WorldWideScience

Sample records for protein kinase docking

  1. Structural Bioinformatics and Protein Docking Analysis of the Molecular Chaperone-Kinase Interactions: Towards Allosteric Inhibition of Protein Kinases by Targeting the Hsp90-Cdc37 Chaperone Machinery

    Directory of Open Access Journals (Sweden)

    Gennady Verkhivker

    2013-11-01

    Full Text Available A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4 kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional “molecular brakes” that can lock (or unlock kinase from the system during client loading (release stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.

  2. Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1)

    DEFF Research Database (Denmark)

    Dettori, Rosalia; Sonzogni, Silvina; Meyer, Lucas

    2009-01-01

    of numerous AGC kinases, including the protein kinase C-related protein kinases (PRKs). Here we studied the docking interaction between PDK1 and PRK2 and analyzed the mechanisms that regulate this interaction. In vivo labeling of recombinant PRK2 by (32)P(i) revealed phosphorylation at two sites......, the activation loop and the Z/TM in the C-terminal extension. We provide evidence that phosphorylation of the Z/TM site of PRK2 inhibits its interaction with PDK1. Our studies further provide a mechanistic model to explain different steps in the docking interaction and regulation. Interestingly, we found...... that the mechanism that negatively regulates the docking interaction of PRK2 to the upstream kinase PDK1 is directly linked to the activation mechanism of PRK2 itself. Finally, our results indicate that the mechanisms underlying the regulation of the interaction between PRK2 and PDK1 are specific for PRK2 and do...

  3. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Arbitrary protein−protein docking targets biologically relevant interfaces

    International Nuclear Information System (INIS)

    Martin, Juliette; Lavery, Richard

    2012-01-01

    protein), a kinase inhibitor with multiple partners. An approach using arbitrary docking, and based solely on physical properties, can successfully identify biologically pertinent protein interfaces.

  5. Arbitrary protein−protein docking targets biologically relevant interfaces

    Directory of Open Access Journals (Sweden)

    Martin Juliette

    2012-05-01

    using PEBP (Phosphatidylethanolamine binding protein, a kinase inhibitor with multiple partners. Conclusions An approach using arbitrary docking, and based solely on physical properties, can successfully identify biologically pertinent protein interfaces.

  6. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  7. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  8. Sequence alignment reveals possible MAPK docking motifs on HIV proteins.

    Directory of Open Access Journals (Sweden)

    Perry Evans

    Full Text Available Over the course of HIV infection, virus replication is facilitated by the phosphorylation of HIV proteins by human ERK1 and ERK2 mitogen-activated protein kinases (MAPKs. MAPKs are known to phosphorylate their substrates by first binding with them at a docking site. Docking site interactions could be viable drug targets because the sequences guiding them are more specific than phosphorylation consensus sites. In this study we use multiple bioinformatics tools to discover candidate MAPK docking site motifs on HIV proteins known to be phosphorylated by MAPKs, and we discuss the possibility of targeting docking sites with drugs. Using sequence alignments of HIV proteins of different subtypes, we show that MAPK docking patterns previously described for human proteins appear on the HIV matrix, Tat, and Vif proteins in a strain dependent manner, but are absent from HIV Rev and appear on all HIV Nef strains. We revise the regular expressions of previously annotated MAPK docking patterns in order to provide a subtype independent motif that annotates all HIV proteins. One revision is based on a documented human variant of one of the substrate docking motifs, and the other reduces the number of required basic amino acids in the standard docking motifs from two to one. The proposed patterns are shown to be consistent with in silico docking between ERK1 and the HIV matrix protein. The motif usage on HIV proteins is sufficiently different from human proteins in amino acid sequence similarity to allow for HIV specific targeting using small-molecule drugs.

