLs are useful in interpreting diffraction efficiency dependence on physical characteristics, such as blaze heights of the diffractive grooves and wavelength of light, as well as for optimizing multifocal diffractive optics. Disclosure is found in the footnotes. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Spider diffraction: a comparison of curved and straight legs

    International Nuclear Information System (INIS)

    Richter, J.L.

    1984-01-01

    It has been known for some time that, if curved legs rather than the usual straight ones are used in the spider that supports the secondary optics in certain telescopes, the visible diffraction effect is reduced. Fraunhofer theory is used to calculate the diffraction effects due to the curved leg spider. Calculated and photographic diffraction patterns are compared for straight and curved leg spiders

  13. Background removal in X-ray fiber diffraction patterns

    International Nuclear Information System (INIS)

    Millane, R.P.; Arnott, S.

    1985-01-01

    Background can be a major source of error in measurement of diffracted intensities in fiber diffraction patterns. Errors can be large when poorly oriented less-crystalline specimens give diffraction patterns with little uncontaminated background. A method for estimating and removing a general global background in such cases is described and illustrated with an example. (orig.)

  14. Applications of TOF neutron diffraction in archaeometry

    Energy Technology Data Exchange (ETDEWEB)

    Kockelmann, W. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Siano, S.; Bartoli, L. [Istituto di Fisica Applicata - CNR, Sesto Fiorentino (Italy); Visser, D. [Rutherford Appleton Laboratory, ISIS Facility, Chilton (United Kingdom); Netherlands Organisation for Scientific Research (NWO), Den Haag (Netherlands); Hallebeek, P. [Netherlands Institute for Cultural Heritage (ICN), Amsterdam (Netherlands); Traum, R. [Kunsthistorisches Museum Wien, Muenzkabinett, Vienna (Austria); Linke, R.; Schreiner, M. [Akademie der Bildenden Kuenste, Institut fuer Wissenschaften und Technologien in der Kunst, Vienna (Austria); Kirfel, A. [Universitaet Bonn, Mineralogisch-Petrologisches Institut, Bonn (Germany)

    2006-05-15

    Neutron radiation meets the demand for a versatile diagnostic probe for collecting information from the interior of large, undisturbed museum objects or archaeological findings. Neutrons penetrate through coatings and corrosion layers deep into centimetre-thick materials, a property that makes them ideal for non-destructive examination of objects for which sampling is impractical or unacceptable. A particular attraction of neutron techniques for archaeologists and conservation scientists is the prospect of locating hidden materials and structures inside objects. Time-of-flight (TOF) neutron diffraction allows for the examination of mineral and metal phase contents, crystal structures, grain orientations, and microstructures as well as micro- and macro strains. A promising application is texture analysis which may provide clues to the deformation history of the material, and hence to specific working processes. Here we report on instructive examples of TOF neutron diffraction, including phase analyses of medieval Dutch tin-lead spoons, texture analyses of bronze specimens as well as of 16th-century silver coins. (orig.)

  15. High resolution Neutron and Synchrotron Powder Diffraction

    International Nuclear Information System (INIS)

    Hewat, A.W.

    1986-01-01

    The use of high-resolution powder diffraction has grown rapidly in the past years, with the development of Rietveld (1967) methods of data analysis and new high-resolution diffractometers and multidetectors. The number of publications in this area has increased from a handful per year until 1973 to 150 per year in 1984, with a ten-year total of over 1000. These papers cover a wide area of solid state-chemistry, physics and materials science, and have been grouped under 20 subject headings, ranging from catalysts to zeolites, and from battery electrode materials to pre-stressed superconducting wires. In 1985 two new high-resolution diffractometers are being commissioned, one at the SNS laboratory near Oxford, and one at the ILL in Grenoble. In different ways these machines represent perhaps the ultimate that can be achieved with neutrons and will permit refinement of complex structures with about 250 parameters and unit cell volumes of about 2500 Angstrom/sp3/. The new European Synchotron Facility will complement the Grenoble neutron diffractometers, and extend the role of high-resolution powder diffraction to the direct solution of crystal structures, pioneered in Sweden

  16. Crystal diffraction lens for medical imaging

    International Nuclear Information System (INIS)

    Smither, R. K.; Roa, D. E.

