WorldWideScience

Sample records for protein mice deficient

  1. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  2. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  3. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  4. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  5. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  6. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    Science.gov (United States)

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  7. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased Basal endotoxemia

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Khorooshi, Reza; Rahbek, Martin K U

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese....... However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood...... pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight...

  8. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2009-05-01

    Full Text Available Ovarian cancer G protein-coupled receptor 1 (OGR1 has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK activation and nitric oxide (NO production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.

  9. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  10. Deficient plasticity in the primary visual cortex of alpha-calcium/calmodulin-dependent protein kinase II mutant mice.

    Science.gov (United States)

    Gordon, J A; Cioffi, D; Silva, A J; Stryker, M P

    1996-09-01

    The recent characterization of plasticity in the mouse visual cortex permits the use of mutant mice to investigate the cellular mechanisms underlying activity-dependent development. As calcium-dependent signaling pathways have been implicated in neuronal plasticity, we examined visual cortical plasticity in mice lacking the alpha-isoform of calcium/calmodulin-dependent protein kinase II (alpha CaMKII). In wild-type mice, brief occlusion of vision in one eye during a critical period reduces responses in the visual cortex. In half of the alpha CaMKII-deficient mice, visual cortical responses developed normally, but visual cortical plasticity was greatly diminished. After intensive training, spatial learning in the Morris water maze was severely impaired in a similar fraction of mutant animals. These data indicate that loss of alpha CaMKII results in a severe but variable defect in neuronal plasticity.

  11. Fatty acid binding protein 4 deficiency protects against oxygen-induced retinopathy in mice.

    Directory of Open Access Journals (Sweden)

    Magali Saint-Geniez

    Full Text Available Retinopathy of prematurity (ROP is a leading cause of blindness in children worldwide due to increasing survival rates of premature infants. Initial suppression, followed by increased production of the retinal vascular endothelial growth factor-A (VEGF expression are key events that trigger the pathological neovascularization in ROP. Fatty acid binding protein 4 (FABP4 is an intracellular lipid chaperone that is induced by VEGF in a subset of endothelial cells. FABP4 exhibits a pro-angiogenic function in cultured endothelial cells and in airway microvasculature, but whether it plays a role in modulation of retinal angiogenesis is not known. We hypothesized that FABP4 deficiency could ameliorate pathological retinal vascularization and investigated this hypothesis using a well-characterized mouse model of oxygen-induced retinopathy (OIR. We found that FABP4 was not expressed in retinal vessels, but was present in resident macrophages/microglial cells and endothelial cells of the hyaloid vasculature in the immature retina. While FABP4 expression was not required for normal development of retinal vessels, FABP4 expression was upregulated and localized to neovascular tufts in OIR. FABP4-/- mice demonstrated a significant decrease in neovessel formation as well as a significant improvement in physiological revascularization of the avascular retinal tissues. These alterations in retinal vasculature were accompanied by reduced endothelial cell proliferation, but no effect on apoptosis or macrophage/microglia recruitment. FABP4-/- OIR samples demonstrated decreased expression of genes involved in angiogenesis, such as Placental Growth Factor, and angiopoietin 2. Collectively, our findings suggest FABP4 as a potential target of pathologic retinal angiogenesis in proliferative retinopathies.

  12. Motor coordination defects in mice deficient for the Sam68 RNA-binding protein.

    Science.gov (United States)

    Lukong, Kiven E; Richard, Stéphane

    2008-06-03

    The role of RNA-binding proteins in the central nervous system and more specifically their role in motor coordination and learning are poorly understood. We previously reported that ablation of RNA-binding protein Sam68 in mice results in male sterility and delayed mammary gland development and protection against osteoporosis in females. Sam68 however is highly expressed in most regions of the brain especially the cerebellum and thus we investigated the cerebellar-related manifestations in Sam68-null mice. We analyzed the mice for motor function, sensory function, and learning and memory abilities. Herein, we report that Sam68-null mice have motor coordination defects as assessed by beam walking and rotorod performance. Forty-week-old Sam68-null mice (n=12) were compared to their wild-type littermates (n=12). The Sam68-null mice exhibited more hindpaw faults in beam walking tests and fell from the rotating drum at lower speeds and prematurely compared to the wild-type controls. The Sam68-null mice were, however, normal for forelimb strength, tail-hang reflex, balance test, grid walking, the Morris water task, recognition memory, visual discrimination, auditory stimulation and conditional taste aversion. Our findings support a role for Sam68 in the central nervous system in the regulation of motor coordination.

  13. Muscarinic supersensitivity and impaired receptor desensitization in G protein-coupled receptor kinase 5-deficient mice.

    Science.gov (United States)

    Gainetdinov, R R; Bohn, L M; Walker, J K; Laporte, S A; Macrae, A D; Caron, M G; Lefkowitz, R J; Premont, R T

    1999-12-01

    G protein-coupled receptor kinase 5 (GRK5) is a member of a family of enzymes that phosphorylate activated G protein-coupled receptors (GPCR). To address the physiological importance of GRK5-mediated regulation of GPCRs, mice bearing targeted deletion of the GRK5 gene (GRK5-KO) were generated. GRK5-KO mice exhibited mild spontaneous hypothermia as well as pronounced behavioral supersensitivity upon challenge with the nonselective muscarinic agonist oxotremorine. Classical cholinergic responses such as hypothermia, hypoactivity, tremor, and salivation were enhanced in GRK5-KO animals. The antinociceptive effect of oxotremorine was also potentiated and prolonged. Muscarinic receptors in brains from GRK5-KO mice resisted oxotremorine-induced desensitization, as assessed by oxotremorine-stimulated [5S]GTPgammaS binding. These data demonstrate that elimination of GRK5 results in cholinergic supersensitivity and impaired muscarinic receptor desensitization and suggest that a deficit of GPCR desensitization may be an underlying cause of behavioral supersensitivity.

  14. Prion protein-deficient mice exhibit decreased CD4 T and LTi cell numbers and impaired spleen structure.

    Science.gov (United States)

    Kim, Soochan; Han, Sinsuk; Lee, Ye Eun; Jung, Woong-Jae; Lee, Hyung Soo; Kim, Yong-Sun; Choi, Eun-Kyoung; Kim, Mi-Yeon

    2016-01-01

    The cellular prion protein is expressed in almost all tissues, including the central nervous system and lymphoid tissues. To investigate the effects of the prion protein in lymphoid cells and spleen structure formation, we used prion protein-deficient (Prnp(0/0)) Zürich I mice generated by inactivation of the Prnp gene. Prnp(0/0) mice had decreased lymphocytes, in particular, CD4 T cells and lymphoid tissue inducer (LTi) cells. Decreased CD4 T cells resulted from impaired expression of CCL19 and CCL21 in the spleen rather than altered chemokine receptor CCR7 expression. Importantly, some of the white pulp regions in spleens from Prnp(0/0) mice displayed impaired T zone structure as a result of decreased LTi cell numbers and altered expression of the lymphoid tissue-organizing genes lymphotoxin-α and CXCR5, although expression of the lymphatic marker podoplanin and CXCL13 by stromal cells was not affected. In addition, CD3(-)CD4(+)IL-7Rα(+) LTi cells were rarely detected in impaired white pulp in spleens of these mice. These data suggest that the prion protein is required to form the splenic white pulp structure and for development of normal levels of CD4 T and LTi cells. Copyright © 2015. Published by Elsevier GmbH.

  15. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    -type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  16. G protein-coupled receptor kinase-2-deficient mice are protected from dextran sodium sulfate-induced acute colitis.

    Science.gov (United States)

    Steury, Michael D; Kang, Ho Jun; Lee, Taehyung; Lucas, Peter C; McCabe, Laura R; Parameswaran, Narayanan

    2018-06-01

    G protein-coupled receptor kinase 2 (GRK2) is a serine/threonine kinase and plays a key role in different disease processes. Previously, we showed that GRK2 knockdown enhances wound healing in colonic epithelial cells. Therefore, we hypothesized that ablation of GRK2 would protect mice from dextran sodium sulfate (DSS)-induced acute colitis. To test this, we administered DSS to wild-type (GRK2 +/+ ) and GRK2 heterozygous (GRK +/- ) mice in their drinking water for 7 days. As predicted, GRK2 +/- mice were protected from colitis as demonstrated by decreased weight loss (20% loss in GRK2 +/+ vs. 11% loss in GRK2 +/- ). lower disease activity index (GRK2 +/+ 9.1 vs GRK2 +/- 4.1), and increased colon lengths (GRK2 +/+ 4.7 cm vs GRK2 +/- 5.3 cm). To examine the mechanisms by which GRK2 +/- mice are protected from colitis, we investigated expression of inflammatory genes in the colon as well as immune cell profiles in colonic lamina propria, mesenteric lymph node, and in bone marrow. Our results did not reveal differences in immune cell profiles between the two genotypes. However, expression of inflammatory genes was significantly decreased in DSS-treated GRK2 +/- mice compared with GRK2 +/+ . To understand the mechanisms, we generated myeloid-specific GRK2 knockout mice and subjected them to DSS-induced colitis. Similar to whole body GRK2 heterozygous knockout mice, myeloid-specific knockout of GRK2 was sufficient for the protection from DSS-induced colitis. Together our results indicate that deficiency of GRK2 protects mice from DSS-induced colitis and further suggests that the mechanism of this effect is likely via GRK2 regulation of inflammatory genes in the myeloid cells.

  17. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  18. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    Science.gov (United States)

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  19. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2

    DEFF Research Database (Denmark)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted...... cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2(-/-) mice. Circadian rhythms in QT100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2......(-/-), respectively (p = 0.15). A diurnal rhythm in QT100 intervals was only found in WT mice. QTmean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2(-/-). The amplitude of the circadian rhythm in QTmean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2(-/-), respectively (p = 0...

  20. Mice deficient in ribosomal protein S6 phosphorylation suffer from muscle weakness that reflects a growth defect and energy deficit.

    Directory of Open Access Journals (Sweden)

    Igor Ruvinsky

    Full Text Available BACKGROUND: Mice, whose ribosomal protein S6 cannot be phosphorylated due to replacement of all five phosphorylatable serine residues by alanines (rpS6(P-/-, are viable and fertile. However, phenotypic characterization of these mice and embryo fibroblasts derived from them, has established the role of these modifications in the regulation of the size of several cell types, as well as pancreatic beta-cell function and glucose homeostasis. A relatively passive behavior of these mice has raised the possibility that they suffer from muscle weakness, which has, indeed, been confirmed by a variety of physical performance tests. METHODOLOGY/PRINCIPAL FINDINGS: A large variety of experimental methodologies, including morphometric measurements of histological preparations, high throughput proteomic analysis, positron emission tomography (PET and numerous biochemical assays, were used in an attempt to establish the mechanism underlying the relative weakness of rpS6(P-/- muscles. Collectively, these experiments have demonstrated that the physical inferiority appears to result from two defects: a a decrease in total muscle mass that reflects impaired growth, rather than aberrant differentiation of myofibers, as well as a diminished abundance of contractile proteins; and b a reduced content of ATP and phosphocreatine, two readily available energy sources. The abundance of three mitochondrial proteins has been shown to diminish in the knockin mouse. However, the apparent energy deficiency in this genotype does not result from a lower mitochondrial mass or compromised activity of enzymes of the oxidative phosphorylation, nor does it reflect a decline in insulin-dependent glucose uptake, or diminution in storage of glycogen or triacylglycerol (TG in the muscle. CONCLUSIONS/SIGNIFICANCE: This study establishes rpS6 phosphorylation as a determinant of muscle strength through its role in regulation of myofiber growth and energy content. Interestingly, a similar

  1. Circadian rhythm in QT interval is preserved in mice deficient of potassium channel interacting protein 2.

    Science.gov (United States)

    Gottlieb, Lisa A; Lubberding, Anniek; Larsen, Anders Peter; Thomsen, Morten B

    2017-01-01

    Potassium Channel Interacting Protein 2 (KChIP2) is suggested to be responsible for the circadian rhythm in repolarization duration, ventricular arrhythmias, and sudden cardiac death. We investigated the hypothesis that there is no circadian rhythm in QT interval in the absence of KChIP2. Implanted telemetric devices recorded electrocardiogram continuously for 5 days in conscious wild-type mice (WT, n = 9) and KChIP2 -/- mice (n = 9) in light:dark periods and in complete darkness. QT intervals were determined from all RR intervals and corrected for heart rate (QT 100 = QT/(RR/100) 1/2 ). Moreover, QT intervals were determined from complexes within the RR range of mean-RR ± 1% in the individual mouse (QT mean-RR ). We find that RR intervals are 125 ± 5 ms in WT and 123 ± 4 ms in KChIP2 -/- (p = 0.81), and QT intervals are 52 ± 1 and 52 ± 1 ms, respectively(p = 0.89). No ventricular arrhythmias or sudden cardiac deaths were observed. We find similar diurnal (light:dark) and circadian (darkness) rhythms of RR intervals in WT and KChIP2 -/- mice. Circadian rhythms in QT 100 intervals are present in both groups, but at physiological small amplitudes: 1.6 ± 0.2 and 1.0 ± 0.3 ms in WT and KChIP2 -/- , respectively (p = 0.15). A diurnal rhythm in QT 100 intervals was only found in WT mice. QT mean-RR intervals display clear diurnal and circadian rhythms in both WT and KChIP2 -/- . The amplitude of the circadian rhythm in QT mean-RR is 4.0 ± 0.3 and 3.1 ± 0.5 ms in WT and KChIP2 -/- , respectively (p = 0.16). In conclusion, KChIP2 expression does not appear to underlie the circadian rhythm in repolarization duration.

  2. Additive effects of lupin protein and phytic acid on aortic calcification in ApoE deficient mice

    Directory of Open Access Journals (Sweden)

    Alexandra Schutkowski

    2015-03-01

    A two-factorial study with ApoE knockout mice was conducted in which mice received lupin protein isolate or casein with or without phytase. Phytic acid was added to the casein diets to a final concentration identical to the lupin protein diets. Here we show that the serum concentrations of cholesterol, lathosterol and desmosterol were lower and the faecal bile acid excretion was higher in the groups fed lupin proteins than in the groups fed casein (p < 0.05. Mice that received the lupin protein diet containing phytic acid were characterized by a lower aortic calcification than mice of the other three groups (p < 0.05. In conclusion, our results show that the cholesterol lowering properties of lupin protein isolate were not caused by phytic acid. However, the hypocalcific action of lupin proteins appears to depend on the combination of lupin proteins and phytic acid.

  3. Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein-1 deficient mice

    NARCIS (Netherlands)

    Voskuil, Michiel; Hoefer, Imo E.; van Royen, Niels; Hua, Jing; de Graaf, Stijn; Bode, Christoph; Buschmann, Ivo R.; Piek, Jan J.

    2004-01-01

    Monocyte chemoattractant protein 1 (MCP-1) has been shown to be effective for the stimulation of collateral artery formation in small and large animal models. The availability of a genetic knockout mouse enables evaluation of the importance of the role of MCP-1 in the natural course of collateral

  4. Additive effects of lupin protein and phytic acid on aortic calcification in ApoE deficient mice.

    Science.gov (United States)

    Schutkowski, Alexandra; Hirche, Frank; Geissler, Stefanie; Radtke, Juliane; Stangl, Gabriele I

    2015-03-01

    Lupin proteins have repeatedly been shown to exhibit lipid lowering properties and reduce aortic calcification in atherosclerosis models. Despite many efforts on its identification, the component which is responsible for the observed effects is still under debate. Phytic acid which is generally associated with lupin protein isolates has currently been described as bioactive plant compound. The objective of the study was to determine the role of associated phytic acid for the described lupin protein effects. A two-factorial study with ApoE knockout mice was conducted in which mice received lupin protein isolate or casein with or without phytase. Phytic acid was added to the casein diets to a final concentration identical to the lupin protein diets. Here we show that the serum concentrations of cholesterol, lathosterol and desmosterol were lower and the faecal bile acid excretion was higher in the groups fed lupin proteins than in the groups fed casein ( p  < 0.05). Mice that received the lupin protein diet containing phytic acid were characterized by a lower aortic calcification than mice of the other three groups ( p  < 0.05). In conclusion, our results show that the cholesterol lowering properties of lupin protein isolate were not caused by phytic acid. However, the hypocalcific action of lupin proteins appears to depend on the combination of lupin proteins and phytic acid.

  5. Design-based stereological analysis of the lung parenchymal architecture and alveolar type II cells in surfactant protein A and D double deficient mice

    DEFF Research Database (Denmark)

    Jung, A; Allen, L; Nyengaard, Jens Randel

    2005-01-01

    Alveolar epithelial type II cells synthesize and secrete surfactant. The surfactant-associated proteins A and D (SP-A and SP-D), members of the collectin protein family, participate in pulmonary immune defense, modulation of inflammation, and surfactant metabolism. Both proteins are known to have......, but the mean volume of a single lamellar body remains constant. These results demonstrate that chronic deficiency of SP-A and SP-D in mice leads to parenchymal remodeling, type II cell hyperplasia and hypertrophy, and disturbed intracellular surfactant metabolism. The design-based stereological approach...

  6. Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Even, Patrick C; Chaumontet, Catherine; Piedcoq, Julien; Viollet, Benoit; Gaudichon, Claire; Tomé, Daniel; Foretz, Marc; Azzout-Marniche, Dalila

    2017-09-01

    Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood. Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio. Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism. Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding. Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the

  7. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    Science.gov (United States)

    Schugar, Rebecca C; Huang, Xiaojing; Moll, Ashley R; Brunt, Elizabeth M; Crawford, Peter A

    2013-01-01

    Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666) that is very high in fat (~94% kcal), very low in carbohydrate (~1% kcal), low in protein (~5% kcal), and choline restricted (~300 mg/kg) provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal) and choline contents (300 mg/kg vs. 5 g/kg). C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  8. Role of choline deficiency in the Fatty liver phenotype of mice fed a low protein, very low carbohydrate ketogenic diet.

    Directory of Open Access Journals (Sweden)

    Rebecca C Schugar

    Full Text Available Though widely employed for clinical intervention in obesity, metabolic syndrome, seizure disorders and other neurodegenerative diseases, the mechanisms through which low carbohydrate ketogenic diets exert their ameliorative effects still remain to be elucidated. Rodent models have been used to identify the metabolic and physiologic alterations provoked by ketogenic diets. A commonly used rodent ketogenic diet (Bio-Serv F3666 that is very high in fat (~94% kcal, very low in carbohydrate (~1% kcal, low in protein (~5% kcal, and choline restricted (~300 mg/kg provokes robust ketosis and weight loss in mice, but through unknown mechanisms, also causes significant hepatic steatosis, inflammation, and cellular injury. To understand the independent and synergistic roles of protein restriction and choline deficiency on the pleiotropic effects of rodent ketogenic diets, we studied four custom diets that differ only in protein (5% kcal vs. 10% kcal and choline contents (300 mg/kg vs. 5 g/kg. C57BL/6J mice maintained on the two 5% kcal protein diets induced the most significant ketoses, which was only partially diminished by choline replacement. Choline restriction in the setting of 10% kcal protein also caused moderate ketosis and hepatic fat accumulation, which were again attenuated when choline was replete. Key effects of the 5% kcal protein diet - weight loss, hepatic fat accumulation, and mitochondrial ultrastructural disarray and bioenergetic dysfunction - were mitigated by choline repletion. These studies indicate that synergistic effects of protein restriction and choline deficiency influence integrated metabolism and hepatic pathology in mice when nutritional fat content is very high, and support the consideration of dietary choline content in ketogenic diet studies in rodents to limit hepatic mitochondrial dysfunction and fat accumulation.

  9. Elevation of susceptibility to ozone-induced acute tracheobronchial injury in transgenic mice deficient in Clara cell secretory protein

    International Nuclear Information System (INIS)

    Plopper, C.G.; Mango, G.W.; Hatch, G.E.; Wong, V.J.; Toskala, E.; Reynolds, S.D.; Tarkington, B.K.; Stripp, B.R.

    2006-01-01

    Increases in Clara cell abundance or cellular expression of Clara cell secretory protein (CCSP) may cause increased tolerance of the lung to acute oxidant injury by repeated exposure to ozone (O 3 ). This study defines how disruption of the gene for CCSP synthesis affects the susceptibility of tracheobronchial epithelium to acute oxidant injury. Mice homozygous for a null allele of the CCSP gene (CCSP-/-) and wild type (CCSP+/+) littermates were exposed to ozone (0.2 ppm, 8 h; 1 ppm, 8 h) or filtered air. Injury was evaluated by light and scanning electron microscopy, and the abundance of necrotic, ciliated, and nonciliated cells was estimated by morphometry. Proximal and midlevel intrapulmonary airways and terminal bronchioles were evaluated. There was no difference in airway epithelial composition between CCSP+/+ and CCSP-/- mice exposed to filtered air, and exposure to 0.2 ppm ozone caused little injury to the epithelium of both CCSP+/+ and CCSP-/- mice. After exposure to 1.0 ppm ozone, CCSP-/- mice suffered from a greater degree of epithelial injury throughout the airways compared to CCSP+/+ mice. CCSP-/- mice had both ciliated and nonciliated cell injury. Furthermore, lack of CCSP was associated with a shift in airway injury to include proximal airway generations. Therefore, we conclude that CCSP modulates the susceptibility of the epithelium to oxidant-induced injury. Whether this is due to the presence of CCSP on the acellular lining layer surface and/or its intracellular distribution in the secretory cell population needs to be defined

  10. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  11. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    Science.gov (United States)

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  12. The role of inducible nitric oxide synthase for interstitial remodeling of alveolar septa in surfactant protein D-deficient mice

    Science.gov (United States)

    Atochina-Vasserman, Elena N.; Massa, Christopher B.; Birkelbach, Bastian; Guo, Chang-Jiang; Scott, Pamela; Haenni, Beat; Beers, Michael F.; Ochs, Matthias; Gow, Andrew J.

    2015-01-01

    Surfactant protein D (SP-D) modulates the lung's immune system. Its absence leads to NOS2-independent alveolar lipoproteinosis and NOS2-dependent chronic inflammation, which is critical for early emphysematous remodeling. With aging, SP-D knockout mice develop an additional interstitial fibrotic component. We hypothesize that this age-related interstitial septal wall remodeling is mediated by NOS2. Using invasive pulmonary function testing such as the forced oscillation technique and quasistatic pressure-volume perturbation and design-based stereology, we compared 29-wk-old SP-D knockout (Sftpd−/−) mice, SP-D/NOS2 double-knockout (DiNOS) mice, and wild-type mice (WT). Structural changes, including alveolar epithelial surface area, distribution of septal wall thickness, and volumes of septal wall components (alveolar epithelium, interstitial tissue, and endothelium) were quantified. Twenty-nine-week-old Sftpd−/− mice had preserved lung mechanics at the organ level, whereas elastance was increased in DiNOS. Airspace enlargement and loss of surface area of alveolar epithelium coexist with increased septal wall thickness in Sftpd−/− mice. These changes were reduced in DiNOS, and compared with Sftpd−/− mice a decrease in volumes of interstitial tissue and alveolar epithelium was found. To understand the effects of lung pathology on measured lung mechanics, structural data were used to inform a computational model, simulating lung mechanics as a function of airspace derecruitment, septal wall destruction (loss of surface area), and septal wall thickening. In conclusion, NOS2 mediates remodeling of septal walls, resulting in deposition of interstitial tissue in Sftpd−/−. Forward modeling linking structure and lung mechanics describes the complex mechanical properties by parenchymatous destruction (emphysema), interstitial remodeling (septal wall thickening), and altered recruitability of acinar airspaces. PMID:26320150

  13. G protein-coupled receptor kinase-3-deficient mice exhibit WHIM syndrome features and attenuated inflammatory responses

    Science.gov (United States)

    Tarrant, Teresa K.; Billard, Matthew J.; Timoshchenko, Roman G.; McGinnis, Marcus W.; Serafin, D. Stephen; Foreman, Oded; Esserman, Denise A.; Chao, Nelson J.; Lento, William E.; Lee, David M.; Patel, Dhavalkumar; Siderovski, David P.

    2013-01-01

    Chemokine receptor interactions coordinate leukocyte migration in inflammation. Chemokine receptors are GPCRs that when activated, are phosphorylated by GRKs to turn off G protein-mediated signaling yet recruit additional signaling machinery. Recently, GRK3 was identified as a negative regulator of CXCL12/CXCR4 signaling that is defective in human WHIM syndrome. Here, we report that GRK3−/− mice exhibit numerous features of human WHIM, such as impaired CXCL12-mediated desensitization, enhanced CXCR4 signaling to ERK activation, altered granulocyte migration, and a mild myelokathexis. Moreover, GRK3−/− protects mice from two acute models of inflammatory arthritis (K/BxN serum transfer and CAIA). In these granulocyte-dependent disease models, protection of GRK3−/− mice is mediated by retention of cells in the marrow, fewer circulating granulocytes in the peripheral blood, and reduced granulocytes in the joints during active inflammation. In contrast to WHIM, GRK3−/− mice have minimal hypogammaglobulinemia and a peripheral leukocytosis with increased lymphocytes and absent neutropenia. Thus, we conclude that the loss of GRK3-mediated regulation of CXCL12/CXCR4 signaling contributes to some, but not all, of the complete WHIM phenotype and that GRK3 inhibition may be beneficial in the treatment of inflammatory arthritis. PMID:23935208

  14. An oral Na(V)1.8 blocker improves motor function in mice completely deficient of myelin protein P-0

    DEFF Research Database (Denmark)

    Rosberg, Mette R.; Alvarez Herrero, Susana; Krarup, Christian

    2016-01-01

    Mice deficient of myelin protein P0 are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Dysmyelination in these mice is associated with an ectopic expression of the sensory neuron specific sodium channel isoform NaV1.8 on motor axons. We reported that in P0+/−, a model of CMT......1B, the membrane dysfunction could be acutely improved by a novel oral NaV1.8 blocker referred to as Compound 31 (C31, Bioorg. Med. Chem. Lett. 2010, 20, 6812; AbbVie Inc.). The aim of this study was to investigate the extent to which C31 treatment could also improve the motor axon function in P0......-of-concept that treatment with oral subtype-selective NaV1.8 blockers could be used to improve the motor function in severe forms of demyelinating CMT....

  15. Functional recovery of regenerating motor axons is delayed in mice heterozygously deficient for the myelin protein P(0) gene

    DEFF Research Database (Denmark)

    Rosberg, Mette Romer; Alvarez, Susana; Krarup, Christian

    2013-01-01

    Mice with a heterozygous knock-out of the myelin protein P0 gene (P0+/-) develop a neuropathy similar to human Charcot-Marie-Tooth disease. They are indistinguishable from wild-types (WT) at birth and develop a slowly progressing demyelinating neuropathy. The aim of this study was to investigate...... whether the regeneration capacity of early symptomatic P0+/- is impaired as compared to age matched WT. Right sciatic nerves were lesioned at the thigh in 7-8 months old mice. Tibial motor axons at ankle were investigated by conventional motor conduction studies and axon excitability studies using...... threshold tracking. To evaluate regeneration we monitored the recovery of motor function after crush, and then compared the fiber distribution by histology. The overall motor performance was investigated using Rotor-Rod. P0+/- had reduced compound motor action potential amplitudes and thinner myelinated...

  16. A salmon protein hydrolysate exerts lipid-independent anti-atherosclerotic activity in ApoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Cinzia Parolini

    Full Text Available Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo E(-/- mice were divided into two groups and fed a high-fat diet with or without 5% (w/w SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE(-/- mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20:4n-6 and oleic acid (C18:1n-9 were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT-activity. These data show that a 5% (w/w SPH diet reduces atherosclerosis in apoE(-/- mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.

  17. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  18. Deficiency of FK506-binding protein (FKBP) 51 alters sleep architecture and recovery sleep responses to stress in mice.

    Science.gov (United States)

    Albu, Stefana; Romanowski, Christoph P N; Letizia Curzi, M; Jakubcakova, Vladimira; Flachskamm, Cornelia; Gassen, Nils C; Hartmann, Jakob; Schmidt, Mathias V; Schmidt, Ulrike; Rein, Theo; Holsboer, Florian; Hausch, Felix; Paez-Pereda, Marcelo; Kimura, Mayumi

    2014-04-01

    FK506-binding protein 51 (FKBP51) is a co-chaperone of the glucocorticoid receptor, functionally linked to its activity via an ultra-short negative feedback loop. Thus, FKBP51 plays an important regulatory role in the hypothalamic-pituitary-adrenocortical (HPA) axis necessary for stress adaptation and recovery. Previous investigations illustrated that HPA functionality is influenced by polymorphisms in the gene encoding FKBP51, which are associated with both increased protein levels and depressive episodes. Because FKBP51 is a key molecule in stress responses, we hypothesized that its deletion impacts sleep. To study FKBP51-involved changes in sleep, polysomnograms of FKBP51 knockout (KO) mice and wild-type (WT) littermates were compared at baseline and in the recovery phase after 6-h sleep deprivation (SD) and 1-h restraint stress (RS). Using another set of animals, the 24-h profiles of hippocampal free corticosterone levels were also determined. The most dominant effect of FKBP51 deletion appeared as increased nocturnal wake, where the bout length was significantly extended while non-rapid eye movement sleep (NREMS) and rapid eye movement sleep were rather suppressed. After both SD and RS, FKBP51KO mice exhibited less recovery or rebound sleep than WTs, although slow-wave activity during NREMS was higher in KOs, particularly after SD. Sleep compositions of KOs were nearly opposite to sleep profiles observed in human depression. This might result from lower levels of free corticosterone in FKBP51KO mice, confirming reduced HPA reactivity. The results indicate that an FKBP51 deletion yields a pro-resilience sleep phenotype. FKBP51 could therefore be a therapeutic target for stress-induced mood and sleep disorders. © 2013 European Sleep Research Society.