  9. Analysis of protein-protein docking decoys using interaction fingerprints: application to the reconstruction of CaM-ligand complexes

    Directory of Open Access Journals (Sweden)

    Uchikoga Nobuyuki

    2010-05-01

    Full Text Available Abstract Background Protein-protein docking for proteins with large conformational changes was analyzed by using interaction fingerprints, one of the scales for measuring similarities among complex structures, utilized especially for searching near-native protein-ligand or protein-protein complex structures. Here, we have proposed a combined method for analyzing protein-protein docking by taking large conformational changes into consideration. This combined method consists of ensemble soft docking with multiple protein structures, refinement of complexes, and cluster analysis using interaction fingerprints and energy profiles. Results To test for the applicability of this combined method, various CaM-ligand complexes were reconstructed from the NMR structures of unbound CaM. For the purpose of reconstruction, we used three known CaM-ligands, namely, the CaM-binding peptides of cyclic nucleotide gateway (CNG, CaM kinase kinase (CaMKK and the plasma membrane Ca2+ ATPase pump (PMCA, and thirty-one structurally diverse CaM conformations. For each ligand, 62000 CaM-ligand complexes were generated in the docking step and the relationship between their energy profiles and structural similarities to the native complex were analyzed using interaction fingerprint and RMSD. Near-native clusters were obtained in the case of CNG and CaMKK. Conclusions The interaction fingerprint method discriminated near-native structures better than the RMSD method in cluster analysis. We showed that a combined method that includes the interaction fingerprint is very useful for protein-protein docking analysis of certain cases.

  10. DockQ: A Quality Measure for Protein-Protein Docking Models.

    Directory of Open Access Journals (Sweden)

    Sankar Basu

    Full Text Available The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å might still qualify as 'acceptable' with a descent Fnat (>0.50 and iRMS (<3.0Å. This is also the reason why the so called CAPRI criteria for assessing the quality of docking models is defined by applying various ad-hoc cutoffs on these measures to classify a docking model into the four classes: Incorrect, Acceptable, Medium, or High quality. This classification has been useful in CAPRI, but since models are grouped in only four bins it is also rather limiting, making it difficult to rank models, correlate with scoring functions or use it as target function in machine learning algorithms. Here, we present DockQ, a continuous protein-protein docking model quality measure derived by combining Fnat, LRMS, and iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for

  11. DockQ: A Quality Measure for Protein-Protein Docking Models

    Science.gov (United States)

    Basu, Sankar

    2016-01-01

    The state-of-the-art to assess the structural quality of docking models is currently based on three related yet independent quality measures: Fnat, LRMS, and iRMS as proposed and standardized by CAPRI. These quality measures quantify different aspects of the quality of a particular docking model and need to be viewed together to reveal the true quality, e.g. a model with relatively poor LRMS (>10Å) might still qualify as 'acceptable' with a descent Fnat (>0.50) and iRMS (iRMS to a single score in the range [0, 1] that can be used to assess the quality of protein docking models. By using DockQ on CAPRI models it is possible to almost completely reproduce the original CAPRI classification into Incorrect, Acceptable, Medium and High quality. An average PPV of 94% at 90% Recall demonstrating that there is no need to apply predefined ad-hoc cutoffs to classify docking models. Since DockQ recapitulates the CAPRI classification almost perfectly, it can be viewed as a higher resolution version of the CAPRI classification, making it possible to estimate model quality in a more quantitative way using Z-scores or sum of top ranked models, which has been so valuable for the CASP community. The possibility to directly correlate a quality measure to a scoring function has been crucial for the development of scoring functions for protein structure prediction, and DockQ should be useful in a similar development in the protein docking field. DockQ is available at http://github.com/bjornwallner/DockQ/ PMID:27560519

  12. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  13. SwarmDock and the Use of Normal Modes in Protein-Protein Docking

    Directory of Open Access Journals (Sweden)

    Paul A. Bates

    2010-09-01

    Full Text Available Here is presented an investigation of the use of normal modes in protein-protein docking, both in theory and in practice. Upper limits of the ability of normal modes to capture the unbound to bound conformational change are calculated on a large test set, with particular focus on the binding interface, the subset of residues from which the binding energy is calculated. Further, the SwarmDock algorithm is presented, to demonstrate that the modelling of conformational change as a linear combination of normal modes is an effective method of modelling flexibility in protein-protein docking.