    2000-01-01

    A crystal diffraction lens for focusing energetic gamma rays has been developed at Argonne National Laboratory for use in medical imaging of radioactivity in the human body. A common method for locating possible cancerous growths in the body is to inject radioactivity into the blood stream of the patient and then look for any concentration of radioactivity that could be associated with the fast growing cancer cells. Often there are borderline indications of possible cancers that could be due to statistical functions in the measured counting rates. In order to determine if these indications are false or real, one must resort to surgical means and take tissue samples in the suspect area. They are developing a system of crystal diffraction lenses that will be incorporated into a 3-D imaging system with better sensitivity (factors of 10 to 100) and better spatial resolution (a few mm in both vertical and horizontal directions) than most systems presently in use. The use of this new imaging system will allow one to eliminate 90% of the false indications and both locate and determine the size of the cancer with mm precision. The lens consists of 900 single crystals of copper, 4 mm x 4 mm on a side and 2--4 mm thick, mounted in 13 concentric rings

  17. Synchrotron powder diffraction on Aztec blue pigments

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez del Rio, M. [European Synchrotron Radiation Facility, B.P. 220, Grenoble Cedex (France); Gutierrez-Leon, A.; Castro, G.R.; Rubio-Zuazo, J. [Spanish CRG Beamline at the European Synchrotron Radiation Facility, SpLine, B.P. 220, Grenoble Cedex (France); Solis, C. [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, Mexico, D.F. (Mexico); Sanchez-Hernandez, R. [INAH Subdireccion de Laboratorios y Apoyo Academico, Mexico, D.F. (Mexico); Robles-Camacho, J. [INAH Centro Regional Michoacan, Morelia, Michoacan (Mexico); Rojas-Gaytan, J. [INAH Direccion de Salvamento Arqueologico, Naucalpan de Juarez (Mexico)

    2008-01-15

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few {mu}g of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as anil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue. (orig.)

  18. Synchrotron powder diffraction on Aztec blue pigments

    Science.gov (United States)

    Sánchez Del Río, M.; Gutiérrez-León, A.; Castro, G. R.; Rubio-Zuazo, J.; Solís, C.; Sánchez-Hernández, R.; Robles-Camacho, J.; Rojas-Gaytán, J.

    2008-01-01

    Some samples of raw blue pigments coming from an archaeological rescue mission in downtown Mexico City have been characterized using different techniques. The samples, some recovered as a part of a ritual offering, could be assigned to the late Aztec period (XVth century). The striking characteristic of these samples is that they seem to be raw pigments prior to any use in artworks, and it was possible to collect a few μg of pigment after manual grain selection under a microscopy monitoring. All pigments are made of indigo, an organic colorant locally known as añil or xiuhquilitl. The colorant is always found in combination with an inorganic matrix, studied by powder diffraction. In one case the mineral base is palygorskite, a rare clay mineral featuring micro-channels in its structure, well known as the main ingredient of the Maya blue pigment. However, other samples present the minerals sepiolite (a clay mineral of the palygorskite family) and calcite. Another sample contains barite, a mineral never reported in prehispanic paints. We present the results of characterization using high resolution powder diffraction recorded at the European Synchrotron Radiation Facility (BM25A, SpLine beamline) complemented with other techniques. All of them gave consistent results on the composition. A chemical test on resistance to acids was done, showing a high resistance for the palygorskite and eventually sepiolite compounds, in good agreement with the excellent resistance of the Maya blue.

  19. In-house characterization of protein powder

    DEFF Research Database (Denmark)

    Hartmann, Christian Grundahl; Nielsen, Ole Faurskov; Ståhl, Kenny

    2010-01-01

    X-ray powder diffraction patterns of lysozyme and insulin were recorded on a standard in-house powder diffractometer. The experimental powder diffraction patterns were compared with patterns calculated from Protein Data Bank coordinate data. Good agreement was obtained by including straightforward...... to include calculated H-atom positions did not improve the overall fit and was abandoned. The method devised was shown to be a quick and convenient tool for distinguishing precipitates and polymorphs of proteins....

  20. Diffraction from the perspective of the spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Carrasquilla-Alvarez, J.; Garcia-Sucerquia, J.

    2005-10-01

    The diffraction of spatially partially coherent optical fields is analysed by using two concepts recently introduced by the authors: the spatial coherence wavelets and the effective diffracting aperture. Within this framework, the intimate link between the spatial properties of the optical field and the aperture's edges in the diffraction phenomena is studied. New insight is proposed in regard to the diffraction in the Fresnel - Fraunhofer approximation. Our ideas are supported by numerical calculations and analysis of the diffraction patterns obtained when an optical field with adjustable spatial coherence impinges upon a circular aperture (author)