WorldWideScience

Sample records for protein mass measurements

  1. Definition of the mitochondrial proteome by measurement of molecular masses of membrane proteins

    Science.gov (United States)

    Carroll, Joe; Fearnley, Ian M.; Walker, John E.

    2006-01-01

    The covalent structure of a protein is incompletely defined by its gene sequence, and mass spectrometric analysis of the intact protein is needed to detect the presence of any posttranslational modifications. Because most membrane proteins are purified in detergents that are incompatible with mass spectrometric ionization techniques, this essential measurement has not been made on many hydrophobic proteins, and so proteomic data are incomplete. We have extracted membrane proteins from bovine mitochondria and detergent-purified NADH:ubiquinone oxidoreductase (complex I) with organic solvents, fractionated the mixtures by hydrophilic interaction chromatography, and measured the molecular masses of the intact membrane proteins, including those of six subunits of complex I that are encoded in mitochondrial DNA. These measurements resolve long-standing uncertainties about the interpretation of the mitochondrial genome, and they contribute significantly to the definition of the covalent composition of complex I. PMID:17060615

  2. Protein hydrogen exchange measured at single-residue resolution by electron transfer dissociation mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2009-01-01

    Because of unparalleled sensitivity and tolerance to protein size, mass spectrometry (MS) has become a popular method for measuring the solution hydrogen (1H/2H) exchange (HX) of biologically relevant protein states. While incorporated deuterium can be localized to different regions by pepsin....... The deuterium labeling pattern of beta2-microglobulin is retained in the gaseous fragment ions by employing mild declustering conditions for electrospray ionization. A recently developed model peptide is used to arrive at such ion source declustering conditions that prevent the occurrence of intramolecular gas...

  3. Measurement of the average mass of proteins adsorbed to a nanoparticle by using a suspended microchannel resonator.

    Science.gov (United States)

    Nejadnik, M Reza; Jiskoot, Wim

    2015-02-01

    We assessed the potential of a suspended microchannel resonator (SMR) to measure the adsorption of proteins to nanoparticles. Standard polystyrene beads suspended in buffer were weighed by a SMR system. Particle suspensions were mixed with solutions of bovine serum albumin (BSA) or monoclonal human antibody (IgG), incubated at room temperature for 3 h and weighed again with SMR. The difference in buoyant mass of the bare and protein-coated polystyrene beads was calculated into real mass of adsorbed proteins. The average surface area occupied per protein molecule was calculated, assuming a monolayer of adsorbed protein. In parallel, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), and zeta potential measurements were performed. SMR revealed a statistically significant increase in the mass of beads because of adsorption of proteins (for BSA and IgG), whereas DLS and NTA did not show a difference between the size of bare and protein-coated beads. The change in the zeta potential of the beads was also measurable. The surface area occupied per protein molecule was in line with their known size. Presented results show that SMR can be used to measure the mass of adsorbed protein to nanoparticles with a high precision in the presence of free protein. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    OpenAIRE

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    1992-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuo...

  5. Measuring protein synthesis using metabolic ²H labeling, high-resolution mass spectrometry, and an algorithm.

    Science.gov (United States)

    Kasumov, Takhar; Ilchenko, Serguey; Li, Ling; Rachdaoui, Nadia; Sadygov, Rovshan G; Willard, Belinda; McCullough, Arthur J; Previs, Stephen

    2011-05-01

    We recently developed a method for estimating protein dynamics in vivo with heavy water ((2)H(2)O) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) [16], and we confirmed that (2)H labeling of many hepatic free amino acids rapidly equilibrated with body water. Although this is a reliable method, it required modest sample purification and necessitated the determination of tissue-specific amino acid labeling. Another approach for quantifying protein kinetics is to measure the (2)H enrichments of body water (precursor) and protein-bound amino acid or proteolytic peptide (product) and to estimate how many copies of deuterium are incorporated into a product. In the current study, we used nanospray linear trap Fourier transform ion cyclotron resonance mass spectrometry (LTQ FT-ICR MS) to simultaneously measure the isotopic enrichment of peptides and protein-bound amino acids. A mathematical algorithm was developed to aid the data processing. The most notable improvement centers on the fact that the precursor/product labeling ratio can be obtained by measuring the labeling of water and a protein (or peptide) of interest, thereby minimizing the need to measure the amino acid labeling. As a proof of principle, we demonstrate that this approach can detect the effect of nutritional status on albumin synthesis in rats given (2)H(2)O. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Some mass measurement problems

    International Nuclear Information System (INIS)

    Merritt, J.S.

    1976-01-01

    Concerning the problem of determining the thickness of a target, an uncomplicated approach is to measure its mass and area and take the quotient. This paper examines the mass measurement aspect of such an approach. (author)

  7. Mass Spectrometry Method to Measure Membrane Proteins in Dried Blood Spots for the Detection of Blood Doping Practices in Sport.

    Science.gov (United States)

    Cox, Holly D; Eichner, Daniel

    2017-09-19

    The dried blood spot (DBS) matrix has significant utility for applications in the field where venous blood collection and timely shipment of labile blood samples is difficult. Unfortunately, protein measurement in DBS is hindered by high abundance proteins and matrix interference that increases with hematocrit. We developed a DBS method to enrich for membrane proteins and remove soluble proteins and matrix interference. Following a wash in a series of buffers, the membrane proteins are digested with trypsin and quantitated by parallel reaction monitoring mass spectrometry methods. The DBS method was applied to the quantification of four cell-specific cluster of differentiation (CD) proteins used to count cells by flow cytometry, band 3 (CD233), CD71, CD45, and CD41. We demonstrate that the DBS method counts low abundance cell types such as immature reticulocytes as well as high abundance cell types such as red blood cells, white blood cells, and platelets. When tested in 82 individuals, counts obtained by the DBS method demonstrated good agreement with flow cytometry and automated hematology analyzers. Importantly, the method allows longitudinal monitoring of CD protein concentration and calculation of interindividual variation which is difficult by other methods. Interindividual variation of band 3 and CD45 was low, 6 and 8%, respectively, while variation of CD41 and CD71 was higher, 18 and 78%, respectively. Longitudinal measurement of CD71 concentration in DBS over an 8-week period demonstrated intraindividual variation 17.1-38.7%. Thus, the method may allow stable longitudinal measurement of blood parameters currently monitored to detect blood doping practices.

  8. Measurement of Muscle Protein Fractional Synthetic Rate by Capillary Gas Chromatography/Combustion Isotope Ratio Mass Spectrometry

    Science.gov (United States)

    Yarasheski, Kevin E.; Smith, Kenneth; Rennie, Michael J.; Bier, Dennis M.

    2014-01-01

    The measurement of skeletal muscle protein fractional synthetic rate using an infusion of (1-13C)leucine and measuring the isotopic abundance of the tracer in skeletal muscle protein by preparative gas chromatography (GC)/ninhydrin isotope ratio mass spectrometry (IRMS) is laborious and subject to errors owing to contamination by 12C. The purpose of this study was to compare muscle (13C)leucine enrichment measured with the conventional preparative GC/ninhydrin IRMS approach to a new, continuous-flow technique using capillary GC/combustion IRMS. Quadriceps muscles were removed from four Sprague–Dawley rats after each was infused at a different rate with (1-13C)leucine for 6–8 h. Muscle leucine enrichment (at.% excess) measured by both methods differed by less than 4%, except at low (13C)leucine enrichments (IRMS was used to assess muscle (13C)leucine enrichment and fractional muscle protein synthesis rate in ten normal young men and women infused with (1,2-13C2)leucine for 12–14 h. This approach reduced the variability of the isotope abundance measure and gave estimates of muscle protein synthesis rate (0.050 ± 0.011% h−1 (mean ± SEM); range = 0.023–0.147% h−1) that agree with published values determined using the standard analytical approach. The measurement of (13C)leucine enrichment from skeletal muscle protein by capillary GC/combustion IRMS provides a simple, acceptable and practical alternative to preparative GC/ninhydrin IRMS. PMID:1420371

  9. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry

    DEFF Research Database (Denmark)

    Rand, Kasper Dyrberg; Zehl, Martin; Jørgensen, Thomas J D

    2014-01-01

    , and eventually all of the protecting hydrogen bonds will transiently break as the protein-according to thermodynamic principles-cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent....../dysfunction and conformational dynamics requires in many cases higher resolution and ultimately single-residue resolution. In this Account, we summarize our efforts to achieve single-residue deuterium levels in proteins by electron-based or laser-induced gas-phase fragmentation methods. A crucial analytical requirement...

  10. Mass Customization Measurements Metrics

    DEFF Research Database (Denmark)

    Nielsen, Kjeld; Brunø, Thomas Ditlev; Jørgensen, Kaj Asbjørn

    2014-01-01

    A recent survey has indicated that 17 % of companies have ceased mass customizing less than 1 year after initiating the effort. This paper presents measurement for a company’s mass customization performance, utilizing metrics within the three fundamental capabilities: robust process design, choice...... navigation, and solution space development. A mass customizer when assessing performance with these metrics can identify within which areas improvement would increase competitiveness the most and enable more efficient transition to mass customization....

  11. Top quark mass measurement

    International Nuclear Information System (INIS)

    Maki, Tuula; Helsinki Inst. of Phys.; Helsinki U. of Tech.

    2008-01-01

    The top quark is the heaviest elementary particle. Its mass is one of the fundamental parameters of the standard model of particle physics, and an important input to precision electroweak tests. This thesis describes three measurements of the top-quark mass in the dilepton decay channel. The dilepton events have two neutrinos in the final state; neutrinos are weakly interacting particles that cannot be detected with a multipurpose experiment. Therefore, the signal of dilepton events consists of a large amount of missing energy and momentum carried off by the neutrinos. The top-quark mass is reconstructed for each event by assuming an additional constraint from a top mass independent distribution. Template distributions are constructed from simulated samples of signal and background events, and parameterized to form continuous probability density functions. The final top-quark mass is derived using a likelihood fit to compare the reconstructed top mass distribution from data to the parameterized templates. One of the analyses uses a novel technique to add top mass information from the observed number of events by including a cross-section-constraint in the likelihood function. All measurements use data samples collected by the CDF II detector

  12. Organ mass measurements

    International Nuclear Information System (INIS)

    Kawamura, H.

    1998-01-01

    The term, anatomical measurements, in the context of this Co-ordinated Research Programme refers to measurements of masses of internal organs, although the human body is composed of internal organs and tissues such as skeleton, muscle, skin and adipose. The mass of an organ containing a radionuclide (source organ), and the mass of a target organ which absorbs energy of the radiation, are essential parameters in the ICRP dosimetric model derived from the MIRD method. Twelve specific organs of interest were proposed at the Coordinated Research Programme Project Formulation Meeting (PFM) in 1988. A slightly different set of thirteen organs with potential significance for radiation protection were selected for study at the Research Co-ordination Meeting held at the Bhabha Atomic Research Centre in 1991. The dimensions of the organs could also be useful information, but were considered unimportant for internal dose assessment. Due to the strong concern about the unified method for collecting organ mass data at the PFM, a guide-line was established stressing the need for organ data from subjects that were healthy and normal, at least until shortly before death, or from sudden death cases, following the Japanese experience. In this report, masses of nine to thirteen organs are presented from seven participating countries. Three participants have also reported the organ masses as fractions of the total body mass

  13. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry

    DEFF Research Database (Denmark)

    Amon, Sabine; Trelle, Morten B; Jensen, Ole N

    2012-01-01

    . After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired...... as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example...

  14. Handbook of mass measurement

    CERN Document Server

    Jones, Frank E

    2002-01-01

    "How much does it weigh?" seems a simple question. To scientists and engineers, however, the answer is far from simple, and determining the answer demands consideration of an almost overwhelming number of factors.With an intriguing blend of history, fundamentals, and technical details, the Handbook of Mass Measurement sets forth the details of achieving the highest precision in mass measurements. It covers the whole field, from the development, calibration, and maintenance of mass standards to detailed accounts of weighing designs, balances, and uncertainty. It addresses the entire measurement process and provides in-depth examinations of the various factors that introduce error.Much of the material is the authors'' own work and some of it is published here for the first time. Jones and Schoonover are both highly regarded veterans of the U.S. National Institute of Standards and Technology. With this handbook, they have provided a service and resource vital to anyone involved not only in the determination of m...

  15. Direct neutrino mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Weinheimer, Christian, E-mail: weinheimer@uni-muenster.de [Westfaelische Wilhelms-Universitaet, Institut fuer Kernphysik (Germany)

    2013-03-15

    Direct neutrino mass experiments are complementary to searches for neutrinoless double {beta}-decay and to analyses of cosmological data. The previous tritium beta decay experiments at Mainz and at Troitsk have achieved upper limits on the neutrino mass of about 2 eV/c{sup 2} . The KATRIN experiment under construction will improve the neutrino mass sensitivity down to 200 meV/c{sup 2} by increasing strongly the statistics and-at the same time-reducing the systematic uncertainties. Huge improvements have been made to operate the system extremely stably and at very low background rate. The latter comprises new methods to reject secondary electrons from the walls as well as to avoid and to eject electrons stored in traps. As an alternative to tritium {beta}-decay experiments cryo-bolometers investigating the endpoint region of {sup 187}Re {beta}-decay or the electron capture of {sup 163}Ho are being developed. This article briefly reviews the current status of the direct neutrino mass measurements.

  16. Protein Analysis by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Cindic, M.

    2008-04-01

    Full Text Available Soft ionization techniques, electrospray (ESI and matrix-assisted laser desorption/ionization (MALDI make the analysis of biomolecules by mass spectrometry (MS possible. MS is used for determination of the molecular weight of peptides and protein, sequence analysis, characterization of protein-ligand interactions etc. The detection limit, resolution and mass accuracy depend on instrument used (Table 1. Impurities (buffers, salts, detergents can reduce the ion intensities or even totally suppress them, so a separation method (chromatography, 2D-gel electrophoresis must be used for purification of the sample.Molecular mass of intact protein can be determined by ESI or MALDI MS. Multiply charged ions are produced by ESI MS, while singly charged ions are predominant in MALDI spectra (Fig. 2.Sequence analysis of proteins by MS can be performed using peptide mass fingerprint. In this method, proteins are separated by 2-D gel electrophoresis and digested with specific protease (Table 2 or digested and then separated by two-dimensional chromatography (Fig. 1. The obtained peptide mixtures are analyzed by MS or MALDI-TOF technique. The masses determined by MS are compared with calculated masses from database entries. Different algorithms have been developed for protein identification. Example of posttranslational modifications (N- and O-glycosylation and protein sequence complex analysis after dual digestion (endoproteinase digestion followed by endoglycosidase digestion is shown in Fig. 3.It is known that detection of peptides by MS is influenced by intrinsic properties like amino acid composition, the basicity of the C-terminal amino acid, hydrophobicity, etc. Arginine-containing peptides dominate in MS spectra of tryptic digest, so the chemical derivatization of lysine terminal residue by O-methilisourea or 2-methoxy-4,5-1H-imidazole was suggested (Fig. 4.The peptide mass fingerprint method can be improved further by peptide fragmentation using tandem

  17. The W Boson Mass Measurement

    CERN Document Server

    Kotwal, Ashutosh V

    2016-01-01

    The measurement of the W boson mass has been growing in importance as its precision has improved, along with the precision of other electroweak observables and the top quark mass. Over the last decade, the measurement of the W boson mass has been led at hadron colliders. Combined with the precise measurement of the top quark mass at hadron colliders, the W boson mass helped to pin down the mass of the Standard Model Higgs boson through its induced radiative correction on the W boson mass. With the discovery of the Higgs boson and the measurement of its mass, the electroweak sector of the Standard Model is over-constrained. Increasing the precision of the W boson mass probes new physics at the TeV-scale. We summarize an extensive Tevatron (1984–2011) program to measure the W boson mass at the CDF and Dø experiments. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  18. Measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1985-01-01

    Direct experimental information of neutrino mass as derived from the study of nuclear and elementary-particle weak decays is reviewed. Topics include tritium beta decay; the 3 He-T mass difference; electron capture decay of 163 Ho and 158 Tb; and limits on massive neutrinos from cosmology. 38 references

  19. Mass measurement of radioactive isotopes

    CERN Document Server

    Kluge, H J; Scheidenberger, C

    2004-01-01

    The highest precision in mass measurements on short-lived radionuclides is obtained using trapping and cooling techniques. Here, the experimental storage ring (ESR) at GSI/Darmstadt and the tandem Penning trap mass spectrometer ISOLTRAP at ISOLDE/CERN play an important role. Status and recent results on mass measurements of radioactive nuclides with ESR and ISOLTRAP are summarized.

  20. Comparison of different mass spectrometry techniques in the measurement of L-[ring-13C6]phenylalanine incorporation into mixed muscle proteins

    Science.gov (United States)

    Zabielski, Piotr; Ford, G. Charles; Persson, X. Mai; Jaleel, Abdul; Dewey, Jerry D.; Nair, K Sreekumaran

    2013-01-01

    Precise measurement of low enrichment of stable isotope labeled amino-acid tracers in tissue samples is a prerequisite in measuring tissue protein synthesis rates. The challenge of this analysis is augmented when small sample size is a critical factor. Muscle samples from human participants following an 8 hour intravenous infusion of L-[ring-13C6]phenylalanine and a bolus dose of L-[ring-13C6]phenylalanine in a mouse were utilized. Liquid Chromatography tandem mass spectrometry (LC/MS/MS), Gas Chromatography tandem mass spectrometry (GC/MS/MS) and Gas Chromatography/Mass spectrometry (GC/MS) were compared to the Gas Chromatography-Combustion-Isotope Ratio mass spectrometry (GC/C/IRMS), to measure mixed muscle protein enrichment of [ring13C6]phenylalanine enrichment. The sample isotope enrichment ranged from 0.0091 to 0.1312 Molar Percent excess (MPE). As compared with GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS showed coefficients of determination of R2 = 0.9962 and R2 = 0.9942, and 0.9217 respectively. However, the precision of measurements (coefficients of variation) for intra-assay are 13.0%, 1.7%, 6.3% and 13.5% and for inter-assay are 9.2%, 3.2%, 10.2% and 25% for GC/C/IRMS, LC/MS/MS, GC/MS/MS and GC/MS respectively. The muscle sample sizes required to obtain these results were 8μg, 0.8μg, 3μg and 3μg for GC/C/IRMS, LC/MS/MS, GC/MS/MS, and GC/MS respectively. We conclude that LC/MS/MS is optimally suited for precise measurements of L-[ring-13C6]phenylalanine tracer enrichment in low abundance and in small quantity samples. PMID:23378099

  1. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    van de Waterbeemd, M.J.

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  2. Measuring the hydrogen/deuterium exchange of proteins at high spatial resolution by mass spectrometry: overcoming gas-phase hydrogen/deuterium scrambling.

    Science.gov (United States)

    Rand, Kasper D; Zehl, Martin; Jørgensen, Thomas J D

    2014-10-21

    Proteins are dynamic molecules that exhibit conformational flexibility to function properly. Well-known examples of this are allosteric regulation of protein activity and ligand-induced conformational changes in protein receptors. Detailed knowledge of the conformational properties of proteins is therefore pertinent to both basic and applied research, including drug development, since the majority of drugs target protein receptors and a growing number of drugs introduced to the market are therapeutic peptides or proteins. X-ray crystallography provides a static picture at atomic resolution of the lowest-energy structure of the native ensemble. There is a growing need for sensitive analytical tools to explore all of the significant molecular structures in the conformational landscape of proteins. Hydrogen/deuterium exchange monitored by mass spectrometry (HDX-MS) has recently emerged as a powerful method for characterizing protein conformational dynamics. The basis of this method is the fact that backbone amides in stable hydrogen-bonded structures (e.g., α-helices and β-sheets) are protected against exchange with the aqueous solvent. All protein structures are dynamic, however, and eventually all of the protecting hydrogen bonds will transiently break as the protein--according to thermodynamic principles--cycles through partially unfolded states that correspond to excited free energy levels. As a result, all of the backbone amides will eventually become temporarily solvent-exposed and exchange-competent over time. Consequently, a folded protein in D2O will gradually incorporate deuterium into its backbone amides, and the kinetics of the process can be readily monitored by mass spectrometry. The deuterium uptake kinetics for the intact protein (global exchange kinetics) represents the sum of the exchange kinetics for the individual backbone amides. Local exchange kinetics is typically achieved by using pepsin digestion under quench conditions (i.e., under cold

  3. Overview of the mass measurements

    International Nuclear Information System (INIS)

    Shull, L.M.

    1991-01-01

    a three-day mass measurement workshop conference sponsored by the INMM was held April 22-24, 1991, in Atlanta, Georgia. DOE Order 5633.3 requires mass measurement control programs for the measurements of nuclear materials but provides little guidance on details for these programs. Measurement principles used for mass are often applicable to other physical property measurements. Westinghouse Savannah River Site (WSRS) personnel organized the workshop conference to facilitate the transfer of mass measurement technology and establish better communications between the calibration laboratories, manufactures, regulators, and scale and balance users in the mass measurement community. Three different formats were used to present the information: a seminar, individual papers, and workshops. The seminar topic was the Process Measurement Assurance Program (PMAP), developed by EG and G Mound Applied Technologies, for determining and controlling measurement errors in manufacturing processes. Paper and workshop topics included: Mass Measurement Techniques and Programs, Selection of equipment and Standards, Standards and Traceability, and Automation in Mass Measurement. The paper gives an overview of the workshop conference, including purpose, participants, and summaries of the seminar, paper, and workshops

  4. Black-Hole Mass Measurements

    DEFF Research Database (Denmark)

    Vestergaard, Marianne

    2004-01-01

    The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized.......The applicability and apparent uncertainties of the techniques currently available for measuring or estimating black-hole masses in AGNs are briefly summarized....

  5. Mass spectrometric analysis of protein interactions

    DEFF Research Database (Denmark)

    Borch, Jonas; Jørgensen, Thomas J. D.; Roepstorff, Peter

    2005-01-01

    Mass spectrometry is a powerful tool for identification of interaction partners and structural characterization of protein interactions because of its high sensitivity, mass accuracy and tolerance towards sample heterogeneity. Several tools that allow studies of protein interaction are now...... available and recent developments that increase the confidence of studies of protein interaction by mass spectrometry include quantification of affinity-purified proteins by stable isotope labeling and reagents for surface topology studies that can be identified by mass-contributing reporters (e.g. isotope...... labels, cleavable cross-linkers or fragment ions. The use of mass spectrometers to study protein interactions using deuterium exchange and for analysis of intact protein complexes recently has progressed considerably....

  6. Protein identification by peptide mass fingerprinting

    DEFF Research Database (Denmark)

    Hjernø, Karin

    2007-01-01

      Peptide mass fingerprinting is an effective way of identifying, e.g., gel-separated proteins, by matching experimentally obtained peptide mass data against large databases. However, several factors are known to influence the quality of the resulting matches, such as proteins contaminating the s...

  7. Peptide Mass Fingerprinting of Egg White Proteins

    Science.gov (United States)

    Alty, Lisa T.; LaRiviere, Frederick J.

    2016-01-01

    Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…

  8. Measurement of Endogenous versus Exogenous Formaldehyde-Induced DNA-Protein Crosslinks in Animal Tissues by Stable Isotope Labeling and Ultrasensitive Mass Spectrometry.

    Science.gov (United States)

    Lai, Yongquan; Yu, Rui; Hartwell, Hadley J; Moeller, Benjamin C; Bodnar, Wanda M; Swenberg, James A

    2016-05-01

    DNA-protein crosslinks (DPC) arise from a wide range of endogenous and exogenous chemicals, such as chemotherapeutic drugs and formaldehyde. Importantly, recent identification of aldehydes as endogenous genotoxins in Fanconi anemia has provided new insight into disease causation. Because of their bulky nature, DPCs pose severe threats to genome stability, but previous methods to measure formaldehyde-induced DPCs were incapable of discriminating between endogenous and exogenous sources of chemical. In this study, we developed methods that provide accurate and distinct measurements of both exogenous and endogenous DPCs in a structurally specific manner. We exposed experimental animals to stable isotope-labeled formaldehyde ([(13)CD2]-formaldehyde) by inhalation and performed ultrasensitive mass spectrometry to measure endogenous (unlabeled) and exogenous ((13)CD2-labeled) DPCs. We found that exogenous DPCs readily accumulated in nasal respiratory tissues but were absent in tissues distant to the site of contact. This observation, together with the finding that endogenous formaldehyde-induced DPCs were present in all tissues examined, suggests that endogenous DPCs may be responsible for increased risks of bone marrow toxicity and leukemia. Furthermore, the slow rate of DPC repair provided evidence for the persistence of DPCs. In conclusion, our method for measuring endogenous and exogenous DPCs presents a new perspective for the potential health risks inflicted by endogenous formaldehyde and may inform improved disease prevention and treatment strategies. Cancer Res; 76(9); 2652-61. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. First mass measurements at LHCb

    CERN Multimedia

    Bressieux, J

    2011-01-01

    The LHC opens new frontiers in heavy flavour physics through an unprecedented statistical reach for a variety of interesting states produced in pp collisions. The LHCb spectrometer provides a good mass resolution and is suitable for spectroscopy studies. We present first preliminary mass measurements of several $b$ hadrons and of the exotic $X(3872)$ meson, reconstructed in final states containing a $J/\\psi$ using the data collected in 2010 by the LHCb experiment. An important aspect of the analysis is the calibration of the momentum scale using $J/\\psi \\to \\mu^+ \\mu^-$ decays, as well as the control of systematic uncertainties. While the already very competitive mass measurements for the $B^+$, $B^0$ and $B^0_s$ mesons receive similar contributions from systematic and statistical uncertainties, those of the $\\Lambda_b$, $B^+_c$ and $X(3872)$ particles are dominated by statistical uncertainties, and will therefore substantially improve with more data in the future.

  10. Top mass measurement at CDF

    International Nuclear Information System (INIS)

    Rolli, S.

    1996-06-01

    We present the measurement of the top quark mass using L = 110 pb -1 data sample of pp collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF). We show the results for the different channels and discuss with some emphasis the determination of the systematic uncertainties. 7 refs., 10 figs., 5 tabs

  11. Feed intake, live mass-gain, body composition and protein ...

    African Journals Online (AJOL)

    Appropriate regression relationships were used to measure the effect of dietary protein level on the patterns of DE intake, daily gain and the deposition rates of protein (PDR) and fat (FDR) over the growth period 30-90 kg live mass. Dietary CP content had no significant effect on mean voluntary DE intakes and daily gains.

  12. Traveling-wave ion mobility mass spectrometry of protein complexes

    DEFF Research Database (Denmark)

    Salbo, Rune; Bush, Matthew F; Naver, Helle

    2012-01-01

    The collision cross-section (Ω) of a protein or protein complex ion can be measured using traveling-wave (T-wave) ion mobility (IM) mass spectrometry (MS) via calibration with compounds of known Ω. The T-wave Ω-values depend strongly on instrument parameters and calibrant selection. Optimization ...

  13. Phylogenetic Analysis Using Protein Mass Spectrometry.

    Science.gov (United States)

    Ma, Shiyong; Downard, Kevin M; Wong, Jason W H

    2017-01-01

    Through advances in molecular biology, comparative analysis of DNA sequences is currently the cornerstone in the study of molecular evolution and phylogenetics. Nevertheless, protein mass spectrometry offers some unique opportunities to enable phylogenetic analyses in organisms where DNA may be difficult or costly to obtain. To date, the methods of phylogenetic analysis using protein mass spectrometry can be classified into three categories: (1) de novo protein sequencing followed by classical phylogenetic reconstruction, (2) direct phylogenetic reconstruction using proteolytic peptide mass maps, and (3) mapping of mass spectral data onto classical phylogenetic trees. In this chapter, we provide a brief description of the three methods and the protocol for each method along with relevant tools and algorithms.

  14. Direct measurements of neutrino masses

    Energy Technology Data Exchange (ETDEWEB)

    Holzschuh, E [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    The direct measurements have so far given no indication for a nonzero (positive) mass of any of the three known neutrinos. The experiments measuring the tau and the muon neutrino are good shape. The tritium experiments are in an unfortunate situation. It is unclear to me whether the problems are experimental or theoretical or a combination of both. The electronic final states distribution have been calculated, but the results have never been tested experimentally. The most important question to be answered is about the validity of the sudden approximation. (author) 9 figs., 2 tabs., 16 refs.

  15. Athoropometric measurements and plasma proteins in protein ...

    African Journals Online (AJOL)

    Athoropometric measurements and plasma proteins in protein energy malnutrition. MH Etukudo, EO Agbedana, OO Akinyinka, BOA Osifo. Abstract. No Abstract. Global Journal of Medical Sciences Vol. 5(1) 2006: 7-11. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  16. Direct measurements of neutrino mass

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1991-01-01

    Some recent developments in the experimental search for neutrino mass are discussed. New data from Los Alamos on the electron neutrino mass as measured in tritium beta decay give an upper limit of 9.3 eV at the 95% confidence level. This result is not consistent with the long-standing ITEP result of 26(5) eV within a ''model-independent'' range of 17 to 40 eV. It now appears that the electron neutrino is not sufficiently massive to close the universe by itself. Hime and Jelley report finding new evidence for a 17-keV neutrino in the Β decay of 35 S and 63 Ni. Many other experiments are being reported and the situation is still unresolved. 56 refs., 1 fig., 3 tabs

  17. Soft drop jet mass measurement

    CERN Document Server

    Roloff, Jennifer Kathryn; The ATLAS collaboration

    2018-01-01

    Calculations of jet substructure observables that are accurate beyond leading-logarithm accuracy have recently become available. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This poster documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log( ρ^2), where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 ifb of sqrt(s) = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  18. Technology on precision measurement of mass

    International Nuclear Information System (INIS)

    2005-10-01

    This book mentions mass and scales about technology for precision measurement, which deal with how to measure mass with scale. So it describes the basic things of mass and scales. It includes translated book of international standard OIML with demand of measurement and technology and form for test report and international original standard OIML with metrological and technical requirements and test report format.

  19. Validation of protein carbonyl measurement

    DEFF Research Database (Denmark)

    Augustyniak, Edyta; Adam, Aisha; Wojdyla, Katarzyna

    2015-01-01

    Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial...... protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5min of UV irradiation irrespective of method used. After irradiation for 15min, less oxidation was detected by half of the laboratories than after 5min...... irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated...

  20. Repeated measures of body mass index and C-reactive protein in relation to all-cause mortality and cardiovascular disease

    DEFF Research Database (Denmark)

    O'Doherty, Mark G; Jørgensen, Torben; Borglykke, Anders

    2014-01-01

    Obesity has been linked with elevated levels of C-reactive protein (CRP), and both have been associated with increased risk of mortality and cardiovascular disease (CVD). Previous studies have used a single 'baseline' measurement and such analyses cannot account for possible changes in these which...... may lead to a biased estimation of risk. Using four cohorts from CHANCES which had repeated measures in participants 50 years and older, multivariate time-dependent Cox proportional hazards was used to estimate hazard ratios (HR) and 95 % confidence intervals (CI) to examine the relationship between......, they may participate in distinct/independent pathways. Accounting for independent changes in risk factors over time may be crucial for unveiling their effects on mortality and disease morbidity....

  1. Measuring the running top-quark mass

    International Nuclear Information System (INIS)

    Langenfeld, Ulrich; Uwer, Peter

    2010-06-01

    In this contribution we discuss conceptual issues of current mass measurements performed at the Tevatron. In addition we propose an alternative method which is theoretically much cleaner and to a large extend free from the problems encountered in current measurements. In detail we discuss the direct determination of the top-quark's running mass from the cross section measurements performed at the Tevatron. (orig.)

  2. Analysis of posttranslational modifications of proteins by tandem mass spectrometry

    DEFF Research Database (Denmark)

    Larsen, Martin Røssel; Trelle, Morten B; Thingholm, Tine E

    2006-01-01

    -temporal distribution in cells and tissues. Most PTMs can be detected by protein and peptide analysis by mass spectrometry (MS), either as a mass increment or a mass deficit relative to the nascent unmodified protein. Tandem mass spectrometry (MS/MS) provides a series of analytical features that are highly useful...

  3. Top quark mass measurements with CMS

    CERN Document Server

    Kovalchuk, Nataliia

    2017-01-01

    Measurements of the top quark mass are presented, obtained from CMS data collected in proton-proton collisions at the LHC at centre-of-mass energies of 7 TeV and 8 TeV. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark, an analysis of endpoint spectra as well as measurements from shapes of top quark decay distributions. The dependence of the mass measurement on the kinematic phase space is investigated. The results of the various channels are combined and compared to the world average. The top mass and also $\\alpha_{\\textnormal S}$ are extracted from the top pair cross section measured at CMS.

  4. Desalting Protein Ions in Native Mass Spectrometry Using Supercharging Reagents

    Science.gov (United States)

    Cassou, Catherine A.; Williams, Evan R.

    2014-01-01

    Effects of the supercharging reagents m-NBA and sulfolane on sodium ion adduction to protein ions formed using native mass spectrometry were investigated. There is extensive sodium adduction on protein ions formed by electrospray ionization from aqueous solutions containing millimolar concentrations of NaCl, which can lower sensitivity by distributing the signal of a given charge state over multiple adducted ions and can reduce mass measuring accuracy for large proteins and non-covalent complexes for which individual adducts cannot be resolved. The average number of sodium ions adducted to the most abundant ion formed from ten small (8.6–29 kDa) proteins for which adducts can be resolved is reduced by 58% or 80% on average, respectively, when 1.5% m-NBA or 2.5% sulfolane are added to aqueous solutions containing sodium compared to without the supercharging reagent. Sulfolane is more effective than m-NBA at reducing sodium ion adduction and at preserving non-covalent protein-ligand and protein-protein interactions. Desalting with 2.5% sulfolane enables detection of several glycosylated forms of 79.7 kDa holo-transferrin and NADH bound to the 146 kDa homotetramer LDH, which are otherwise unresolved due to peak broadening from extensive sodium adduction. Although sulfolane is more effective than m-NBA at protein ion desalting, m-NBA reduces salt clusters at high m/z and can increase the signal-to-noise ratios of protein ions by reducing chemical noise. Desalting is likely a result of these supercharging reagents binding sodium ions in solution, thereby reducing the sodium available to adduct to protein ions. PMID:25133273

  5. Precise atomic mass measurements by deflection mass spectrometry

    CERN Document Server

    Barber, R C

    2003-01-01

    Since its inception nearly 90 years ago by J.J. Thomson, the precise determination of atomic masses by the classical technique of deflecting charged particles in electric and magnetic fields has provided a large body of data on naturally occurring nuclides. Currently, such measurements on stable nuclides have frequently achieved a precision of better than two parts in 10 sup 9 of the mass. A review of the technique, together with a brief summary of the important historical developments in the field of precise atomic mass measurements, will be given. The more recent contributions to this field by the deflection mass spectrometer at the University of Manitoba will be provided as illustrations of the culmination of the techniques used and the applications that have been studied. A brief comparison between this and newer techniques using Penning traps will be presented.

  6. Structural determination of intact proteins using mass spectrometry

    Science.gov (United States)

    Kruppa, Gary [San Francisco, CA; Schoeniger, Joseph S [Oakland, CA; Young, Malin M [Livermore, CA

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  7. Volume and mass measurements of liquids

    International Nuclear Information System (INIS)

    Zander, M.

    1987-12-01

    The report comprises the 10 lectures given at the 74th PTB seminar, which represent the state of the art in the field of liquid flow measurement. The lectures deal with the overflow-pipette as the primary volume standard of PTB, gas elimination devices (compulsory in measuring assemblies with volume meters), measuring assemblies for the reception of milk, electromagnetic flowmeters, vortex-shedding meters, indirect mass measurement from volume and density, direct mass measurement (coriolis flowmeters), pipeline-measurements, level measurement at storage tanks with conventional and optical methods and a development aid project for the set up of test rigs in India. (orig.) [de

  8. Spent fuel critical masses and supportive measurements

    International Nuclear Information System (INIS)

    Toffer, H.; Wells, A.H.

    1987-01-01

    Critical masses for spent fuel are larger than for green fuel and therefore use of the increased masses could result in improved handling, storage, and transport of such materials. To apply spent fuel critical masses requires an assessment of fuel exposure and the corresponding isotopic compositions. The paper discusses several approaches at the Hanford N Reactor in establishing fuel exposure, including a direct measurement of spent to green fuel critical masses. The benefits derived from the use of spent fuel critical masses are illustrated for cask designs at the Nuclear Assurance Corporation. (author)

  9. Precision Mass Measurement of Argon Isotopes

    CERN Multimedia

    Lunney, D

    2002-01-01

    % IS388\\\\ \\\\ A precision mass measurement of the neutron-deficient isotopes $^{32,33,34}$Ar is proposed. Mass values of these isotopes are of importance for: a) a stringent test of the Isobaric-Multiplet- Mass-Equation, b) a verification of the correctness of calculated charge-dependent corrections as used in super-allowed $\\beta$- decay studies aiming at a test of the CVC hypothesis, and c) the determination of the kinematics in electron-neutrino correlation experiments searching for scalar currents in weak interaction. The measurements will be carried out with the ISOLTRAP Penning trap mass spectrometer.

  10. Plasma cholesteryl ester transfer protein mass and phospholipid transfer protein activity are associated with leptin in type 2 diabetes mellitus

    NARCIS (Netherlands)

    Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.

    Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP

  11. Top quark mass measurement in dilepton channel

    International Nuclear Information System (INIS)

    Lysak, R.

    2007-01-01

    In this work, we measured the top quark mass in tt'-' events produced in pp'-' interactions at the center-of-mass energy 1.96 TeV using CDF detector. We used dilepton in tt'-' events where both W bosons from top quarks are decaying into leptons. The data sample corresponds to 340 pb -1 . We found there 33 tt'-' candidates while expecting 10.5 ± 1.9 background events. In the measurement, we reconstruct one, representative mass for each event using the assumption about longitudinal momentum of in tt'-' system, in order to be able to kinematically solve the under-constrained system. The mass distributions (templates) are created for simulated signal and background events. Templates are parametrized in order to obtain smooth probability density functions. Likelihood maximization which includes these parametrized templates is then performed on reconstructed masses obtained from data sample in order to obtain final top quark mass estimate. The result of applying this procedure on data events is top quark mass estimate 169.5 +7. 7 - 7.2 (stat.) ± 4.0(syst.) GeV/c 2 for 30 out of 33 candidates, where the solution for top quark mass was found. This measurement was a part of first top quark mass measurement in dilepton channel at CDF in Run II. The top quark mass measured here is consistent with the CDF measurement in dilepton channel from Run I M top = 167.4 ± 10.3(stat.) ± 4.8(syst.) GeV/c 2 . Moreover, the combined result of four top quark mass measurements in dilepton channel from Run II (one of these four measurements is our measurement) M top = 167.9 ± 5.2(stat.) ± 3.7(syst.) GeV/c 2 significantly (by ∼ 40%) improved the precision of top quark mass determination from Run I. It should be also noted, that this combined result is consistent with measurement obtained in 'lepton+jets' channel at CDF in Run II (M top = 173.5 +3.9 -3.8 GeV/c 2 ). So, we don't have yet any indication about new physics beyond the Standard Model. My main contribution in this analysis was

  12. Seed Storage Proteins as a System for Teaching Protein Identification by Mass Spectrometry in Biochemistry Laboratory

    Science.gov (United States)

    Wilson, Karl A.; Tan-Wilson, Anna

    2013-01-01

    Mass spectrometry (MS) has become an important tool in studying biological systems. One application is the identification of proteins and peptides by the matching of peptide and peptide fragment masses to the sequences of proteins in protein sequence databases. Often prior protein separation of complex protein mixtures by 2D-PAGE is needed,…

  13. Mass and Charge Measurements on Heavy Ions

    Science.gov (United States)

    Sugai, Toshiki

    2017-01-01

    The relationship between mass and charge has been a crucial topic in mass spectrometry (MS) because the mass itself is typically evaluated based on the m/z ratio. Despite the fact that this measurement is indirect, a precise mass can be obtained from the m/z value with a high m/z resolution up to 105 for samples in the low mass and low charge region under 10,000 Da and 20 e, respectively. However, the target of MS has recently been expanded to the very heavy region of Mega or Giga Da, which includes large particles and biocomplexes, with very large and widely distributed charge from kilo to Mega range. In this region, it is necessary to evaluate charge and mass simultaneously. Recent studies for simultaneous mass and charge observation and related phenomena are discussed in this review. PMID:29302406

  14. Top quark mass measurement at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes da Costa, Joao; /Harvard U.

    2004-12-01

    The authors report on the latest experimental measurements of the top quark mass by the CDF and D0 Collaborations at the Fermilab Tevatron. They present a new top mass measurement using the t{bar t} events collected by the D0 Collaboration in Run I between 1994 and 1996. This result is combined with previous measurements to yield a new world top mass average. They also describe several preliminary results using up to 193 pb{sup -1} of t{bar t} events produced in {bar p}p collisions at {radical}s = 1.96 TeV during the Run II of the Tevatron.

  15. Measurement of the top quark mass

    International Nuclear Information System (INIS)

    Blusk, Steven R.

    1998-01-01

    The first evidence and subsequent discovery of the top quark was reported nearly 4 years ago. Since then, CDF and D0 have analyzed their full Run 1 data samples, and analysis techniques have been refined to make optimal use of the information. In this paper, we report on the most recent measurements of the top quark mass, performed by the CDF and D0 collaborations at the Fermilab Tevatron. The CDF collaboration has performed measurements of the top quark mass in three decay channels from which the top quark mass is measured to be 175.5 ± 6.9 GeV=c 2 . The D0 collaboration combines measurements from two decay channels to obtain a top quark mass of 172.1 ± 7.1 GeV/c 2 . Combining the measurements from the two experiments, assuming a 2 GeV GeV/c 2 correlated systematic uncertainty, the measurement of the top quark mass at the Tevatron is 173.9 ± 5.2 GeV/c 2 . This report presents the measurements of the top quark mass from each of the decay channels which contribute to this measurement

  16. Mass transfer measurements in foams

    International Nuclear Information System (INIS)

    Leblond, J.G.; Fournel, B.

    2004-01-01

    Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)

  17. Cosmological and astrophysical neutrino mass measurements

    DEFF Research Database (Denmark)

    Abazajian, K.N.; Calabrese, E.; Cooray, A.

    2011-01-01

    Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....

  18. Penning trap mass measurements on nobelium isotopes

    International Nuclear Information System (INIS)

    Dworschak, M.; Block, M.; Ackermann, D.; Herfurth, F.; Hessberger, F. P.; Hofmann, S.; Vorobyev, G. K.; Audi, G.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Eliseev, S.; Ketter, J.; Fleckenstein, T.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Ketelaer, J.; Kluge, H.-J.

    2010-01-01

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt allows accurate mass measurements of radionuclides, produced in fusion-evaporation reactions and separated by the velocity filter SHIP from the primary beam. Recently, the masses of the three nobelium isotopes 252-254 No were determined. These are the first direct mass measurements of transuranium elements, which provide new anchor points in this region. The heavy nuclides were produced in cold-fusion reactions by irradiating a PbS target with a 48 Ca beam, resulting in production rates of the nuclei of interest of about one atom per second. In combination with data from decay spectroscopy our results are used to perform a new atomic-mass evaluation in this region.

  19. Increasing Protein Charge State When Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Flanigan, Paul M.; Perez, Johnny J.; Archer, Jieutonne J.; Levis, Robert J.

    2015-05-01

    Femtosecond (fs) laser vaporization is used to transfer cytochrome c, myoglobin, lysozyme, and ubiquitin from the condensed phase into an electrospray (ES) plume consisting of a mixture of a supercharging reagent, m-nitrobenzyl alcohol ( m-NBA), and trifluoroacetic acid (TFA), acetic acid (AA), or formic acid (FA). Interaction of acid-sensitive proteins like cytochrome c and myoglobin with the highly charged ES droplets resulted in a shift to higher charge states in comparison with acid-stable proteins like lysozyme and ubiquitin. Laser electrospray mass spectrometry (LEMS) measurements showed an increase in both the average charge states (Zavg) and the charge state with maximum intensity (Zmode) for acid-sensitive proteins compared with conventional electrospray ionization mass spectrometry (ESI-MS) under equivalent solvent conditions. A marked increase in ion abundance of higher charge states was observed for LEMS in comparison with conventional electrospray for cytochrome c (ranging from 19+ to 21+ versus 13+ to 16+) and myoglobin (ranging from 19+ to 26+ versus 18+ to 21+) using an ES solution containing m-NBA and TFA. LEMS measurements as a function of electrospray flow rate yielded increasing charge states with decreasing flow rates for cytochrome c and myoglobin.

  20. Ratio method of measuring W boson mass

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Feng [Stony Brook Univ., NY (United States)

    2010-08-01

    This dissertation describes an alternative method of measuring the W boson mass in DØ experiment. Instead of extracting MW from the fitting of W → ev fast Monte Carlo simulations to W → ev data as in the standard method, we make the direct fit of transverse mass between W → ev data and Z → ee data. One of the two electrons from Z boson is treated as a neutrino in the calculation of transverse mass. In ratio method, the best fitted scale factor corresponds to the ratio of W and Z boson mass (MW/MZ). Given the precisely measured Z boson mass, W mass is directly fitted from W → ev and Z → ee data. This dissertation demonstrates that ratio method is a plausible method of measuring the W boson mass. With the 1 fb-1 DØ Run IIa dataset, ratio method gives MW = 80435 ± 43(stat) ± 26(sys) MeV.

  1. Testing substellar models with dynamical mass measurements

    Directory of Open Access Journals (Sweden)

    Liu M.C.

    2011-07-01

    Full Text Available We have been using Keck laser guide star adaptive optics to monitor the orbits of ultracool binaries, providing dynamical masses at lower luminosities and temperatures than previously available and enabling strong tests of theoretical models. We have identified three specific problems with theory: (1 We find that model color–magnitude diagrams cannot be reliably used to infer masses as they do not accurately reproduce the colors of ultracool dwarfs of known mass. (2 Effective temperatures inferred from evolutionary model radii are typically inconsistent with temperatures derived from fitting atmospheric models to observed spectra by 100–300 K. (3 For the only known pair of field brown dwarfs with a precise mass (3% and age determination (≈25%, the measured luminosities are ~2–3× higher than predicted by model cooling rates (i.e., masses inferred from Lbol and age are 20–30% larger than measured. To make progress in understanding the observed discrepancies, more mass measurements spanning a wide range of luminosity, temperature, and age are needed, along with more accurate age determinations (e.g., via asteroseismology for primary stars with brown dwarf binary companions. Also, resolved optical and infrared spectroscopy are needed to measure lithium depletion and to characterize the atmospheres of binary components in order to better assess model deficiencies.

  2. Mass-spectrometric measurements for nuclear safeguards

    International Nuclear Information System (INIS)

    Carter, J.A.; Smith, D.H.; Walker, R.L.

    1982-01-01

    The need of an on-site inspection device to provide isotopic ratio measurements led to the development of a quadrupole mass spectrometer mounted in a van. This mobile laboratory has the ability, through the use of the resin bead technique, to acquire, prepare, and analyze samples of interest to nuclear safeguards. Precision of the measurements is about 1 to 2%

  3. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  4. Recent progress in precision mass measurements

    International Nuclear Information System (INIS)

    Kluge, H.J.; Heidelberg Univ.

    1995-09-01

    During the last years, a new generation of technique for measuring directly masses of short-lived isotopes has evolved. The common features of these modern techniques are a transition from the measurement of kinetic energies or voltage ratios to a determination of time and frequency and in most cases storage of the ions for extended periods of time. (orig.)

  5. Analysis of Proteins, Protein Complexes, and Organellar Proteomes Using Sheathless Capillary Zone Electrophoresis - Native Mass Spectrometry

    Science.gov (United States)

    Belov, Arseniy M.; Viner, Rosa; Santos, Marcia R.; Horn, David M.; Bern, Marshall; Karger, Barry L.; Ivanov, Alexander R.

    2017-12-01

    Native mass spectrometry (MS) is a rapidly advancing field in the analysis of proteins, protein complexes, and macromolecular species of various types. The majority of native MS experiments reported to-date has been conducted using direct infusion of purified analytes into a mass spectrometer. In this study, capillary zone electrophoresis (CZE) was coupled online to Orbitrap mass spectrometers using a commercial sheathless interface to enable high-performance separation, identification, and structural characterization of limited amounts of purified proteins and protein complexes, the latter with preserved non-covalent associations under native conditions. The performance of both bare-fused silica and polyacrylamide-coated capillaries was assessed using mixtures of protein standards known to form non-covalent protein-protein and protein-ligand complexes. High-efficiency separation of native complexes is demonstrated using both capillary types, while the polyacrylamide neutral-coated capillary showed better reproducibility and higher efficiency for more complex samples. The platform was then evaluated for the determination of monoclonal antibody aggregation and for analysis of proteomes of limited complexity using a ribosomal isolate from E. coli. Native CZE-MS, using accurate single stage and tandem-MS measurements, enabled identification of proteoforms and non-covalent complexes at femtomole levels. This study demonstrates that native CZE-MS can serve as an orthogonal and complementary technique to conventional native MS methodologies with the advantages of low sample consumption, minimal sample processing and losses, and high throughput and sensitivity. This study presents a novel platform for analysis of ribosomes and other macromolecular complexes and organelles, with the potential for discovery of novel structural features defining cellular phenotypes (e.g., specialized ribosomes). [Figure not available: see fulltext.

  6. Top Quark Mass Measurement in Dilepton Channel

    Energy Technology Data Exchange (ETDEWEB)

    Lysak, Roman [Inst. of Experimental Physics, Kosice (Slovak Republic)

    2007-06-01

    We present a measurement of the top quark mass from events produced in p$\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV, using the Collider Detector at Fermilab. We identify t$\\bar{t}$ candidates where both W bosons from the top quarks decay into leptons (eν, µν, τν) from a data sample of 340 pb-1. The top quark mass is reconstructed in each event separately by the method which draw upon simulated distribution of t$\\bar{t}$ longitudinal momentum in order to extract probability distribution for the top quark mass. Representative distributions, or templates, are constructed from simulated samples of signal and background events, and parametrized to form continuous probability density functions. A likelihood fit incorporating these parametrized templates is then performed on the data sample masses in order to derive a final top quark mass. Measured top quark mass is Mtop = 169.5$+7.7\\atop{-7.2}$(stat.) ± 4.0(syst.) GeV/c2.

  7. Measurement of the D* (+) -D+ Mass Difference

    NARCIS (Netherlands)

    Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Brown, D. N.; Kolomensky, Yu. G.; Fritsch, M.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Lankford, A. J.; Gary, J. W.; Long, O.; Eisner, A. M.; Lockman, W. S.; Vazquez, W. Panduro; Chao, D. S.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Rohrken, M.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Smith, J. G.; Wagner, S. R.; Bernard, D.; Verderi, M.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rotondo, M.; Zallo, A.; Passaggio, S.; Patrignani, C.; Lacker, H. M.; Bhuyan, B.; Mallik, U.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Le Diberder, F.; Lutz, A. M.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Banerjee, Sw.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Robertson, S. H.; Dey, B.; Neri, N.; Palombo, F.; Cheaib, R.; Cremaldi, L.; Godang, R.; Summers, D. J.; Taras, P.; De Nardo, G.; Sciacca, C.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Gaz, A.; Margoni, M.; Posocco, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Calderini, G.; Chauveau, J.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Rossi, A.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Rama, M.; Rizzo, G.; Walsh, J. J.; Smith, A. J. S.; Anulli, F.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Pilloni, A.; Piredda, G.; Buenger, C.; Dittrich, S.; Gruenberg, O.; Hess, M.; Leddig, T.; Voss, C.; Waldi, R.; Adye, T.; Wilson, F. F.; Emery, S.; Vasseur, G.; Aston, D.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W. G. S.; Luitz, S.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Ratcliff, B. N.; Roodman, A.; Sullivan, M. K.; Va'vra, J.; Wisniewski, W. J.; Purohit, M. V.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Albert, J.; Beaulieu, A.; Bernlochner, F. U.; Kowalewski, R.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Prepost, R.; Sun, L.