  19. High Incidence of HPV-Associated Head and Neck Cancers in FA Deficient Mice Is Associated with E7’s Induction of DNA Damage through Its Inactivation of Pocket Proteins

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with ‘high-risk’ HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6’s oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7’s induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs. PMID:24086435

  20. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C; Lambert, Paul F

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  1. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Directory of Open Access Journals (Sweden)

    Jung Wook Park

    Full Text Available Fanconi anemia (FA patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6 and HPV16 E6/E7-bi-transgenic mice (K14E6E7 on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  2. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    Science.gov (United States)

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...

  4. NERVE EXCITABILITY CHANGES AFTER NA(V)1.8 CHANNEL BLOCKER TREATMENT IN MICE DEFICIENT OF MYELIN PROTEIN P-0

    DEFF Research Database (Denmark)

    Moldovan, M.; Rosberg, M. R.; Alvarez Herrero, Susana

    2016-01-01

    Mice deficient of myelin protein zero (P0) are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Recent work form our laboratory indicated that in severely affected P0−/− as well as in P0+/− (modeling CMT1B), the neuropathy is aggravated by associated changes in voltage...... function up to 2 hours after the blockers. Overall, the baseline excitability measures were much more abnormal in P0−/− at 4 months as compared to P0+/− at 20 months. Nevertheless, in both models, the NaV1.8 blockers produced similar deviations in excitability at a dose of 100 mg/Kg. Most notably...

  5. Perturbed rhythmic activation of signaling pathways in mice deficient for Sterol Carrier Protein 2-dependent diurnal lipid transport and metabolism.

    Science.gov (United States)

    Jouffe, Céline; Gobet, Cédric; Martin, Eva; Métairon, Sylviane; Morin-Rivron, Delphine; Masoodi, Mojgan; Gachon, Frédéric

    2016-04-21

    Through evolution, most of the living species have acquired a time keeping system to anticipate daily changes caused by the rotation of the Earth. In all of the systems this pacemaker is based on a molecular transcriptional/translational negative feedback loop able to generate rhythmic gene expression with a period close to 24 hours. Recent evidences suggest that post-transcriptional regulations activated mostly by systemic cues play a fundamental role in the process, fine tuning the time keeping system and linking it to animal physiology. Among these signals, we consider the role of lipid transport and metabolism regulated by SCP2. Mice harboring a deletion of the Scp2 locus present a modulated diurnal accumulation of lipids in the liver and a perturbed activation of several signaling pathways including PPARα, SREBP, LRH-1, TORC1 and its upstream regulators. This defect in signaling pathways activation feedbacks upon the clock by lengthening the circadian period of animals through post-translational regulation of core clock regulators, showing that rhythmic lipid transport is a major player in the establishment of rhythmic mRNA and protein expression landscape.

  6. Aberrant location of inhibitory synaptic marker proteins in the hippocampus of dystrophin-deficient mice: implications for cognitive impairment in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Elżbieta Krasowska

    Full Text Available Duchenne muscular dystrophy (DMD is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT mice, immunoreactivity of neuroligin2 (NL2, an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT, a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.

  7. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  8. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  9. CD36 Protein Influences Myocardial Ca2+ Homeostasis and Phospholipid Metabolism CONDUCTION ANOMALIES IN CD36-DEFICIENT MICE DURING FASTING

    Czech Academy of Sciences Publication Activity Database

    Pietka, T. A.; Sulkin, M.S.; Kuda, Ondřej; Wang, W.; Zhou, D.; Yamada, K. A.; Yang, K.; Su, X.; Gross, R. W.; Nerbonne, J. M.; Efimov, I. R.; Abumrad, N. A.

    2012-01-01

    Roč. 287, č. 46 (2012), s. 38901-38912 ISSN 0021-9258 Institutional support: RVO:67985823 Keywords : calcium * cyclic AMP (cAMP) * heart * phospholipid * phospholipid metabolism * polyunsaturated fatty acids * CD36 deficiency * SERCA2a * sudden death Subject RIV: ED - Physiology Impact factor: 4.651, year: 2012

  10. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  11. Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding protein 1-deficient mice

    DEFF Research Database (Denmark)

    Hansen, Thomas V O; Hammer, Niels A; Nielsen, Jacob

    2004-01-01

    Insulin-like growth factor II mRNA-binding protein 1 (IMP1) belongs to a family of RNA-binding proteins implicated in mRNA localization, turnover, and translational control. Mouse IMP1 is expressed during early development, and an increase in expression occurs around embryonic day 12.5 (E12.5). T...

  12. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  13. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  14. Use of Bee Honey as Alternative Medicine in Protein Energy Deficiency

    OpenAIRE

    Prasetyo, R. Heru; Sandhika, Willy; Susanto, Djoni

    2013-01-01

    The protein energy deficiency cause intestinal villus atrophy and epithel mucous damage. The effect of bee honey on histostructure of intestine was studied in the experimental mice as model of proteinenergy deficiency. The use bee honey in protein-energy deficiency shown to improve intestinal villus atrophy and epithel damage. In conclusion that bee honey can use as alternative medicine in protein energydeficiency

  15. Role of surfactant protein-A (SP-A) in lung injury in response to acute ozone exposure of SP-A deficient mice

    International Nuclear Information System (INIS)

    Haque, Rizwanul; Umstead, Todd M.; Ponnuru, Padmavathi; Guo Xiaoxuan; Hawgood, Samuel; Phelps, David S.; Floros, Joanna

    2007-01-01

    Millions are exposed to ozone levels above recommended limits, impairing lung function, causing epithelial damage and inflammation, and predisposing some individuals to pneumonia, asthma, and other lung conditions. Surfactant protein-A (SP-A) plays a role in host defense, the regulation of inflammation, and repair of tissue damage. We tested the hypothesis that the lungs of SP-A(-/-) (KO) mice are more susceptible to ozone-induced damage. We compared the effects of ozone on KO and wild type (WT) mice on the C57BL/6 genetic background by exposing them to 2 parts/million of ozone for 3 or 6 h and sacrificing them 0, 4, and 24 h later. Lungs were subject to bronchoalveolar lavage (BAL) or used to measure endpoints of oxidative stress and inflammation. Despite more total protein in BAL of KO mice after a 3 h ozone exposure, WT mice had increased oxidation of protein and had oxidized SP-A dimers. In KO mice there was epithelial damage as assessed by increased LDH activity and there was increased phospholipid content. In WT mice there were more BAL PMNs and elevated macrophage inflammatory protein (MIP)-2 and monocyte chemoattractant protein (MCP)-1. Changes in MIP-2 and MCP-1 were observed in both KO and WT, however mRNA levels differed. In KO mice MIP-2 mRNA levels changed little with ozone, but in WT levels they were significantly increased. In summary, several aspects of the inflammatory response differ between WT and KO mice. These in vivo findings appear to implicate SP-A in regulating inflammation and limiting epithelial damage in response to ozone exposure

  16. Sick sinus syndrome in HCN1-deficient mice.

    Science.gov (United States)

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  17. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  18. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection.

    Science.gov (United States)

    Maric-Biresev, Jelena; Hunn, Julia P; Krut, Oleg; Helms, J Bernd; Martens, Sascha; Howard, Jonathan C

    2016-04-20

    The interferon-γ (IFN-γ)-inducible immunity-related GTPase (IRG), Irgm1, plays an essential role in restraining activation of the IRG pathogen resistance system. However, the loss of Irgm1 in mice also causes a dramatic but unexplained susceptibility phenotype upon infection with a variety of pathogens, including many not normally controlled by the IRG system. This phenotype is associated with lymphopenia, hemopoietic collapse, and death of the mouse. We show that the three regulatory IRG proteins (GMS sub-family), including Irgm1, each of which localizes to distinct sets of endocellular membranes, play an important role during the cellular response to IFN-γ, each protecting specific membranes from off-target activation of effector IRG proteins (GKS sub-family). In the absence of Irgm1, which is localized mainly at lysosomal and Golgi membranes, activated GKS proteins load onto lysosomes, and are associated with reduced lysosomal acidity and failure to process autophagosomes. Another GMS protein, Irgm3, is localized to endoplasmic reticulum (ER) membranes; in the Irgm3-deficient mouse, activated GKS proteins are found at the ER. The Irgm3-deficient mouse does not show the drastic phenotype of the Irgm1 mouse. In the Irgm1/Irgm3 double knock-out mouse, activated GKS proteins associate with lipid droplets, but not with lysosomes, and the Irgm1/Irgm3(-/-) does not have the generalized immunodeficiency phenotype expected from its Irgm1 deficiency. The membrane targeting properties of the three GMS proteins to specific endocellular membranes prevent accumulation of activated GKS protein effectors on the corresponding membranes and thus enable GKS proteins to distinguish organellar cellular membranes from the membranes of pathogen vacuoles. Our data suggest that the generalized lymphomyeloid collapse that occurs in Irgm1(-/-) mice upon infection with a variety of pathogens may be due to lysosomal damage caused by off-target activation of GKS proteins on lysosomal

  19. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice

    Science.gov (United States)

    Uz, Tolga; Dimitrijevic, Nikola; Imbesi, Marta; Manev, Hari; Manev, Radmila

    2008-01-01

    A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX; 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, 6 daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 μg per 100 mg body-weight per day, required three weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings. PMID:18403121

  20. Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    Directory of Open Access Journals (Sweden)

    Johns Roger A

    2008-10-01

    Full Text Available Abstract Postsynaptic density (PSD-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence.

  1. Surfactant protein D (SP-D) deficiency is attenuated in humanised mice expressing the Met(11)Thr short nucleotide polymorphism of SP-D

    DEFF Research Database (Denmark)

    Knudsen, Lars; Ochs, Katharina; Boxler, Laura

    2013-01-01

    Surfactant protein D (SP-D) is part of the innate immune system involved in lung homeostasis. SP-D knockout mice show accumulations of foamy alveolar macrophages, alveolar lipoproteinosis and pulmonary emphysema. Three single nucleotide polymorphisms (SNPs) have been described in the coding...

  2. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sorensen, Grith L; Madsen, Jens; Kejling, Karin

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd......-/-) mice. Atherogenesis involves both inflammation and lipid deposition, and we investigated the role of SP-D in the development of atherosclerosis. SP-D synthesis was localized to vascular endothelial cells. Atherosclerotic lesion areas were 5.6-fold smaller in the aortic roots in Spd-/- mice compared...... with wild-type C57BL/6N mice on an atherogenic diet. HDL cholesterol (HDL-C) was significantly elevated in Spd-/- mice. Treatment of Spd-/- mice with a recombinant fragment of human SP-D resulted in decreases of HDL-C (21%) as well as total cholesterol (26%), and LDL cholesterol (28%). Plasma TNF...

  3. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  4. Expression profiling analysis: Uncoupling protein 2 deficiency improves hepatic glucose, lipid profiles and insulin sensitivity in high-fat diet-fed mice by modulating expression of genes in peroxisome proliferator-activated receptor signaling pathway.

    Science.gov (United States)

    Zhou, Mei-Cen; Yu, Ping; Sun, Qi; Li, Yu-Xiu

    2016-03-01

    Uncoupling protein 2 (UCP2), which was an important mitochondrial inner membrane protein associated with glucose and lipid metabolism, widely expresses in all kinds of tissues including hepatocytes. The present study aimed to explore the impact of UCP2 deficiency on glucose and lipid metabolism, insulin sensitivity and its effect on the liver-associated signaling pathway by expression profiling analysis. Four-week-old male UCP2-/- mice and UCP2+/+ mice were randomly assigned to four groups: UCP2-/- on a high-fat diet, UCP2-/- on a normal chow diet, UCP2+/+ on a high-fat diet and UCP2+/+ on a normal chow diet. The differentially expressed genes in the four groups on the 16th week were identified by Affymetrix gene array. The results of intraperitoneal glucose tolerance test and insulin tolerance showed that blood glucose and β-cell function were improved in the UCP2-/- group on high-fat diet. Enhanced insulin sensitivity was observed in the UCP2-/- group. The differentially expressed genes were mapped to 23 pathways (P high-fat diet. The upregulation of genes in the PPAR signaling pathway could explain our finding that UCP2 deficiency ameliorated insulin sensitivity. The manipulation of UCP2 protein expression could represent a new strategy for the prevention and treatment of diabetes.

  5. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  6. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  7. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Directory of Open Access Journals (Sweden)

    Hironori Kurisaki

    Full Text Available Although the autoimmune regulator (Aire knockout (KO mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2, which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  8. Autoimmune gastro-pancreatitis with anti-protein disulfide isomerase-associated 2 autoantibody in Aire-deficient BALB/cAnN mice.

    Science.gov (United States)

    Kurisaki, Hironori; Nagao, Yukihiro; Nagafuchi, Seiho; Mitsuyama, Masao

    2013-01-01

    Although the autoimmune regulator (Aire) knockout (KO) mouse model has been reported to present various organ-specific autoimmune diseases depending on genetic background, autoimmune pancreatitis in mice of BALB/c background has not yet been reported. Here, we report that Aire KO mice with BALB/cAnN background showed significant lymphoid cell infiltration in the pancreas and stomach. To examine whether the phenotype in the pancreas and stomach is due to autoimmune reaction associated with autoantibody production, indirect immunofluorescence staining followed by Western blot analysis was performed. Consequently, the autoantibody against pancreas and stomach was detected in the sera of Aire KO mice, and the target antigen of the autoantibody was identified as protein disulfide isomerase-associated 2 (Pdia2), which was reported to be expressed preferentially in the pancreas and stomach. Thus, Aire KO mice of BALB/cAnN background can serve as a useful animal model for autoimmune gastro-pancreatitis with anti-Pdia2 autoantibody production.

  9. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  10. Anxiety and depression with neurogenesis defects in exchange protein directly activated by cAMP 2-deficient mice are ameliorated by a selective serotonin reuptake inhibitor, Prozac

    Science.gov (United States)

    Zhou, L; Ma, S L; Yeung, P K K; Wong, Y H; Tsim, K W K; So, K F; Lam, L C W; Chung, S K

    2016-01-01

    Intracellular cAMP and serotonin are important modulators of anxiety and depression. Fluoxetine, a selective serotonin reuptake inhibitor (SSRI) also known as Prozac, is widely used against depression, potentially by activating cAMP response element-binding protein (CREB) and increasing brain-derived neurotrophic factor (BDNF) through protein kinase A (PKA). However, the role of Epac1 and Epac2 (Rap guanine nucleotide exchange factors, RAPGEF3 and RAPGEF4, respectively) as potential downstream targets of SSRI/cAMP in mood regulations is not yet clear. Here, we investigated the phenotypes of Epac1 (Epac1−/−) or Epac2 (Epac2−/−) knockout mice by comparing them with their wild-type counterparts. Surprisingly, Epac2−/− mice exhibited a wide range of mood disorders, including anxiety and depression with learning and memory deficits in contextual and cued fear-conditioning tests without affecting Epac1 expression or PKA activity. Interestingly, rs17746510, one of the three single-nucleotide polymorphisms (SNPs) in RAPGEF4 associated with cognitive decline in Chinese Alzheimer's disease (AD) patients, was significantly correlated with apathy and mood disturbance, whereas no significant association was observed between RAPGEF3 SNPs and the risk of AD or neuropsychiatric inventory scores. To further determine the detailed role of Epac2 in SSRI/serotonin/cAMP-involved mood disorders, we treated Epac2−/− mice with a SSRI, Prozac. The alteration in open field behavior and impaired hippocampal cell proliferation in Epac2−/− mice were alleviated by Prozac. Taken together, Epac2 gene polymorphism is a putative risk factor for mood disorders in AD patients in part by affecting the hippocampal neurogenesis. PMID:27598965

  11. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  12. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  13. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    Science.gov (United States)

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  14. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    Science.gov (United States)

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  15. Pumilio2-deficient mice show a predisposition for epilepsy

    Directory of Open Access Journals (Sweden)

    Philipp Follwaczny

    2017-11-01

    Full Text Available Epilepsy is a neurological disease that is caused by abnormal hypersynchronous activities of neuronal ensembles leading to recurrent and spontaneous seizures in human patients. Enhanced neuronal excitability and a high level of synchrony between neurons seem to trigger these spontaneous seizures. The molecular mechanisms, however, regarding the development of neuronal hyperexcitability and maintenance of epilepsy are still poorly understood. Here, we show that pumilio RNA-binding family member 2 (Pumilio2; Pum2 plays a role in the regulation of excitability in hippocampal neurons of weaned and 5-month-old male mice. Almost complete deficiency of Pum2 in adult Pum2 gene-trap mice (Pum2 GT causes misregulation of genes involved in neuronal excitability control. Interestingly, this finding is accompanied by the development of spontaneous epileptic seizures in Pum2 GT mice. Furthermore, we detect an age-dependent increase in Scn1a (Nav1.1 and Scn8a (Nav1.6 mRNA levels together with a decrease in Scn2a (Nav1.2 transcript levels in weaned Pum2 GT that is absent in older mice. Moreover, field recordings of CA1 pyramidal neurons show a tendency towards a reduced paired-pulse inhibition after stimulation of the Schaffer-collateral-commissural pathway in Pum2 GT mice, indicating a predisposition to the development of spontaneous seizures at later stages. With the onset of spontaneous seizures at the age of 5 months, we detect increased protein levels of Nav1.1 and Nav1.2 as well as decreased protein levels of Nav1.6 in those mice. In addition, GABA receptor subunit alpha-2 (Gabra2 mRNA levels are increased in weaned and adult mice. Furthermore, we observe an enhanced GABRA2 protein level in the dendritic field of the CA1 subregion in the Pum2 GT hippocampus. We conclude that altered expression levels of known epileptic risk factors such as Nav1.1, Nav1.2, Nav1.6 and GABRA2 result in enhanced seizure susceptibility and manifestation of epilepsy in the

  16. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  17. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    NARCIS (Netherlands)

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling.

  18. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    Science.gov (United States)

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  19. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  20. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  1. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  2. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  3. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  4. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  5. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    Directory of Open Access Journals (Sweden)

    Ana I. Arroba

    2016-09-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−, present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1 protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL, inner plexiform layer (IPL and inner nuclear layer (INL, and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  6. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice.

    Directory of Open Access Journals (Sweden)

    Laurel L Ballantyne

    Full Text Available Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation either failed to extend lifespan (ornithine or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug. A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.

  7. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion

    NARCIS (Netherlands)

    Diepen, J.A. van; Stienstra, R.; Vroegrijk, I.O.C.M.; Berg, S.A.A. van den; Salvatori, D.; Hooiveld, G.J.; Kersten, S.; Tack, C.J.; Netea, M.G.; Smit, J.W.A.; Joosten, L.A.B.; Havekes, L.M.; Dijk, K.W. van; Rensen, P.C.N.

    2013-01-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by

  8. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    Science.gov (United States)

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  9. Hepatitis B virus HBx protein localized to the nucleus restores HBx-deficient virus replication in HepG2 cells and in vivo in hydrodynamically-injected mice

    International Nuclear Information System (INIS)

    Keasler, Victor V.; Hodgson, Amanda J.; Madden, Charles R.; Slagle, Betty L.

    2009-01-01

    Identifying the requirements for the regulatory HBx protein in hepatitis B virus (HBV) replication is an important goal. A plasmid-based HBV replication assay was used to evaluate whether HBx subcellular localization influences its ability to promote virus replication, as measured by real time PCR quantitation of viral capsid-associated DNA. HBx targeted to the nucleus by a nuclear localization signal (NLS-HBx) was able to restore HBx-deficient HBV replication, while HBx containing a nuclear export signal (NES-HBx) was not. Both NLS-HBx and NES-HBx were expressed at similar levels (by immunoprecipitation and Western blotting), and proper localization of the signal sequence-tagged proteins was confirmed by deconvolution microscopy using HBx, NLS-HBx, and NES-HBx proteins fused to GFP. Importantly, these findings were confirmed in vivo by hydrodynamic injection into mice. Our results demonstrate that in these HBV replication assays, at least one function of HBx requires its localization to the nucleus.

  10. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  11. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  12. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.

    Science.gov (United States)

    Lagishetty, Venu; Misharin, Alexander V; Liu, Nancy Q; Lisse, Thomas S; Chun, Rene F; Ouyang, Yi; McLachlan, Sandra M; Adams, John S; Hewison, Martin

    2010-06-01

    Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.

  13. Protein tyrosine phosphatase receptor type R deficient mice exhibit increased exploration in a new environment and impaired novel object recognition memory

    NARCIS (Netherlands)

    Erkens, M.; Bakker, B.; Duijn, L.M. van; Hendriks, W.J.A.J.; Zee, C.E.E.M. van der

    2014-01-01

    Mouse gene Ptprr encodes multiple protein tyrosine phosphatase receptor type R (PTPRR) isoforms that negatively regulate mitogen-activated protein kinase (MAPK) signaling pathways. In the mouse brain, PTPRR proteins are expressed in cerebellum, olfactory bulb, hippocampus, amygdala and perirhinal

  14. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  15. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  16. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Polyxeni T Mantani

    Full Text Available IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apoE deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.

  17. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  18. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  19. Modified Protein Improves Vitiligo Symptoms in Mice

    Science.gov (United States)

    ... Vitiligo Symptoms in Mice Spotlight on Research Modified Protein Improves Vitiligo Symptoms in Mice By Colleen Labbe, ... D., Ph.D., Rush University. Altering a key protein involved in the development of vitiligo may protect ...

  20. Uptakes of trace elements in Zn-deficient mice

    International Nuclear Information System (INIS)

    Ohyama, T.; Yanaga, M.; Yoshida, T.; Maetsu, H.; Suganuma, H.; Omori, T.

    2002-01-01

    A multitracer technique was used to obtain uptake rates of essential trace elements in various organs and tissues in Zn-deficient mice. A multitracer solution, containing more than 20 radioisotopes, was injected intraperitoneally into Zn-deficient state mice and control ones. Uptake rates of the radioisotopes were compared with concentrations of trace elements determined by instrumental neutron activation analysis (INAA) in order to study a specific metabolism of Zn and other essential trace elements, such as Mn, Co, Se, Rb, and Sr. The result suggests that Zn is supplied from bone to other organs and tissues and an increase in Co concentration in all organs and tissues depends on its chemical form, under the Z-deficient state. (author)

  1. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  2. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  3. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  4. Hyperglucagonemia during insulin deficiency accelerates protein catabolism

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Matthews, D.E.; Welle, S.L.

    1987-01-01

    Hyperglucagonemia coexists with insulin deficiency or insulin resistance in many conditions where urinary nitrogen excretion is increased, but the precise role of glucagon in these conditions is controversial. The purpose of this study was to evaluate the effect of hyperglucagonemia on protein metabolism in insulin-deficient subjects. The authors used the stable isotope of an essential amino acid (L-[1- 13 C]leucine) as a tracer of in vivo protein metabolism. A combined deficiency of insulin and glucagon was induced by intravenous infusion of somatostatin. Hyperglucagonemia and hypoinsulinemia were induced by infusions of somatostatin and glucagon. When somatostatin alone was infused leucine flux increased, indicating a 6-17% increase in proteolysis. When somatostatin and glucagon were infused, leucine flux increased, indicating a 12-32% increase in proteolysis. The increase in leucine flux during the infusion of somatostatin and glucagon was higher than the increase during infusion of somatostatin alone. Somatostatin alone did not change leucine oxidation, whereas the somatostatin plus glucagon increased leucine oxidation 100%. They conclude that hyperglucagonemia accelerated proteolysis and leucine oxidation in insulin-deficient humans

  5. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  6. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  7. Prolonged high frequency electrical stimulation is lethal to motor axons of mice heterozygously deficient for the myelin protein P0 gene

    DEFF Research Database (Denmark)

    Alvarez, Susana; Moldovan, Mihai; Krarup, Christian

    2013-01-01

    demyelinating neuropathy reminiscent of CMT Type 1b. Accumulating evidence suggests that impulse conduction can become lethal to acutely demyelinated central and peripheral axons. Here we investigated the vulnerability of motor axons to long-lasting, high-frequency repetitive stimulation (RS) in P₀+/- mice...... as compared to WT littermates at 7, 12, and 20 months of age. RS was carried out in interrupted trains of 200 Hz trains for 3h. Tibial nerves were stimulated at the ankle while the evoked compound muscle action potentials (CMAPs) and the ascending compound nerve action potentials (CNAPs) were recorded from...... aging and the dysmyelinating disease process may contribute to the susceptibility to activity-induced axonal degeneration. It is possible that in aging mice and in P₀+/- there is inadequate energy-dependent Na(+)/K(+) pumping, as indicated by the reduced post-stimulation hyperpolarization, which may...

  8. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice

    NARCIS (Netherlands)

    van Pelt, A. M.; de rooij, D. G.

    1990-01-01

    The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At

  9. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  10. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  11. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  12. Cartilage oligomeric matrix protein deficiency promotes early onset and the chronic development of collagen-induced arthritis

    DEFF Research Database (Denmark)

    Geng, Hui; Carlsen, Stefan; Nandakumar, Kutty

    2008-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a homopentameric protein in cartilage. The development of arthritis, like collagen-induced arthritis (CIA), involves cartilage as a target tissue. We have investigated the development of CIA in COMP-deficient mice. METHODS: COMP......-deficient mice in the 129/Sv background were backcrossed for 10 generations against B10.Q mice, which are susceptible to chronic CIA. COMP-deficient and wild-type mice were tested for onset, incidence, and severity of arthritis in both the collagen and collagen antibody-induced arthritis models. Serum anti......-collagen II and anti-COMP antibodies as well as serum COMP levels in arthritic and wild-type mice were measured by enzyme-linked immunosorbent assay. RESULTS: COMP-deficient mice showed a significant early onset and increase in the severity of CIA in the chronic phase, whereas collagen II-antibody titers were...

  13. Urea utilization in protein deficient rats

    International Nuclear Information System (INIS)

    Tanaka, Noriko

    1982-01-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The 15 N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of 15 N-urea (10 mg/100gB.W.) and higher level of 15 N concentration in plasma protein in LPD group was maintained thereafter. The 15 N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The 15 N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of 15 N-urea (10mg/100gB.W.). However, the 15 N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis. (J.P.N.)

  14. Urea utilization in protein deficient rats

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, N [Hyogo College of Medicine, Nishinomiya, Hyogo (Japan)

    1982-06-01

    Three experiments were performed to investigate the mechanism of urea utilization and the nutritional roles of intestinal flora on the utilization of urea by rats fed with a protein deficient diet. Ammonia content in the small intestine in LPD(low protein diet) group fed with a low protein diet for 2 or 5 weeks was about three of five times higher than that of control group fed with SPD(standard protein diet) after administration of urea (0.2gN/100gB.W.). The /sup 15/N incorporation into plasma protein of LPD group was significantly higher than that of the control group two hours after the administration of /sup 15/N-urea (10 mg/100gB.W.) and higher level of /sup 15/N concentration in plasma protein in LPD group was maintained thereafter. The /sup 15/N incorporation into the amino acids of plasma protein was higher in LPD group than in control group. The /sup 15/N incorporation into the amino acids in portal plasma seemed to be higher in LPD group than in control group one hour after the administration of /sup 15/N-urea (10mg/100gB.W.). However, the /sup 15/N incorporation into each free amino acids was suppressed considerably by the administration of antibiotic mixture. it follows that amino acids may be synthesized from urea in the intestine by intestinal-bacterial action and absorbed from portal vein. From these results, it may be concluded that the ammonia nitrogen converted from urea by the action of intestinal-bacterial urease in the intestine is utilized for the synthesis of essential and nonessential amino acids in protein deficient rats and transfered to the liver through portal vein and utilized for protein synthesis.

  15. Silencing of Anticoagulant Protein C Evokes Low-Incident but Spontaneous Atherothrombosis in Apolipoprotein E-Deficient Mice-Brief Report

    NARCIS (Netherlands)

    Ouweneel, Amber B.; Heestermans, Marco; Verwilligen, Robin A. F.; Gijbels, Marion J. J.; Reitsma, Pieter H.; van Eck, Miranda; van Vlijmen, Bart J. M.