  14. Downstream of tyrosine kinase/docking protein 6, as a novel substrate of tropomyosin-related kinase C receptor, is involved in neurotrophin 3-mediated neurite outgrowth in mouse cortex neurons

    Directory of Open Access Journals (Sweden)

    Yuan Jian

    2010-06-01

    Full Text Available Abstract Background The downstream of tyrosine kinase/docking protein (Dok adaptor protein family has seven members, Dok1 to Dok7, that act as substrates of multiple receptor tyrosine kinase and non-receptor tyrosine kinase. The tropomyosin-related kinase (Trk receptor family, which has three members (TrkA, TrkB and TrkC, are receptor tyrosine kinases that play pivotal roles in many stages of nervous system development, such as differentiation, migration, axon and dendrite projection and neuron patterning. Upon related neurotrophin growth factor stimulation, dimerisation and autophosphorylation of Trk receptors can occur, recruiting adaptor proteins to mediate signal transduction. Results In this report, by using yeast two-hybrid assays, glutathione S-transferase (GST precipitation assays and coimmunoprecipitation (Co-IP experiments, we demonstrate that Dok6 selectively binds to the NPQY motif of TrkC through its phosphotyrosine-binding (PTB domain in a kinase activity-dependent manner. We further confirmed their interaction by coimmunoprecipitation and colocalisation in E18.5 mouse cortex neurons, which provided more in vivo evidence. Next, we demonstrated that Dok6 is involved in neurite outgrowth in mouse cortex neurons via the RNAi method. Knockdown of Dok6 decreased neurite outgrowth in cortical neurons upon neurotrophin 3 (NT-3 stimulation. Conclusions We conclude that Dok6 interacts with the NPQY motif of the TrkC receptor through its PTB domain in a kinase activity-dependent manner, and works as a novel substrate of the TrkC receptor involved in NT-3-mediated neurite outgrowth in mouse cortex neurons.

  15. SH2/SH3 adaptor proteins can link tyrosine kinases to a Ste20-related protein kinase, HPK1.

    Science.gov (United States)

    Anafi, M; Kiefer, F; Gish, G D; Mbamalu, G; Iscove, N N; Pawson, T

    1997-10-31

    Ste20-related protein kinases have been implicated as regulating a range of cellular responses, including stress-activated protein kinase pathways and the control of cytoskeletal architecture. An important issue involves the identities of the upstream signals and regulators that might control the biological functions of mammalian Ste20-related protein kinases. HPK1 is a protein-serine/threonine kinase that possesses a Ste20-like kinase domain, and in transfected cells activates a protein kinase pathway leading to the stress-activated protein kinase SAPK/JNK. Here we have investigated candidate upstream regulators that might interact with HPK1. HPK1 possesses an N-terminal catalytic domain and an extended C-terminal tail with four proline-rich motifs. The SH3 domains of Grb2 bound in vitro to specific proline-rich motifs in the HPK1 tail and functioned synergistically to direct the stable binding of Grb2 to HPK1 in transfected Cos1 cells. Epidermal growth factor (EGF) stimulation did not affect the binding of Grb2 to HPK1 but induced recruitment of the Grb2.HPK1 complex to the autophosphorylated EGF receptor and to the Shc docking protein. Several activated receptor and cytoplasmic tyrosine kinases, including the EGF receptor, stimulated the tyrosine phosphorylation of the HPK1 serine/threonine kinase. These results suggest that HPK1, a mammalian Ste20-related protein-serine/threonine kinase, can potentially associate with protein-tyrosine kinases through interactions mediated by SH2/SH3 adaptors such as Grb2. Such interaction may provide a possible mechanism for cross-talk between distinct biochemical pathways following the activation of tyrosine kinases.