    2017-01-01

    We measure the mass difference, Δm+, between the D∗(2010)+ and the D+ using the decay chain D∗(2010)+→D+π0 with D+→K−π+π+. The data were recorded with the BABAR detector at center-of-mass energies at and near the Υ(4S) resonance, and correspond to an integrated luminosity of approximately 468  fb−1.

  8. Measuring the Higgs mass at TESLA

    International Nuclear Information System (INIS)

    Garcia-Abia, P.; Lohmann, W.; Raspereza, A.

    2001-01-01

    We report on the accuracy of the measurement of the Higgs boson mass that would be achieved in a linear collider operating at a center-of-mass energy of 350 GeV, assuming an integrated luminosity of 500 fb-1. For that we have exploited the exclusive Higgs decays into b quarks and W bosons. The Higgs mass is determined with an accuracy of about 40 MeV for m H =120 GeV and 80 MeV for m H =180 GeV

  9. Radiochemical measurement of mass transport in sodium

    International Nuclear Information System (INIS)

    Cooper, M.H.; Chiang, S.H.

    1976-01-01

    Mass transport processes in the sodium coolant of Liquid Metal Fast Breeder Reactors (LMFBRs) are significant in determining rates of corrosion and deposition of radioactive nuclides from the fuel cladding, deposition and cold trapping of fission products from defect or failed fuel, carbon and nitrogen redistribution in the containment materials, and removal of impurities by cold trapping or hot trapping. Mass transport between rotating, concentric cylinders in molten sodium has been investigated using a unique radiochemical method. Long-lived (33 year) cesium-137, dissolved in the sodium, decays radioactively emitting a beta to barium-137m, which decays with a short half-life (2.6 minutes) emitting a gamma. Cesium is weakly adsorbed and remains in solution, while the barium is strongly adsorbed on the stainless steel surfaces. Hence, by measuring the barium-137m activity on movable stainless steel surfaces, one can calculate the mass transport to that surface. Mass transfer coefficients in sodium measured by this method are in agreement with published heat transfer correlations when the effect of the volumetric mass source is taken into account. Hence, heat transfer correlations can be confidently utilized by analogy in estimating mass transfer in liquid-metal systems

  10. Precision measurement of $D$ meson mass differences

    CERN Document Server

    INSPIRE-00258707; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves Jr, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D C; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; Davis, A; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fiore, M; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Lesiak, T; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; Lohn, S; Longstaff, I; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNab, A; McNulty, R; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A

    2013-01-01

    Using three- and four-body decays of $D$ mesons produced in semileptonic $b$-hadron decays, precision measurements of $D$ meson mass differences are made together with a measurement of the $D^{0}$ mass. The measurements are based on a dataset corresponding to an integrated luminosity of 1.0 fb$^{-1}$ collected in $pp$ collisions at 7~TeV. Using the decay $D^0 \\rightarrow K^{+} K^{-} K^{-} \\pi^{+}$, the $D^0$ mass is measured to be \\begin{alignat*}{3} M(D^0) \\phantom{ghd} &=&~1864.75 \\pm 0.15 \\,({\\rm stat}) \\pm 0.11 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2. \\end{alignat*} The mass differences \\begin{alignat*}{3} M(D^{+}) - M(D^{0}) &=& 4.76 \\pm 0.12 \\,({\\rm stat}) \\pm 0.07 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2, \\\\ M(D^{+}_s) - M(D^{+}) &=& \\phantom{00}98.68 \\pm 0.03 \\,({\\rm stat}) \\pm 0.04 \\,({\\rm syst}) \\, \\textrm{MeV}/c^2 \\end{alignat*} are measured using the $D^0 \\rightarrow K^{+} K^{-} \\pi^{+} \\pi^{-}$ and $D^{+}_{(s)} \\rightarrow K^{+}K^{-} \\pi^{+}$ modes.

  11. Measurement of $b$-hadron masses

    CERN Document Server

    Aaij, R; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amhis, Y; Anderson, J; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Arrabito, L; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Bailey, D S; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bates, A; Bauer, C; Bauer, Th; Bay, A; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Bernet, R; Bettler, M-O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blanks, C; Blouw, J; Blusk, S; Bobrov, A; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Büchler-Germann, A; Burducea, I; Bursche, A; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chiapolini, N; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Collins, P; Comerma-Montells, A; Constantin, F; Contu, A; Cook, A; Coombes, M; Corti, G; Cowan, G A; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Capua, S; De Cian, M; De Lorenzi, F; De Miranda, J M; De Paula, L; De Simone, P; Decamp, D; Deckenhoff, M; Degaudenzi, H; Del Buono, L; Deplano, C; Derkach, D; Deschamps, O; Dettori, F; Dickens, J; Dijkstra, H; Diniz Batista, P; Domingo Bonal, F; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisele, F; Eisenhardt, S; Ekelhof, R; Eklund, L; Elsasser, Ch; Elsby, D; Esperante Pereira, D; Estève, L; Falabella, A; Fanchini, E; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Fernandez Albor, V; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Frank, M; Frei, C; Frosini, M; Furcas, S; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garnier, J-C; Garofoli, J; Garra Tico, J; Garrido, L; Gascon, D; Gaspar, C; Gauvin, N; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Gracianiv Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Haefeli, G; Haen, C; Haines, S C; Hampson, T; Hansmann-Menzemer, S; Harji, R; Harnew, N; Harrison, J; Harrison, P F; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Holubyev, K; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Huston, R S; Hutchcroft, D; Hynds, D; Iakovenko, V; Ilten, P; Imong, J; Jacobsson, R; Jaeger, A; Jahjah Hussein, M; Jans, E; Jansen, F; Jaton, P; Jean-Marie, B; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Keaveney, J; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kim, Y M; Knecht, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kruzelecki, K; Kucharczyk, M; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J-P; Lefèvre, R; Leflat, A; Lefrançois, J; Leroy, O; Lesiak, T; Li, L; Li Gioi, L; Lieng, M; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Luisier, J; Mac Raighne, A; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Magnin, J; Malde, S; Mamunur, R M D; Manca, G; Mancinelli, G; Mangiafave, N; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinez Santos, D; Massafferri, A; Mathe, Z; Matteuzzi, C; Matveev, M; Maurice, E; Maynard, B; Mazurov, A; McGregor, G; McNulty, R; Meissner, M; Merk, M; Merkel, J; Messi, R; Miglioranzi, S; Milanes, D A; Minard, M-N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Musy, M; Mylroie-Smith, J; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Nedos, M; Needham, M; Neufeld, N; Nguyen-Mau, C; Nicol, M; Niess, V; Nikitin, N; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, K; Palacios, J; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Paterson, S K; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petrella, A; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pie Valls, B; Pietrzyk, B; Pilař, T; Pinci, D; Plackett, R; Playfer, S; Plo Casasus, M; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Rinnert, K; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodrigues, F; Rodriguez Perez, P; Rogers, G J; Roiser, S; Romanovsky, V; Rosello, M; Rouvinet, J; Ruf, T; Ruiz, H; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santinelli, R; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schleich, S; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, A C; Smith, N A; Smith, E; Sobczak, K; Soler, F J P; Solomin, A; Soomro, F; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Topp-Joergensen, S; Torr, N; Tournefier, E; Tran, M T; Tsaregorodtsev, A; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urquijo, P; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Viaud, B; Videau, I; Vilasis-Cardona, X; Visniakov, J; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Voss, H; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Witzeling, W; Wotton, S A; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yushchenko, O; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhong, L; Zverev, E; Zvyagin, A

    2012-01-01

    Measurements of $b$-hadron masses are performed with the exclusive decay modes $B^+\\to J/\\psi K^+$, $B^0 \\to J/\\psi K^{*0}$, $B^0 \\to J/\\psi K^0_{\\rm S}$, $B_s^0 \\to J/\\psi\\phi$ and $\\Lambda^0_b\\to J/\\psi\\Lambda$ using an integrated luminosity of 35 pb$^{-1}$ collected in $pp$ collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with $J/\\psi \\to \\mu^+\\mu^-$ decays and verified to be known to a relative precision of $2 \\times 10^{-4}$ using other two-body decays. The results are more precise than previous measurements, particularly in the case of the $B^0_s$ and $\\Lambda^0_b$ masses.

  12. Contamination measurements with quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Bohatka, S.; Berecz, I.; Langer, G.

    1981-01-01

    A sensitive quadrupole mass spectrometer of our own construction was used for different purity measurements. The analysis of gases in operating rooms showed a 1 ppm-10 5 ppm concentration of narcotics and helped to develop an effective and cheap method for regenerating narcotic filters. We regularly control the gases used in radioactive pollution measurements by internal GM counters and in radiocarbon dating technique. Combustion products and the gases of a fermenter are investigated for industrial application. (orig.) [de

  13. W Boson Mass Measurement at CDF

    Energy Technology Data Exchange (ETDEWEB)

    Kotwal, Ashutosh V. [Duke Univ., Durham, NC (United States). Physics Dept.

    2017-03-27

    This is the closeout report for the grant for experimental research at the energy frontier in high energy physics. The report describes the precise measurement of the W boson mass at the CDF experiment at Fermilab, with an uncertainty of ≈ 12 MeV, using the full dataset of ≈ 9 fb-1 collected by the experiment up to the shutdown of the Tevatron in 2011. In this analysis, the statistical and most of the experimental systematic uncertainties have been reduced by a factor of two compared to the previous measurement with 2.2 fb-1 of CDF data. This research has been the culmination of the PI's track record of producing world-leading measurements of the W boson mass from the Tevatron. The PI performed the first and only measurement to date of the W boson mass using high-rapidity leptons using the D0 endcap calorimeters in Run 1. He has led this measurement in Run 2 at CDF, publishing two world-leading measurements in 2007 and 2012 with total uncertainties of 48 MeV and 19 MeV respectively. The analysis of the final dataset is currently under internal review in CDF. Upon approval of the internal review, the result will be available for public release.

  14. Physical Activity Modifies the Association between Dietary Protein and Lean Mass of Postmenopausal Women.

    Science.gov (United States)

    Martinez, Jessica A; Wertheim, Betsy C; Thomson, Cynthia A; Bea, Jennifer W; Wallace, Robert; Allison, Matthew; Snetselaar, Linda; Chen, Zhao; Nassir, Rami; Thompson, Patricia A

    2017-02-01

    Maintenance of lean muscle mass and related strength is associated with lower risk for numerous chronic diseases of aging in women. Our aim was to evaluate whether the association between dietary protein and lean mass differs by physical activity level, amino acid composition, and body mass index categories. We performed a cross-sectional analysis of a prospective cohort. Participants were postmenopausal women from the Women's Health Initiative with body composition measurements by dual-energy x-ray absorptiometry (n=8,298). Our study measured percent lean mass, percent fat mass, and lean body mass index. Linear regression models adjusted for scanner serial number, age, calibrated energy intake, race/ethnicity, neighborhood socioeconomic status, and recreational physical activity were used to determine the relationship between protein intake and body composition measures. Likelihood ratio tests and stratified analysis were used to investigate physical activity and body mass index as potential effect modifiers. Biomarker-calibrated protein intake was positively associated with percent lean mass; women in the highest protein quintile had 6.3 percentage points higher lean mass than the lowest quintile (Plean body mass index were both inversely related to protein intake (both Plean body mass index (P interaction =0.011). Leucine intake was associated with lean mass, as were branched chain amino acids combined (both Plean mass in postmenopausal women. Importantly, those that also engage in physical activity have the highest lean mass across body mass index categories. Copyright © 2017 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  15. Experiment for a precision neutrino mass measurement

    International Nuclear Information System (INIS)

    Fackler, O.; Mugge, M.; Sticker, H.; Woerner, R.

    1984-04-01

    We describe an experiment which is designed to determine the electron neutrino mass to better than 2 eV. Key features of the experiment are a high activity frozen tritium source and a high resolution electrostatic spectrometer designed to make a careful measurement of the tritium beta decay end point spectrum. The goal is to determine the neutrino mass to better than 1 eV statistically in a four day run. A series of these runs will allow study of potential systematics. The construction phase is nearly complete and preliminary data will be taken in late spring

  16. Measurement of the W boson mass

    International Nuclear Information System (INIS)

    Abe, F.; Albrow, M.G.; Amendolia, S.R.; Amidei, D.; Antos, J.; Anway-Wiese, C.; Apollinari, G.; Areti, H.; Atac, M.; Auchincloss, P.; Azfar, F.; Azzi, P.; Bacchetta, N.; Badgett, W.; Bailey, M.W.; Bao, J.; de Barbaro, P.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Bartalini, P.; Bauer, G.; Baumann, T.; Bedeschi, F.; Behrends, S.; Belforte, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Benlloch, J.; Bensinger, J.; Benton, D.; Beretvas, A.; Berge, J.P.; Bertolucci, S.; Bhatti, A.; Biery, K.; Binkley, M.; Bird, F.; Bisello, D.; Blair, R.E.; Blocker, C.; Bodek, A.; Bokhari, W.; Bolognesi, V.; Bortoletto, D.; Boswell, C.; Boulos, T.; Brandenburg, G.; Bromberg, C.; Buckley-Geer, E.; Budd, H.S.; Burkett, K.; Busetto, G.; Byon-Wagner, A.; Byrum, K.L.; Cammerata, J.; Campagnari, C.; Campbell, M.; Caner, A.; Carithers, W.; Carlsmith, D.; Castro, A.; Cen, Y.; Cervelli, F.; Chao, H.Y.; Chapman, J.; Cheng, M.; Chiarelli, G.; Chikamatsu, T.; Chiou, C.N.; Christofek, L.; Cihangir, S.; Clark, A.G.; Cobal, M.; Contreras, M.; Conway, J.; Cooper, J.; Cordelli, M.; Couyoumtzelis, C.; Crane, D.; Cunningham, J.D.; Daniels, T.; DeJongh, F.; Delchamps, S.; Dell'Agnello, S.; Dell'Orso, M.; Demortier, L.; Denby, B.; Deninno, M.; Derwent, P.F.; Devlin, T.; Dickson, M.; Dittmann, J.R.; Donati, S.; Drucker, R.B.; Dunn, A.; Einsweiler, K.; Elias, J.E.; Ely, R.; Engels, E. Jr.; Eno, S.; Errede, D.; Errede, S.; Fan, Q.; Farhat, B.; Fiori, I.; Flaugher, B.; Foster, G.W.; Franklin, M.; Frautschi, M.; Freeman, J.; Friedman, J.; Frisch, H.; Fry, A.; Fuess, T.A.; Fukui, Y.; Funaki, S.; Gagliardi, G.; Galeotti, S.; Gallinaro, M.; Garfinkel, A.F.; Geer, S.; Gerdes, D.W.; Giannetti, P.; Giokaris, N.; Giromini, P.; Gladney, L.; Glenzinski, D.; Gold, M.; Gonzalez, J.; Gordon, A.; Goshaw, A.T.; Goulianos, K.; Grassmann, H.; Grewal, A.; Groer, L.; Grosso-Pilcher, C.; Haber, C.; Hahn, S.R.; Hamilton, R.; Handler, R.; Hans, R.M.; Hara, K.; Harral, B.; Harris, R.M.; Hauger, S.A.

    1995-01-01

    We present a measurement of the mass of the W boson using data collected with the Collider Detector at Fermilab during the 1992--93 collider run at the Fermilab Tevatron. A fit to the transverse mass spectrum of a sample of 3268 W→μν events recorded in an integrated luminosity of 19.7pb -1 gives a mass M W μ =80.310±0.205(stat)±0.130(syst)GeV/c 2 . A fit to 5718 W→eν events recorded in 18.2 pb --1 gives M e W =80.490±0.145(stat)±0.175(syst)GeV/c 2 . Combining these results, accounting for correlated uncertainties, yields M W =80.410±0.180GeV/c 2

  17. Propellant Slosh Force and Mass Measurement

    Directory of Open Access Journals (Sweden)

    Andrew Hunt

    2018-01-01

    Full Text Available We have used electrical capacitance tomography (ECT to instrument a demonstration tank containing kerosene and have successfully demonstrated that ECT can, in real time, (i measure propellant mass to better than 1% of total in a range of gravity fields, (ii image propellant distribution, and (iii accurately track propellant centre of mass (CoM. We have shown that the ability to track CoM enables the determination of slosh forces, and we argue that this will result in disruptive changes in a propellant tank design and use in a spacecraft. Ground testing together with real-time slosh force data will allow an improved tank design to minimize and mitigate slosh forces, while at the same time keeping the tank mass to a minimum. Fully instrumented Smart Tanks will be able to provide force vector inputs to a spacecraft inertial navigation system; this in turn will (i eliminate or reduce navigational errors, (ii reduce wait time for uncertain slosh settling, since actual slosh forces will be known, and (iii simplify slosh control hardware, hence reducing overall mass. ECT may be well suited to space borne liquid measurement applications. Measurements are independent of and unaffected by orientation or levels of g. The electronics and sensor arrays can be low in mass, and critically, the technique does not dissipate heat into the propellant, which makes it intrinsically safe and suitable for cryogenic liquids. Because of the limitations of operating in earth-bound gravity, it has not been possible to check the exact numerical accuracy of the slosh force acting on the vessel. We are therefore in the process of undertaking a further project to (i build a prototype integrated “Smart Tank for Space”, (ii undertake slosh tests in zero or microgravity, (iii develop the system for commercial ground testing, and (iv qualify ECT for use in space.

  18. Measuring Convective Mass Fluxes Over Tropical Oceans

    Science.gov (United States)

    Raymond, David

    2017-04-01

    Deep convection forms the upward branches of all large-scale circulations in the tropics. Understanding what controls the form and intensity of vertical convective mass fluxes is thus key to understanding tropical weather and climate. These mass fluxes and the corresponding conditions supporting them have been measured by recent field programs (TPARC/TCS08, PREDICT, HS3) in tropical disturbances considered to be possible tropical storm precursors. In reality, this encompasses most strong convection in the tropics. The measurements were made with arrays of dropsondes deployed from high altitude. In some cases Doppler radar provided additional measurements. The results are in some ways surprising. Three factors were found to control the mass flux profiles, the strength of total surface heat fluxes, the column-integrated relative humidity, and the low to mid-tropospheric moist convective instability. The first two act as expected, with larger heat fluxes and higher humidity producing more precipitation and stronger lower tropospheric mass fluxes. However, unexpectedly, smaller (but still positive) convective instability produces more precipitation as well as more bottom-heavy convective mass flux profiles. Furthermore, the column humidity and the convective instability are anti-correlated, at least in the presence of strong convection. On spatial scales of a few hundred kilometers, the virtual temperature structure appears to be in dynamic balance with the pattern of potential vorticity. Since potential vorticity typically evolves on longer time scales than convection, the potential vorticity pattern plus the surface heat fluxes then become the immediate controlling factors for average convective properties. All measurements so far have taken place in regions with relatively flat sea surface temperature (SST) distributions. We are currently seeking funding for a measurement program in the tropical east Pacific, a region that exhibits strong SST gradients and

  19. Dietary protein and urinary nitrogen in relation to 6-year changes in fat mass and fat-free mass

    DEFF Research Database (Denmark)

    Ankarfeldt, Mikkel Zøllner; Gottliebsen, K; Ängquist, L

    2015-01-01

    Background:In contrast to the physiological expectation, observational studies show that greater protein intake is associated with subsequent body weight (BW) gain. An increase in fat-free mass (FFM) due to anabolic effects of protein could explain this.Objective:To examine associations between...... protein intake and subsequent changes in fat mass (FM) and FFM in longitudinal, observational data.Design:A health examination, including measures of FM and FFM by bioelectrical impedance at baseline and follow-up six years later, was conducted. Diet history interviews (DHI) were performed, and 24-hour...... nitrogen. Estimated from DHI, FM increased 46 gram/year with every 1 E% protein substituted for fat (95%CI: 13, 79; P=0.006) and FFM increased 15 gram/year (1, 30; P=0.046). Results were similar in other substitution models. Estimated from urinary nitrogen, FM increased 53 gram/year with 1 E% protein...

  20. First Mass Measurement of a 'Domestic' Microlens

    Science.gov (United States)

    Dong, Subo; Carey, Sean; Gould, Andrew; Zhu, Wei

    2017-11-01

    We propose to combine Spitzer, Gaia, and ground-based measurements to determine the mass, distance, and transverse velocity of the 'domestic' microlensing event J0507+2447. This is only the second 'domestic' event (microlensed source distance less than about 1 kpc) ever discovered, but this number is already 10 times higher than the number that are expected. Hence, determining the nature of these lenses would resolve a major puzzle. The low expected rate is what caused Einstein to delay publication of his microlensing idea by 24 years. By very good fortune, Spitzer's narrow 38 day window of observations overlaps magnified portions of the event. To determine the mass requires to measure both the 'microlens parallax' (courtesy of Spitzer) and the 'angular Einstein radius' (which can be derived from Gaia astrometry). Thus, this is a truly rare opportunity to probe the nature of 'domestic' microlenses.

  1. PRECISION ELECTROWEAK MEASUREMENTS AND THE HIGGS MASS

    International Nuclear Information System (INIS)

    MARCIANO, W.J.

    2004-01-01

    The utility of precision electroweak measurements for predicting the Standard Model Higgs mass via quantum loop effects is discussed. Current constraints from m w and sin 2 θ w (m z ) ovr MS imply a relatively light Higgs ∼< 154 GeV which is consistent with Supersymmetry expectations. The existence of Supersymmetry is further suggested by a discrepancy between experiment and theory for the muon anomalous magnetic moment. Constraints from precision studies on other types of ''New Physics'' are also briefly described

  2. Capillary zone electrophoresis-mass spectromet of intact proteins

    NARCIS (Netherlands)

    Domínguez-Vega, Elena; Haselberg, Rob; Somsen, Govert W.

    2016-01-01

    Capillary electrophoresis (CE) coupled with mass spectrometry (MS) has proven to be a powerful analytical tool for the characterization of intact proteins. It combines the high separation efficiency, short analysis time, and versatility of CE with the mass selectivity and sensitivity offered by MS

  3. Mass spectrometry allows direct identification of proteins in large genomes

    DEFF Research Database (Denmark)

    Küster, B; Mortensen, Peter V.; Andersen, Jens S.

    2001-01-01

    Proteome projects seek to provide systematic functional analysis of the genes uncovered by genome sequencing initiatives. Mass spectrometric protein identification is a key requirement in these studies but to date, database searching tools rely on the availability of protein sequences derived fro...

  4. Feed intake, live mass-gain, body composition and protein ...

    African Journals Online (AJOL)

    Feed intake, live mass-gain, body composition and protein deposition in pigs fed three protein levels. E.H. Kemm,* F.K. Siebrits, M.N. Ras and H.A. Badenhorst. Animal and Dairy Science Research Institute, Private Bag X2, Irene 1675, Republic of South Africa. A group of 82 genetically lean and 90 obese Landrace pigs was ...

  5. Analysis of the lipidated recombinant outer surface protein A from Borrelia burgdorferi by mass spectrometry

    NARCIS (Netherlands)

    Bouchon, B.; Klein, Michele; Bischoff, Rainer; Van Dorsselaer, A.; Roitsch, C.

    1997-01-01

    The outer surface protein A, OspA, from the spirochete Borrelia burgdorferi is a lipoprotein of 25 kDa. The recombinant OspA (rOspA) expressed in Escherichia coli has been purified and analyzed by electrospray mass spectrometry (ESMS). A heterogenous spectrum gave a measured mass of 28,462 +/- 9 Da

  6. Rapid identification of DNA-binding proteins by mass spectrometry

    DEFF Research Database (Denmark)

    Nordhoff, E.; Korgsdam, A.-M.; Jørgensen, H.F.

    1999-01-01

    We report a protocol for the rapid identification of DNA-binding proteins. Immobilized DNA probes harboring a specific sequence motif are incubated with cell or nuclear extract. Proteins are analyzed directly off the solid support by matrix-assisted laser desorption/ionization time-of-flight mass...... was validated by the identification of known prokaryotic and eukaryotic DNA-binding proteins, and its use provided evidence that poly(ADP-ribose) polymerase exhibits DNA sequence-specific binding to DNA....

  7. Measurement of b-hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Aaij, R. [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Abellan Beteta, C. [Universitat de Barcelona, Barcelona (Spain); Adeva, B. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Adinolfi, M. [H.H. Wills Physics Laboratory, University of Bristol, Bristol (United Kingdom); Adrover, C. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Affolder, A. [Oliver Lodge Laboratory, University of Liverpool, Liverpool (United Kingdom); Ajaltouni, Z. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand (France); Albrecht, J.; Alessio, F. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Alexander, M. [School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Alkhazov, G. [Petersburg Nuclear Physics Institute (PNPI), Gatchina (Russian Federation); Alvarez Cartelle, P. [Universidad de Santiago de Compostela, Santiago de Compostela (Spain); Alves, A.A. [Sezione INFN di Roma La Sapienza, Roma (Italy); Amato, S. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro (Brazil); Amhis, Y. [Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne (Switzerland); Anderson, J. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Appleby, R.B. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Aquines Gutierrez, O. [Max-Planck-Institut fuer Kernphysik (MPIK), Heidelberg (Germany); Archilli, F. [Laboratori Nazionali dell' INFN di Frascati, Frascati (Italy); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Arrabito, L. [CC-IN2P3, CNRS/IN2P3, Lyon-Villeurbanne (France); and others

    2012-02-28

    Measurements of b-hadron masses are performed with the exclusive decay modes B{sup +}{yields}J/{psi}K{sup +}, B{sup 0}{yields}J/{psi}K{sup Low-Asterisk 0}, B{sup 0}{yields}J/{psi}K{sub S}{sup 0}, B{sub s}{sup 0}{yields}J/{psi}{phi} and {Lambda}{sub b}{sup 0}{yields}J/{psi}{Lambda} using an integrated luminosity of 35 pb{sup -1} collected in pp collisions at a centre-of-mass energy of 7 TeV by the LHCb experiment. The momentum scale is calibrated with J/{psi}{yields}{mu}{sup +}{mu}{sup -} decays and verified to be known to a relative precision of 2 Multiplication-Sign 10{sup -4} using other two-body decays. The results are more precise than previous measurements, particularly in the case of the B{sub s}{sup 0} and {Lambda}{sub b}{sup 0} masses.

  8. Continuous Mass Measurement on Conveyor Belt

    Science.gov (United States)

    Tomobe, Yuki; Tasaki, Ryosuke; Yamazaki, Takanori; Ohnishi, Hideo; Kobayashi, Masaaki; Kurosu, Shigeru

    The continuous mass measurement of packages on a conveyor belt will become greatly important. In the mass measurement, the sequence of products is generally random. An interesting possibility of raising throughput of the conveyor line without increasing the conveyor belt speed is offered by the use of two or three conveyor belt scales (called a multi-stage conveyor belt scale). The multi-stage conveyor belt scale can be created which will adjust the conveyor belt length to the product length. The conveyor belt scale usually has maximum capacities of less than 80kg and 140cm, and achieves measuring rates of more than 150 packages per minute and more. The output signals from the conveyor belt scale are always contaminated with noises due to vibrations of the conveyor and the product to be measured in motion. In this paper an employed digital filter is of Finite Impulse Response (FIR) type designed under the consideration on the dynamics of the conveyor system. The experimental results on the conveyor belt scale suggest that the filtering algorithms are effective enough to practical applications to some extent.

  9. Cylinder with differential piston for mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bordeaşu, I.; Bălăşoiu, V. [Universitatea Politehnica din Timişoara, Timosoara (Romania); Hadă, A. [UniversitateaPolitehnicaBucureşti, Bucureşti (Romania); Popoviciu, M. [Academy of Romanian ScientistsTimişoara Branch (Romania)

    2007-07-01

    The paper presents a cylinder with differential piston, adapted for measuring the weight of fixed objects such as: fuel tanks (regardless of their capacity), bunkers and silos for all kind of materials, or mobile objects such as: automobiles, trucks, locomotives and railway cars. Although, the cylinder with differential piston is used on a large scale in hydraulic drive or hydraulic control circuits, till now it was not used as constituent part for weight measurements devices. The novelty of the present paper is precisely the use of the device for such purposes. Based on a computation algorithm, the paper presents the general design (assembly), of the device used for weighing important masses (1…. 100 tones). The fundamental idea consist in the fact that, a mass over 10 tones may be weighted with a helicoidally spring subjected to an axial force between 0 and 3000 N, with a deflection of about 30 mm. Simultaneously with the mechanical part, the electronic recording system is also described. The great advantage of the presented device consist in the fact that it can be used in heavy polluted atmosphere or difficult topographic conditions as a result of both the small dimensions and the protection systems adopted. Keywords: cylinder hydraulic with differential piston, hydrostatic pressure, measuring devices.

  10. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    Directory of Open Access Journals (Sweden)

    Jong-in Hahm

    2011-03-01

    Full Text Available The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered.

  11. Invariant measures of mass migration processes

    Czech Academy of Sciences Publication Activity Database

    Fajfrová, Lucie; Gobron, T.; Saada, E.

    2016-01-01

    Roč. 21, č. 1 (2016), s. 1-52, č. článku 60. ISSN 1083-6489 R&D Projects: GA ČR GAP201/12/2613; GA ČR(CZ) GA16-15238S Institutional support: RVO:67985556 Keywords : interacting particle systems * product invariant measures * zero range process * target process * mass migration process * condensation Subject RIV: BA - General Mathematics Impact factor: 0.904, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/fajfrova-0464455.pdf

  12. Measurement of the W mass at LEP

    CERN Document Server

    Przysiezniak, H

    2000-01-01

    The mass of the W boson is measured using W pair events collected with the ALEPH, DELPHI, L3 and OPAL detectors at LEP2. Three methods are used: the cross section method, the lepton energy spectrum method and the direct reconstruction method, where the latter is described more in detail. For data collected at E/sub cm/=161, 172 and 183 GeV, the following combined preliminary result is obtained: M/sub W//sup LEP/=80.37+or-0.08 GeV/c/sup 2/. (5 refs).

  13. Affinity purification combined with mass spectrometry to identify herpes simplex virus protein-protein interactions.

    Science.gov (United States)

    Meckes, David G

    2014-01-01

    The identification and characterization of herpes simplex virus protein interaction complexes are fundamental to understanding the molecular mechanisms governing the replication and pathogenesis of the virus. Recent advances in affinity-based methods, mass spectrometry configurations, and bioinformatics tools have greatly increased the quantity and quality of protein-protein interaction datasets. In this chapter, detailed and reliable methods that can easily be implemented are presented for the identification of protein-protein interactions using cryogenic cell lysis, affinity purification, trypsin digestion, and mass spectrometry.

  14. Measurements of body protein for clinical investigation

    International Nuclear Information System (INIS)

    Mernagh, J.R.; Harrison, J.E.; McNeill, M.G.; Jeejeebhoy, K.N.; Krishnan, S.S.

    1986-01-01

    Body protein (nitrogen) is determined by bilaterally irradiating the body with neutrons using Pu-Be sources and measuring the resultant 10.8 MeV gamma rays from the reaction 14 N(n,8) 15 N. In the authors lab the whole body can be scanned or separate segments of the body can be measured independently. A nitrogen index has been developed based on body size and is used as a predictor of normal total body nitrogen (TBN). They have found that TBN, when normalized to body size in this way, provides a reliable index of protein status which cannot be accurately determined by body weight, anthropometry, or body potassium measurements. Changes in body composition with age were studied by measuring the composition of 56 healthy female volunteers aged 20-80. Measurements were made for K( 40 K), Ca and N. It was shown that protein and bone mineral decrease with age but that this is not reflected in K or anthropometry measurements. Results of other studies to be presented include: body protein measurements pre and post TPN (total parenteral nutrition), nutritional status of patients on long term CAPD (continuous ambulatory peritoneal dialysis) and changes in body composition as a result of TPN in patients with small cell lung cancer receiving chemotherapy. Clinical results show that indirect measurements of body protein based on weight, potassium, or anthropometry, do not give an accurate measure of body protein. For an accurate measurement, direct measurement of body protein is necessary

  15. Ramadan Fasting Decreases Body Fat but Not Protein Mass.

    Science.gov (United States)

    Fahrial Syam, Ari; Suryani Sobur, Cecep; Abdullah, Murdani; Makmun, Dadang

    2016-01-01

    Many studies have shown various results regarding the effects of Ramadan fasting on weight and body composition in healthy individuals. This study aimed to evaluate the effect of Ramadan fasting on body composition in healthy Indonesian medical staff. In this study, we examined the influence of Ramadan fasting on body composition in healthy medical staff. The longitudinal study was performed during and after Ramadan fasting in 2013 (August to October). Fourty-three medical staff members (physicians, nurses and nutritionists) at the Internal Medicine Ward of the Dr. Cipto Mangunkusumo General Hospital were measured to compare their calorie intake, weight, body mass index, waist-to-hip ratio (WHR), and body composition, including body fat, protein, minerals and water, on the first and 28(th) days of Ramadan and also 4-5 weeks after Ramadan fasting. Measurements were obtained for all 43 subjects on the 28(th) day of Ramadan, but they were obtained for only 25 subjects 4 - 5 weeks after Ramadan. By the 28(th) day of Ramadan, it was found that the body weight, BMI, body fat, water and mineral measures had decreased significantly (-0.874 ± 0.859 kg, P Ramadan, body weight and composition had returned to the same levels as on the first day of Ramadan. Ramadan fasting resulted in weight loss even it was only a temporary effect, as the weight was quickly regained within one month after fasting. The catabolism catabolic state, which is related to protein loss, was not triggered during Ramadan fasting. Further research is needed to evaluate the effects of weight loss during Ramadan fasting in healthy individuals.

  16. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  17. Microwave-assisted acid and base hydrolysis of intact proteins containing disulfide bonds for protein sequence analysis by mass spectrometry.

    Science.gov (United States)

    Reiz, Bela; Li, Liang

    2010-09-01

    Controlled hydrolysis of proteins to generate peptide ladders combined with mass spectrometric analysis of the resultant peptides can be used for protein sequencing. In this paper, two methods of improving the microwave-assisted protein hydrolysis process are described to enable rapid sequencing of proteins containing disulfide bonds and increase sequence coverage, respectively. It was demonstrated that proteins containing disulfide bonds could be sequenced by MS analysis by first performing hydrolysis for less than 2 min, followed by 1 h of reduction to release the peptides originally linked by disulfide bonds. It was shown that a strong base could be used as a catalyst for microwave-assisted protein hydrolysis, producing complementary sequence information to that generated by microwave-assisted acid hydrolysis. However, using either acid or base hydrolysis, amide bond breakages in small regions of the polypeptide chains of the model proteins (e.g., cytochrome c and lysozyme) were not detected. Dynamic light scattering measurement of the proteins solubilized in an acid or base indicated that protein-protein interaction or aggregation was not the cause of the failure to hydrolyze certain amide bonds. It was speculated that there were some unknown local structures that might play a role in preventing an acid or base from reacting with the peptide bonds therein. 2010 American Society for Mass Spectrometry. Published by Elsevier Inc. All rights reserved.

  18. Intracellular water exchange for measuring the dry mass, water mass and changes in chemical composition of living cells.

    Directory of Open Access Journals (Sweden)

    Francisco Feijó Delgado

    Full Text Available We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell's buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell's water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell's dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density - the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein, we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.

  19. Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Science.gov (United States)

    Hecht, Vivian C.; Son, Sungmin; Li, Yingzhong; Knudsen, Scott M.; Olcum, Selim; Higgins, John M.; Chen, Jianzhu; Grover, William H.; Manalis, Scott R.

    2013-01-01

    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H2O-based fluid and a D2O-based fluid. Rapid exchange of intracellular H2O for D2O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell. PMID:23844039

  20. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts.

    Science.gov (United States)

    Thompson, Charles M; Prins, John M; George, Kathleen M

    2010-01-01

    Organophosphate (OP) insecticides continue to be used to control insect pests. Acute and chronic exposures to OP insecticides have been documented to cause adverse health effects, but few OP-adducted proteins have been correlated with these illnesses at the molecular level. Our aim was to review the literature covering the current state of the art in mass spectrometry (MS) used to identify OP protein biomarkers. We identified general and specific research reports related to OP insecticides, OP toxicity, OP structure, and protein MS by searching PubMed and Chemical Abstracts for articles published before December 2008. A number of OP-based insecticides share common structural elements that result in predictable OP-protein adducts. The resultant OP-protein adducts show an increase in molecular mass that can be identified by MS and correlated with the OP agent. Customized OP-containing probes have also been used to tag and identify protein targets that can be identified by MS. MS is a useful and emerging tool for the identification of proteins that are modified by activated organophosphate insecticides. MS can characterize the structure of the OP adduct and also the specific amino acid residue that forms the key bond with the OP. Each protein that is modified in a unique way by an OP represents a unique molecular biomarker that with further research can lead to new correlations with exposure.

  1. Direct Detection of Biotinylated Proteins by Mass Spectrometry

    Science.gov (United States)

    2015-01-01

    Mass spectrometric strategies to identify protein subpopulations involved in specific biological functions rely on covalently tagging biotin to proteins using various chemical modification methods. The biotin tag is primarily used for enrichment of the targeted subpopulation for subsequent mass spectrometry (MS) analysis. A limitation of these strategies is that MS analysis does not easily discriminate unlabeled contaminants from the labeled protein subpopulation under study. To solve this problem, we developed a flexible method that only relies on direct MS detection of biotin-tagged proteins called “Direct Detection of Biotin-containing Tags” (DiDBiT). Compared with conventional targeted proteomic strategies, DiDBiT improves direct detection of biotinylated proteins ∼200 fold. We show that DiDBiT is applicable to several protein labeling protocols in cell culture and in vivo using cell permeable NHS-biotin and incorporation of the noncanonical amino acid, azidohomoalanine (AHA), into newly synthesized proteins, followed by click chemistry tagging with biotin. We demonstrate that DiDBiT improves the direct detection of biotin-tagged newly synthesized peptides more than 20-fold compared to conventional methods. With the increased sensitivity afforded by DiDBiT, we demonstrate the MS detection of newly synthesized proteins labeled in vivo in the rodent nervous system with unprecedented temporal resolution as short as 3 h. PMID:25117199

  2. Measurement of the top quark mass

    International Nuclear Information System (INIS)

    Varnes, E.W.

    1997-01-01

    This dissertation describes the measurement of the top quark mass m t using events recorded during a 125 pb -1 exposure of the D0 detector to √s=1.8 TeV anti pp collisions. Six events consistent with the hypothesis t anti t → bW + , anti bW - → b anti lν, anti bl anti ν form the dilepton sample. The kinematics of such events may be reconstructed for any assumed mt, and the likelihood of each such solution evaluated. A measurement of m t based on these relative solution likelihoods gives m t = 169.9 ± 14.8 (stat.) ± 3. 8 (syst.) GeV/c 2 . A 2C kinematic fit is performed on a sample of 77 events consistent with t anti t → bW + , anti bW - → b anti lν, anti bq anti q , and this, in combination with an estimate on the likelihood that each event is top, yields m t = 173.3 ± 5.6 (stat.) ± 6.2 (syst.) GeV/c 2 . A combination of these two measurements gives m t = 173.1 ± 5.2 (stat.) ± 5.7 (syst.) GeV/c 2

  3. Fat mass measured by DXA varies with scan velocity

    DEFF Research Database (Denmark)

    Black, Eva; Petersen, Liselotte; Kreutzer, Martin

    2002-01-01

    To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight.......To study the influence of scan velocities of DXA on the measured size of fat mass, lean body mass, bone mineral content and density, and total body weight....

  4. Application of electrospray mass spectrometry to the characterization of recombinant proteins up to 44 kDa

    NARCIS (Netherlands)

    Van Dorsselaer, A.; Bitsch, F.; Green, B.; Jarvis, S.; Lepage, P.; Bischoff, Rainer; Kolbe, V.J.; Roitsch, C.

    1990-01-01

    Mass measurement by electrospray mass spectrometry (ESMS) is used as a rapid preliminary verification of the identity of various recombinant proteins ranging from 7 to 44 kDa with an accuracy of 0.01-0.03%. ESMS not only improves the speed but also the reliability of the protein structure

  5. Identification of Ultramodified Proteins Using Top-Down Mass Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowen; Hengel, Shawna M.; Wu, Si; Tolic, Nikola; Pasa-Tolic, Ljiljana; Pevzner, Pavel A.

    2013-11-05

    Post-translational modifications (PTMs) play an important role in various biological processes through changing protein structure and function. Some ultramodified proteins (like histones) have multiple PTMs forming PTM patterns that define the functionality of a protein. While bottom-up mass spectrometry (MS) has been successful in identifying individual PTMs within short peptides, it is unable to identify PTM patterns spread along entire proteins in a coordinated fashion. In contrast, top-down MS analyzes intact proteins and reveals PTM patterns along the entire proteins. However, while recent advances in instrumentation have made top-down MS accessible to many laboratories, most computational tools for top-down MS focus on proteins with few PTMs and are unable to identify complex PTM patterns. We propose a new algorithm, MS-Align-E, that identifies both expected and unexpected PTMs in ultramodified proteins. We demonstrate that MS-Align-E identifies many protein forms of histone H4 and benchmark it against the currently accepted software tools.

  6. Mass spectrometry for protein quantification in biomarker discovery.

    Science.gov (United States)

    Wang, Mu; You, Jinsam

    2012-01-01

    Major technological advances have made proteomics an extremely active field for biomarker discovery in recent years due primarily to the development of newer mass spectrometric technologies and the explosion in genomic and protein bioinformatics. This leads to an increased emphasis on larger scale, faster, and more efficient methods for detecting protein biomarkers in human tissues, cells, and biofluids. Most current proteomic methodologies for biomarker discovery, however, are not highly automated and are generally labor-intensive and expensive. More automation and improved software programs capable of handling a large amount of data are essential to reduce the cost of discovery and to increase throughput. In this chapter, we discuss and describe mass spectrometry-based proteomic methods for quantitative protein analysis.

  7. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    Science.gov (United States)

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  8. Computational methods for protein identification from mass spectrometry data.

    Directory of Open Access Journals (Sweden)

    Leo McHugh

    2008-02-01

    Full Text Available Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology.

  9. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation.

    Science.gov (United States)

    Palmese, Angelo; De Rosa, Chiara; Marino, Gennaro; Amoresano, Angela

    2011-01-15

    Carbonylation is a non-enzymatic irreversible post-translational modification. The adduction of carbonyl groups to proteins is due to the presence of excess of ROS in cells. Carbonylation of specific amino acid side chains is one of the most abundant consequences of oxidative stress; therefore, the determination of carbonyl groups content in proteins is regarded as a reliable way to estimate the cellular damage caused by oxidative stress. This paper reports a novel RIGhT (Reporter Ion Generating Tag) (A. Amoresano, G. Monti, C. Cirulli, G. Marino. Rapid Commun. Mass Spectrom. 2006, 20, 1400) approach for selective labeling of carbonyl groups in proteins using dansylhydrazide, coupled with selective analysis by bidimensional mass spectrometry. We first applied this approach to ribonuclease A and lysozyme as model proteins. According to the so-called 'gel-free procedures', the analysis is carried out at the level of peptides following tryptic digest of the whole protein mixture. Modified RNaseA was analyzed in combined MS(2) and MS(3) scan mode, to specifically select the dansylated species taking advantage of the dansyl-specific fragmentation pathways. This combination allowed us to obtain a significant increase in signal/noise ratio and a significant increase in sensitivity of analysis, due to the reduction of duty cycle of the mass spectrometer. The unique signal obtained was correlated to peptide 1-10 of RNaseA carbonylated and labeled by dansylhydrazide. This strategy represents the first method leading to the direct identification of the carbonylation sites in proteins, thus indicating the feasibility of this strategy to investigate protein carbonylation in a proteomic approach. Copyright © 2010 John Wiley & Sons, Ltd.

  10. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    International Nuclear Information System (INIS)

    Eronen, Tommi

    2011-01-01

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  11. High Precision Atomic Mass Measurements: Tests of CVC and IMME

    Energy Technology Data Exchange (ETDEWEB)

    Eronen, Tommi [Department of Physics, University of Jyvaeskylae, FI-40014 University of Jyvaeskylae (Finland); Collaboration: JYFLTRAP Collaboration

    2011-11-30

    Atomic mass is one of the key ingredients in testing the Conserved Vector Current (CVC) hypothesis and Isobaric Mass Multiplet Equation (IMME). With JYFLTRAP Penning trap installation at the University of Jyvaeskylae, Finland, several atomic massses related to these studies have been measured. The performed atomic mass measurements for CVC tests cover almost all the nuclei that are relevant for these studies. To test IMME, masses in two isobaric mass chains (A = 23 and A = 32) have been determined.

  12. Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Campostrini, Natascia; Antonioli, Paolo

    2005-01-01

    Different spot profiles were observed in 2D gel electrophoresis of thylakoid membranes performed either under complete darkness or by leaving the sample for a short time to low visible light. In the latter case, a large number of new spots with lower molecular masses, ranging between 15,000 and 25......,000 Da, were observed, and high-molecular-mass aggregates, seen as a smearing in the upper part of the gel, appeared in the region around 250 kDa. Identification of protein(s) contained in these new spots by MS/MS revealed that most of them are simply truncated proteins deriving from native ones...

  13. Measurements of the top quark mass with the ATLAS detector

    CERN Document Server

    Brandt, Oleg; The ATLAS collaboration

    2018-01-01

    The top quark mass is one of the fundamental parameters of the Standard Model. The latest ATLAS measurements of the top quark mass are presented. A measurement using lepton+jets events is presented, where a multidimensional template fit is used to constrain the uncertainties on the energy measurements of jets. The measurement is combined with a measurement using dilepton events. In addition, novel measurements aiming to measure the mass in a welldefined scheme are presented. These measurements use precision theoretical QCD calculations for both inclusive ttbar production and ttbar production with an additional jet to extract the top quark mass in the polemass scheme.

  14. Protein Glycation in Diabetes as Determined by Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Annunziata Lapolla

    2013-01-01

    Full Text Available Diabetes is a common endocrine disorder characterized by hyperglycemia leading to nonenzymatic glycation of proteins, responsible for chronic complications. The development of mass spectrometric techniques able to give highly specific and reliable results in proteome field is of wide interest for physicians, giving them new tools to monitor the disease progression and the possible complications related to diabetes, as well as the effectiveness of therapeutic treatments. This paper reports and discusses some of the data pertaining protein glycation in diabetic subjects obtained by matrix-assisted laser desorption ionization (MALDI mass spectrometry (MS. The preliminary studies carried out by in vitro protein glycation experiments show clear differences in molecular weight of glycated and unglycated proteins. Then, the attention was focused on plasma proteins human serum albumin (HSA and immunoglobulin G (IgG. Enzymatic degradation products of in vitro glycated HSA were studied in order to simulate the in vivo enzymatic digestion of glycated species by the immunological system leading to the highly reactive advanced glycation end-products (AGEs peptides. Further studies led to the evaluation of glycated Apo A-I and glycated haemoglobin levels. A different MALDI approach was employed for the identification of markers of disease in urine samples of healthy, diabetic, nephropathic, and diabetic-nephropathic subjects.

  15. Direct mass measurements of neutron-deficient xenon isotopes with the ISOLTRAP mass spectrometer

    International Nuclear Information System (INIS)

    Dilling, J.; Audi, G.; Beck, D.; Bollen, G.; Henry, S.; Herfurth, F.; Kellerbauer, A.; Kluge, H.-J.; Lunney, D.; Moore, R.B.; Scheidenberger, C.; Schwarz, S.; Sikler, G.; Szerypo, J.

    2002-01-01

    The masses of Xe isotopes with 124≥A≥114 have been measured using the ISOLTRAP spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of 500 000 was chosen resulting in an accuracy of δm∼12 keV for all isotopes investigated. Conflicts with existing mass data of several standard deviations were found

  16. Bayesian Proteoform Modeling Improves Protein Quantification of Global Proteomic Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Webb-Robertson, Bobbie-Jo M.; Matzke, Melissa M.; Datta, Susmita; Payne, Samuel H.; Kang, Jiyun; Bramer, Lisa M.; Nicora, Carrie D.; Shukla, Anil K.; Metz, Thomas O.; Rodland, Karin D.; Smith, Richard D.; Tardiff, Mark F.; McDermott, Jason E.; Pounds, Joel G.; Waters, Katrina M.

    2014-12-01

    As the capability of mass spectrometry-based proteomics has matured, tens of thousands of peptides can be measured simultaneously, which has the benefit of offering a systems view of protein expression. However, a major challenge is that with an increase in throughput, protein quantification estimation from the native measured peptides has become a computational task. A limitation to existing computationally-driven protein quantification methods is that most ignore protein variation, such as alternate splicing of the RNA transcript and post-translational modifications or other possible proteoforms, which will affect a significant fraction of the proteome. The consequence of this assumption is that statistical inference at the protein level, and consequently downstream analyses, such as network and pathway modeling, have only limited power for biomarker discovery. Here, we describe a Bayesian model (BP-Quant) that uses statistically derived peptides signatures to identify peptides that are outside the dominant pattern, or the existence of multiple over-expressed patterns to improve relative protein abundance estimates. It is a research-driven approach that utilizes the objectives of the experiment, defined in the context of a standard statistical hypothesis, to identify a set of peptides exhibiting similar statistical behavior relating to a protein. This approach infers that changes in relative protein abundance can be used as a surrogate for changes in function, without necessarily taking into account the effect of differential post-translational modifications, processing, or splicing in altering protein function. We verify the approach using a dilution study from mouse plasma samples and demonstrate that BP-Quant achieves similar accuracy as the current state-of-the-art methods at proteoform identification with significantly better specificity. BP-Quant is available as a MatLab ® and R packages at https://github.com/PNNL-Comp-Mass-Spec/BP-Quant.

  17. High precision mass measurements in Ψ and Υ families revisited

    International Nuclear Information System (INIS)

    Artamonov, A.S.; Baru, S.E.; Blinov, A.E.

    2000-01-01

    High precision mass measurements in Ψ and Υ families performed in 1980-1984 at the VEPP-4 collider with OLYA and MD-1 detectors are revisited. The corrections for the new value of the electron mass are presented. The effect of the updated radiative corrections has been calculated for the J/Ψ(1S) and Ψ(2S) mass measurements [ru

  18. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D.; Äystö, J.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Jokinen, A.; Kellerbauer, A.; Kluge, H.-J.; Kolhinen, V.S.; Oinonen, M.; Sauvan, E.; Schwarz, S.

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  19. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    Science.gov (United States)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  20. Zero G Mass Measurement Device (ZGMMD), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Zero G Mass Measurement Device (ZGMMD) will provide the ability to quantify the mass of objects up to 2,000 grams, including live animal specimens in a zero G...

  1. High Whey Protein Intake Delayed the Loss of Lean Body Mass in Healthy Old Rats, whereas Protein Type and Polyphenol/Antioxidant Supplementation Had No Effects

    Science.gov (United States)

    Mosoni, Laurent; Gatineau, Eva; Gatellier, Philippe; Migné, Carole; Savary-Auzeloux, Isabelle; Rémond, Didier; Rocher, Emilie; Dardevet, Dominique

    2014-01-01

    Our aim was to compare and combine 3 nutritional strategies to slow down the age-related loss of muscle mass in healthy old rats: 1) increase protein intake, which is likely to stimulate muscle protein anabolism; 2) use leucine rich, rapidly digested whey proteins as protein source (whey proteins are recognized as the most effective proteins to stimulate muscle protein anabolism). 3) Supplement animals with a mixture of chamomile extract, vitamin E, vitamin D (reducing inflammation and oxidative stress is also effective to improve muscle anabolism). Such comparisons and combinations were never tested before. Nutritional groups were: casein 12% protein, whey 12% protein, whey 18% protein and each of these groups were supplemented or not with polyphenols/antioxidants. During 6 months, we followed changes of weight, food intake, inflammation (plasma fibrinogen and alpha-2-macroglobulin) and body composition (DXA). After 6 months, we measured muscle mass, in vivo and ex-vivo fed and post-absorptive muscle protein synthesis, ex-vivo muscle proteolysis, and oxidative stress parameters (liver and muscle glutathione, SOD and total antioxidant activities, muscle carbonyls and TBARS). We showed that although micronutrient supplementation reduced inflammation and oxidative stress, the only factor that significantly reduced the loss of lean body mass was the increase in whey protein intake, with no detectable effect on muscle protein synthesis, and a tendency to reduce muscle proteolysis. We conclude that in healthy rats, increasing protein intake is an effective way to delay sarcopenia. PMID:25268515

  2. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  3. Mass Spectrometry Coupled Experiments and Protein Structure Modeling Methods

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2013-10-01

    Full Text Available With the accumulation of next generation sequencing data, there is increasing interest in the study of intra-species difference in molecular biology, especially in relation to disease analysis. Furthermore, the dynamics of the protein is being identified as a critical factor in its function. Although accuracy of protein structure prediction methods is high, provided there are structural templates, most methods are still insensitive to amino-acid differences at critical points that may change the overall structure. Also, predicted structures are inherently static and do not provide information about structural change over time. It is challenging to address the sensitivity and the dynamics by computational structure predictions alone. However, with the fast development of diverse mass spectrometry coupled experiments, low-resolution but fast and sensitive structural information can be obtained. This information can then be integrated into the structure prediction process to further improve the sensitivity and address the dynamics of the protein structures. For this purpose, this article focuses on reviewing two aspects: the types of mass spectrometry coupled experiments and structural data that are obtainable through those experiments; and the structure prediction methods that can utilize these data as constraints. Also, short review of current efforts in integrating experimental data in the structural modeling is provided.