    2017-01-01

    Murine atherosclerosis models do not spontaneously develop atherothrombotic complications. We investigated whether disruption of natural anticoagulation allows preexisting atherosclerotic plaques to progress toward an atherothrombotic phenotype. On lowering of plasma protein C levels with small

  16. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  18. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W.; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James; Xu, Yan; Shen, Xiling; Kalady, Mathew F.; Markowitz, Sanford; Maillard, Ivan; Lowe, John B.; Xin, Wei; Zhou, Lan

    2016-01-01

    Background & Aims De novo synthesis of GDP-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or TSTA3). GMDS deletions and mutations are found in 6%–13% of colorectal cancers; these mostly affect ascending and transverse colon. We investigated whether lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. Methods FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx–/– mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by ELISAs to measure cytokine levels; T cells were also collected and analyzed. Fecal samples were analyzed by 16s rRNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx–/– or control mice (Ly5.2) into irradiated 8-week old Fx–/– or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Results Fx–/– mice developed colitis and serrated-like lesions. The intestinal pathology of Fx–/– mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx–/– mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced

  19. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    Science.gov (United States)

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. Copyright © 2016 the American Physiological Society.

  20. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  1. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  2. Surfactant protein D of the innate immune defence is inversely associated with human obesity and SP-D deficiency infers increased body weight in mice

    DEFF Research Database (Denmark)

    Sorensen, G.L.; Hjelmborg, J.V.B.; Leth-Larsen, R.

    2006-01-01

    Surfactant protein D (SP-D) is a key regulator of pathogen-induced inflammation. SP-D is further involved in lipid homeostasis in mouse lung and circulation and recent data have demonstrated that the body mass index (BMI; in kg/m(2)) is influenced by genes in common with SP-D. The objective...

  3. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies

    International Nuclear Information System (INIS)

    Spiegelstein, Ofer; Gould, Amy; Wlodarczyk, Bogdan; Tsie, Marlene; Lu Xiufen; Le, Chris; Troen, Aron; Selhub, Jacob; Piedrahita, Jorge A.; Salbaum, J. Michael; Kappen, Claudia; Melnyk, Stepan; James, Jill; Finnell, Richard H.

    2005-01-01

    Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2 -/- ) were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsenate was further exacerbated. Contrary to expectations, studies on 24-h urinary speciation of sodium arsenate did not demonstrate any significant difference in arsenic biotransformation between Folbp2 -/- and Folbp2 +/+ mice. To better understand the influence of folate pathway genes on arsenic embryotoxicity, the present investigation utilized transgenic mice with disrupted folate binding protein 1 (Folbp1) and reduced folate carrier (RFC) genes. Because complete inactivation of Folbp1 and RFC genes results in embryonic lethality, we used heterozygous animals. Overall, no RFC genotype-related differences in embryonic susceptibility to arsenic exposure were observed. Embryonic lethality and neural tube defect (NTD) frequency in Folbp1 mice was dose-dependent and differed from the RFC mice; however, no genotype-related differences were observed. The RFC heterozygotes tended to have higher plasma levels of S-adenosylhomocysteine (SAH) than did the wild-type controls, although this effect was not robust. It is concluded that genetic modifications at the Folbp1 and RFC loci confers no particular sensitivity to arsenic toxicity compared to wild-type controls, thus disproving the working hypothesis that decreased methylating capacity of the genetically modified mice would put them at increased risk for arsenic-induced reproductive toxicity

  4. Aged PROP1 deficient dwarf mice maintain ACTH production.

    Directory of Open Access Journals (Sweden)

    Igor O Nasonkin

    Full Text Available Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1(null (Prop1(-/- and the Ames dwarf (Prop1(df/df mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism.

  5. Urethral dysfunction in female mice with estrogen receptor β deficiency.

    Directory of Open Access Journals (Sweden)

    Yung-Hsiang Chen

    Full Text Available Estrogen has various regulatory functions in the growth, development, and differentiation of the female urogenital system. This study investigated the roles of ERβ in stress urinary incontinence (SUI. Wild-type (ERβ(+/+ and knockout (ERβ(-/- female mice were generated (aged 6-8 weeks, n = 6 and urethral function and protein expression were measured. Leak point pressures (LPP and maximum urethral closure pressure (MUCP were assessed in mice under urethane anesthesia. After the measurements, the urethras were removed for proteomic analysis using label-free quantitative proteomics by nano-liquid chromatography-mass spectrometry (LC-MS/MS analysis. The interaction between these proteins was further analysed using MetaCore. Lastly, Western blot was used to confirm the candidate proteins. Compared with the ERβ(+/+ group, the LPP and MUCP values of the ERβ(-/- group were significantly decreased. Additionally, we identified 85 differentially expressed proteins in the urethra of ERβ(-/- female mice; 57 proteins were up-regulated and 28 were down-regulated. The majority of the ERβ knockout-modified proteins were involved in cell-matrix adhesion, metabolism, immune response, signal transduction, nuclear receptor translational regelation, and muscle contraction and development. Western blot confirmed the up-regulation of myosin and collagen in urethra. By contrast, elastin was down-regulated in the ERβ(-/- mice. This study is the first study to estimate protein expression changes in urethras from ERβ(-/- female mice. These changes could be related to the molecular mechanism of ERβ in SUI.

  6. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite......The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules...

  7. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  8. Transmitter release in the neuromuscular synapse of the protein kinase C theta-deficient adult mouse.

    Science.gov (United States)

    Besalduch, Núria; Santafé, Manel M; Garcia, Neus; Gonzalez, Carmen; Tomás, Marta; Tomás, Josep; Lanuza, Maria A

    2011-04-01

    We studied structural and functional features of the neuromuscular junction in adult mice (P30) genetically deficient in the protein kinase C (PKC) theta isoform. Confocal and electron microscopy shows that there are no differences in the general morphology of the endplates between PKC theta-deficient and wild-type (WT) mice. Specifically, there is no difference in the density of the synaptic vesicles. However, the myelin sheath is not as thick in the intramuscular nerve fibers of the PKC theta-deficient mice. We found a significant reduction in the size of evoked endplate potentials and in the frequency of spontaneous, asynchronous, miniature endplate potentials in the PKC theta-deficient neuromuscular preparations in comparison with the WT, but the mean amplitude of the spontaneous potentials is not different. These changes indicate that PKC theta has a presynaptic role in the function of adult neuromuscular synapses. Copyright © 2010 Wiley-Liss, Inc.

  9. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  10. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  11. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  12. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  13. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  14. Delayed allogeneic skin graft rejection in CD26-deficient mice.

    Science.gov (United States)

    Zhao, Xiangli; Zhang, Kai; Daniel, Peter; Wisbrun, Natali; Fuchs, Hendrik; Fan, Hua

    2018-03-23

    Organ transplantation is an effective therapeutic tool for treating many terminal diseases. However, one of the biggest challenges of transplantation is determining how to achieve the long-term survival of the allogeneic or xenogeneic transplant by, for example, preventing transplant rejection. In the current study, CD26 gene-knockout mice were used to investigate the potential role of CD26/dipeptidyl peptidase-4 (DPPIV) in allogeneic skin graft rejection by tail-skin transplantation. Compared with wild-type (CD26 +/+ ) counterparts, CD26 -/- mice showed reduced necrosis of grafts and delayed graft rejection after skin transplantation. Concentrations of serum IgG, including its subclasses IgG1 and IgG2a, were significantly reduced in CD26 -/- mice during graft rejection. Moreover, after allogeneic skin transplantation, the secretion levels of the cytokines IFN-γ, IL-2, IL-6, IL-4, and IL-13 were significantly reduced, whereas the level of the cytokine IL-10 was increased in the serum of CD26 -/- mice compared with that in the serum of CD26 +/+ mice. Additionally, the concentration of IL-17 in serum and the percentage of cells secreting IL-17 in mouse peripheral blood lymphocytes (MPBLs) were both significantly lower, while the percentage of regulatory T cells (Tregs) was significantly higher in MPBLs of CD26 -/- mice than in those of CD26 +/+ mice. Furthermore, a lower percentage of CD8 + T cells in MPBLs and fewer infiltrated macrophages and T cells in graft tissues of CD26 -/- mice were detected during graft rejection. These results indicate that CD26 is involved in allogeneic skin graft rejection and provides another hint that CD26 deficiency leads to less rejection due to lower activation and proliferation of host immune cells.

  15. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  16. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    Science.gov (United States)

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  17. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  18. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    Directory of Open Access Journals (Sweden)

    Manal Alkan

    2015-01-01

    Full Text Available Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD mouse model. To this end, we used mice (inactivated knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.

  20. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    Science.gov (United States)

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  1. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    OpenAIRE

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-01-01

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mob...

  2. Laminin alpha2 deficiency and muscular dystrophy; genotype-phenotype correlation in mutant mice

    DEFF Research Database (Denmark)

    Guo, L T; Zhang, X U; Kuang, W

    2003-01-01

    2, lacking domain VI. Interestingly, all mutants lack laminin alpha2 in peripheral nerve. We have demonstrated previously, that overexpression of the human laminin alpha2 in skeletal muscle in dy(2J)/dy(2J) and dy(W)/dy(W) mice under the control of a striated muscle-specific creatine kinase promoter......Deficiency of laminin alpha2 is the cause of one of the most severe muscular dystrophies in humans and other species. It is not yet clear how particular mutations in the laminin alpha2 chain gene affect protein expression, and how abnormal levels or structure of the protein affect disease. Animal...

  3. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice.

    Science.gov (United States)

    Martin, Nellie A; Molnar, Viktor; Szilagyi, Gabor T; Elkjaer, Maria L; Nawrocki, Arkadiusz; Okarmus, Justyna; Wlodarczyk, Agnieszka; Thygesen, Eva K; Palkovits, Miklos; Gallyas, Ferenc; Larsen, Martin R; Lassmann, Hans; Benedikz, Eirikur; Owens, Trevor; Svenningsen, Asa F; Illes, Zsolt

    2018-01-01

    The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP + oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2 + OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3 + and Iba1 + macrophages/microglia was

  4. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice

    Directory of Open Access Journals (Sweden)

    Nellie A. Martin

    2018-03-01

    Full Text Available BackgroundThe cuprizone (CPZ model of multiple sclerosis (MS was used to identify microRNAs (miRNAs related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs during remyelination, but its role has not been examined during demyelination.MethodsMicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray and proteome (liquid chromatography tandem mass spectrometry of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis.ResultsmiR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP+ oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2+ OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3+ and

  5. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  6. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  7. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    Science.gov (United States)

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  8. CDKL5 deficiency entails sleep apneas in mice.

    Science.gov (United States)

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  9. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  10. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  11. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  12. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    International Nuclear Information System (INIS)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-01-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage 51 Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed

  13. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  14. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  15. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  16. Correction of lysosomal enzyme deficiency in various organs of beta-glucuronidase-deficient mice by allogeneic bone marrow transplantation

    NARCIS (Netherlands)

    Hoogerbrugge, P. M.; Poorthuis, B. J.; Mulder, A. H.; Wagemaker, G.; Dooren, L. J.; Vossen, J. M.; van Bekkum, D. W.

    1987-01-01

    The correction of lysosomal enzyme deficiency was investigated for various organs of beta-glucuronidase-deficient C3H/Rij mice after allogeneic bone marrow transplantation from an enzymatically normal donor strain (C57BL/Rij). In the hemopoietic organs, the enzyme level increased to levels found in

  17. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  18. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  19. Hippocampal network oscillations in APP/APLP2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaomin Zhang

    Full Text Available The physiological function of amyloid precursor protein (APP and its two homologues APP-like protein 1 (APLP1 and 2 (APLP2 is largely unknown. Previous work suggests that lack of APP or APLP2 impairs synaptic plasticity and spatial learning. There is, however, almost no data on the role of APP or APLP at the network level which forms a critical interface between cellular functions and behavior. We have therefore investigated memory-related synaptic and network functions in hippocampal slices from three lines of transgenic mice: APPsα-KI (mice expressing extracellular fragment of APP, corresponding to the secreted APPsα ectodomain, APLP2-KO, and combined APPsα-KI/APLP2-KO (APPsα-DM for "double mutants". We analyzed two prominent patterns of network activity, gamma oscillations and sharp-wave ripple complexes (SPW-R. Both patterns were generally preserved in all strains. We find, however, a significantly reduced frequency of gamma oscillations in CA3 of APLP2-KO mice in comparison to APPsα-KI and WT mice. Network activity, basic synaptic transmission and short-term plasticity were unaltered in the combined mutants (APPsα-DM which showed, however, reduced long-term potentiation (LTP. Together, our data indicate that APLP2 and the intracellular domain of APP are not essential for coherent activity patterns in the hippocampus, but have subtle effects on synaptic plasticity and fine-tuning of network oscillations.

  20. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  1. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  2. Spontaneous chondroma formation in CD2-Cre-driven Erk-deficient mice.

    Science.gov (United States)

    Shiokawa, Moe; Lu, Xiuyuan; Miyake, Yasunobu; Ishikawa, Eri; Pagès, Gilles; Pouysségur, Jacques; Ogata, Masato; Yamasaki, Sho

    2017-12-18

    Lineage-specific Cre Tg mice are widely used to delineate the functions of genes in a tissue-specific manner. Several T-cell-specific promoter cassettes have been developed; however, the activities of those promoters in non-T cells have not been investigated extensively. Here, we report that CD2-Cre-mediated deletion of Erk proteins by generating CD2-Cre × Erk1-/-Erk2flox/flox (Erk∆CD2-Cre) mice results in abnormal cartilage hyperplasia. Histological analysis revealed that this abnormality is caused by aberrant hyperplasia of chondrocytes. The presence of Erk-deficient T cells is not required for this chondroma formation, as it was similarly observed in the absence of T cells in a CD3ε-deficient background. In addition, adoptive transfer of bone marrow cells from Erk∆CD2-Cre mice to wild-type recipients did not cause chondroma formation, suggesting that Erk-deficient non-immune cells are responsible for this abnormality. By tracing Cre-expressed tissues using a ROSA26-STOP-RFP allele, we found that the chondroma emitted RFP fluorescence, indicating that functional Cre is expressed in hyperplastic chondrocytes in Erk∆CD2-Cre mice. Furthermore, RFP+ chondrocytes were also found in an Erk-sufficient background, albeit without aberrant growth. These results suggest that unexpected expression of CD2-driven Cre in chondrocytes generates Erk-deficient chondrocytes, resulting in hyperplastic cartilage formation. Recently, two independent reports showed that CD4-Cre-mediated Ras-Erk signaling ablation led to similar abnormal cartilage formation (Guittard, G., Gallardo, D. L., Li, W. et al. 2017. Unexpected cartilage phenotype in CD4-Cre-conditional SOS-deficient mice. Front. Immunol. 8:343; Wehenkel, M., Corr, M., Guy, C. S. et al. 2017. Extracellular signal-regulated kinase signaling in CD4-expressing cells inhibits osteochondromas. Front. Immunol. 8:482). Together with these reports, our study suggests that an unexpected link exists between T-like cell and

  3. Mice deficient for ERAD machinery component Sel1L develop central diabetes insipidus.

    Science.gov (United States)

    Bichet, Daniel G; Lussier, Yoann

    2017-10-02

    Deficiency of the antidiuretic hormone arginine vasopressin (AVP) underlies diabetes insipidus, which is characterized by the excretion of abnormally large volumes of dilute urine and persistent thirst. In this issue of the JCI, Shi et al. report that Sel1L-Hrd1 ER-associated degradation (ERAD) is responsible for the clearance of misfolded pro-arginine vasopressin (proAVP) in the ER. Additionally, mice with Sel1L deficiency, either globally or specifically within AVP-expressing neurons, developed central diabetes insipidus. The results of this study demonstrate a role for ERAD in neuroendocrine cells and serve as a clinical example of the effect of misfolded ER proteins retrotranslocated through the membrane into the cytosol, where they are polyubiquitinated, extracted from the ER membrane, and degraded by the proteasome. Moreover, proAVP misfolding in hereditary central diabetes insipidus likely shares common physiopathological mechanisms with proinsulin misfolding in hereditary diabetes mellitus of youth.

  4. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    International Nuclear Information System (INIS)

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao; Liu George

    2006-01-01

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis

  5. Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes.

    Science.gov (United States)

    Burke, Derek G; Rahim, Ahad A; Waddington, Simon N; Karlsson, Stefan; Enquist, Ida; Bhatia, Kailash; Mehta, Atul; Vellodi, Ashok; Heales, Simon

    2013-09-01

    Lysosomal glucocerebrosidase (GBA1) deficiency is causative for Gaucher disease. Not all individuals with GBA1 mutations develop neurological involvement raising the possibility that other factors may provide compensatory protection. One factor may be the activity of the non-lysosomal β-glucosidase (GBA2) which exhibits catalytic activity towards glucosylceramide and is reported to be highly expressed in brain tissue. Here, we assessed brain GBA2 enzymatic activity in wild type, heterozygote and GBA1 deficient mice. Additionally, we determined activity in leucocytes obtained from 13 patients with Gaucher disease, 10 patients with enzymology consistent with heterozygote status and 19 controls. For wild type animals, GBA2 accounted for over 85 % of total brain GBA activity and was significantly elevated in GBA1 deficient mice when compared to heterozygote and wild types (GBA1 deficient; 92.4 ± 5.6, heterozygote; 71.5 ± 2.4, wild type 76.8 ± 5.1 nmol/h/mg protein). For the patient samples, five Gaucher patients had GBA2 leucocyte activities markedly greater than controls. No difference in GBA2 activity was apparent between the control and carrier groups. Undetectable GBA2 activity was identified in four leucocyte preparations; one in the control group, two in the carrier group and one from the Gaucher disease group. Work is now required to ascertain whether GBA2 activity is a disease modifying factor in Gaucher disease and to identify the mechanism(s) responsible for triggering increased GBA2 activity in GBA1 deficiency states.

  6. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    Science.gov (United States)

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  7. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    International Nuclear Information System (INIS)

    Gao, Jialin; Zhang, Yao; Yu, Cui; Tan, Fengbiao; Wang, Lizhuo

    2016-01-01

    disease (NAFLD) accompanied by ERS. In summary, as a lysosomal membrane protein, Sidt2 plays an important role in the pathogenesis of NAFLD, and ERS may mediate the occurrence and development of this disease in Sdit2 deficiency mice.

  8. Spontaneous nonalcoholic fatty liver disease and ER stress in Sidt2 deficiency mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jialin [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Zhang, Yao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Yu, Cui [Department of Endocrinology and Genetic Metabolism, Yijishan Hospital of Wannan Medical College, Wuhu, 241002 (China); Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Tan, Fengbiao [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China); Wang, Lizhuo, E-mail: 19277924@qq.com [Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241001 (China); Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, 241002 (China)

    2016-08-05

    nonalcoholic fatty liver disease (NAFLD) accompanied by ERS. In summary, as a lysosomal membrane protein, Sidt2 plays an important role in the pathogenesis of NAFLD, and ERS may mediate the occurrence and development of this disease in Sdit2 deficiency mice.

  9. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.

    Science.gov (United States)

    Porosk, Rando; Terasmaa, Anton; Mahlapuu, Riina; Soomets, Ursel; Kilk, Kalle

    2017-12-01

    Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.

  11. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice

    Directory of Open Access Journals (Sweden)

    Ino Mitsuhiro

    2005-05-01

    Full Text Available Abstract Background ADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22's sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice. Results ADAM22-deficient mice were produced in a good accordance with the Mendelian ratio and appeared normal at birth. After one week, severe ataxia was observed, and all homozygotes died before weaning, probably due to convulsions. No major histological abnormalities were detected in the cerebral cortex or cerebellum of the homozygous mutants; however, marked hypomyelination of the peripheral nerves was observed. Conclusion The results of our study demonstrate that ADAM22 is closely involved in the correct functioning of the nervous system. Further analysis of ADAM22 will provide clues to understanding the mechanisms of human diseases such as epileptic seizures and peripheral neuropathy.

  12. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Stefanie Grabrucker

    2018-01-01

    Full Text Available A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1 in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.

  13. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  14. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    Science.gov (United States)

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.

    Science.gov (United States)

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-03-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Vitamin E-deficiency did not exacerbate partial skin reactions in mice locally irradiated with X-rays

    International Nuclear Information System (INIS)

    Chi, C.; Hayashi, Daisuke; Nemoto, Masato; Nyui, Minako; Anzai, Kazunori; Urano, Shiro

    2011-01-01

    We previously showed that free radicals and oxidative stress are involved in radiation-induced skin reactions. Since vitamin E (VE) is a particularly important lipophilic antioxidant, VE-deficient mice were used to examine its effects on radiation-induced skin damage. The VE content of the skin was reduced to one fourth of levels of normal mice. Neither the time of onset nor the extent of the reactions quantified with a scoring system differed between normal and VE-deficient mice after local X-irradiation (50 Gy). Similarly, there was no difference in the levels of the ascorbyl radical between the groups, although they were higher in irradiated skin than non-irradiated skin. X-irradiation increased the amount of Bax protein in the skin of normal mice both in the latent and acute inflammatory stages, time- and dose-dependently. The increase was associated with an increase in cytochrome c in the cytosolic fraction, indicating that apoptosis was also promoted by the irradiation. The increase in Bax protein correlated well with the thickness of the skin. Although a deficiency in VE should lower resistance to free radicals in the mitochondrial membrane and thus enhance radiation-induced Bax expression and apoptosis, it actually attenuated the increase in Bax protein caused by irradiation. (author)

  17. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...... this phenomenon could reflect participation of B cells and/or Abs in long term virus control, similar experiments were performed with mice that do not have mature B cells because of a disrupted membrane exon of the mu chain gene. In these mice, the cell-mediated immune response was slightly delayed, but transient...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  18. Venous thromboembolism associated with protein S deficiency due ...

    Indian Academy of Sciences (India)

    EWA WYPASEK

    2017-12-11

    Dec 11, 2017 ... qualitative tests, PS deficiency is classified as type I (low- ... fied studies of genotype–phenotype correlation and search. 1047 .... assay (Berichrom Protein C, Siemens Healthcare Diagnos- ..... tional international cohort study.

  19. Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    Lauren R Harms

    Full Text Available Epidemiological evidence suggests that Developmental Vitamin D (DVD deficiency is associated with an increased risk of schizophrenia. DVD deficiency in mice is associated with altered behaviour, however there has been no detailed investigation of cognitive behaviours in DVD-deficient mice. The aim of this study was to determine the effect of DVD deficiency on a range of cognitive tasks assessing attentional processing in C57BL/6J mice. DVD deficiency was established by feeding female C57BL/6J mice a vitamin D-deficient diet from four weeks of age. After six weeks on the diet, vitamin D-deficient and control females were mated with vitamin D-normal males and upon birth of the pups, all dams were returned to a diet containing vitamin D. The adult offspring were tested on a range of cognitive behavioural tests, including the five-choice serial reaction task (5C-SRT and five-choice continuous performance test (5C-CPT, as well as latent inhibition using a fear conditioning paradigm. DVD deficiency was not associated with altered attentional performance on the 5C-SRT. In the 5C-CPT DVD-deficient male mice exhibited an impairment in inhibiting repetitive responses by making more perseverative responses, with no changes in premature or false alarm responding. DVD deficiency did not affect the acquisition or retention of cued fear conditioning, nor did it affect the expression of latent inhibition using a fear conditioning paradigm. DVD-deficient mice exhibited no major impairments in any of the cognitive domains tested. However, impairments in perseverative responding in DVD-deficient mice may indicate that these animals have specific alterations in systems governing compulsive or reward-seeking behaviour.

  20. Clearance of Giardia muris infection in mice deficient in natural killer cells.

    OpenAIRE

    Heyworth, M F; Kung, J E; Eriksson, E C

    1986-01-01

    Immunocompetent C57BL/6J mice and beige mice (which are deficient in natural killer cells) were infected with Giardia muris. Both types of mice cleared G. muris infection at similar rates. This observation suggests that clearance of G. muris parasites from the mouse intestine is not mediated by natural killer cells.

  1. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. CD1d deficiency inhibits the development of abdominal aortic aneurysms in LDL receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Gijs H M van Puijvelde

    Full Text Available An abdominal aortic aneurysm (AAA is a dilatation of the abdominal aorta leading to serious complications and mostly to death. AAA development is associated with an accumulation of inflammatory cells in the aorta including NKT cells. An important factor in promoting the recruitment of these inflammatory cells into tissues and thereby contributing to the development of AAA is angiotensin II (Ang II. We demonstrate that a deficiency in CD1d dependent NKT cells under hyperlipidemic conditions (LDLr-/-CD1d-/- mice results in a strong decline in the severity of angiotensin II induced aneurysm formation when compared with LDLr-/- mice. In addition, we show that Ang II amplifies the activation of NKT cells both in vivo and in vitro. We also provide evidence that type I NKT cells contribute to AAA development by inducing the expression of matrix degrading enzymes in vSMCs and macrophages, and by cytokine dependently decreasing vSMC viability. Altogether, these data prove that CD1d-dependent NKT cells contribute to AAA development in the Ang II-mediated aneurysm model by enhancing aortic degradation, establishing that therapeutic applications which target NKT cells can be a successful way to prevent AAA development.

  3. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Directory of Open Access Journals (Sweden)

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  4. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Science.gov (United States)

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  5. Effect of complete protein 4.1R deficiency on ion transport properties of murine erythrocytes

    International Nuclear Information System (INIS)

    Rivera, Alicia; De Franceschi, Lucia; Peters, Luanne L.; Gascard, Philippe; Mohandas, Narla; Brugnara, Carlo

    2006-01-01

    Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TS et al., J. Clin. Invest. 103:331,1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1-/- mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1-/- erythrocytes was markedly activated by exposure to hypertonic conditions (18.2+- 3.2 in 4.1 -/- vs.9.8 +- 1.3 mmol/1013 cell x h in control mice), with an abnormal dependence on osmolarity, (K0.5=417 +- 42 in 4.1 -/- vs. 460 +- 35 mOsmin control mice) suggestive of an up-regulated functional state. While the affinity for internal protons was not altered (K0.5= 489.7 +- 0.7 vs.537.0 +- 0.56 nM in control mice), the Vmax of the H-induced Na/H exchange activity was markedly elevated in 4.1-/- erythrocytes Vmax 91.47 Moderate hemolytic anemia, abnormal erythrocyte morphology (spherocytosis), and decreased membrane stability are observed in mice with complete deficiency of all erythroid protein 4.1 protein isoforms (4.1-/-; Shi TSet al., J. Clin. Invest. 103:331,1999). We have examined the effects of erythroid protein 4.1 (4.1R) deficiency on erythrocyte cation transport and volume regulation. 4.1-/- mice exhibited erythrocyte dehydration that was associated with reduced cellular K and increased Na content. Increased Na permeability was observed in these mice, mostly mediated by Na/H exchange with normal Na-K pump and Na-K-2Cl cotransport activities. The Na/H exchange of 4.1-/- erythrocytes was markedly activated by exposure to hypertonic conditions (18.2 +- 3.2 in 4.1 -/- vs. 9.8 +- 1.3mmol/1013 cell x h in

  6. Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice.

    Science.gov (United States)

    Patel, Hiralben R; Qi, Yong; Hawkins, Evan J; Hileman, Stanley M; Elmquist, Joel K; Imai, Yumi; Ahima, Rexford S

    2006-11-01

    Neuropeptide Y (NPY) stimulates feeding and weight gain, but deletion of the NPY gene does not affect food intake and body weight in mice bred on a mixed genetic background. We reasoned that the orexigenic action of NPY would be evident in C57Bl/6J mice susceptible to obesity. NPY deficiency has no significant effect in mice fed a normal rodent diet. However, energy expenditure is elevated during fasting, and hyperphagia and weight gain are blunted during refeeding. Expression of agouti-related peptide (AGRP) in the hypothalamus is increased in NPY knockout (NPYko) than wild-type mice, but unlike wild type there is no further increase in AGRP when NPYko mice are fasted. Moreover, NPYko mice have higher oxygen consumption and uncoupling protein-1 expression in brown adipose tissue during fasting. The failure of an increase in orexigenic peptides and higher thermogenesis may contribute to attenuation of weight gain when NPYko mice are refed. C57Bl/6J mice lacking NPY are also less susceptible to diet-induced obesity (DIO) as a result of reduced feeding and increased energy expenditure. The resistance to DIO in NPYko mice is associated with a reduction in nocturnal feeding and increased expression of anorexigenic hypothalamic peptides. Insulin, leptin, and triglyceride levels increase with adiposity in both wild-type and NPYko mice.