  16. Identification of Phytochemicals Targeting c-Met Kinase Domain using Consensus Docking and Molecular Dynamics Simulation Studies.

    Science.gov (United States)

    Aliebrahimi, Shima; Montasser Kouhsari, Shideh; Ostad, Seyed Nasser; Arab, Seyed Shahriar; Karami, Leila

    2018-06-01

    c-Met receptor tyrosine kinase is a proto-oncogene whose aberrant activation is attributed to a lower rate of survival in most cancers. Natural product-derived inhibitors known as "fourth generation inhibitors" constitute more than 60% of anticancer drugs. Furthermore, consensus docking approach has recently been introduced to augment docking accuracy and reduce false positives during a virtual screening. In order to obtain novel small-molecule Met inhibitors, consensus docking approach was performed using Autodock Vina and Autodock 4.2 to virtual screen Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database against active and inactive conformation of c-Met kinase domain structure. Two hit molecules that were in line with drug-likeness criteria, desired docking score, and binding pose were subjected to molecular dynamics simulations to elucidate intermolecular contacts in protein-ligand complexes. Analysis of molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area studies showed that ZINC08234189 is a plausible inhibitor for the active state of c-Met, whereas ZINC03871891 may be more effective toward active c-Met kinase domain compared to the inactive form due to higher binding energy. Our analysis showed that both the hit molecules formed hydrogen bonds with key residues of the hinge region (P1158, M1160) in the active form, which is a hallmark of kinase domain inhibitors. Considering the pivotal role of HGF/c-Met signaling in carcinogenesis, our results propose ZINC08234189 and ZINC03871891 as the therapeutic options to surmount Met-dependent cancers.

  17. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  18. Crystal structure of human protein kinase CK2

    DEFF Research Database (Denmark)

    Niefind, K; Guerra, B; Ermakowa, I

    2001-01-01

    The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalyt...... as a docking partner for various protein kinases. Furthermore it shows an inter-domain mobility in the catalytic subunit known to be functionally important in protein kinases and detected here for the first time directly within one crystal structure.......The crystal structure of a fully active form of human protein kinase CK2 (casein kinase 2) consisting of two C-terminally truncated catalytic and two regulatory subunits has been determined at 3.1 A resolution. In the CK2 complex the regulatory subunits form a stable dimer linking the two catalytic...... subunits, which make no direct contact with one another. Each catalytic subunit interacts with both regulatory chains, predominantly via an extended C-terminal tail of the regulatory subunit. The CK2 structure is consistent with its constitutive activity and with a flexible role of the regulatory subunit...

  19. AnchorDock for Blind Flexible Docking of Peptides to Proteins.

    Science.gov (United States)

    Slutzki, Michal; Ben-Shimon, Avraham; Niv, Masha Y

    2017-01-01

    Due to increasing interest in peptides as signaling modulators and drug candidates, several methods for peptide docking to their target proteins are under active development. The "blind" docking problem, where the peptide-binding site on the protein surface is unknown, presents one of the current challenges in the field. AnchorDock protocol was developed by Ben-Shimon and Niv to address this challenge.This protocol narrows the docking search to the most relevant parts of the conformational space. This is achieved by pre-folding the free peptide and by computationally detecting anchoring spots on the surface of the unbound protein. Multiple flexible simulated annealing molecular dynamics (SAMD) simulations are subsequently carried out, starting from pre-folded peptide conformations, constrained to the various precomputed anchoring spots.Here, AnchorDock is demonstrated using two known protein-peptide complexes. A PDZ-peptide complex provides a relatively easy case due to the relatively small size of the protein, and a typical peptide conformation and binding region; a more challenging example is a complex between USP7 N-term and a p53-derived peptide, where the protein is larger, and the peptide conformation and a binding site are generally assumed to be unknown. AnchorDock returned native-like solutions ranked first and third for the PDZ and USP7 complexes, respectively. We describe the procedure step by step and discuss possible modifications where applicable.