  4. The Effect of a Whey Protein Supplement on Bone Mass in Older Caucasian Adults

    Science.gov (United States)

    Kerstetter, Jane E.; Brindisi, Jennifer; Sullivan, Rebecca R.; Mangano, Kelsey M.; Larocque, Sarah; Kotler, Belinda M.; Simpson, Christine A.; Cusano, Anna Maria; Gaffney-Stomberg, Erin; Kleppinger, Alison; Reynolds, Jesse; Dziura, James; Kenny, Anne M.; Insogna, Karl L.

    2015-01-01

    Context: It has been assumed that the increase in urine calcium (Ca) that accompanies an increase in dietary protein was due to increased bone resorption. However, studies using stable Ca isotopes have found that dietary protein increases Ca absorption without increasing bone resorption. Objective: The objective of the study was to investigate the impact of a moderately high protein diet on bone mineral density (BMD). Design: This was a randomized, double-blind, placebo-controlled trial of protein supplementation daily for 18 months. Setting: The study was conducted at two institutional research centers. Participants: Two hundred eight older women and men with a body mass index between 19 and 32 kg/m2 and a self-reported protein intake between 0.6 and 1.0 g/kg participated in the study. Intervention: Subjects were asked to incorporate either a 45-g whey protein or isocaloric maltodextrin supplement into their usual diet for 18 months. Main Outcome Measure: BMD by dual-energy x-ray absorptiometry, body composition, and markers of skeletal and mineral metabolism were measured at baseline and at 9 and 18 months. Results: There were no significant differences between groups for changes in L-spine BMD (primary outcome) or the other skeletal sites of interest. Truncal lean mass was significantly higher in the protein group at 18 months (P = .048). C-terminal telopeptide (P = .0414), IGF-1 (P = .0054), and urinary urea (P < .001) were also higher in the protein group at the end of the study period. There was no difference in estimated glomerular filtration rate at 18 months. Conclusion: Our data suggest that protein supplementation above the recommended dietary allowance (0.8 g/kg) may preserve fat-free mass without adversely affecting skeletal health or renal function in healthy older adults. PMID:25844619

  5. Per meal dose and frequency of protein consumption is associated with lean mass and muscle performance.

    Science.gov (United States)

    Loenneke, Jeremy P; Loprinzi, Paul D; Murphy, Caoileann H; Phillips, Stuart M

    2016-12-01

    It has been hypothesized that for older adults evenly distributing consumption of protein at 30-40 g per meal throughout the day may result in more favorable retention of lean mass and muscular strength. Such a thesis has not, to our knowledge, been tested outside of short-term studies or acute measures of muscle protein synthesis. To examine whether the number of times an individual consumed a minimum of 30 g of protein at a meal is associated with leg lean mass and knee extensor strength. Data from the 1999-2002 NHANES were used, with 1081 adults (50-85 y) constituting the analytic sample. A "multiple pass" 24-h dietary interview format was used to collect detailed information about the participants' dietary intake. Knee extensor strength was assessed objectively using the Kin Com MP dynamometer. Leg lean mass was estimated from whole-body dual-energy X-ray absorptiometry (DXA) scans. Participants with 1 vs. 0 (β adjusted  = 23.6, p = 0.002) and 2 vs. 0 (β adjusted  = 51.1, p = 0.001) meals of ≥30 g protein/meal had greater strength and leg lean mass (1 vs. 0, β adjusted  = 1160, p frequency with leg lean mass and strength plateaued at ∼45 g protein/meal for those consuming 2 vs. 0 meals above the evaluated protein/meal threshold. However, for those with only 1 meal at or above the evaluated threshold, the response plateaued at 30 g/meal. Leg lean mass mediated the relationship between protein frequency and strength, with the proportion of the total effect mediated being 64%. We found that more frequent consumption of meals containing between 30 and 45 g protein/meal produced the greatest association with leg lean mass and strength. Thus, the consumption of 1-2 daily meals with protein content from 30 to 45 g may be an important strategy for increasing and/or maintaining lean body mass and muscle strength with aging. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  6. Automated mass correction and data interpretation for protein open-access liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Wagner, Craig D; Hall, John T; White, Wendy L; Miller, Luke A D; Williams, Jon D

    2007-02-01

    Characterization of recombinant protein purification fractions and final products by liquid chromatography-mass spectrometry (LC/MS) are requested more frequently each year. A protein open-access (OA) LC/MS system was developed in our laboratory to meet this demand. This paper compares the system that we originally implemented in our facilities in 2003 to the one now in use, and discusses, in more detail, recent enhancements that have improved its robustness, reliability, and data reporting capabilities. The system utilizes instruments equipped with reversed-phase chromatography and an orthogonal accelerated time-of-flight mass spectrometer fitted with an electrospray source. Sample analysis requests are accomplished using a simple form on a web-enabled laboratory information management system (LIMS). This distributed form is accessible from any intranet-connected company desktop computer. Automated data acquisition and processing are performed using a combination of in-house (OA-Self Service, OA-Monitor, and OA-Analysis Engine) and vendor-supplied programs (AutoLynx, and OpenLynx) located on acquisition computers and off-line processing workstations. Analysis results are then reported via the same web-based LIMS. Also presented are solutions to problems not addressed on commercially available, small-molecule OA-LC/MS systems. These include automated transforming of mass-to-charge (m/z) spectra to mass spectra and automated data interpretation that considers minor variants to the protein sequence-such as common post-translational modifications (PTMs). Currently, our protein OA-LC/MS platform runs on five LC/MS instruments located in three separate GlaxoSmithKline R&D sites in the US and UK. To date, more than 8000 protein OA-LC/MS samples have been analyzed. With these user friendly and highly automated OA systems in place, mass spectrometry plays a key role in assessing the quality of recombinant proteins, either produced at our facilities or bought from external

  7. Mass spectrometric identification of isoforms of PR proteins in xylem sap of fungus-infected tomato

    NARCIS (Netherlands)

    Rep, Martijn; Dekker, Henk L.; Vossen, Jack H.; de Boer, Albert D.; Houterman, Petra M.; Speijer, Dave; Back, Jaap W.; de Koster, Chris G.; Cornelissen, Ben J. C.

    2002-01-01

    The protein content of tomato (Lycopersicon esculentum) xylem sap was found to change dramatically upon infection with the vascular wilt fungus Fusarium oxysporum. Peptide mass fingerprinting and mass spectrometric sequencing were used to identify the most abundant proteins appearing during

  8. Overview of the JYFLTRAP mass measurements and high-precision ...

    Indian Academy of Sciences (India)

    nuclei, the mass difference can be determined with much higher precision than would normally be possible since for the mass doublets the systematic uncertainties become ..... The two-neutron separation energies in N = 60 indicate the. 338 ... Masses of zinc isotopes (Z = 30) were measured up to 80Zn, providing valuable.

  9. New Directions in Mass Communications Research: Physiological Measurement.

    Science.gov (United States)

    Fletcher, James E.

    Psychophysiological research into the effects of mass media, specifically the music of the masses, promises increased insight into the control the media exert on all their consumers. Attention and retention of mass media messages can be tested by measuring the receiver's electrodernal activity, pupil dilation, peripheral vasodilation, and heart…

  10. Identification of membrane proteins by tandem mass spectrometry of protein ions

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C.; Fearnley, Ian M.; Walker, John E.

    2007-01-01

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence (“tags”) determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning α-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1–4 transmembrane α-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5–18 transmembrane α-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase. PMID:17720804

  11. Cosmic Ray Mass Measurements with LOFAR

    Directory of Open Access Journals (Sweden)

    Buitink Stijn

    2017-01-01

    Full Text Available In the dense core of LOFAR individual air showers are detected by hundreds of dipole antennas simultaneously. We reconstruct Xmax by using a hybrid technique that combines a two-dimensional fit of the radio profile to CoREAS simulations and a one-dimensional fit of the particle density distribution. For high-quality detections, the statistical uncertainty on Xmax is smaller than 20 g/cm2. We present results of cosmic-ray mass analysis in the energy regime of 1017 - 1017.5 eV. This range is of particular interest as it may harbor the transition from a Galactic to an extragalactic origin of cosmic rays.

  12. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes

    Science.gov (United States)

    Trinkle-Mulcahy, Laura; Boulon, Séverine; Lam, Yun Wah; Urcia, Roby; Boisvert, François-Michel; Vandermoere, Franck; Morrice, Nick A.; Swift, Sam; Rothbauer, Ulrich; Leonhardt, Heinrich; Lamond, Angus

    2008-01-01

    The identification of interaction partners in protein complexes is a major goal in cell biology. Here we present a reliable affinity purification strategy to identify specific interactors that combines quantitative SILAC-based mass spectrometry with characterization of common contaminants binding to affinity matrices (bead proteomes). This strategy can be applied to affinity purification of either tagged fusion protein complexes or endogenous protein complexes, illustrated here using the well-characterized SMN complex as a model. GFP is used as the tag of choice because it shows minimal nonspecific binding to mammalian cell proteins, can be quantitatively depleted from cell extracts, and allows the integration of biochemical protein interaction data with in vivo measurements using fluorescence microscopy. Proteins binding nonspecifically to the most commonly used affinity matrices were determined using quantitative mass spectrometry, revealing important differences that affect experimental design. These data provide a specificity filter to distinguish specific protein binding partners in both quantitative and nonquantitative pull-down and immunoprecipitation experiments. PMID:18936248

  13. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  14. Surface-Induced Dissociation of Protein Complexes in a Hybrid Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jing; Zhou, Mowei; Gilbert, Joshua D.; Wolff, Jeremy J.; Somogyi, Árpád; Pedder, Randall E.; Quintyn, Royston S.; Morrison, Lindsay J.; Easterling, Michael L.; Paša-Tolić, Ljiljana; Wysocki, Vicki H.

    2017-01-03

    Mass spectrometry continues to develop as a valuable tool in the analysis of proteins and protein complexes. In protein complex mass spectrometry studies, surface-induced dissociation (SID) has been successfully applied in quadrupole time-of-flight (Q-TOF) instruments. SID provides structural information on non-covalent protein complexes that is complementary to other techniques. However, the mass resolution of Q-TOF instruments can limit the information that can be obtained for protein complexes by SID. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) provides ultrahigh resolution and ultrahigh mass accuracy measurements. In this study, an SID device was designed and successfully installed in a hybrid FT-ICR instrument in place of the standard gas collision cell. The SID-FT-ICR platform has been tested with several protein complex systems (homooligomers, a heterooligomer, and a protein-ligand complex, ranging from 53 kDa to 85 kDa), and the results are consistent with data previously acquired on Q-TOF platforms, matching predictions from known protein interface information. SID fragments with the same m/z but different charge states are well-resolved based on distinct spacing between adjacent isotope peaks, and the addition of metal cations and ligands can also be isotopically resolved with the ultrahigh mass resolution available in FT-ICR.

  15. Measurement of the W mass at LEP 200

    International Nuclear Information System (INIS)

    Bijnens, J.; Zeppenfeld, D.; Kunszt, Z.

    1987-01-01

    Each of the four LEP experiments can measure in at least three ways the mass of the W boson at LEP 200 with an accuracy of the order of 100 MeV (or better). W mass measurement from the threshold behavior of σ (e + e - →W + W - ), W mass reconstruction using the W decay products, and W mass reconstruction from the end point of the lepton energy spectrum. The integrated luminosity of 500 events/pb used in this study provides a better statistical accuracy (50-60 MeV) but it appears difficult to control the systematical uncertainties at such a level. All the methods proposed in this report require the knowledge of the machine beam energy which gives in any case an absolute limit on the W mass measurement accuracy. Then, the theoretical interest in measuring M W at the 1 o/oo level is discussed. 22 figs; 25 refs

  16. Neutron activation and mass spectrometric measurement of /sup 129/I

    International Nuclear Information System (INIS)

    Strebin, R.S. Jr.; Brauer, F.P.; Kaye, J.H.; Rapids, M.S.; Stoffels, J.J.

    1987-11-01

    An integrated procedure has been developed for measurement of /sup 129/I by neutron activation analysis and mass spectrometry. An iodine isolation procedure previously used for neutron activation has been modified to provide separated iodine suitable for mass spectrometric measurement as well. Agreement between both methods has been achieved within error limits. The measurement limit by each method is about 10/sup 7/ atoms (2 fg) of /sup 129/I. 13 refs,. 4 figs., 1 tab

  17. Procedure of non-contacting local mass density and mass density distribution measurements

    International Nuclear Information System (INIS)

    Menzel, M.; Winkler, K.

    1985-01-01

    The invention has been aimed at a procedure of non-contacting local mass density and/or mass density distribution measurements i.e. without the interfering influence of sensors or probes. It can be applied to installations, apparatuses and pipings of chemical engineering, to tank constructions and transportation on extreme temperature and/or pressure conditions and aggressive media influences respectively. The procedure has utilized an ionizing quantum radiation whereby its unknown weakening and scattering is compensated by a suitable combination of scattering and transmission counter rate measurements in such a way that the local mass densities and the mass density distribution respectively are determinable

  18. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael

    2010-01-01

    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  19. Detection of intact megadalton protein assemblies of vanillyl-alcohol oxidase by mass spectrometry

    NARCIS (Netherlands)

    Berkel, van W.J.H.; Heuvel, van den R.H.H.; Versluis, C.; Heck, A.

    2000-01-01

    Well-resolved ion signals of intact large protein assemblies, with molecular masses extending above one million Dalton, have been detected and mass analyzed using electrospray ionization mass spectrometry, with an uncertainty in mass of <0.2&Eth;The mass spectral data seem to reflect known

  20. Measurement of the W boson mass with the ATLAS detector

    International Nuclear Information System (INIS)

    Kivernyk, Oleh

    2016-01-01

    This thesis describes a measurement of the W boson mass with the ATLAS detector based on the data-set recorded by ATLAS in 2011 at a centre-of-mass energy of 7 TeV, and corresponding to 4.6 inverse femto-barn of integrated luminosity. Measurements are performed through template fits to the transverse momentum distributions of charged leptons and to transverse mass distributions of the W boson, in electron and muon decay modes in various kinematic categories. The individual measurements are found to be consistent and their combination leads to a value of m W = 80371.1 ± 18.6 MeV. The measured value of the W boson mass is compatible with the current world average of m W = 80385 ± 15 MeV. The uncertainty is competitive with the current most precise measurements performed by the CDF and D0 collaborations. (author) [fr

  1. A Precise Measurement of the W Boson Mass with CDF

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The W boson mass measurement probes quantum corrections to the W propagator, such as those arising from supersymmetric particles or Higgs bosons. The new measurement from CDF is more precise than the previous world average, providing a stringent constraint on the mass of the Higgs boson in the context of the Standard Model. I describe this measurement, performed with 2.2/fb of data using 1.1 million candidates in the electron and muon decay channels, with three kinematic fits in each channel. The measurement uses in-situ calibrations from cosmic rays, J/psi and Upsilon data, and W- and Z-boson decays, with multiple cross-checks including independent determinations of the Z boson mass in both channels. The W-boson mass is measured to be 80387 +- 19 MeV/c^2.

  2. Mass Measurement of Very Short Half-Lived Nuclei

    CERN Document Server

    Duma, M; Iacob, V E; Thibault, C

    2002-01-01

    The MISTRAL (Mass measurements at ISolde with a Transmission RAdiofrequency spectrometer on-Line) experiment exploits a rapid measurement technique to make accurate mass determinations of very short-lived nuclei. The physics goals are to elucidate new nuclear structure effects and constrain nuclear mass models in regions of interest to nuclear astrophysics.\\\\ \\\\The spectrometer, installed in May 97, performed as promised in the proposal with mass resolution exceeding 100,000. In its first experiment in July 1998, neutron-rich Na isotopes having half-lives as short as 31 ms were measured. A second experiment in November 1998 enabled us to improve the measurement precision of the isotopes $^{26-30}$Na to about 20 keV. The measurement program continues as experiment IS 373.

  3. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00408270

    This thesis describes a measurement of the W boson mass with the ATLAS detector based on the data-set recorded by ATLAS in 2011 at a centre-of-mass energy of 7 TeV, and corresponding to 4.6 inverse femtobarn of integrated luminosity. Measurements are performed through template fits to the transverse momentum distributions of charged leptons and to transverse mass distributions of the W boson, in electron and muon decay modes in various kinematic categories. The individual measurements are found to be consistent and their combination leads to a value of \\begin{eqnarray} \

  4. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Li, Sheng; Lee, Su Youn; Chung, Ka Young

    2015-01-01

    Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system. © 2015 Elsevier Inc. All rights reserved.

  5. arXiv Top Quark Mass Measurements at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220136

    2016-01-01

    The top quark mass ($m_{top}$) is a fundamental parameter of the Standard Model of Particle Physics (SM). As the heaviest of all SM particles with a mass close to the electroweak symmetry-breaking scale, the top quark plays a pivotal role in the theory of elementary particles. The exact value of the top quark mass has implications on a number of theoretical predictions, which motivates the need for precision measurements of $m_{top}$. This document highlights a number of such measurements carried out by the ATLAS and CMS collaborations based on the combined LHC Run 1 datasets at centre-of-mass energies of $\\sqrt{s}=7$ and $8$ TeV. A wide range of analysis strategies are employed for a number of final-state signatures. Measurements of both the top quark pole mass as well as the value of $m_{top}$ as defined by the Monte Carlo generator in simulated signal samples are discussed.

  6. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    Energy Technology Data Exchange (ETDEWEB)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela; Jacobsen, Richard B.; Hong, Joohee; Ayson, Marites J.; Wood, Nichole L.; Schoeniger, Joseph S.; Kruppa, Gary Hermann; Sale, Kenneth L.; Young, Malin M.; Novak, Petr

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurement using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.

  7. Miniature Sensor for Aerosol Mass Measurements, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  8. History and status of atomic mass measurement and evaluation

    International Nuclear Information System (INIS)

    Huang Wenxue; Zhu Zhichao; Wang Meng; Wang Yue; Tian Yulin; Xu Hushan; Xiao Guoqing

    2010-01-01

    Mass is one of the most fundamental properties that can be obtained about an atomic nucleus. High-accuracy mass values for atoms let us study the atomic and nuclear binding energies that represent the sum of all the atomic and nucleonic interactions. Looking on the history of nuclear masses, it can be found that it is almost as old as that of nuclear physics itself. The experimental methods for masses and the relevant outcomes are so rich that the evaluation is needed to check the consistency among the various results and obtain more reliable data. The atomic mass evaluation is a considerate and complicated process. This paper introduces briefly the history and status of atomic mass measurement and evaluation. (authors)

  9. Report of the working group on precision measurements. - Measurement of the W boson mass and width

    International Nuclear Information System (INIS)

    Brock, R.; Erler, J.; Kim, Y.-K.; Marciano, W.; Ashmanskas, W.; Baur, U.; Ellison, J.; Lancaster, M.; Nodulman, L.; Rha, J.; Waters, D.; Womersley, J.

    2000-01-01

    We discuss the prospects for measuring the W mass and width in Run II. The basic techniques used to measure M W are described and the statistical, theoretical and detector-related uncertainties are discussed in detail. Alternative methods of measuring the W mass at the Tevatron and the prospects for M W measurements at other colliders are also described

  10. Top-quark mass and top-quark pole mass measurements with the ATLAS detector

    CERN Document Server

    Barillari, Teresa; The ATLAS collaboration

    2017-01-01

    Results of top-quark mass measurements in the di-lepton and in the all-jets top-antitop decay channels with the ATLAS detector are presented. The measurements are obtained using proton--proton collisions at a centre-of-mass energy \\sqrt{s} = 8 TeV at the CERN Large Hadron Collider. The data set used corresponds to an integrated luminosity of 20.2 fb-1. The top-quark mass in the di-lepton channel is measured to be 172.99 +/-0.41 (stat.) +/- 0.74 (syst.) GeV. In the all-jets analysis the top-quark mass is measured to be 173.72 +/- 0.55 (stat.)+/- 1.01 (syst.) GeV. In addition, the top-quark pole mass is determined from inclusive cross-section measurements in the top-antitop di-lepton decay channel with the ATLAS detector. The measurements are obtained using data at \\sqrt{s} = 7 TeV and \\sqrt{s} =8 TeV corresponding to an integrated luminosity of 4.6 fb-1 and 20.2 fb-1 respectively. The top-quark pole mass is measured to be 172.9^{+2.5}_{-2.6} GeV.

  11. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  12. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging. © 2015 Institute of Food Technologists®

  13. Measurement of the Higgs boson mass with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    Garay Walls F. M.

    2015-01-01

    Full Text Available A summary of the latest results on the combined measurement of the Higgs boson mass in the H → ZZ* → 4l and the H → γγ decay channels with the ATLAS detector is presented. The analysis uses 25 fb−1 of pp collision data recorded by the ATLAS detector at the CERN Large Hadron Collider at centre-of-mass energies of 7TeV and 8 TeV during 2011 and 2012. The combined measured value of the Higgs boson mass is mH = 125.36 ± 0.37 (stat ± 0.18 (syst GeV.

  14. Precise mass measurements of exotic nuclei--the SHIPTRAP Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Herfurth, F.; Ackermann, D.; Block, M.; Dworschak, M.; Eliseev, S.; Hessberger, F.; Hofmann, S.; Kluge, H.-J.; Maero, G.; Martin, A.; Mazzocco, M.; Rauth, C.; Vorobjev, G.; Blaum, K.; Ferrer, R.; Neidherr, D.; Chaudhuri, A.; Marx, G.; Schweikhard, L.; Neumayr, J.

    2007-01-01

    The SHIPTRAP Penning trap mass spectrometer has been designed and constructed to measure the mass of short-lived, radioactive nuclei. The radioactive nuclei are produced in fusion-evaporation reactions and separated in flight with the velocity filter SHIP at GSI in Darmstadt. They are captured in a gas cell and transfered to a double Penning trap mass spectrometer. There, the cyclotron frequencies of the radioactive ions are determined and yield mass values with uncertainties ≥4.5·10 -8 . More than 50 nuclei have been investigated so far with the present overall efficiency of about 0.5 to 2%

  15. Improved protein hydrogen/deuterium exchange mass spectrometry platform with fully automated data processing.

    Science.gov (United States)

    Zhang, Zhongqi; Zhang, Aming; Xiao, Gang

    2012-06-05

    Protein hydrogen/deuterium exchange (HDX) followed by protease digestion and mass spectrometric (MS) analysis is accepted as a standard method for studying protein conformation and conformational dynamics. In this article, an improved HDX MS platform with fully automated data processing is described. The platform significantly reduces systematic and random errors in the measurement by introducing two types of corrections in HDX data analysis. First, a mixture of short peptides with fast HDX rates is introduced as internal standards to adjust the variations in the extent of back exchange from run to run. Second, a designed unique peptide (PPPI) with slow intrinsic HDX rate is employed as another internal standard to reflect the possible differences in protein intrinsic HDX rates when protein conformations at different solution conditions are compared. HDX data processing is achieved with a comprehensive HDX model to simulate the deuterium labeling and back exchange process. The HDX model is implemented into the in-house developed software MassAnalyzer and enables fully unattended analysis of the entire protein HDX MS data set starting from ion detection and peptide identification to final processed HDX output, typically within 1 day. The final output of the automated data processing is a set (or the average) of the most possible protection factors for each backbone amide hydrogen. The utility of the HDX MS platform is demonstrated by exploring the conformational transition of a monoclonal antibody by increasing concentrations of guanidine.

  16. Measurement of the W boson mass at LEP

    CERN Document Server

    D'Hondt, J

    2003-01-01

    The mass of the W boson has been measured by all LEP experiment by the method of diret reonstrution in the WW deay hannels where at least one W boson deays hadronially. This preision measurement is inuened by many systemati unertainties whih were extensively studied. One example is the possible eet of Colour Reonnetion between the deay produts from dierent W bosons in fully hadroni WW nal states. These proeedings overview the preliminary results onerning the W mass measurement and the ongoing measurements of the Colour Reonnetion eet.

  17. MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

    Science.gov (United States)

    Spraggins, Jeffrey M.; Rizzo, David G.; Moore, Jessica L.; Rose, Kristie L.; Hammer, Neal D.; Skaar, Eric P.; Caprioli, Richard M.

    2015-06-01

    MALDI imaging mass spectrometry is a highly sensitive and selective tool used to visualize biomolecules in tissue. However, identification of detected proteins remains a difficult task. Indirect identification strategies have been limited by insufficient mass accuracy to confidently link ion images to proteomics data. Here, we demonstrate the capabilities of MALDI FTICR MS for imaging intact proteins. MALDI FTICR IMS provides an unprecedented combination of mass resolving power (~75,000 at m/z 5000) and accuracy (differentiate a series of oxidation products of S100A8 ( m/z 10,164.03, -2.1ppm), a subunit of the heterodimer calprotectin, in kidney tissue from mice infected with Staphylococcus aureus. S100A8 - M37O/C42O3 ( m/z 10228.00, -2.6ppm) was found to co-localize with bacterial microcolonies at the center of infectious foci. The ability of MALDI FTICR IMS to distinguish S100A8 modifications is critical to understanding calprotectin's roll in nutritional immunity.

  18. Improved Peak Detection and Deconvolution of Native Electrospray Mass Spectra from Large Protein Complexes.

    Science.gov (United States)

    Lu, Jonathan; Trnka, Michael J; Roh, Soung-Hun; Robinson, Philip J J; Shiau, Carrie; Fujimori, Danica Galonic; Chiu, Wah; Burlingame, Alma L; Guan, Shenheng

    2015-12-01

    Native electrospray-ionization mass spectrometry (native MS) measures biomolecules under conditions that preserve most aspects of protein tertiary and quaternary structure, enabling direct characterization of large intact protein assemblies. However, native spectra derived from these assemblies are often partially obscured by low signal-to-noise as well as broad peak shapes because of residual solvation and adduction after the electrospray process. The wide peak widths together with the fact that sequential charge state series from highly charged ions are closely spaced means that native spectra containing multiple species often suffer from high degrees of peak overlap or else contain highly interleaved charge envelopes. This situation presents a challenge for peak detection, correct charge state and charge envelope assignment, and ultimately extraction of the relevant underlying mass values of the noncovalent assemblages being investigated. In this report, we describe a comprehensive algorithm developed for addressing peak detection, peak overlap, and charge state assignment in native mass spectra, called PeakSeeker. Overlapped peaks are detected by examination of the second derivative of the raw mass spectrum. Charge state distributions of the molecular species are determined by fitting linear combinations of charge envelopes to the overall experimental mass spectrum. This software is capable of deconvoluting heterogeneous, complex, and noisy native mass spectra of large protein assemblies as demonstrated by analysis of (1) synthetic mononucleosomes containing severely overlapping peaks, (2) an RNA polymerase II/α-amanitin complex with many closely interleaved ion signals, and (3) human TriC complex containing high levels of background noise. Graphical Abstract ᅟ.

  19. Measurement of mass and isotopic fission yields for heavy fission products with the LOHENGRIN mass spectrometer

    International Nuclear Information System (INIS)

    Bail, A.

    2009-05-01

    In spite of the huge amount of fission yield data available in different libraries, more accurate values are still needed for nuclear energy applications and to improve our understanding of the fission process. Thus measurements of fission yields were performed at the mass spectrometer Lohengrin at the Institut Laue-Langevin in Grenoble, France. The mass separator Lohengrin is situated at the research reactor of the institute and permits the placement of an actinide layer in a high thermal neutron flux. It separates fragments according to their atomic mass, kinetic energy and ionic charge state by the action of magnetic and electric fields. Coupled to a high resolution ionization chamber the experiment was used to investigate the mass and isotopic yields of the light mass region. Almost all fission yields of isotopes from Th to Cf have been measured at Lohengrin with this method. To complete and improve the nuclear data libraries, these measurements have been extended in this work to the heavy mass region for the reactions 235 U(n th ,f), 239 Pu(n th ,f) and 241 Pu(n th ,f). For these higher masses an isotopic separation is no longer possible. So, a new method was undertaken with the reaction 239 Pu(n th ,f) to determine the isotopic yields by spectrometry. These experiments have allowed to reduce considerably the uncertainties. Moreover the ionic charge state and kinetic energy distributions were specifically studied and have shown, among others, nanosecond isomers for some masses. (author)

  20. Top-quark mass measurements: Alternative techniques (LHC + Tevatron)

    CERN Document Server

    Adomeit, Stefanie; The ATLAS collaboration

    2014-01-01

    Measurements of the top-quark mass employing alternative techniques are presented, performed by the D0 and CDF collaborations at the Tevatron as well as the ATLAS and CMS experiments at the LHC. The alternative methods presented include measurements using the lifetime of $B$-hadrons, the transverse momentum of charged leptons and the endpoints of kinematic distributions in top quark anti-quark pair ($t\\bar{t}$) final states. The extraction of the top-quark pole mass from the $t\\bar{t}$ production cross-section and the normalized differential $t\\bar{t}$ + 1-jet cross-section are discussed as well as the top-quark mass extraction using fixed-order QCD predictions at detector level. Finally, a measurement of the top-quark mass using events enhanced in single top t-channel production is presented.

  1. OBT measurement of vegetation by mass spectrometry and radiometry

    International Nuclear Information System (INIS)

    Tamari, T.; Kakiuchi, H.; Momoshima, N.; Sugihara, S.; Baglan, N.; Uda, T.

    2011-01-01

    We carried out OBT (organically bound tritium) measurement by two different methods those are radiometry and mass spectrometry and compared the applicability of these methods for environmental tritium analysis. The dried grass sample was used for the experiments. To eliminate the exchangeable OBT, the sample was washed with tritium free water before analysis. Three times washing reduced the tritium activity in the labile sites below the detectable level. In radiometry the sample was combusted to convert the OBT as well as other hydrogen isotopes to. water and tritium activity in the water was measured by liquid scintillation counting (LSC). In mass spectrometry, the sample was kept in a glass container and 3 He produced by tritium decay was measured by mass spectrometry. The results were in good agreement suggesting applicability of these methods for environmental tritium analysis. The mass spectrometry is more suitable for environmental tritium research because of a lower detection limit than that of the LSC. (authors)

  2. Precise mass measurements of astrophysical interest made with the Canadian Penning trap mass spectrometer

    International Nuclear Information System (INIS)

    Clark, J.A.; Barber, R.C.; Blank, B.; Boudreau, C.; Buchinger, F.; Crawford, J.E.; Gulick, S.; Hardy, J.C.; Heinz, A.; Lee, J.K.P.; Levand, A.F.; Moore, R.B.; Savard, G.; Seweryniak, D.; Sharma, K.S.; Sprouse, G.D.; Trimble, W.; Vaz, J.; Wang, J.C.; Zhou, Z.

    2004-01-01

    The processes responsible for the creation of elements more massive than iron are not well understood. Possible production mechanisms involve the rapid capture of protons (rp-process) or the rapid capture of neutrons (r-process), which are thought to occur in explosive astrophysical events such as novae, x-ray bursts, and supernovae. Mass measurements of the nuclides involved with uncertainties on the order of 100 keV or better are critical to determine the process 'paths', the energy output of the events, and the resulting nuclide abundances. Particularly important are the masses of 'waiting-point' nuclides along the rp-process path where the process stalls until the subsequent β decay of the nuclides. This paper will discuss the precise mass measurements made of isotopes along the rp-process and r-process paths using the Canadian Penning Trap mass spectrometer, including the mass of the critical waiting-point nuclide 68 Se

  3. Top Quark Mass Measurements at ATLAS and CMS

    CERN Document Server

    McCarthy, Tom; The ATLAS collaboration

    2016-01-01

    The top quark mass ($m_{top}$) is a fundamental parameter of the Standard Model of Particle Physics (SM). As the heaviest of all known SM particles with a mass close to the EW symmetry breaking scale, the top quark plays a pivotal role in the theory of elementary particles. The exact value of the top quark mass has implications on a number of theoretical predictions, which motivates the need for precision measurements of $m_{top}$. This presentation highlights a number of such precision measurements carried out by the ATLAS and CMS collaborations at centre-of-mass energies of $\\sqrt{s}=7$ and $8$ TeV from the combined LHC Run I datasets. A wide range of analysis strategies are employed in a number of channels. Measurements of both the top quark pole mass and $m_{top}$ as defined by the Monte Carlo generator in simulated signal samples are shown. Finally, a summary of combinations of the LHC measurements is presented, together with a look toward top quark mass measurements at $\\sqrt{s}=13$ TeV.

  4. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    Balli, Fabrice; The ATLAS collaboration

    2017-01-01

    A precise measurement of the mass of the W boson mass represents an important milestone to test the overall consistency of the Standard Model. Since the discovery of a Higgs Boson, the W boson mass is predicted to 7 MeV precision, while the world average of all measurements is 15 MeV, making the improved measurement an important goal. The ATLAS experiment at the LHC represents an ideal laboratory for such a precise measurement. Large samples of many millions of leptonic decays of W and Z bosons were collected with efficient single lepton triggers in the 7 TeV data set corresponding to an integrated luminosity of 4.6/fb. With these samples the detector and physics modelling has been studied in great detail to enable a systematic uncertainty on the measurement that approaches the statistical power of the data of 7 MeV per decay channel as far as possible.

  5. MEASURING THE MASS OF SOLAR SYSTEM PLANETS USING PULSAR TIMING

    International Nuclear Information System (INIS)

    Champion, D. J.; Hobbs, G. B.; Manchester, R. N.; Edwards, R. T.; Burke-Spolaor, S.; Sarkissian, J. M.; Backer, D. C.; Bailes, M.; Bhat, N. D. R.; Van Straten, W.; Coles, W.; Demorest, P. B.; Ferdman, R. D.; Purver, M. B.; Folkner, W. M.; Hotan, A. W.; Kramer, M.; Lommen, A. N.; Nice, D. J.; Stairs, I. H.

    2010-01-01

    High-precision pulsar timing relies on a solar system ephemeris in order to convert times of arrival (TOAs) of pulses measured at an observatory to the solar system barycenter. Any error in the conversion to the barycentric TOAs leads to a systematic variation in the observed timing residuals; specifically, an incorrect planetary mass leads to a predominantly sinusoidal variation having a period and phase associated with the planet's orbital motion about the Sun. By using an array of pulsars (PSRs J0437-4715, J1744-1134, J1857+0943, J1909-3744), the masses of the planetary systems from Mercury to Saturn have been determined. These masses are consistent with the best-known masses determined by spacecraft observations, with the mass of the Jovian system, 9.547921(2) x10 -4 M sun , being significantly more accurate than the mass determined from the Pioneer and Voyager spacecraft, and consistent with but less accurate than the value from the Galileo spacecraft. While spacecraft are likely to produce the most accurate measurements for individual solar system bodies, the pulsar technique is sensitive to planetary system masses and has the potential to provide the most accurate values of these masses for some planets.

  6. First direct mass measurements on nobelium and lawrencium with the Penning trap mass spectrometer SHIPTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Dworschak, Michael Gerhard

    2009-12-08

    The Penning trap mass spectrometer SHIPTRAP at GSI Darmstadt was set up for high-precision mass measurements of heavy radionuclides produced in fusion evaporation reactions and separated from the primary beam by the velocity filter SHIP. It consists of a gas stopping cell for the deceleration of the high energetic reaction products, an RFQ cooler and buncher for cooling and accumulation of the ions, and a double Penning trap system to perform mass measurements. The mass is determined by measuring the cyclotron frequency of the ion of interest in a strong homogeneous magnetic field and comparing it to the frequency of a well-known reference ion. With this method relative uncertainties in the order of 10{sup -8} can be achieved. Recently, mass measurements of the three nobelium isotopes {sup 252-254}No (Z=102) and the lawrencium isotope {sup 255}Lr (Z=103) were performed successfully. These were the first direct mass measurements of transuranium elements ever per- formed. The production rate of the atoms of interest was about one per second or less. The results of the measurements on nobelium confirm the previous mass values which were deduced from Q{sub {alpha}} values. In the case of {sup 255}Lr the mass excess value, which was previously only estimated from systematic trends, was for the first time directly measured. These results mark the first step in the exploration of the region of transuranium elements which is planned at SHIPTRAP. The main objective is to fix the endpoints of {alpha} decay chains which are originating from superheavy elements close to the predicted island of stability. (orig.)

  7. Mass measurement errors of Fourier-transform mass spectrometry (FTMS): distribution, recalibration, and application.

    Science.gov (United States)

    Zhang, Jiyang; Ma, Jie; Dou, Lei; Wu, Songfeng; Qian, Xiaohong; Xie, Hongwei; Zhu, Yunping; He, Fuchu

    2009-02-01

    The hybrid linear trap quadrupole Fourier-transform (LTQ-FT) ion cyclotron resonance mass spectrometer, an instrument with high accuracy and resolution, is widely used in the identification and quantification of peptides and proteins. However, time-dependent errors in the system may lead to deterioration of the accuracy of these instruments, negatively influencing the determination of the mass error tolerance (MET) in database searches. Here, a comprehensive discussion of LTQ/FT precursor ion mass error is provided. On the basis of an investigation of the mass error distribution, we propose an improved recalibration formula and introduce a new tool, FTDR (Fourier-transform data recalibration), that employs a graphic user interface (GUI) for automatic calibration. It was found that the calibration could adjust the mass error distribution to more closely approximate a normal distribution and reduce the standard deviation (SD). Consequently, we present a new strategy, LDSF (Large MET database search and small MET filtration), for database search MET specification and validation of database search results. As the name implies, a large-MET database search is conducted and the search results are then filtered using the statistical MET estimated from high-confidence results. By applying this strategy to a standard protein data set and a complex data set, we demonstrate the LDSF can significantly improve the sensitivity of the result validation procedure.

  8. Supplementing an energy adequate, higher protein diet with protein does not enhance fat-free mass restoration after short-term severe negative energy balance.

    Science.gov (United States)

    Berryman, C E; Sepowitz, J J; McClung, H L; Lieberman, H R; Farina, E K; McClung, J P; Ferrando, A A; Pasiakos, S M

    2017-06-01

    Negative energy balance during military operations can be severe and result in significant reductions in fat-free mass (FFM). Consuming supplemental high-quality protein following such military operations may accelerate restoration of FFM. Body composition (dual-energy X-ray absorptiometry) and whole body protein turnover (single-pool [ 15 N]alanine method) were determined before (PRE) and after 7 days (POST) of severe negative energy balance during military training in 63 male US Marines (means ± SD, 25 ± 3 yr, 84 ± 9 kg). After POST measures were collected, volunteers were randomized to receive higher protein (HIGH: 1,103 kcal/day, 133 g protein/day), moderate protein (MOD: 974 kcal/day, 84 g protein/day), or carbohydrate-based low protein control (CON: 1,042 kcal/day, 7 g protein/day) supplements, in addition to a self-selected, ad libitum diet, for the 27-day intervention (REFED). Measurements were repeated POST-REFED. POST total body mass (TBM; -5.8 ± 1.0 kg, -7.0%), FFM (-3.1 ± 1.6 kg, -4.7%), and net protein balance (-1.7 ± 1.1 g protein·kg -1 ·day -1 ) were lower and proteolysis (1.1 ± 1.9 g protein·kg -1 ·day -1 ) was higher compared with PRE ( P energy (4,498 ± 725 kcal/day). All volunteers, independent of group assignment, achieved positive net protein balance (0.4 ± 1.0 g protein·kg -1 ·day -1 ) and gained TBM (5.9 ± 1.7 kg, 7.8%) and FFM (3.6 ± 1.8 kg, 5.7%) POST-REFED compared with POST ( P energy-adequate, higher protein diets with additional protein may not be necessary to restore FFM after short-term severe negative energy balance. NEW & NOTEWORTHY This article demonstrates 1 ) the majority of physiological decrements incurred during military training (e.g., total and fat-free mass loss), with the exception of net protein balance, resolve and return to pretraining values after 27 days and 2 ) protein supplementation, in addition to an ad libitum, higher protein (~2.0 g·kg -1 ·day -1 ), energy adequate diet, is not necessary to

  9. Integrative Mass Spectrometry Approaches to Monitor Protein Structures, Modifications, and Interactions

    NARCIS (Netherlands)

    Lössl, P.

    2017-01-01

    This thesis illustrates the current standing of mass spectrometry (MS) in molecular and structural biology. The primary aim of the herein described research is to facilitate protein characterization by combining mass spectrometric methods among each other and with complementary analytical

  10. A precision measurement of the mass of the top quark

    International Nuclear Information System (INIS)

    Abazov, V.M.

    2004-01-01

    The standard model of particle physics contains parameters -- such as particle masses -- whose origins are still unknown and which cannot be predicted, but whose values are constrained through their interactions. In particular, the masses of the top quark (M t ) and W boson (M W ) constrain the mass of the long-hypothesized, but thus far not observed, Higgs boson. A precise measurement of M t can therefore indicate where to look for the Higgs, and indeed whether the hypothesis of a standard model Higgs is consistent with experimental data. As top quarks are produced in pairs and decay in only about 10 -24 s into various final states, reconstructing their masses from their decay products is very challenging. Here we report a technique that extracts more information from each top-quark event and yields a greatly improved precision (of +- 5.3 GeV/c 2 ) when compared to previous measurements. When our new result is combined with our published measurement in a complementary decay mode and with the only other measurements available, the new world average for M t becomes 178.0 +- 4.3 GeV/c 2 . As a result, the most likely Higgs mass increases from the experimentally excluded value of 96 to 117 GeV/c 2 , which is beyond current experimental sensitivity. The upper limit on the Higgs mass at the 95% confidence level is raised from 219 to 251 GeV/c 2

  11. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.; Anderson, G. A.; Smith, R. D.; Dabney, A. R.

    2012-01-01

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics datasets have substantial

  12. Body mass index and blood pressure measurement during pregnancy.

    LENUS (Irish Health Repository)

    Hogan, Jennifer L

    2012-02-01

    OBJECTIVE: The accurate measurement of blood pressure requires the use of a large cuff in subjects with a high mid-arm circumference (MAC). This prospective study examined the need for a large cuff during pregnancy and its correlation with maternal obesity. METHODS: Maternal body mass index (BMI), fat mass, and MAC were measured. RESULTS: Of 179 women studied, 15.6% were obese. With a BMI of level 1 obesity, 44% needed a large cuff and with a BMI of level 2 obesity 100% needed a large cuff. CONCLUSION: All women booking for antenatal care should have their MAC measured to avoid the overdiagnosis of pregnancy hypertension.

  13. Proposal on electron anti-neutrino mass measurement at INS

    International Nuclear Information System (INIS)

    Ohshima, Takayoshi.

    1981-03-01

    Some comment on the proposed experiment, namely the measurement of electron anti-neutrino mass, is described. Various experiments with the measurement of β-ray from tritium have been reported. The precise measurement of the shape of the Kurie plot is required in this kind of experiment. The present experiment aimed at more accurate determination of neutrino mass than any other previous ones. An important point of the present experiment is to reduce the background due to the β-ray from evaporating tritium. The source candidates have low evaporation rate. A double focus √2π air core spectrometer is employed for the measurement of β-ray. The spectrometer was improved to meet the present purpose. The accumulated event rate was expected to be about 10 times higher than Russian experiment. The estimated energy resolution was about 30 eV. The neutrino mass with less than 10 eV accuracy will be obtained. (Kato, T.)

  14. Measurement of the top quark mass in the dilepton channel

    International Nuclear Information System (INIS)

    Grinstein, S.; Mostafa, M.; Piegaia, R.; Alves, G.A.; Carvalho, W.; Maciel, A.K.; Motta, H. da; Oliveira, E.; Santoro, A.; Lima, J.G.; Oguri, V.; Gomez, B.; Hoeneisen, B.; Mooney, P.; Negret, J.P.; Ducros, Y.; Beri, S.B.; Bhatnagar, V.; Kohli, J.M.; Singh, J.B.; Shivpuri, R.K.; Acharya, B.S.; Banerjee, S.; Dugad, S.R.; Gupta, A.; Krishnaswamy, M.R.; Mondal, N.K.; Narasimham, V.S.; Parua, N.; Shankar, H.C.; Park, Y.M.; Choi, S.; Kim, S.K.; Castilla-Valdez, H.; Gonzalez Solis, J.L.; Hernandez-Montoya, R.; Magana-Mendoza, L.; Sanchez-Hernandez, A.; Pawlik, B.; Gavrilov, V.; Gershtein, Y.; Kuleshov, S.; Belyaev, A.; Dudko, L.V.; Ermolov, P.; Karmanov, D.; Leflat, A.; Manankov, V.; Merkin, M.; Shabalina, E.; Abramov, V.; Babintsev, V.V.; Bezzubov, V.A.; Bojko, N.I.; Burtovoi, V.S.; Chekulaev, S.V.; Denisov, S.P.; Dyshkant, A.; Eroshin, O.V.; Evdokimov, V.N.; Galyaev, A.N.; Goncharov, P.I.; Gurzhiev, S.N.; Kostritskiy, A.V.; Kozelov, A.V.; Kozlovsky, E.A.; Mayorov, A.A.; Babukhadia, L.; Davis, K.; Fein, D.; Forden, G.E.; Guida, J.A.; James, E.; Johns, K.; Nang, F.; Narayanan, A.; Rutherfoord, J.; Shupe, M.; Aihara, H.; Barberis, E.; Chen, L.

    1999-01-01

    We report a measurement of the top quark mass using six candidate events for the process p bar p→t bar t+X→l + νbl - bar ν bar b+X, observed in the D0 experiment at the Fermilab p bar p collider. Using maximum likelihood fits to the dynamics of the decays, we measure a mass for the top quark of m t =168.4±12.3(stat)±3.6(syst) Gev. We combine this result with our previous measurement in the t bar t→l+jets channel to obtain m t =172.1±7.1 GeV as the best value of the mass of the top quark measured by D0. copyright 1999 The American Physical Society

  15. Measurement of the W boson mass in the Delphi experiment

    International Nuclear Information System (INIS)

    Simard, L.

    2000-01-01

    After the Z 0 study during the first phase of LEP, the properties of the W boson, in particular its mass, are precisely measured at LEP2. After the implications of that measurement on the Higgs mass being explained, the analysis of the WW semileptonic events, where the two W decay into two quarks, a charged lepton and a neutrino, is described. It was carried out with the data sample collected at DELPHI in 1997 and 1998, corresponding to an integrated luminosity of 211.1 pb -1 . The measurement, based upon a likelihood fit applied both to simulation and data requires that all variables of simulation reproduce well the data. Comparisons between Monte Carlo and data are set out, as well as the selection of WW events and the kinematical fit used to improve the mass resolution. The method used to estimate the systematic errors on the measurement and the result of the measurement are presented. When combining these measurements with the measurements done in the hadronic channel, the mass and the width are measured. (author)

  16. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, Dannis Michel; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale

  17. High frequency body mass measurement, feedback, and health behaviors

    NARCIS (Netherlands)

    Kooreman, P.; Scherpenzeel, A.

    We analyze weight and fat percentage measurements of respondents in an online general population panel in the Netherlands, collected using wireless scales, with an average frequency of 1.6 measurements per week. First, we document the existence of a weekly cycle; body mass is lowest on Fridays and

  18. Detection of irradiated food by the changes in protein molecular mass distribution

    International Nuclear Information System (INIS)

    Niciforovic, A.; Radojcic, M.; Milosavljevic, B.H.

    1998-01-01

    Complete text of publication follows. The present work deals with the radiation-induced damage of proteins, which is followed by the change in the molecular mass. The phenomenon was studied on protein rich samples, i.e., chicken meat and dehydrated egg white. The radiation dose applied was in the range of the ones used for food microbial control. Chicken drumstick and chicken white meat proteins were separated according to their molecular mass. The protein profile was compared to the meat samples irradiated in the frozen state with 5 kGy at 60 Co source. In the case of chicken white meat, irradiation produces both nonselective protein scission (e.g. the amount of proteins of molecular mass larger than 30 kDa decreases, while the amount of proteins of molecular mass smaller than 30 kDa increases), and selective protein scission (e.g. appearance of a protein fragment of molecular mass equal to 18 kDa). In the case of chicken drumstick proteins the irradiation induces both the protein scission and the aggregation. The changes are nonspecific as well as specific and the generation of Mm = 18 kDa protein fragment was observed again. Irradiation of aerated dehydrated egg white proteins produces only nonselective protein scission. The results are discussed in view of the routine application of SDS-PAGE method for the detection of irradiated foodstuff

  19. Mass measurements on radioactive isotopes using the ISOLTRAP spectrometer

    CERN Document Server

    Dilling, J; Kluge, H J; Kohl, A; Lamour, E; Marx, G; Schwarz, S C; Bollen, G; Kellerbauer, A G; Moore, R B; Henry, S

    2000-01-01

    ISOLTRAP is a Penning trap mass spectrometer installed at the on line isotope separator ISOLDE at CERN. Direct measurements of the masses of short lived radio isotopes are performed using the existing triple trap system. This consists of three electromagnetic traps in tandem: a Paul trap to accumulate and bunch the 60 keV dc beam, a Penning trap for cooling and isobar separation, and a precision Penning trap for the determination of the masses by cyclotron resonance. Measurements of masses of unknown mercury isotopes and in the vicinity of doubly magic /sup 208/Pb are presented, all with an accuracy of delta m/m approximately=1*10/sup -7/. Developments to replace the Paul trap by a radiofrequency quadrupole ion guide system to increase the collection efficiency are presently under way and the status is presented. (10 refs).

  20. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  1. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  2. Measurement of collective dynamical mass of Dirac fermions in graphene.

    Science.gov (United States)

    Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee

    2014-08-01

    Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.

  3. Mass measurements with the CIME cyclotron at GANIL

    International Nuclear Information System (INIS)

    Hornillos, M B Gomez; Chartier, M; Mittig, W; Blank, B; Chautard, F; Demonchy, C E; Gillibert, A; Jacquot, B; Jurado, B; Lecesne, N; Lepine-Szily, A; Orr, N A; Roussel-Chomaz, P; Savajols, H; Villari, A C C

    2005-01-01

    A new direct technique using the CIME cyclotron as a high-resolution mass spectrometer is being developed in order to measure the masses of exotic nuclei. Tests have been performed to check the feasibility of the method with a mixed beam of stable ions extracted from the SPIRAL ion source and injected into the CIME cyclotron. Preliminary results obtained with this new technique are presented and discussed

  4. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    International Nuclear Information System (INIS)

    Keefe, L.J.; Lattman, E.E.; Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J.

    1992-01-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal α helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.)