  7. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    Science.gov (United States)

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  8. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  9. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    Science.gov (United States)

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  10. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    Science.gov (United States)

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  11. Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome

    Directory of Open Access Journals (Sweden)

    Dasnan Ismail

    2002-06-01

    Full Text Available The final most common pathway for the majority of coronary artery disease is occlusion of a coronary vessel. Under normal conditions, antithrombin III (AT III, protein C, and protein S as an active protein C cofactor, are natural anticoagulants (hemostatic control that balances procoagulant activity (thrombin antithrombin complex balance to prevent thrombosis. If the condition becomes unbalanced, natural anticoagulants and the procoagulants can lead to thrombosis. Thirty subjects with acute coronary syndrome (ACS were studied for the incidence of antithrombin III (AT III, protein C, and protein S deficiencies, and the result were compare to the control group. Among patients with ACS, the frequency of distribution of AT-III with activity < 75% were 23,3% (7 of 30, and only 6,7% ( 2 of 30 in control subject. No one of the 30 control subject have protein C activity deficient, in ACS with activity < 70% were 13,3% (4 of 30. Fifteen out of the 30 (50% control subjects had protein S activity deficiency, while proteindeficiency activity < 70% was found 73.3.% (22 out of 30. On linear regression, the deterministic coefficient of AT-III activity deficiency to the development ACS was 13,25 %, and the deterministic coefficient of protein C activity deficient to the development of ACS was 9,06 %. The cut-off point for AT-III without protein S deficiency expected to contribute to the development of vessel disease was 45%. On discriminant analysis, protein C activity deficiency posed a risk for ACS of 4,5 greater than non deficient subjects, and AT-III activity deficiency posed a risk for ACS of 3,5 times greater than non deficient subjects. On binary logistic regression, protein S activity acted only as a reinforcing factor of AT-III activity deficiency in the development of ACS. Protein C and AT III deficiency can trigger ACS, with determinant coefficients of 9,06% and 13,25% respectively. Low levels of protein C posed a greater risk of

  12. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    Directory of Open Access Journals (Sweden)

    Charles E Bane

    Full Text Available Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/- mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

  13. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  14. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    International Nuclear Information System (INIS)

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-01-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH - ) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH - and hepatic ADH-normal (ADH + ) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼ 1.5-fold greater in ADH - vs. ADH + deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH - deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  15. Glutathione system in Wolfram syndrome 1‑deficient mice.

    Science.gov (United States)

    Porosk, Rando; Kilk, Kalle; Mahlapuu, Riina; Terasmaa, Anton; Soomets, Ursel

    2017-11-01

    Wolfram syndrome 1 (WS) is a rare neurodegenerative disease that is caused by mutations in the Wolfram syndrome 1 (WFS1) gene, which encodes the endoplasmic reticulum (ER) glycoprotein wolframin. The pathophysiology of WS is ER stress, which is generally considered to induce oxidative stress. As WS has a well‑defined monogenetic origin and a model for chronic ER stress, the present study aimed to characterize how glutathione (GSH), a major intracellular antioxidant, was related to the disease and its progression. The concentration of GSH and the activities of reduction/oxidation system enzymes GSH peroxidase and GSH reductase were measured in Wfs1‑deficient mice. The GSH content was lower in most of the studied tissues, and the activities of antioxidative enzymes varied between the heart, kidneys and liver tissues. The results indicated that GSH may be needed for ER stress control; however, chronic ER stress from the genetic syndrome eventually depletes the cellular GSH pool and leads to increased oxidative stress.

  16. Deficiency in plasma protein synthesis caused by x-ray-induced lethal albino alleles in mouse

    International Nuclear Information System (INIS)

    Garland, R.C.; Satrustegui, J.; Gluecksohn-Waelsch, S.; Cori, C.F.

    1976-01-01

    Plasma protein synthesis was studied in mice bearing x-ray induced lethal mutations at the albino locus. Newborn albino mutants showed a decrease in each of the three principal plasma proteins, albumin, α-fetoprotein, and transferrin, when compared with colored littermate controls. Incorporation of [ 14 C] leucine into plasma proteins of the newborn albinos 30 min after injection was only 1 / 5 that of the controls, but incorporation into total liver protein was only slightly diminished. Incorporation of [ 14 C] leucine into an albumin fraction obtained by immunoprecipitation from livers incubated in vitro in an amino acid mixture was also strongly diminished. Thus, the liver of 18-day-old albino fetuses incorporated into this fraction 1 / 3 and that of newborn albinos 1 / 8 as much as the controls, but in both cases the incorporation into total liver protein was only 25 percent less than in the respective controls. These results indicate that the rather severe structural abnormalities observed in the mutants in the endoplasmic reticulum and the Golgi apparatus are not associated with a general deficiency of hepatic protein synthesis. Instead the data from this and previous work show that the progressive deficiency from fetal life to birth involves certain specific proteins represented by several perinatally developing enzymes and by plasma proteins. It is suggested that the mutational effects observed in these mice are due to deletions involving regulatory rather than structural genes at or near the albino locus

  17. Surfactant protein D is proatherogenic in mice

    DEFF Research Database (Denmark)

    Sørensen, G. L.; Madsen, J.; Kejling, K.

    2006-01-01

    Surfactant protein D (SP-D) is an important innate immune defense molecule that mediates clearance of pathogens and modulates the inflammatory response. Moreover, SP-D is involved in lipid homeostasis, and pulmonary accumulation of phospholipids has previously been observed in SP-D-deficient (Spd...

  18. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  20. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  1. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Science.gov (United States)

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  2. Impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen metabolism

    International Nuclear Information System (INIS)

    Kirfel, Jutta; Pantelis, Dimitrios; Kabba, Mustapha; Kahl, Philip; Roeper, Anke; Kalff, Joerg C.; Buettner, Reinhard

    2008-01-01

    Four and one half LIM domain protein FHL2 participates in many cellular processes involved in tissue repair such as regulation of gene expression, cytoarchitecture, cell adhesion, migration and signal transduction. The repair process after wounding is initiated by the release of peptides and bioactive lipids. These molecules induce synthesis and deposition of a provisional extracellular matrix. We showed previously that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of FHL2 in response to activation of the RhoA GTPase. Our present study shows that FHL2 is an important signal transducer influencing the outcome of intestinal anastomotic healing. Early wound healing is accompanied by reconstitution and remodelling of the extracellular matrix and collagen is primarily responsible for wound strength. Our results show that impaired intestinal wound healing in Fhl2-deficient mice is due to disturbed collagen III metabolism. Impaired collagen III synthesis reduced the mechanical stability of the anastomoses and led to lower bursting pressure in Fhl2-deficient mice after surgery. Our data confirm that FHL2 is an important factor regulating collagen expression in the early phase of wound healing, and thereby is critically involved in the physiologic process of anastomosis healing after bowel surgery and thus may represent a new therapeutic target

  3. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  4. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  5. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Jamie K Wong

    Full Text Available Stroke results in brain tissue damage from ischemia and oxidative stress. Molecular regulators of the protective versus deleterious cellular responses after cerebral ischemia remain to be identified. Here, we show that deletion of Smad1, a conserved transcription factor that mediates canonical bone morphogenetic protein (BMP signaling, results in neuroprotection in an ischemia-reperfusion (I/R stroke model. Uninjured mice with conditional deletion of Smad1 in the CNS (Smad1 cKO displayed upregulation of the reactive astrocyte marker GFAP and hypertrophic morphological changes in astrocytes compared to littermate controls. Additionally, cultured Smad1(-/- astrocytes exhibited an enhanced antioxidant capacity. When subjected to I/R injury by transient middle cerebral artery occlusion (tMCAO, Smad1 cKO mice showed enhanced neuronal survival and improved neurological recovery at 7 days post-stroke. This neuroprotective phenotype is associated with attenuated reactive astrocytosis and neuroinflammation, along with reductions in oxidative stress, p53 induction, and apoptosis. Our data suggest that Smad1-mediated signaling pathway is involved in stroke pathophysiology and may present a new potential target for stroke therapy.

  6. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  7. Data on IL-10R neutralization-induced chronic colitis in Lipocalin 2 deficient mice on BALB/c background

    Directory of Open Access Journals (Sweden)

    Vishal Singh

    2017-04-01

    Full Text Available The data herein is related to the research article entitled “Microbiota-inducible Innate Immune, Siderophore Binding Protein Lipocalin 2 is Critical for Intestinal Homeostasis” (Singh et al., 2016 [1] where we have demonstrated that C57BL/6 Lipocalin 2 deficient mice (Lcn2KO developed chronic colitis upon anti-interleukin-10 receptor (αIL-10R monoclonal antibody administration. In the present article, we evaluated the susceptibility of BALB/c Lcn2KO mice and their WT littermates to the αIL-10R neutralization-induced chronic colitis. Our data showed that αIL-10R mAb-treated BALB/c Lcn2KO mice exhibited severe chronic colitis (i.e., splenomegaly, colomegaly, colonic pathology, and incidence of rectal prolapse when compared to WT mice.

  8. Deficiency of heat shock transcription factor 1 suppresses heat stress-associated increase in slow soleus muscle mass of mice.

    Science.gov (United States)

    Ohno, Y; Egawa, T; Yokoyama, S; Nakai, A; Sugiura, T; Ohira, Y; Yoshioka, T; Goto, K

    2015-12-01

    Effects of heat shock transcription factor 1 (HSF1) deficiency on heat stress-associated increase in slow soleus muscle mass of mice were investigated. Both HSF1-null and wild-type mice were randomly assigned to control and heat-stressed groups. Mice in heat-stressed group were exposed to heat stress (41 °C for 60 min) in an incubator without anaesthesia. Significant increase in wet and dry weights, and protein content of soleus muscle in wild-type mice was observed seven days after the application of the heat stress. However, heat stress had no impact on soleus muscle mass in HSF1-null mice. Neither type of mice exhibited much effect of heat stress on HSF mRNA expression (HSF1, HSF2 and HSF4). On the other hand, heat stress upregulated heat shock proteins (HSPs) at the mRNA (HSP72) and protein (HSP72 and HSP110) levels in wild-type mice, but not in HSF1-null mice. The population of Pax7-positive nuclei relative to total myonuclei of soleus muscle in wild-type mice was significantly increased by heat stress, but not in HSF1-null mice. Furthermore, the absence of HSF1 gene suppressed heat stress-associated phosphorylation of Akt and p70 S6 kinase (p-p70S6K) in soleus muscle. Heat stress-associated increase in skeletal muscle mass may be induced by HSF1 and/or HSF1-mediated stress response that activates muscle satellite cells and Akt/p70S6K signalling pathway. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Increased vascular sympathetic modulation in mice with Mas receptor deficiency

    Science.gov (United States)

    Rabello Casali, Karina; Ravizzoni Dartora, Daniela; Moura, Marina; Bertagnolli, Mariane; Bader, Michael; Haibara, Andrea; Alenina, Natalia; Irigoyen, Maria Claudia; Santos, Robson A

    2016-01-01

    Introduction: The angiotensin-converting enzyme 2 (ACE2)/angiotensin (Ang)-(1–7)/Mas axis could modulate the heart rate (HR) and blood pressure variabilities (BPV) which are important predictors of cardiovascular risk and provide information about the autonomic modulation of the cardiovascular system. Therefore we investigated the effect of Mas deficiency on autonomic modulation in wild type and Mas-knockout (KO) mice. Methods: Blood pressure was recorded at high sample rate (4000 Hz). Stationary sequences of 200–250 beats were randomly chosen. Frequency domain analysis of HR and BPV was performed with an autoregressive algorithm on the pulse interval sequences and on respective systolic sequences. Results: The KO group presented an increase of systolic arterial pressure (SAP; 127.26±11.20 vs 135.07±6.98 mmHg), BPV (3.54±1.54 vs 5.87±2.12 mmHg2), and low-frequency component of systolic BPV (0.12±0.11 vs 0.47±0.34 mmHg2). Conclusions: The deletion of Mas receptor is associated with an increase of SAP and with an increased BPV, indicating alterations in autonomic control. Increase of sympathetic vascular modulation in absence of Mas evidences the important role of Ang-(1–7)/Mas on cardiovascular regulation. Moreover, the absence of significant changes in HR and HRV can indicate an adaptation of autonomic cardiac balance. Our results suggest that the Ang-(1–7)/Mas axis seems more important in autonomic modulation of arterial pressure than HR. PMID:27080540

  10. Marginal Biotin Deficiency Is Teratogenic in ICR Mice1,2

    OpenAIRE

    Mock, Donald M.; Mock, Nell I.; Stewart, Christopher W.; LaBorde, James B.; Hansen, Deborah K.

    2003-01-01

    The incidence of marginal biotin deficiency in normal human gestation is approximately one in three. In ICR mice, maternal biotin deficiency results in cleft palate, micrognathia, microglossia and limb hypoplasia. However, the relationships among the severity of maternal biotin deficiency, fetal biotin status and malformations have not been reported. This study utilized validated indices of biotin status to investigate the relationships among maternal biotin status, fetal biotin status and th...

  11. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  12. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The proton pump inhibitor lansoprazole improves the skeletal phenotype in dystrophin deficient mdx mice.

    Directory of Open Access Journals (Sweden)

    Arpana Sali

    Full Text Available In Duchenne muscular dystrophy (DMD, loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology.We designed a preclinical trial to investigate the effects of lansoprazole (LANZO administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group: (1 vehicle control; (2 5 mg/kg/day LANZO; (3 5 mg/kg/day prednisolone; and (4 combined treatment of 5 mg/kg/day prednisolone (PRED and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan and functional outcomes (grip strength and Rotarod were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions.Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant future investigation of the clinical efficacy of LANZO and

  14. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice.

    Science.gov (United States)

    Vingtdeux, Valérie; Chang, Eric H; Frattini, Stephen A; Zhao, Haitian; Chandakkar, Pallavi; Adrien, Leslie; Strohl, Joshua J; Gibson, Elizabeth L; Ohmoto, Makoto; Matsumoto, Ichiro; Huerta, Patricio T; Marambaud, Philippe

    2016-04-12

    CALHM1 is a cell surface calcium channel expressed in cerebral neurons. CALHM1 function in the brain remains unknown, but recent results showed that neuronal CALHM1 controls intracellular calcium signaling and cell excitability, two mechanisms required for synaptic function. Here, we describe the generation of Calhm1 knockout (Calhm1(-/-)) mice and investigate CALHM1 role in neuronal and cognitive functions. Structural analysis revealed that Calhm1(-/-) brains had normal regional and cellular architecture, and showed no evidence of neuronal or synaptic loss, indicating that CALHM1 deficiency does not affect brain development or brain integrity in adulthood. However, Calhm1(-/-) mice showed a severe impairment in memory flexibility, assessed in the Morris water maze, and a significant disruption of long-term potentiation without alteration of long-term depression, measured in ex vivo hippocampal slices. Importantly, in primary neurons and hippocampal slices, CALHM1 activation facilitated the phosphorylation of NMDA and AMPA receptors by protein kinase A. Furthermore, neuronal CALHM1 activation potentiated the effect of glutamate on the expression of c-Fos and C/EBPβ, two immediate-early gene markers of neuronal activity. Thus, CALHM1 controls synaptic activity in cerebral neurons and is required for the flexible processing of memory in mice. These results shed light on CALHM1 physiology in the mammalian brain.

  15. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  16. Deficiency of RAMP1 attenuates antigen-induced airway hyperresponsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Manyu Li

    Full Text Available Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR, and receptor activity-modifying protein 1 (RAMP1. RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR

  17. Increased susceptibility to Yersinia enterocolitica Infection of Tff2 deficient mice.

    Science.gov (United States)

    Shah, Aftab A; Mihalj, Martina; Ratkay, Ivana; Lubka-Pathak, Maria; Balogh, Peter; Klingel, Karin; Bohn, Erwin; Blin, Nikolaus; Baus-Loncar, Mirela

    2012-01-01

    TFF2 is one of the members of the trefoil factor family, known for its role in protection of gastrointestinal epithelia upon injury; however, recent studies suggest that TFF2 could also play an important role in the immune system. In the present study Tff2 deficient and wild type mice were infected by Y. enterocolitica which resulted in a lethal outcome in all Tff2 deficient mice, but not in WT animals. Yersinia invaded Peyer's patches more efficiently as shown by high bacterial titers in the KO mice while wild type mice displayed lower titers and a visible bacterial accumulation in the intestine. Bacterial accumulation in Peyer's patches of Tff2 deficient mice was accompanied by increased recruitment of macrophages. While an increased level of MAC-1 positive cells was observed in the spleens of both Tff2 deficient and WT mice at third day post infection, bacterial dissemination to liver, lung and kidneys was observed only in Tff2 knock-out mice. Analysis of the cellular composition of spleen did not reveal any substantial alteration to WT animals, suggesting possible disregulation of hemopoietic cells involved in immune response to Y. enterocolitica. These new data indicate that Tff2 plays an important role in immune response by protecting the organism from consequences of infection and that Tff2 knock-out mice react adversely to bacterial infections, in this case specifically to Y. enterocolitica. Copyright © 2012 S. Karger AG, Basel.

  18. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  19. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    Science.gov (United States)

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  20. Endothelial surface layer degradation by chronic hyaluronidase infusion induces proteinuria in apolipoprotein E-deficient mice.

    Directory of Open Access Journals (Sweden)

    Marijn C Meuwese

    Full Text Available OBJECTIVE: Functional studies show that disruption of endothelial surface layer (ESL is accompanied by enhanced sensitivity of the vasculature towards atherogenic stimuli. However, relevance of ESL disruption as causal mechanism for vascular dysfunction remains to be demonstrated. We examined if loss of ESL through enzymatic degradation would affect vascular barrier properties in an atherogenic model. METHODS: Eight week old male apolipoprotein E deficient mice on Western-type diet for 10 weeks received continuous active or heat-inactivated hyaluronidase (10 U/hr, i.v. through an osmotic minipump during 4 weeks. Blood chemistry and anatomic changes in both macrovasculature and kidneys were examined. RESULTS: Infusion with active hyaluronidase resulted in decreased ESL (0.32±0.22 mL and plasma volume (1.03±0.18 mL compared to inactivated hyaluronidase (0.52±0.29 mL and 1.28±0.08 mL, p<0.05 respectively.Active hyaluronidase increased proteinuria compared to inactive hyaluronidase (0.27±0.02 vs. 0.15±0.01 µg/µg protein/creatinin, p<0.05 without changes in glomerular morphology or development of tubulo-interstitial inflammation. Atherosclerotic lesions in the aortic branches showed increased matrix production (collagen, 32±5 vs. 18±3%; glycosaminoglycans, 11±5 vs. 0.1±0.01%, active vs. inactive hyaluronidase, p<0.05. CONCLUSION: ESL degradation in apoE deficient mice contributes to reduced increased urinary protein excretion without significant changes in renal morphology. Second, the induction of compositional changes in atherogenic plaques by hyaluronidase point towards increased plaque vulnerability. These findings support further efforts to evaluate whether ESL restoration is a valuable target to prevent (micro vascular disease progression.

  1. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  2. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Yupeng Chen

    Full Text Available Matrilin-1 (Matn1, a cartilage-specific peri-cellular and extracellular matrix (ECM protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/- mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+ mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment.

  3. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Laura E Pascal

    Full Text Available ELL-associated factor 2 (EAF2 is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2(-/- mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2(-/- mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2(-/- animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors.

  4. Structure of the periodontium in cathepsin C-deficient mice

    NARCIS (Netherlands)

    de Haar, Susanne F.; Tigchelaar-Gutter, Wikky; Everts, Vincent; Beertsen, Wouter

    2006-01-01

    Papillon-Lefevre syndrome is characterized by increased susceptibility to early-onset periodontitis and is caused by mutations in the cathepsin C gene. How deficiency of the enzyme relates to an increased periodontal infection risk is still not entirely clear. One possibility is that the deficiency

  5. κ-Casein-deficient mice fail to lactate

    Science.gov (United States)

    Shekar, P. Chandra; Goel, Sandeep; Rani, S. Deepa Selvi; Sarathi, D. Partha; Alex, Jomini Liza; Singh, Shashi; Kumar, Satish

    2006-01-01

    Acquisition of milk production capabilities by an ancestor of mammals is at the root of mammalian evolution. Milk casein micelles are a primary source of amino acids and calcium phosphate to neonates. To understand the role of κ-casein in lactation, we have created and characterized a null mouse strain (Csnk−/−) lacking this gene. The mutant κ-casein allele did not affect the expression of other milk proteins in Csnk−/− females. However, these females did not suckle their pups and failed to lactate because of destabilization of the micelles in the lumina of the mammary gland. Thus, κ-casein is essential for lactation and, consequently, for the successful completion of the process of reproduction in mammals. In view of the extreme structural conservation of the casein locus, as well as the phenotype of Csnk−/− females, we propose that the organization of a functional κ-casein gene would have been one of the critical events in the evolution of mammals. Further, κ-casein variants are known to affect the industrial properties of milk in dairy animals. Given the expenses and the time scale of such experiments in livestock species, it is desirable to model the intended genetic modifications in mice first. The mouse strain that we have created would be a useful model to study the effect of κ-casein variants on the properties of milk and/or milk products. PMID:16698927

  6. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  7. Interleukin 6 deficiency modulates the hypothalamic expression of energy balance regulating peptides during pregnancy in mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Casanueva, Felipe F; Diéguez, Carlos; García, María C

    2013-01-01

    Pregnancy is associated with hyperphagia, increased adiposity and multiple neuroendocrine adaptations. Maternal adipose tissue secretes rising amounts of interleukin 6 (IL6), which acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. To explore the role of IL6 in the central mechanisms governing dam's energy homeostasis, early, mid and late pregnant (gestational days 7, 13 and 18) wild-type (WT) and Il6 knockout mice (Il6-KO) were compared with virgin controls at diestrus. Food intake, body weight and composition as well as indirect calorimetry measurements were performed in vivo. Anabolic and orexigenic peptides: neuropeptide Y (Npy) and agouti-related peptide (Agrp); and catabolic and anorectic neuropeptides: proopiomelanocortin (Pomc), corticotrophin and thyrotropin-releasing hormone (Crh and Trh) mRNA levels were determined by in situ hybridization. Real time-PCR and western-blot were used for additional tissue gene expression and protein studies. Non-pregnant Il6-KO mice were leaner than WT mice due to a decrease in fat but not in lean body mass. Pregnant Il6-KO mice had higher fat accretion despite similar body weight gain than WT controls. A decreased fat utilization in absence of Il6 might explain this effect, as shown by increased respiratory exchange ratio (RER) in virgin Il6-KO mice. Il6 mRNA levels were markedly enhanced in adipose tissue but reduced in hypothalamus of mid and late pregnant WT mice. Trh expression was also stimulated at gestational day 13 and lack of Il6 blunted this effect. Conversely, in late pregnant mice lessened hypothalamic Il6 receptor alpha (Il6ra), Pomc and Crh mRNA were observed. Il6 deficiency during this stage up-regulated Npy and Agrp expression, while restoring Pomc mRNA levels to virgin values. Together these results demonstrate that IL6/IL6Ra system modulates Npy/Agrp, Pomc and Trh expression during mouse pregnancy, supporting a role of IL6 in the central

  8. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Araújo, C.V.; Lazzarotto, C.R.; Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de; Ribeiro, R.A.; Bertolini, L.R.; Lima, A.A.M.; Brito, G.A.C.; Oriá, R.B.

    2015-01-01

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE -/- ) and wild-type (APOE +/+ ) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE -/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE +/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE -/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  9. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  10. Bilateral leukocoria in a patient with homozygous protein C deficiency

    International Nuclear Information System (INIS)

    Khan, Nasrat M.; Al-Dohayan, Noura D.; Al-Batiniji, Fatima S.

    2007-01-01

    We describe a bilateral leukocoria and neonatal purpura fulminans in a male infant, born at full term after an unremarkable pregnancy to a healthy consanguineous married couple. Multiple hemorrhagic skin bullae were found at birth on various parts of the body with bilateral leukocoria, organized vitreous hemorrhage, retinal detachment, and intracranial hemorrhage with undetectable levels of protein C activity. We report a clinical case of homozygous protein-C deficiency with severe purpura fulminans and bilateral leukocoria. (author)

  11. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  12. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    International Nuclear Information System (INIS)

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-01-01

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE –/– ) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE –/– mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE –/– mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis

  13. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Hiroyuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Takeya, Motohiro [Department of Cell Pathology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556 (Japan)

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  14. Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice

    Directory of Open Access Journals (Sweden)

    Altintas Mehmet M

    2012-02-01

    Full Text Available Abstract Background Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver and lymphatic (abdominal lymph nodes, spleen, and thymus organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α, a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining. Results ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was

  15. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  16. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  17. Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice

    Science.gov (United States)

    This study demonstrates that early-life persistent vitamin D deficiency alters the cardiopulmonary response to smog in mice and may increase risk of adverse effects. Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environme...

  18. Alterations of proteins in MDCK cells during acute potassium deficiency.

    Science.gov (United States)

    Peerapen, Paleerath; Ausakunpipat, Nardtaya; Chanchaem, Prangwalai; Thongboonkerd, Visith

    2016-06-01

    Chronic K(+) deficiency can cause hypokalemic nephropathy associated with metabolic alkalosis, polyuria, tubular dilatation, and tubulointerstitial injury. However, effects of acute K(+) deficiency on the kidney remained unclear. This study aimed to explore such effects by evaluating changes in levels of proteins in renal tubular cells during acute K(+) deficiency. MDCK cells were cultivated in normal K(+) (NK) (K(+)=5.3 mM), low K(+) (LK) (K(+)=2.5 mM), or K(+) depleted (KD) (K(+)=0 mM) medium for 24 h and then harvested. Cellular proteins were resolved by two-dimensional gel electrophoresis (2-DE) and visualized by SYPRO Ruby staining (5 gels per group). Spot matching and quantitative intensity analysis revealed a total 48 protein spots that had significantly differential levels among the three groups. Among these, 46 and 30 protein spots had differential levels in KD group compared to NK and LK groups, respectively. Comparison between LK and NK groups revealed only 10 protein spots that were differentially expressed. All of these differentially expressed proteins were successfully identified by Q-TOF MS and/or MS/MS analyses. The altered levels of heat shock protein 90 (HSP90), ezrin, lamin A/C, tubulin, chaperonin-containing TCP1 (CCT1), and calpain 1 were confirmed by Western blot analysis. Global protein network analysis showed three main functional networks, including 1) cell growth and proliferation, 2) cell morphology, cellular assembly and organization, and 3) protein folding in which the altered proteins were involved. Further investigations on these networks may lead to better understanding of pathogenic mechanisms of low K(+)-induced renal injury. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...... mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice...

  20. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    OpenAIRE

    Franken, S; Wittke, D; Mansson, JE; D'Hooge, R; De Deyn, PP; Lüllmann-Rauch, R; Matzner, U; Gieselmann, V

    2006-01-01

    Summary Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of gal...

  1. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Suzana Gispert

    Full Text Available BACKGROUND: Parkinson's disease (PD is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1 cause the recessive PARK6 variant of PD. METHODOLOGY/PRINCIPAL FINDINGS: Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. CONCLUSION: Thus, aging Pink1(-/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.

  2. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  3. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  4. Property of lysosomal storage disease associated with midbrain pathology in the central nervous system of Lamp-2-deficient mice.

    Science.gov (United States)

    Furuta, Akiko; Kikuchi, Hisae; Fujita, Hiromi; Yamada, Daisuke; Fujiwara, Yuuki; Kabuta, Tomohiro; Nishino, Ichizo; Wada, Keiji; Uchiyama, Yasuo

    2015-06-01

    Lysosome-associated membrane protein-2 (LAMP-2) is the gene responsible for Danon disease, which is characterized by cardiomyopathy, autophagic vacuolar myopathy, and variable mental retardation. To elucidate the function of LAMP-2 in the central nervous system, we investigated the neuropathological changes in Lamp-2-deficient mice. Immunohistochemical observations revealed that Lamp-1 and cathepsin D-positive lysosomal structures increased in the large neurons of the mouse brain. Ubiquitin-immunoreactive aggregates and concanavalin A-positive materials were detected in these neurons. By means of ultrastructural studies, we found various-shaped accumulations, including lipofuscin, glycolipid-like materials, and membranous structures, in the neurons and glial cells of Lamp-2-deficient brains. In deficient mice, glycogen granules accumulated in hepatocyte lysosomes but were not observed in neurons. These pathological features indicate lysosomal storage disease; however, the findings are unlikely a consequence of deficiency of a single lysosomal enzyme. Although previous study results have shown a large amount of autophagic vacuoles in parenchymal cells of the visceral organs, these findings were rarely detected in the brain tissue except for some axons in the substantia nigra, in which abundant activated microglial cells with increased lipid peroxidation were observed. Thus, LAMP-2 in the central nervous system has a possible role in the degradation of the various macromolecules in lysosomes and an additional function concerning protection from oxidative stress, especially in the substantia nigra. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation.

    Science.gov (United States)

    Liu, Bo; Gulati, Ajay S; Cantillana, Viviana; Henry, Stanley C; Schmidt, Elyse A; Daniell, Xiaoju; Grossniklaus, Emily; Schoenborn, Alexi A; Sartor, R Balfour; Taylor, Gregory A

    2013-10-15

    Crohn's disease (CD) is a chronic, immune-mediated, inflammatory disorder of the intestine that has been linked to numerous susceptibility genes, including the immunity-related GTPase (IRG) M (IRGM). IRGs comprise a family of proteins known to confer resistance to intracellular infections through various mechanisms, including regulation of phagosome processing, cell motility, and autophagy. However, despite its association with CD, the role of IRGM and other IRGs in regulating intestinal inflammation is unclear. We investigated the involvement of Irgm1, an ortholog of IRGM, in the genesis of murine intestinal inflammation. After dextran sodium sulfate exposure, Irgm1-deficient [Irgm1 knockout (KO)] mice showed increased acute inflammation in the colon and ileum, with worsened clinical responses. Marked alterations of Paneth cell location and granule morphology were present in Irgm1 KO mice, even without dextran sodium sulfate exposure, and were associated with impaired mitophagy and autophagy in Irgm1 KO intestinal cells (including Paneth cells). This was manifested by frequent tubular and swollen mitochondria and increased LC3-positive autophagic structures. Interestingly, these LC3-positive structures often contained Paneth cell granules. These results suggest that Irgm1 modulates acute inflammatory responses in the mouse intestine, putatively through the regulation of gut autophagic processes, that may be pivotal for proper Paneth cell functioning.