  20. Protein-protein docking with dynamic residue protonation states.

    Directory of Open Access Journals (Sweden)

    Krishna Praneeth Kilambi

    2014-12-01

    Full Text Available Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161 the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc-FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.

  1. Text Mining for Protein Docking.

    Directory of Open Access Journals (Sweden)

    Varsha D Badal

    2015-12-01

    Full Text Available The rapidly growing amount of publicly available information from biomedical research is readily accessible on the Internet, providing a powerful resource for predictive biomolecular modeling. The accumulated data on experimentally determined structures transformed structure prediction of proteins and protein complexes. Instead of exploring the enormous search space, predictive tools can simply proceed to the solution based on similarity to the existing, previously determined structures. A similar major paradigm shift is emerging due to the rapidly expanding amount of information, other than experimentally determined structures, which still can be used as constraints in biomolecular structure prediction. Automated text mining has been widely used in recreating protein interaction networks, as well as in detecting small ligand binding sites on protein structures. Combining and expanding these two well-developed areas of research, we applied the text mining to structural modeling of protein-protein complexes (protein docking. Protein docking can be significantly improved when constraints on the docking mode are available. We developed a procedure that retrieves published abstracts on a specific protein-protein interaction and extracts information relevant to docking. The procedure was assessed on protein complexes from Dockground (http://dockground.compbio.ku.edu. The results show that correct information on binding residues can be extracted for about half of the complexes. The amount of irrelevant information was reduced by conceptual analysis of a subset of the retrieved abstracts, based on the bag-of-words (features approach. Support Vector Machine models were trained and validated on the subset. The remaining abstracts were filtered by the best-performing models, which decreased the irrelevant information for ~ 25% complexes in the dataset. The extracted constraints were incorporated in the docking protocol and tested on the Dockground unbound

  2. Gab Docking Proteins in Cardiovascular Disease, Cancer, and Inflammation

    Directory of Open Access Journals (Sweden)

    Yoshikazu Nakaoka

    2013-01-01

    Full Text Available The docking proteins of the Grb2-associated binder (Gab family have emerged as crucial signaling compartments in metazoans. In mammals, the Gab proteins, consisting of Gab1, Gab2, and Gab3, are involved in the amplification and integration of signal transduction evoked by a variety of extracellular stimuli, including growth factors, cytokines, antigens, and other molecules. Gab proteins lack the enzymatic activity themselves; however, when phosphorylated on tyrosine residues, they provide binding sites for multiple Src homology-2 (SH2 domain-containing proteins, such as SH2-containing protein tyrosine phosphatase 2 (SHP2, phosphatidylinositol 3-kinase regulatory subunit p85, phospholipase Cγ, Crk, and GC-GAP. Through these interactions, the Gab proteins transduce signals from activated receptors into pathways with distinct biological functions, thereby contributing to signal diversification. They are known to play crucial roles in numerous physiological processes through their associations with SHP2 and p85. In addition, abnormal Gab protein signaling has been linked to human diseases including cancer, cardiovascular disease, and inflammatory disorders. In this paper, we provide an overview of the structure, effector functions, and regulation of the Gab docking proteins, with a special focus on their associations with cardiovascular disease, cancer, and inflammation.

  3. Exponential Repulsion Improves Structural Predictability of Molecular Docking

    Czech Academy of Sciences Publication Activity Database

    Bazgier, Václav; Berka, K.; Otyepka, M.; Banáš, P.

    2016-01-01

    Roč. 37, č. 28 (2016), s. 2485-2494 ISSN 0192-8651 Institutional support: RVO:61389030 Keywords : cyclin-dependent kinases * structure-based design * scoring functions * cdk2 inhibitors * force-field * ligand interactions * drug discovery * purine * potent * protein-kinase-2 * molecular docking * dock 6.6 * drug design * cyclin-dependent kinase 2 * directory of decoys Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.229, year: 2016

  4. Protein-protein docking using region-based 3D Zernike descriptors

    Directory of Open Access Journals (Sweden)

    Sael Lee

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for

  5. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    Science.gov (United States)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  6. Protein-protein docking with F(2Dock 2.0 and GB-rerank.