  5. Resolution of a protein sequence ambiguity by X-ray crystallographic and mass spectrometric methods

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, L.J.; Lattman, E.E. (Dept. of Biophysics and Biophysical Chemistry, Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)); Wolkow, C.; Woods, A.; Chevrier, M.; Cotter, R.J. (Middle Atlantic Mass Spectrometry Lab., Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States))

    1992-04-01

    Ambiguities in amino acid sequences are a potential problem in X-ray crystallographic studies of proteins. Amino acid side chains often cannot be reliably identified from the electron density. Many protein crystal structures that are now being solved are simple variants of a known wild-type structure. Thus, cloning artifacts or other untoward events can readily lead to cases in which the proposed sequence is not correct. An example is presented showing that mass spectrometry provides an excellent tool for analyzing suspected errors. The X-ray crystal structure of an insertion mutant of Staphylococcal nuclease has been solved to 1.67 A resolution and refined to a crystallographic R value of 0.170. A single residue has been inserted in the C-terminal {alpha} helix. The inserted amino acid was believed to be an alanine residue, but the final electron density maps strongly indicated that a glycine had been inserted instead. To confirm the observations from the X-ray data, matrix-assisted laser desorption mass spectrometry was employed to verify the glycine insertion. This mass spectrometric technique has sufficient mass accuracy to detect the methyl group that distinguishes glycine from alanine and can be extended to the more common situation in which crystallographic measurements suggest a problem with the sequence, but cannot pinpoint its location or nature. (orig.).

  6. Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

    CERN Document Server

    Dilling, J; Beck, D; Bollen, G; Herfurth, F; Kellerbauer, A G; Kluge, H J; Moore, R B; Scheidenberger, C; Schwarz, S; Sikler, G

    2004-01-01

    The masses of the noble-gas Xe isotopes with 114 $\\leq$ A $\\leq$ 123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the online mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of $m/\\Delta m$ of close to a million was chosen resulting in an accuracy of $\\delta m \\leq 13$ keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

  7. Comparisons between different techniques for measuring mass segregation

    Science.gov (United States)

    Parker, Richard J.; Goodwin, Simon P.

    2015-06-01

    We examine the performance of four different methods which are used to measure mass segregation in star-forming regions: the radial variation of the mass function {M}_MF; the minimum spanning tree-based ΛMSR method; the local surface density ΣLDR method; and the ΩGSR technique, which isolates groups of stars and determines whether the most massive star in each group is more centrally concentrated than the average star. All four methods have been proposed in the literature as techniques for quantifying mass segregation, yet they routinely produce contradictory results as they do not all measure the same thing. We apply each method to synthetic star-forming regions to determine when and why they have shortcomings. When a star-forming region is smooth and centrally concentrated, all four methods correctly identify mass segregation when it is present. However, if the region is spatially substructured, the ΩGSR method fails because it arbitrarily defines groups in the hierarchical distribution, and usually discards positional information for many of the most massive stars in the region. We also show that the ΛMSR and ΣLDR methods can sometimes produce apparently contradictory results, because they use different definitions of mass segregation. We conclude that only ΛMSR measures mass segregation in the classical sense (without the need for defining the centre of the region), although ΣLDR does place limits on the amount of previous dynamical evolution in a star-forming region.

  8. Device for measurement of gas mass flow. Einrichtung zur Gasmassenstrommessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    The invention is concerned with a device for the measurement of gas mass flow, particularly measuring air mass flow for vehicles with internal combustion engines, with a measurement bridge, in one branch of which a gas flow resistance, particularly a hot film sensor, with gas flowing round it, is connected in series with a measurement resistance and in another branch of which a compensation resistance measuring the gas temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and a control parameter is produced from this, in order to control a transistor valve situated in the bridge supply path of a DC voltage source via its control electrode until the bridge is balanced, and where the voltage at the measurement resistance after the bridge is balanced is used as a measure of the gas mass flow. In order to obtain exact results of measurement in spite of relatively high interference noise from the cables, it is proposed that an increased supply DC voltage appreciably decreasing the occurring interference noise from the cables should be produced from a small DC voltage and that the output of the DC/DC voltage converter should be connected to the control electrode of the transistor valve, so that the control parameter for the control electrode is derived from the raised DC supply voltage through reducers depending on the gas flow.

  9. Quantifying Protein-Carbohydrate Interactions Using Liquid Sample Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Yao, Yuyu; Shams-Ud-Doha, Km; Daneshfar, Rambod; Kitova, Elena N.; Klassen, John S.

    2015-01-01

    The application of liquid sample desorption electrospray ionization mass spectrometry (liquid sample DESI-MS) for quantifying protein-carbohydrate interactions in vitro is described. Association constants for the interactions between lysozyme and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc and β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc, and between a single chain antibody and α-D-Galp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 and β-D-Glcp-(1 → 2)-[α-D-Abep-(1 → 3)]-α-D-Manp-OCH3 measured using liquid sample DESI-MS were found to be in good agreement with values measured by isothermal titration calorimetry and the direct ESI-MS assay. The reference protein method, which was originally developed to correct ESI mass spectra for the occurrence of nonspecific ligand-protein binding, was shown to reliably correct liquid sample DESI mass spectra for nonspecific binding. The suitability of liquid sample DESI-MS for quantitative binding measurements carried out using solutions containing high concentrations of the nonvolatile biological buffer phosphate buffered saline (PBS) was also explored. Binding of lysozyme to β-D-GlcNAc-(1 → 4)-β-D-GlcNAc-(1 → 4)-D-GlcNAc in aqueous solutions containing up to 1× PBS was successfully monitored using liquid sample DESI-MS; with ESI-MS the binding measurements were limited to concentrations less than 0.02 X PBS.

  10. Measurements of Protein Crystal Face Growth Rates

    Science.gov (United States)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  11. Probing protein surface with a solvent mimetic carbene coupled to detection by mass spectrometry.

    Science.gov (United States)

    Gómez, Gabriela E; Mundo, Mariana R; Craig, Patricio O; Delfino, José M

    2012-01-01

    Much knowledge into protein folding, ligand binding, and complex formation can be derived from the examination of the nature and size of the accessible surface area (SASA) of the polypeptide chain, a key parameter in protein science not directly measurable in an experimental fashion. To this end, an ideal chemical approach should aim at exerting solvent mimicry and achieving minimal selectivity to probe the protein surface regardless of its chemical nature. The choice of the photoreagent diazirine to fulfill these goals arises from its size comparable to water and from being a convenient source of the extremely reactive methylene carbene (:CH(2)). The ensuing methylation depends primarily on the solvent accessibility of the polypeptide chain, turning it into a valuable signal to address experimentally the measurement of SASA in proteins. The superb sensitivity and high resolution of modern mass spectrometry techniques allows us to derive a quantitative signal proportional to the extent of modification (EM) of the sample. Thus, diazirine labeling coupled to electrospray mass spectrometry (ESI-MS) detection can shed light on conformational features of the native as well as non-native states, not easily addressable by other methods. Enzymatic fragmentation of the polypeptide chain at the level of small peptides allows us to locate the covalent tag along the amino acid sequence, therefore enabling the construction of a map of solvent accessibility. Moreover, by subsequent MS/MS analysis of peptides, we demonstrate here the feasibility of attaining amino acid resolution in defining the target sites. © American Society for Mass Spectrometry, 2011

  12. Significancy in atomic mass measurements and the topography of the mass-surface

    International Nuclear Information System (INIS)

    Audi, G.

    1991-01-01

    It is discussed how to explore new regions of the chart of the nuclides through masses, and what has to be understood under significant mass measurements. In the exploratory phase of a new region of the chart, a result with almost any accuracy is appropriate. The higher the accuracy is, the better the possibility is to see finer structures. (G.P.) 24 refs.; 10 figs

  13. Two old ways to measure the electron-neutrino mass

    CERN Document Server

    De Rújula, A

    2013-01-01

    Three decades ago, the measurement of the electron neutrino mass in atomic electron capture (EC) experiments was scrutinized in its two variants: single EC and neutrino-less double EC. For certain isotopes an atomic resonance enormously enhances the expected decay rates. The favoured technique, based on calorimeters as opposed to spectrometers, has the advantage of greatly simplifying the theoretical analysis of the data. After an initial surge of measurements, the EC approach did not seem to be competitive. But very recently, there has been great progress on micro-calorimeters and the measurement of atomic mass differences. Meanwhile, the beta-decay neutrino-mass limits have improved by a factor of 15, and the difficulty of the experiments by the cube of that figure. Can the "calorimetric" EC theory cope with this increased challenge? I answer this question affirmatively. In so doing I briefly review the subject and extensively address some persistent misunderstandings of the underlying quantum physics.

  14. Top quark mass measurement and color effects at the LHC

    International Nuclear Information System (INIS)

    Kovalchuk, Nataliia

    2018-04-01

    The top quark, the heaviest fundamental particle discovered to date, is one of the most peculiar particles that were discovered so far. It plays a crucial role in consistency checks of the Standard Model and in searches for new physics, e.g., supersymmetry, composite Higgs, and many other exotic models. In this thesis, an important property of the top quark is measured: the mass. This analysis is based on the data recorded at a center-of-mass energy of 13 TeV in 2016 with the CMS detector at the CERN LHC, and corresponds to an integrated luminosity of 35.9 fb -1 . The mass of the top quark is measured using the top quark pair event candidate, which corresponds to events with one muon or electron and at least four jets. The corresponding decay products are used in a kinematic fit to perform the jet quark assignment, increase the fraction of correctly reconstructed top quarks and to improve the mass resolution. Using the ideogram method the top quark mass is measured simultaneously with the jet scale factor (JSF), constrained by the jets arising from the W boson decay. The estimated result is calibrated with samples simulated with a next-to-leading order matrix element generator matched to the parton shower. The top quark mass is measured to be m t =172.25±0.08 (stat+JSF)±0.62 (syst) GeV. The results are tested for possible kinematic dependence by performing measurements of the top quark mass in different phase space regions. The residual data-to-simulation calibration of the energy of the jets is also estimated from dijet events with data collected at center-of-mass energy of 13 TeV in 2015 with the CMS detector corresponding to an integrated luminosity of 2.1 fb -1 . The corrections are performed using selected back-to-back dijet events by the MPF and dijet balance methods and are found to differ from unity by less then 3% in the barrel region and up to 17% in the endcap and forward regions of the detector. This result was used in the top mass measurement

  15. Increased protein intake reduces lean body mass loss during weight loss in athletes.

    Science.gov (United States)

    Mettler, Samuel; Mitchell, Nigel; Tipton, Kevin D

    2010-02-01

    To examine the influence of dietary protein on lean body mass loss and performance during short-term hypoenergetic weight loss in athletes. In a parallel design, 20 young healthy resistance-trained athletes were examined for energy expenditure for 1 wk and fed a mixed diet (15% protein, 100% energy) in the second week followed by a hypoenergetic diet (60% of the habitual energy intake), containing either 15% (approximately 1.0 g x kg(-1)) protein (control group, n = 10; CP) or 35% (approximately 2.3 g x kg(-1)) protein (high-protein group, n = 10; HP) for 2 wk. Subjects continued their habitual training throughout the study. Total, lean body, and fat mass, performance (squat jump, maximal isometric leg extension, one-repetition maximum (1RM) bench press, muscle endurance bench press, and 30-s Wingate test) and fasting blood samples (glucose, nonesterified fatty acids (NEFA), glycerol, urea, cortisol, free testosterone, free Insulin-like growth factor-1 (IGF-1), and growth hormone), and psychologic measures were examined at the end of each of the 4 wk. Total (-3.0 +/- 0.4 and -1.5 +/- 0.3 kg for the CP and HP, respectively, P = 0.036) and lean body mass loss (-1.6 +/- 0.3 and -0.3 +/- 0.3 kg, P = 0.006) were significantly larger in the CP compared with those in the HP. Fat loss, performance, and most blood parameters were not influenced by the diet. Urea was higher in HP, and NEFA and urea showed a group x time interaction. Fatigue ratings and "worse than normal" scores on the Daily Analysis of Life Demands for Athletes were higher in HP. These results indicate that approximately 2.3 g x kg(-1) or approximately 35% protein was significantly superior to approximately 1.0 g x kg(-1) or approximately 15% energy protein for maintenance of lean body mass in young healthy athletes during short-term hypoenergetic weight loss.

  16. Observation and mass measurement of the baryon Xib-.

    Science.gov (United States)

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-08-03

    We report the observation and measurement of the mass of the bottom, strange baryon Xi(b)- through the decay chain Xi(b)- -->J/psiXi-, where J/psi-->mu+mu-, Xi- -->Lambdapi-, and Lambda-->ppi-. A signal is observed whose probability of arising from a background fluctuation is 6.6 x 10(-15), or 7.7 Gaussian standard deviations. The Xi(b)- mass is measured to be 5792.9+/-2.5(stat) +/- 1.7(syst) MeV/c2.

  17. Recent results from the MISTRAL mass measurement program at ISOLDE

    CERN Document Server

    Lunney, M D; Audi, G; Bollen, G; Borcea, C; Doubre, H; Gaulard, C; Henry, S; De Saint-Simon, M; Thibault, C; Toader, C F; Vieira, N

    2001-01-01

    The MISTRAL experiment (Mass measurements at ISOLDE with a Transmission and Radiofrequency spectrometer on-Line), conceived for very short-lived nuclides, has reached the end of its commissioning phase. Installed in 1997, results have been obtained consistent with all aspects of the projected spectrometer performance: nuclides with half-lives as short as 30 ms have been measured and accuracies of $\\pm$0.4 have been achieved, despite the presence of a systematic shift and difficulties with isobaric contamination. Masses of several nuclides, including $^{25-26}\\!$Ne and $^{32}$Mg that forms the famous island of inversion around N=20, have been significantly improved.

  18. Measurement of the top mass at the LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00000243; The ATLAS collaboration

    2015-01-01

    The top quark is the most massive fundamental particle ever observed. As such, it plays a particular role in the theories of elementary constituents of matter. The motivation for a precise measurement of the top quark mass ensues from this role. The ATLAS and CMS experiments at the LHC have taken part in this effort and achieve precisions below the GeV, using data collected during the years 2011 and 2012, at a centre-of-mass energy $\\sqrt{s}$ of 7 TeV and 8 TeV respectively. This document reviews the measurements performed by the two collaborations at the time of writing.

  19. Mass and lifetime measurements of exotic nuclei in storage rings

    International Nuclear Information System (INIS)

    Franzke, B.; Geissel, H.; Muenzenberg, G.

    2007-11-01

    Mass and lifetime measurements lead to the discovery and understanding of basic properties of matter. The isotopic nature of the chemical elements, nuclear binding, and the location and strength of nuclear shells are the most outstanding examples leading to the development of the first nuclear models. More recent are the discoveries of new structures of nuclides far from the valley of stability. A new generation of direct mass measurements which allows the exploration of extended areas of the nuclear mass surface with high accuracy has been opened up with the combination of the Experimental Storage Ring ESR and the FRragment Separator FRS at GSI Darmstadt. In-flight separated nuclei are stored in the ring. Their masses are directly determined from the revolution frequency. Dependent on the half-life two complementary methods are applied. Schottky Mass Spectrometry SMS relies on the measurement of the revolution frequency of electron cooled stored ions. The cooling time determines the lower half-life limit to the order of seconds. For Isochronous Mass Spectrometry IMS the ring is operated in an isochronous ion-optical mode. The revolution frequency of the individual ions coasting in the ring is measured using a time-of-flight method. Nuclides with lifetimes down to microseconds become accessible. With SMS masses of several hundreds nuclides have been measured simultaneously with an accuracy in the 2 x 10 -7 -range. This high accuracy and the ability to study large areas of the mass surface are ideal tools to discover new nuclear structure properties and to guide improvements for theoretical mass models. In addition, nuclear half-lives of stored bare and highly-charged ions have been measured. This new experimental development is a significant progress since nuclear decay characteristics are mostly known for neutral atoms. For bare and highly-charged ions new nuclear decay modes become possible, such as bound-state beta decay. Dramatic changes in the nuclear lifetime

  20. Measurement of the W boson mass with the ATLAS detector

    CERN Document Server

    Camarda, Stefano; The ATLAS collaboration

    2017-01-01

    A precise measurement of the mass of the W boson represents an important milestone to test the overall consistency of the Standard Model. Since the discovery of a Higgs Boson, the the W boson mass is predicted to 7 MeV precision, while the world average of all measurements is 15 MeV, making the improved measurement an important goal. The ATLAS experiment at the LHC represents an ideal laboratory for such a precise measurement. Large samples of many millions of leptonic decays of W and Z bosons were collected with efficient single lepton triggers in the 7 TeV data set corresponding to an integrated luminosity of 4.6/fb. With these samples the detector and physics modelling has been studied in great detail to enable a systematic uncertainty on the measurement that approaches the statistical power of the data of 7 MeV per decay channel as far as possible.

  1. Clinical review: improving the measurement of serum thyroglobulin with mass spectrometry.

    Science.gov (United States)

    Hoofnagle, Andrew N; Roth, Mara Y

    2013-04-01

    Serum thyroglobulin (Tg) measurements are central to the management of patients treated for differentiated thyroid carcinoma. For decades, Tg measurements have relied on methods that are subject to interference by commonly found substances in human serum and plasma, such as Tg autoantibodies. As a result, many patients need additional imaging studies to rule out cancer persistence or recurrence that could be avoided with more sensitive and specific testing methods. The aims of this review are to: 1) briefly review the interferences common to Tg immunoassays; 2) introduce readers to liquid chromatography-tandem mass spectrometry as a method for quantifying proteins in human serum/plasma; and 3) discuss the potential benefits and limitations of the method in the quantification of serum Tg. Mass spectrometric methods have traditionally lacked the sensitivity, robustness, and throughput to be useful clinical assays. These methods failed to meet the necessary clinical benchmarks due to the nature of the mass spectrometry workflow and instrumentation. Over the past few years, there have been major advances in reagents, automation, and instrumentation for the quantification of proteins using mass spectrometry. More recently, methods using mass spectrometry to detect and quantify Tg have been developed and are of sufficient quality to be used in the management of patients. Novel serum Tg assays that use mass spectrometry may avoid the issue of autoantibody interference and other problems with currently available immunoassays for Tg. Prospective studies are needed to fully understand the potential benefits of novel Tg assays to patients and care providers.

  2. Mass measurement of halo nuclides and beam cooling with the mass spectrometer Mistral

    International Nuclear Information System (INIS)

    Bachelet, C.

    2004-12-01

    Halo nuclides are a spectacular drip-line phenomenon and their description pushes nuclear theories to their limits. The most critical input parameter is the nuclear binding energy; a quantity that requires excellent measurement precision, since the two-neutron separation energy is small at the drip-line by definition. Moreover halo nuclides are typically very short-lived. Thus, a high accuracy instrument using a quick method of measurement is necessary. MISTRAL is such an instrument; it is a radiofrequency transmission mass spectrometer located at ISOLDE/CERN. In July 2003 we measured the mass of the Li 11 , a two-neutron halo nuclide. Our measurement improves the precision by a factor 6, with an error of 5 keV. Moreover the measurement gives a two-neutron separation energy 20% higher than the previous value. This measurement has an impact on the radius of the nucleus, and on the state of the two valence neutrons. At the same time, a measurement of the Be 11 was performed with an uncertainty of 4 keV, in excellent agreement with previous measurements. In order to measure the mass of the two-neutron halo nuclide Be 14 , an ion beam cooling system is presently under development which will increase the sensitivity of the spectrometer. The second part of this work presents the development of this beam cooler using a gas-filled Paul trap. (author)

  3. Impact of Precision Mass Measurements on Nuclear Physics and Astrophysics

    CERN Document Server

    Kreim, Susanne; Dilling, Jens; Litvinov, Yuri A

    2013-01-01

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of neutron and proton number, N and Z, respectively. The data obtained through mass measurements provide details of the nuclear interaction and thus apply to a variety of physics topics. Some of the most crucial questions to be addressed by mass spectrometry of unstable radionuclides are, on the one hand, nuclear forces and structure, describing phenomena such as the so-called neutron-halos or the evolution of magic numbers when moving towards the borders of nuclear existence. On the other hand, the understanding of the processes of element formation in the Universe poses a challenge and requires an accurate knowledge of nuclear astrophysics. Here, precision atomic mass values of a large number of exotic nuclei participating in nucleosynthesis processes are among the key input data in large-scale reaction network calculations.

  4. Measurement of the W boson mass with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    A measurement of the W-boson mass is presented based on 4.6 fb^-1 of proton–proton collision data recorded in 2011 at a centre-of-mass energy of 7 TeV with the ATLAS detector at the LHC. The selected data sample consists of 7.8x10^6 candidates in the W -> mu nu channel and 5.9x10^6 candidates in the W -> e nu channel. The W-boson mass is determined using template fits to the charged lepton transverse momentum distributions, and to the charged lepton and E_T^miss transverse mass distribution. Special emphasis is placed on the evaluation of the experimental systematic uncertainties, as well as on the uncertainties due to the modeling of the vector boson production and decay. The final result is compared to the current world average and interpreted in the context of the global electroweak fit.

  5. Measurement of the W mass in $e^+ e^-$ annihilation

    CERN Document Server

    Juste, A

    1998-01-01

    A measurement of the W mass in the fully hadronic decay channel from the data sample collected by ALEPH during 1996 at centre-of-mass energies of 161 and 172 GeV is presented. At 161 GeV, the W mass is derived from the cross-section measurement taking advantage of the high sensitivity close to the production threshold. Due to the presence of large backgrounds, a multidimensional analysis based on Neural Network techniques is developed. By combining the measurements in all decay channels and the four LEP experiments, a precision in the W mass of $\\pm 220$ MeV is finally obtained. At 172 GeV, the W mass is obtained from the direct reconstruction of the final state kinematics. The fully hadronic decay channel becomes particularly difficult due to the large existing background and the important distortions due to fragmentation and detector effects when reconstructing four hadronic jets in the final state. In addition, in this channel there is the intrinsic difficulty associated with the combinatorial background. ...

  6. Getting to the core of protein pharmaceuticals – comprehensive structure analysis by mass spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Mistarz, Ulrik Hvid; Rand, Kasper Dyrberg

    2015-01-01

    . Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry...

  7. Measurement of glutathione-protein mixed disulfides

    International Nuclear Information System (INIS)

    Livesey, J.C.; Reed, D.J.

    1984-01-01

    The development of a sensitive and highly specific assay for the presence of mixed disulfides between protein thiol groups and endogenous thiols has been undertaken. Previous investigations on the concentrations of glutathione (GSH), glutathione disulfide (GSSG) and protein glutathione mixed disulfides (ProSSG) have been of limited usefulness because of the poor specificity of the assays used. Our assay for these forms of glutathione is based on high performance liquid chromatography (HPLC) and is an extension of an earlier method. After perchloric acid precipitation, the protein sample is washed with an organic solvent to fully denature the protein. Up to a 10-fold increase in GSH released from fetal bovine serum (FBS) protein has been found when the protein precipitate is washed with ethanol rather than ether, as earlier suggested. Similar effects have been observed with an as yet unidentified thiol which elutes in the chromatography system with a retention volume similar to cysteine

  8. A New Top Mass Measurement in The Dilepton Channel

    Energy Technology Data Exchange (ETDEWEB)

    Trovato, Marco; /INFN, Pisa /Pisa U.

    2008-01-01

    The top quark discovery completed the present picture of the fundamental constituents of the nature. Since then, the Collider Detector at Fermilab and D0 Collaborations have been spending great efforts to measure its properties better. About 30 times larger than the second heaviest quark, the mass of the top has been measured with increased statistic and more and more sophisticated techniques in order to reduce as much as possible its uncertainty. This is because the top is expected to play a fundamental role in the Standard Model. The value of its mass sets boundaries on the mass of the unobserved Higgs boson, and perhaps more appealing, studies of its properties might lead to the discovery of new physics.

  9. Resonance ionization mass spectrometry system for measurement of environmental samples

    International Nuclear Information System (INIS)

    Pibida, L.; McMahon, C.A.; Noertershaeuser, W.; Bushaw, B.A.

    2002-01-01

    A resonance ionization mass spectrometry (RIMS) system has been developed at the National Institute of Standards and Technology (NIST) for sensitive and selective determination of radio-cesium in the environment. The overall efficiency was determined to be 4x10-7 with a combined (laser and mass spectrometer) selectivity of 108 for both 135Cs and 137Cs with respect to 133Cs. RIMS isotopic ratio measurements of 135Cs/ 137Cs were performed on a nuclear fuel burn-up sample and compared to measurements on a similar system at Pacific Northwest National Laboratory (PNNL) and to conventional thermal ionization mass spectrometry (TIMS). Results of preliminary RIMS investigations on a freshwater lake sediment sample are also discussed

  10. CLASSIFYING BENIGN AND MALIGNANT MASSES USING STATISTICAL MEASURES

    Directory of Open Access Journals (Sweden)

    B. Surendiran

    2011-11-01

    Full Text Available Breast cancer is the primary and most common disease found in women which causes second highest rate of death after lung cancer. The digital mammogram is the X-ray of breast captured for the analysis, interpretation and diagnosis. According to Breast Imaging Reporting and Data System (BIRADS benign and malignant can be differentiated using its shape, size and density, which is how radiologist visualize the mammograms. According to BIRADS mass shape characteristics, benign masses tend to have round, oval, lobular in shape and malignant masses are lobular or irregular in shape. Measuring regular and irregular shapes mathematically is found to be a difficult task, since there is no single measure to differentiate various shapes. In this paper, the malignant and benign masses present in mammogram are classified using Hue, Saturation and Value (HSV weight function based statistical measures. The weight function is robust against noise and captures the degree of gray content of the pixel. The statistical measures use gray weight value instead of gray pixel value to effectively discriminate masses. The 233 mammograms from the Digital Database for Screening Mammography (DDSM benchmark dataset have been used. The PASW data mining modeler has been used for constructing Neural Network for identifying importance of statistical measures. Based on the obtained important statistical measure, the C5.0 tree has been constructed with 60-40 data split. The experimental results are found to be encouraging. Also, the results will agree to the standard specified by the American College of Radiology-BIRADS Systems.

  11. Twenty-five new mass values from measurements performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel [Justus-Liebig-Universitaet Giessen (Germany); Knoebel, Ronja; Geissel, Hans; Plass, Wolfgang R.; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen (Germany); GSI, Darmstadt (Germany); Patyk, Zygmunt [National Centre for Nuclear Research, NCBJ Swierk, Warszawa (Poland); Weick, Helmut [GSI, Darmstadt (Germany); Collaboration: FRS-ESR-Collaboration

    2016-07-01

    Masses of uranium fission fragments have been measured with the FRS-ESR facility at GSI. In order to increase the mass resolving power and particle identification for non-isochronous particles, Bρ-tagging was applied in one out of two experiments. A new method of data analysis, using a correlation matrix for the combined data set from the two experiments, has provided reliable experimental mass values for 25 different neutron-rich isotopes for the first time. The new masses were obtained for nuclides in the element range from Ge to Ce. The results have been compared with theoretical predictions. At the neutron shell N=82 the comparison of experimental data for tin and cadmium isotopes show both strong shell effects in agreement with spectroscopy experiments and modern shell-model calculations.

  12. Identification of Protein Complexes from Tandem Affinity Purification/Mass Spectrometry Data via Biased Random Walk.

    Science.gov (United States)

    Cai, Bingjing; Wang, Haiying; Zheng, Huiru; Wang, Hui

    2015-01-01

    Systematic identification of protein complexes from protein-protein interaction networks (PPIs) is an important application of data mining in life science. Over the past decades, various new clustering techniques have been developed based on modelling PPIs as binary relations. Non-binary information of co-complex relations (prey/bait) in PPIs data derived from tandem affinity purification/mass spectrometry (TAP-MS) experiments has been unfairly disregarded. In this paper, we propose a Biased Random Walk based algorithm for detecting protein complexes from TAP-MS data, resulting in the random walk with restarting baits (RWRB). RWRB is developed based on Random walk with restart. The main contribution of RWRB is the incorporation of co-complex relations in TAP-MS PPI networks into the clustering process, by implementing a new restarting strategy during the process of random walk. Through experimentation on un-weighted and weighted TAP-MS data sets, we validated biological significance of our results by mapping them to manually curated complexes. Results showed that, by incorporating non-binary, co-membership information, significant improvement has been achieved in terms of both statistical measurements and biological relevance. Better accuracy demonstrates that the proposed method outperformed several state-of-the-art clustering algorithms for the detection of protein complexes in TAP-MS data.

  13. MEASURING TINY MASS ACCRETION RATES ONTO YOUNG BROWN DWARFS

    International Nuclear Information System (INIS)

    Herczeg, Gregory J.; Cruz, Kelle L.; Hillenbrand, Lynne A.

    2009-01-01

    We present low-resolution Keck I/LRIS spectra spanning from 3200 to 9000 A of nine young brown dwarfs and three low-mass stars in the TW Hya Association and in Upper Sco. The optical spectral types of the brown dwarfs range from M5.5 to M8.75, though two have near-IR spectral types of early L dwarfs. We report new accretion rates derived from excess Balmer continuum emission for the low-mass stars TW Hya and Hen 3-600A and the brown dwarfs 2MASS J12073347-3932540, UScoCTIO 128, SSSPM J1102-3431, USco J160606.29-233513.3, DENIS-P J160603.9-205644, and Oph J162225-240515B, and upper limits on accretion for the low-mass star Hen 3-600B and the brown dwarfs UScoCTIO 112, Oph J162225-240515A, and USco J160723.82-221102.0. For the six brown dwarfs in our sample that are faintest at short wavelengths, the accretion luminosity or upper limit is measurable only when the image is binned over large wavelength intervals. This method extends our sensitivity to accretion rate down to ∼10 -13 M sun yr -1 for brown dwarfs. Since the ability to measure an accretion rate from excess Balmer continuum emission depends on the contrast between excess continuum emission and the underlying photosphere, for objects with earlier spectral types the upper limit on accretion rate is much higher. Absolute uncertainties in our accretion rate measurements of ∼3-5 include uncertainty in accretion models, brown dwarf masses, and distance. The accretion rate of 2 x 10 -12 M sun yr -1 onto 2MASS J12073347-3932540 is within 15% of two previous measurements, despite large changes in the Hα flux.

  14. Combined Measurements of the Higgs Boson Mass and Couplings

    CERN Document Server

    Zhang, Yu; The ATLAS collaboration

    2017-01-01

    Combined measurements of the Higgs boson mass, as well its production cross sections and branching fractions, are performed using the H->yy and H->ZZ->4l decay channels. The measurements are based on 36.1 fb−1 of proton-proton collision data recorded by the ATLAS experiment at the LHC at sqrt(s)= 13 TeV. The Higgs boson mass is measured to be 124.98 +/- 0.19 (stat) +/- 0.21 (syst) GeV. The rates for gluon fusion, vector-boson fusion, VH, and ttH production, as well as kinematic subdivisions of these processes, are found to be compatible with the Standard Model. The measured ratios of the Higgs boson couplings to their SM predictions are also consistent with the predictions.

  15. Center of mass movement estimation using an ambulatory measurement sytem

    NARCIS (Netherlands)

    Schepers, H. Martin; Veltink, Petrus H.

    2007-01-01

    Center of Mass (CoM) displacement, an important variable to characterize human walking, was estimated in this study using an ambulatory measurement system. The ambulatory system was compared to an optical reference system. Root-mean-square differences between the magnitudes of the CoM appeared to be

  16. Measurement of atomic number and mass attenuation coefficient in ...

    Indian Academy of Sciences (India)

    literature on the measurement of mass attenuation coefficient in magnesium ferrite. The knowledge of photon ... pure) MgO and Fe2O3. The details of experimental ... and (4 4 0) planes belonging to cubic spinel structure. The XRD pattern ...

  17. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  18. Applicability of hydraulic dynamometer for measuring load mass on forwarders

    Directory of Open Access Journals (Sweden)

    Pandur Zdravko

    2015-01-01

    Full Text Available In the last few years, with the start of wood biomass production from wood residues, the need for determining the quantity of extracted wood residuals on a landing site has appeared. The beginning of intensive usage of wood residues for wood biomass starts in lowland forest where all wood residues are extracted with forwarders. There are several ways to determine load mass on a forwarder, first and probably most accurate is the use of load cells which are installed between forwarder undercarriage and loading space. In Croatia, as far as it is known, there is no forwarder with such equipment, although manufacturers offer the installation of such equipment when buying a new forwarder. The second option is using a portable measuring platform (axle scale which was already used for research of axle loads of trucks and forwarders. The data obtained with the measuring platform are very accurate, while its deficiency is relatively great mass, large dimensions and high price. The third option is determining mass by using hydraulic dynamometer which is installed on crane between the rotator and the telescopic boom. The production and installation of such a system is very simple, and with the price it can easily compete with previously described measuring systems. The main deficiency of this system is its unsatisfying accuracy. The results of assortment mass measuring with hydraulic dynamometer installed on a hydraulic crane and discussion on factors influencing obtained results will be presented in this paper.

  19. A NEW MEASUREMENT OF THE W BOSON MASS FROM CDF

    CERN Multimedia

    Ashutosh Kotwal

    CDF has measured the W boson mass using approx. 200pb-1 of data collected at  s = 1.96 TeV. The preliminary result mW = 80.413 ± 0.034(stat) ± 0.034(syst) GeV supports and strengthens the hypothesis of a light Higgs boson, based on the global electroweak fit in the standard model framework. The total measurement uncertainty of 48 MeV makes this result the most precise single measurement of the W boson mass to date. The mass of the W boson is a very interesting quantity. Experimentally, it can be measured precisely because of the two-body decay of the W boson into a charged lepton and a neutrino. Theoretically, it receives self-energy corrections due to vacuum fluctuations involving virtual particles. Thus the W boson mass probes the particle spectrum in nature, including those particles that have yet to be observed directly. The hypothetical particle of most immediate interest is the Higgs boson, representing the quantum of the Higgs field that spontaneously acquires a vacuu...

  20. Methodology for interpretation of fissile mass flow measurements

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mattingly, J.K.; Mullens, J.A.

    1997-01-01

    This paper describes a non-intrusive measurement technique to monitor the mass flow rate of fissile material in gaseous or liquid streams. This fissile mass flow monitoring system determines the fissile mass flow rate by relying on two independent measurements: (1) a time delay along a given length of pipe, which is inversely proportional to the fissile material flow velocity, and (2) an amplitude measurement, which is proportional to the fissile concentration (e.g., grams of 235 U per length of pipe). The development of this flow monitor was first funded by DOE/NE in September 95, and initial experimental demonstration by ORNL was described in the 37th INMM meeting held in July 1996. This methodology was chosen by DOE/NE for implementation in November 1996; it has been implemented in hardware/software and is ready for installation. This paper describes the methodology used to interpret the data measured by the fissile mass flow monitoring system and the models used to simulate the transport of fission fragments from the source location to the detectors

  1. First measurement of the B S meson mass

    Science.gov (United States)

    Buskulic, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Haywood, S.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miquel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Veenhof, R.; Wachsmuth, H.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Sawyer, L.; Wasserbaech, S.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Smith, M. G.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jacobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; St. Denis, R.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Carter, J. M.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Cinabro, D.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; LeClaire, B. W.; Lishka, C.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Sharma, V.; Shi, Z. H.; Walsh, A. M.; Weber, F. V.; Wu, Sau Lan; Wu, X.; Zheng, M.; Zobernig, G.

    1993-07-01

    In a sample of about 1.1 million hadronic Z decays recorded with the ALEPH detector during the 1990-1992 running of LEP, two unambiguous B S meson candidates were observed. From these events the mass of the B S meson has been measured to be 5.3686 ± 0.0056 (stat.) ± 0.0015 (syst.) GeV.

  2. Device for measuring mass of air. Einrichtung zur Luftmassenmessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    In a device for measuring the mass of air, particularly for vehicles with internal combustion engines, with a measurement bridge, in one branch of which an air flow resistance, particularly a hot film sensor, which has air flowing round it, is connected in series with a measuring resistance and in another branch of which a compensation resistance measuring the air temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and the resulting signal is used to control a transistor valve situated in the bridge supply path of a bridge supply source with an emitter connected to the bridge via the transistor base for bridge compensation and where the voltage at the measurement resistance after bridge compensation is evaluated as a measure of the air flow, the invention proposes that the transistor valve should be made as an npn transistor blocking for negative voltage peaks in the bridge supply path. This ensures that for netgative voltage peaks in the supply line, the transistor valve closes temporarily and overheating of the measurement bridge is prevented. Such overheating would lead to measurement of too great air mass flow and therefore to a dangerously too rich fuel/air mixture, for example (instead the negative voltage peaks give a safe temporary lean mixture).

  3. Measurement of the lifetime difference between Bs mass eigenstates

    International Nuclear Information System (INIS)

    Acosta, D.; The CDF Collaboration

    2005-01-01

    We present measurements of the lifetimes and polarization amplitudes for B s 0 → J/ψφ and B d 0 → J/ψ K* 0 decays. Lifetimes of the heavy (H) and light (L) mass eigenstates in the B s 0 system are separately measured for the first time by determining the relative contributions of amplitudes with definite CP as a function of the decay time

  4. Top quark properties and mass measurements with the ATLAS detector

    CERN Document Server

    Negrini, Matteo; The ATLAS collaboration

    2017-01-01

    Highlights on recent measurements of top quark properties in ATLAS, using pp collision data at \\sqrt{s}= 8 TeV and 13 TeV, are presented. The measurements of the top quark polarization and spin correlation coefficients, the W boson helicity fractions, the structure of the Wtb vertex, the associated production of a t anti-t pair with a vector boson or a photon, and the top quark mass are all in agreement with the Standard Model expectations.

  5. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J. [Department of Physics, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Philpott, L. C. [Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia V6T 1Z4 (Canada); Abe, F.; Muraki, Y. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Albrow, M. D. [Department of Physics and Astronomy, University of Canterbury, P.O. Box 4800, Christchurch 8020 (New Zealand); Bennett, D. P. [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Bond, I. A. [Institute for Information and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland 1330 (New Zealand); Christie, G. W.; Natusch, T. [Auckland Observatory, PO Box 180, Royal Oak, Auckland 1345 (New Zealand); Dionnet, Z. [Université d' Orsay, bat 470, F-91400 Orsay (France); Gould, A. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Han, C. [Department of Physics, Chungbuk National University, 410 Seongbong-Rho, Hungduk-Gu, Chongju 371-763 (Korea, Republic of); Heyrovský, D. [Institute of Theoretical Physics, Charles University in Prague, Faculty of Mathematics and Physics, V Holesovickach 2, 18000 Prague (Czech Republic); McCormick, J. M. [Farm Cove Observatory, 2/24 Rapallo Place, Pakuranga, Auckland 2012 (New Zealand); Moorhouse, D. M. [Kumeu Observatory, Kumeu (New Zealand); Skowron, J., E-mail: mfre070@aucklanduni.ac.nz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warszawa (Poland); and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  6. Workplace aerosol mass concentration measurement using optical particle counters.

    Science.gov (United States)

    Görner, Peter; Simon, Xavier; Bémer, Denis; Lidén, Göran

    2012-02-01

    Direct-reading aerosol measurement usually uses the optical properties of airborne particles to detect and measure particle concentration. In the case of occupational hygiene, mass concentration measurement is often required. Two aerosol monitoring methods are based on the principle of light scattering: optical particle counting (OPC) and photometry. The former analyses the light scattered by a single particle, the latter by a cloud of particles. Both methods need calibration to transform the quantity of scattered light detected into particle concentration. Photometers are simpler to use and can be directly calibrated to measure mass concentration. However, their response varies not only with aerosol concentration but also with particle size distribution, which frequently contributes to biased measurement. Optical particle counters directly measure the particle number concentration and particle size that allows assessment of the particle mass provided the particles are spherical and of known density. An integrating algorithm is used to calculate the mass concentration of any conventional health-related aerosol fraction. The concentrations calculated thus have been compared with simultaneous measurements by conventional gravimetric sampling to check the possibility of field OPC calibration with real workplace aerosols with a view to further monitoring particle mass concentration. Aerosol concentrations were measured in the food industry using the OPC GRIMM® 1.108 and the CIP 10-Inhalable and CIP 10-Respirable (ARELCO®) aerosol samplers while meat sausages were being brushed and coated with calcium carbonate. Previously, the original OPC inlet had been adapted to sample inhalable aerosol. A mixed aerosol of calcium carbonate and fungi spores was present in the workplace. The OPC particle-size distribution and an estimated average particle density of both aerosol components were used to calculate the mass concentration. The inhalable and respirable aerosol fractions

  7. Pendulum mass affects the measurement of articular friction coefficient.

    Science.gov (United States)

    Akelman, Matthew R; Teeple, Erin; Machan, Jason T; Crisco, Joseph J; Jay, Gregory D; Fleming, Braden C

    2013-02-01

    Friction measurements of articular cartilage are important to determine the relative tribologic contributions made by synovial fluid or cartilage, and to assess the efficacy of therapies for preventing the development of post-traumatic osteoarthritis. Stanton's equation is the most frequently used formula for estimating the whole joint friction coefficient (μ) of an articular pendulum, and assumes pendulum energy loss through a mass-independent mechanism. This study examines if articular pendulum energy loss is indeed mass independent, and compares Stanton's model to an alternative model, which incorporates viscous damping, for calculating μ. Ten loads (25-100% body weight) were applied in a random order to an articular pendulum using the knees of adult male Hartley guinea pigs (n=4) as the fulcrum. Motion of the decaying pendulum was recorded and μ was estimated using two models: Stanton's equation, and an exponential decay function incorporating a viscous damping coefficient. μ estimates decreased as mass increased for both models. Exponential decay model fit error values were 82% less than the Stanton model. These results indicate that μ decreases with increasing mass, and that an exponential decay model provides a better fit for articular pendulum data at all mass values. In conclusion, inter-study comparisons of articular pendulum μ values should not be made without recognizing the loads used, as μ values are mass dependent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. (U) An Analytic Examination of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Ongoing efforts to validate a Richtmyer-Meshkov instability (RMI) based ejecta source model [1, 2, 3] in LANL ASC codes use ejecta areal masses derived from piezoelectric sensor data [4, 5, 6]. However, the standard technique for inferring masses from sensor voltages implicitly assumes instantaneous ejecta creation [7], which is not a feature of the RMI source model. To investigate the impact of this discrepancy, we define separate “areal mass functions” (AMFs) at the source and sensor in terms of typically unknown distribution functions for the ejecta particles, and derive an analytic relationship between them. Then, for the case of single-shock ejection into vacuum, we use the AMFs to compare the analytic (or “true”) accumulated mass at the sensor with the value that would be inferred from piezoelectric voltage measurements. We confirm the inferred mass is correct when creation is instantaneous, and furthermore prove that when creation is not instantaneous, the inferred values will always overestimate the true mass. Finally, we derive an upper bound for the error imposed on a perfect system by the assumption of instantaneous ejecta creation. When applied to shots in the published literature, this bound is frequently less than several percent. Errors exceeding 15% may require velocities or timescales at odds with experimental observations.

  9. Precision top-quark mass measurement at CDF.

    Science.gov (United States)

    Aaltonen, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bisello, D; Bizjak, I; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Calamba, A; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chung, W H; Chung, Y S; Ciocci, M A; Clark, A; Clarke, C; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; Dell'Orso, M; Demortier, L; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, M; Dorigo, T; Ebina, K; Elagin, A; Eppig, A; Erbacher, R; Errede, S; Ershaidat, N; Eusebi, R; Farrington, S; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Funakoshi, Y; Furic, I; Gallinaro, M; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Klimenko, S; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lin, C-J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martínez, M; Mastrandrea, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Riddick, T; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sinervo, P; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Sorin, V; Song, H; Squillacioti, P; Stancari, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Varganov, A; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhou, C; Zucchelli, S

    2012-10-12

    We present a precision measurement of the top-quark mass using the full sample of Tevatron √s = 1.96 TeV proton-antiproton collisions collected by the CDF II detector, corresponding to an integrated luminosity of 8.7 fb(-1). Using a sample of tt¯ candidate events decaying into the lepton+jets channel, we obtain distributions of the top-quark masses and the invariant mass of two jets from the W boson decays from data. We then compare these distributions to templates derived from signal and background samples to extract the top-quark mass and the energy scale of the calorimeter jets with in situ calibration. The likelihood fit of the templates from signal and background events to the data yields the single most-precise measurement of the top-quark mass, M(top)=172.85±0.71(stat)±0.85(syst) GeV/c(2).

  10. Efficiency of Database Search for Identification of Mutated and Modified Proteins via Mass Spectrometry

    OpenAIRE

    Pevzner, Pavel A.; Mulyukov, Zufar; Dancik, Vlado; Tang, Chris L

    2001-01-01

    Although protein identification by matching tandem mass spectra (MS/MS) against protein databases is a widespread tool in mass spectrometry, the question about reliability of such searches remains open. Absence of rigorous significance scores in MS/MS database search makes it difficult to discard random database hits and may lead to erroneous protein identification, particularly in the case of mutated or post-translationally modified peptides. This problem is especially important for high-thr...

  11. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)

    2014-11-25

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  12. (U) An Analytic Study of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-16

    We consider the piezoelectric measurement of the areal mass of an ejecta cloud, for the specific case where ejecta are created by a single shock at the free surface and fly ballistically through vacuum to the sensor. To do so, we define time- and velocity-dependent ejecta “areal mass functions” at the source and sensor in terms of typically unknown distribution functions for the ejecta particles. Next, we derive an equation governing the relationship between the areal mass function at the source (which resides in the rest frame of the free surface) and at the sensor (which resides in the laboratory frame). We also derive expressions for the analytic (“true”) accumulated ejecta mass at the sensor and the measured (“inferred”) value obtained via the standard method for analyzing piezoelectric voltage traces. This approach enables us to derive an exact expression for the error imposed upon a piezoelectric ejecta mass measurement (in a perfect system) by the assumption of instantaneous creation. We verify that when the ejecta are created instantaneously (i.e., when the time dependence is a delta function), the piezoelectric inference method exactly reproduces the correct result. When creation is not instantaneous, the standard piezo analysis will always overestimate the true mass. However, the error is generally quite small (less than several percent) for most reasonable velocity and time dependences. In some cases, errors exceeding 10-15% may require velocity distributions or ejecta production timescales inconsistent with experimental observations. These results are demonstrated rigorously with numerous analytic test problems.

  13. Visceral organ mass and hepatic protein synthetic capacity in fed and fasted rats

    International Nuclear Information System (INIS)

    Burrin, D.G.; Britton, R.A.; Ferrell, C.L.

    1986-01-01

    Forty-two male rats (avg wt. = 320 g) were used to assess the effect of severe nutrient restriction (72 h fast) on visceral organ mass and hepatic protein synthetic capacity as measured by in vitro incorporation of U- 14 -C-VALINE ( 14 C-VAL) into isolated hepatocytes. Organ weights expressed as a percent of empty body weight for fed vs. fasted rats were; liver (5.21 +/- .54 vs 3.82 +/- .46), kidney (.87 +/- 0.6 vs .89 +/- .05), stomach (.60 +/- .06 vs .61 +/- .06), intestines (3.70 +/- .44 vs 3.41 +/- .37). No differences were observed in in vitro oxygen consumption (15.7 +/- 3.1 vs 16.1 +/- 3.3, umole min -1 g -1 dry tissue) or 14 -C VAL incorporation (4.93 +/- 1.28 vs 4.31 +/- 1.48, dpm min -1 mg -1 dry tissue) for hepatocytes from fed vs. fasted rats. Analysis of perfused liver tissue indicated fed rats had higher protein (152.1 +/- 16.3 vs 136.6 +/- 29.6, mg/g tissue) and RNA (8.81 +/- 1.66 vs 5.97 +/- 1.87, mg/g tissue) with lower DNA (2.19 +/- .31 vs 3.19 +/- .54, mg/g tissue) compared to fasted rats. Protein-nucleic acid ratios suggest liver tissue from fed rats had a greater capacity for protein synthesis compared to fasted rats, however, this was not evident from in vitro hepatocyte 14 -C VAL incorporation estimates. These data indicate that severe nutrient restriction (72 h fast) affects visceral organ mass largely by reduced liver and gut size as well as decreased hepatic protein synthetic capacity

  14. Measurement of the top quark mass at D0

    International Nuclear Information System (INIS)

    Protopopescu, S.

    1996-01-01

    The mass of the top quark is measured using a sample of 93 lepton + 4 or more jets events collected with the D0 detector at the FNAL Tevatron collider. The authors find the top quark mass is 169 ± 8(stat.) ± 8(syst.) GeV/c 2 . The analysis assumes that top quarks are produced as t anti t pairs that decay to W bosons and b quarks. The final states result when one W decays to eν or μν and the other W to q anti q. More than four jets may be present because of final and initial state radiation

  15. Measurement of the Top Quark Mass at D0

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Scott Stuart [SUNY, Stony Brook

    1995-05-01

    The D0 experiment has recently reported the discovery of the standard model top quark in proton-antiproton collisions with a center of mass energy of 1:8TeV, based on an integrated lumi- nosity of approximately 50 $pb{-1}$ accumulated during the period 1992-1995. This work describes a measurement of the mass of the top using the lepton + jets channels of this data. The result is $mt = 199^{+19}_{-21}(stat.)^{+14}_ {-21}(syst.)GeV/c^2$.

  16. Measurement of the mass and width of the W boson

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    The mass and width of the W boson are measured using e+e- -> W+W- events from the data sample collected by the OPAL experiment at LEP at centre-of-mass energies between 170 GeV and 209 GeV. The mass (mw) and width (gw) are determined using direct reconstruction of the kinematics of W+W- -> qqbarlv and W+W- -> qqbarqqbar events. When combined with previous OPAL measurements using W+W- -> lvlv events and the dependence on mw of the WW production cross-section at threshold, the results are determined to be mw = 80.415 +- 0.042 +- 0.030 +- 0.009 GeV gw = 1.996 +- 0.096 +- 0.102 +- 0.003 GeV where the first error is statistical, the second systematic and the third due to uncertainties in the value of the LEP beam energy. By measuring mw with several different jet algorithms in the qqbarqqbar channel, a limit is also obtained on possible final-state interactions due to colour reconnection effects in W+W- -> qqbarqqbar events. The consistency of the results for the W mass and width with those inferred from other ele...

  17. Recent CMS measurements of the top quark mass

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The top quark is the heaviest known particle, and the only colored one that decays before hadronization. Its mass is a fundamental parameter of the standard model. Precision measurements of the top-quark mass can be used to test the self-consistency of the standard model and, at the same time, to study effects of non-perturbative QCD. CMS recently completed the set of standard top quark mass measurements at 8 TeV in all three decay channels, reaching sub-GeV uncertainty for the first time in a single analysis and combining to the most precise single-experiment measurement. With the steady increase in experimental precision comes a theoretical challenge of interpreting the results and the motivation of using alternative methods. In this talk we present the CMS set of analyses using the 8 TeV dataset, both with conventional methods and non-standard techniques targeting different definitions of the top quark mass. Furthermore we give an outlook at expected future improvements in both standard and alternative app...

  18. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  19. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  20. Improving mass measurement accuracy in mass spectrometry based proteomics by combining open source tools for chromatographic alignment and internal calibration.

    Science.gov (United States)

    Palmblad, Magnus; van der Burgt, Yuri E M; Dalebout, Hans; Derks, Rico J E; Schoenmaker, Bart; Deelder, André M

    2009-05-02

    Accurate mass determination enhances peptide identification in mass spectrometry based proteomics. We here describe the combination of two previously published open source software tools to improve mass measurement accuracy in Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The first program, msalign, aligns one MS/MS dataset with one FTICRMS dataset. The second software, recal2, uses peptides identified from the MS/MS data for automated internal calibration of the FTICR spectra, resulting in sub-ppm mass measurement errors.

  1. Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry for the Investigation of Proteins and Peptides

    Science.gov (United States)

    Burnum, Kristin E.; Frappier, Sara L.; Caprioli, Richard M.

    2008-07-01

    Mass spectrometry (MS) is an excellent technology for molecular imaging because of its high data dimensionality. MS can monitor thousands of individual molecular data channels measured as mass-to-charge (m/z). We describe the use of matrix-assisted laser desorption/ionization (MALDI) MS for the image analysis of proteins, peptides, lipids, drugs, and metabolites in tissues. We discuss the basic instrumentation and sample preparation methods needed to produce high-resolution images and high image reproducibility. Matrix-addition protocols are briefly discussed along with normal operating procedures, and selected biological and medical applications of MALDI imaging MS are described. We give examples of both two- and three-dimensional imaging, including normal mouse embryo implantation, sperm maturation in mouse epididymis, protein distributions in brain sections, protein alterations as a result of drug administration, and protein changes in brain due to neurodegeneration and tumor formation. Advantages of this technology and future challenges for its improvement are discussed.