  6. Tofacitinib ameliorates atherosclerosis and reduces foam cell formation in apoE deficient mice.

    Science.gov (United States)

    Wang, Zaicun; Wang, Shumei; Wang, Zunzhe; Yun, Tiantian; Wang, Chenchen; Wang, Huating

    2017-08-19

    Atherosclerosis is a chronic inflammatory cardiovascular disease with high mortality worldwide. Tofacitinib (CP-690,550), an oral small-molecule Janus kinase inhibitor, has been shown to be effective in the treatment of rheumatoid arthritis, autoimmune encephalomyelitis and ulcerative colitis. However, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of Tofacitinib on atherogenic diet (ATD)-induced atherosclerosis using apolipoprotein E deficient (apoE-/-) mice. Atherosclerosis-prone apoE-/- mice were fed with ATD and treated with or without Tofacitinib through intragastrical administration (10 mg kg -1 day -1 ) for 8 weeks. Our results showed that Tofacitinib did not change plasma lipids, while significantly reduced the levels of plasma pro-inflammatory cytokines IL-6 and TNF-α. It also significantly attenuated atherosclerotic plaque lesion in the aortic root and macrophages contained in plaque as shown with Mac2 immuno-staining. Peritoneal macrophages (PMC) were separated from apoE-/- mice fed with 8-week ATD, and then subjected to inflammation tests. Flow cytometry analysis of F4/80 and CD206 and mRNA levels of M1 and M2 macrophages markers showed that M1 macrophages decreased while M2 macrophages increased in Tofacitinib treated group. Expressions of other inflammatory genes also indicated an anti-inflammatory status in mice treated with Tofacitinib. Ox-LDL was used to induce foam cell formation from PMC in wild type mice, and the results displayed a reduced formation of foam cells and decreased inflammation in mice with Tofacitinib administration (1 μM). The mRNA and protein levels of ATP binding cassette subfamily A member 1 (ABCA1), a key gene involved in cholesterol efflux, remarkably increased, while it was absence of alterations in scavenger receptors expression. Therefore, we demonstrated that Tofacitinib could attenuate atherosclerosis and foam cells formation by

  7. IL-4 deficiency is associated with mechanical hypersensitivity in mice.

    Directory of Open Access Journals (Sweden)

    Nurcan Üçeyler

    Full Text Available Interleukin-4 (IL-4 is an anti-inflammatory and analgesic cytokine that induces opioid receptor transcription. We investigated IL-4 knockout (ko mice to characterize their pain behavior before and after chronic constriction injury (CCI of the sciatic nerve as a model for neuropathic pain. We investigated opioid responsivity and measured cytokine and opioid receptor gene expression in the peripheral and central nervous system (PNS, CNS of IL-4 ko mice in comparison with wildtype (wt mice. Naïve IL-4 ko mice displayed tactile allodynia (wt: 0.45 g; ko: 0.18 g; p<0.001, while responses to heat and cold stimuli and to muscle pressure were not different. No compensatory changes in the gene expression of tumor necrosis factor-alpha (TNF, IL-1β, IL-10, and IL-13 were found in the PNS and CNS of naïve IL-4 ko mice. However, IL-1β gene expression was stronger in the sciatic nerve of IL-4 ko mice (p<0.001 28 days after CCI and only IL-4 ko mice had elevated IL-10 gene expression (p = 0.014. Remarkably, CCI induced TNF (p<0.01, IL-1β (p<0.05, IL-10 (p<0.05, and IL-13 (p<0.001 gene expression exclusively in the ipsilateral spinal cord of IL-4 ko mice. The compensatory overexpression of the anti-inflammatory and analgesic cytokines IL-10 and IL-13 in the spinal cord of IL-4 ko mice may explain the lack of genotype differences for pain behavior after CCI. Additionally, CCI induced gene expression of μ, κ, and δ opioid receptors in the contralateral cortex and thalamus of IL-4 ko mice, paralleled by fast onset of morphine analgesia, but not in wt mice. We conclude that a lack of IL-4 leads to mechanical sensitivity; the compensatory hyperexpression of analgesic cytokines and opioid receptors after CCI, in turn, protects IL-4 ko mice from enhanced pain behavior after nerve lesion.

  8. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    Science.gov (United States)

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-09-03

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mobilization from glycogen stores, when compared with wild-type liver. Thus, connexin32-containing gap junctions are essential in mouse liver for maximal intercellular propagation of the noradrenaline signal from the periportal (upstream) area, where it is received from sympathetic nerve endings, to perivenous (downstream) hepatocytes. In connexin32-defective liver, the amount of connexin26 protein expressed was found to be lower than in wild-type liver, and the total area of gap junction plaques was approximately 1000-fold smaller than in wild-type liver. In contrast to patients with connexin32 defects suffering from X chromosome-linked Charcot-Marie-Tooth disease (CMTX) due to demyelination in Schwann cells of peripheral nerves, connexin32-deficient mice did not show neurological abnormalities when analyzed at 3 months of age. It is possible, however, that they may develop neurodegenerative symptoms at older age.

  9. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  10. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  11. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  12. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    Vasquez Elisardo C

    2010-05-01

    Full Text Available Abstract Background The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57 and hypercholesterolemic (ApoE female mice in both normal and ovariectomized conditions. Methods Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L, acetylcholine (ACh and sodium nitroprusside (SNP (10-10 to 10-3 mol/L were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. Results ACh-induced relaxation was significantly reduced (P 50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L. Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4% but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%. SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. Conclusion These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient female mice compared with normal (C57 female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.

  13. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin.

    Science.gov (United States)

    Heidler, Juliana; Hardt, Stefanie; Wittig, Ilka; Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13-15 months) female progranulin-deficient mice (GRN -/- ) and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE) versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS) on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015) was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ) values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  14. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin

    Directory of Open Access Journals (Sweden)

    Juliana Heidler

    2016-12-01

    Full Text Available Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13–15 months female progranulin-deficient mice (GRN−/− and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015 was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  15. Keratinocytes from APP/APLP2-deficient mice are impaired in proliferation, adhesion and migration in vitro

    International Nuclear Information System (INIS)

    Siemes, Christina; Quast, Thomas; Kummer, Christiane; Wehner, Sven; Kirfel, Gregor; Mueller, Ulrike; Herzog, Volker

    2006-01-01

    Growing evidence shows that the soluble N-terminal form (sAPPα) of the amyloid precursor protein (APP) represents an epidermal growth factor fostering keratinocyte proliferation, migration and adhesion. APP is a member of a protein family including the two mammalian amyloid precursor-like proteins APLP1 and APLP2. In the mammalian epidermis, only APP and APLP2 are expressed. APP and APLP2-deficient mice die shortly after birth but do not display a specific epidermal phenotype. In this report, we investigated the epidermis of APP and/or APLP2 knockout mice. Basal keratinocytes showed reduced proliferation in vivo by about 40%. Likewise, isolated keratinocytes exhibited reduced proliferation rates in vitro, which could be completely rescued by either exogenously added recombinant sAPPα, or by co-culture with dermal fibroblasts derived from APP knockout mice. Moreover, APP-knockout keratinocytes revealed reduced migration velocity resulting from severely compromised cell substrate adhesion. Keratinocytes from double knockout mice died within the first week of culture, indicating essential functions of APP-family members for survival in vitro. Our data indicate that sAPPα has to be considered as an essential epidermal growth factor which, however, in vivo can be functionally compensated to a certain extent by other growth factors, e.g., factors released from dermal fibroblasts

  16. Brain transcriptional responses to high-fat diet in Acads-deficient mice reveal energy sensing pathways.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    Full Text Available How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain, the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs, shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice.We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF or low-fat (LF diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917 and Acads+/+ HF vs. LF Acads+/+ (3879 revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP.Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy

  17. EFFECT OF DIETARY FOLATE DEFICIENCY ON ARSENIC GENOTOXICITY IN MICE

    Science.gov (United States)

    Arsenic, a human carcinogen found in drinking water supplies throughout the world, is clastogenic in human and rodent cells. An estimated ten percent of Americans are deficient in folate, a methyl donor necessary for normal nucleotide metabolism, DNA synthesis, and DNA methylatio...

  18. Myg1-deficient mice display alterations in stress-induced responses and reduction of sex-dependent behavioural differences.

    Science.gov (United States)

    Philips, Mari-Anne; Abramov, Urho; Lilleväli, Kersti; Luuk, Hendrik; Kurrikoff, Kaido; Raud, Sirli; Plaas, Mario; Innos, Jürgen; Puussaar, Triinu; Kõks, Sulev; Vasar, Eero

    2010-02-11

    Myg1 (Melanocyte proliferating gene 1) is a highly conserved and ubiquitously expressed gene, which encodes a protein with mitochondrial and nuclear localization. In the current study we demonstrate a gradual decline of Myg1 expression during the postnatal development of the mouse brain that suggests relevance for Myg1 in developmental processes. To study the effects of Myg1 loss-of-function, we created Myg1-deficient (-/-) mice by displacing the entire coding sequence of the gene. Initial phenotyping, covering a multitude of behavioural, cognitive, neurological, physiological and stress-related responses, revealed that homozygous Myg1 (-/-) mice are vital, fertile and display no gross abnormalities. Myg1 (-/-) mice showed an inconsistent pattern of altered anxiety-like behaviour in different tests. The plus-maze and social interaction tests revealed that male Myg1 (-/-) mice were significantly less anxious than their wild-type littermates; female (-/-) mice showed increased anxiety in the locomotor activity arena. Restraint-stress significantly reduced the expression of the Myg1 gene in the prefrontal cortex of female wild-type mice and restrained female (-/-) mice showed a blunted corticosterone response, suggesting involvement of Myg1 in stress-induced responses. The main finding of the present study was that Myg1 invalidation decreases several behavioural differences between male and female animals that were obvious in wild-type mice, indicating that Myg1 contributes to the expression of sex-dependent behavioural differences in mice. Taken together, we provide evidence for the involvement of Myg1 in anxiety- and stress-related responses and suggest that Myg1 contributes to the expression of sex-dependent behavioural differences.

  19. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  20. Microbial biotin protein ligases aid in understanding holocarboxylase synthetase deficiency.

    Science.gov (United States)

    Pendini, Nicole R; Bailey, Lisa M; Booker, Grant W; Wilce, Matthew C; Wallace, John C; Polyak, Steven W

    2008-01-01

    The attachment of biotin onto the biotin-dependent enzymes is catalysed by biotin protein ligase (BPL), also known as holocarboxylase synthase HCS in mammals. Mammals contain five biotin-enzymes that participate in a number of important metabolic pathways such as fatty acid biogenesis, gluconeogenesis and amino acid catabolism. All mammalian biotin-enzymes are post-translationally biotinylated, and therefore activated, through the action of a single HCS. Substrate recognition by BPLs occurs through conserved structural cues that govern the specificity of biotinylation. Defects in biotin metabolism, including HCS, give rise to multiple carboxylase deficiency (MCD). Here we review the literature on this important enzyme. In particular, we focus on the new information that has been learned about BPL's from a number of recently published protein structures. Through molecular modelling studies insights into the structural basis of HCS deficiency in MCD are discussed.

  1. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  2. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Science.gov (United States)

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  3. Melatonin Efficacy in Obese Leptin-Deficient Mice Heart

    Directory of Open Access Journals (Sweden)

    Alessandra Stacchiotti

    2017-12-01

    Full Text Available Cardiomyocytes are particularly sensitive to oxidative damage due to the link between mitochondria and sarcoplasmic reticulum necessary for calcium flux and contraction. Melatonin, important indoleamine secreted by the pineal gland during darkness, also has important cardioprotective properties. We designed the present study to define morphological and ultrastructural changes in cardiomyocytes and mainly in mitochondria of an animal model of obesity (ob/ob mice, when treated orally or not with melatonin at 100 mg/kg/day for 8 weeks (from 5 up to 13 week of life. We observed that ob/ob mice mitochondria in sub-sarcolemmal and inter-myofibrillar compartments are often devoid of cristae with an abnormally large size, which are called mega-mitochondria. Moreover, in ob/ob mice the hypertrophic cardiomyocytes expressed high level of 4hydroxy-2-nonenal (4HNE, a marker of lipid peroxidation but scarce degree of mitofusin2, indicative of mitochondrial sufferance. Melatonin oral supplementation in ob/ob mice restores mitochondrial cristae, enhances mitofusin2 expression and minimizes 4HNE and p62/SQSTM1, an index of aberrant autophagic flux. At pericardial fat level, adipose tissue depot strictly associated with myocardium infarction, melatonin reduces adipocyte hypertrophy and inversely regulates 4HNE and adiponectin expressions. In summary, melatonin might represent a safe dietary adjuvant to hamper cardiac mitochondria remodeling and the hypoxic status that occur in pre-diabetic obese mice at 13 weeks of life.

  4. Gαi2- and Gαi3-Deficient Mice Display Opposite Severity of Myocardial Ischemia Reperfusion Injury

    Science.gov (United States)

    Köhler, David; Devanathan, Vasudharani; Bernardo de Oliveira Franz, Claudia; Eldh, Therese; Novakovic, Ana; Roth, Judith M.; Granja, Tiago; Birnbaumer, Lutz; Rosenberger, Peter; Beer-Hammer, Sandra; Nürnberg, Bernd

    2014-01-01

    G-protein-coupled receptors (GPCRs) are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent. PMID:24858945

  5. Gαi2- and Gαi3-deficient mice display opposite severity of myocardial ischemia reperfusion injury.

    Directory of Open Access Journals (Sweden)

    David Köhler

    Full Text Available G-protein-coupled receptors (GPCRs are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13. Gαi-proteins have been reported to protect hearts from ischemia reperfusion injury. However, determining the individual impact of Gαi2 or Gαi3 on myocardial ischemia injury has not been clarified yet. Here, we first investigated expression of Gαi2 and Gαi3 on transcriptional level by quantitative PCR and on protein level by immunoblot analysis as well as by immunofluorescence in cardiac tissues of wild-type, Gαi2-, and Gαi3-deficient mice. Gαi2 was expressed at higher levels than Gαi3 in murine hearts, and irrespective of the isoform being knocked out we observed an up regulation of the remaining Gαi-protein. Myocardial ischemia promptly regulated cardiac mRNA and with a slight delay protein levels of both Gαi2 and Gαi3, indicating important roles for both Gαi isoforms. Furthermore, ischemia reperfusion injury in Gαi2- and Gαi3-deficient mice exhibited opposite outcomes. Whereas the absence of Gαi2 significantly increased the infarct size in the heart, the absence of Gαi3 or the concomitant upregulation of Gαi2 dramatically reduced cardiac infarction. In conclusion, we demonstrate for the first time that the genetic ablation of Gαi proteins has protective or deleterious effects on cardiac ischemia reperfusion injury depending on the isoform being absent.

  6. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  7. Learning and memory in mice with neuropathic pain: impact of old age and progranulin deficiency

    Directory of Open Access Journals (Sweden)

    Boris eAlbuquerque

    2013-11-01

    Full Text Available Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if a sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging and are more susceptible to nerve injury evoked nociceptive hypersensitivity and hence allow to assess a potential mutual aggravation of pain and old age. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia but, in both genotypes, only aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. Once learnt however, aged mice with neuropathic pain maintained the aversive memory longer, i.e. the extinction was significantly slowed. In addition, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in aged mice, whereas easy place preference learning was not affected by nerve injury or progranulin deficiency. The sequencing task required a discrimination of clockwise and anti-clockwise sequences and spatial flexibility to re-learn a novel sequence. The loss of spatial flexibility did not occur in sham operated mice, i.e. was a consequence of nerve injury and suggests that neuropathic pain accelerates manifestations of old age and progranulin deficiency. Neuropathic pain at old age, irrespective of the genotype, resulted in a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age.

  8. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  9. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  10. Functional rescue of dystrophin-deficient mdx mice by a chimeric peptide-PMO.

    Science.gov (United States)

    Yin, Haifang; Moulton, Hong M; Betts, Corinne; Merritt, Thomas; Seow, Yiqi; Ashraf, Shirin; Wang, Qingsong; Boutilier, Jordan; Wood, Matthew Ja

    2010-10-01

    Splice modulation using antisense oligonucleotides (AOs) has been shown to yield targeted exon exclusion to restore the open reading frame and generate truncated but partially functional dystrophin protein. This has been successfully demonstrated in dystrophin-deficient mdx mice and in Duchenne muscular dystrophy (DMD) patients. However, DMD is a systemic disease; successful therapeutic exploitation of this approach will therefore depend on effective systemic delivery of AOs to all affected tissues. We have previously shown the potential of a muscle-specific/arginine-rich chimeric peptide-phosphorodiamidate morpholino (PMO) conjugate, but its long-term activity, optimized dosing regimen, capacity for functional correction and safety profile remain to be established. Here, we report the results of this chimeric peptide-PMO conjugate in the mdx mouse using low doses (3 and 6 mg/kg) administered via a 6 biweekly systemic intravenous injection protocol. We show 100% dystrophin-positive fibers and near complete correction of the dystrophin transcript defect in all peripheral muscle groups, with restoration of 50% dystrophin protein over 12 weeks, leading to correction of the DMD pathological phenotype and restoration of muscle function in the absence of detectable toxicity or immune response. Chimeric muscle-specific/cell-penetrating peptides therefore represent highly promising agents for systemic delivery of splice-correcting PMO oligomers for DMD therapy.

  11. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar t, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c...

  12. Cholecystokinin (CCK)-expressing neurons in the suprachiasmatic nucleus: innervation, light responsiveness and entrainment in CCK-deficient mice

    DEFF Research Database (Denmark)

    Hannibal, Jens; Hundahl, Christian; Fahrenkrug, Jan

    2010-01-01

    FOS, and did not express the core clock protein PER1. Accordingly, CCK-deficient mice showed normal entrainment and had similar τ, light-induced phase shift and negative masking behaviour as wild-type animals. In conclusion, CCK signalling seems not to be involved directly in light-induced resetting......, CCK-containing processes make synaptic contacts with both groups of neurons and some CCK cell bodies were innervated by VIPergic neurons. The CCK neurons received no direct input from the three major pathways to the SCN, and the CCK neurons were not light-responsive as evaluated by induction of c...

  13. ATM protein is deficient in over 40% of lung adenocarcinomas.

    Science.gov (United States)

    Villaruz, Liza C; Jones, Helen; Dacic, Sanja; Abberbock, Shira; Kurland, Brenda F; Stabile, Laura P; Siegfried, Jill M; Conrads, Thomas P; Smith, Neil R; O'Connor, Mark J; Pierce, Andrew J; Bakkenist, Christopher J

    2016-09-06

    Lung cancer is the leading cause of cancer-related mortality in the USA and worldwide, and of the estimated 1.2 million new cases of lung cancer diagnosed every year, over 30% are lung adenocarcinomas. The backbone of 1st-line systemic therapy in the metastatic setting, in the absence of an actionable oncogenic driver, is platinum-based chemotherapy. ATM and ATR are DNA damage signaling kinases activated at DNA double-strand breaks (DSBs) and stalled and collapsed replication forks, respectively. ATM protein is lost in a number of cancer cell lines and ATR kinase inhibitors synergize with cisplatin to resolve xenograft models of ATM-deficient lung cancer. We therefore sought to determine the frequency of ATM loss in a tissue microarray (TMA) of lung adenocarcinoma. Here we report the validation of a commercial antibody (ab32420) for the identification of ATM by immunohistochemistry and estimate that 61 of 147 (41%, 95% CI 34%-50%) cases of lung adenocarcinoma are negative for ATM protein expression. As a positive control for ATM staining, nuclear ATM protein was identified in stroma and immune infiltrate in all evaluable cases. ATM loss in lung adenocarcinoma was not associated with overall survival. However, our preclinical findings in ATM-deficient cell lines suggest that ATM could be a predictive biomarker for synergy of an ATR kinase inhibitor with standard-of-care cisplatin. This could improve clinical outcome in 100,000's of patients with ATM-deficient lung adenocarcinoma every year.

  14. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  15. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Science.gov (United States)

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  16. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Ayce Yesilaltay

    2009-12-01

    Full Text Available PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI, and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95% in the liver (lesser or no reduction in other organs with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western' diet-fed murine apolipoprotein E (apoE KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted, were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.

  17. Idh2 deficiency accelerates renal dysfunction in aged mice.

    Science.gov (United States)

    Lee, Su Jeong; Cha, Hanvit; Lee, Seoyoon; Kim, Hyunjin; Ku, Hyeong Jun; Kim, Sung Hwan; Park, Jung Hyun; Lee, Jin Hyup; Park, Kwon Moo; Park, Jeen-Woo

    2017-11-04

    The free radical or oxidative stress theory of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species (ROS) that are produced as by-products of normal metabolic processes in mitochondria. The oxidative stress may arise as a result of either increased ROS production or decreased ability to detoxify ROS. The availability of the mitochondrial NADPH pool is critical for the maintenance of the mitochondrial antioxidant system. The major enzyme responsible for generating mitochondrial NADPH is mitochondrial NADP + -dependent isocitrate dehydrogenase (IDH2). Depletion of IDH2 in mice (idh2 -/- ) shortens life span and accelerates the degeneration of multiple age-sensitive traits, such as hair grayness, skin pathology, and eye pathology. Among the various internal organs tested in this study, IDH2 depletion-induced acceleration of senescence was uniquely observed in the kidney. Renal function and structure were greatly deteriorated in 24-month-old idh2 -/- mice compared with wild-type. In addition, disruption of redox status, which promotes oxidative damage and apoptosis, was more pronounced in idh2 -/- mice. These data support a significant role for increased oxidative stress as a result of compromised mitochondrial antioxidant defenses in modulating life span in mice, and thus support the oxidative stress theory of aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice.

    OpenAIRE

    Kanaly, S T; Hines, S A; Palmer, G H

    1993-01-01

    Pulmonary clearance of Rhodococcus equi requires functional T lymphocytes. In this study, CD8+ T-lymphocyte-deficient transgenic mice cleared virulent R. equi from the lungs while infection in CD4+ T-lymphocyte-deficient transgenic mice persisted. Although both CD4+ and CD8+ T cells function early in pulmonary defense against R. equi, clearance is dependent on CD4+ T lymphocytes.

  19. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    Directory of Open Access Journals (Sweden)

    Mühlfeld Christian

    2007-10-01

    Full Text Available Abstract Background Surfactant protein D (SP-D deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are

  20. Angiotensin II blockade causes acute renal failure in eNOS-deficient mice

    Directory of Open Access Journals (Sweden)

    Jürgen Schnermann

    2001-03-01

    Full Text Available Compared with wild-type mice, adult endothelial nitric oxide synthase (eNOS knockout mice (eight months of age have increased blood pressure (BP (126±9 mmHg vs. 100±4 mmHg, and an increased renal vascular resistance (155±16 vs. 65±4 mmHg.min/ml. Renal vascular resistance responses to i.v. administration of noradrenaline were markedly enhanced in eNOS knockout mice. Glomerular filtration rate (GFR of anaesthetised eNOS -/- mice was 324±57 µl/min gKW, significantly lower than the GFR of 761±126 µl/min.gKW in wild-type mice. AT1-receptor blockade with i.v. candesartan (1—1.5 mg/kg reduced arterial blood pressure and renal vascular resistance, and increased renal blood flow (RBF to about the same extent in wild-type and eNOS -/- mice. Candesartan did not alter GFR in wild-type mice (761±126 vs. 720±95 µl/min.gKW, but caused a marked decrease in GFR in eNOS -/- mice (324.5±75.2 vs. 77±18 µl/min.gKW. A similar reduction in GFR of eNOS deficient mice was also caused by angiotensin-converting enzyme (ACE inhibition. Afferent arteriolar granularity, a measure of renal renin expression, was found to be reduced in eNOS -/- compared with wild-type mice. In chronically eNOS-deficient mice, angiotensin II (Ang II is critical for maintaining glomerular filtration pressure and GFR, presumably through its effect on efferent arteriolar tone.

  1. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  2. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  3. Primer for non-immunologists on immune-deficient mice and their applications in research.

    Science.gov (United States)

    Croy, B A; Linder, K E; Yager, J A

    2001-08-01

    Studies of immune deficiencies have a history as long as that of immunology. However, reports of two key spontaneous recessive mutations in mice (nude in 1966-1968 and scid in 1983) laid the foundations for widespread application of immune-deficient rodents to a broad range of research topics. More recently, technologies modifying the mouse genome by transgenesis, gene ablation and crossbreeding for lines with multiple immune deficits have provided a large number of new types of immunologically impaired mice. The primary goals of this overview are to help non-immunologists understand key differences between some of the immunodeficient strains, develop an appreciation for the value of information derived from immunodeficient mouse-based research and to encourage expanded, creative use of these specialized research animals. Secondary goals are to promote greater awareness of unexpected outcomes that can arise when working with genetically immune-deficient mice, the need for vigilance in maintaining these research animals, and the care required in interpretation of the data that immune-deficient modeling provides. Two illustrations on developing appropriate immune deficient animal models for a new research application conclude the review.

  4. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis

    NARCIS (Netherlands)

    Zwijnenburg, Petra J. G.; van der Poll, Tom; Florquin, Sandrine; Akira, Shizuo; Takeda, Kiyoshi; Roord, John J.; van Furth, A. Marceline

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  5. Transient impairment of the adaptive response to fasting in FXR-deficient mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, T; Grefhorst, A; Bouchaert, E; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2005-01-01

    The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR-/-) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of

  6. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice

    DEFF Research Database (Denmark)

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-01-01

    in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding...

  7. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  8. Untargeted Metabolomics Analysis of ABCC6-Deficient Mice Discloses an Altered Metabolic Liver Profile

    DEFF Research Database (Denmark)

    Rasmussen, Mie Rostved; Nielsen, Kirstine Lykke; Christensen, Mia Benedicte Lykke Roest

    2016-01-01

    as more features were upregulated than downregulated in ABCC6-deficient mice. However, no differences of the identified metabolites in liver could be detected in plasma, whereas urine reflected some of the changes. Of note, N-acetylated amino acids and pantothenic acid (vitamin B5), which is involved...

  9. Neuronal Glucose Transporter Isoform 3 Deficient Mice Demonstrate Features of Autism Spectrum Disorders

    OpenAIRE

    Zhao, Yuanzi; Fung, Camille; Shin, Don; Shin, Bo-Chul; Thamotharan, Shanthie; Sankar, Raman; Ehninger, Dan; Silva, Alcino; Devaskar, Sherin U.

    2009-01-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristic...

  10. Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice

    NARCIS (Netherlands)

    Palmen, M.; Daemen, M. J.; Bronsaer, R.; Dassen, W. R.; Zandbergen, H. R.; Kockx, M.; Smits, J. F.; van der Zee, R.; Doevendans, P. A.

    2001-01-01

    To obtain more insight in the role of IGF-1 in cardiac remodeling and function after experimental myocardial infarction. We hypothesized that cardiac remodeling is altered in IGF-1 deficient mice, which may affect cardiac function. A myocardial infarction was induced by surgical coronary artery

  11. Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice

    DEFF Research Database (Denmark)

    Martin, Nellie A.; Molnar, Viktor; Szilagyi, Gabor T.

    2018-01-01

    Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differ...

  12. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis.

    NARCIS (Netherlands)

    Zwijnenburg, P.J.G.; Poll, van der T.; Florquin, S; Akira, S; Takeda, K; Roord, J.J.; Furth, van A.M.

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  13. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: implications for autism and epilepsy.