    Directory of Open Access Journals (Sweden)

    Rezaul Chowdhury

    Full Text Available Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F(2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error.The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F(2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F(2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F(2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F(2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other.The docking protocol has been implemented as a server with a graphical client (TexMol which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  7. Protein-Protein Docking with F2Dock 2.0 and GB-Rerank

    Science.gov (United States)

    Chowdhury, Rezaul; Rasheed, Muhibur; Keidel, Donald; Moussalem, Maysam; Olson, Arthur; Sanner, Michel; Bajaj, Chandrajit

    2013-01-01

    Motivation Computational simulation of protein-protein docking can expedite the process of molecular modeling and drug discovery. This paper reports on our new F2 Dock protocol which improves the state of the art in initial stage rigid body exhaustive docking search, scoring and ranking by introducing improvements in the shape-complementarity and electrostatics affinity functions, a new knowledge-based interface propensity term with FFT formulation, a set of novel knowledge-based filters and finally a solvation energy (GBSA) based reranking technique. Our algorithms are based on highly efficient data structures including the dynamic packing grids and octrees which significantly speed up the computations and also provide guaranteed bounds on approximation error. Results The improved affinity functions show superior performance compared to their traditional counterparts in finding correct docking poses at higher ranks. We found that the new filters and the GBSA based reranking individually and in combination significantly improve the accuracy of docking predictions with only minor increase in computation time. We compared F2 Dock 2.0 with ZDock 3.0.2 and found improvements over it, specifically among 176 complexes in ZLab Benchmark 4.0, F2 Dock 2.0 finds a near-native solution as the top prediction for 22 complexes; where ZDock 3.0.2 does so for 13 complexes. F2 Dock 2.0 finds a near-native solution within the top 1000 predictions for 106 complexes as opposed to 104 complexes for ZDock 3.0.2. However, there are 17 and 15 complexes where F2 Dock 2.0 finds a solution but ZDock 3.0.2 does not and vice versa; which indicates that the two docking protocols can also complement each other. Availability The docking protocol has been implemented as a server with a graphical client (TexMol) which allows the user to manage multiple docking jobs, and visualize the docked poses and interfaces. Both the server and client are available for download. Server: http

  8. Protein-protein docking using region-based 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  9. Solvated protein-DNA docking using HADDOCK

    Energy Technology Data Exchange (ETDEWEB)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J., E-mail: a.m.j.j.bonvin@uu.nl [Utrecht University, Bijvoet Center for Biomolecular Research, Faculty of Science-Chemistry (Netherlands)

    2013-05-15

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein-DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein-DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein-DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein-DNA complexes.

  10. Src protein-tyrosine kinase structure and regulation

    International Nuclear Information System (INIS)

    Roskoski, Robert

    2004-01-01

    Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPα displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the αD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu 4 Tyr)

  11. The Discovery of Aurora Kinase Inhibitor by Multi-Docking-Based Virtual Screening

    Directory of Open Access Journals (Sweden)

    Jun-Tae Kim

    2014-11-01

    Full Text Available We report the discovery of aurora kinase inhibitor using the fragment-based virtual screening by multi-docking strategy. Among a number of fragments collected from eMololecules, we found four fragment molecules showing potent activity (>50% at 100 μM against aurora kinase. Based on the explored fragment scaffold, we selected two compounds in our synthesized library and validated the biological activity against Aurora kinase.

  12. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations.