  2. Measuring Atmospheric Abundances and Rotation of a Brown Dwarf with a Measured Mass and Radius

    Science.gov (United States)

    Birkby, Jayne

    2015-08-01

    There are no cool brown dwarfs with both a well-characterized atmosphere and a measured mass and radius. LHS 6343, a brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to tie theoretical atmospheric models to the observed brown dwarf mass-radius diagram. We propose four half-nights of observations with NIRSPAO in 2015B to measure spectral features in LHS 6343 C by detecting the relative motions of absorption features during the system's orbit. In addition to abundances, we will directly measure the brown dwarf's projected rotational velocity and mass.

  3. ESIprot: a universal tool for charge state determination and molecular weight calculation of proteins from electrospray ionization mass spectrometry data.

    Science.gov (United States)

    Winkler, Robert

    2010-02-01

    Electrospray ionization (ESI) ion trap mass spectrometers with relatively low resolution are frequently used for the analysis of natural products and peptides. Although ESI spectra of multiply charged protein molecules also can be measured on this type of devices, only average spectra are produced for the majority of naturally occurring proteins. Evaluating such ESI protein spectra would provide valuable information about the native state of investigated proteins. However, no suitable and freely available software could be found which allows the charge state determination and molecular weight calculation of single proteins from average ESI-MS data. Therefore, an algorithm based on standard deviation optimization (scatter minimization) was implemented for the analysis of protein ESI-MS data. The resulting software ESIprot was tested with ESI-MS data of six intact reference proteins between 12.4 and 66.7 kDa. In all cases, the correct charge states could be determined. The obtained absolute mass errors were in a range between -0.2 and 1.2 Da, the relative errors below 30 ppm. The possible mass accuracy allows for valid conclusions about the actual condition of proteins. Moreover, the ESIprot algorithm demonstrates an extraordinary robustness and allows spectral interpretation from as little as two peaks, given sufficient quality of the provided m/z data, without the necessity for peak intensity data. ESIprot is independent from the raw data format and the computer platform, making it a versatile tool for mass spectrometrists. The program code was released under the open-source GPLv3 license to support future developments of mass spectrometry software. Copyright 2010 John Wiley & Sons, Ltd.

  4. Precision measurement of the Ds*+-Ds+ mass difference

    International Nuclear Information System (INIS)

    Brown, D.N.; Fast, J.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Kwon, Y.; Roberts, S.; Thorndike, E.H.; Wang, C.H.; Dominick, J.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Skwarnicki, T.; Stroynowski, R.; Volobouev, I.; Wei, G.; Zadorozhny, P.; Artuso, M.; Goldberg, M.; He, D.; Horwitz, N.; Kennett, R.; Mountain, R.; Moneti, G.C.; Muheim, F.; Mukhin, Y.; Playfer, S.; Rozen, Y.; Stone, S.; Thulasidas, M.; Vasseur, G.; Zhu, G.; Bartelt, J.; Csorna, S.E.; Egyed, Z.; Jain, V.; Kinoshita, K.; Edwards, K.W.; Ogg, M.; Britton, D.I.; Hyatt, E.R.F.; MacFarlane, D.B.; Patel, P.M.; Akerib, D.S.; Barish, B.; Chadha, M.; Chan, S.; Cowen, D.F.; Eigen, G.; Miller, J.S.; O'Grady, C.; Urheim, J.; Weinstein, A.J.; Acosta, D.; Athanas, M.; Masek, G.; Paar, H.P.; Gronberg, J.; Kutschke, R.; Menary, S.; Morrison, R.J.; Nakanishi, S.; Nelson, H.N.; Nelson, T.K.; Qiao, C.; Richman, J.D.; Ryd, A.; Tajima, H.; Sperka, D.; Witherell, M.S.; Procario, M.; Balest, R.; Cho, K.; Daoudi, M.; Ford, W.T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Drell, P.S.; Ehrlich, R.; Gaiderev, P.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Avery, P.; Freyberger, A.; Rodriguez, J.; Stephens, R.; Yang, S.; Yelton, J.; Cinabro, D.; Henderson, S.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.; Sadoff, A.J.; Ammar, R.; Ball, S.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.

    1994-01-01

    We have measured the vector-pseudoscalar mass splitting M(D s *+ )-M(D s + )=144.22±0.47±0.37 MeV significantly more precisely than the previous world average. We minimize the systematic errors by also measuring the vector-pseudoscalar mass difference M(D *0 )-M(D 0 ) using the radiative decay D *0 →D 0 γ, obtaining [M(D s *+ )-M(D s + )]-[M(D *0 )-M(D 0 )] =2.09±0.47±0.37 MeV. This is then combined with our previous high-precision measurement of M(D *0 )-M(D 0 ), which used the decay D *0 →D 0 π 0 . We also measure the mass difference M(D s + )-M(D + )=99.5±0.6±0.3 MeV, using the φπ + decay modes of the D s + and D + mesons

  5. Accelerator mass spectrometry for measurement of long-lived radioisotopes.

    Science.gov (United States)

    Elmore, D; Phillips, F M

    1987-05-01

    Particle accelerators, such as those built for research in nuclear physics, can also be used together with magnetic and electrostatic mass analyzers to measure rare isotopes at very low abundance ratios. All molecular ions can be eliminated when accelerated to energies of millions of electron volts. Some atomic isobars can be eliminated with the use of negative ions; others can be separated at high energies by measuring their rate of energy loss in a detector. The long-lived radioisotopes (10)Be, (14)C,(26)A1, 36Cl, and (129)1 can now be measured in small natural samples having isotopic abundances in the range 10(-12) to 10(- 5) and as few as 10(5) atoms. In the past few years, research applications of accelerator mass spectrometry have been concentrated in the earth sciences (climatology, cosmochemistry, environmental chemistry, geochronology, glaciology, hydrology, igneous petrogenesis, minerals exploration, sedimentology, and volcanology), in anthropology and archeology (radiocarbon dating), and in physics (searches for exotic particles and measurement of halflives). In addition, accelerator mass spectrometry may become an important tool for the materials and biological sciences.

  6. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Singh

    2016-01-01

    Full Text Available Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE across a broad range 3.0–10.0 immobilized pH gradient (IPG strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected in these accessions. In-gel protein expression patterns revealed three protein spots as upregulated and three other as downregulated. Using trypsin in-gel digestion, these differentially expressed proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS which showed 45% amino acid homology of chickpea seed storage proteins with Arabidopsis thaliana.

  7. Cortisol production rates measured by liquid chromatography/mass spectrometry

    International Nuclear Information System (INIS)

    Esteban, N.V.; Yergey, A.L.

    1990-01-01

    Cortisol production rates (FPRs) in physiologic and pathologic states in humans have been investigated over the past 30 years. However, there has been conflicting evidence concerning the validity of the currently accepted value of FPRs in humans (12 to 15 mg/m2/d) as determined by radiotracer methodology. The present study reviews previous methods proposed for the measurement of FPRs in humans and discusses the applications of the first method for the direct determination of 24-hour plasma FPRs during continuous administration of a stable isotope, using a thermospray high-pressure liquid chromatography-mass spectrometry technique. The technique is fast, sensitive, and, unlike gas chromatography-mass spectrometry methods, does not require derivatization, allowing on-line detection and quantification of plasma cortisol after a simple extraction procedure. The results of determination of plasma FPRs by stable tracer/mass spectrometry are directly in units of mass/time and, unlike radiotracer methods, are independent of any determination of volume of distribution or cortisol concentration. Our methodology offers distinct advantages over radiotracer techniques in simplicity and reliability since only single measurements of isotope ratios are required. The technique was validated in adrenalectomized patients. Circadian variations in daily FRPs were observed in normal volunteers, and, to date, results suggest a lower FRP in normal children and adults than previously believed. 88 references

  8. Determination of iodine to compliment mass spectrometric measurements

    International Nuclear Information System (INIS)

    Hohorst, F.A.

    1994-11-01

    The dose of iodine-129 to facility personnel and the general public as a result of past, present, and future activities at DOE sites is of continuing interest, WINCO received about 160 samples annually in a variety of natural matrices, including snow, milk, thyroid tissue, and sagebrush, in which iodine-129 is determined in order to evaluate this dose, Currently, total iodine and the isotopic ratio of iodine-127 to iodine-129 are determined by mass spectrometry. These two measurements determine the concentration of iodine-129 in each sample, These measurements require at least 16 h of mass spectrometer operator time for each sample. A variety of methods are available which concentrate and determine small quantities of iodine. Although useful, these approaches would increase both time and cost. The objective of this effort was to determine total iodine by an alternative method in order to decrease the load on mass spectrometry by 25 to 50%. The preparation of each sample for mass spectrometric analysis involves a common step--collection of iodide on an ion exchange bed. This was the focal point of the effort since the results would be applicable to all samples

  9. Measuring Method for Fuzz Mass of Carbon Fiber Tow

    Directory of Open Access Journals (Sweden)

    LI Tan

    2017-07-01

    Full Text Available In order to quantitatively test fuzz degree of carbon fiber (CF tow, a measuring method for fuzz mass of CF tow was developed, and the testing device was built. Fuzz mass of two kinds of domestic T800-grade CF were tested using the established method. The effects of spreading width of CF tow, tension and fuzz-adsorption material on the fuzz mass of the two fibers were investigated. Several kinds of imported, domestic T700-grade CF and T800-grade CF were tested using optimized testing conditions. The experimental results show that the testing method is easy to operate and has wide applicability. Under 1-2N tension, 0.1-0.6mm pore size of sponge and 1-4N load applied on sponge, the measured values of T800-grade CF with 12K yield are reasonable. For CF tow with high fuzz mass, certain spreading width makes fuzz inside fiber bundle expose, which is needed to ensure the accuracy of testing result.

  10. Supplementing Breakfast with a Vitamin D and Leucine-Enriched Whey Protein Medical Nutrition Drink Enhances Postprandial Muscle Protein Synthesis and Muscle Mass in Healthy Older Men.

    Science.gov (United States)

    Chanet, Audrey; Verlaan, Sjors; Salles, Jérôme; Giraudet, Christophe; Patrac, Véronique; Pidou, Véronique; Pouyet, Corinne; Hafnaoui, Nordine; Blot, Adeline; Cano, Noël; Farigon, Nicolas; Bongers, Anke; Jourdan, Marion; Luiking, Yvette; Walrand, Stéphane; Boirie, Yves

    2017-12-01

    Background: A promising strategy to help older adults preserve or build muscle mass is to optimize muscle anabolism through providing an adequate amount of high-quality protein at each meal. Objective: This "proof of principle" study investigated the acute effect of supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink on postprandial muscle protein synthesis and longer-term effect on muscle mass in healthy older adults. Methods: A randomized, placebo-controlled, double-blind study was conducted in 24 healthy older men [mean ± SD: age 71 ± 4 y; body mass index (in kg/m 2 ) 24.7 ± 2.8] between September 2012 and October 2013 at the Unit of Human Nutrition, University of Auvergne, Clermont-Ferrand, France. Participants received a medical nutrition drink [test group; 21 g leucine-enriched whey protein, 9 g carbohydrates, 3 g fat, 800 IU cholecalciferol (vitamin D 3 ), and 628 kJ] or a noncaloric placebo (control group) before breakfast for 6 wk. Mixed muscle protein fractional synthesis rate (FSR) was measured at week 0 in the basal and postprandial state, after study product intake with a standardized breakfast with the use of l-[ 2 H 5 ]-phenylalanine tracer methodology. The longer-term effect of the medical nutrition drink was evaluated by measurement of appendicular lean mass, representing skeletal muscle mass at weeks 0 and 6, by dual-energy X-ray absorptiometry. Results: Postprandial FSR (0-240 min) was higher in the test group than in the control group [estimate of difference (ED): 0.022%/h; 95% CI: 0.010%/h, 0.035%/h; ANCOVA, P = 0.001]. The test group gained more appendicular lean mass than the control group after 6 wk (ED: 0.37 kg; 95% CI: 0.03, 0.72 kg; ANCOVA, P = 0.035), predominantly as leg lean mass (ED: 0.30 kg; 95% CI: 0.03, 0.57 kg; ANCOVA, P = 0.034). Conclusions: Supplementing breakfast with a vitamin D and leucine-enriched whey protein medical nutrition drink stimulated postprandial muscle protein

  11. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  12. Mass spectrometry analysis of proteome-wide proteolytic post-translational degradation of proteins

    OpenAIRE

    Shen, Yufeng; Hixson, Kim K.; Tolić, Nikola; Camp, David G.; Purvine, Samuel O.; Moore, Ronald J.; Smith, Richard D.

    2008-01-01

    Protein proteolytic degradation is an essential component to proper cell function and its life cycle. Here, we study the protein degradation in yeast Saccharomyces cerevisiae cells on a proteome-wide scale by detection of the intermediate peptides produced from the intracellular degradation of proteins using sequencing-based tandem mass spectrometry. By tracing the detected ~1,100 peptides and their ~200 protein substrate origins we obtain evidence for new insights into the proteome-wide prot...

  13. Characterization of Seed Storage Proteins from Chickpea Using 2D Electrophoresis Coupled with Mass Spectrometry

    OpenAIRE

    Singh, Pramod Kumar; Shrivastava, Nidhi; Chaturvedi, Krishna; Sharma, Bechan; Bhagyawant, Sameer S.

    2016-01-01

    Proteomic analysis was employed to map the seed storage protein network in landrace and cultivated chickpea accessions. Protein extracts were separated by two-dimensional gel electrophoresis (2D-GE) across a broad range 3.0–10.0 immobilized pH gradient (IPG) strips. Comparative elucidation of differentially expressed proteins between two diverse geographically originated chickpea accessions was carried out using 2D-GE coupled with mass spectrometry. A total of 600 protein spots were detected ...

  14. Analysis of Protein O-GlcNAcylation by Mass Spectrometry

    OpenAIRE

    Ma, Junfeng; Hart, Gerald W.

    2017-01-01

    O-linked β-D-N-acetylglucosamine (O-GlcNAc) addition (O-GlcNAcylation), a post-translational modification of serine/threonine residues of proteins, is involved in diverse cellular metabolic and signaling pathways. Aberrant O-GlcNAcylation underlies the initiation and progression of multiple chronic diseases including diabetes, cancer, and neurodegenerative diseases. Numerous methods have been developed for the analysis of protein O-GlcNAcylation, but instead of discussing the classical bioche...

  15. Measurement of the mass difference between top and antitop quarks

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2012-06-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  16. ISOLTRAP Mass Measurements for Weak-Interaction Studies

    International Nuclear Information System (INIS)

    Kellerbauer, A.; Delahaye, P.; Herlert, A.; Audi, G.; Guenaut, C.; Lunney, D.; Beck, D.; Herfurth, F.; Kluge, H.-J.; Mukherjee, M.; Rodriguez, D.; Weber, C.; Yazidjian, C.; Blaum, K.; Bollen, G.; Schwarz, S.; George, S.; Schweikhard, L.

    2006-01-01

    The conserved-vector-current (CVC) hypothesis of the weak interaction and the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix are two fundamental postulates of the Standard Model. While existing data on CVC supports vector current conservation, the unitarity test of the CKM matrix currently fails by more than two standard deviations. High-precision mass measurements performed with the ISOLTRAP experiment at ISOLDE/CERN provide crucial input for these fundamental studies by greatly improving our knowledge of the decay energy of super-allowed β decays. Recent results of mass measurements on the β emitters 18Ne, 22Mg, 34Ar, and 74Rb as pertaining to weak-interaction studies are presented

  17. Measurement of Top Mass and Properties with the ATLAS Detector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    The extraordinary success of the LHC in delivering proton-proton collisions with large integrated luminosity allows the study of top-quark-enriched data samples with unprecedented statistics. This opens new possibilities for the assessment and further refinements of detector performance, and of data analysis tools. At the same time, different aspects of top-quark event modeling, as implemented in Monte Carlo simulations, can be tested and confronted with data with impressive precision. As an example, the description of the extra QCD radiation accompanying the top-anti-top system can be refined based on measurements. In this context, the experimental challenges and recent results on precision top-quark physics measurements within the ATLAS experiment are summarized and reviewed. In particular, the recent ATLAS top-quark mass result, obtained using a three dimensional template method, which allows the simultaneous determination of the top-quark mass together with a global jet energy scale factor (JSF), and a ...

  18. Measurement of the mass difference between top and antitop quarks

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Sunil; Cerny, Karel; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Reis, Thomas; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Custódio, Analu; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Siguang; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Millischer, Laurent; Nayak, Aruna; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dobrzynski, Ludwik; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Beauceron, Stephanie; Beaupere, Nicolas; Bondu, Olivier; Boudoul, Gaelle; Brun, Hugues; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Viret, Sébastien; Tsamalaidze, Zviad; Anagnostou, Georgios; Beranek, Sarah; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Lingemann, Joschka; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Weber, Martin; Bontenackels, Michael; Cherepanov, Vladimir; Davids, Martina; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Aldaya Martin, Maria; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Castro, Elena; Costanza, Francesco; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Fischer, David; Flucke, Gero; Geiser, Achim; Glushkov, Ivan; Habib, Shiraz; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Rosin, Michele; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Erfle, Joachim; Gebbert, Ulla; Görner, Martin; Hermanns, Thomas; Höing, Rebekka Sophie; Kaschube, Kolja; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Nowak, Friederike; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schröder, Matthias; Schum, Torben; Seidel, Markus; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Berger, Joram; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Röcker, Steffen; Saout, Christophe; Scheurer, Armin; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Saoulidou, Niki; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Krajczar, Krisztian; Radics, Balint; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Jasbir; Singh, Supreet Pal; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ashok; Kumar, Arun; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Sarkar, Subir; Abdulsalam, Abdulla; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Ganguly, Sanmay; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Hesari, Hoda; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Dogangun, Oktay; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Gasparini, Fabrizio; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Taroni, Silvia; Azzurri, Paolo; Bagliesi, Giuseppe; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Palmonari, Francesco; Rizzi, Andrea; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Fanelli, Cristiano; Grassi, Marco; Longo, Egidio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Sigamani, Michael; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Visca, Lorenzo; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Heo, Seong Gu; Kim, Tae Yeon; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dong-Chul; Son, Taejin; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Jo, Hyun Yong; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Seo, Eunsung; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Cho, Yongjin; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Martínez-Ortega, Jorge; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Bell, Alan James; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Bialkowska, Helena; Boimska, Bozena; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Seixas, Joao; Varela, Joao; Vischia, Pietro; Belotelov, Ivan; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Erofeeva, Maria; Gavrilov, Vladimir; Kossov, Mikhail; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Popov, Andrey; Sarycheva, Ludmila; Savrin, Viktor; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Piedra Gomez, Jonatan; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Georgiou, Georgios; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Govoni, Pietro; Gowdy, Stephen; Guida, Roberto; Hansen, Magnus; Harris, Philip; Hartl, Christian; Harvey, John; Hegner, Benedikt; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Kousouris, Konstantinos; Lecoq, Paul; Lenzi, Piergiulio; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Polese, Giovanni; Quertenmont, Loic; Racz, Attila; Reece, William; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Spiropulu, Maria; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Worm, Steven; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Bäni, Lukas; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Chen, Zhiling; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Dünser, Marc; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Lecomte, Pierre; Lustermann, Werner; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Stieger, Benjamin; Takahashi, Maiko; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Hannsjoerg Artur; Wehrli, Lukas; Aguilo, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Robmann, Peter; Snoek, Hella; Tupputi, Salvatore; Verzetti, Mauro; Chang, Yuan-Hann; Chen, Kuan-Hsin; Go, Apollo; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Singh, Anil; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Hos, Ilknur; Kangal, Evrim Ersin; Karapinar, Guler; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Latife Nukhet; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Cankocak, Kerem; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Jackson, James; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Bainbridge, Robert; Ball, Gordon; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Hatakeyama, Kenichi; Liu, Hongxuan; Scarborough, Tara; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Gardner, Michael; Houtz, Rachel; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Mall, Orpheus; Miceli, Tia; Nelson, Randy; Pellett, Dave; Rutherford, Britney; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Andreev, Valeri; Cline, David; Cousins, Robert; Duris, Joseph; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Dinardo, Mauro Emanuele; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Paramesvaran, Sudarshan; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Mangano, Boris; Muelmenstaedt, Johannes; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Liu, Yueh-Feng; Paulini, Manfred; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Agostino, Lorenzo; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Green, Dan; Gutsche, Oliver; Hahn, Alan; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kilminster, Benjamin; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Lincoln, Don; Lipton, Ron; Lueking, Lee; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Remington, Ronald; Rinkevicius, Aurelijus; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Evdokimov, Olga; Garcia-Solis, Edmundo Javier; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Chung, Kwangzoo; Clarida, Warren; Duru, Firdevs; Griffiths, Scott; Lae, Chung Khim; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Guo, Zijin; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Radicci, Valeria; Sanders, Stephen; Stringer, Robert; Tinti, Gemma; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-Fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Peterman, Alison; Rossato, Kenneth; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Velicanu, Dragos; Wenger, Edward Allen; Wolf, Roger; Wyslouch, Bolek; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Franzoni, Giovanni; Gude, Alexander; Haupt, Jason; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Cremaldi, Lucien Marcus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Jindal, Pratima; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Brinkerhoff, Andrew; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Warchol, Jadwiga; Wayne, Mitchell; Wolf, Matthias; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Hill, Christopher; Hughes, Richard; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Vuosalo, Carl; Williams, Grayson; Winer, Brian L; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Laird, Edward; Lopes Pegna, David; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Vidal Marono, Miguel; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Guragain, Samir; Parashar, Neeti; Adair, Antony; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Korjenevski, Sergey; Miner, Daniel Carl; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Richards, Alan; Robles, Jorge; Rose, Keith; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Sengupta, Sinjini; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Damgov, Jordan; Dudero, Phillip Russell; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Roh, Youn; Volobouev, Igor; Appelt, Eric; Engh, Daniel; Florez, Carlos; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Pierro, Giuseppe Antonio; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua

    2012-01-01

    A measurement of the mass difference between the top and the antitop quark (Delta m(t) = m(t) - m(anti-t)) is performed using events with a muon or an electron and at least four jets in the final state. The analysis is based on data collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4.96 +/- 0.11 inverse femtobarns, and yields the value of Delta m(t) = -0.44 +/- 0.46 (stat) +/- 0.27 (syst) GeV. This result is consistent with equality of particle and antiparticle masses required by CPT invariance, and provides a significantly improved precision relative to existing measurements.

  19. Measurements of the W boson mass at the Tevatron

    International Nuclear Information System (INIS)

    Hays, C.P.

    2014-01-01

    Precise measurements of the W boson mass W test the contributions of loop corrections to the W boson propagator from e.g. the top and bottom quarks and the Higgs boson. New measurements from CDF [m W =80.387±0.012(stat)±0.015(syst) GeV] and D0 [m W =80.375±0.011(stat)±0.020(syst) GeV] are the most precise to date, significantly tightening the constraints on loops in the W boson propagator. The new world-average value of the W boson mass is m W =80.385±0.015 GeV. (author)

  20. Measuring neutrino masses with a future galaxy survey

    DEFF Research Database (Denmark)

    Hamann, Jan; Hannestad, Steen; Wong, Yvonne Y. Y.

    2012-01-01

    that the minimum mass sum of sum m_nu ~ 0.06 eV in the normal hierarchy can be detected at 1.5 sigma to 2.5 sigma significance, depending on the model complexity, using a combination of galaxy and cosmic shear power spectrum measurements in conjunction with CMB temperature and polarisation observations from Planck....... With better knowledge of the galaxy bias, the significance of the detection could potentially reach 5.4 sigma. Interestingly, neither Planck+shear nor Planck+galaxy alone can achieve this level of sensitivity; it is the combined effect of galaxy and cosmic shear power spectrum measurements that breaks......) in the parameter estimation is induced by fitting inaccurate models of the neutrino mass splittings to the mock data, nor does the goodness-of-fit of these models suffer any significant degradation relative to the true one (Delta chi_eff ^2

  1. Mass transfer effects in hygroscopic measurements of aerosol particles

    Directory of Open Access Journals (Sweden)

    M. N. Chan

    2005-01-01

    Full Text Available The tandem differential mobility analyzer (TDMA has been widely utilized to measure the hygroscopicity of laboratory-generated and atmospheric submicrometer particles. An important concern in investigating the hygroscopicity of the particles is if the particles have attained equilibrium state in the measurements. We present a literature survey to investigate the mass transfer effects in hygroscopicity measurements. In most TDMA studies, a residence time in the order of seconds is used for humidification (or dehumidification. NaCl and (NH42SO4 particles are usually used to verify the equilibrium measurements during this residence time, which is presumed to be sufficient for other particles. There have been observations that not all types of submicrometer particles, including atmospheric particles, attain their equilibrium sizes within this time scale. We recommend that experimentation with different residence times be conducted and that the residence time should be explicitly stated in future TDMA measurements. Mass transfer effects may also exist in the measurements of other properties related to the water uptake of atmospheric particles such as relative humidity dependent light scattering coefficients and cloud condensation nuclei activity.

  2. Studying Protein-Protein Interactions by Biotin AP-Tagged Pulldown and LTQ-Orbitrap Mass Spectrometry.

    Science.gov (United States)

    Xie, Zhongqiu; Jia, Yuemeng; Li, Hui

    2017-01-01

    The study of protein-protein interactions represents a key aspect of biological research. Identifying unknown protein binding partners using mass spectrometry (MS)-based proteomics has evolved into an indispensable strategy in drug discovery. The classic approach of immunoprecipitation with specific antibodies against the proteins of interest has limitations, such as the need for immunoprecipitation-qualified antibody. The biotin AP-tag pull-down system has the advantage of high specificity, ease of use, and no requirement for antibody. It is based on the high specificity, high affinity interaction between biotin and streptavidin. After pulldown, in-gel tryptic digestion and tandem mass spectrometry (MS/MS) analysis of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) protein bands can be performed. In this work, we provide protocols that can be used for the identification of proteins that interact with FOXM1, a protein that has recently emerged as a potential biomarker and drug target in oncotherapy, as an example. We focus on the pull-down procedure and assess the efficacy of the pulldown with known FOXM1 interactors such as β-catenin. We use a high performance LTQ Orbitrap MSn system that combines rapid LTQ ion trap data acquisition with high mass accuracy Orbitrap analysis to identify the interacting proteins.

  3. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John

    2014-01-16

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  4. Role of protein and amino acids in promoting lean mass accretion with resistance exercise and attenuating lean mass loss during energy deficit in humans.

    Science.gov (United States)

    Churchward-Venne, Tyler A; Murphy, Caoileann H; Longland, Thomas M; Phillips, Stuart M

    2013-08-01

    Amino acids are major nutrient regulators of muscle protein turnover. After protein ingestion, hyperaminoacidemia stimulates increased rates of skeletal muscle protein synthesis, suppresses muscle protein breakdown, and promotes net muscle protein accretion for several hours. These acute observations form the basis for strategized protein intake to promote lean mass accretion, or prevent lean mass loss over the long term. However, factors such as protein dose, protein source, and timing of intake are important in mediating the anabolic effects of amino acids on skeletal muscle and must be considered within the context of evaluating the reported efficacy of long-term studies investigating protein supplementation as part of a dietary strategy to promote lean mass accretion and/or prevent lean mass loss. Current research suggests that dietary protein supplementation can augment resistance exercise-mediated gains in skeletal muscle mass and strength and can preserve skeletal muscle mass during periods of diet-induced energy restriction. Perhaps less appreciated, protein supplementation can augment resistance training-mediated gains in skeletal muscle mass even in individuals habitually consuming 'adequate' (i.e., >0.8 g kg⁻¹ day⁻¹) protein. Additionally, overfeeding energy with moderate to high-protein intake (15-25 % protein or 1.8-3.0 g kg⁻¹ day⁻¹) is associated with lean, but not fat mass accretion, when compared to overfeeding energy with low protein intake (5 % protein or ~0.68 g kg⁻¹ day⁻¹). Amino acids represent primary nutrient regulators of skeletal muscle anabolism, capable of enhancing lean mass accretion with resistance exercise and attenuating the loss of lean mass during periods of energy deficit, although factors such as protein dose, protein source, and timing of intake are likely important in mediating these effects.

  5. LEAD SLOWING DOWN SPECTROSCOPY FOR DIRECT Pu MASS MEASUREMENTS

    International Nuclear Information System (INIS)

    Ressler, Jennifer J.; Smith, Leon E.; Anderson, Kevin K.

    2008-01-01

    The direct measurement of Pu in previously irradiated fuel assemblies is a recognized need in the international safeguards community. A suitable technology could support more timely and independent material control and accounting (MC and A) measurements at nuclear fuel storage areas, the head-end of reprocessing facilities, and at the product-end of recycled fuel fabrication. Lead slowing down spectroscopy (LSDS) may be a viable solution for directly measuring not only the mass of 239Pu in fuel assemblies, but also the masses of other fissile isotopes such as 235U and 241Pu. To assess the potential viability of LSDS, an LSDS spectrometer was modeled in MCNP5 and 'virtual assays' of nominal PWR assemblies ranging from 0 to 60 GWd/MTU burnup were completed. Signal extraction methods, including the incorporation of nonlinear fitting to account for self-shielding effects in strong resonance regions, are described. Quantitative estimates of Pu uncertainty are given for simplistic and more realistic fuel isotopic inventories calculated using ORIGEN. A discussion of additional signal-perturbing effects that will be addressed in future work, and potential signal extraction approaches that could improve Pu mass uncertainties, are also discussed

  6. Interrogating the architecture of protein assemblies and protein interaction networks by cross-linking mass spectrometry

    NARCIS (Netherlands)

    Liu, Fan; Heck, Albert J R

    2015-01-01

    Proteins are involved in almost all processes of the living cell. They are organized through extensive networks of interaction, by tightly bound macromolecular assemblies or more transiently via signaling nodes. Therefore, revealing the architecture of protein complexes and protein interaction

  7. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    International Nuclear Information System (INIS)

    Breitenfeldt, Martin

    2009-01-01

    In the present work, mass determinations of the eleven neutron-deficient nuclides 99-109 Cd, of ten neutron-rich silver nuclides 112,114-121,123 Ag, and seven neutron-rich cadmium nuclides 114,120,122-124,126,128 Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of 99 Cd and 123 Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of 100 Cd. In the case of a potential isomeric mixture as for 115,117,119 Ag and 123 Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for 115,117,119 Ag and 123 Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH + ] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass 96 Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of 100 In were obtained. These mass measurements are an important step towards an understanding of the physics of the rp process that will enable a more reliable determination of

  8. In Cell Footprinting Coupled with Mass Spectrometry for the Structural Analysis of Proteins in Live Cells.

    Science.gov (United States)

    Espino, Jessica A; Mali, Vishaal S; Jones, Lisa M

    2015-08-04

    Protein footprinting coupled with mass spectrometry has become a widely used tool for the study of protein-protein and protein-ligand interactions and protein conformational change. These methods provide residue-level analysis on protein interaction sites and have been successful in studying proteins in vitro. The extension of these methods for in cell footprinting would open an avenue to study proteins that are not amenable for in vitro studies and would probe proteins in their native environment. Here we describe the application of an oxidative-based footprinting approach inside cells in which hydroxyl radicals are used to oxidatively modify proteins. Mass spectrometry is used to detect modification sites and to calculate modification levels. The method is probing biologically relevant proteins in live cells, and proteins in various cellular compartments can be oxdiatively modified. Several different amino acid residues are modified making the method a general labeling strategy for the study of a variety of proteins. Further, comparison of the extent of oxidative modification with solvent accessible surface area reveals the method successfully probes solvent accessibility. This marks the first time protein footprinting has been performed in live cells.

  9. A measurement of Rb using a lifetime-mass tag

    Science.gov (United States)

    Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Comas, P.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Alemany, R.; Becker, U.; Bazarko, A. O.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Mato, P.; Minten, A.; Moneta, L.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Thomson, F.; Turnbull, R. M.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Ghete, V. M.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Coyle, P.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Leroy, O.; Motsch, F.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Berlich, R.; Blum, W.; Brown, D.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; St. Denis, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Chen, S.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Schune, M.-H.; Simion, S.; Tournefier, E.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A.; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zobernig, G.

    1997-02-01

    ALEPH's published measurement of Rb = Γ(Z -> bb)/Γ(Z -> hadrons) using a lifetime tag is updated using the full LEP 1 data sample. Considerable effort has been devoted to understanding systematic effects. Charm background is better controlled by combining the lifetime tag with a tag based on the b/c hadron mass difference. Furthermore, the algorithm used to reconstruct the event primary vertex is designed so as to reduce correlations between the two hemispheres of an event. The value of Rb is measured to be 0.2167 +/- 0.0011 (stat) +/- 0.0013 (syst).

  10. Mise-a-la-Masse Measurements at Olkiluoto in 2010

    International Nuclear Information System (INIS)

    Tarvainen, A.-M.

    2010-10-01

    Suomen Malmi Oy carried out Mise-a-la-Masse measurements at Olkiluoto site in Eurajoki during March-June 2010. The survey consisted of measurements in 9 drillholes and on 76 surface profiles. The measured drillholes were OL-KR11, OL-KR40, OLKR44, OL-KR45 and OL-KR49..OL-KR53. Surface measurements were carried out at 4 different areas. Current electrodes were placed in drillholes OL-KR49 - OL-KR53. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work. This report describes the field operation, the equipment and shows the obtained results and their quality. The raw and processed data are delivered digitally in Microsoft Ecxel format. (orig.)

  11. Reproducibility of mass spectrometry based protein profiles for diagnosis of breast cancer across clinical studies

    DEFF Research Database (Denmark)

    Callesen, Anne Kjærgaard; Vach, Werner; Jørgensen, Per E

    2008-01-01

    Serum protein profiling by mass spectrometry has achieved attention as a promising technology in oncoproteomics. We performed a systematic review of published reports on protein profiling as a diagnostic tool for breast cancer. The MEDLINE, EMBASE, and COCHRANE databases were searched for original...... studies reporting discriminatory protein peaks for breast cancer as either protein identity or as m/ z values in the period from January 1995 to October 2006. To address the important aspect of reproducibility of mass spectrometry data across different clinical studies, we compared the published lists...... of potential discriminatory peaks with those peaks detected in an original MALDI MS protein profiling study performed by our own research group. A total of 20 protein/peptide profiling studies were eligible for inclusion in the systematic review. Only 3 reports included information on protein identity...

  12. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  13. Detection and quantification of proteins and cells by use of elemental mass spectrometry: progress and challenges.

    Science.gov (United States)

    Yan, Xiaowen; Yang, Limin; Wang, Qiuquan

    2013-07-01

    Much progress has been made in identification of the proteins in proteomes, and quantification of these proteins has attracted much interest. In addition to popular tandem mass spectrometric methods based on soft ionization, inductively coupled plasma mass spectrometry (ICPMS), a typical example of mass spectrometry based on hard ionization, usually used for analysis of elements, has unique advantages in absolute quantification of proteins by determination of an element with a definite stoichiometry in a protein or attached to the protein. In this Trends article, we briefly describe state-of-the-art ICPMS-based methods for quantification of proteins, emphasizing protein-labeling and element-tagging strategies developed on the basis of chemically selective reactions and/or biospecific interactions. Recent progress from protein to cell quantification by use of ICPMS is also discussed, and the possibilities and challenges of ICPMS-based protein quantification for universal, selective, or targeted quantification of proteins and cells in a biological sample are also discussed critically. We believe ICPMS-based protein quantification will become ever more important in targeted quantitative proteomics and bioanalysis in the near future.

  14. Identification of Secreted Candida Proteins Using Mass Spectrometry

    NARCIS (Netherlands)

    Gómez-Molero, E.; Dekker, H.L.; de Boer, A.D.; de Groot, P.W.; Calderone, R.; Cihlar, R.

    2016-01-01

    Analysis of fungal secretomes using mass spectrometry is a useful technique in cell biology. Knowledge of the secretome of a human fungal pathogen may yield important information of host-pathogen interactions and may be useful for identifying vaccines candidates or diagnostic markers for antifungal

  15. Measurements of the top quark mass with the ATLAS detector

    CERN Document Server

    Nisius, Richard; The ATLAS collaboration

    2017-01-01

    The measurements of the top quark mass given are obtained from ATLAS data taken at proton--proton centre-of-mass energies of $\\sqrt{s}=7$ and $8$ TeV. An extraction of the top quark pole mass ($m_{\\mathrm{top}}^{\\mathrm{pole}}$) at next-to-leading order (NLO) is presented. This result is obtained from normalised differential cross-sections in the $t\\bar{t}\\to\\mbox{dilepton}$ channel leading to: $m_{\\mathrm{top}}^{\\mathrm{pole}} = 173.2 \\pm 0.9 (\\mathrm{stat.}) \\pm 0.8 (\\mathrm{syst.}) \\pm 1.2 (\\mathrm{theo.})$ GeV. In addition, measurements of $m_{\\mathrm{top}}$ are discussed that are based on the template method performed in three $t\\bar{t}$ decay channels. For all results the uncertainty is dominated by systematic effects. Finally, the 2016 ATLAS combined value of $m_{\\mathrm{top}}$ is: $m_{\\mathrm{top}}=172.84 \\pm 0.34 (\\mathrm{stat.}) \\pm 0.61 (\\mathrm{syst.})$ GeV, with a total uncertainty of 0.70 GeV, i.e.a precision of 0.4$\\%$.

  16. The measurement of the W boson mass from CDF

    International Nuclear Information System (INIS)

    1994-06-01

    Recent results from LEP experiments have substantially improved the knowledge of the Z boson. However, hadron colliders remain the only source of direct measurements of the W boson. There have been measurements of the W boson mass from the UA2 and CDF collaborations. The W mass continues to be a subject of great interest in testing the Standard Model. Here, the authors have made a preliminary determination of the W boson mass M W = 80.38 ± 0.23 GeV/c 2 from a combined analysis of W → eν and W → μν in anti pp collisions at √s = 1.8 TeV. The electron data alone yields M W = 80.47 ± 0.15(stat.) ± 0.25(syst.) GeV/c 2 , while the muon data gives M W = 80.29 ± 0.20(stat.) ± 0.24(syst.) GeV/c 2

  17. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins.

    Science.gov (United States)

    Min, Kyueng-Whan; Bang, Joo-Young; Kim, Kwang Pyo; Kim, Wan-Seop; Lee, Sang Hwa; Shanta, Selina Rahman; Lee, Jeong Hwa; Hong, Ji Hye; Lim, So Dug; Yoo, Young-Bum; Na, Chan-Hyun

    2014-07-01

    Direct tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization and time-of-flight (MALDI-TOF) mass spectrometry has become increasingly important in biology and medicine, because this technology can detect the relative abundance and spatial distribution of interesting proteins in tissues. Five thyroid cancer samples, along with normal tissue, were sliced and transferred onto conductive glass slides. After laser scanning by MALDI-TOF equipped with a smart beam laser, images were created for individual masses and proteins were classified at 200-µm spatial resolution. Based on the spatial distribution, region-specific proteins on a tumor lesion could be identified by protein extraction from tumor tissue and analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using all the spectral data at each spot, various intensities of a specific peak were detected in the tumor and normal regions of the thyroid. Differences in the molecular weights of expressed proteins between tumor and normal regions were analyzed using unsupervised and supervised clustering. To verify the presence of discovered proteins through IMS, we identified ribosomal protein P2, which is specific for cancer. We have demonstrated the feasibility of IMS as a useful tool for the analysis of tissue sections, and identified the tumor-specific protein ribosomal protein P2.

  18. A PRECISE MASS MEASUREMENT OF THE INTERMEDIATE-MASS BINARY PULSAR PSR J1802 - 2124

    International Nuclear Information System (INIS)

    Ferdman, R. D.; Cognard, I.; Desvignes, G.; Theureau, G.; Stairs, I. H.; Kramer, M.; McLaughlin, M. A.; Lorimer, D. R.; Nice, D. J.; Manchester, R. N.; Hobbs, G.; Lyne, A. G.; Faulkner, A.; Camilo, F.; Possenti, A.; Demorest, P. B.; Backer, D. C.

    2010-01-01

    PSR J1802 - 2124 is a 12.6 ms pulsar in a 16.8 hr binary orbit with a relatively massive white dwarf (WD) companion. These properties make it a member of the intermediate-mass class of binary pulsar (IMBP) systems. We have been timing this pulsar since its discovery in 2002. Concentrated observations at the Green Bank Telescope, augmented with data from the Parkes and Nancay observatories, have allowed us to determine the general relativistic Shapiro delay. This has yielded pulsar and WD mass measurements of 1.24 ± 0.11 M sun and 0.78 ± 0.04 M sun (68% confidence), respectively. The low mass of the pulsar, the high mass of the WD companion, the short orbital period, and the pulsar spin period may be explained by the system having gone through a common-envelope phase in its evolution. We argue that selection effects may contribute to the relatively small number of known IMBPs.

  19. Modal response of interior mass based upon external measurements

    International Nuclear Information System (INIS)

    Chow, C T; Eli, M; Jorgensen, B R; Woehrle, T.

    1999-01-01

    Modal response testing has been used to predict the motion of interior masses of a system in which only external instrumentation is allowed. Testing of this form may occasionally be necessary in validation of a computer model, but also has potential as a tool for validating individual assemblies in a QA process. Examination of the external frequency response and mode shapes can offer insight into interior response. The interpretation of these results is improved through parallel analytical solutions. A simple, three-mass model has been examined experimentally and analytically to demonstrate modal theory. These results show the limitations of the external measurement in predicting internal response due to transmissibility. A procedure for utilizing external testing is described. The question posed through this research is whether or not modal correlation analysis can be adapted for use in systems for which instrumentation of critical components is missing

  20. Top quark mass measurements: how precise does it get?

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The mass of the top quark is a fundamental parameter of the Standard Model and has to be determined experimentally. Its precise knowledge can be used to constrain new physics models or to check the internal consistency of the Standard Model. Dramatic improvements in experimental techniques over the last years allowed to achieve an unprecedented uncertainty of below 0.5%. In this talk, I present a legacy measurement of the top quark mass performed in lepton+jets final states using the full dataset of proton-antiproton collisions recorded by the DZero detector in Run II at the Tevatron collider, which achieves a relative precision of 0.43%, and outline the perspectives for future improvements at the LHC.

  1. Prospects of top quark mass measurement with ATLAS detector

    International Nuclear Information System (INIS)

    Roy, Pierrick

    2002-01-01

    This document presents the work done to instrument the 'Super-Drawer', supports of the front-end electronics of the Tile Calorimeter, as well as the preparatory analysis of the top quark mass measurement with ATLAS detector. Initially the instrumental part exposes the various stages having led to the instrumentation. This required upstream a phase named integration, where methods were developed to cope with space and ergonomic constraints during the assembly of the Super-Drawers. The experience accumulated in this fast phase allowed the drafting of the protocol of assembly of the Super-Drawers and the installation of the two assembly lines. The first ten Super-Drawers were thus produced for the 2001 test- beam period, and the continuous production of the 260 remaining Super-Drawers must start in June 2002. In the analysis part, this thesis deals with the precise measurement of the top quark mass in the lepton plus jets channel. It is initially shown that systematic uncertainties will dominate the precision on the measurement, in particular the knowledge of the jet energy scale as well as the final state radiations, leading to a total covariance of approximately 2 GeV. It is then shown that the same events can be used for the energy calibration of the light jets to better than 1%. Finally, the use of a kinematic fit should make it possible to reduce the impact of the effects due to the knowledge of the energy scale of light jets as well as of radiations in the final state. A total uncertainty to the measurement of the top mass less than 1 GeV appears possible in one year of data acquisition at low luminosity, this uncertainty being dominated by that of the b-quark jet energy scale, assumed to be of 1%. (author)

  2. Mass spectrometric detection of proteins in non-aqueous media : the case of prion proteins in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Douma, M.D.; Kerr, G.M.; Brown, R.S.; Keller, B.O.; Oleschuk, R.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2008-08-15

    This paper presented a filtration method for detecting protein traces in non-aqueous media. The extraction technique used a mixture of acetonitrile, non-ionic detergent and water along with filter disks with embedded C{sub 8}-modified silica particles to capture the proteins from non-aqueous samples. The extraction process was then followed by an elution of the protein from the filter disk and direct mass spectrometric detection and tryptic digestion with peptide mapping and MS/MS fragmentation of protein-specific peptides. The method was used to detect prion proteins in spiked biodiesel samples. A tryptic peptide with the sequence YGQGSPGGNR was used for unambiguous identification. Results of the study showed that the method is suitable for the large-scale testing of protein impurities in tallow-based biodiesel production processes. 33 refs., 6 figs.

  3. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  4. Mass Properties Measurement in the X-38 Project

    Science.gov (United States)

    Peterson, Wayne L.

    2004-01-01

    This paper details the techniques used in measuring the mass properties for the X-38 family of test vehicles. The X-38 Project was a NASA internal venture in which a series of test vehicles were built in order to develop a Crew Return Vehicle (CRV) for the International Space Station. Three atmospheric test vehicles and one spaceflight vehicle were built to develop the technologies required for a CRV. The three atmospheric test vehicles have undergone flight-testing by a combined team from the NASA Johnson Space Center and the NASA Dryden Flight Research Center. The flight-testing was performed at Edward's Air Force Base in California. The X-38 test vehicles are based on the X-24A, which flew in the '60s and '70s. Scaled Composites, Inc. of Mojave, California, built the airframes and the vehicles were outfitted at the NASA Johnson Space Center in Houston, Texas. Mass properties measurements on the atmospheric test vehicles included weight and balance by the three-point suspension method, four-point suspension method, three load cells on jackstands, and on three in-ground platform scales. Inertia measurements were performed as well in which Ixx, Iyy, Izz, and Ixz were obtained. This paper describes each technique and the relative merits of each. The proposed measurement methods for an X-38 spaceflight test vehicle will also be discussed. This vehicle had different measurement challenges, but integrated vehicle measurements were never conducted. The spaceflight test vehicle was also developed by NASA and was scheduled to fly on the Space Shuttle before the project was cancelled.

  5. Measurement of the charged kaon mass with the MIPP RICH

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Nicholas J. [Indiana Univ., Bloomington, IN (United States)

    2008-08-01

    The currently accepted value of the charged kaon mass is 493.677 ± 0.013 MeV (26 ppm). It is a weighted average of six measurements, most of which use kaonic atom X-ray energy techniques. The two most recent and precise results dominate the average but differ by 122 ppm. Inconsistency in the data set needs to be resolved, preferably using independent techniques. One possibility uses the Cherenkov effect. A measurement of the charged kaon mass using this technique is presented. The data was taken with the Main Injector Particle Production experiment at Fermi National Accelerator Laboratory using a tagged beam of protons, kaons, and pions ranging in momentum from 37 GeV/c to 63 GeV/c. The measured value is 491.3 ± 1.7 MeV. This is within 1.4σ of the current value. An improvement in precision by a factor of 35 would make this technique competitive for resolving the ambiguity in the X-ray data.

  6. Measurement of the effective plasma ion mass in large tokamaks

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-01-01

    There is not yet a straightforward method for the measurement of the D-T ratio in the centre of a tokamak plasma. One of the simpler measurements put forward in the past is the interpretation of the MHD spectrum in the frequency range of the Global Alfven Eigenmodes (GAE). However, the frequencies of these modes do not only depend on the plasma mass, but are also quite strongly dependent on the details of the current and density profiles, creating a problem of deconvolution of the estimate of the plasma mass from an implicit relationship between several measurable plasma parameters and the detected eigenmode frequencies. This method has been revised to assess its likely precision for the JET tokamak. The low n GAE modes are sometimes too close to the continuum edge to be detectable and the interpretation of the GAE spectrum is rendered less direct than had been hoped. We present a statistical study on the precision with which the D-T ratio could be estimated from the GAE spectrum on JET. (author) 4 figs., 8 refs

  7. First Direct Mass Measurements of Nuclides around Z =100 with a Multireflection Time-of-Flight Mass Spectrograph

    Science.gov (United States)

    Ito, Y.; Schury, P.; Wada, M.; Arai, F.; Haba, H.; Hirayama, Y.; Ishizawa, S.; Kaji, D.; Kimura, S.; Koura, H.; MacCormick, M.; Miyatake, H.; Moon, J. Y.; Morimoto, K.; Morita, K.; Mukai, M.; Murray, I.; Niwase, T.; Okada, K.; Ozawa, A.; Rosenbusch, M.; Takamine, A.; Tanaka, T.; Watanabe, Y. X.; Wollnik, H.; Yamaki, S.

    2018-04-01

    The masses of 246Es, 251Fm, and the transfermium nuclei Md-252249 and 254No, produced by hot- and cold-fusion reactions, in the vicinity of the deformed N =152 neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectrograph. The masses of 246Es and 249,250,252Md were measured for the first time. Using the masses of Md,250249 as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ2 n derived from three isotopic masses was updated with the new masses and corroborates the existence of the deformed N =152 neutron shell closure for Md and Lr.

  8. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    DEFF Research Database (Denmark)

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    . Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes...

  9. Absolute quantitation of proteins by Acid hydrolysis combined with amino Acid detection by mass spectrometry

    DEFF Research Database (Denmark)

    Mirgorodskaya, Olga A; Körner, Roman; Kozmin, Yuri P

    2012-01-01

    Amino acid analysis is among the most accurate methods for absolute quantification of proteins and peptides. Here, we combine acid hydrolysis with the addition of isotopically labeled standard amino acids and analysis by mass spectrometry for accurate and sensitive protein quantitation...

  10. Probing protein interactions with hydrogen/deuterium exchange and mass spectrometry—A review

    International Nuclear Information System (INIS)

    Percy, Andrew J.; Rey, Martial; Burns, Kyle M.; Schriemer, David C.

    2012-01-01

    Highlights: ► Protein chemistry generates mass shifts useful for structure–function studies. ► H/DX supports a powerful mass shift method for protein interaction analysis. ► H/DX mass shifts are useful for determining binding data (K d , off-rates). ► Improved H/DX–MS workflows can accommodate complex protein systems. - Abstract: Assessing the functional outcome of protein interactions in structural terms is a goal of structural biology, however most techniques have a limited capacity for making structure–function determinations with both high resolution and high throughput. Mass spectrometry can be applied as a reader of protein chemistries in order to fill this void, and enable methodologies whereby protein structure–function determinations may be made on a proteome-wide level. Protein hydrogen/deuterium exchange (H/DX) offers a chemical labeling strategy suitable for tracking changes in “dynamic topography” and thus represents a powerful means of monitoring protein structure–function relationships. This review presents the exchange method in the context of interaction analysis. Applications involving interface detection, quantitation of binding, and conformational responses to ligation are discussed, and commentary on recent analytical developments is provided.

  11. Measurement of the mass of the $\\Lambda_{b}$ baryon

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Palla, Fabrizio; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Wildish, T; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    In a data sample of four million hadronic \\Z\\ decays collected with the ALEPH detector at LEP, four $\\Lambda_b$ baryon candidates are exclusively reconstructed in the $\\Lambda_b \\rightarrow \\Lambda_c^+ \\pi^-$ channel, with the $\\Lambda_c^+$ decaying into $pK^-\\pi^+$, $p\\bar{K^0}$, or $\\Lambda\\pi^+\\pi^+\\pi^-$. The probability of the observed signal to be due to a background fluctuation is estimated to be $4.2 \\times 10^{-4}$. The mass of the $\\Lambda_b$ is measured to be $5614 \\pm 21 \\, (stat.) \\pm 4 \\, (syst.)~\\mevcc$. %$5614\\pm 21\\,(stat.) \\pm 4\\,(syst.) \\mevcc$.

  12. MASS MEASUREMENTS OF ISOLATED OBJECTS FROM SPACE-BASED MICROLENSING

    DEFF Research Database (Denmark)

    Zhu, Wei; Novati, S. Calchi; Gould, A.