    Science.gov (United States)

    Gant, John C; Thibault, Oliver; Blalock, Eric M; Yang, Jun; Bachstetter, Adam; Kotick, James; Schauwecker, Paula E; Hauser, Kurt F; Smith, George M; Mervis, Ron; Li, YanFang; Barnes, Gregory N

    2009-04-01

    Clinically, perturbations in the semaphorin signaling system have been associated with autism and epilepsy. The semaphorins have been implicated in guidance, migration, differentiation, and synaptic plasticity of neurons. The semaphorin 3F (Sema3F) ligand and its receptor, neuropilin 2 (NPN2) are highly expressed within limbic areas. NPN2 signaling may intimately direct the apposition of presynaptic and postsynaptic locations, facilitating the development and maturity of hippocampal synaptic function. To further understand the role of NPN2 signaling in central nevous system (CNS) plasticity, structural and functional alterations were assessed in NPN2 deficient mice. In NPN2 deficient mice, we measured seizure susceptibility after kainic acid or pentylenetetrazol, neuronal excitability and synaptic throughput in slice preparations, principal and interneuron cell counts with immunocytochemical protocols, synaptosomal protein levels with immunoblots, and dendritic morphology with Golgi-staining. NPN2 deficient mice had shorter seizure latencies, increased vulnerability to seizure-related death, were more likely to develop spontaneous recurrent seizure activity after chemical challenge, and had an increased slope on input/output curves. Principal cell counts were unchanged, but GABA, parvalbumin, and neuropeptide Y interneuron cell counts were significantly reduced. Synaptosomal NPN2 protein levels and total number of GABAergic synapses were decreased in a gene dose-dependent fashion. CA1 pyramidal cells showed reduced dendritic length and complexity, as well as an increased number of dendritic spines. These data suggest the novel hypothesis that the Sema 3F signaling system's role in appropriate placement of subsets of hippocampal interneurons has critical downstream consequences for hippocampal function, resulting in a more seizure susceptible phenotype.

  14. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    NARCIS (Netherlands)

    Bot, Martine; Van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; Van Santbrink, Peter J.; Westra, Marijke M.; Van Der Hoeven, Gerd; Gijbels, Marion J.; Mueller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; Van Berkel, Theo J. C.; Nofer, Jerzy-Roch; Bot, Ilze; Biessen, Erik A. L.

    2013-01-01

    Aims: Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets

  15. Hematopoietic Sphingosine 1-Phosphate Lyase Deficiency Decreases Atherosclerotic Lesion Development in LDL-Receptor Deficient Mice

    NARCIS (Netherlands)

    Bot, M.; Veldhoven, van P.P.; Jager, de S.C.; Johnson, J.; Nijstad, N.; van, Santbrink P.J.; Westra, M.M.; Hoeven, van der G.; Gijbels, M.J.; Muller-Tidow, C.; Varga, G.; Tietge, U.J.; Kuiper, J.; Berkel, van T.J.; Nofer, J.R.; Bot, I.; Biessen, E.A.

    2013-01-01

    Abstract Aims Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1−/−) deficiency on leukocyte

  16. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice

    NARCIS (Netherlands)

    Bot, Martine; van Veldhoven, Paul P.; de Jager, Saskia C. A.; Johnson, Jason; Nijstad, Niels; van Santbrink, Peter J.; Westra, Marijke M.; van der Hoeven, Gerd; Gijbels, Marion J.; Müller-Tidow, Carsten; Varga, Georg; Tietge, Uwe J. F.; Kuiper, Johan; van Berkel, Theo J. C.; Nofer, Jerzy-Roch; Bot, Ilze; Biessen, Erik A. L.

    2013-01-01

    Altered sphingosine 1-phosphate (S1P) homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/-)) deficiency on leukocyte subsets relevant to

  17. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  18. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2017-04-01

    Full Text Available RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3Δ/Δ mice, thus abolishing its kinase activity. Ripk3Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3Δ/Δ mutation rescued embryonic lethality in Fadd−/− embryos, Fadd−/− Ripk3Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd−/− mice.

  19. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    OpenAIRE

    Alkan , Manal; Machavoine , François; Rignault , Rachel; Dam , Julie; Dy , Michel; Thieblemont , Nathalie

    2015-01-01

    International audience; Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD) mouse model. To this end, we used mice (inactivated) knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC −/− m...

  20. Sickness behaviour after lipopolysaccharide treatment in ghrelin deficient mice.

    Science.gov (United States)

    Szentirmai, Éva; Krueger, James M

    2014-02-01

    Ghrelin is an orexigenic hormone produced mainly by the gastrointestinal system and the brain. Much evidence also indicates a role for ghrelin in sleep and thermoregulation. Further, ghrelin was recently implicated in immune system modulation. Administration of bacterial lipopolysaccharide (LPS) induces fever, anorexia, and increased non-rapid-eye movement sleep (NREMS) and these actions are mediated primarily by proinflammatory cytokines. Ghrelin reduces LPS-induced fever, suppresses circulating levels of proinflammatory cytokines and reduces the severity and mortality of various models of experimental endotoxemia. In the present study, we determined the role of intact ghrelin signaling in LPS-induced sleep, feeding, and thermoregulatory responses in mice. Sleep-wake activity was determined after intraperitoneal, dark onset administration of 0.4, 2 and 10 μg LPS in preproghrelin knockout (KO) and wild-type (WT) mice. In addition, body temperature, motor activity and changes in 24-h food intake and body weight were measured. LPS induced dose-dependent increases in NREMS, and suppressed rapid-eye movement sleep, electroencephalographic slow-wave activity, motor activity, food intake and body weight in both Ppg KO and WT mice. Body temperature changes showed a biphasic pattern with a decrease during the dark period followed by an increase in the light phase. The effects of the low and middle doses of LPS were indistinguishable between the two genotypes. Administration of 10 μg LPS, however, induced significantly larger changes in NREMS and wakefulness amounts, body temperature, food intake and body weight in the Ppg KO mice. These findings support a role for ghrelin as an endogenous modulator of inflammatory responses and a central component of arousal and feeding circuits. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. A distinctive patchy osteomalacia characterises Phospho1-deficient mice.

    Science.gov (United States)

    Boyde, Alan; Staines, Katherine A; Javaheri, Behzad; Millan, Jose Luis; Pitsillides, Andrew A; Farquharson, Colin

    2017-08-01

    The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 knockout (KO) mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 weeks old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20 kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used X-ray micro-tomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy (SEM). Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices. In conclusion, SEM disclosed defective mineralising fronts and extensive patchy osteomalacia, which has previously not been recognised. These data further confirm the role of this phosphatase

  2. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    International Nuclear Information System (INIS)

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  3. T cells exacerbate Lyme borreliosis in TLR2-deficient mice

    Directory of Open Access Journals (Sweden)

    Carrie E. Lasky

    2016-11-01

    Full Text Available Infection of humans with the spirochete, Borrelia burgdorferi, causes Lyme borreliosis and can lead to clinical manifestations such as, arthritis, carditis and neurological conditions. Experimental infection of mice recapitulates many of these symptoms and serves as a model system for the investigation of disease pathogenesis and immunity. Innate immunity is known to drive the development of Lyme arthritis and carditis, but the mechanisms driving this response remain unclear. Innate immune cells recognize B. burgdorferi surface lipoproteins primarily via Toll-like receptor (TLR2; however, previous work has demonstrated TLR2-/- mice had exacerbated disease and increased bacterial burden. We demonstrate increased CD4 and CD8 T cell infiltrates in B. burgdorferi-infected joints and hearts of C3H TLR2-/- mice. In vivo depletion of either CD4 or CD8 T cells reduced Borrelia-induced joint swelling and lowered tissue spirochete burden, while depletion of CD8 T cells alone reduced disease severity scores. Exacerbation of Lyme arthritis correlated with increased production of CXCL9 by synoviocytes and this was reduced with CD8 T cell depletion. These results demonstrate T cells can exacerbate Lyme disease pathogenesis and prolong disease resolution possibly through dysregulation of inflammatory responses and inhibition of bacterial clearance.

  4. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  5. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    Directory of Open Access Journals (Sweden)

    De Deyn PP

    2006-08-01

    Full Text Available Summary Background Arylsulfatase A (ASA-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT. This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.

  6. Validity of leptin receptor-deficiency (db/db) type 2 diabetes mellitus mice as a model of secondary osteoporosis

    Science.gov (United States)

    Huang, Le; You, Yong-Ke; Zhu, Tracy Y.; Zheng, Li-Zhen; Huang, Xiao-Ru; Chen, Hai-Yong; Yao, Dong; Lan, Hui-Yao; Qin, Ling

    2016-06-01

    This study aimed to evaluate the validation of the leptin receptor-deficient mice model for secondary osteoporosis associated with type 2 diabetes mellitus (T2DM) at bone micro-architectural level. Thirty three 36-week old male mice were divided into four groups: normal control (db/m) (n = 7), leptin receptor-deficient T2DM (db/db) (n = 8), human C-reactive protein (CRP) transgenic normal control (crp/db/m) (n = 7), and human CRP transgenic T2DM (crp/db/db) (n = 11). Lumber vertebrae (L5) and bilateral lower limbs were scanned by micro-CT to analyze trabecular and cortical bone quality. Right femora were used for three-point bending to analyze the mechanical properties. Trabecular bone quality at L5 was better in db/db or crp/db/db group in terms of bone mineral density (BMD), bone volume fraction, connectivity density, trabecular number and separation (all p  0.05). Maximum loading and energy yield in mechanical test were similar among groups while the elastic modulus in db/db and crp/db/db significantly lower than db/m. The leptin-receptor mice is not a proper model for secondary osteoporosis associated with T2DM.

  7. Mcph1-deficient mice reveal a role for MCPH1 in otitis media.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1(tm1a (/tm1a mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1(tm1a (/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1(tm1a (/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1(tm1a (/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.

  8. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice12345

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas DE

    2015-01-01

    Background: Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Objective: Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Design: Folic acid–supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr+/+ and Mthfr+/− mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Results: Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr+/− mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr+/− livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr+/− mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. Conclusions: We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2

  9. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  10. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  11. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  12. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice

    International Nuclear Information System (INIS)

    Bix, M.; Nanshih Liao; Raulet, D.; Zijlstra, M.; Loring, J.; Jaenisch, R.

    1991-01-01

    Irradiated MHC-heterozygous mice often reject bone marrow cells transplanted from one of the homozygous parental strains, a phenomenon ('hybrid resistance') that appears to violate the laws of transplantation. Rejection of parental and allogeneic marrow cells also differs from conventional T cell-mediated rejection mechanisms as it is effected by NK1.1 + cells. To account for the unusual specificity of bone marrow rejection, it has been proposed that NK1.1 + cells destroy marrow cells that fail to express the full complement of self MHC class I (MHC-I) molecules. We show here that NK1.1 + cells in normal mice reject haemopoietic transplants from mice that are deficient for normal cell-surface MHC-I expression because of a targeted mutation in the β 2 -microglobulin gene. These findings demonstrate that deficient expression of MHC-I molecules renders marrow cells susceptible to rejection. (author)

  13. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    Science.gov (United States)

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone.

    Science.gov (United States)

    Tang, Mi; Huang, Chen; Wang, Yu-Fei; Ren, Pei-Gen; Chen, Li; Xiao, Tian-Xia; Wang, Bao-Bei; Pan, Yan-Fei; Tsang, Benjamin K; Zabel, Brian A; Ma, Bao-Hua; Zhao, Hui-Ying; Zhang, Jian V

    2016-02-19

    Elevated serum chemerin levels correlate with increased severity of polycystic ovary syndrome (PCOS). However, the role of CMKLR1 signaling in ovarian biology under conditions of excess DHT remains unclear. In this study we compared the effects of continuous 90-day high dose DHT exposure (83.3 □g/day) on wild type and CMKLR1-deficient mice. DHT induced PCOS-like clinical signs in wild type mice as well as significant changes in the expression of hormone receptors, steroid synthesis enzymes, and BMPs and their receptors. In contrast, CMKLR1-deficient mice significantly attenuated DHT-induced clinical signs of PCOS and alterations in ovarian gene expression. To determine whether the BMP4 signaling pathway was involved in the pathogenic effects of CMKLR1 signaling in DHT-induced ovarian steroidogenesis, antral follicles were isolated from wild type and CMKLR1 knockout (KO) mice and treated in vitro with combinations of hCG, DHT, and BMP4 inhibitors. BMP4 inhibition attenuated the induction effects of hCG and DHT on estrogen and progesterone secretion in CMKLR1 KO mice, but not in WT mice, implicating the BMP4 signaling pathway in the CMKLR1-dependent response to DHT. In conclusion, CMKLR1 gene deletion attenuates the effects of chronic DHT treatment on ovarian function in experimental PCOS, likely via BMP4 signaling.

  15. Germline mutation rates at tandem repeat loci in DNA-repair deficient mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Miccoli, Laurent; Buul, Paul P.W. van; Burr, Karen L.-A.; Duyn-Goedhart, Annemarie van; Angulo, Jaime F.; Dubrova, Yuri E.

    2004-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1 -/- ) deficient male mice. Non-exposed scid and PARP -/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1 -/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1 -/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1 -/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1 -/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice

  16. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  17. Dysregulation of the unfolded protein response in db/db mice with diet induced steatohepatitis

    OpenAIRE

    Rinella, Mary E.; Siddiqui, M. Shaddab; Gardikiotes, Konstantina; Gottstein, Jeanne; Elias, Marc; Green, Richard M.

    2011-01-01

    In humans with non-alcoholic fatty liver, diabetes is associated with more advanced disease. We have previously shown that diabetic db/db mice are highly susceptible to methionine choline deficient diet (MCD) induced hepatic injury. Since activation of the unfolded protein response (UPR) is an important adaptive cellular mechanism in diabetes, obesity and fatty liver, we hypothesized that dysregulation of the UPR may partially explain how diabetes could promote liver injury.

  18. Effects of Mild and Severe Vitamin B Deficiencies on the Meiotic Maturation of Mice Oocytes

    Directory of Open Access Journals (Sweden)

    Ai Tsuji

    2017-03-01

    Full Text Available We investigated the effects of vitamin B 1 deficiency on the meiosis maturation of oocytes. Female Crl:CD1 (ICR mice were fed a 20% casein diet (control group or a vitamin B 1 –free diet (test group. The vitamin B 1 concentration in ovary was approximately 30% lower in the test group than in the control group. Oocyte meiosis was not affected by vitamin B 1 deficiency when the deficiency was not accompanied by body weight loss. On the contrary, frequency of abnormal oocyte was increased by vitamin B 1 deficiency when deficiency was accompanied by body weight loss (referred to as severe vitamin B 1 deficiency; frequency of abnormal oocyte, 13.8% vs 43.7%, P  = .0071. The frequency of abnormal oocytes was decreased by refeeding of a vitamin B 1 –containing diet (13.9% vs 22.9%, P  = .503. These results suggest that severe vitamin B 1 deficiency inhibited meiotic maturation of oocytes but did not damage immature oocytes.

  19. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  20. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  1. Characterization of the gut microbiota in leptin deficient obese mice

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Krych, Lukasz; Hansen, Camilla Hartmann Friis

    2014-01-01

    Gut microbiota have been implicated as a relevant factor in the development of type 2 diabetes mellitus (T2DM), and its diversity might be a cause of variation in animal models of T2DM. In this study, we aimed to characterise the gut microbiota of a T2DM mouse model with a long term vision of being...... able to target the gut microbiota to reduce the number of animals used in experiments. Male B6.V-Lep(ob)/J mice were characterized according to a number of characteristics related to T2DM, inflammation and gut microbiota. All findings were thereafter correlated to one another in a linear regression...... model. The total gut microbiota profile correlated to glycated haemoglobin, and high proportions of Prevotellaceae and Lachnospiraceae correlated to impaired or improved glucose intolerance, respectively. In addition, Akkermansia muciniphila disappeared with age as glucose intolerance worsened. A high...

  2. The role of interleukin-5 (IL-5 in vivo: studies with IL-5 deficient mice

    Directory of Open Access Journals (Sweden)

    Klaus I Matthaei

    1997-12-01

    Full Text Available Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996. Since interleukin5 (IL5 is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992, the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996, provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.

  3. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  4. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  5. Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice.

    Science.gov (United States)

    Kina-Tanada, Mika; Sakanashi, Mayuko; Tanimoto, Akihide; Kaname, Tadashi; Matsuzaki, Toshihiro; Noguchi, Katsuhiko; Uchida, Taro; Nakasone, Junko; Kozuka, Chisayo; Ishida, Masayoshi; Kubota, Haruaki; Taira, Yuji; Totsuka, Yuichi; Kina, Shin-Ichiro; Sunakawa, Hajime; Omura, Junichi; Satoh, Kimio; Shimokawa, Hiroaki; Yanagihara, Nobuyuki; Maeda, Shiro; Ohya, Yusuke; Matsushita, Masayuki; Masuzaki, Hiroaki; Arasaki, Akira; Tsutsui, Masato

    2017-06-01

    Nitric oxide (NO) is synthesised not only from L-arginine by NO synthases (NOSs), but also from its inert metabolites, nitrite and nitrate. Green leafy vegetables are abundant in nitrate, but whether or not a deficiency in dietary nitrite/nitrate spontaneously causes disease remains to be clarified. In this study, we tested our hypothesis that long-term dietary nitrite/nitrate deficiency would induce the metabolic syndrome in mice. To this end, we prepared a low-nitrite/nitrate diet (LND) consisting of an amino acid-based low-nitrite/nitrate chow, in which the contents of L-arginine, fat, carbohydrates, protein and energy were identical with a regular chow, and potable ultrapure water. Nitrite and nitrate were undetectable in both the chow and the water. Three months of the LND did not affect food or water intake in wild-type C57BL/6J mice compared with a regular diet (RD). However, in comparison with the RD, 3 months of the LND significantly elicited visceral adiposity, dyslipidaemia and glucose intolerance. Eighteen months of the LND significantly provoked increased body weight, hypertension, insulin resistance and impaired endothelium-dependent relaxations to acetylcholine, while 22 months of the LND significantly led to death mainly due to cardiovascular disease, including acute myocardial infarction. These abnormalities were reversed by simultaneous treatment with sodium nitrate, and were significantly associated with endothelial NOS downregulation, adiponectin insufficiency and dysbiosis of the gut microbiota. These results provide the first evidence that long-term dietary nitrite/nitrate deficiency gives rise to the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice, indicating a novel pathogenetic role of the exogenous NO production system in the metabolic syndrome and its vascular complications.

  6. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    Science.gov (United States)

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  7. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  8. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma.

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James G; Xu, Yan; Shen, Xiling; Kalady, Mathew F; Markowitz, Sanford; Maillard, Ivan; Lowe, John B; Xin, Wei; Zhou, Lan

    2017-01-01

    De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency

  9. Mice Deficient in lysophosphatidic acid acyltransferase delta (Lpaatδ)/acylglycerophosphate acyltransferase 4 (Agpat4) Have Impaired Learning and Memory.

    Science.gov (United States)

    Bradley, Ryan M; Mardian, Emily B; Bloemberg, Darin; Aristizabal Henao, Juan J; Mitchell, Andrew S; Marvyn, Phillip M; Moes, Katherine A; Stark, Ken D; Quadrilatero, Joe; Duncan, Robin E

    2017-11-15

    We previously characterized LPAATδ/AGPAT4 as a mitochondrial lysophosphatidic acid acyltransferase that regulates brain levels of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol (PI). Here, we report that Lpaat δ -/- mice display impaired spatial learning and memory compared to wild-type littermates in the Morris water maze and our investigation of potential mechanisms associated with brain phospholipid changes. Marker protein immunoblotting suggested that the relative brain content of neurons, glia, and oligodendrocytes was unchanged. Relative abundance of the important brain fatty acid docosahexaenoic acid was also unchanged in phosphatidylserine, phosphatidylglycerol, and cardiolipin, in agreement with prior data on PC, PE and PI. In phosphatidic acid, it was increased. Specific decreases in ethanolamine-containing phospholipids were detected in mitochondrial lipids, but the function of brain mitochondria in Lpaat δ -/- mice was unchanged. Importantly, we found that Lpaat δ -/- mice have a significantly and drastically lower brain content of the N -methyl-d-asparate (NMDA) receptor subunits NR1, NR2A, and NR2B, as well as the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1, compared to wild-type mice. However, general dysregulation of PI-mediated signaling is not likely responsible, since phospho-AKT and phospho-mTOR pathway regulation was unaffected. Our findings indicate that Lpaat δ deficiency causes deficits in learning and memory associated with reduced NMDA and AMPA receptors. Copyright © 2017 American Society for Microbiology.

  10. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    International Nuclear Information System (INIS)

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-01-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment

  11. Heme oxygenase-1 modulates degeneration of the intervertebral disc after puncture in Bach 1 deficient mice.

    Science.gov (United States)

    Ohta, Ryo; Tanaka, Nobuhiro; Nakanishi, Kazuyoshi; Kamei, Naosuke; Nakamae, Toshio; Izumi, Bunichiro; Fujioka, Yuki; Ochi, Mitsuo

    2012-09-01

    Intervertebral disc degeneration is considered to be a major feature of low back pain. Furthermore, oxidative stress has been shown to be an important factor in degenerative diseases such as osteoarthritis and is considered a cause of intervertebral disc degeneration. The purpose of this study was to clarify the correlation between oxidative stress and intervertebral disc degeneration using Broad complex-Tramtrack-Bric-a-brac and cap'n'collar homology 1 deficient (Bach 1-/-) mice which highly express heme oxygenase-1 (HO-1). HO-1 protects cells from oxidative stress. Caudal discs of 12-week-old and 1-year-old mice were evaluated as age-related models. Each group and period, 5 mice (a total of 20 mice, a total of 20 discs) were evaluated as age-related model. C9-C10 caudal discs in 12-week-old Bach 1-/- and wild-type mice were punctured using a 29-gauge needle as annulus puncture model. Each group and period, 5 mice (a total of 60 mice, a total of 60 discs) were evaluated. The progress of disc degeneration was evaluated at pre-puncture, 1, 2, 4, 8 and 12 weeks post-puncture. Radiographic, histologic and immunohistologic analysis were performed to compare between Bach 1-/- and wild-type mice. In the age-related model, there were no significant differences between Bach 1-/- and wild-type mice radiologically and histologically. However, in the annulus puncture model, histological scoring revealed significant difference at 8 and 12 weeks post-puncture. The number of HO-1 positive cells was significantly greater in Bach 1-/- mice at every period. The apoptosis rate was significantly lower at 1 and 2 weeks post-puncture in Bach 1-/- mice. Oxidative stress prevention may avoid the degenerative process of the intervertebral disc after puncture, reducing the number of apoptosis cells. High HO-1 expression may also inhibit oxidative stress and delay the process of intervertebral disc degeneration.

  12. Antigenic specificity of serum antibodies in mice fed soy protein

    DEFF Research Database (Denmark)

    Christensen, Hanne Risager; Bruun, S.W.; Frøkiær, Hanne

    2003-01-01

    Background: Soybean protein is used in a number of food products but unfortunately is also a common cause of food allergy. Upon ingestion of soy protein, healthy mice like other animals and humans generate a soy-specific antibody response in the absence of signs of illness. Not much is known about...... the relationship between the immunogenic proteins involved in this nondeleterious antibody response and the pathological response associated with food allergy. The objective of the present study was to characterize the antigenic specificity of the soy protein-specific antibody response generated in healthy mice...... ingesting soy protein. Methods: Blood from mice fed a soy-containing diet was analyzed using ELISA and immunoblot for antibody reactivity towards various soy protein fractions and pure soy proteins/subunits. Mice bred on a soy-free diet were used as controls. Results: The detectable antigenic specificity...

  13. Maternal Vitamin D Deficiency and Fetal Programming - Lessons Learned from Humans and Mice

    Directory of Open Access Journals (Sweden)

    Christoph Reichetzeder

    2014-09-01

    Full Text Available Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D3 (25OHD during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.

  14. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Mona Buhusi

    2017-10-01

    Full Text Available Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI, a measure of selective attention and learning, in GDNF-heterozygous (HET mice and their wild-type (WT littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.

  15. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  16. Role of the adiponectin binding protein, T-cadherin (Cdh13, in allergic airways responses in mice.

    Directory of Open Access Journals (Sweden)

    Alison S Williams

    Full Text Available Adiponectin is an adipose derived hormone that declines in obesity. We have previously shown that exogenous administration of adiponectin reduces allergic airways responses in mice. T-cadherin (T-cad; Cdh13 is a binding protein for the high molecular weight isoforms of adiponectin. To determine whether the beneficial effects of adiponectin on allergic airways responses require T-cad, we sensitized wildtype (WT, T-cadherin deficient (T-cad(-/- and adiponectin and T-cad bideficient mice to ovalbumin (OVA and challenged the mice with aerosolized OVA or PBS. Compared to WT, T-cad(-/- mice were protected against OVA-induced airway hyperresponsiveness, increases in BAL inflammatory cells, and induction of IL-13, IL-17, and eotaxin expression. Histological analysis of the lungs of OVA-challenged T-cad(-/- versus WT mice indicated reduced inflammation around the airways, and reduced mucous cell hyperplasia. Combined adiponectin and T-cad deficiency reversed the effects of T-cad deficiency alone, indicating that the observed effects of T-cad deficiency require adiponectin. Compared to WT, serum adiponectin was markedly increased in T-cad(-/- mice, likely because adiponectin that is normally sequestered by endothelial T-cad remains free in the circulation. In conclusion, T-cad does not mediate the protective effects of adiponectin. Instead, mice lacking T-cad have reduced allergic airways disease, likely because elevated serum adiponectin levels act on other adiponectin signaling pathways.

  17. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  18. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-10-01

    Full Text Available Objective: Compared to men, postmenopausal women suffer from a disproportionate burden of many co-morbidities associated with obesity, e.g. cardiovascular disease, cancer, and dementia. The underlying mechanism for this sex difference is not well understood but is believed to relate to absence of the protective effect of estrogen through the action of estrogen receptor alpha (ERα in the central nervous system. With the recently developed neuron-specific lipoprotein lipase deficient mice (NEXLPL−/− (Wang et al., Cell Metabolism, 2011 [15], we set to explore the possible role of lipid sensing in sex differences in obesity development. Methods: Both male and female NEXLPL−/− mice and littermate WT controls were subjected to pair feeding (pf where daily food amount given was adjusted according to body weight to match the food intake of ad libitum (ad fed control WT mice. Food intake and body weight were measured daily, and pair feeding was maintained to 42 wk in male mice and to 38 wk in female mice. Various brain regions of the mice were harvested, and ERα gene expression was examined in both male and female NEXLPL−/− and WT control mice under both ad- and pf-fed conditions. Results: Although both male and female NEXLPL−/− mice developed obesity similarly on standard chow, male NEXLPL−/− mice still developed obesity under with pair feeding, but on a much delayed time course, while female NEXLPL−/− mice were protected from extra body weight and fat mass gain compared to pair-fed WT control mice. Pair feeding alone induced extra fat mass gain in both male and female WT mice, and this was mostly driven by the reduction in physical activity. LPL deficiency resulted in an increase in ERα mRNA in the hypothalamus of ad-fed female mice, while pair feeding alone also resulted in an increase of ERα in both female WT control and NEXLPL−/− mice. The effect on increasing ERα by pair feeding and LPL deficiency was additive in

  19. Renal Denervation Attenuates Progression of Atherosclerosis in Apolipoprotein E–Deficient Mice Independent of Blood Pressure Lowering

    Science.gov (United States)

    Wang, Hui; Wang, Jintao; Guo, Chiao; Luo, Wei; Kleiman, Kyle; Eitzman, Daniel T.

    2016-01-01

    The renal autonomic nervous system may contribute to hypertension and vascular disease. Although the effects of renal artery denervation on blood pressure lowering are controversial, there may be other beneficial vascular effects independent of blood pressure lowering. Bilateral renal denervation (RDN) or sham operation (SO) was performed in 14-week-old male apolipoprotein E–deficient mice on a Western diet starting at 10 weeks of age. Efficacy of RDN was confirmed by reduction of renal norepinephrine levels (SO: 3.8±0.1 versus RDN: 1.7±0.3 ng/mL; P<0.01) at 6 weeks after procedure. Compared with SO, RDN had no effect on blood pressure (SO: 101.0±2.4 versus RDN: 97.5±1.6 mm Hg; P=0.25), total cholesterol (SO: 536.7±28.5 versus RDN: 535.7±62.9 mg/dL; P=0.99), or triglycerides (SO: 83.7±3.5 versus RDN: 86.9±10.2 mg/dL; P=0.78). Quantification of atherosclerosis at 20 weeks of age demonstrated reduced atherosclerosis in mice receiving RDN compared with SO (arterial tree oil-red-O surface staining RDN: 4.2±0.5% versus SO: 6.3±0.7%; P<0.05). Reduced atherosclerosis was associated with increased smooth muscle cell content in atherosclerotic plaques (RDN: 13.3±2.1 versus SO: 8.1±0.6%; P<0.05). Serum levels of aldosterone, monocyte chemoattractant protein-1, and 8-isoprostane were lower in mice that received RDN compared with sham-operated mice (aldosterone; RDN: 206.8±33.2 versus SO: 405.5±59.4 pg/mL, P<0.05; monocyte chemoattractant protein-1; RDN: 51.7±7.9 versus SO: 91.71±4.6 pg/mL, P<0.05; 8-isoprostane; RDN: 331.9±38.2 versus SO: 468.5±42.0 pg/mL, P<0.05). RDN reduces progression of atherosclerosis in apolipoprotein E–deficient mice. These changes are associated with reduced aldosterone levels, monocyte chemoattractant protein-1, and markers of oxidative stress. PMID:25646301

  20. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    Science.gov (United States)

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  2. Female mice deficient in alpha-fetoprotein show female-typical neural responses to conspecific-derived pheromones.