    Science.gov (United States)

    Itteboina, Ramesh; Ballu, Srilata; Sivan, Sree Kanth; Manga, Vijjulatha

    2017-10-01

    Janus kinase 1 (JAK 1) belongs to the JAK family of intracellular nonreceptor tyrosine kinase. JAK-signal transducer and activator of transcription (JAK-STAT) pathway mediate signaling by cytokines, which control survival, proliferation and differentiation of a variety of cells. Three-dimensional quantitative structure activity relationship (3 D-QSAR), molecular docking and molecular dynamics (MD) methods was carried out on a dataset of Janus kinase 1(JAK 1) inhibitors. Ligands were constructed and docked into the active site of protein using GLIDE 5.6. Best docked poses were selected after analysis for further 3 D-QSAR analysis using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methodology. Employing 60 molecules in the training set, 3 D-QSAR models were generate that showed good statistical reliability, which is clearly observed in terms of r 2 ncv and q 2 loo values. The predictive ability of these models was determined using a test set of 25 molecules that gave acceptable predictive correlation (r 2 Pred ) values. The key amino acid residues were identified by means of molecular docking, and the stability and rationality of the derived molecular conformations were also validated by MD simulation. The good consonance between the docking results and CoMFA/CoMSIA contour maps provides helpful clues about the reasonable modification of molecules in order to design more efficient JAK 1 inhibitors. The developed models are expected to provide some directives for further synthesis of highly effective JAK 1 inhibitors.

  13. [Protein kinase A inhibitor H-89 blocks polyploidization of SP600125-induced CMK cells by regulating phosphorylation of ribosomal protein S6 kinase 1].

    Science.gov (United States)

    Zhao, Song; Yang, Jingang; Li, Changling; Xing, Sining; Yu, Ying; Liu, Shuo; Pu, Feifei; Ma, Dongchu

    2016-10-01

    Objective To investigate the regulatory effect of post-translation modification of ribosomal protein S6 kinase 1 (S6K1) on the polyploidization of megakaryocytes. Methods SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, and H-89, a cAMP-dependent protein kinase (PKA) inhibitor, were used to treat CMK cells separately or in combination. With propidium iodide (PI) to dye DNA in the treated cells, the relative DNA content was detected by flow cytometry, and then the DNA polyploidy was analyzed. The change of expression and phosphorylation of ribosomal protein S6 kinase 1 (S6K1), an important mammalian target of rapamycin (mTOR) downstream target molecule, was analyzed by Western blotting. Molecular docking study and kinase activity assay were performed to analyze the combination of H-89 with S6K1 and the effect of H-89 on the activity of S6K1 kinase. Results SP600125 induced CMK cell polyploidization in a time-dependent and dose-dependent manner. At the same time, it increased the phosphorylation of S6K1 at Thr421/Ser424 and decreased the phosphorylation of S6K1 at Thr389. H-89 not only blocked polyploidization, but also decreased the phosphorylation of S6K1 at Thr421/Ser424 and increased the phosphorylation of S6K1 at Thr389. Molecular docking and kinase activity assay showed that H-89 occupied the ATP binding sites of S6K1 and inhibited its activity. Noticeably, both H-89 and SP600125 inhibited the activity of PKA. Moreover, the two drugs further inhibited the activity of PKA when used together. Therefore, these data indicated that H-89 blocked the SP600125-induced polyploidization of CMK cells mainly by changing S6K1 phosphorylation state, rather than its inhibitory effect on PKA. Conclusion H-89 can block the polyploidization of SP600125-induced CMK cells by regulating S6K1 phosphorylation state.

  14. Signaling by Kit protein-tyrosine kinase--the stem cell factor receptor.

    Science.gov (United States)