    2016-01-01

    lies behind the same amount of dust as the Bulge red clump, we find the lens is a 45 ± 7 {M}{{J}} BD at 5.9 ± 1.0 kpc. The lens of of the second event, OGLE-2015-BLG-0763, is a 0.50 ± 0.04 {M}⊙ star at 6.9 ± 1.0 kpc. We show that the probability to definitively measure the mass of isolated microlenses...... is dramatically increased once simultaneous ground- and space-based observations are conducted....

  13. Measurement of the mass of the Λb baryon

    Science.gov (United States)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Pacheco, A.; Padilla, C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Palla, F.; Pater, J. R.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Wildish, T.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Rensch, B.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Greene, A. M.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Abt, I.; Assmann, R.; Bauer, C.; Blum, W.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Jakobs, K.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Park, I. C.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Büscher, V.; Cowan, G.; Grupen, C.; Lutters, G.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Bellantoni, L.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Harton, J. L.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I. J.; Sharma, V.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    In a data sample of four million hadronic Z decays collected with the ALEPH detector at LEP, four Λb baryon candidates are exclusively reconstructed in the Λb → Λc+π- channel, with the Λc+ decaying into pK-π+, p overlineK0, or Λπ+π+π-. The probability of the observed signal to be due to a background fluctuation is estimated to be 4.2 × 10 -4. The mass of the Λb is measured to be 5614±21 (stat.) ± 4 (syst.) MeV/ c2.

  14. Charge, mass and energy measured in the Plastic Ball

    International Nuclear Information System (INIS)

    Gustafsson, H.A.; Gutbrod, H.H.; Kolb, B.

    1984-01-01

    In relativistic nuclear collisions the multiplicity of charged particles reflects the violence of the reaction and, presumably, the impact parameter. Furthermore, the total transverse energy in a collision might be a signature of compression. Both quantities are global features that can be measured in the Plastic Ball. The total mass in an event in light charge fragments can be detected (with assumptions made in certain kinematic regions) through particle identification. In addition, the neutron detection efficiency is quite high because of the large thickness of the plastic scintillator in the Plastic Ball. Here the authors present several global quantities for the reaction of 400 MeV/nucleon Nb + Nb

  15. Mass measurements on short-lived Cd and Ag nuclides at the online mass spectrometer ISOLTRAP

    Energy Technology Data Exchange (ETDEWEB)

    Breitenfeldt, Martin

    2009-07-03

    In the present work, mass determinations of the eleven neutron-deficient nuclides {sup 99-109}Cd, of ten neutron-rich silver nuclides {sup 112,114-121,123}Ag, and seven neutron-rich cadmium nuclides {sup 114,120,122-124,126,128}Cd are reported. Due to the clean production of the neutron-deficient nuclides it was possible to reduce the experimental uncertainties down to 2 keV, whereas the measurements of neutron-rich nuclides were hampered by the presence of contaminations from more stable In and Cs nuclides. In the case of {sup 99}Cd and {sup 123}Ag the masses were determined for the first time and for the other nuclides the mass uncertainties could be reduced by up to a factor of 50 as in the case of {sup 100}Cd. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of a potential isomeric mixture as for {sup 115,117,119}Ag and {sup 123}Cd, where no assignment to either the ground state or the excited state was possible, the experimental results were adjusted accordingly. Afterwards all results were included in the framework of the atomic-mass evaluation and thus linked and compared with other experimental data. In the case of the neutron-deficient Cd nuclides a conflict between the mass values obtained in the present work and those published by the JYFLTRAP group [EEH{sup +}] could be solved by performing an atomic-mass evaluation. Thus, it was revealed that reason for the conflict was a different value of the JYFLTRAP reference mass {sup 96}Mo. Furthermore, a reduction of the mass uncertainty and a slight increase of the mass of {sup 100}In were obtained. These mass measurements are an important step towards an understanding of the physics of

  16. Top Mass Measurement at CLIC at 500 GeV

    CERN Document Server

    Simon, Frank; Poss, Stephane

    2012-01-01

    We present a study of the capability of a 500 GeV e+e- collider based on CLIC technology for precision measurements of top quark properties. The analysis is based on full detector simulations of the CLIC_ILD detector concept using Geant4, including realistic background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of ttbar pairs using event samples of signal and standard model background processes corresponding to an integrated luminosity of 100/fb. Statistical uncertainties of the top mass given by the invariant mass of its decay products of 0.08 GeV and 0.09 GeV are obtained for the fully-hadronic and the semi-leptonic decay channel, respectively, demonstrating that similar precision to that at ILC can be achieved at CLIC despite less favorable experimental conditions.

  17. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  18. A new lowry's technique for quantitative measurement of protein

    International Nuclear Information System (INIS)

    Chen Ge; Zou Wenquan; Sun Jianzhong; Zhang Yanggang; Shu Bohua; Liu Shenpei; Gong Xiaoliang

    1990-01-01

    According to the queneching principle in beta ray measurement, liquid scintillation counters are used for quantitative measurement of protein. The results show linear relationship between the colored protein samples with different concentrations and the counting rate of LSC. It is proved that LSC method is less erroneous and has larger measurement range than the traditional photoelectric colorimetry, and the analysis is easy to be automatized

  19. MSX-3D: a tool to validate 3D protein models using mass spectrometry.

    Science.gov (United States)

    Heymann, Michaël; Paramelle, David; Subra, Gilles; Forest, Eric; Martinez, Jean; Geourjon, Christophe; Deléage, Gilbert

    2008-12-01

    The technique of chemical cross-linking followed by mass spectrometry has proven to bring valuable information about the protein structure and interactions between proteic subunits. It is an effective and efficient way to experimentally investigate some aspects of a protein structure when NMR and X-ray crystallography data are lacking. We introduce MSX-3D, a tool specifically geared to validate protein models using mass spectrometry. In addition to classical peptides identifications, it allows an interactive 3D visualization of the distance constraints derived from a cross-linking experiment. Freely available at http://proteomics-pbil.ibcp.fr

  20. Label-free quantitative mass spectrometry for analysis of protein antigens in a meningococcal group B outer membrane vesicle vaccine.

    Science.gov (United States)

    Dick, Lawrence W; Mehl, John T; Loughney, John W; Mach, Anna; Rustandi, Richard R; Ha, Sha; Zhang, Lan; Przysiecki, Craig T; Dieter, Lance; Hoang, Van M

    2015-01-01

    The development of a multivalent outer membrane vesicle (OMV) vaccine where each strain contributes multiple key protein antigens presents numerous analytical challenges. One major difficulty is the ability to accurately and specifically quantitate each antigen, especially during early development and process optimization when immunoreagents are limited or unavailable. To overcome this problem, quantitative mass spectrometry methods can be used. In place of traditional mass assays such as enzyme-linked immunosorbent assays (ELISAs), quantitative LC-MS/MS using multiple reaction monitoring (MRM) can be used during early-phase process development to measure key protein components in complex vaccines in the absence of specific immunoreagents. Multiplexed, label-free quantitative mass spectrometry methods using protein extraction by either detergent or 2-phase solvent were developed to quantitate levels of several meningococcal serogroup B protein antigens in an OMV vaccine candidate. Precision was demonstrated to be less than 15% RSD for the 2-phase extraction and less than 10% RSD for the detergent extraction method. Accuracy was 70 to 130% for the method using a 2-phase extraction and 90-110% for detergent extraction. The viability of MS-based protein quantification as a vaccine characterization method was demonstrated and advantages over traditional quantitative methods were evaluated. Implementation of these MS-based quantification methods can help to decrease the development time for complex vaccines and can provide orthogonal confirmation of results from existing antigen quantification techniques.

  1. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling.

    Science.gov (United States)

    Politis, Argyris; Schmidt, Carla

    2018-03-20

    Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  2. Measurement of Rb Using a Vertex Mass Tag

    International Nuclear Information System (INIS)

    Steiner, R.; Benvenuti, A.C.; Coller, J.A.; Hedges, S.J.; Johnson, A.S.; Shank, J.T.; Whitaker, J.S.; Allen, N.J.; Cotton, R.; Dervan, P.J.; Hasan, A.; McKemey, A.K.; Watts, S.J.; Caldwell, D.O.; Lu, A.; Yellin, S.J.; Cavalli-Sforza, M.; Coyne, D.G.; Fernandez, J.P.; Liu, X.; Reinertsen, P.L.; Schalk, T.; Schumm, B.A.; DOliveira, A.; Johnson, R.A.; Meadows, B.T.; Nussbaum, M.; Dima, M.; Harton, J.L.; Smy, M.B.; Staengle, H.; Wilson, R.J.; Baranko, G.; Fahey, S.; Fan, C.; Krishna, N.M.; Lauber, J.A.; Nauenberg, U.; Wagner, D.L.; Bazarko, A.O.; Bolton, T.; Rowson, P.C.; Shaevitz, M.H.; Camanzi, B.; Mazzucato, E.; Piemontese, L.; Calcaterra, A.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Eisenstein, B.I.; Gladding, G.; Karliner, I.; Shapiro, G.; Steiner, H.; Bardon, O.; Burrows, P.N.; Busza, W.; Cowan, R.F.; Dong, D.N.; Fero, M.J.; Gonzalez, S.; Kendall, H.W.; Lath, A.; Lia, V.; Osborne, L.S.; Quigley, J.; Taylor, F.E.; Torrence, E.; Verdier, R.; Williams, D.C.

    1998-01-01

    We report a new measurement of R b =Γ Z 0 →bbar b /Γ Z 0 →hadrons using a double tag technique, where the b hemisphere selection is based on the reconstructed mass of the B hadron decay vertex. The measurement was performed using a sample of 130x10 3 hadronic Z 0 events, collected with the SLD detector at SLC. The method utilizes the 3D vertexing abilities of the CCD pixel vertex detector and the small stable SLC beams to obtain a high b -tagging efficiency and purity. We obtain R b =0.2142±0.0034(stat) ±0.0015(syst)±0.0002( R c ) . copyright 1998 The American Physical Society

  3. LEP measurements on production, mass, lifetime of beauty particles

    International Nuclear Information System (INIS)

    Wormser, G.

    1993-10-01

    Present knowledge about the individual properties of the different beauty particles is discussed using the results of the LEP experiments. Individual lifetimes for B d 0 and B + are found to be equal within 10% whilst a 15% precision is reached for B s 0 and Λ b . The Λ b lifetime is found to be smaller than τ B + with a 2.7 σ significance. The production rate of each of these particles is measured at the 20% level. Preliminary evidence for Ξ b production has been reported. Finally, the B s 0 meson mass has been measured to be 5373 ± 4 MeV/c 2 . (author) 24 refs., 9 figs., 5 tabs

  4. Quantum limits to center-of-mass measurements

    International Nuclear Information System (INIS)

    Vaughan, Timothy; Drummond, Peter; Leuchs, Gerd

    2007-01-01

    We discuss the issue of measuring the mean position (center of mass) of a group of bosonic or fermionic quantum particles, including particle number fluctuations. We introduce a standard quantum limit for these measurements at ultralow temperatures, and discuss this limit in the context of both photons and ultracold atoms. In the case of non-interacting harmonically trapped fermions, we present evidence that the Pauli exclusion principle has a strongly beneficial effect, giving rise to a 1/N scaling in the position standard deviation--as opposed to a 1/√(N) scaling for bosons. The difference between the actual mean-position fluctuation and this limit is evidence for quantum wave-packet spreading in the center of mass. This macroscopic quantum effect cannot be readily observed for noninteracting particles, due to classical pulse broadening. For this reason, we also study the evolution of photonic and matter-wave solitons, where classical dispersion is suppressed. In the photonic case, we show that the intrinsic quantum diffusion of the mean position can contribute significantly to uncertainties in soliton pulse arrival times. We also discuss ways in which the relatively long lifetimes of attractive bosons in matter-wave solitons may be used to demonstrate quantum interference between massive objects composed of thousands of particles

  5. Top quark properties and mass measurements with the ATLAS detector

    CERN Document Server

    Moreno Llacer, Maria; The ATLAS collaboration

    2017-01-01

    ID# 104 Top quark properties and mass measurements with the ATLAS detector The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented using 8 TeV and 13 TeV data. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The production of top-quark pairs in association with W and Z bosons is also presented. The measurement probes the coupling between the top quark and ...

  6. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Minji; Song, Yong-Seon, E-mail: minjioh@kasi.re.kr, E-mail: ysong@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of)

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small m {sub ν} ∼< 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of m {sub ν}. The signature of m {sub ν} is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial m {sub ν} through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe m {sub ν} simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, m {sub ν} is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on m {sub ν} is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and m {sub ν}, and the m {sub ν} is observed to be m {sub ν} = 0.19{sup +0.28}{sub −0.17} eV which is different from massless neutrino at 68% confidence.

  7. Feature selection and nearest centroid classification for protein mass spectrometry

    Directory of Open Access Journals (Sweden)

    Levner Ilya

    2005-03-01

    Full Text Available Abstract Background The use of mass spectrometry as a proteomics tool is poised to revolutionize early disease diagnosis and biomarker identification. Unfortunately, before standard supervised classification algorithms can be employed, the "curse of dimensionality" needs to be solved. Due to the sheer amount of information contained within the mass spectra, most standard machine learning techniques cannot be directly applied. Instead, feature selection techniques are used to first reduce the dimensionality of the input space and thus enable the subsequent use of classification algorithms. This paper examines feature selection techniques for proteomic mass spectrometry. Results This study examines the performance of the nearest centroid classifier coupled with the following feature selection algorithms. Student-t test, Kolmogorov-Smirnov test, and the P-test are univariate statistics used for filter-based feature ranking. From the wrapper approaches we tested sequential forward selection and a modified version of sequential backward selection. Embedded approaches included shrunken nearest centroid and a novel version of boosting based feature selection we developed. In addition, we tested several dimensionality reduction approaches, namely principal component analysis and principal component analysis coupled with linear discriminant analysis. To fairly assess each algorithm, evaluation was done using stratified cross validation with an internal leave-one-out cross-validation loop for automated feature selection. Comprehensive experiments, conducted on five popular cancer data sets, revealed that the less advocated sequential forward selection and boosted feature selection algorithms produce the most consistent results across all data sets. In contrast, the state-of-the-art performance reported on isolated data sets for several of the studied algorithms, does not hold across all data sets. Conclusion This study tested a number of popular feature

  8. Probing the Binding Interfaces of Protein Complexes Using Gas-Phase H/D Exchange Mass Spectrometry

    DEFF Research Database (Denmark)

    Mistarz, Ulrik H; Brown, Jeffery M; Haselmann, Kim F

    2016-01-01

    Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub-milliseco......Fast gas-phase hydrogen/deuterium exchange mediated by ND3 gas and measured by mass spectrometry (gas-phase HDX-MS) is a largely unharnessed, fast, and sensitive method for probing primary- and higher-order polypeptide structure. Labeling of heteroatom-bound non-amide hydrogens in a sub......-millisecond time span after electrospray ionization by ND3 gas can provide structural insights into protein conformers present in solution. Here, we have explored the use of gas-phase HDX-MS for probing the higher-order structure and binding interfaces of protein complexes originating from native solution...

  9. Extremely stable soluble high molecular mass multi-protein complex with DNase activity in human placental tissue.

    Directory of Open Access Journals (Sweden)

    Evgeniya E Burkova

    Full Text Available Human placenta is an organ which protects, feeds, and regulates the grooving of the embryo. Therefore, identification and characterization of placental components including proteins and their multi-protein complexes is an important step to understanding the placenta function. We have obtained and analyzed for the first time an extremely stable multi-protein complex (SPC, ∼ 1000 kDa from the soluble fraction of three human placentas. By gel filtration on Sepharose-4B, the SPC was well separated from other proteins of the placenta extract. Light scattering measurements and gel filtration showed that the SPC is stable in the presence of NaCl, MgCl2, acetonitrile, guanidinium chloride, and Triton in high concentrations, but dissociates efficiently in the presence of 8 M urea, 50 mM EDTA, and 0.5 M NaCl. Such a stable complex is unlikely to be a casual associate of different proteins. According to SDS-PAGE and MALDI mass spectrometry data, this complex contains many major glycosylated proteins with low and moderate molecular masses (MMs 4-14 kDa and several moderately abundant (79.3, 68.5, 52.8, and 27.2 kDa as well as minor proteins with higher MMs. The SPC treatment with dithiothreitol led to a disappearance of some protein bands and revealed proteins with lower MMs. The SPCs from three placentas efficiently hydrolyzed plasmid supercoiled DNA with comparable rates and possess at least two DNA-binding sites with different affinities for a 12-mer oligonucleotide. Progress in study of placental protein complexes can promote understanding of their biological functions.

  10. Protein needs in athletes and dietary-nutrition guidelines to gain muscle mass

    Directory of Open Access Journals (Sweden)

    Aritz Urdampilleta

    2014-05-01

    Full Text Available One of the most important effects of strength training is muscular hypertrophy. Athletes should optimize their nutritional management in order to compensate their own genetic limitations. The aim of this review is to analyze the scientific evidence concerning protein intake as a tool to achieve muscle hypertrophy. Depending on the expenditure and energy intake of athlete, a daily protein ranging between 10-15% of total dietary intake is needed. However in sports diets, it is preferable to estimate the amount of protein needed per kilogram of body weight in each individual. In this regard athletes should ingest an amount between 1.2 g and 1.8 g of proteins/kg of body mass/day to maintain their lean mass. In order to increase muscle mass (0.5 kg/week, athletes should take between 1.6 g and 1.8 g of protein/kg/day with an increase of 400-500 kcal in their daily diet. These needs will depend on the sport, muscular catabolic status, the athlete’s lean mass and glycogen stores. Protein needs will increase if muscle and liver glycogen stores are empty. Excess of protein intake (more than 2 g/kg/day, with full glycogen stores, does not benefit the athlete and could cause an increase in circulating ketones and urea, thereby producing an early dehydration.

  11. Reproducibility in protein profiling by MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Albrethsen, Jakob

    2007-01-01

    , immunocapture, prestructured target surfaces, standardized matrix (co)crystallization, improved MALDI-TOF MS instrument components, internal standard peptides, quality-control samples, replicate measurements, and algorithms for normalization and peak detection. CONCLUSIONS: Further evaluation and optimization...

  12. In vitro estimation of rumen protein degradability using 35S to label the bacterial mass

    International Nuclear Information System (INIS)

    Khristov, A.; Aleksandrov, S.; Aleksiev, I.

    1994-01-01

    An experiment was carried out in order to simplify a previously developed 15 N-method for in vitro estimation of rumen protein degradability. Casein (Cas), whole soybeans (Sb) heated at 120 o C for 20 min (SbTherm) and sunflower (Sfl) were incubated at 39 o C for 4 hours in a water bathshaker with the following media: McDougall's buffer, strained and enriched with particle associated bacteria rumen fluid (2:1), rapidly (maltose, sucrose, glucose) and more slowly (pectin, soluble starch) degradable carbohydrates with final concentration of 815 mg/100 ml and 21.7 μCi/100 ml of 35 S (from Na 2 35 SO 4 ). After the incubation had been ceased, a bacterial fraction was isolated through differential centrifugation and specific activity of bacterial (Bac) and high speed total solids (TS) nitrogen was measured. The ratio was used to calculate bacterial mass in TS and through the Kjeldahl nitrogen concentration in TS - the net bacterial growth (against control vessels without protein). The level of ammonia-N in the supernate after blank correction was used to find the ammonia-N released from protein degradation. The data showed that the rate (and extend) of degradation for the Cas (as a standard protein) was lower compared to those obtained through the 15 N-method but it was higher than the rate derived through another in vitro method. The Cas equivalent of the Sb was higher than the figure we found in a previous experiment with solvent extracted soybean meal suggesting that the 35 S-method underestimated the degradability of the Cas. After being tested on a wider range of foodstuffs, the proposed 35 S-method might be considered as an alternative procedure which is less laborous than the 15 N-method. (author)

  13. The correlation between hs C-reactive protein and left ventricular mass in obese women

    Directory of Open Access Journals (Sweden)

    Idrus Alwi

    2006-06-01

    Full Text Available Plasma C-reactive protein (CRP concentrations are increased in obese individuals. In this study, we examined the correlation between hsCRP and left ventricular mass (LV mass. Fourty five healthy obese women and fourty five healthy non obese women as the controls group were studied by echocardiography and hsCRP. There was no significant correlation between hsCRP and left ventricular mass in obese women (r = 0.29, p 0.06. There was a significant correlation between hs CRP and body mass index (r = 0.46, p 0,002, and also hsCRP and visceral fat (r= 0.33, p 0.03. (Med J Indones 2006; 15:100-4 Keywords: hs C-reactive protein, LV mass, obese women

  14. Direct measurements of protein-stabilized gold nanoparticle interactions.

    Science.gov (United States)

    Eichmann, Shannon L; Bevan, Michael A

    2010-09-21

    We report integrated video and total internal reflection microscopy measurements of protein stabilized 110 nm Au nanoparticles confined in 280 nm gaps in physiological media. Measured potential energy profiles display quantitative agreement with Brownian dynamic simulations that include hydrodynamic interactions and camera exposure time and noise effects. Our results demonstrate agreement between measured nonspecific van der Waals and adsorbed protein interactions with theoretical potentials. Confined, lateral nanoparticle diffusivity measurements also display excellent agreement with predictions. These findings provide a basis to interrogate specific biomacromolecular interactions in similar experimental configurations and to design future improved measurement methods.

  15. Quantitative analysis of modified proteins and their positional isomers by tandem mass spectrometry: human histone H4.

    Science.gov (United States)

    Pesavento, James J; Mizzen, Craig A; Kelleher, Neil L

    2006-07-01

    Here we show that fragment ion abundances from dissociation of ions created from mixtures of multiply modified histone H4 (11 kDa) or of N-terminal synthetic peptides (2 kDa) correspond to their respective intact ion abundances measured by Fourier transform mass spectrometry. Isomeric mixtures of modified forms of the same protein are resolved and quantitated with a precision of protein ions created by electrospray greatly easing many of the systematic biases that more strongly affect small peptides (e.g., differences in ionization efficiency and ion m/z values). The ion fragmentation methods validated here are directly extensible to intact human proteins to derive quantitative information on the highly related and often isomeric protein forms created by combinatorial arrays of posttranslational modifications.

  16. Amino acid δ13C analysis of hair proteins and bone collagen using liquid chromatography/isotope ratio mass spectrometry

    DEFF Research Database (Denmark)

    Raghavan, Maanasa; McCullagh, James S. O.; Lynnerup, Niels

    2010-01-01

    We report a novel method for the chromatographic separation and measurement of stable carbon isotope ratios (delta(13)C) of individual amino acids in hair proteins and bone collagen using the LC-IsoLink system, which interfaces liquid chromatography (LC) with isotope ratio mass spectrometry (IRMS......). This paper provides baseline separation of 15 and 13 of the 18 amino acids in bone collagen and hair proteins, respectively. We also describe an approach to analysing small hair samples for compound-specific analysis of segmental hair sections. The LC/IRMS method is applied in a historical context...... by the delta(13)C analysis of hair proteins and bone collagen recovered from six individuals from Uummannaq in Greenland. The analysis of hair and bone amino acids from the same individual, compared for the first time in this study, is of importance in palaeodietary reconstruction. If hair proteins can be used...

  17. Regarding the detectability and measurement of coronal mass ejections

    Directory of Open Access Journals (Sweden)

    Howard Timothy A.

    2015-01-01

    Full Text Available In this review I discuss the problems associated with the detection and measurement of coronal mass ejections (CMEs. CMEs are important phenomena both scientifically, as they play a crucial role in the evolution of the solar corona, and technologically, as their impact with the Earth leads to severe space weather activity in the form of magnetic storms. I focus on the observation of CMEs using visible white light imagers (coronagraphs and heliospheric imagers, as they may be regarded as the binding agents between different datasets and different models that are used to reconstruct them. Our ability to accurately measure CMEs observed by these imagers is hampered by many factors, from instrumental to geometrical to physical. Following a brief review of the history of CME observation and measurement, I explore the impediments to our ability to measure them and describe possible means for which we may be able to mitigate those impediments. I conclude with a discussion of the claim that we have reached the limit of the information that we can extract from the current generation of white light imagers, and discuss possible ways forward regarding future instrument capabilities.

  18. Mass Spectrometry of Intact Proteins Reveals +98 u Chemical Artifacts Following Precipitation in Acetone.

    Science.gov (United States)

    Güray, Melda Z; Zheng, Shi; Doucette, Alan A

    2017-02-03

    Protein precipitation in acetone is frequently employed ahead of mass spectrometry for sample preconcentration and purification. Unfortunately, acetone is not chemically inert; mass artifacts have previously been observed on glycine-containing peptides when exposed to acetone under acidic conditions. We herein report a distinct chemical modification occurring at the level of intact proteins when incubated in acetone. This artifact manifests as one or more satellite peaks in the MS spectrum of intact protein, spaced 98 u above the mass of the unmodified protein. Other artifacts (+84, +112 u) also appear upon incubation of proteins or peptides in acetone. The reaction is pH-sensitive, being suppressed when proteins are exposed to acetone under acidic conditions. The +98 u artifact is speculated to originate through an intermediate product of aldol condensation of acetone to form diacetone alcohol and mesityl oxide. A +98 u product could originate from nucleophilic attack on mesityl oxide or through condensation with diacetone alcohol. Given the extent of modification possible upon exposure of proteins to acetone, particularly following overnight solvent exposure or incubation at room temperature, an awareness of the variables influencing this novel modification is valued by proteomics researchers who employ acetone precipitation for protein purification.

  19. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry

    DEFF Research Database (Denmark)

    Ho, Yuen; Gruhler, Albrecht; Heilbut, Adrian

    2002-01-01

    The recent abundance of genome sequence data has brought an urgent need for systematic proteomics to decipher the encoded protein networks that dictate cellular function. To date, generation of large-scale protein-protein interaction maps has relied on the yeast two-hybrid system, which detects...... as a test case, an example of this approach, which we term high-throughput mass spectrometric protein complex identification (HMS-PCI). Beginning with 10% of predicted yeast proteins as baits, we detected 3,617 associated proteins covering 25% of the yeast proteome. Numerous protein complexes were...... identified, including many new interactions in various signalling pathways and in the DNA damage response. Comparison of the HMS-PCI data set with interactions reported in the literature revealed an average threefold higher success rate in detection of known complexes compared with large-scale two...

  20. FEEDING EFFECT OF INULIN DERIVED FROM DAHLIA TUBER COMBINED WITH Lactobacillus sp. ON MEAT PROTEIN MASS OF CROSSBRED KAMPONG CHICKEN

    Directory of Open Access Journals (Sweden)

    Z. H. Abdurrahman

    2016-03-01

    Full Text Available The objective of the study was to determine the effects of feeding Lactobacillus species (Lactobacillus sp. and inulin derived from dahlia tuber powder on antioxidant activity, calcium mass, and protein mass of crossbred kampong chicken meat. A total of  168 birds of 21 days old crossbred kampong chickens were randomly allocated into 6 treatments with four replications per treatment. The present experiment was assigned in  a completely randomized design with 2 x 3 factorial scheme. The first factor was levels of dahlia tuber powder, namely 0.8% (A1 and 1.2% (A2, and the second factor was levels of Lactobacillus sp., namely none (B0, 1.2 mL (108 cfu/mL/B1 and 2.4 mL (108 cfu/mL/B2. The parameters measured were antioxidant activity, meat calcium and protein mass. Data were subjected to analysis of variance and followed by Duncan multiple range test (P<0.05 when the treatment indicated significant effect. The supplementation of dahlia tuber powder and Lactobacillus sp. significantly (P<0.05 increased antioxidant activity and protein mass of meat. However, calcium mass of meat was not significantly affected by treatments. In conclusion, feeding dahlia tuber powder at the level of 1.2% combined with Lactobacillus sp. at 1.2 mL (108 cfu/mL, can be categorized as the best combination based on the increase in antioxidant activity and meat protein mass.  

  1. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon.

    Directory of Open Access Journals (Sweden)

    Mette Koefoed

    Full Text Available Maintenance dialysis patients are at increased risk of abnormal nutritional status due to numerous causative factors, both nutritional and non-nutritional. The present study assessed the current prevalence of protein-energy wasting, low lean body mass index and obesity in maintenance dialysis patients, and compared different methods of nutritional assessment.In a cross-sectional study conducted in 2014 at Roskilde Hospital, Denmark, we performed anthropometry (body weight, skinfolds, mid-arm, waist, and hip circumferences, and determined plasma albumin and normalized protein catabolic rate in order to assess the prevalence of protein-energy wasting, low lean body mass index and obesity in these patients.Seventy-nine eligible maintenance dialysis patients participated. The prevalence of protein-energy wasted patients was 4% (95% CI: 2-12 as assessed by the coexistence of low lean body mass index and low fat mass index. Low lean body mass index was seen in 32% (95% CI: 22-44. Obesity prevalence as assessed from fat mass index was 43% (95% CI: 32-55. Coexistence of low lean body mass index and obesity was seen in 10% (95% CI: 5-19. The prevalence of protein-energy wasting and obesity varied considerably, depending on nutritional assessment methodology.Our data indicate that protein-energy wasting is uncommon, whereas low lean body mass index and obesity are frequent conditions among patients in maintenance dialysis. A focus on how to increase and preserve lean body mass in dialysis patients is suggested in the future. In order to clearly distinguish between shortage, sufficiency and abundance of protein and/or fat deposits in maintenance dialysis patients, we suggest the simple measurements of lean body mass index and fat mass index.

  2. Nutritional Status of Maintenance Dialysis Patients: Low Lean Body Mass Index and Obesity Are Common, Protein-Energy Wasting Is Uncommon.

    Science.gov (United States)

    Koefoed, Mette; Kromann, Charles Boy; Juliussen, Sophie Ryberg; Hvidtfeldt, Danni; Ekelund, Bo; Frandsen, Niels Erik; Marckmann, Peter

    2016-01-01

    Maintenance dialysis patients are at increased risk of abnormal nutritional status due to numerous causative factors, both nutritional and non-nutritional. The present study assessed the current prevalence of protein-energy wasting, low lean body mass index and obesity in maintenance dialysis patients, and compared different methods of nutritional assessment. In a cross-sectional study conducted in 2014 at Roskilde Hospital, Denmark, we performed anthropometry (body weight, skinfolds, mid-arm, waist, and hip circumferences), and determined plasma albumin and normalized protein catabolic rate in order to assess the prevalence of protein-energy wasting, low lean body mass index and obesity in these patients. Seventy-nine eligible maintenance dialysis patients participated. The prevalence of protein-energy wasted patients was 4% (95% CI: 2-12) as assessed by the coexistence of low lean body mass index and low fat mass index. Low lean body mass index was seen in 32% (95% CI: 22-44). Obesity prevalence as assessed from fat mass index was 43% (95% CI: 32-55). Coexistence of low lean body mass index and obesity was seen in 10% (95% CI: 5-19). The prevalence of protein-energy wasting and obesity varied considerably, depending on nutritional assessment methodology. Our data indicate that protein-energy wasting is uncommon, whereas low lean body mass index and obesity are frequent conditions among patients in maintenance dialysis. A focus on how to increase and preserve lean body mass in dialysis patients is suggested in the future. In order to clearly distinguish between shortage, sufficiency and abundance of protein and/or fat deposits in maintenance dialysis patients, we suggest the simple measurements of lean body mass index and fat mass index.

  3. A controlled trial of protein enrichment of meal replacements for weight reduction with retention of lean body mass

    Directory of Open Access Journals (Sweden)

    Bowerman Susan

    2008-08-01

    Full Text Available Abstract Background While high protein diets have been shown to improve satiety and retention of lean body mass (LBM, this study was designed to determine effects of a protein-enriched meal replacement (MR on weight loss and LBM retention by comparison to an isocaloric carbohydrate-enriched MR within customized diet plans utilizing MR to achieve high protein or standard protein intakes. Methods Single blind, placebo-controlled, randomized outpatient weight loss trial in 100 obese men and women comparing two isocaloric meal plans utilizing a standard MR to which was added supplementary protein or carbohydrate powder. MR was used twice daily (one meal, one snack. One additional meal was included in the meal plan designed to achieve individualized protein intakes of either 1 2.2 g protein/kg of LBM per day [high protein diet (HP] or 2 1.1 g protein/kg LBM/day standard protein diet (SP. LBM was determined using bioelectrical impedance analysis (BIA. Body weight, body composition, and lipid profiles were measured at baseline and 12 weeks. Results Eighty-five subjects completed the study. Both HP and SP MR were well tolerated, with no adverse effects. There were no differences in weight loss at 12 weeks (-4.19 ± 0.5 kg for HP group and -3.72 ± 0.7 kg for SP group, p > 0.1. Subjects in the HP group lost significantly more fat weight than the SP group (HP = -1.65 ± 0.63 kg; SP = -0.64 ± 0.79 kg, P = 0.05 as estimated by BIA. There were no significant differences in lipids nor fasting blood glucose between groups, but within the HP group a significant decrease in cholesterol and LDL cholesterol was noted at 12 weeks. This was not seen in the SP group. Conclusion Higher protein MR within a higher protein diet resulted in similar overall weight loss as the standard protein MR plan over 12 weeks. However, there was significantly more fat loss in the HP group but no significant difference in lean body mass. In this trial, subject compliance with both the

  4. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography ? Mass Spectrometry

    International Nuclear Information System (INIS)

    Petyuk, Vladislav A.; Qian, Weijun; Chin, Mark H.; Wang, Haixing H.; Livesay, Eric A.; Monroe, Matthew E.; Adkins, Joshua N.; Jaitly, Navdeep; Anderson, David J.; Camp, David G.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a ''universal'' stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion

  5. Using Energy Peaks to Measure New Particle Masses

    CERN Document Server

    Agashe, Kaustubh; Kim, Doojin

    2014-01-01

    We discussed in arXiv:1209.0772 that the laboratory frame distribution of the energy of a massless particle from a two-body decay at a hadron collider has a peak whose location is identical to the value of this daughter's (fixed) energy in the rest frame of the corresponding mother particle. For that result to hold we assumed that the mother is unpolarized and has a generic boost distribution in the laboratory frame. In this work we discuss how this observation can be applied for determination of masses of new particles, without requiring a full reconstruction of their decay chains or information about the rest of the event. We focus on a two-step cascade decay of a massive particle that has one invisible particle in the final state: C -> Bb -> Aab, where C, B and A are new particles of which A is invisible and a, b are visible particles. Combining the measurements of the peaks of energy distributions of a and b with that of the edge in their invariant mass distribution, we demonstrate that it is in principle...

  6. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  7. Pinning down the superfluid and measuring masses using pulsar glitches.

    Science.gov (United States)

    Ho, Wynn C G; Espinoza, Cristóbal M; Antonopoulou, Danai; Andersson, Nils

    2015-10-01

    Pulsars are known for their superb timing precision, although glitches can interrupt the regular timing behavior when the stars are young. These glitches are thought to be caused by interactions between normal and superfluid matter in the crust of the star. However, glitching pulsars such as Vela have been shown to require a superfluid reservoir that greatly exceeds that available in the crust. We examine a model in which glitches tap the superfluid in the core. We test a variety of theoretical superfluid models against the most recent glitch data and find that only one model can successfully explain up to 45 years of observational data. We develop a new technique for combining radio and x-ray data to measure pulsar masses, thereby demonstrating how current and future telescopes can probe fundamental physics such as superfluidity near nuclear saturation.

  8. Structural Mass Spectrometry of Proteins Using Hydroxyl Radical Based Protein Footprinting

    OpenAIRE

    Wang, Liwen; Chance, Mark R.

    2011-01-01

    Structural MS is a rapidly growing field with many applications in basic research and pharmaceutical drug development. In this feature article the overall technology is described and several examples of how hydroxyl radical based footprinting MS can be used to map interfaces, evaluate protein structure, and identify ligand dependent conformational changes in proteins are described.

  9. Measurement of inclusion size by laser ablation ICP mass spectrometry

    International Nuclear Information System (INIS)

    Karasev, Andrey V.; Suito, Hideaki

    2004-01-01

    By using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), the measurement of particle size has been made for one component oxide (Al 2 O 3 and MgO) and multicomponent oxide (12CaO·7Al 2 O 3 and CaO-Al 2 O 3 -MgO) located on surface of iron or glass sample. The method of particle size estimation by LA-ICP-MS has been developed coupled with a new method of making samples with particles. The size calibration lines for Al 2 O 3 , MgO and CaO particles have been obtained. The results of particle size measurement by LA-ICP-MS are compared with those by SEM and single-particle optical sensing (SPOS) methods. It was confirmed that LA-ICP-MS has the perspective to be used for the quick measurement of inclusion composition and size in metal and other materials. The size frequency distributions of Al 2 O 3 particles measured by LA-ICP-MS in iron samples with particles agree reasonably well with those by SEM and SPOS in the range of particle diameter from 2 to 20 μm. The size of Al 2 O 3 , MgO and complex oxide (12CaO·7Al 2 O 3 and CaO-Al 2 O 3 -MgO) particles measured by LA-ICP-MS is in good agreement with that by SEM in the range of particle diameter from 10 to 40 μm. (author)

  10. Association of Periodontal Diseases with Elevation of Serum C-reactive Protein and Body Mass Index.

    Science.gov (United States)

    Chitsazi, Mohammad Taghi; Pourabbas, Reza; Shirmohammadi, Adileh; Ahmadi Zenouz, Gazaleh; Vatankhah, Amir Hossein

    2008-01-01

    C-reactive protein (CRP) is a well-known acute-phase reactant produced by the liver in response to inflammation caused by various stimuli. Periodontal disease is a chronic infection of tooth-supporting structures characterized by attachment loss and alveolar bone loss. The aim of this study was to assess the relationship between serum C-reactive protein levels and periodontal diseases. The study was conducted on 166 patients referring to Tabriz Faculty of Dentistry. The age range was between 35 and 59 years. 83 subjects with periodontitis according to NHANES III index as test group and 83 healthy individuals as controls participated in this study. Body mass index (BMI), waist circumference (WC), probing depth, attachment loss and CRP levels were measured in both test and control groups. Data was analyzed with Student's t-test, odds ratio (OR), Chi-square test and Spearman's correlation coefficient, using SPSS 13.0 software. The results revealed a statistically significant difference between all of the analyzed variables in test and control groups (P periodontitis and attachment loss (r = 0.662, P = 0.00). Excluding overweight, the association between all the variables was statistically significant (P periodontal disease is correlated with CRP elevation and dis-eases associated with obesity.

  11. Probing Conformational Dynamics of Tau Protein by Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Huang, Richard Y.-C.; Iacob, Roxana E.; Sankaranarayanan, Sethu; Yang, Ling; Ahlijanian, Michael; Tao, Li; Tymiak, Adrienne A.; Chen, Guodong

    2018-01-01

    Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. [Figure not available: see fulltext.

  12. Mass spectrometric identification of proteins that interact through specific domains of the poly(A) binding protein.

    Science.gov (United States)

    Richardson, Roy; Denis, Clyde L; Zhang, Chongxu; Nielsen, Maria E O; Chiang, Yueh-Chin; Kierkegaard, Morten; Wang, Xin; Lee, Darren J; Andersen, Jens S; Yao, Gang

    2012-09-01

    Poly(A) binding protein (PAB1) is involved in a number of RNA metabolic functions in eukaryotic cells and correspondingly is suggested to associate with a number of proteins. We have used mass spectrometric analysis to identify 55 non-ribosomal proteins that specifically interact with PAB1 from Saccharomyces cerevisiae. Because many of these factors may associate only indirectly with PAB1 by being components of the PAB1-mRNP structure, we additionally conducted mass spectrometric analyses on seven metabolically defined PAB1 deletion derivatives to delimit the interactions between these proteins and PAB1. These latter analyses identified 13 proteins whose associations with PAB1 were reduced by deleting one or another of PAB1's defined domains. Included in this list of 13 proteins were the translation initiation factors eIF4G1 and eIF4G2, translation termination factor eRF3, and PBP2, all of whose previously known direct interactions with specific PAB1 domains were either confirmed, delimited, or extended. The remaining nine proteins that interacted through a specific PAB1 domain were CBF5, SLF1, UPF1, CBC1, SSD1, NOP77, yGR250c, NAB6, and GBP2. In further study, UPF1, involved in nonsense-mediated decay, was confirmed to interact with PAB1 through the RRM1 domain. We additionally established that while the RRM1 domain of PAB1 was required for UPF1-induced acceleration of deadenylation during nonsense-mediated decay, it was not required for the more critical step of acceleration of mRNA decapping. These results begin to identify the proteins most likely to interact with PAB1 and the domains of PAB1 through which these contacts are made.

  13. ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin; Wang, Quanquan; Li, Yongping

    2012-01-01

    Background: The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity

  14. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    Science.gov (United States)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  15. Protein sequences from mastodon and Tyrannosaurus rex revealed by mass spectrometry.

    Science.gov (United States)

    Asara, John M; Schweitzer, Mary H; Freimark, Lisa M; Phillips, Matthew; Cantley, Lewis C

    2007-04-13

    Fossilized bones from extinct taxa harbor the potential for obtaining protein or DNA sequences that could reveal evolutionary links to extant species. We used mass spectrometry to obtain protein sequences from bones of a 160,000- to 600,000-year-old extinct mastodon (Mammut americanum) and a 68-million-year-old dinosaur (Tyrannosaurus rex). The presence of T. rex sequences indicates that their peptide bonds were remarkably stable. Mass spectrometry can thus be used to determine unique sequences from ancient organisms from peptide fragmentation patterns, a valuable tool to study the evolution and adaptation of ancient taxa from which genomic sequences are unlikely to be obtained.

  16. Validation of protein carbonyl measurement: A multi-centre study

    Directory of Open Access Journals (Sweden)

    Edyta Augustyniak

    2015-04-01

    Full Text Available Protein carbonyls are widely analysed as a measure of protein oxidation. Several different methods exist for their determination. A previous study had described orders of magnitude variance that existed when protein carbonyls were analysed in a single laboratory by ELISA using different commercial kits. We have further explored the potential causes of variance in carbonyl analysis in a ring study. A soluble protein fraction was prepared from rat liver and exposed to 0, 5 and 15 min of UV irradiation. Lyophilised preparations were distributed to six different laboratories that routinely undertook protein carbonyl analysis across Europe. ELISA and Western blotting techniques detected an increase in protein carbonyl formation between 0 and 5 min of UV irradiation irrespective of method used. After irradiation for 15 min, less oxidation was detected by half of the laboratories than after 5 min irradiation. Three of the four ELISA carbonyl results fell within 95% confidence intervals. Likely errors in calculating absolute carbonyl values may be attributed to differences in standardisation. Out of up to 88 proteins identified as containing carbonyl groups after tryptic cleavage of irradiated and control liver proteins, only seven were common in all three liver preparations. Lysine and arginine residues modified by carbonyls are likely to be resistant to tryptic proteolysis. Use of a cocktail of proteases may increase the recovery of oxidised peptides. In conclusion, standardisation is critical for carbonyl analysis and heavily oxidised proteins may not be effectively analysed by any existing technique.

  17. Mass Spectrometry-Based Methods for Identifying Oxidized Proteins in Disease: Advances and Challenges

    Directory of Open Access Journals (Sweden)

    Ivan Verrastro

    2015-04-01

    Full Text Available Many inflammatory diseases have an oxidative aetiology, which leads to oxidative damage to biomolecules, including proteins. It is now increasingly recognized that oxidative post-translational modifications (oxPTMs of proteins affect cell signalling and behaviour, and can contribute to pathology. Moreover, oxidized proteins have potential as biomarkers for inflammatory diseases. Although many assays for generic protein oxidation and breakdown products of protein oxidation are available, only advanced tandem mass spectrometry approaches have the power to localize specific oxPTMs in identified proteins. While much work has been carried out using untargeted or discovery mass spectrometry approaches, identification of oxPTMs in disease has benefitted from the development of sophisticated targeted or semi-targeted scanning routines, combined with chemical labeling and enrichment approaches. Nevertheless, many potential pitfalls exist which can result in incorrect identifications. This review explains the limitations, advantages and challenges of all of these approaches to detecting oxidatively modified proteins, and provides an update on recent literature in which they have been used to detect and quantify protein oxidation in disease.

  18. The application of mass-spectrometry-based protein biomarker discovery to theragnostics

    OpenAIRE

    Street, Jonathan M; Dear, James W

    2010-01-01

    Over the last decade rapid developments in mass spectrometry have allowed the identification of multiple proteins in complex biological samples. This proteomic approach has been applied to biomarker discovery in the context of clinical pharmacology (the combination of biomarker and drug now being termed ‘theragnostics’). In this review we provide a roadmap for early protein biomarker discovery studies, focusing on some key questions that regularly confront researchers.

  19. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    Science.gov (United States)

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  20. Development and Validation of a Multiplexed Protein Quantitation Assay for the Determination of Three Recombinant Proteins in Soybean Tissues by Liquid Chromatography with Tandem Mass Spectrometry.

    Science.gov (United States)

    Hill, Ryan C; Oman, Trent J; Shan, Guomin; Schafer, Barry; Eble, Julie; Chen, Cynthia

    2015-08-26

    Currently, traditional immunochemistry technologies such as enzyme-linked immunosorbent assays (ELISA) are the predominant analytical tool used to measure levels of recombinant proteins expressed in genetically engineered (GE) plants. Recent advances in agricultural biotechnology have created a need to develop methods capable of selectively detecting and quantifying multiple proteins in complex matrices because of increasing numbers of transgenic proteins being coexpressed or "stacked" to achieve tolerance to multiple herbicides or to provide multiple modes of action for insect control. A multiplexing analytical method utilizing liquid chromatography with tandem mass spectrometry (LC-MS/MS) has been developed and validated to quantify three herbicide-tolerant proteins in soybean tissues: aryloxyalkanoate dioxygenase (AAD-12), 5-enol-pyruvylshikimate-3-phosphate synthase (2mEPSPS), and phosphinothricin acetyltransferase (PAT). Results from the validation showed high recovery and precision over multiple analysts and laboratories. Results from this method were comparable to those obtained with ELISA with respect to protein quantitation, and the described method was demonstrated to be suitable for multiplex quantitation of transgenic proteins in GE crops.

  1. Associations of dietary protein intake on subsequent decline in muscle mass and physical functions over four years in ambulant older Chinese people.

    Science.gov (United States)

    Chan, R; Leung, J; Woo, J; Kwok, T

    2014-01-01

    To examine the association of dietary protein intake with 4-year change in physical performance measures and muscle mass in Chinese community-dwelling older people aged 65 and older in Hong Kong. Prospective cohort study design. Hong Kong, People's of Republic of China. There were 2,726 (1411 male, 1315 female) community-dwelling older people aged 65 and older. Baseline total, animal and vegetable protein intakes were collected using a validated food frequency questionnaire. Relative protein intake expressed as g/kg body weight was calculated and divided into quartiles for data analysis. Baseline and 4-year physical performance measures (normal and narrow 6-meters walking speed and step length in a 6-meters walk) were measured and 4-year change in appendicular skeletal muscle mass (ASM) from baseline was assessed by dual-energy X-ray absorptiometry. Univariate analysis identified age and sex as significant factors associated with change in physical performance measures or ASM, thus adjustments for these factors were made for subsequent analysis of covariance. Median relative total protein intake was 1.3 g/kg body weight in men and 1.1 g/kg body weight in women. After adjustment for age and sex, relative total protein intake and animal protein intake were not associated with change in physical performance measures and ASM. In contrast, participants in the highest quartile (>0.72 g/kg body weight) of relative vegetable protein intake lost significantly less ASM over 4-year than those in the lowest quartile of relative vegetable protein intake (physical performance measures. Higher protein intake from vegetable source was associated with reduced muscle loss in Chinese community-dwelling older people in Hong Kong whereas no association between total and animal protein intake and subsequent decline in muscle mass or physical performance measures was observed in this sample.

  2. Jet energy measurements at ILC. Calorimeter DAQ requirements and application in Higgs boson mass measurements

    International Nuclear Information System (INIS)

    Ebrahimi, Aliakbar

    2017-11-01

    The idea of spontaneous symmetry breaking as the mechanism through which elementary particles gain mass has been confirmed by the discovery of the Higgs boson at the CERN Large Hadron Collider. Studying the Higgs boson properties are of great importance to verify the Standard Model predictions. Any deviation from these predictions could uncover physics beyond the Standard Model. The mass of the Higgs boson is one of the important parameters of the Standard Model. The precise determination of the Higgs boson mass is of interest in its own right and also for other Higgs physics studies since it enters as parametric uncertainty into the extraction of the partial width from branching ratio measurements. The International Linear Collider (ILC) is a future polarised e + e - collider designed for precision physics studies. The Higgs boson decay to a pair of bottom quarks H→b anti b has the largest branching ratio of all Higgs decays, providing a large dataset for physics analyses. The possibility of measuring the Higgs boson mass in the e + e - →ZH→q anti qb anti b channel is investigated in this thesis for centre-of-mass energies of 350 GeV and 500 GeV. Since the Higgs boson mass is reconstructed from two b jets, the jet energy resolution hasa high impact on the measurement. A new method to estimate the jet energy resolution for each jet individually is developed in this thesis. The jet-specific energy resolution is then used in the analysis for the Higgs boson mass measurements. Various strategies for the Higgs boson mass measurement are investigated. For an integrated luminosity of 1000 fb -1 and a beam polarisation of (-0.8,+0.3), statistical uncertainties of 42 MeV and 89 MeV are achieved for the centre-of-mass energies of 350 GeV and 500 GeV, respectively. Various sources of systematic uncertainties are also discussed. These results are obtained using a full GEANT4-based simulation of the International Large Detector (ILD) concept. The jet energy resolution

  3. Jet energy measurements at ILC. Calorimeter DAQ requirements and application in Higgs boson mass measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Aliakbar

    2017-11-15

    The idea of spontaneous symmetry breaking as the mechanism through which elementary particles gain mass has been confirmed by the discovery of the Higgs boson at the CERN Large Hadron Collider. Studying the Higgs boson properties are of great importance to verify the Standard Model predictions. Any deviation from these predictions could uncover physics beyond the Standard Model. The mass of the Higgs boson is one of the important parameters of the Standard Model. The precise determination of the Higgs boson mass is of interest in its own right and also for other Higgs physics studies since it enters as parametric uncertainty into the extraction of the partial width from branching ratio measurements. The International Linear Collider (ILC) is a future polarised e{sup +}e{sup -} collider designed for precision physics studies. The Higgs boson decay to a pair of bottom quarks H→b anti b has the largest branching ratio of all Higgs decays, providing a large dataset for physics analyses. The possibility of measuring the Higgs boson mass in the e{sup +}e{sup -}→ZH→q anti qb anti b channel is investigated in this thesis for centre-of-mass energies of 350 GeV and 500 GeV. Since the Higgs boson mass is reconstructed from two b jets, the jet energy resolution hasa high impact on the measurement. A new method to estimate the jet energy resolution for each jet individually is developed in this thesis. The jet-specific energy resolution is then used in the analysis for the Higgs boson mass measurements. Various strategies for the Higgs boson mass measurement are investigated. For an integrated luminosity of 1000 fb{sup -1} and a beam polarisation of (-0.8,+0.3), statistical uncertainties of 42 MeV and 89 MeV are achieved for the centre-of-mass energies of 350 GeV and 500 GeV, respectively. Various sources of systematic uncertainties are also discussed. These results are obtained using a full GEANT4-based simulation of the International Large Detector (ILD) concept. The

  4. Protein Turnover Measurements in Human Serum by Serial Immunoaffinity LC-MS/MS.

    Science.gov (United States)

    Farrokhi, Vahid; Chen, Xiaoying; Neubert, Hendrik

    2018-02-01

    The half-life of target proteins is frequently an important parameter in mechanistic pharmacokinetic and pharmacodynamic (PK/PD) modeling of biotherapeutics. Clinical studies for accurate measurement of physiologically relevant protein turnover can reduce the uncertainty in PK/PD model-based predictions, for example, of the therapeutic dose and dosing regimen in first-in-human clinical trials. We used a targeted mass spectrometry work flow based on serial immunoaffinity enrichment ofmultiple human serum proteins from a [5,5,5- 2 H 3 ]-L-leucine tracer pulse-chase study in healthy volunteers. To confirm the reproducibility of turnover measurements from serial immunoaffinity enrichment, multiple aliquots from the same sample set were subjected to protein turnover analysis in varying order. Tracer incorporation was measured by multiple-reaction-monitoring mass spectrometry and target turnover was calculated using a four-compartment pharmacokinetic model. Five proteins of clinical or therapeutic relevance including soluble tumor necrosis factor receptor superfamily member 12A, tissue factor pathway inhibitor, soluble interleukin 1 receptor like 1, soluble mucosal addressin cell adhesion molecule 1, and muscle-specific creatine kinase were sequentially subjected to turnover analysis from the same human serum sample. Calculated half-lives ranged from 5-15 h; however, no tracer incorporation was observed for mucosal addressin cell adhesion molecule 1. The utility of clinical pulse-chase studies to investigate protein turnover can be extended by serial immunoaffinity enrichment of target proteins. Turnover analysis from serum and subsequently from remaining supernatants provided analytical sensitivity and reproducibility for multiple human target proteins in the same sample set, irrespective of the order of analysis. © 2017 American Association for Clinical Chemistry.