    Directory of Open Access Journals (Sweden)

    Olivier Brock

    Full Text Available The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO and which lack the protective actions of AFP against maternal estradiol, that exposure to prenatal estradiol completely defeminized the potential to show lordosis behavior in adulthood. Furthermore, AFP-KO females failed to show any male-directed mate preferences following treatment with estradiol and progesterone, indicating a reduced sexual motivation to seek out the male. In the present study, we asked whether neural responses to male- and female-derived odors are also affected in AFP-KO female mice. Therefore, we compared patterns of Fos, the protein product of the immediate early gene, c-fos, commonly used as a marker of neuronal activation, between wild-type (WT and AFP-KO female mice following exposure to male or estrous female urine. We also tested WT males to confirm the previously observed sex differences in neural responses to male urinary odors. Interestingly, AFP-KO females showed normal, female-like Fos responses, i.e. exposure to urinary odors from male but not estrous female mice induced equivalent levels of Fos protein in the accessory olfactory pathways (e.g. the medial part of the preoptic nucleus, the bed nucleus of the stria terminalis, the amygdala, and the lateral part of the ventromedial hypothalamic nucleus as well as in the main olfactory pathways (e.g. the piriform cortex and the anterior cortical amygdaloid nucleus, as WT females. By contrast, WT males did not show any significant induction of Fos protein in these brain areas upon exposure to either male or estrous female urinary odors. These results thus suggest that prenatal estradiol is not involved in the sexual differentiation of neural Fos responses to male-derived odors.

  3. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  4. Protein turnover in acid maltase deficiency before and after treatment with a high protein diet.

    OpenAIRE

    Umpleby, A M; Wiles, C M; Trend, P S; Scobie, I N; Macleod, A F; Spencer, G T; Sonksen, P H

    1987-01-01

    A patient with acid maltase deficiency was treated with a high protein diet for 7 months. Protein turnover expressed in terms of lean body mass was shown to be increased in this patient before the diet but was markedly reduced following the diet. The patient improved clinically whilst on the diet both subjectively and in terms of mobility, breathing and reduced peripheral cyanosis at rest.

  5. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  6. Protein energy malnutrition decreases immunity and increases susceptibility to influenza infection in mice.

    Science.gov (United States)

    Taylor, Andrew K; Cao, Weiping; Vora, Keyur P; De La Cruz, Juan; Shieh, Wun-Ju; Zaki, Sherif R; Katz, Jacqueline M; Sambhara, Suryaprakash; Gangappa, Shivaprakash

    2013-02-01

    Protein energy malnutrition (PEM), a common cause of secondary immune deficiency in children, is associated with an increased risk of infections. Very few studies have addressed the relevance of PEM as a risk factor for influenza. We investigated the influence of PEM on susceptibility to, and immune responses following, influenza virus infection using isocaloric diets providing either adequate protein (AP; 18%) or very low protein (VLP; 2%) in a mouse model. We found that mice maintained on the VLP diet, when compared to mice fed with the AP diet, exhibited more severe disease following influenza infection based on virus persistence, trafficking of inflammatory cell types to the lung tissue, and virus-induced mortality. Furthermore, groups of mice maintained on the VLP diet showed significantly lower virus-specific antibody response and a reduction in influenza nuclear protein-specific CD8(+) T cells compared with mice fed on the AP diet. Importantly, switching diets for the group maintained on the VLP diet to the AP diet improved virus clearance, as well as protective immunity to viral challenge. Our results highlight the impact of protein energy on immunity to influenza infection and suggest that balanced protein energy replenishment may be one strategy to boost immunity against influenza viral infections.

  7. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  8. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    Science.gov (United States)

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    Science.gov (United States)

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  10. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  11. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  12. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  13. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  14. Effect of dietary fat on hepatic liver X receptor expression in P-glycoprotein deficient mice: implications for cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Lee Stephen D

    2008-06-01

    Full Text Available Abstract Pgp (P-glycoprotein, MDR1, ABCB1 is an energy-dependent drug efflux pump that is a member of the ATP-binding cassette (ABC family of proteins. Preliminary studies have reported that nonspecific inhibitors of Pgp affect synthesis and esterification of cholesterol, putatively by blocking trafficking of cholesterol from the plasma membrane to the endoplasmic reticulum, and that relative increases in Pgp within a given cell type are associated with increased accumulation of cholesterol. Several key efflux proteins involved in the cholesterol metabolic pathway are transcriptionally regulated by the nuclear hormone liver X receptor (LXR. Therefore, to examine the interplay between P-glycoprotein and the cholesterol metabolic pathway, we utilized a high fat, normal cholesterol diet to upregulate LXRα without affecting dietary cholesterol. Our research has demonstrated that mice lacking in P-glycoprotein do not exhibit alterations in hepatic total cholesterol storage, circulating plasma total cholesterol levels, or total cholesterol concentration in the bile when compared to control animals on either a normal (25% calories from dietary fat or high fat (45% calories from dietary fat diet. However, p-glycoprotein deficient mice (Mdr1a-/-/1b-/- exhibit increased hepatic LXRα protein expression and an elevation in fecal cholesterol concentration when compared to controls.

  15. Alterations in gene expression in mutant amyloid precursor protein transgenic mice lacking Niemann-Pick type C1 protein.

    Directory of Open Access Journals (Sweden)

    Mahua Maulik

    Full Text Available Niemann-Pick type C (NPC disease, a rare autosomal recessive disorder caused mostly by mutation in NPC1 gene, is pathologically characterized by the accumulation of free cholesterol in brain and other tissues. This is accompanied by gliosis and loss of neurons in selected brain regions, including the cerebellum. Recent studies have shown that NPC disease exhibits intriguing parallels with Alzheimer's disease, including the presence of neurofibrillary tangles and increased levels of amyloid precursor protein (APP-derived β-amyloid (Aβ peptides in vulnerable brain neurons. To evaluate the role of Aβ in NPC disease, we determined the gene expression profile in selected brain regions of our recently developed bigenic ANPC mice, generated by crossing APP transgenic (Tg mice with heterozygous Npc1-deficient mice. The ANPC mice exhibited exacerbated neuronal and glial pathology compared to other genotypes [i.e., APP-Tg, double heterozygous (Dhet, Npc1-null and wild-type mice]. Analysis of expression profiles of 86 selected genes using real-time RT-PCR arrays showed a wide-spectrum of alterations in the four genotypes compared to wild-type controls. The changes observed in APP-Tg and Dhet mice are limited to only few genes involved mostly in the regulation of cholesterol metabolism, whereas Npc1-null and ANPC mice showed alterations in the expression profiles of a number of genes regulating cholesterol homeostasis, APP metabolism, vesicular trafficking and cell death mechanism in both hippocampus and cerebellum compared to wild-type mice. Intriguingly, ANPC and Npc1-null mice, with some exceptions, exhibited similar changes, although more genes were differentially expressed in the affected cerebellum than the relatively spared hippocampus. The altered gene profiles were found to match with the corresponding protein levels. These results suggest that lack of Npc1 protein can alter the expression profile of selected transcripts as well as proteins, and

  16. Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency.

    Science.gov (United States)

    Zhou, Xiaolai; Sun, Lirong; Brady, Owen Adam; Murphy, Kira A; Hu, Fenghua

    2017-01-26

    Mutations resulting in haploinsufficiency of progranulin (PGRN) cause frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), a devastating neurodegenerative disease. Accumulating evidence suggest a crucial role of progranulin in maintaining proper lysosomal function during aging. TMEM106B has been identified as a risk factor for frontotemporal lobar degeneration with progranulin mutations and elevated mRNA and protein levels of TMEM106B are associated with increased risk for frontotemporal lobar degeneration. Increased levels of TMEM106B alter lysosomal morphology and interfere with lysosomal degradation. However, how progranulin and TMEM106B interact to regulate lysosomal function and frontotemporal lobar degeneration (FTLD) disease progression is still unclear. Here we report that progranulin deficiency leads to increased TMEM106B protein levels in the mouse cortex with aging. To mimic elevated levels of TMEM106B in frontotemporal lobar degeneration (FTLD) cases, we generated transgenic mice expressing TMEM106B under the neuronal specific promoter, CamKII. Surprisingly, we found that the total protein levels of TMEM106B are not altered despite the expression of the TMEM106B transgene at mRNA and protein levels, suggesting a tight regulation of TMEM106B protein levels in the mouse brain. However, progranulin deficiency results in accumulation of TMEM106B protein from the transgene expression during aging, which is accompanied by exaggerated lysosomal abnormalities and increased lipofuscin accumulation. In summary, our mouse model nicely recapitulates the interaction between progranulin and TMEM106B in human patients and supports a critical role of lysosomal dysfunction in the frontotemporal lobar degeneration (FTLD) disease progression.

  17. Bilirubin Increases Insulin Sensitivity in Leptin-Receptor Deficient and Diet-Induced Obese Mice Through Suppression of ER Stress and Chronic Inflammation

    Science.gov (United States)

    Dong, Huansheng; Huang, Hu; Yun, Xinxu; Kim, Do-sung; Yue, Yinan; Wu, Hongju; Sutter, Alton; Chavin, Kenneth D.; Otterbein, Leo E.; Adams, David B.; Kim, Young-Bum

    2014-01-01

    Obesity-induced endoplasmic reticulum (ER) stress causes chronic inflammation in adipose tissue and steatosis in the liver, and eventually leads to insulin resistance and type 2 diabetes (T2D). The goal of this study was to understand the mechanisms by which administration of bilirubin, a powerful antioxidant, reduces hyperglycemia and ameliorates obesity in leptin-receptor-deficient (db/db) and diet-induced obese (DIO) mouse models. db/db or DIO mice were injected with bilirubin or vehicle ip. Blood glucose and body weight were measured. Activation of insulin-signaling pathways, expression of inflammatory cytokines, and ER stress markers were measured in skeletal muscle, adipose tissue, and liver of mice. Bilirubin administration significantly reduced hyperglycemia and increased insulin sensitivity in db/db mice. Bilirubin treatment increased protein kinase B (PKB/Akt) phosphorylation in skeletal muscle and suppressed expression of ER stress markers, including the 78-kDa glucose-regulated protein (GRP78), CCAAT/enhancer-binding protein (C/EBP) homologous protein, X box binding protein (XBP-1), and activating transcription factor 4 in db/db mice. In DIO mice, bilirubin treatment significantly reduced body weight and increased insulin sensitivity. Moreover, bilirubin suppressed macrophage infiltration and proinflammatory cytokine expression, including TNF-α, IL-1β, and monocyte chemoattractant protein-1, in adipose tissue. In liver and adipose tissue of DIO mice, bilirubin ameliorated hepatic steatosis and reduced expression of GRP78 and C/EBP homologous protein. These results demonstrate that bilirubin administration improves hyperglycemia and obesity by increasing insulin sensitivity in both genetically engineered and DIO mice models. Bilirubin or bilirubin-increasing drugs might be useful as an insulin sensitizer for the treatment of obesity-induced insulin resistance and type 2 diabetes based on its profound anti-ER stress and antiinflammatory properties. PMID

  18. Antihypertensive effect of etamicastat in dopamine D2 receptor-deficient mice.

    Science.gov (United States)

    Armando, Ines; Asico, Laureano D; Wang, Xiaoyan; Jones, John E; Serrão, Maria Paula; Cuevas, Santiago; Grandy, David K; Soares-da-Silva, Patricio; Jose, Pedro A

    2018-04-13

    Abnormalities of the D 2 R gene (DRD2) play a role in the pathogenesis of human essential hypertension; variants of the DRD2 have been reported to be associated with hypertension. Disruption of Drd2 (D 2 -/- ) in mice increases blood pressure. The hypertension of D 2 -/- mice has been related, in part, to increased sympathetic activity, renal oxidative stress, and renal endothelin B receptor (ETBR) expression. We tested in D 2 -/- mice the effect of etamicastat, a reversible peripheral inhibitor of dopamine-β-hydroxylase that reduces the biosynthesis of norepinephrine from dopamine and decreases sympathetic nerve activity. Blood pressure was measured in anesthetized D 2 -/- mice treated with etamicastat by gavage, (10 mg/kg), conscious D 2 -/- mice, and D 2 +/+ littermates, and mice with the D 2 R selectively silenced in the kidney, treated with etamicastat in the drinking water (10 mg/kg per day). Tissue and urinary catecholamines and renal expression of selected G protein-coupled receptors, enzymes related to the production of reactive oxygen species, and sodium transporters were also measured. Etamicastat decreased blood pressure both in anesthetized and conscious D 2 -/- mice and mice with renal-selective silencing of D 2 R to levels similar or close to those measured in D 2 +/+ littermates. Etamicastat decreased cardiac and renal norepinephrine and increased cardiac and urinary dopamine levels in D 2 -/- mice. It also normalized the increased renal protein expressions of ETBR, NADPH oxidase isoenzymes, and urinary 8-isoprostane, as well as renal NHE3 and NCC, and increased the renal expression of D 1 R but not D 5 R in D 2 -/- mice. In conclusion, etamicastat is effective in normalizing the increased blood pressure and some of the abnormal renal biochemical alterations of D 2 -/- mice.

  19. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  20. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  1. Using "Mighty Mouse" to understand masticatory plasticity: myostatin-deficient mice and musculoskeletal function.

    Science.gov (United States)

    Ravosa, Matthew J; López, Elisabeth K; Menegaz, Rachel A; Stock, Stuart R; Stack, M Sharon; Hamrick, Mark W

    2008-09-01

    Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation. Statistically significant differences in joint proportions and bone mineral density between normal and Mstn-deficient mice, which are similar to those observed between rabbit loading cohorts, underscore the need for a comprehensive analysis of masticatory tissue plasticity vis-à-vis altered mechanical loads, one in which variation in external and internal structure are considered. Differences in the expression of proteoglycans and type-II collagen in TMJ articular cartilage between the mouse and rabbit comparisons suggest that the duration and magnitude of the loading stimulus will significantly affect patterns of adaptive and degradative responses. These data on mammals subjected to long-term loading conditions offer novel insights regarding variation in ontogeny, life history, and the ecomorphology of the feeding apparatus.

  2. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Science.gov (United States)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  3. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  4. Retinal dendritic cell recruitment, but not function, was inhibited in MyD88 and TRIF deficient mice.

    Science.gov (United States)

    Heuss, Neal D; Pierson, Mark J; Montaniel, Kim Ramil C; McPherson, Scott W; Lehmann, Ute; Hussong, Stacy A; Ferrington, Deborah A; Low, Walter C; Gregerson, Dale S

    2014-08-13

    Immune system cells are known to affect loss of neurons due to injury or disease. Recruitment of immune cells following retinal/CNS injury has been shown to affect the health and survival of neurons in several models. We detected close, physical contact between dendritic cells and retinal ganglion cells following an optic nerve crush, and sought to understand the underlying mechanisms. CD11c-DTR/GFP mice producing a chimeric protein of diphtheria toxin receptor (DTR) and GFP from a transgenic CD11c promoter were used in conjunction with mice deficient in MyD88 and/or TRIF. Retinal ganglion cell injury was induced by an optic nerve crush, and the resulting interactions of the GFPhi cells and retinal ganglion cells were examined. Recruitment of GFPhi dendritic cells to the retina was significantly compromised in MyD88 and TRIF knockout mice. GFPhi dendritic cells played a significant role in clearing fluorescent-labeled retinal ganglion cells post-injury in the CD11c-DTR/GFP mice. In the TRIF and MyD88 deficient mice, the resting level of GFPhi dendritic cells was lower, and their influx was reduced following the optic nerve crush injury. The reduction in GFPhi dendritic cell numbers led to their replacement in the uptake of fluorescent-labeled debris by GFPlo microglia/macrophages. Depletion of GFPhi dendritic cells by treatment with diphtheria toxin also led to their displacement by GFPlo microglia/macrophages, which then assumed close contact with the injured neurons. The contribution of recruited cells to the injury response was substantial, and regulated by MyD88 and TRIF. However, the presence of these adaptor proteins was not required for interaction with neurons, or the phagocytosis of debris. The data suggested a two-niche model in which resident microglia were maintained at a constant level post-optic nerve crush, while the injury-stimulated recruitment of dendritic cells and macrophages led to their transient appearance in numbers equivalent to or greater

  5. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.

    Science.gov (United States)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille; Nielsen, Dennis S; Wegener, Gregers; Hansen, Axel K; Sørensen, Dorte B

    2015-10-01

    Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. We demonstrated that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. Magnesium deficiency altered behavior. The duration of magnesium deficiency is suggested to influence behaviour in the evaluated test.

  6. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Luyn, M.J.A. van; Havinga, R.; Teusink, B.; Waterman, I.J.; Mann, C.J.; Elzinga, B.M.; Verkade, H.J.; Zammit, V.A.; Havekes, L.M.; Shoulders, C.C.; Kuipers, F.

    2004-01-01

    BACKGROUND/AIMS: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. METHODS AND RESULTS: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and

  7. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Mensenkamp, AR; van Luyn, MJA; Havinga, R; Teusink, B; Waterman, IJ; Mann, CJ; Elzinga, BM; Verkade, HJ; Zammit, VA; Havekes, LM; Shoulders, CC; Kuipers, F

    Background/Aims: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. Methods and results: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and

  8. Polychlorinated biphenyl-induced VCAM-1 expression is attenuated in aortic endothelial cells isolated from caveolin-1 deficient mice

    International Nuclear Information System (INIS)

    Han, Sung Gu; Eum, Sung Yong; Toborek, Michal; Smart, Eric; Hennig, Bernhard

    2010-01-01

    Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae. Caveolae are particularly abundant in endothelial cell membranes and involved in trafficking and signal transduction. The objective of this study was to investigate the role of caveolae in PCB-induced endothelial cell dysfunction. Primary mouse aortic endothelial cells (MAECs) isolated from caveolin-1-deficient mice and background C57BL/6 mice were treated with coplanar PCBs, such as PCB77 and PCB126. In addition, siRNA gene silencing technique was used to knockdown caveolin-1 in porcine vascular endothelial cells. In MAECs with functional caveolae, VCAM-1 protein levels were increased after exposure to both coplanar PCBs, whereas expression levels of VCAM-1 were not significantly altered in cells deficient of caveolin-1. Furthermore, PCB-induced monocyte adhesion was attenuated in caveolin-1-deficient MAECs. Similarly, siRNA silencing of caveolin-1 in porcine endothelial cells confirmed the caveolin-1-dependent VCAM-1 expression. Treatment of cells with PCB77 and PCB126 resulted in phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2), and pharmacological inhibition of ERK1/2 diminished the observed PCB-induced increase in monocyte adhesion. These findings suggest that coplanar PCBs induce adhesion molecule expression, such as VCAM-1, in endothelial cells, and that this response is regulated by caveolin-1 and functional caveolae. Our data demonstrate a critical role of functional caveolae in the activation and dysfunction of endothelial cells by coplanar PCBs.

  9. Mice deficient in PAPP-A show resistance to the development of diabetic nephropathy.

    Science.gov (United States)

    Mader, Jessica R; Resch, Zachary T; McLean, Gary R; Mikkelsen, Jakob H; Oxvig, Claus; Marler, Ronald J; Conover, Cheryl A

    2013-10-01

    We investigated pregnancy-associated plasma protein-A (PAPP-A) in diabetic nephropathy. Normal human kidney showed specific staining for PAPP-A in glomeruli, and this staining was markedly increased in diabetic kidney. To assess the possible contribution of PAPP-A in the development of diabetic nephropathy, we induced diabetes with streptozotocin in 14-month-old WT and Papp-A knockout (KO) mice. Renal histopathology was evaluated after 4 months of stable hyperglycemia. Kidneys from diabetic WT mice showed multiple abnormalities including thickening of Bowman's capsule (100% of mice), increased glomerular size (80% of mice), tubule dilation (80% of mice), and mononuclear cell infiltration (90% of mice). Kidneys of age-matched non-diabetic WT mice had similar evidence of tubule dilation and mononuclear cell infiltration to those of diabetic WT mice, indicating that these changes were predominantly age-related. However, thickened Bowman's capsule and increased glomerular size appeared specific for the experimental diabetes. Kidneys from diabetic Papp-A KO mice had significantly reduced or no evidence of changes in Bowman's capsule thickening and glomerular size. There was also a shift to larger mesangial area and increased macrophage staining in diabetic WT mice compared with Papp-A KO mice. In summary, elevated PAPP-A expression in glomeruli is associated with diabetic nephropathy in humans and absence of PAPP-A is associated with resistance to the development of indicators of diabetic nephropathy in mice. These data suggest PAPP-A as a potential therapeutic target for diabetic nephropathy.

  10. Distinct mechanisms are responsible for osteopenia and growth retardation in OASIS-deficient mice.

    Science.gov (United States)

    Murakami, Tomohiko; Hino, Shin-Ichiro; Nishimura, Riko; Yoneda, Toshiyuki; Wanaka, Akio; Imaizumi, Kazunori

    2011-03-01

    Old astrocyte specifically induced substance (OASIS), which is a new type of endoplasmic reticulum (ER) stress transducer, is a basic leucine zipper transcription factor of the CREB/ATF family that contains a transmembrane domain and is processed by regulated intramembrane proteolysis in response to ER stress. OASIS is selectively expressed in certain types of cells such as astrocytes and osteoblasts. We have previously demonstrated that OASIS activates transcription of the type I collagen gene Col1a1 and contributes to the secretion of bone matrix proteins in osteoblasts, and that OASIS-/- mice exhibit osteopenia and growth retardation. In the present study, we examined whether osteopenia in OASIS-/- mice is rescued by OASIS introduction into osteoblasts. We generated OASIS-/- mice that specifically expressed OASIS in osteoblasts using a 2.3-kb osteoblast-specific type I collagen promoter (OASIS-/-;Tg mice). Histological analysis of OASIS-/-;Tg mice revealed that osteopenia in OASIS-/- mice was rescued by osteoblast-specific expression of the OASIS transgene. The decreased expression levels of type I collagen mRNAs in the bone tissues of OASIS-/- mice were recovered by the OASIS transgene accompanied by the rescue of an abnormal expansion of the rough ER in OASIS-/- osteoblasts. In contrast, growth retardation in OASIS-/- mice did not improve in OASIS-/-;Tg mice. Interestingly, the serum levels of growth hormone (GH) and insulin-like growth factor (IGF)-1 were downregulated in OASIS-/- mice compared with those in wild-type mice. These decreased GH and IGF-1 levels in OASIS-/- mice did not change when OASIS was introduced into osteoblasts. Taken together, these results indicate that OASIS regulates skeletal development by osteoblast-dependent and -independent mechanisms. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  12. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  13. Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth.

    Science.gov (United States)

    Sloofman, Laura G; Verdelis, Kostas; Spevak, Lyudmila; Zayzafoon, Majd; Yamauchi, Mistuo; Opdenaker, Lynn M; Farach-Carson, Mary C; Boskey, Adele L; Kirn-Safran, Catherine B

    2010-07-01

    Mice lacking HIP/RPL29, a component of the ribosomal machinery, display increased bone fragility. To understand the effect of sub-efficient protein synthetic rates on mineralized tissue quality, we performed dynamic and static histomorphometry and examined the mineral properties of both bones and teeth in HIP/RPL29 knock-out mice using Fourier transform infrared imaging (FTIRI). While loss of HIP/RPL29 consistently reduced total bone size, decreased mineral apposition rates were not significant, indicating that short stature is not primarily due to impaired osteoblast function. Interestingly, our microspectroscopic studies showed that a significant decrease in collagen crosslinking during maturation of HIP/RPL29-null bone precedes an overall enhancement in the relative extent of mineralization of both trabecular and cortical adult bones. This report provides strong genetic evidence that ribosomal insufficiency induces subtle organic matrix deficiencies which elevates calcification. Consistent with the HIP/RPL29-null bone phenotype, HIP/RPL29-deficient teeth also showed reduced geometric properties accompanied with relative increased mineral densities of both dentin and enamel. Increased mineralization associated with enhanced tissue fragility related to imperfection in organic phase microstructure evokes defects seen in matrix protein-related bone and tooth diseases. Thus, HIP/RPL29 mice constitute a new genetic model for studying the contribution of global protein synthesis in the establishment of organic and inorganic phases in mineral tissues. 2010 Elsevier Inc. All rights reserved.

  14. Acid sphingomyelinase deficiency in Western diet-fed mice protects against adipocyte hypertrophy and diet-induced liver steatosis.

    Science.gov (United States)

    Sydor, Svenja; Sowa, Jan-Peter; Megger, Dominik A; Schlattjan, Martin; Jafoui, Sami; Wingerter, Lena; Carpinteiro, Alexander; Baba, Hideo A; Bechmann, Lars P; Sitek, Barbara; Gerken, Guido; Gulbins, Erich; Canbay, Ali

    2017-05-01

    Alterations in sphingolipid and ceramide metabolism have been associated with various diseases, including nonalcoholic fatty liver disease (NAFLD). Acid sphingomyelinase (ASM) converts the membrane lipid sphingomyelin to ceramide, thereby affecting membrane composition and domain formation. We investigated the ways in which the Asm knockout (Smpd1 -/- ) genotype affects diet-induced NAFLD. Smpd1 -/- mice and wild type controls were fed either a standard or Western diet (WD) for 6 weeks. Liver and adipose tissue morphology and mRNA expression were assessed. Quantitative proteome analysis of liver tissue was performed. Expression of selected genes was quantified in adipose and liver tissue of obese NAFLD patients. Although Smpd1 -/- mice exhibited basal steatosis with normal chow, no aggravation of NAFLD-type injury was observed with a Western diet. This protective effect was associated with the absence of adipocyte hypertrophy and the increased expression of genes associated with brown adipocyte differentiation. In white adipose tissue from obese patients with NAFLD, no expression of these genes was detectable. To further elucidate which pathways in liver tissue may be affected by Smpd1 -/- , we performed an unbiased proteome analysis. Protein expression in WD-fed Smpd1 -/- mice indicated a reduction in Rictor (mTORC2) activity; this reduction was confirmed by diminished Akt phosphorylation and altered mRNA expression of Rictor target genes. These findings indicate that the protective effect of Asm deficiency on diet-induced steatosis is conferred by alterations in adipocyte morphology and lipid metabolism and by reductions in Rictor activation.

  15. Kefir improves fatty liver syndrome by inhibiting the lipogenesis pathway in leptin-deficient ob/ob knockout mice.

    Science.gov (United States)

    Chen, H-L; Tung, Y-T; Tsai, C-L; Lai, C-W; Lai, Z-L; Tsai, H-C; Lin, Y-L; Wang, C-H; Chen, C-M

    2014-09-01

    Fatty liver disease is commonly associated with obesity, insulin resistance and diabetes. Severe fatty liver is sometimes accompanied by steatohepatitis and may lead to the development of hepatocellular carcinoma. At present, there is no effective treatment for non-alcoholic fatty liver disease (NAFLD); thus, recent investigations have focused on developing effective therapeutics to treat this condition. This study aimed to evaluate the effects of kefir on the hepatic lipid metabolism of ob/ob mice, which are commonly used to model fatty liver disease. In this study, we used leptin receptor-deficient ob/ob mice as an animal disease model of NAFLD. Six-week-old ob/ob mice were orally administered the dairy product kefir (140 mg kg(-1) of body weight (BW) per day) for 4 weeks. The data demonstrated that kefir improved fatty liver syndrome on BW, energy expenditure and basal metabolic rate by inhibiting serum glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) activities (Pkefir administration also significantly reduced the macrovesicular fat quantity in liver tissue. In addition, kefir markedly decreased the expression of the genes sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC) (Pkefir improves NAFLD on BW, energy expenditure and basal metabolic rate by inhibiting the lipogenesis pathway and that kefir may have the potential for clinical application to the prevention or treatment of NAFLD.

  16. PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice.

    Science.gov (United States)

    Su, Jing; Wu, Wei; Huang, Shan; Xue, Ruidan; Wang, Yi; Wan, Yun; Zhang, Lv; Qin, Lang; Zhang, Qiongyue; Zhu, Xiaoming; Zhang, Zhaoyun; Ye, Hongying; Wu, Xiaohui; Li, Yiming

    2017-03-01

    Obesity has become the most common metabolic disorder worldwide. Promoting brown adipose tissue (BAT) and beige adipose tissue formation, and therefore, a functional increase in energy expenditure, may counteract obesity. Mice lacking type IIβ regulatory subunit of adenosine 3',5' cyclic monophosphate (cAMP)-dependent protein kinase A (PKA-RIIB) display reduced adiposity and resistance to diet-induced obesity. PKA-RIIB, encoded by the Prkar2b gene, is most abundant in BAT and white adipose tissue (WAT) and in the brain. In this study, we show that mice lacking PKA-RIIB have increased energy expenditure, limited weight gain, and improved glucose metabolism. PKA-RIIB deficiency induces brownlike adipocyte in inguinal WAT (iWAT). PKA-RIIB deficiency also increases the expression of uncoupling protein 1 and other thermogenic genes in iWAT and primary preadipocytes from iWAT through a mechanism involving increased PKA activity, which is represented by increased phosphorylation of PKA substrate, cAMP response element binding protein, and P38 mitogen-activated protein kinase. Our study provides evidence for the role of PKA-RIIB deficiency in regulating thermogenesis in WAT, which may potentially have therapeutic implications for the treatment of obesity and related metabolic disorders. Copyright © 2017 by the Endocrine Society.