  5. A 5-year cohort study of the effects of high protein intake on lean mass and BMC in elderly postmenopausal women.

    Science.gov (United States)

    Meng, Xingqiong; Zhu, Kun; Devine, Amanda; Kerr, Deborah A; Binns, Colin W; Prince, Richard L

    2009-11-01

    Long-term effects of high dietary protein intake on muscle and bone structure in the elderly are not clear. The aim of this study was to investigate the relationship between baseline protein intake and lean mass and BMC 5 yr later in a cohort of elderly postmenopausal women. A total of 862 community-dwelling women 75 +/- 3 yr of age provided baseline data including nutrient intake assessed by a food frequency questionnaire. At 5 yr, upper arm muscle area (UAMA) and body composition using DXA were measured. Baseline protein intake was 81 +/- 28 g/d (1.2 +/- 0.4 g/kg/d), contributing 19 +/- 3% of total energy intake. There were positive correlations between baseline protein intake and whole body and appendicular bone-free lean mass and BMC (r = 0.14-0.18, p 87 g/d) had 5.4-6.0% higher whole body and appendicular lean mass and UAMA and 5.3-6.0% higher whole body and appendicular BMC. These effects remained after adjusting for potential confounders. However, the effect on BMC disappeared after further adjustment for lean mass. This study shows that high protein intake is associated with long-term beneficial effects on muscle mass and size and bone mass in elderly women. The protein effect on bone may be partly mediated by its effects on muscle.

  6. Fish protein hydrolysate elevates plasma bile acids and reduces visceral adipose tissue mass in rats

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Madsen, Lise; Hao, Qin

    2009-01-01

    levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal....../retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism....

  7. Precise measurements of mass of Rb isotopes with A=91-97

    International Nuclear Information System (INIS)

    Alkhazov, G.D.; Belyaev, B.N.; Domkin, V.D.; Korobulin, Yu.G.; Lukashevich, V.V.; Mukhin, V.S.; AN SSSR, Leningrad

    1989-01-01

    A new scheme of the experiment on measuring the short-living nuclide atom masses, based on applying the isobar doublet method for mass scale gauging, is proposed. Results of measuring masses of Rb isotope atom with A=91-97, performed using a prism mass-spectrometer on line with the LiYaF mass-separator and synchrocyclotron with 30-80 keV error are presented

  8. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    International Nuclear Information System (INIS)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Düllmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plaß, W. R.; Scheidenberger, C.; Heßberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.

    2013-01-01

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  9. Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory.

    Science.gov (United States)

    Suarez, Stéphanie; Ferroni, Agnès; Lotz, Aurélie; Jolley, Keith A; Guérin, Philippe; Leto, Julie; Dauphin, Brunhilde; Jamet, Anne; Maiden, Martin C J; Nassif, Xavier; Armengaud, Jean

    2013-09-01

    Whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is a rapid method for identification of microorganisms that is increasingly used in microbiology laboratories. This identification is based on the comparison of the tested isolate mass spectrum with reference databases. Using Neisseria meningitidis as a model organism, we showed that in one of the available databases, the Andromas database, 10 of the 13 species-specific biomarkers correspond to ribosomal proteins. Remarkably, one biomarker, ribosomal protein L32, was subject to inter-strain variability. The analysis of the ribosomal protein patterns of 100 isolates for which whole genome sequences were available, confirmed the presence of inter-strain variability in the molecular weight of 29 ribosomal proteins, thus establishing a correlation between the sequence type (ST) and/or clonal complex (CC) of each strain and its ribosomal protein pattern. Since the molecular weight of three of the variable ribosomal proteins (L30, L31 and L32) was included in the spectral window observed by MALDI-TOF MS in clinical microbiology, i.e., 3640-12000 m/z, we were able by analyzing the molecular weight of these three ribosomal proteins to classify each strain in one of six subgroups, each of these subgroups corresponding to specific STs and/or CCs. Their detection by MALDI-TOF allows therefore a quick typing of N. meningitidis isolates. © 2013 Elsevier B.V. All rights reserved.

  10. Ammonium Bicarbonate Addition Improves the Detection of Proteins by Desorption Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Honarvar, Elahe; Venter, Andre R.

    2017-06-01

    The analysis of protein by desorption electrospray ionization mass spectrometry (DESI-MS) is considered impractical due to a mass-dependent loss in sensitivity with increase in protein molecular weights. With the addition of ammonium bicarbonate to the DESI-MS analysis the sensitivity towards proteins by DESI was improved. The signal to noise ratio (S/N) improvement for a variety of proteins increased between 2- to 3-fold relative to solvent systems containing formic acid and more than seven times relative to aqueous methanol spray solvents. Three methods for ammonium bicarbonate addition during DESI-MS were investigated. The additive delivered improvements in S/N whether it was mixed with the analyte prior to sample deposition, applied over pre-prepared samples, or simply added to the desorption spray solvent. The improvement correlated well with protein pI but not with protein size. Other ammonium or bicarbonate salts did not produce similar improvements in S/N, nor was this improvement in S/N observed for ESI of the same samples. As was previously described for ESI, DESI also caused extensive protein unfolding upon the addition of ammonium bicarbonate. [Figure not available: see fulltext.

  11. Device for accurately measuring mass flow of gases

    Science.gov (United States)

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  12. Re-tuning tuned mass dampers using ambient vibration measurements

    International Nuclear Information System (INIS)

    Hazra, B; Sadhu, A; Narasimhan, S; Lourenco, R

    2010-01-01

    Deterioration, accidental changes in the operating conditions, or incorrect estimates of the structure modal properties lead to de-tuning in tuned mass dampers (TMDs). To restore optimal performance, it is necessary to estimate the modal properties of the system, and re-tune the TMD to its optimal state. The presence of closely spaced modes and a relatively large amount of damping in the dominant modes renders the process of identification difficult. Furthermore, the process of estimating the modal properties of the bare structure using ambient vibration measurements of the structure with the TMD is challenging. In order to overcome these challenges, a novel identification and re-tuning algorithm is proposed. The process of identification consists of empirical mode decomposition to separate the closely spaced modes, followed by the blind identification of the remaining modes. Algorithms for estimating the fundamental frequency and the mode shape of the primary structure necessary for re-tuning the TMD are proposed. Experimental results from the application of the proposed algorithms to identify and re-tune a laboratory structure TMD system are presented

  13. Ambient Ionization Mass Spectrometry Measurement of Aminotransferase Activity

    Science.gov (United States)

    Yan, Xin; Li, Xin; Zhang, Chengsen; Xu, Yang; Cooks, R. Graham

    2017-06-01

    A change in enzyme activity has been used as a clinical biomarker for diagnosis and is useful in evaluating patient prognosis. Current laboratory measurements of enzyme activity involve multi-step derivatization of the reaction products followed by quantitative analysis of these derivatives. This study simplified the reaction systems by using only the target enzymatic reaction and directly detecting its product. A protocol using paper spray mass spectrometry for identifying and quantifying the reaction product has been developed. Evaluation of the activity of aspartate aminotransferase (AST) was chosen as a proof-of-principle. The volume of sample needed is greatly reduced compared with the traditional method. Paper spray has a desalting effect that avoids sprayer clogging problems seen when examining serum samples by nanoESI. This very simple method does not require sample pretreatment and additional derivatization reactions, yet it gives high quality kinetic data, excellent limits of detection (60 ppb from serum), and coefficients of variation <10% in quantitation. [Figure not available: see fulltext.

  14. Measurement of the dipion mass spectrum in decays.

    Science.gov (United States)

    Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Ben Haim, E; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Bourov, S; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Connolly, A; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Cruz, A; Cuevas, J; Culbertson, R; Cyr, D; Daronco, S; D'Auria, S; D'onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'orso, M; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Dominguez, A; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Fujii, Y; Furic, I; Gajjar, A; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D; Giagu, S; di Giovanni, G P; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heijboer, A; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, Y K; Kirby, M; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Kordas, K; Korytov, A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreps, M; Kreymer, A; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P; McNamara, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Mulhearn, M; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Papikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K; Plager, C; Pondrom, L; Pope, G; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sill, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Worm, S; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S

    2006-03-17

    We measure the dipion mass spectrum in X(3872)--> J/psipi(+) pi(-) decays using 360 pb(-1) of pp collisions at square root s= 1.96 TeV collected with the CDF II detector. The spectrum is fit with predictions for odd C-parity ((3)S(1), (1)P(1), and (3)D(J)) charmonia decaying to J/psipi(+) pi(-), as well as even C-parity states in which the pions are from rho(0) decay. The latter case also encompasses exotic interpretations, such as a D(0)D(*0) molecule. Only the (3)S(1) and J/psirho hypotheses are compatible with our data. Since (3)S(1) is untenable on other grounds, decay via J/psirho is favored, which implies C= +1 for the X(3872). Models for J/psi - rho different angular momenta L are considered. Flexibility in the models, especially the introduction of rho - omega interference, enables good descriptions of our data for both L = 0 and 1.

  15. Ultracentrifugation and inductively coupled plasma mass spectrometry for metal-protein equilibrium studies

    Energy Technology Data Exchange (ETDEWEB)

    Arnquist, Isaac J.; Holcombe, James A., E-mail: holcombe@mail.utexas.edu

    2012-10-15

    The coupling of separation by preparative ultracentrifugation and metal detection by inductively coupled plasma mass spectrometry (ICP-MS) has been explored for metal-protein equilibrium determinations. This study characterizes the stoichiometry as well as apparent (K{sub app}) and intrinsic (K{sub int}) binding affinities of the metal-protein association for a model protein. In particular, the affinity of Cu{sup 2+} for the high affinity binding site in bovine serum albumin (BSA) is determined. Once equilibrium is established between Cu{sup 2+} and BSA, preparative ultracentrifugation moves the metalloprotein away from the meniscus, leaving unbound equilibrium copper in the protein free solution. Since the initial (total) concentrations of purified BSA and Cu{sup 2+} can be determined, the free copper concentration at equilibrium can also be determined by taking a small aliquot above the sedimenting boundary for analysis using ICP-MS. This analysis allows for the determination of free Cu{sup 2+} ion, which is identical to the equilibrium concentration prior to ultracentrifugation. From these data K{sub app} and K{sub int} were determined at two different conditions, 100 mM Tris(hydroxymethyl)aminomethane (Tris) at pH 9.53 and pH 7.93. log K{sub app} values of 17.6 and 14.6 were determined at pH 9.53 and pH 7.93, respectively. Furthermore, pH-independent log K{sub int} values of - 1.43 and - 1.04 were determined at pH 9.53 and 7.93, respectively. While the log K{sub int} at pH 9.53 was in good agreement with literature values obtained from alternative methods, K{sub int} at pH 7.93 was about 2.5 Multiplication-Sign larger than previously reported. BSA undergoes a structural rearrangement between pH 7-9, and the generally accepted pH-dependency of protein tertiary structure may be responsible for the variations in the 'intrinsic' binding constant. The Cu-BSA binding affinity was also monitored in 100 mM Tris 0.1% sodium dodecyl sulfate (SDS) solution at p

  16. Research of connection between mass audience and new media. Approaches to new model of mass communication measurement

    OpenAIRE

    Sibiriakova Olena Oleksandrivna

    2015-01-01

    In this research the author examines changes to approaches of observation of mass communication. As a result of systemization of key theoretical models of communication, the author comes to conclusion of evolution of ideas about the process of mass communication measurement from linear to multisided and multiple.

  17. Health issues of whey proteins: 1. Protection of lean body mass

    NARCIS (Netherlands)

    Schaafsma, G.

    2006-01-01

    Loss of muscle mass as a consequence of changes in protein metabolism during periods of catabolic stress is a serious complication in a variety of conditions. These conditions are weight loss programs, sarcopenia in the elderly and several clinical states. It appears from many studies that improved

  18. Examination and Manipulation of Protein Surface Charge in Solution with Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Gross, Deborah S.; Van Ryswyk, Hal

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…

  19. ACYLTRANSFERASE ACTIVITIES OF THE HIGH-MOLECULAR-MASS ESSENTIAL PENICILLIN-BINDING PROTEINS

    NARCIS (Netherlands)

    ADAM, M; DAMBLON, C; JAMIN, M; ZORZI, W; DUSART, [No Value; GALLENI, M; ELKHARROUBI, A; PIRAS, G; SPRATT, BG; KECK, W; COYETTE, J; GHUYSEN, JM; NGUYENDISTECHE, M; FRERE, JM

    1991-01-01

    The high-molecular-mass penicillin-binding proteins (HMM-PBPs), present in the cytoplasmic membranes of all eubacteria, are involved in important physiological events such as cell elongation, septation or shape determination. Up to now it has, however, been very difficult or impossible to study the

  20. Underreporting of energy, protein and potassium intake in relation to body mass index

    NARCIS (Netherlands)

    Heerstrass, D W; Ocké, M C; Bueno De Mesquita, H Bas; Peeters, P.H.; Seidell, J C

    BACKGROUND: Differential underreporting of dietary intake by subgroups of body mass index (BMI) will confound associations between dietary intake and BMI-related diseases. We estimated the magnitude of BMI-related underreporting for energy, protein, and potassium intake for the Dutch cohorts of the

  1. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium

  2. The effects of dietary protein intake on appendicular lean mass and muscle function in elderly men

    DEFF Research Database (Denmark)

    Mitchell, Cameron J; Milan, Amber M; Mitchell, Sarah M

    2017-01-01

    Background: The Recommended Daily Allowance (RDA) for protein intake in the adult population is widely promoted as 0.8 g · kg-1 · d-1 Aging may increase protein requirements, particularly to maintain muscle mass.Objective: We investigated whether controlled protein consumption at the current RDA...... or twice the RDA (2RDA) affects skeletal muscle mass and physical function in elderly men.Design: In this parallel-group randomized trial, 29 men aged >70 y [mean ± SD body mass index (in kg/m2): 28.3 ± 4.2] were provided with a complete diet containing either 0.8 (RDA) or 1.6 (2RDA) g protein · kg-1 · d-1...... energy balance (mean ± SD RDA: 209 ± 213 kcal/d; 2RDA 145 ± 214 kcal/d; P= 0.427 for difference between the groups). In comparison with RDA, whole-body lean mass increased in 2RDA (P = 0.001; 1.49 ± 1.30 kg, P

  3. Identification and monitoring of host cell proteins by mass spectrometry combined with high performance immunochemistry testing.

    Directory of Open Access Journals (Sweden)

    Katrin Bomans

    Full Text Available Biotherapeutics are often produced in non-human host cells like Escherichia coli, yeast, and various mammalian cell lines. A major focus of any therapeutic protein purification process is to reduce host cell proteins to an acceptable low level. In this study, various E. coli host cell proteins were identified at different purifications steps by HPLC fractionation, SDS-PAGE analysis, and tryptic peptide mapping combined with online liquid chromatography mass spectrometry (LC-MS. However, no host cell proteins could be verified by direct LC-MS analysis of final drug substance material. In contrast, the application of affinity enrichment chromatography prior to comprehensive LC-MS was adequate to identify several low abundant host cell proteins at the final drug substance level. Bacterial alkaline phosphatase (BAP was identified as being the most abundant host cell protein at several purification steps. Thus, we firstly established two different assays for enzymatic and immunological BAP monitoring using the cobas® technology. By using this strategy we were able to demonstrate an almost complete removal of BAP enzymatic activity by the established therapeutic protein purification process. In summary, the impact of fermentation, purification, and formulation conditions on host cell protein removal and biological activity can be conducted by monitoring process-specific host cell proteins in a GMP-compatible and high-throughput (> 1000 samples/day manner.

  4. Principles and equations for measuring and interpreting protein stability: From monomer to tetramer.

    Science.gov (United States)

    Bedouelle, Hugues

    2016-02-01

    The ability to measure the thermodynamic stability of proteins with precision is important for both academic and applied research. Such measurements rely on mathematical models of the protein denaturation profile, i.e. the relation between a global protein signal, corresponding to the folding states in equilibrium, and the variable value of a denaturing agent, either heat or a chemical molecule, e.g. urea or guanidinium hydrochloride. In turn, such models rely on a handful of physical laws: the laws of mass action and conservation, the law that relates the protein signal and concentration, and the one that relates stability and denaturant value. So far, equations have been derived mainly for the denaturation profiles of homomeric proteins. Here, we review the underlying basic physical laws and show in detail how to derive model equations for the unfolding equilibria of homomeric or heteromeric proteins up to trimers and potentially tetramers, with or without folding intermediates, and give full demonstrations. We show that such equations cannot be derived for pentamers or higher oligomers except in special degenerate cases. We expand the method to signals that do not correspond to extensive protein properties. We review and expand methods for uncovering hidden intermediates of unfolding. Finally, we review methods for comparing and interpreting the thermodynamic parameters that derive from stability measurements for cognate wild-type and mutant proteins. This work should provide a robust theoretical basis for measuring the stability of complex proteins. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  5. Identifying technical aliases in SELDI mass spectra of complex mixtures of proteins

    Science.gov (United States)

    2013-01-01

    Background Biomarker discovery datasets created using mass spectrum protein profiling of complex mixtures of proteins contain many peaks that represent the same protein with different charge states. Correlated variables such as these can confound the statistical analyses of proteomic data. Previously we developed an algorithm that clustered mass spectrum peaks that were biologically or technically correlated. Here we demonstrate an algorithm that clusters correlated technical aliases only. Results In this paper, we propose a preprocessing algorithm that can be used for grouping technical aliases in mass spectrometry protein profiling data. The stringency of the variance allowed for clustering is customizable, thereby affecting the number of peaks that are clustered. Subsequent analysis of the clusters, instead of individual peaks, helps reduce difficulties associated with technically-correlated data, and can aid more efficient biomarker identification. Conclusions This software can be used to pre-process and thereby decrease the complexity of protein profiling proteomics data, thus simplifying the subsequent analysis of biomarkers by decreasing the number of tests. The software is also a practical tool for identifying which features to investigate further by purification, identification and confirmation. PMID:24010718

  6. Effect of Protein Intake on Lean Body Mass in Functionally Limited Older Men: A Randomized Clinical Trial.

    Science.gov (United States)

    Bhasin, Shalender; Apovian, Caroline M; Travison, Thomas G; Pencina, Karol; Moore, Lynn L; Huang, Grace; Campbell, Wayne W; Li, Zhuoying; Howland, Andrew S; Chen, Ruo; Knapp, Philip E; Singer, Martha R; Shah, Mitali; Secinaro, Kristina; Eder, Richard V; Hally, Kathleen; Schram, Haley; Bearup, Richelle; Beleva, Yusnie M; McCarthy, Ashley C; Woodbury, Erin; McKinnon, Jennifer; Fleck, Geeta; Storer, Thomas W; Basaria, Shehzad

    2018-04-01

    assigned to 0.8 vs 1.3 g/kg/d of protein regardless of whether they received testosterone or placebo. Fat mass decreased in participants given higher protein but did not change in those given the RDA: between-group differences were significant (difference, -1.12 kg; 95% CI, -2.04 to -0.21; P = .02). Protein intake exceeding the RDA did not increase LBM, muscle performance, physical function, or well-being measures or augment anabolic response to testosterone in older men with physical function limitations whose usual protein intakes were within the RDA. The RDA for protein is sufficient to maintain LBM, and protein intake exceeding the RDA does not promote LBM accretion or augment anabolic response to testosterone. clinicaltrials.gov Identifier: NCT01275365.

  7. Detection of high molecular weight proteins by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Mainini, Veronica; Bovo, Giorgio; Chinello, Clizia; Gianazza, Erica; Grasso, Marco; Cattoretti, Giorgio; Magni, Fulvio

    2013-06-01

    MALDI imaging mass spectrometry (IMS) is a unique technology to explore the spatial distribution of biomolecules directly on tissues. It allows the in situ investigation of a large number of small proteins and peptides. Detection of high molecular weight proteins through MALDI IMS still represents an important challenge, as it would allow the direct investigation of the distribution of more proteins involved in biological processes, such as cytokines, enzymes, neuropeptide precursors and receptors. In this work we compare the traditional method performed with sinapinic acid with a comparable protocol using ferulic acid as the matrix. Data show a remarkable increase of signal acquisition in the mass range of 20k to 150k Th. Moreover, we report molecular images of biomolecules above 70k Th, demonstrating the possibility of expanding the application of this technology both in clinical investigations and basic science.

  8. A study of quality measures for protein threading models

    Directory of Open Access Journals (Sweden)

    Rychlewski Leszek

    2001-08-01

    Full Text Available Abstract Background Prediction of protein structures is one of the fundamental challenges in biology today. To fully understand how well different prediction methods perform, it is necessary to use measures that evaluate their performance. Every two years, starting in 1994, the CASP (Critical Assessment of protein Structure Prediction process has been organized to evaluate the ability of different predictors to blindly predict the structure of proteins. To capture different features of the models, several measures have been developed during the CASP processes. However, these measures have not been examined in detail before. In an attempt to develop fully automatic measures that can be used in CASP, as well as in other type of benchmarking experiments, we have compared twenty-one measures. These measures include the measures used in CASP3 and CASP2 as well as have measures introduced later. We have studied their ability to distinguish between the better and worse models submitted to CASP3 and the correlation between them. Results Using a small set of 1340 models for 23 different targets we show that most methods correlate with each other. Most pairs of measures show a correlation coefficient of about 0.5. The correlation is slightly higher for measures of similar types. We found that a significant problem when developing automatic measures is how to deal with proteins of different length. Also the comparisons between different measures is complicated as many measures are dependent on the size of the target. We show that the manual assessment can be reproduced to about 70% using automatic measures. Alignment independent measures, detects slightly more of the models with the correct fold, while alignment dependent measures agree better when selecting the best models for each target. Finally we show that using automatic measures would, to a large extent, reproduce the assessors ranking of the predictors at CASP3. Conclusions We show that given a

  9. Reduction of determinate errors in mass bias-corrected isotope ratios measured using a multi-collector plasma mass spectrometer

    International Nuclear Information System (INIS)

    Doherty, W.

    2015-01-01

    A nebulizer-centric instrument response function model of the plasma mass spectrometer was combined with a signal drift model, and the result was used to identify the causes of the non-spectroscopic determinate errors remaining in mass bias-corrected Pb isotope ratios (Tl as internal standard) measured using a multi-collector plasma mass spectrometer. Model calculations, confirmed by measurement, show that the detectable time-dependent errors are a result of the combined effect of signal drift and differences in the coordinates of the Pb and Tl response function maxima (horizontal offset effect). If there are no horizontal offsets, then the mass bias-corrected isotope ratios are approximately constant in time. In the absence of signal drift, the response surface curvature and horizontal offset effects are responsible for proportional errors in the mass bias-corrected isotope ratios. The proportional errors will be different for different analyte isotope ratios and different at every instrument operating point. Consequently, mass bias coefficients calculated using different isotope ratios are not necessarily equal. The error analysis based on the combined model provides strong justification for recommending a three step correction procedure (mass bias correction, drift correction and a proportional error correction, in that order) for isotope ratio measurements using a multi-collector plasma mass spectrometer

  10. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  11. High-throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies

    International Nuclear Information System (INIS)

    Sloane, A.J.; Duff, J.L.; Hopwood, F.G.; Wilson, N.L.; Smith, P.E.; Hill, C.J.; Packer, N.H.; Williams, K.L.; Gooley, A.A.; Cole, R.A.; Cooley, P.W.; Wallace, D.B.

    2001-01-01

    We describe a 'chemical printer' that uses piezoelectric pulsing for rapid and accurate microdispensing of picolitre volumes of fluid for proteomic analysis of 'protein macroarrays'. Unlike positive transfer and pin transfer systems, our printer dispenses fluid in a non-contact process that ensures that the fluid source cannot be contaminated by substrate during a printing event. We demonstrate automated delivery of enzyme and matrix solutions for on-membrane protein digestion and subsequent peptide mass fingerprinting (pmf) analysis directly from the membrane surface using matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). This approach bypasses the more commonly used multi-step procedures, thereby permitting a more rapid procedure for protein identification. We also highlight the advantage of printing different chemistries onto an individual protein spot for multiple microscale analyses. This ability is particularly useful when detailed characterisation of rare and valuable sample is required. Using a combination of PNGase F and trypsin we have mapped sites of N-glycosylation using on-membrane digestion strategies. We also demonstrate the ability to print multiple serum samples in a micro-ELISA format and rapidly screen a protein macroarray of human blood plasma for pathogen-derived antigens. We anticipate that the 'chemical printer' will be a major component of proteomic platforms for high-throughput protein identification and characterisation with widespread applications in biomedical and diagnostic discovery

  12. Recent mass spectrometry-based techniques and considerations for disulfide bond characterization in proteins.

    Science.gov (United States)

    Lakbub, Jude C; Shipman, Joshua T; Desaire, Heather

    2018-04-01

    Disulfide bonds are important structural moieties of proteins: they ensure proper folding, provide stability, and ensure proper function. With the increasing use of proteins for biotherapeutics, particularly monoclonal antibodies, which are highly disulfide bonded, it is now important to confirm the correct disulfide bond connectivity and to verify the presence, or absence, of disulfide bond variants in the protein therapeutics. These studies help to ensure safety and efficacy. Hence, disulfide bonds are among the critical quality attributes of proteins that have to be monitored closely during the development of biotherapeutics. However, disulfide bond analysis is challenging because of the complexity of the biomolecules. Mass spectrometry (MS) has been the go-to analytical tool for the characterization of such complex biomolecules, and several methods have been reported to meet the challenging task of mapping disulfide bonds in proteins. In this review, we describe the relevant, recent MS-based techniques and provide important considerations needed for efficient disulfide bond analysis in proteins. The review focuses on methods for proper sample preparation, fragmentation techniques for disulfide bond analysis, recent disulfide bond mapping methods based on the fragmentation techniques, and automated algorithms designed for rapid analysis of disulfide bonds from liquid chromatography-MS/MS data. Researchers involved in method development for protein characterization can use the information herein to facilitate development of new MS-based methods for protein disulfide bond analysis. In addition, individuals characterizing biotherapeutics, especially by disulfide bond mapping in antibodies, can use this review to choose the best strategies for disulfide bond assignment of their biologic products. Graphical Abstract This review, describing characterization methods for disulfide bonds in proteins, focuses on three critical components: sample preparation, mass

  13. Increased Protein Structural Resolution from Diethylpyrocarbonate-based Covalent Labeling and Mass Spectrometric Detection

    Science.gov (United States)

    Zhou, Yuping; Vachet, Richard W.

    2012-04-01

    Covalent labeling and mass spectrometry are seeing increased use together as a way to obtain insight into the 3-dimensional structure of proteins and protein complexes. Several amino acid specific (e.g., diethylpyrocarbonate) and non-specific (e.g., hydroxyl radicals) labeling reagents are available for this purpose. Diethylpyrocarbonate (DEPC) is a promising labeling reagent because it can potentially probe up to 30% of the residues in the average protein and gives only one reaction product, thereby facilitating mass spectrometric analysis. It was recently reported, though, that DEPC modifications are labile for some amino acids. Here, we show that label loss is more significant and widespread than previously thought, especially for Ser, Thr, Tyr, and His residues, when relatively long protein digestion times are used. Such label loss ultimately decreases the amount of protein structural information that is obtainable with this reagent. We find, however, that the number of DEPC modified residues and, thus, protein structural information, can be significantly increased by decreasing the time between the covalent labeling reaction and the mass spectrometric analysis. This is most effectively accomplished using short (e.g., 2 h) proteolytic digestions with enzymes such as immobilized chymotrypsin or Glu-C rather than using methods (e.g., microwave or ultrasonic irradiation) that accelerate proteolysis in other ways. Using short digestion times, we show that the percentage of solvent accessible residues that can be modified by DEPC increases from 44% to 67% for cytochrome c, 35% to 81% for myoglobin, and 76% to 95% for β-2-microglobulin. In effect, these increased numbers of modified residues improve the protein structural resolution available from this covalent labeling method. Compared with typical overnight digestion conditions, the short digestion times decrease the average distance between modified residues from 11 to 7 Å for myoglobin, 13 to 10 Å for

  14. The Association between Total Protein and Vegetable Protein Intake and Low Muscle Mass among the Community-Dwelling Elderly Population in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Ru-Yi Huang

    2016-06-01

    Full Text Available Sarcopenia, highly linked with fall, frailty, and disease burden, is an emerging problem in aging society. Higher protein intake has been suggested to maintain nitrogen balance. Our objective was to investigate whether pre-sarcopenia status was associated with lower protein intake. A total of 327 community-dwelling elderly people were recruited for a cross-sectional study. We adopted the multivariate nutrient density model to identify associations between low muscle mass and dietary protein intake. The general linear regression models were applied to estimate skeletal muscle mass index across the quartiles of total protein and vegetable protein density. Participants with diets in the lowest quartile of total protein density (<13.2% were at a higher risk for low muscle mass (odds ratio (OR 3.03, 95% confidence interval (CI 1.37–6.72 than those with diets in the highest quartile (≥17.2%. Similarly, participants with diets in the lowest quartile of vegetable protein density (<5.8% were at a higher risk for low muscle mass (OR 2.34, 95% CI 1.14–4.83 than those with diets in the highest quartile (≥9.4%. Furthermore, the estimated skeletal muscle mass index increased significantly across the quartiles of total protein density (p = 0.023 and vegetable protein density (p = 0.025. Increasing daily intakes of total protein and vegetable protein densities appears to confer protection against pre-sarcopenia status.

  15. Determining Membrane Protein-Lipid Binding Thermodynamics Using Native Mass Spectrometry.

    Science.gov (United States)

    Cong, Xiao; Liu, Yang; Liu, Wen; Liang, Xiaowen; Russell, David H; Laganowsky, Arthur

    2016-04-06

    Membrane proteins are embedded in the biological membrane where the chemically diverse lipid environment can modulate their structure and function. However, the thermodynamics governing the molecular recognition and interaction of lipids with membrane proteins is poorly understood. Here, we report a method using native mass spectrometry (MS), to determine thermodynamics of individual ligand binding events to proteins. Unlike conventional methods, native MS can resolve individual ligand binding events and, coupled with an apparatus to control the temperature, determine binding thermodynamic parameters, such as for protein-lipid interactions. We validated our approach using three soluble protein-ligand systems (maltose binding protein, lysozyme, and nitrogen regulatory protein) and obtained similar results to those using isothermal titration calorimetry and surface plasmon resonance. We also determined for the first time the thermodynamics of individual lipid binding to the ammonia channel (AmtB), an integral membrane protein from Escherichia coli. Remarkably, we observed distinct thermodynamic signatures for the binding of different lipids and entropy-enthalpy compensation for binding lipids of variable chain length. Additionally, using a mutant form of AmtB that abolishes a specific phosphatidylglycerol (PG) binding site, we observed distinct changes in the thermodynamic signatures for binding PG, implying these signatures can identify key residues involved in specific lipid binding and potentially differentiate between specific lipid binding sites.

  16. Increased Body Mass Index, Elevated C-reactive Protein, and Short Telomere Length

    DEFF Research Database (Denmark)

    Rode, Line; Nordestgaard, Børge G; Weischer, Maren

    2014-01-01

    -reactive protein. SETTING AND DESIGN: We studied 45,069 individuals from the Copenhagen General Population Study with measurements of leukocyte telomere length, BMI, and C-reactive protein in a Mendelian randomization study. Using the three obesity-associated polymorphisms FTO rs9939609, MC4R rs17782313, and TMEM...

  17. Measurements of protein turnover in man with nitrogen-15

    International Nuclear Information System (INIS)

    Garlick, P.J.; Waterlow, J.C.

    1977-01-01

    Past and present methods of measuring total body protein turnover with 15 N-labelled compounds are reviewed, and a short assessment made of results achieved. Protein turnover in man was first measured by Sprinson and Rittenberg (1949) using 15 N glycine as tracer. The rate of turnover was calculated from the fraction of the dose excreted in urine in the days following a single oral dose of the isotope. In the following years a number of similar methods were devised but interest waned, perhaps because consistent changes in turnover rate under different conditions were not detected. A revival of interest came with the measurement of changes in protein turnover in malnourished and recovering children by Picou and Taylor-Roberts (1969). Nitrogen-15-glycine was infused and measurements were made of the abundance of 15 N in urinary urea, which reached a plateau in about 24 hours. Turnover rates were calculated from the proportion of the infused dose excreted in urea after the plateau had been reached. This method has also been used successfully on adults when the isotope has been given as three-hourly oral doses. In adults, however, plateau labelling in urea is not usually reached for two days. In our laboratory the use of urinary ammonia, which reaches a plateau more quickly than urea, has been examined. In addition, comparisons have been made between constant infusion and single dose of isotope. Halliday and McKeran (1975) infused 15 N-lysine and measured the 15 N abundance in the free lysine of plasma, which reached a plateau in about 12 hours. Turnover in the whole body and turnover of muscle proteins and of plasma albumin were estimated separately. These methods of measuring protein turnover with 15 N are described and results reviewed of the effects of food intake, nutritional status and age. (author)

  18. Association between muscle mass and a single measurement of ...

    African Journals Online (AJOL)

    cause mortality significantly. It is strongly associated with the risk of heart attack, coronary artery disease, cardiovascular disease, stroke and liver disease. The relationship between muscle mass and a diagnosis of hypertension in a sample of ...

  19. Mass Flux Measurements of Arsenic in Groundwater (Battelle Conference)

    Science.gov (United States)

    Concentration trends of arsenic are typically used to evaluate the performance of remediation efforts designed to mitigate arsenic contamination in groundwater. A complementary approach would be to track changes in mass flux of the contaminant through the subsurface, for exampl...

  20. Precision top-quark mass measurements at CDF

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Gonzalez, B.A.; Amerio, S.; Lysák, Roman

    2012-01-01

    Roč. 109, č. 15 (2012), "152003-1"-"152003-7" ISSN 0031-9007 R&D Projects: GA MŠk LC527 Institutional research plan: CEZ:AV0Z10100502 Keywords : top mass * top pair production * dijet mass spectrum * CDF * Batavia TEVATRON Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.943, year: 2012 http://arxiv.org/abs/arXiv:1207.6758

  1. MASS MEASUREMENTS IN PROTOPLANETARY DISKS FROM HYDROGEN DEUTERIDE

    Energy Technology Data Exchange (ETDEWEB)

    McClure, M. K. [Karl-Schwarzschild-Straße 2, D-85748 Garching bei München (Germany); Bergin, E. A.; Cleeves, L. I., E-mail: mmcclure@eso.org, E-mail: ebergin@umich.edu, E-mail: ilse.cleeves@cfa.harvard.edu [Department of Astronomy, The University of Michigan, 500 Church St., 830 Dennison Bldg., Ann Arbor, MI 48109 (United States); and others

    2016-11-10

    The total gas mass of a protoplanetary disk is a fundamental, but poorly determined, quantity. A new technique has been demonstrated to assess directly the bulk molecular gas reservoir of molecular hydrogen using the HD J = 1–0 line at 112 μ m. In this work we present a Herschel Space Observatory {sup 10} survey of six additional T Tauri disks in the HD line. Line emission is detected at >3 σ significance in two cases: DM Tau and GM Aur. For the other four disks, we establish upper limits to the line flux. Using detailed disk structure and ray-tracing models, we calculate the temperature structure and dust mass from modeling the observed spectral energy distributions, and we include the effect of UV gas heating to determine the amount of gas required to fit the HD line. The ranges of gas masses are 1.0–4.7 × 10{sup -2} for DM Tau and 2.5–20.4 × 10{sup -2} for GM Aur. These values are larger than those found using CO for GM Aur, while the CO-derived gas mass for DM Tau is consistent with the lower end of our mass range. This suggests a CO chemical depletion from the gas phase of up to a factor of five for DM Tau and up to two orders of magnitude for GM Aur. We discuss how future analysis can narrow the mass ranges further.

  2. Progression of 3D Protein Structure and Dynamics Measurements

    Science.gov (United States)

    Sato-Tomita, Ayana; Sekiguchi, Hiroshi; Sasaki, Yuji C.

    2018-06-01

    New measurement methodologies have begun to be proposed with the recent progress in the life sciences. Here, we introduce two new methodologies, X-ray fluorescence holography for protein structural analysis and diffracted X-ray tracking (DXT), to observe the dynamic behaviors of individual single molecules.

  3. Intestinal digestibility of enriched-protein fodders measured by ...

    African Journals Online (AJOL)

    Ruminal, intestinal and total tract digestibility of dry matter (DM) and crude protein (CP) of leucaena (Leucaena leucocephala), Madras thorn (Pithecellobium dulce) and moringa (Moringa oleifera) fodders were measured in this study, using nylon bag and mobile bag techniques. Three cattle were fitted with permanent ...

  4. Effects of high protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial

    Science.gov (United States)

    Context: The benefits of high protein diets for sparing lean body mass and sustaining skeletal muscle protein metabolism during short-term weight loss in normal-weight adults are not well described. Objective: Determine the effects of varying levels of dietary protein intake on body compos...

  5. In-Depth Characterization of Protein Disulfide Bonds by Online Liquid Chromatography-Electrochemistry-Mass Spectrometry

    Science.gov (United States)

    Switzar, Linda; Nicolardi, Simone; Rutten, Julie W.; Oberstein, Saskia A. J. Lesnik; Aartsma-Rus, Annemieke; van der Burgt, Yuri E. M.

    2016-01-01

    Disulfide bonds are an important class of protein post-translational modifications, yet this structurally crucial modification type is commonly overlooked in mass spectrometry (MS)-based proteomics approaches. Recently, the benefits of online electrochemistry-assisted reduction of protein S-S bonds prior to MS analysis were exemplified by successful characterization of disulfide bonds in peptides and small proteins. In the current study, we have combined liquid chromatography (LC) with electrochemistry (EC) and mass analysis by Fourier transform ion cyclotron resonance (FTICR) MS in an online LC-EC-MS platform to characterize protein disulfide bonds in a bottom-up proteomics workflow. A key advantage of a LC-based strategy is the use of the retention time in identifying both intra- and interpeptide disulfide bonds. This is demonstrated by performing two sequential analyses of a certain protein digest, once without and once with electrochemical reduction. In this way, the "parent" disulfide-linked peptide detected in the first run has a retention time-based correlation with the EC-reduced peptides detected in the second run, thus simplifying disulfide bond mapping. Using this platform, both inter- and intra-disulfide-linked peptides were characterized in two different proteins, ß-lactoglobulin and ribonuclease B. In order to prevent disulfide reshuffling during the digestion process, proteins were digested at a relatively low pH, using (a combination of) the high specificity proteases trypsin and Glu-C. With this approach, disulfide bonds in ß-lactoglobulin and ribonuclease B were comprehensively identified and localized, showing that online LC-EC-MS is a useful tool for the characterization of protein disulfide bonds.

  6. Mass thickness measurement of dual-sample by dual-energy X-rays

    International Nuclear Information System (INIS)

    Chen Mincong; Li Hongmei; Chen Ziyu; Shen Ji

    2008-01-01

    X-ray equivalent energy can be used to measure mass thicknesses of materials. Based on this, a method of mass thickness measurement of dual-sample was discussed. It was found that in the range of sample mass thickness under investigation, the equivalent mass attenuation coefficient of a component could be used to compute mass thicknesses of a dual-sample, with relative errors of less than 5%. Mass thickness measurement of a fish sample was performed, and the fish bone and flesh could be displayed separately and clearly by their own mass thicknesses. This indicates that the method is effective in mass thickness measurement of dual-sample of suitable thicknesses. (authors)

  7. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    Science.gov (United States)

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  8. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men

    Directory of Open Access Journals (Sweden)

    Mathias T. Vangsoe

    2018-03-01

    Full Text Available During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM improved significantly in both groups (Mean (95% confidence interval (CI, control group (Con: (2.5 kg (1.5, 3.5 p < 0.01, protein group (Pro: (2.7 kg (1.6, 3.8 p < 0.01 from pre- to post-. Leg and bench press one repetition maximum (1 RM improved by Con: (42.0 kg (32.0, 52.0 p < 0.01 and (13.8 kg (10.3, 17.2 p < 0.01, Pro: (36.6 kg (27.3, 45.8 p < 0.01 and (8.1 kg (4.5, 11.8 p < 0.01, respectively. No significant differences in body composition and muscle strength improvements were found between groups. In young healthy men, insect protein supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation.

  9. CLMSVault: A Software Suite for Protein Cross-Linking Mass-Spectrometry Data Analysis and Visualization.

    Science.gov (United States)

    Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike

    2017-07-07

    Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .

  10. The application of an emerging technique for protein-protein interaction interface mapping: the combination of photo-initiated cross-linking protein nanoprobes with mass spectrometry

    Czech Academy of Sciences Publication Activity Database

    Ptáčková, Renata; Ječmen, Tomáš; Novák, Petr; Šulc, Miroslav; Hudeček, J.; Stiborová, M.

    2014-01-01

    Roč. 15, č. 6 (2014), s. 9224-9241 E-ISSN 1422-0067 R&D Projects: GA ČR(CZ) GAP207/12/0627 Grant - others:Universita Karlova(CZ) 903413; Magistrát hlavního města Prahy(CZ) CZ.2.16/3.1.00/24023; UNCE(BE) 204025/2012 Institutional support: RVO:61388971 Keywords : nanoprobes * mass spectrometry * protein-protein interactions Subject RIV: CE - Biochemistry Impact factor: 2.862, year: 2014

  11. Network Compression as a Quality Measure for Protein Interaction Networks

    Science.gov (United States)

    Royer, Loic; Reimann, Matthias; Stewart, A. Francis; Schroeder, Michael

    2012-01-01

    With the advent of large-scale protein interaction studies, there is much debate about data quality. Can different noise levels in the measurements be assessed by analyzing network structure? Because proteomic regulation is inherently co-operative, modular and redundant, it is inherently compressible when represented as a network. Here we propose that network compression can be used to compare false positive and false negative noise levels in protein interaction networks. We validate this hypothesis by first confirming the detrimental effect of false positives and false negatives. Second, we show that gold standard networks are more compressible. Third, we show that compressibility correlates with co-expression, co-localization, and shared function. Fourth, we also observe correlation with better protein tagging methods, physiological expression in contrast to over-expression of tagged proteins, and smart pooling approaches for yeast two-hybrid screens. Overall, this new measure is a proxy for both sensitivity and specificity and gives complementary information to standard measures such as average degree and clustering coefficients. PMID:22719828

  12. Mass spectrometry compatible surfactant for optimized in-gel protein digestion.

    Science.gov (United States)

    Saveliev, Sergei V; Woodroofe, Carolyn C; Sabat, Grzegorz; Adams, Christopher M; Klaubert, Dieter; Wood, Keith; Urh, Marjeta

    2013-01-15

    Identification of proteins resolved by SDS-PAGE depends on robust in-gel protein digestion and efficient peptide extraction, requirements that are often difficult to achieve. A lengthy and laborious procedure is an additional challenge of protein identification in gel. We show here that with the use of the mass spectrometry compatible surfactant sodium 3-((1-(furan-2-yl)undecyloxy)carbonylamino)propane-1-sulfonate, the challenges of in-gel protein digestion are effectively addressed. Peptide quantitation based on stable isotope labeling showed that the surfactant induced 1.5-2 fold increase in peptide recovery. Consequently, protein sequence coverage was increased by 20-30%, on average, and the number of identified proteins saw a substantial boost. The surfactant also accelerated the digestion process. Maximal in-gel digestion was achieved in as little as one hour, depending on incubation temperature, and peptides were readily recovered from gel eliminating the need for postdigestion extraction. This study shows that the surfactant provides an efficient means of improving protein identification in gel and streamlining the in-gel digestion procedure requiring no extra handling steps or special equipment.

  13. Role of Protein Carbonylation in Skeletal Muscle Mass Loss Associated with Chronic Conditions

    Directory of Open Access Journals (Sweden)

    Esther Barreiro

    2016-05-01

    Full Text Available Muscle dysfunction, characterized by a reductive remodeling of muscle fibers, is a common systemic manifestation in highly prevalent conditions such as chronic heart failure (CHF, chronic obstructive pulmonary disease (COPD, cancer cachexia, and critically ill patients. Skeletal muscle dysfunction and impaired muscle mass may predict morbidity and mortality in patients with chronic diseases, regardless of the underlying condition. High levels of oxidants may alter function and structure of key cellular molecules such as proteins, DNA, and lipids, leading to cellular injury and death. Protein oxidation including protein carbonylation was demonstrated to modify enzyme activity and DNA binding of transcription factors, while also rendering proteins more prone to proteolytic degradation. Given the relevance of protein oxidation in the pathophysiology of many chronic conditions and their comorbidities, the current review focuses on the analysis of different studies in which the biological and clinical significance of the modifications induced by reactive carbonyls on proteins have been explored so far in skeletal muscles of patients and animal models of chronic conditions such as COPD, disuse muscle atrophy, cancer cachexia, sepsis, and physiological aging. Future research will elucidate the specific impact and sites of reactive carbonyls on muscle protein content and function in human conditions.

  14. A hybrid approach to protein differential expression in mass spectrometry-based proteomics

    KAUST Repository

    Wang, X.

    2012-04-19

    MOTIVATION: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein\\'s associated spectral peaks. However, typical MS-based proteomics datasets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. RESULTS: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of \\'presence/absence,\\' we enable the selection of proteins not typically amenable to quantitative analysis; e.g. \\'one-state\\' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/absence analysis of a given dataset in a principled way, resulting in a single list of selected proteins with a single-associated false discovery rate. AVAILABILITY: All R code available here: http://www.stat.tamu.edu/~adabney/share/xuan_code.zip.

  15. Targeted mass spectrometry analysis of neutrophil-derived proteins released during sepsis progression

    DEFF Research Database (Denmark)

    Malmström, E; Davidova, A; Mörgelin, M

    2014-01-01

    systemic stimulation an immediate increase of neutrophil-borne proteins can be observed into the circulation of sepsis patients. We applied a combination of mass spectrometry (MS) based approaches, LC-MS/MS and selected reaction monitoring (SRM), to characterise and quantify the neutrophil proteome......Early diagnosis of severe infectious diseases is essential for timely implementation of lifesaving therapies. In a search for novel biomarkers in sepsis diagnosis we focused on polymorphonuclear neutrophils (PMNs). Notably, PMNs have their protein cargo readily stored in granules and following...

  16. Profiling of kidney vascular endothelial cell plasma membrane proteins by liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Liu, Zan; Xu, Bo; Nameta, Masaaki; Zhang, Ying; Magdeldin, Sameh; Yoshida, Yutaka; Yamamoto, Keiko; Fujinaka, Hidehiko; Yaoita, Eishin; Tasaki, Masayuki; Nakagawa, Yuki; Saito, Kazuhide; Takahashi, Kota; Yamamoto, Tadashi

    2013-06-01

    Vascular endothelial cells (VECs) play crucial roles in physiological and pathologic conditions in tissues and organs. Most of these roles are related to VEC plasma membrane proteins. In the kidney, VECs are closely associated with structures and functions; however, plasma membrane proteins in kidney VECs remain to be fully elucidated. Rat kidneys were perfused with cationic colloidal silica nanoparticles (CCSN) to label the VEC plasma membrane. The CCSN-labeled plasma membrane fraction was collected by gradient ultracentrifugation. The VEC plasma membrane or whole-kidney lysate proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and digested with trypsin in gels for liquid chromatography-tandem mass spectrometry. Enrichment analysis was then performed. The VEC plasma membrane proteins were purified by the CCSN method with high yield (approximately 20 μg from 1 g of rat kidney). By Mascot search, 582 proteins were identified in the VEC plasma membrane fraction, and 1,205 proteins were identified in the kidney lysate. In addition to 16 VEC marker proteins such as integrin beta-1 and intercellular adhesion molecule-2 (ICAM-2), 8 novel proteins such as Deltex 3-like protein and phosphatidylinositol binding clathrin assembly protein (PICALM) were identified. As expected, many key functions of plasma membranes in general and of endothelial cells in particular (i.e., leukocyte adhesion) were significantly overrepresented in the proteome of CCSN-labeled kidney VEC fraction. The CCSN method is a reliable technique for isolation of VEC plasma membrane from the kidney, and proteomic analysis followed by bioinformatics revealed the characteristics of in vivo VECs in the kidney.

  17. High-accuracy mass measurements of neutron-rich Kr isotopes

    CERN Document Server

    Delahaye, P; Blaum, K; Carrel, F; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H J; Lunney, D; Schweikhard, L; Yazidjian, C

    2006-01-01

    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  18. Measurements of the top quark mass using the CMS and ATLAS detectors at the LHC

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2018-01-01

    Measurements of the top quark mass obtained by the ATLAS and CMS experiments in proton-proton collisions at the LHC for centre-of-mass energies of 7, 8 and 13 TeV are presented. The mass of the top quark is measured using several methods and channels, including the reconstructed invariant mass distribution of the top quark and shapes of kinematic observables from top quark decay products. Measurements of the top-quark pole-mass based on the inclusive and differential top-anti-top production cross sections and observables based on the differential cross section in the top-pair plus 1 jet channel are also discussed.

  19. Time-resolved pulsed hydrogen/deuterium exchange mass spectrometry probes gaseous proteins structural kinetics.

    Science.gov (United States)

    Rajabi, Khadijeh

    2015-01-01

    A pulsed hydrogen/deuterium exchange (HDX) method has been developed for rapid monitoring of the exchange kinetics of protein ions with D2O a few milliseconds after electrospray ionization (ESI). The stepwise gradual evolution of HDX of multiply charged protein ions was monitored using the pulsed HDX mass spectrometry technique. Upon introducing a very short pulse of D2O (in the μs to ms time scale) into the linear ion trap (LIT) of a time-of-flight (TOF) mass spectrometer, bimodal distributions were detected for the ions of cytochrome c and ubiquitin. Mechanistic details of HDX reactions for ubiquitin and cytochrome c in the gas phase were uncovered and the structural transitions were followed by analyzing the kinetics of HDX.

  20. Performance measures for mass customization strategies in an ETO environment

    DEFF Research Database (Denmark)

    Bonev, Martin; Hvam, Lars

    2013-01-01

    When following mass customization (MC) principles, manufacturing companies have to consider several aspects. Complexity is thereby seen as a major challenge to be handled. Especially for ETO companies the movement towards MC is much more complex, as products are not standardized, processes are se...

  1. Complete characterization of posttranslational modification sites in the bovine milk protein PP3 by tandem mass spectrometry with electron capture dissociation as the last stage

    DEFF Research Database (Denmark)

    Kjeldsen, Frank; Haselmann, Kim F; Budnik, Bogdan A

    2003-01-01

    the PTM site. Chromatographic peak analysis continues until full sequence coverage is obtained, after which the molecular mass is reconstructed and compared with the measured value. An agreement indicates that the PTM characterization was complete. This procedure applied to the bovine milk PP3 protein...

  2. Comparative Analysis of Mass Spectral Similarity Measures on Peak Alignment for Comprehensive Two-Dimensional Gas Chromatography Mass Spectrometry

    Science.gov (United States)

    2013-01-01

    Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524

  3. Electrostatic mass spectrometer for concurrent mass-, energy- and angle-resolved measurements

    International Nuclear Information System (INIS)

    Golikov, Yu.K.; Krasnova, N.K.

    1999-01-01

    A new electron-optical scheme is considered. An energy- and mass-analyser with angular resolution are combined in one device, in which a time-of-flight principle of mass separation is used. The tool is created on the basis of electrostatic field of quasi-conical systems possessing the high-energy dispersion and high-angular resolution. A regime of simultaneous angular and energy resolution is found. If there is an ion-pulsed source then the ion groups of equal mass will be registered at the same time at a position-sensitive detector located at the edge of the field. Real parameters of the suggested scheme are calculated

  4. Empirical Correction for Differences in Chemical Exchange Rates in Hydrogen Exchange-Mass Spectrometry Measurements.

    Science.gov (United States)

    Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D

    2017-09-05

    A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.

  5. Mechanistic Links Underlying the Impact of C-Reactive Protein on Muscle Mass in Elderly

    Directory of Open Access Journals (Sweden)

    Britta Wåhlin-Larsson

    2017-11-01

    Full Text Available Background/Aims: Mechanisms underlying the relationship between systemic inflammation and age-related decline in muscle mass are poorly defined. The purpose of this work was to investigate the relationship between the systemic inflammatory marker CRP and muscle mass in elderly and to identify mechanisms by which CRP mediates its effects on skeletal muscle, in-vitro. Methods: Muscle mass and serum CRP level were determined in a cohort of 118 older women (67±1.7 years. Human muscle cells were differentiated into myotubes and were exposed to CRP. The size of myotubes was determined after immunofluorescent staining using troponin. Muscle protein synthesis was assessed using stable isotope tracers and key signalling pathways controlling protein synthesis were determined using western-blotting. Results: We observed an inverse relationship between circulating CRP level and muscle mass (β= -0.646 (95% CI: -0.888, -0.405 p<0.05 and demonstrated a reduction (p < 0.05 in the size of human myotubes exposed to CRP for 72 h. We next showed that this morphological change was accompanied by a CRP-mediated reduction (p < 0.05 in muscle protein fractional synthetic rate of human myotubes exposed to CRP for 24 h. We also identified a CRP-mediated increased phosphorylation (p<0.05 of regulators of cellular energy stress including AMPK and downstream targets, raptor and ACC-β, together with decreased phosphorylation of Akt and rpS6, which are important factors controlling protein synthesis. Conclusion: This work established for the first time mechanistic links by which chronic elevation of CRP can contribute to age-related decline in muscle function.

  6. A maternal high-protein diet predisposes female offspring to increased fat mass in adulthood whereas a prebiotic fibre diet decreases fat mass in rats.

    Science.gov (United States)

    Hallam, Megan C; Reimer, Raylene A

    2013-11-14

    The negative effects of malnourishment in utero have been widely explored; the effects of increased maternal macronutrient intake are not known in relation to high fibre, and have been inconclusive with regard to high protein. In the present study, virgin Wistar dams were fed either a control (C), high-protein (40 %, w/w; HP) or high-prebiotic fibre (21·6 %, w/w; HF) diet throughout pregnancy and lactation. Pups consumed the C diet from 3 to 14·5 weeks of age, and then switched to a high-fat/sucrose diet for 8 weeks. A dual-energy X-ray absorptiometry scan and an oral glucose tolerance test were performed and plasma satiety hormones measured. The final body weight and the percentage of body fat were significantly affected by the interaction between maternal diet and offspring sex: weight and fat mass were higher in the female offspring of the HP v. HF dams. No differences in body weight or fat mass were seen in the male offspring. There was a significant sex effect for fasting and total AUC for ghrelin and fasting GIP, with females having higher levels than males. Liver TAG content and plasma NEFA were lower in the offspring of high-prebiotic fibre dams (HF1) than in those of high-protein dams (HP1) and control dams (C1). Intestinal expression of GLUT2 was decreased in HF1 and HP1 v. C1. The maternal HP and HF diets had lasting effects on body fat and hepatic TAG accumulation in the offspring, particularly in females. Whereas the HP diet predisposes to an obese phenotype, the maternal HF diet appears to reduce the susceptibility to obesity following a high-energy diet challenge in adulthood.

  7. Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications.

    Science.gov (United States)

    Sajic, Tatjana; Liu, Yansheng; Aebersold, Ruedi

    2015-04-01

    In medicine, there is an urgent need for protein biomarkers in a range of applications that includes diagnostics, disease stratification, and therapeutic decisions. One of the main technologies to address this need is MS, used for protein biomarker discovery and, increasingly, also for protein biomarker validation. Currently, data-dependent analysis (also referred to as shotgun proteomics) and targeted MS, exemplified by SRM, are the most frequently used mass spectrometric methods. Recently developed data-independent acquisition techniques combine the strength of shotgun and targeted proteomics, while avoiding some of the limitations of the respective methods. They provide high-throughput, accurate quantification, and reproducible measurements within a single experimental setup. Here, we describe and review data-independent acquisition strategies and their recent use in clinically oriented studies. In addition, we also provide a detailed guide for the implementation of SWATH-MS (where SWATH is sequential window acquisition of all theoretical mass spectra)-one of the data-independent strategies that have gained wide application of late. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermodynamic Charge-to-Mass Sensor for Colloids, Proteins, and Polyelectrolytes

    NARCIS (Netherlands)

    van Rijssel, Jos; Costo, Rocio; Vrij, Agienus; Philipse, Albert P.; Erne, Ben H.

    2016-01-01

    A sensor is introduced that gauges the ratio of charge z to mass m of macro-ions in liquid media. The conductivity is measured in a small volume of salt solution, separated from the macro-ions by a semipermeable membrane. The mobile counterions released by the macro-ions increase the measured salt

  9. Measurements of the top quark mass using the ATLAS detector at the LHC

    CERN Document Server

    Pinamonti, Michele; The ATLAS collaboration

    2018-01-01

    The latest measurements of the top quark mass using the ATLAS experiment are presented. A measurement based on a multi-dimensional template fit that can constrain the uncertainties on the energy measurements of jets is presented and combined with measurements using dilepton and all-hadronic events. In addition an analysis of the top quark mass using leptonic kinematic variables is discussed. The measurement uses a novel technique to measure the top quark mass with minimal dependence on hadronic jets. A measurement of the top quark width and the measurements that use precision theoretical QCD calculations for both inclusive ttbar production and ttbar production with an additional jet to extract the top quark mass in the pole-mass scheme are also presented.

  10. Recent improvements of ISOLTRAP Absolute mass measurements of exotic nuclides at $10^{-8}$ precision

    CERN Document Server

    Kellerbauer, A G

    2003-01-01

    In the past three years, the sensitivity and the performance of the Penning trap mass spectrometer ISOLTRAP have been enhanced significantly. These improvements, which range from technical developments to systematic studies of the various factors contributing to the uncertainty of the final mass result, now allow mass measurements of short-lived radionuclides with half-lives of less than 100 ms and with a precision of better than 10$^{-8}$. Using a newly developed carbon cluster ion source, ISOLTRAP can perform absolute mass measurements relative to the microscopic mass standard $^{12}$C. These developments are reviewed as pertaining to the extension of ISOLTRAP mass measurements to higher precision and shorter half-lives and to molecular mass measurements.

  11. Accelerated identification of proteins by mass spectrometry by employing covalent pre-gel staining with Uniblue A.

    Directory of Open Access Journals (Sweden)

    Marco A Mata-Gómez

    Full Text Available BACKGROUND: The identification of proteins by mass spectrometry is a standard method in biopharmaceutical quality control and biochemical research. Prior to identification by mass spectrometry, proteins are usually pre-separated by electrophoresis. However, current protein staining and de-staining protocols are tedious and time consuming, and therefore prolong the sample preparation time for mass spectrometry. METHODOLOGY AND PRINCIPAL FINDINGS: We developed a 1-minute covalent pre-gel staining protocol for proteins, which does not require de-staining before the mass spectrometry analysis. We investigated the electrophoretic properties of derivatized proteins and peptides and studied their behavior in mass spectrometry. Further, we elucidated the preferred reaction of proteins with Uniblue A and demonstrate the integration of the peptide derivatization into typical informatics tools. CONCLUSIONS AND SIGNIFICANCE: The Uniblue A staining method drastically speeds up the sample preparation for the mass spectrometry based identification of proteins. The application of this chemo-proteomic strategy will be advantageous for routine quality control of proteins and for time-critical tasks in protein analysis.

  12. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    OpenAIRE

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-01-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip bounda...

  13. Mass measurement of 80Y by β-γ coincidence spectroscopy

    International Nuclear Information System (INIS)

    Barton, C.J.; Caprio, M.A.; Beausang, C.W.; Casten, R.F.; Cooper, J.R.; Kruecken, R.; Novak, J.R.; Pietralla, N.; Brenner, D.S.; Zamfir, N.V.; Aprahamian, A.; Wiescher, M.C.; Shawcross, M.; Teymurazyan, A.; Berant, Z.; Wolf, A.; Gill, R.L.

    2003-01-01

    The Q EC value of 80 Y has been measured by β-γ coincidence spectroscopy to be ≥8929(83) keV. Combining this result with the adopted mass excess of the daughter 80 Sr gives a mass excess for 80 Y of ≥-61 376(83) keV. Results are compared with other measurements, with Audi-Wapstra systematics, and with predictions of mass formulas. Implications of this measurement are considered for the rp process

  14. Monitoring Conformational Landscape of Ovine Prion Protein Monomer Using Ion Mobility Coupled to Mass Spectrometry

    Science.gov (United States)

    Van der Rest, Guillaume; Rezaei, Human; Halgand, Frédéric

    2017-02-01

    Prion protein is involved in deadly neurodegenerative diseases. Its pathogenicity is linked to its structural conversion (α-helix to β-strand transition). However, recent studies suggest that prion protein can follow a plurality of conversion pathways, which hints towards different conformers that might coexist in solution. To gain insights on the plasticity of the ovine prion protein (PrP) monomer, wild type (A136, R154, Q171), mutants and deletions of ARQ were studied by traveling wave ion mobility experiments coupled to mass spectrometry. In order to perform the analysis of a large body of data sets, we designed and evaluated the performance of a processing pipeline based on Driftscope peak detection and a homemade script for automated peak assignment, annotation, and quantification on specific multiply charged protein data. Using this approach, we showed that in the gas phase, PrPs are represented by at least three conformer families differing in both charge state distribution and collisional cross-section, in agreement with the work of Hilton et al. (2010). We also showed that this plasticity is borne both by the N- and C-terminal domains. Effect of protein concentration, pH and temperature were also assessed, showing that (1) pH does not affect conformer distributions, (2) protein concentration modifies the conformational landscape of one mutant (I208M) only, and (3) heating leads to other unfolded species and to a modification of the conformer intensity ratios.

  15. Measurements of Critical Heat Flux using Mass Transfer System

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.

  16. Measuring protein dynamics with ultrafast two-dimensional infrared spectroscopy

    International Nuclear Information System (INIS)

    Adamczyk, Katrin; Candelaresi, Marco; Hunt, Neil T; Robb, Kirsty; Hoskisson, Paul A; Tucker, Nicholas P; Gumiero, Andrea; Walsh, Martin A; Parker, Anthony W

    2012-01-01

    Recent advances in the methodology and application of ultrafast two-dimensional infrared (2D-IR) spectroscopy to biomolecular systems are reviewed. A description of the 2D-IR technique and the molecular contributions to the observed spectra are presented followed by a discussion of recent literature relating to the use of 2D-IR and associated approaches for measuring protein dynamics. In particular, these include the use of diatomic ligand groups for measuring haem protein dynamics, isotopic labelling strategies and the use of vibrational probe groups. The final section reports on the current state of the art regarding the use of 2D-IR methods to provide insights into biological reaction mechanisms. (topical review)

  17. Probing Conformational Changes of Human DNA Polymerase λ Using Mass Spectrometry-Based Protein Footprinting

    Science.gov (United States)

    Fowler, Jason D.; Brown, Jessica A.; Kvaratskhelia, Mamuka; Suo, Zucai

    2009-01-01

    SUMMARY Crystallographic studies of the C-terminal, DNA polymerase β-like domain of human DNA polymerase lambda (fPolλ) suggested that the catalytic cycle might not involve a large protein domain rearrangement as observed with several replicative DNA polymerases and DNA polymerase β. To examine solution-phase protein conformation changes in fPolλ, which also contains a breast cancer susceptibility gene 1 C-terminal domain and a Proline-rich domain at its N-terminus, we used a mass spectrometry - based protein footprinting approach. In parallel experiments, surface accessibility maps for Arg residues were compared for the free fPolλ versus the binary complex of enzyme•gapped DNA and the ternary complex of enzyme•gapped DNA•dNTP. These experiments suggested that fPolλ does not undergo major conformational changes during the catalysis in the solution phase. Furthermore, the mass spectrometry-based protein footprinting experiments revealed that active site residue R386 was shielded from the surface only in the presence of both a gapped DNA substrate and an incoming nucleotide dNTP. Site-directed mutagenesis and pre-steady state kinetic studies confirmed the importance of R386 for the enzyme activity, and indicated the key role for its guanidino group in stabilizing the negative charges of an incoming nucleotide and the leaving pyrophosphate product. We suggest that such interactions could be shared by and important for catalytic functions of other DNA polymerases. PMID:19467241

  18. Differential screening and mass mapping of proteins from premalignant and cancer cell lines using nonporous reversed-phase HPLC coupled with mass spectrometric analysis.

    Science.gov (United States)

    Chong, B E; Hamler, R L; Lubman, D M; Ethier, S P; Rosenspire, A J; Miller, F R

    2001-03-15

    Nonporous (NPS) RP-HPLC has been used to rapidly separate proteins from whole cell lysates of human breast cell lines. The nonporous separation involves the use of hard-sphere silica beads of 1.5-microm diameter coated with C18, which can be used to separate proteins ranging from 5 to 90 kDa. Using only 30-40 microg of total protein, the protein molecular weights are detectable on-line using an ESI-oaTOF MS. Of hundreds of proteins detected in this mass range, approxinately 75-80 are more highly expressed. The molecular weight profiles can be displayed as a mass map analogous to a virtual "1-D gel" and differentially expressed proteins can be compared by image analysis. The separated proteins can also be detected by UV absorption and differentially expressed proteins quantified. The eluting proteins can be collected in the liquid phase and the molecular weight and peptide maps determined by MALDI-TOF MS for identification. It is demonstrated that the expressed protein profiles change during neoplastic progression and that many oncoproteins are readily detected. It is also shown that the response of premalignant cancer cells to estradiol can be rapidly screened by this method, demonstrating significant changes in response to an external agent. Ultimately, the proteins can be studied by peptide mapping to search for posttranslational modifications of the oncoproteins accompanying progression.

  19. Effect of transcutaneous electrical muscle stimulation on postoperative muscle mass and protein synthesis

    DEFF Research Database (Denmark)

    Vinge, O; Edvardsen, L; Jensen, F

    1996-01-01

    In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein ...... protein synthesis and muscle mass after abdominal surgery and should be evaluated in other catabolic states with muscle wasting.......In an experimental study, 13 patients undergoing major elective abdominal surgery were given postoperative transcutaneous electrical muscle stimulation (TEMS) to the quadriceps femoris muscle on one leg; the opposite leg served as control. Changes in cross-sectional area (CSA) and muscle protein...... synthesis were assessed by computed tomography and ribosome analysis of percutaneous muscle biopsies before surgery and on the sixth postoperative day. The percentage of polyribosomes in the ribosome suspension decreased significantly (P

  20. A direct measurement of the baryonic mass function of galaxies & implications for the galactic baryon fraction

    NARCIS (Netherlands)

    Papastergis, Emmanouil; Cattaneo, Andrea; Huang, Shan; Giovanelli, Riccardo; Haynes, Martha P.

    2012-01-01

    We use both an HI-selected and an optically-selected galaxy sample to directly measure the abundance of galaxies as a function of their "baryonic" mass (stars + atomic gas). Stellar masses are calculated based on optical data from the Sloan Digital Sky Survey (SDSS) and atomic gas masses are

  1. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  2. Measurement of the Higgs boson mass with a linear e+e- collider

    International Nuclear Information System (INIS)

    Garcia-Abia, P.; Lohmann, W.; Raspereza, A.

    2005-05-01

    The potential of a linear e + e - collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb -1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10 -4 . (orig.)

  3. Prospects for the measurement of the Higgs boson mass with a linear e+e- collider

    International Nuclear Information System (INIS)

    Garcia-Abia, P.; Lohmann, W.; Raspereza, A.

    2005-01-01

    The potential of a linear e + e - collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb -1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10 -4 . (orig.)

  4. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry

    Science.gov (United States)

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland. PMID:25955586

  5. Protein and Peptide Composition of Male Accessory Glands of Apis mellifera Drones Investigated by Mass Spectrometry.

    Science.gov (United States)

    Gorshkov, Vladimir; Blenau, Wolfgang; Koeniger, Gudrun; Römpp, Andreas; Vilcinskas, Andreas; Spengler, Bernhard

    2015-01-01

    In honeybees, reproductive females usually mate early in their life with more than 10 males in free flight, often within 10 minutes, and then store male gametes for up to five years. Because of the extreme polyandry and mating in free flight special adaptations in males are most likely. We present here the results of an investigation of the protein content of four types of male reproductive glands from the Western honeybee (Apis mellifera) drone, namely seminal vesicles (secretion in ejaculate), as well as bulbus, cornua and mucus glands (secretions for the mating plug). Using high resolution and accuracy mass spectrometry and a combination of database searching and de novo sequencing techniques it was possible to identify 50 different proteins in total, inside all mentioned glands, except in the mucus gland. Most of the proteins are unique for a specific gland type, only one of them (H9KEY1/ATP synthase subunit O) was found in three glands, and 7 proteins were found in two types of glands. The identified proteins represent a wide variety of biological functions and can be assigned to several physiological classes, such as protection, energy generation, maintaining optimal conditions, associated mainly with vesicula seminalis; signaling, cuticle proteins, icarpin and apolipoproteins located mainly in the bulbus and cornua glands; and some other classes. Most of the discovered proteins were not found earlier during investigation of semen, seminal fluid and tissue of reproductive glands of the bee drone. Moreover, we provide here the origin of each protein. Thus, the presented data might shed light on the role of each reproductive gland.

  6. High-precision mass measurements in the realm of the deformed shell closure N=152

    Energy Technology Data Exchange (ETDEWEB)

    Eibach, Martin Andreas

    2013-12-04

    The nuclear masses reflect the sum of all interactions inside a nucleus. Their precise knowledge can be used to benchmark nuclear mass models and to gain nuclear structure information. Penning-trap mass spectrometers have proven their potential to obtain lowest uncertainties. Uniquely located at a nuclear reactor, the double Penning-trap mass spectrometer TRIGA-TRAP is dedicated to measurements in the neutron-rich region. For a gain in sensitivity a non-destructive detection system for single ion mass measurements was adopted. This includes the implementation of a narrow band-pass filter tuned to the heavy ion cyclotron frequency as well as a cryogenic low-noise amplifier. For on-line mass measurements, the laser ablation ion source was equipped with a newly developed miniature radiofrequency quadrupole trap in order to improve the extraction efficiency. A more economic use of the radioactive material enabled mass measurements using only 10{sup 15} atoms of target material. New mass measurements were performed within this work in the realm of the deformed shell closure N=152. Their implementation into the atomic-mass evaluation improved the uncertainty of more than 80 nuclides in the heavy mass region and simultaneously shifted the absolute mass of two α decay chains.

  7. Measuring and engineering the atomic mass density wave of a Gaussian mass-polariton pulse in optical fibers

    Science.gov (United States)

    Partanen, Mikko; Tulkki, Jukka

    2018-02-01

    Conventional theories of electromagnetic waves in a medium assume that only the energy of the field propagates inside the medium. Consequently, they neglect the transport of mass density by the medium atoms. We have recently presented foundations of a covariant theory of light propagation in a nondispersive medium by considering a light wave simultaneously with the dynamics of the medium atoms driven by optoelastic forces [Phys. Rev. A 95, 063850 (2017)]. In particular, we have shown that the mass is transferred by an atomic mass density wave (MDW), which gives rise to mass-polariton (MP) quasiparticles, i.e., covariant coupled states of the field and matter having a nonzero rest mass. Another key observation of the mass-polariton theory of light is that, in common semiconductors, most of the momentum of light is transferred by moving atoms, e.g., 92% in the case of silicon. In this work, we generalize the MP theory of light for dispersive media and consider experimental measurement of the mass transferred by the MDW atoms when an intense light pulse propagates in a silicon fiber. In particular, we consider optimal intensity and time dependence of a Gaussian pulse and account for the breakdown threshold irradiance of the material. The optical shock wave property of the MDW, which propagates with the velocity of light instead of the velocity of sound, prompts for engineering of novel device concepts like very high frequency mechanical oscillators not limited by the acoustic cutoff frequency.

  8. ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval.

    Science.gov (United States)

    Wang, Jingyan; Gao, Xin; Wang, Quanquan; Li, Yongping

    2012-05-08

    The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database. In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N(i) and N(j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N(i) and N(j).Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update the Protein Hierarchial

  9. ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-05-08

    Background: The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database.Results: In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N (i) and N (j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N (i) and N (j). Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update

  10. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    Science.gov (United States)

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  11. Characterization of hydrogen bonding motifs in proteins: hydrogen elimination monitoring by ultraviolet photodissociation mass spectrometry.

    Science.gov (United States)

    Morrison, Lindsay J; Chai, Wenrui; Rosenberg, Jake A; Henkelman, Graeme; Brodbelt, Jennifer S

    2017-08-02

    Determination of structure and folding of certain classes of proteins remains intractable by conventional structural characterization strategies and has spurred the development of alternative methodologies. Mass spectrometry-based approaches have a unique capacity to differentiate protein heterogeneity due to the ability to discriminate populations, whether minor or major, featuring modifications or complexation with non-covalent ligands on the basis of m/z. Cleavage of the peptide backbone can be further utilized to obtain residue-specific structural information. Here, hydrogen elimination monitoring (HEM) upon ultraviolet photodissociation (UVPD) of proteins transferred to the gas phase via nativespray ionization is introduced as an innovative approach to deduce backbone hydrogen bonding patterns. Using well-characterized peptides and a series of proteins, prediction of the engagement of the amide carbonyl oxygen of the protein backbone in hydrogen bonding using UVPD-HEM is demonstrated to show significant agreement with the hydrogen-bonding motifs derived from molecular dynamics simulations and X-ray crystal structures.

  12. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins

    Science.gov (United States)

    Schalk, Kathrin; Koehler, Peter

    2018-01-01

    Celiac disease (CD) is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins) from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA) based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS) in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD), which resulted in a strong correlation between LC-MS/MS and the other two methods. PMID:29425234

  13. Targeted liquid chromatography tandem mass spectrometry to quantitate wheat gluten using well-defined reference proteins.

    Directory of Open Access Journals (Sweden)

    Kathrin Schalk

    Full Text Available Celiac disease (CD is an inflammatory disorder of the upper small intestine caused by the ingestion of storage proteins (prolamins and glutelins from wheat, barley, rye, and, in rare cases, oats. CD patients need to follow a gluten-free diet by consuming gluten-free products with gluten contents of less than 20 mg/kg. Currently, the recommended method for the quantitative determination of gluten is an enzyme-linked immunosorbent assay (ELISA based on the R5 monoclonal antibody. Because the R5 ELISA mostly detects the prolamin fraction of gluten, a new independent method is required to detect prolamins as well as glutelins. This paper presents the development of a method to quantitate 16 wheat marker peptides derived from all wheat gluten protein types by liquid chromatography tandem mass spectrometry (LC-MS/MS in the multiple reaction monitoring mode. The quantitation of each marker peptide in the chymotryptic digest of a defined amount of the respective reference wheat protein type resulted in peptide-specific yields. This enabled the conversion of peptide into protein type concentrations. Gluten contents were expressed as sum of all determined protein type concentrations. This new method was applied to quantitate gluten in wheat starches and compared to R5 ELISA and gel-permeation high-performance liquid chromatography with fluorescence detection (GP-HPLC-FLD, which resulted in a strong correlation between LC-MS/MS and the other two methods.

  14. Analysis of Protein-Phenolic Compound Modifications Using Electrochemistry Coupled to Mass Spectrometry.

    Science.gov (United States)

    Kallinich, Constanze; Schefer, Simone; Rohn, Sascha

    2018-01-29

    In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.

  15. Quasi-dynamic mode of nanomembranes for time-of-flight mass spectrometry of proteins.

    Science.gov (United States)

    Park, Jonghoo; Kim, Hyunseok; Blick, Robert H

    2012-04-21

    Mechanical resonators realized on the nano-scale by now offer applications in mass-sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical biosensors should be of extremely small size to achieve zeptogram sensitivity in weighing single molecules similar to a balance. However, the small scale and long response time of weighing biomolecules with a cantilever restrict their usefulness as a high-throughput method. Commercial mass spectrometry (MS) such as electro-spray ionization (ESI)-MS and matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-MS are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as time-of-flight (TOF). Hence, the spectrum is typically represented in m/z, i.e. the mass to ionization charge ratio. Here, we describe the feasibility and mass range of detection of a new mechanical approach for ion detection in time-of-flight mass spectrometry, the principle of which is that the impinging ion packets excite mechanical oscillations in a silicon nitride nanomembrane. These mechanical oscillations are henceforth detected via field emission of electrons from the nanomembrane. Ion detection is demonstrated in MALDI-TOF analysis over a broad range with angiotensin, bovine serum albumin (BSA), and an equimolar protein mixture of insulin, BSA, and immunoglobulin G (IgG). We find an unprecedented mass range of operation of the nanomembrane detector.

  16. MEASURING THE ULTIMATE HALO MASS OF GALAXY CLUSTERS: REDSHIFTS AND MASS PROFILES FROM THE HECTOSPEC CLUSTER SURVEY (HeCS)

    International Nuclear Information System (INIS)

    Rines, Kenneth; Geller, Margaret J.; Kurtz, Michael J.; Diaferio, Antonaldo

    2013-01-01

    The infall regions of galaxy clusters represent the largest gravitationally bound structures in a ΛCDM universe. Measuring cluster mass profiles into the infall regions provides an estimate of the ultimate mass of these halos. We use the caustic technique to measure cluster mass profiles from galaxy redshifts obtained with the Hectospec Cluster Survey (HeCS), an extensive spectroscopic survey of galaxy clusters with MMT/Hectospec. We survey 58 clusters selected by X-ray flux at 0.1 200 , a new observational cosmological test in essential agreement with simulations. Summed profiles binned in M 200 and in L X demonstrate that the predicted Navarro-Frenk-White form of the density profile is a remarkably good representation of the data in agreement with weak lensing results extending to large radius. The concentration of these summed profiles is also consistent with theoretical predictions.

  17. Mass spectrometric protein characterization in proteome analysis using GELoader tip micro-columns packed with various chromatographic material

    International Nuclear Information System (INIS)

    Larsen, M.R.

    2001-01-01

    In the early 90'ies mass spectrometry (MS) was introduced as a tool for identifying proteins in protein sequence databases. Since then it has become an integrated tool in protein characterization and is today routinely used to identify proteins separated by gel electrophoresis. A two-tiered mass spectrometric protein identification strategy has recently been proposed. In the first strategy peptide mass maps obtained from the protein of interest are compared with theoretically derived peptide mass maps from proteins in protein sequence databases. If the protein cannot be identified by this strategy, tandem mass spectrometric sequencing is used to generate enough sequence data to identify the protein in protein sequence databases or expressed sequence tag (EST) databases. However, the above strategies primarily identify a protein relatively to the DNA sequence, in which no information about e.g. post-translational modifications (PTMs) is stored. PTMs are known to modify the function, location, solubility and activity of proteins in the cell, and they are therefore very important for understanding living cells. More than 200 different PTMs are known, of which glycosylation, phosphorylation and proteolytic processing are the most common ones. Mass spectrometric analysis of PTMs on gel-separated proteins requires a higher amount of protein than for identification only. In addition, higher sequence coverage from the peptide mass maps or pre-purification of the modified peptides prior to MS analysis, is necessary for detection of putative modified peptides. In this study a multi-tiered strategy, in which GELoader tip micro-columns packed with increasingly more hydrophobic chromatographic material are used in combination with mass spectrometry, is described. The ultimate aim was to gain increased sequence coverage from peptide mixtures derived from gel-separated proteins, in order to locate modified peptides. Graphite powder is described as an alternative to traditional

  18. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    Science.gov (United States)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  19. Velocity measurement by vortex shedding. Contribution to the mass-flow measurement

    International Nuclear Information System (INIS)

    Martinez Piquer, T.

    1988-01-01

    The phenomenon of vortex shedding has been known for centuries and has been the subject of scientific studies for about one hundred years. It is only in the ten last years that is has been applied to the measurement of fluids velocity. In 1878 F. Strouhal observed the vortex shedding phenomenon and shown that the shedding frequency of a wire vibrating in the wind was related to the wire diameter and the wind velocity. Rayleigh, who introduced the non-dimensional Strouhal number, von Karman and Rohsko, carried out extensive work or the subject which indicated that vortex shedding could form the basis for a new type of flowmeter. The thesis describes two parallel lines of investigation which study in depth the practical applications of vortex shedding. The first one deals with the measure of velocity and it presents the novelty of a bluff body with a cross-section which has not been used until this day. This body is a circular cylinder with a two-dimensional slit along the diameter and situated in crossdirection to the fluid's stream. It possesses excellent characteristics and it is the most stable as a vortex shedder, which gives it great advantage to the rest of the shapes used until now. The detection of the vortex has been performed by measuring the pressure changes generated by the vortex on two posts situated just beside the slit. To calculate the frequency of the vortex shedding, we obtain the difference of the mentioned signals, which are the same and 180 out of phase. Finding out the period of the autocorrelation function of this signal we can estimate the velocity of the fluid. A logical equipment based on a microprocessor has been designed for the calculation using a zero-crossing time algorithm implemented in assembler language. The second line of research refers to a new method of measure mass flow. The pressure signal generated by the vortex has an intensity which is proportional to the density and to the square of the velocity. Since we have already

  20. Mass measurement on the rp-process waiting point {sup 72}Kr

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, D. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Kolhinen, V.S. [Jyvaeskylae Univ. (Finland); Audi, G. [CSNSM-IN2P3-Centre National de la Recherche Scientifique (CNRS), 91 - Orsay (FR)] [and others

    2004-06-01

    The mass of one of the three major waiting points in the astrophysical rp-process {sup 72}Kr was measured for the first time with the Penning trap mass spectrometer ISOLTRAP. The measurement yielded a relative mass uncertainty of {delta}m/m=1.2 x 10{sup -7} ({delta}m=8 keV). Other Kr isotopes, also needed for astrophysical calculations, were measured with more than one order of magnitude improved accuracy. We use the ISOLTRAP masses of{sup 72-74}Kr to reanalyze the role of the {sup 72}Kr waiting point in the rp-process during X-ray bursts. (orig.)

  1. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Horvath, Krisztian; Guiochon, Georges

    2012-11-09

    The mass transfer kinetics of a few compounds (uracil, 112 Da), insulin (5.5 kDa), lysozyme (13.4 kDa), and bovine serum albumin (BSA, 67 kDa) in columns packed with several types of spherical particles was investigated under non-retained conditions, in order to eliminate the poorly known contribution of surface diffusion to overall sample diffusivity across the porous particles in RPLC. Diffusivity across particles is then minimum. Based on the porosity of the particles accessible to analytes, it was accurately estimated from the elution times, the internal obstruction factor (using Pismen correlation), and the hindrance diffusion factor (using Renkin correlation). The columns used were packed with fully porous particles 2.5 μm Luna-C(18) 100 Å, core-shell particles 2.6 μm Kinetex-C(18) 100 Å, 3.6 μm Aeris Widepore-C(18) 200 Å, and prototype 2.7 μm core-shell particles (made of two concentric porous shells with 100 and 300 Å average pore size, respectively), and with 3.3 μm non-porous silica particles. The results demonstrate that the porous particle structure and the solid-liquid mass transfer resistance have practically no effect on the column efficiency for small molecules. For them, the column performance depends principally on eddy dispersion (packing homogeneity), to a lesser degree on longitudinal diffusion (effective sample diffusivity along the packed bed), and only slightly on the solid-liquid mass transfer resistance (sample diffusivity across the particle). In contrast, for proteins, this third HETP contribution, hence the porous particle structure, together with eddy dispersion govern the kinetic performance of columns. Mass transfer kinetics of proteins was observed to be fastest for columns packed with core-shell particles having either a large core-to-particle ratio or having a second, external, shell made of a thin porous layer with large mesopores (200-300 Å) and a high porosity (~/=0.5-0.7). The structure of this external shell seems

  2. Characterisation of chemically-modified proteins by electrospray ionisation mass spectrometry

    International Nuclear Information System (INIS)

    Bennett, K.L.

    1996-09-01

    Electrospray mass spectrometry (ESI-MS) has been used to examine a range of intact monoclonal antibodies (MAbs), antibody fragments such as F(ab') 2 , F ab and F c , chemically-modified fragments and a range of other chemically-modified peptides and proteins as part of a broader study aimed at establishing ESI-MS as a method for the characterisation of radioimmunoconjugates (radiolabelled monoclonal antibodies). For example, the addition of up to 10 biotin molecules to the 'papain-sensitive' 50 kDa F ab fragment can be easily detected in ESI mass spectra. For intact MAbs, however, it is only possible to detect average shifts in the mass of intact antibodies following modification. Successful ESI-MS analysis of complexes formed between chelators and other small molecules conjugated to synthetic peptides, hen egg-white Iysozyme (HEL) (M r 14 306) and horse heart myoglobin (M r 16 951) has been demonstrated. ESI-MS offers considerable advantages compared with existing methods for the characterisation of chemically-conjugated proteins including speed and sensitivity of analysis and the capability for obtaining specific structural information. The conditions for ESI-MS of intact MAbs and MAb fragments have been examined in detail and it was found that 150 kDa MAbs generally required lower sample concentration and higher skimmer potentials compared with the 50 kDa F ab fragment and other lower molecular weight proteins. In addition, the m/z range over which ions from MAbs were observed was higher (m/z ∼2000-4500) than for smaller proteins. ESI-MS was also found to be useful for probing the action of the protease papain, that is used to generate MAb fragments (F(ab) '2, F ab and F c ). Further, different sensitivities to papain for different MAb preparations was demonstrated. Finally, the tandem mass spectra of a range of peptides modified by iodine and biotin were examined. In the case of biotinylated peptides, a characteristic fragment ion was identified that could

  3. New method measures moisture and true dry mass

    International Nuclear Information System (INIS)

    Frank, H.

    The moisture content of wood can be determined by measuring the nuclear magnetic resonance of free water hydrogen atoms in wood. Nanassy studied NMR curves for six types of wood and obtained the calibration curve by reducing the moisture content in steps by 4% moisture down to ca. 1% moisture and then by gradually wetting the wood. The initial material was fresh wood. For each step he measured the intensity of the free water hydrogen signal. If the sample weight is known the dry matter content (dry weight) and moisture content of the sample can be derived from the measured NMR signal. (J.P.)

  4. Quantification of mutant SPOP proteins in prostate cancer using mass spectrometry-based targeted proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Barbieri, Christopher E.; He, Jintang; Gao, Yuqian; Shi, Tujin; Wu, Chaochao; Schepmoes, Athena A.; Fillmore, Thomas L.; Chae, Sung-Suk; Huang, Dennis; Mosquera, Juan Miguel; Qian, Wei-Jun; Smith, Richard D.; Srivastava, Sudhir; Kagan, Jacob; Camp, David G.; Rodland, Karin D.; Rubin, Mark A.; Liu, Tao

    2017-08-15

    Speckle-type POZ protein (SPOP) is an E3 ubiquitin ligase adaptor protein that functions as a potential tumor suppressor, and SPOP mutations have been identified in ~10% of human prostate cancers. However, it remains unclear if mutant SPOP proteins can be utilized as biomarkers for early detection, diagnosis, prognosis or targeted therapy of prostate cancer. Moreover, the SPOP mutation sites are distributed in a relatively short region where multiple lysine residues, posing significant challenges for bottom-up proteomics analysis of the SPOP mutations. To address this issue, PRISM (high-pressure, high-resolution separations coupled with intelligent selection and multiplexing)-SRM (selected reaction monitoring) mass spectrometry assays have been developed for quantifying wild-type SPOP protein and 11 prostate cancer-derived SPOP mutations. Despite inherent limitations due to amino acid sequence constraints, all the PRISM-SRM assays developed using Arg-C digestion showed a linear dynamic range of at least two orders of magnitude, with limits of quantification range from 0.1 to 1 fmol/μg of total protein in the cell lysate. Applying these SRM assays to analyze HEK293T cells with and without expression of the three most frequent SPOP mutations in prostate cancer (Y87N, F102C or F133V) led to confident detection of all three SPOP mutations in corresponding positive cell lines but not in the negative cell lines. Expression of the F133V mutation and wild-type SPOP was at much lower levels compared to that of F102C and Y87N mutations; however, at present it is unknown if this also affects the activity of the SPOP protein. In summary, PRISM-SRM enables multiplexed, isoform-specific detection of mutant SPOP proteins in cell lysates, which holds great potential in biomarker development for prostate cancer.

  5. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites

    Directory of Open Access Journals (Sweden)

    Manuel Bauer

    2015-12-01

    Full Text Available The data described here provide a systematic performance evaluation of popular data-dependent (DDA and independent (DIA mass spectrometric (MS workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy labeled reference peptides, respectively, covering six orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed very similarly in the absence of background proteins, however, when analyzing whole cell lysates, targeted methods were at least 5–10 times more sensitive than directed or DDA methods. In particular, higher stage fragmentation (MS3 of the neutral loss peak using a linear ion trap increased dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying 9 phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from non-enriched pull-down samples. The data are associated to the research article ‘Evaluation of data-dependent and data-independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites׳ (Bauer et al., 2014 [1]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000964.

  6. A modified FASP protocol for high-throughput preparation of protein samples for mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Jeremy Potriquet

    Full Text Available To facilitate high-throughput proteomic analyses we have developed a modified FASP protocol which improves the rate at which protein samples can be processed prior to mass spectrometry. Adapting the original FASP protocol to a 96-well format necessitates extended spin times for buffer exchange due to the low centrifugation speeds tolerated by these devices. However, by using 96-well plates with a more robust polyethersulfone molecular weight cutoff membrane, instead of the cellulose membranes typically used in these devices, we could use isopropanol as a wetting agent, decreasing spin times required for buffer exchange from an hour to 30 minutes. In a typical work flow used in our laboratory this equates to a reduction of 3 hours per plate, providing processing times similar to FASP for the processing of up to 96 samples per plate. To test whether our modified protocol produced similar results to FASP and other FASP-like protocols we compared the performance of our modified protocol to the original FASP and the more recently described eFASP and MStern-blot. We show that all FASP-like methods, including our modified protocol, display similar performance in terms of proteins identified and reproducibility. Our results show that our modified FASP protocol is an efficient method for the high-throughput processing of protein samples for mass spectral analysis.

  7. GAE detection for mass measurement for D-T ratio control

    International Nuclear Information System (INIS)

    Lister, J.B.; Villard, L.; Ridder, G. de

    1997-09-01

    This report includes two papers by the authors Lister, Villard and de Ridder: 1) Measurement of the effective plasma ion mass in large tokamaks using Global Alfven Eigenmodes, 2) GAE detection for mass measurement for plasma density control. The second paper represents the final report of JET article 14 contract 950104. figs., tabs., refs

  8. Precision mass measurements at THe-trap and the FSU trap

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, Martin Juergen

    2016-07-26

    THe-Trap is a Penning-trap mass spectrometer at the Max-Planck-Institute for Nuclear Physics in Heidelberg, Germany, that aims to measure the T/{sup 3}He mass ratio with a relative uncertainty of 10{sup -11}. Improvements of the measurement technique, in particular the measurement of systematic shifts, enabled measurements of mass ratios with relative uncertainties of 7.10{sup -11}, as demonstrated by a cyclotron frequency ratio determination on {sup 12}C{sup 4+}/{sup 16}O{sup 5+}. This uncertainty was limited by the lineshape. An improved theoretical model based on a rotating wave approximation can be used to describe dynamical interactions between the detection system and the ion, in order to better understand the lineshape and to further reduce the uncertainty. The Florida State University trap is a Penning-trap mass spectrometer located in Tallahassee, Florida (USA). In the context of this thesis, three mass ratios were measured, and further 20 mass ratio measurements analyzed, which resulted in the publication of the masses of {sup 82,83}Kr, {sup 131,134}Xe, {sup 86-88}Sr, and {sup 170-174,176}Yb with relative uncertainties between (0.9 - 1.3).10{sup -10}. These masses serve as reference masses for other experiments and have applications in the determination of the fine-structure constant alpha via the photon-recoil method.

  9. Association of fat mass and obesity-associated and retinitis pigmentosa guanosine triphosphatase (GTPase) regulator-interacting protein-1 like polymorphisms with body mass index in Chinese women.

    Science.gov (United States)

    Chen, Boyu; Li, Zhiqiang; Chen, Jianhua; Ji, Jue; Shen, Jingyi; Xu, Yufeng; Zhao, Yingying; Liu, Danping; Shen, Yinhuan; Zhang, Weijie; Shen, Jiawei; Wang, Yonggang; Shi, Yongyong

    2018-04-14

    Body mass index (BMI) is the most commonly used quantitative measure of adiposity. It is a kind of complex genetic diseases which are caused by multiple susceptibility genes. The first intron of fat mass and obesity-associated (FTO) has been widely discovered to be associated with BMI. Retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) is located in the upstream region of FTO and has been proved to be linked with obesity through functional tests. We carried out a genetic association analysis to figure out the role of the FTO gene and the RPGRIP1L gene in BMI. A quantitative traits study with 6,102 Chinese female samples, adjusted for age, was performed during our project. Among the twelve SNPs, rs1421085, rs1558902, rs17817449, rs8050136, rs9939609, rs7202296, rs56137030, rs9930506 and rs12149832 in the FTO gene were significantly associated with BMI after Bonferroni correction. Meanwhile, rs9934800 in the RPGRIP1L gene showed significance with BMI before Bonferroni correction, but this association was eliminated after Bonferroni correction. Our results suggested that genetic variants in the FTO gene were strongly associated with BMI in Chinese women, which may serve as targets of pharmaceutical research and development concerning BMI. Meanwhile, we didn't found the significant association between RPGRIP1L and BMI in Chinese women.

  10. Study of the matrix specific mass discrimination effects during inductively coupled plasma mass spectrometry isotope ratio measurements

    International Nuclear Information System (INIS)

    Vassileva, E.; Quetel, Ch.R.

    2004-01-01

    Sample matrix related effects on mass discrimination during inductively coupled plasma mass spectrometry (ICP-MS) isotope ratio measurements have only been rarely reported. However, they can lead to errors larger than the uncertainty claimed on the ratio results when not properly taken into account or corrected for. These matrix specific affects were experienced during an Isotope Dilution Mass Spectrometry (IDMS) campaign we carried out for the certification of the Cd amount content in some food digest samples (7% acidity and salts content around 450μg g -1 ). Dilution was not possible for Cd only present at the low ng g -1 level. Up to 1% difference was observed on Cd isotope ratio results between measurements performed directly or after matrix separation. This was a significant difference considering that less than 1.5% relative combined uncertainty was eventually estimated for these IDMS measurements. Similar results could be obtained either way after the implementation of necessary corrections. The direct measurement approach associated to a correction for mass discrimination effects using the food digest sample itself (and the IUPAC table values as reference for the natural Cd isotopic composition) was preferred as it was the easiest. Consequently, the impact of matrix effects on mass discrimination during isotope ratio measurements with two types of ICP- MS (quadrupole and magnetic sector instruments) was studied for 4 elements (Li, Cu, Cd and Tl). Samples of varying salinity (up to 0.25%) and acidity (up to 7%) characteristics were prepared using isotopic certified reference materials of these elements. The long term and short-term stability, respectively reproducibility and repeatability, of the results, as well as the evolution of the difference to certified ratio values were monitored. As expected the 13 investigated isotopic ratios were all sensitive to variations in salt and acid concentrations. Our experiments also showed that simultaneous variation

  11. Top quark mass and properties measurements with the ATLAS detector

    CERN Document Server

    Moreno Llacer, Maria; The ATLAS collaboration

    2018-01-01

    The top quark is the heaviest elementary particle and unique among the known quarks since it decays before forming hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector are reported using 8 TeV and 13 TeV data of proton-proton collisions from the Large Hadron Collider at CERN laboratory. Measurements of the top quark decay width, top quark spin observables and $W$ boson helicity in events with top quark pairs ($t\\bar{t}$) are presented and compared to the Standard Model predictions. The cross-section measurements of top quark pairs production in association with photons, $Z$ or $W$ bosons is also presented and compared to the most accurate theoretical calculations. These measurements probe the top quark electroweak couplings. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are also reported. In add...

  12. Top quark properties and mass measurements with the ATLAS detector

    CERN Document Server

    Dado, Tomas; The ATLAS collaboration

    2017-01-01

    The top quark is unique among the known quarks in that it decays before it has an opportunity to form hadronic bound states. This makes measurements of its properties particularly interesting as one can access directly the properties of a bare quark. The latest measurements of these properties with the ATLAS detector at the LHC are presented. Measurements of top quark spin observables in top-antitop events, each sensitive to a different coefficient of the spin density matrix, are presented and compared to the Standard Model predictions. The helicity of the W boson from the top decays and the production angles of the top quark are further discussed. Limits on the rate of flavour changing neutral currents in the production or decay of the top quark are reported. The production of top-quark pairs in association with W and Z bosons is also presented. The measurement probes the coupling between the top quark and the Z boson. The cross-section measurement of photons produced in association with top-quark pairs is a...

  13. Measurement of the Top Quark Mass Simultaneously in Dilepton and Lepton + Jets Decay Channels

    Energy Technology Data Exchange (ETDEWEB)

    Fedorko, Wojciech T. [Univ. of Chicago, IL (United States)

    2008-12-01

    The authors present the first measurement of the top quark mass using simultaneously data from two decay channels. They use a data sample of √s = 1.96 TeV collisions with integrated luminosity of 1.9 fb-1 collected by the CDF II detector. They select dilepton and lepton + jets channel decays of t$\\bar{t}$ pairs and reconstruct two observables in each topology. They use non-parametric techniques to derive probability density functions from simulated signal and background samples. The observables are the reconstructed top quark mass and the scalar sum of transverse energy of the event in the dilepton topology and the reconstructed top quark mass and the invariant mass of jets from the W boson decay in lepton + jets channel. They perform a simultaneous fit for the top quark mass and the jet energy scale which is constrained in situ by the hadronic W boson resonance from the lepton + jets channel. Using 144 dilepton candidate events and 332 lepton + jets candidate events they measure: Mtop = 171.9 ± 1.7 (stat. + JES) ± 1.1 (other sys.) GeV/c2 = 171.9 ± 2.0 GeV/c2. The measurement features a robust treatment of the systematic uncertainties, correlated between the two channels and develops techniques for a future top quark mass measurement simultaneously in all decay channels. Measurements of the W boson mass and the top quark mass provide a constraint on the mass of the yet unobserved Higgs boson. The Higgs boson mass implied by measurement presented here is higher than Higgs boson mass implied by previously published, most precise CDF measurements of the top quark mass in lepton + jets and dilepton channels separately.

  14. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, Jan; Koleska, M.; Voljanskij, A.

    2015-01-01

    Roč. 116, NOV (2015), s. 56-59 ISSN 0969-806X R&D Projects: GA TA ČR TA01010237; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : fluorescent lamp * mercury measurement * neutron activation analysis * research reactor Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2015

  15. Identification of Tyrosine Phosphorylated Proteins by SH2 Domain Affinity Purification and Mass Spectrometry.

    Science.gov (United States)

    Buhs, Sophia; Gerull, Helwe; Nollau, Peter

    2017-01-01

    Phosphotyrosine signaling plays a major role in the control of many important biological functions such as cell proliferation and apoptosis. Deciphering of phosphotyrosine-dependent signaling is therefore of great interest paving the way for the understanding of physiological and pathological processes of signal transduction. On the basis of the specific binding of SH2 domains to phosphotyrosine residues, we here present an experimental workflow for affinity purification and subsequent identification of tyrosine phosphorylated proteins by mass spectrometry. In combination with SH2 profiling, a broadly applicable platform for the characterization of phosphotyrosine profiles in cell extracts, our pull down strategy enables researchers by now to identify proteins in signaling cascades which are differentially phosphorylated and selectively recognized by distinct SH2 domains.

  16. Carbohydrates on Proteins: Site-Specific Glycosylation Analysis by Mass Spectrometry

    Science.gov (United States)

    Zhu, Zhikai; Desaire, Heather

    2015-07-01

    Glycosylation on proteins adds complexity and versatility to these biologically vital macromolecules. To unveil the structure-function relationship of glycoproteins, glycopeptide-centric analysis using mass spectrometry (MS) has become a method of choice because the glycan is preserved on the glycosylation site and site-specific glycosylation profiles of proteins can be readily determined. However, glycopeptide analysis is still challenging given that glycopeptides are usually low in abundance and relatively difficult to detect and the resulting data require expertise to analyze. Viewing the urgent need to address these challenges, emerging methods and techniques are being developed with the goal of analyzing glycopeptides in a sensitive, comprehensive, and high-throughput manner. In this review, we discuss recent advances in glycoprotein and glycopeptide analysis, with topics covering sample preparation, analytical separation, MS and tandem MS techniques, as well as data interpretation and automation.

  17. Superpartner Mass Measurement Technique using 1D Orthogonal Decompositions of the Cambridge Transverse Mass Variable MT2

    Science.gov (United States)

    Konar, Partha; Kong, Kyoungchul; Matchev, Konstantin T.; Park, Myeonghun

    2010-07-01

    We propose a new model-independent technique for mass measurements in missing energy events at hadron colliders. We illustrate our method with the most challenging case of a single-step decay chain. We consider inclusive same-sign chargino pair production in supersymmetry, followed by leptonic decays to sneutrinos χ+χ+→ℓ+ℓ'+ν˜ℓν˜ℓ' and invisible decays ν˜ℓ→νℓχ˜10. We introduce two one-dimensional decompositions of the Cambridge MT2 variable: MT2∥ and MT2⊥, on the direction of the upstream transverse momentum P→T and the direction orthogonal to it, respectively. We show that the sneutrino mass Mc can be measured directly by minimizing the number of events N(M˜c) in which MT2 exceeds a certain threshold, conveniently measured from the end point MT2⊥max⁡(M˜c).

  18. Rapid identification of fluorochrome modification sites in proteins by LC ESI-Q-TOF mass spectrometry.

    Science.gov (United States)

    Manikwar, Prakash; Zimmerman, Tahl; Blanco, Francisco J; Williams, Todd D; Siahaan, Teruna J

    2011-07-20

    Conjugation of either a fluorescent dye or a drug molecule to the ε-amino groups of lysine residues of proteins has many applications in biology and medicine. However, this type of conjugation produces a heterogeneous population of protein conjugates. Because conjugation of fluorochrome or drug molecule to a protein may have deleterious effects on protein function, the identification of conjugation sites is necessary. Unfortunately, the identification process can be time-consuming and laborious; therefore, there is a need to develop a rapid and reliable way to determine the conjugation sites of the fluorescent label or drug molecule. In this study, the sites of conjugation of fluorescein-5'-isothiocyanate and rhodamine-B-isothiocyanate to free amino groups on the insert-domain (I-domain) protein derived from the α-subunit of lymphocyte function-associated antigen-1 (LFA-1) were determined by electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-Q-TOF MS) along with peptide mapping using trypsin digestion. A reporter fragment of the fluorochrome moiety that is generated in the collision cell of the Q-TOF without explicit MS/MS precursor selection was used to identify the conjugation site. Selected ion plots of the reporter ion readily mark modified peptides in chromatograms of the complex digest. Interrogation of theses spectra reveals a neutral loss/precursor pair that identifies the mo