  17. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  18. ST2 Deficiency Ameliorates High Fat Diet-Induced Liver Steatosis In BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Jovicic Nemanja

    2015-03-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is strongly associated with obesity, but the molecular mechanisms of liver steatosis and its progression to non-alcoholic steatohepatitis and fibrosis are incompletely understood. Immune reactivity plays an important role in the pathogenesis of NAFLD. The IL-33/ST2 axis has a protective role in adiposity and atherosclerosis, but its role in obesity-associated metabolic disorders requires further clarification. To investigate the unresolved role of IL-33/ST2 signalling in NAFLD, we used ST2-deficient (ST2-/- and wild type (WT BALB/c mice maintained on a high-fat diet (HFD for 24 weeks. HFD-fed ST2-/- mice exhibited increased weight gain, visceral adipose tissue weight and triglyceridaemia and decreased liver weight compared with diet-matched WT mice. Compared with WT mice on an HFD, ST2 deletion significantly reduced hepatic steatosis, liver inflammation and fibrosis and downregulated the expression of genes related to lipid metabolism in the liver. The frequency of innate immune cells in the liver, including CD68+ macrophages and CD11c+ dendritic cells, was lower in HFD-fed ST2-/- mice, accompanied by lower TNFα serum levels compared with diet-matched WT mice. Less collagen deposition in the livers of ST2-/- mice on an HFD was associated with lower numbers of profibrotic CD11b+Ly6clow monocytes and CD4+IL-17+ T cells in the liver, lower hepatic gene expression of procollagen, IL-33 and IL-13, and lower serum levels of IL-33 and IL-13 compared with diet-matched WT mice.

  19. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States); Fantuzzi, Giamila, E-mail: giamila@uic.edu [Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612 (United States)

    2010-08-07

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4{sup +}, CD8{sup +} and CD4{sup +}CD8{sup +} T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  20. Effect of adiponectin deficiency on intestinal damage and hematopoietic responses of mice exposed to gamma radiation

    International Nuclear Information System (INIS)

    Ponemone, Venkatesh; Fayad, Raja; Gove, Melissa E.; Pini, Maria; Fantuzzi, Giamila

    2010-01-01

    Adiponectin (APN) is an adipose tissue-derived cytokine that regulates insulin sensitivity and inflammation. It is also involved in modulation of cell proliferation by binding to various growth factors. Based on its known effects in modulating cell proliferation and oxidative stress, APN may potentially be involved in regulating tissue damage and repair following irradiation. Adiponectin KO mice and their WT littermates were exposed to a single whole-body dose of 3 or 6 Gy gamma radiation. Radiation-induced alterations were studied in jejunum, blood, bone marrow and thymus at days 1 and 5 post-irradiation and compared with sham-irradiated groups. In WT mice, irradiation did not significantly alter serum APN levels while inducing a significant decrease in serum leptin. Irradiation caused a significant reduction in thymocyte cellularity, with concomitant decrease in CD4 + , CD8 + and CD4 + CD8 + T cell populations, with no significant differences between WT and APN KO mice. Irradiation resulted in a significantly higher increase in the frequency of micronucleated reticulocytes in the blood of APN KO compared with WT mice, whereas frequency of micronucleated normochromatic erythrocytes in the bone marrow at day 5 was significantly higher in WT compared with APN KO mice. Finally, irradiation induced similar alterations in villus height and crypt cell proliferation in the jejunum of WT and APN KO mice. Jejunum explants from sham-irradiated APN KO mice produced higher levels of IL-6 compared with tissue from WT animals, but the difference was no longer apparent following irradiation. Our data indicate that APN deficiency does not play a significant role in modulating radiation-induced gastrointestinal injury in mice, while it may participate in regulation of damage to the hematopoietic system.

  1. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  2. The water extract of Liuwei dihuang possesses multi-protective properties on neurons and muscle tissue against deficiency of survival motor neuron protein.

    Science.gov (United States)

    Tseng, Yu-Ting; Jong, Yuh-Jyh; Liang, Wei-Fang; Chang, Fang-Rong; Lo, Yi-Ching

    2017-10-15

    Deficiency of survival motor neuron (SMN) protein, which is encoded by the SMN1 and SMN2 genes, induces widespread splicing defects mainly in spinal motor neurons, and leads to spinal muscular atrophy (SMA). Currently, there is no effective treatment for SMA. Liuwei dihuang (LWDH), a traditional Chinese herbal formula, possesses multiple therapeutic benefits against various diseases via modulation of the nervous, immune and endocrine systems. Previously, we demonstrated water extract of LWDH (LWDH-WE) protects dopaminergic neurons and improves motor activity in models of Parkinson's disease. This study aimed to investigate the potential protection of LWDH-WE on SMN deficiency-induced neurodegeneration and muscle weakness. The effects of LWDH-WE on SMN deficiency-induced neurotoxicity and muscle atrophy were examined by using SMN-deficient NSC34 motor neuron-like cells and SMA-like mice, respectively. Inducible SMN-knockdown NSC34 motor neuron-like cells were used to mimic SMN-deficient condition. Doxycycline (1 µg/ml) was used to induce SMN deficiency in stable NSC34 cell line carrying SMN-specific shRNA. SMAΔ7 mice were used as a severe type of SMA mouse model. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Apoptotic cells and neurite length were observed by inverted microscope. Protein expressions were examined by western blots. Muscle strength of animals was evaluated by hind-limb suspension test. LWDH-WE significantly increased SMN protein level, mitochondrial membrane potential and cell viability of SMN-deficient NSC34 cells. LWDH-WE attenuated SMN deficiency-induced down-regulation of B-cell lymphoma-2 (Bcl-2) and up-regulation of cytosolic cytochrome c and cleaved caspase-3. Moreover, LWDH-WE prevented SMN deficiency-induced inhibition of neurite outgrowth and activation of Ras homolog gene family, member A (RhoA)/ Rho-associated protein kinase (ROCK2)/ phospho

  3. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  4. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    Science.gov (United States)

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  5. Regulatory Effect of Catalpol on Th1/Th2 cells in Mice with Bone Loss Induced by Estrogen Deficiency.

    Science.gov (United States)

    Lai, Nannan; Zhang, Jianhai; Ma, Xingyan; Wang, Bin; Miao, Xiuming; Wang, Zhaoxia; Guo, Yuqi; Wang, Li; Yao, Chengfang; Li, Xia; Jiang, Guosheng

    2015-12-01

    Estradiol (E2 ) deficiency can cause bone loss and the skew of Th1/Th2 cells. However, the correlation between the Th1/Th2 cells and the bone loss induced by estrogen deficiency remains unclear. Our aim was to investigate the role of Th1/Th2 in bone loss induced by estrogen deficiency and elucidated the therapeutical effect of catalpol in this condition. Young, sham-operated (Sham), ovariectomized (Ovx), and naturally aged mice, treated with catalpol at different doses or control vehicle, were used in this study as indicated in each experiment. ELISA assay, dual-energy X-ray absorptiometry, and flow cytometry were used to analyze E2 , C-terminal telopeptides of type I collagen (CTx-I), bone mineral density (BMD), and Th1/Th2 subsets, respectively. The mRNA and protein expressions of specific transcription factors for Th1/Th2 cells (T-bet and GATA-3) were analyzed using real-time quantitative PCR and Western blot, respectively. Bone mineral density and E2 levels positively correlated with the proportion of Th2 subset while negatively correlated with that of Th1 subset and the ratio of Th1/Th2. Catalpol alleviated bone loss effectively by regulating Th1/Th2 polarization. Catalpol promoted the expression of Th2-specific transcription factors while inhibited that associated with Th1. Th1/Th2 skew is involved in bone loss induced by estrogen deficiency. Catalpol alleviates bone loss effectively by regulating Th1/Th2 paradigm. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    International Nuclear Information System (INIS)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-01-01

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR −/− ) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR −/− mice fed MCD diet (FXR −/− /MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR −/− /MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR −/− /MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR −/− /MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection

  8. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Xue, Ruyi [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Ji, Lingling [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Shen, Xizhong [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Chen, She, E-mail: shechen@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhang, Si, E-mail: zhangsi@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  9. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  10. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Science.gov (United States)

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime; Merino, Ramón; Merino, Jesús

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  11. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jorge Postigo

    Full Text Available CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA. We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  12. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  13. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  14. Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Daniel Rial

    Full Text Available There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin-/- to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin-/- mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination, anxiety (elevated plus-maze, depressive-like behavior (forced swimming and tail suspension and motor function (rotarod, grasping strength and pole. However, parkin-/- mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP. These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin-/- mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.

  15. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    Directory of Open Access Journals (Sweden)

    Matthias Becker

    Full Text Available BACKGROUND: According to the World Health Organization (WHO there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP, also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  16. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ting Cao

    2018-05-01

    Full Text Available Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC inhibitor sodium butyrate (NaB has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG. We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.

  17. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  18. Inhibition of the plasma SCUBE1, a novel platelet adhesive protein, protects mice against thrombosis.

    Science.gov (United States)

    Wu, Meng-Ying; Lin, Yuh-Charn; Liao, Wei-Ju; Tu, Cheng-Fen; Chen, Ming-Huei; Roffler, Steve R; Yang, Ruey-Bing

    2014-07-01

    Signal peptide-CUB-EGF domain-containing protein 1 (SCUBE1), a secreted and surface-exposed glycoprotein on activated platelets, promotes platelet-platelet interaction and supports platelet-matrix adhesion. Its plasma level is a biomarker of platelet activation in acute thrombotic diseases. However, the exact roles of plasma SCUBE1 in vivo remain undefined. We generated new mutant (Δ) mice lacking the soluble but retaining the membrane-bound form of SCUBE1. Plasma SCUBE1-depleted Δ/Δ mice showed normal hematologic and coagulant features and expression of major platelet receptors, but Δ/Δ platelet-rich plasma showed impaired platelet aggregation in response to ADP and collagen treatment. The addition of purified recombinant SCUBE1 protein restored the aggregation of platelets in Δ/Δ platelet-rich plasma and further enhanced platelet aggregation in +/+ platelet-rich plasma. Plasma deficiency of SCUBE1 diminished arterial thrombosis in mice and protected against lethal thromboembolism induced by collagen-epinephrine treatment. Last, antibodies directed against the epidermal growth factor-like repeats of SCUBE1, which are involved in trans-homophilic protein-protein interactions, protected mice against fatal thromboembolism without causing bleeding in vivo. We conclude that plasma SCUBE1 participates in platelet aggregation by bridging adjacent activated platelets in thrombosis. Blockade of soluble SCUBE1 might represent a novel antithrombotic strategy. © 2014 American Heart Association, Inc.

  19. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  20. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  1. Magnesium deficiency induces anxiety-and depression-like behavior and metabolic dysfunction in C57Bl/6J mice

    DEFF Research Database (Denmark)

    Winther, G.; Wang, T.; Singewald, N.

    2012-01-01

    ) in mice through depression-and anxiety phenotyping experiments, namely the forced swim test and light-dark box respectively. We determined the behavioural effects 30 minutes after treatment with imipramine (20 mg/kg), diazepam (2 mg/kg) and ketamine (3 mg/kg). The glucose tolerance test was used to assess...... metabolic function in Mg deficient mice. Results: We found that, compared to control (n=10), mice receiving Mg deficient diet (n=10) (10 % RDA), were more immobile in the forced swim test....

  2. Fractalkine receptor (CX3CR1 deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2010-12-01

    Full Text Available Abstract Background Interactions between fractalkine (CX3CL1 and fractalkine receptor (CX3CR1 regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS. Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-. Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/- were injected with LPS (0.5 mg/kg i.p. or saline and behavior (i.e., sickness and depression-like behavior, microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO and kynurenine monooxygenase (KMO in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1

  3. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide

    Science.gov (United States)

    2010-01-01

    Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to

  4. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice

    Directory of Open Access Journals (Sweden)

    Sunn Nana

    2009-12-01

    Full Text Available Abstract Background Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. Results Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. Conclusion The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our

  5. Sex-Specific Diurnal Immobility Induced by Forced Swim Test in Wild Type and Clock Gene Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ningyue Li

    2015-03-01

    Full Text Available Objective: The link between alterations in circadian rhythms and depression are well established, but the underlying mechanisms are far less elucidated. We investigated the circadian characteristics of immobility behavior in wild type (WT mice and mice with mutations in core Clock genes. Methods: All mice were tested with forced swim test (FST at 4 h intervals. Results: These experiments revealed significant diurnal rhythms associated with immobility behavior in both male and female WT mice with sex-different circadian properties. In addition, male mice showed significantly less immobility during the night phase in comparison to female mice. Female Per1Brdm1 mice also showed significant rhythmicity. However, the timing of rhythmicity was very different from that observed in female wild type mice. Male Per1Brdm1 mice showed a pattern of rhythmicity similar to that of wild type mice. Furthermore, female Per1Brdm1 mice showed higher duration of immobility in comparison to male Per1Brdm1 mice in both daytime and early night phases. Neither Per2Brdm1 nor ClockΔ19 mice showed significant rhythmicity, but both female Per2Brdm1 and ClockΔ19 mice had lower levels of immobility, compared to males. Conclusions: This study highlights the differences in the circadian characteristics of immobility induced by FST in WT, ClockΔ19, Per1, and Per2 deficient mice.

  6. Sirt3 deficiency does not affect venous thrombosis or NETosis despite mild elevation of intracellular ROS in platelets and neutrophils in mice.

    Directory of Open Access Journals (Sweden)

    Hideki Hayashi

    Full Text Available Inflammation is a common denominator in chronic diseases of aging. Yet, how inflammation fuels these diseases remains unknown. Neutrophils are the primary leukocytes involved in the early phase of innate immunity and inflammation. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs by releasing decondensed chromatin lined with cytotoxic proteins. NETs have been shown to induce tissue injury and thrombosis. Here, we demonstrated that Sirt3, a nicotinamide adenine dinucleotide (NAD+-dependent protein deacetylase, an enzyme linked to human longevity, was expressed in mouse neutrophils and platelets. Using Sirt3-/- mice as a model of accelerated aging, we investigated the effects of Sirt3 deficiency on NETosis and platelet function, aiming to detect enhancement of thrombosis. More mitochondrial reactive oxygen species (ROS were generated in neutrophils and platelets of Sirt3-/- mice compared to WT, when stimulated with a low concentration of phorbol 12-myristate 13-acetate (PMA and a high concentration of thrombin, respectively. There were no differences in in vitro NETosis, with or without stimulation. Platelet aggregation was mildly augmented in Sirt3-/- mice compared to WT mice, when stimulated with a low concentration of collagen. The effect of Sirt3 deficiency on platelet and neutrophil activation in vivo was examined by the venous thrombosis model of inferior vena cava stenosis. Elevation of plasma DNA concentration was observed after stenosis in both genotypes, but no difference was shown between the two genotypes. The systemic response to thrombosis was enhanced in Sirt3-/- mice with significantly elevated neutrophil count and reduced platelet count. However, no differences were observed in incidence of thrombus formation, thrombus weight and thrombin-antithrombin complex generation between WT and Sirt3-/- mice. We conclude that Sirt3 does not considerably impact NET formation, platelet function, or venous

  7. Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    International Nuclear Information System (INIS)

    Xiao, Hong-Bo; Lu, Xiang-Yang; Sun, Zhi-Liang; Zhang, Heng-Bo

    2011-01-01

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE −/− ) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE −/− mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. -- Graphical abstract: Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis of ApoE −/− mice. Highlights: ► OPN–CD44 pathway plays a critical role in the development of atherosclerosis. ► We examine lesion area, OPN and CD44 changes after kaempferol treatment. ► Kaempferol treatment decreased atherosclerotic lesion area in ApoE −/− mice. ► Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE −/− mice. ► Kaempferol regulates OPN–CD44 pathway to inhibit the atherogenesis.

  8. Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of apolipoprotein E deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Hong-Bo, E-mail: xhbzhb@yahoo.com [College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128 (China); Lu, Xiang-Yang; Sun, Zhi-Liang [Hunan Agricultural University, Changsha 410128 (China); Zhang, Heng-Bo [Furong District Red Cross Hospital, Changsha 410126 (China)

    2011-12-15

    Recent studies show that osteopontin (OPN) and its receptor cluster of differentiation 44 (CD44) are two pro-inflammatory cytokines contributing to the development of atherosclerosis. The objective of this study was to explore the inhibitory effect of kaempferol, a naturally occurring flavonoid compound, on atherogenesis and the mechanisms involved. The experiments were performed in aorta and plasma from C57BL/6J control and apolipoprotein E-deficient (ApoE{sup -/-}) mice treated or not with kaempferol (50 or 100 mg/kg, intragastrically) for 4 weeks. Kaempferol treatment decreased atherosclerotic lesion area, improved endothelium-dependent vasorelaxation, and increased the maximal relaxation value concomitantly with decrease in the half-maximum effective concentration, plasma OPN level, aortic OPN expression, and aortic CD44 expression in ApoE{sup -/-} mice. In addition, treatment with kaempferol also significantly decreased reactive oxygen species production in mice aorta. The present results suggest that kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. -- Graphical abstract: Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis of ApoE{sup -/-} mice. Highlights: Black-Right-Pointing-Pointer OPN-CD44 pathway plays a critical role in the development of atherosclerosis. Black-Right-Pointing-Pointer We examine lesion area, OPN and CD44 changes after kaempferol treatment. Black-Right-Pointing-Pointer Kaempferol treatment decreased atherosclerotic lesion area in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol treatment decreased aortic OPN and CD44 expressions in ApoE{sup -/-} mice. Black-Right-Pointing-Pointer Kaempferol regulates OPN-CD44 pathway to inhibit the atherogenesis.

  9. Utilising cardiopulmonary bypass for cancer surgery. Malignancy-induced protein C deficiency and thrombophilia.

    LENUS (Irish Health Repository)

    Marshall, C

    2012-02-03

    Cardiopulmonary bypass has evolved over the last 30 years. It is an important tool for the cardiac surgeon today and also has applications in non-cardiac operations such as surgery to extract tumours. Such patients undergoing surgery for cancer may be at an increased risk of a thromboembolic event post surgery, due to disturbances in the normal clotting pathway leading to hypercoagulability. One such disturbance is malignancy-induced Protein C deficiency. A deficiency of Protein C can cause hypercoagulabitity. Recent studies have examined cardiopulmonary bypass and inherited Protein C deficiency. However, surgery for cancer patients with a malignancy-induced Protein C deficiency involving cardiopulmonary bypass has not been reported. Surgery using CPB in these patients may result in increased morbidity and mortality. The objective of this article is to review the literature in order to discuss the occurrence, the aetiology and possible management of cancer patients with malignancy-induced Protein C deficiencies that require cardiopulmonary bypass for their surgery.

  10. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    Science.gov (United States)

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  11. RhoE deficiency produces postnatal lethality, profound motor deficits and neurodevelopmental delay in mice.

    Directory of Open Access Journals (Sweden)

    Enric Mocholí

    Full Text Available Rnd proteins are a subfamily of Rho GTPases involved in the control of actin cytoskeleton dynamics and other cell functions such as motility, proliferation and survival. Unlike other members of the Rho family, Rnd proteins lack GTPase activity and therefore remain constitutively active. We have recently described that RhoE/Rnd3 is expressed in the Central Nervous System and that it has a role in promoting neurite formation. Despite their possible relevance during development, the role of Rnd proteins in vivo is not known. To get insight into the in vivo function of RhoE we have generated mice lacking RhoE expression by an exon trapping cassette. RhoE null mice (RhoE gt/gt are smaller at birth, display growth retardation and early postnatal death since only half of RhoE gt/gt mice survive beyond postnatal day (PD 15 and 100% are dead by PD 29. RhoE gt/gt mice show an abnormal body position with profound motor impairment and impaired performance in most neurobehavioral tests. Null mutant mice are hypoactive, show an immature locomotor pattern and display a significant delay in the appearance of the hindlimb mature responses. Moreover, they perform worse than the control littermates in the wire suspension, vertical climbing and clinging, righting reflex and negative geotaxis tests. Also, RhoE ablation results in a delay of neuromuscular maturation and in a reduction in the number of spinal motor neurons. Finally, RhoE gt/gt mice lack the common peroneal nerve and, consequently, show a complete atrophy of the target muscles. This is the first model to study the in vivo functions of a member of the Rnd subfamily of proteins, revealing the important role of Rnd3/RhoE in the normal development and suggesting the possible involvement of this protein in neurological disorders.

  12. A novel role for APOBEC3: Susceptibility to sexual transmission of murine acquired immunodeficiency virus (mAIDS) is aggravated in APOBEC3 deficient mice

    Science.gov (United States)

    2012-01-01

    Background APOBEC3 proteins are host factors that restrict infection by retroviruses like HIV, MMTV, and MLV and are variably expressed in hematopoietic and non-hematopoietic cells, such as macrophages, lymphocytes, dendritic, and epithelia cells. Previously, we showed that APOBEC3 expressed in mammary epithelia cells function to limit milk-borne transmission of the beta-retrovirus, mouse mammary tumor virus. In this present study, we used APOBEC3 knockout mice and their wild type counterpart to query the role of APOBEC3 in sexual transmission of LP-BM5 MLV – the etiological agent of murine AIDs (mAIDs). Results We show that mouse APOBEC3 is expressed in murine genital tract tissues and gametes and that genital tract tissue of APOBEC3-deficient mice are more susceptible to infection by LP-BM5 virus. APOBEC3 expressed in genital tract tissues most likely plays a role in decreasing virus transmission via the sexual route, since mice deficient in APOBEC3 gene have higher genitalia and seminal plasma virus load and sexually transmit the virus more efficiently to their partners compared to APOBEC3+ mice. Moreover, we show that female mice sexually infected with LP-BM5 virus transmit the virus to their off-spring in APOBEC3-dependent manner. Conclusion Our data indicate that genital tissue intrinsic APOBEC3 restricts genital tract infection and limits sexual transmission of LP-BM5 virus. PMID:22691411

  13. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    Science.gov (United States)

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  14. Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system.

    Science.gov (United States)

    Saitoh, Yurika; Ohno, Nobuhiko; Yamauchi, Junji; Sakamoto, Takeharu; Terada, Nobuo

    2017-12-01

    We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G -/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G -/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G -/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G -/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.

  15. Amplification of EDHF-type vasodilatations in TRPC1-deficient mice

    DEFF Research Database (Denmark)

    Schmidt, Kjestine; Dubrovska, Galyna; Nielsen, Gorm

    2010-01-01

    -deficient mice (TRPC1-/-). Experimental approach. Vascular responses were studied using pressure/wire-myography and intravital microscopy. We performed electrophysiological measurements, and confocal Ca(2+) imaging for studying K(Ca)-channel functions and Ca(2+)sparks. Key results. TRPC1-deficiency...... in carotid arteries produced a twofold augmentation of TRAM-34- and UCL1684-sensitive EDHF-type vasodilatations and of endothelial hyperpolarization to acetylcholine. NO-mediated vasodilatations were unchanged. TRPC1-/- exhibited enhanced EDHF-type vasodilatations in resistance-sized arterioles in vivo...... associated with reduced spontaneous tone. Endothelial IK(Ca)/SK(Ca)-type K(Ca) currents, smooth muscle cell Ca(2+) sparks and associated BK(Ca)-mediated spontaneous transient outward currents (STOC) were unchanged in TRPC1-/-. Smooth muscle contractility induced by receptor-operated Ca(2+) influx or Ca(2...

  16. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  17. [Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].

    Science.gov (United States)

    Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong

    2015-05-01

    Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.

  18. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    Science.gov (United States)

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  19. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  20. Cutting Edge: Impaired MHC Class I Expression in Mice Deficient for Nlrc5/CITA

    OpenAIRE

    Biswas, Amlan; Meissner, Torsten B.; Taro Kawai,; Kobayashi, Koichi S.

    2012-01-01

    MHC class I and class II are crucial for the adaptive immune system. Although regulation of MHC class II expression by CIITA (class II transactivator) has long been recognized, the mechanism of MHC class I transactivation has been largely unknown until the recent discovery of NLRC5/CITA. Here we show using Nlrc5-deficient mice that NLRC5 is required for both constitutive and inducible MHC class I expression. Loss of Nlrc5 resulted in severe reduction in the expression of MHC class I and relat...

  1. Normal mast cell numbers in the tissues of AhR-deficient mice.

    Science.gov (United States)

    Pilz, Caroline; Feyerabend, Thorsten; Sonner, Jana; Redaelli, Chiara; Peter, Katharina; Kunze, Anja; Haas, Katharina; Esser, Charlotte; Schäkel, Knut; Wick, Wolfgang; Rodewald, Hans-Reimer; Lanz, Tobias V; Platten, Michael

    2016-01-01

    The transcription factor aryl hydrocarbon receptor (AhR) acts as an immunomodulatory molecule in several immune cell lineages. Recently, it has been implicated in development and maintenance of immune cells in barrier tissues such as skin and mucosa. To investigate its role on mast cell development and maintenance in skin, peritoneal exudate cells (PECs) and lymph nodes, we studied in depth their phenotype in AhR-deficient mice. Our findings do not provide any evidence for a suspected role of the AhR in mast cell homeostasis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice

    DEFF Research Database (Denmark)

    Barrow, Alexander David; Raynal, Nicolas; Levin Andersen, Thomas

    2011-01-01

    by preosteoclasts in vitro, but OSCAR lacks a cognate ligand and its role in vivo has been unclear. Using samples from mice and patients deficient in various ITAM signaling pathways, we show here that OSCAR costimulates one of the major FcRγ-associated pathways required for osteoclastogenesis in vivo. Furthermore...... to signaling that increased numbers of osteoclasts in culture. Thus, our results suggest that ITAM-containing receptors can respond to exposed ligands in collagen, leading to the functional differentiation of leukocytes, which provides what we believe to be a new concept for ITAM regulation of cytokine...

  3. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.

    Science.gov (United States)

    Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki

    2018-06-01

    Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Effects of Cerebral Ischemia in Mice Deficient in Neuronal Nitric Oxide Synthase

    Science.gov (United States)

    Huang, Zhihong; Huang, Paul L.; Panahian, Nariman; Dalkara, Turgay; Fishman, Mark C.; Moskowitz, Michael A.

    1994-09-01

    The proposal that nitric oxide (NO) or its reactant products mediate toxicity in brain remains controversial in part because of the use of nonselective agents that block NO formation in neuronal, glial, and vascular compartments. In mutant mice deficient in neuronal NO synthase (NOS) activity, infarct volumes decreased significantly 24 and 72 hours after middle cerebral artery occlusion, and the neurological deficits were less than those in normal mice. This result could not be accounted for by differences in blood flow or vascular anatomy. However, infarct size in the mutant became larger after endothelial NOS inhibition by nitro-L-arginine administration. Hence, neuronal NO production appears to exacerbate acute ischemic injury, whereas vascular NO protects after middle cerebral artery occlusion. The data emphasize the importance of developing selective inhibitors of the neuronal isoform.

  5. Heterozygous ambra1 deficiency in mice: a genetic trait with autism-like behavior restricted to the female gender.

    Science.gov (United States)

    Dere, Ekrem; Dahm, Liane; Lu, Derek; Hammerschmidt, Kurt; Ju, Anes; Tantra, Martesa; Kästner, Anne; Chowdhury, Kamal; Ehrenreich, Hannelore

    2014-01-01

    Autism-spectrum disorders (ASD) are heterogeneous, highly heritable neurodevelopmental conditions affecting around 0.5% of the population across cultures, with a male/female ratio of approximately 4:1. Phenotypically, ASD are characterized by social interaction and communication deficits, restricted interests, repetitive behaviors, and reduced cognitive flexibility. Identified causes converge at the level of the synapse, ranging from mutation of synaptic genes to quantitative alterations in synaptic protein expression, e.g., through compromised transcriptional or translational control. We wondered whether reduced turnover and degradation of synapses, due to deregulated autophagy, would lead to similar phenotypical consequences. Ambra1, strongly expressed in cortex, hippocampus, and striatum, is a positive regulator of Beclin1, a principal player in autophagosome formation. While homozygosity of the Ambra1 null mutation causes embryonic lethality, heterozygous mice with reduced Ambra1 expression are viable, reproduce normally, and lack any immediately obvious phenotype. Surprisingly, comprehensive behavioral characterization of these mice revealed an autism-like phenotype in Ambra1 (+/-) females only, including compromised communication and social interactions, a tendency of enhanced stereotypies/repetitive behaviors, and impaired cognitive flexibility. Reduced ultrasound communication was found in adults as well as pups, which achieved otherwise normal neurodevelopmental milestones. These features were all absent in male Ambra1 (+/-) mice. As a first hint explaining this gender difference, we found a much stronger reduction of Ambra1 protein in the cortex of Ambra1 (+/-) females compared to males. To conclude, Ambra1 deficiency can induce an autism-like phenotype. The restriction to the female gender of autism-generation by a defined genetic trait is unique thus far and warrants further investigation.