    Roskoski, Robert

    2005-11-11

    Signaling by stem cell factor and Kit, its receptor, plays important roles in gametogenesis, hematopoiesis, mast cell development and function, and melanogenesis. Moreover, human and mouse embryonic stem cells express Kit transcripts. Stem cell factor exists as both a soluble and a membrane-bound glycoprotein while Kit is a receptor protein-tyrosine kinase. The complete absence of stem cell factor or Kit is lethal. Deficiencies of either produce defects in red and white blood cell production, hypopigmentation, and sterility. Gain-of-function mutations of Kit are associated with several human neoplasms including acute myelogenous leukemia, gastrointestinal stromal tumors, and mastocytomas. Kit consists of an extracellular domain, a transmembrane segment, a juxtamembrane segment, and a protein kinase domain that contains an insert of about 80 amino acid residues. Binding of stem cell factor to Kit results in receptor dimerization and activation of protein kinase activity. The activated receptor becomes autophosphorylated at tyrosine residues that serve as docking sites for signal transduction molecules containing SH2 domains. The adaptor protein APS, Src family kinases, and Shp2 tyrosyl phosphatase bind to phosphotyrosine 568. Shp1 tyrosyl phosphatase and the adaptor protein Shc bind to phosphotyrosine 570. C-terminal Src kinase homologous kinase and the adaptor Shc bind to both phosphotyrosines 568 and 570. These residues occur in the juxtamembrane segment of Kit. Three residues in the kinase insert domain are phosphorylated and attract the adaptor protein Grb2 (Tyr703), phosphatidylinositol 3-kinase (Tyr721), and phospholipase Cgamma (Tyr730). Phosphotyrosine 900 in the distal kinase domain binds phosphatidylinositol 3-kinase which in turn binds the adaptor protein Crk. Phosphotyrosine 936, also in the distal kinase domain, binds the adaptor proteins APS, Grb2, and Grb7. Kit has the potential to participate in multiple signal transduction pathways as a result of

  15. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy.

    Science.gov (United States)

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong; Huang, Sheng-You

    2017-07-03

    Protein-protein and protein-DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein-protein and protein-DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10-20 min for a docking run. Tested on the cases with weakly homologous complexes of server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Identification of critical chemical features for Aurora kinase-B inhibitors using Hip-Hop, virtual screening and molecular docking

    Science.gov (United States)

    Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; John, Shalini; Lee, Keun Woo

    2011-01-01

    This study was performed to find the selective chemical features for Aurora kinase-B inhibitors using the potent methods like Hip-Hop, virtual screening, homology modeling, molecular dynamics and docking. The best hypothesis, Hypo1 was validated toward a wide range of test set containing the selective inhibitors of Aurora kinase-B. Homology modeling and molecular dynamics studies were carried out to perform the molecular docking studies. The best hypothesis Hypo1 was used as a 3D query to screen the chemical databases. The screened molecules from the databases were sorted based on ADME and drug like properties. The selective hit compounds were docked and the hydrogen bond interactions with the critical amino acids present in Aurora kinase-B were compared with the chemical features present in the Hypo1. Finally, we suggest that the chemical features present in the Hypo1 are vital for a molecule to inhibit the Aurora kinase-B activity.

  17. DECK: Distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Vakser Ilya A

    2011-07-01

    Full Text Available Abstract Background Computational approaches to protein-protein docking typically include scoring aimed at improving the rank of the near-native structure relative to the false-positive matches. Knowledge-based potentials improve modeling of protein complexes by taking advantage of the rapidly increasing amount of experimentally derived information on protein-protein association. An essential element of knowledge-based potentials is defining the reference state for an optimal description of the residue-residue (or atom-atom pairs in the non-interaction state. Results The study presents a new Distance- and Environment-dependent, Coarse-grained, Knowledge-based (DECK potential for scoring of protein-protein docking predictions. Training sets of protein-protein matches were generated based on bound and unbound forms of proteins taken from the DOCKGROUND resource. Each residue was represented by a pseudo-atom in the geometric center of the side chain. To capture the long-range and the multi-body interactions, residues in different secondary structure elements at protein-protein interfaces were considered as different residue types. Five reference states for the potentials were defined and tested. The optimal reference state was selected and the cutoff effect on the distance-dependent potentials investigated. The potentials were validated on the docking decoys sets, showing better performance than the existing potentials used in scoring of protein-protein docking results. Conclusions A novel residue-based statistical potential for protein-protein docking was developed and validated on docking decoy sets. The results show that the scoring function DECK can successfully identify near-native protein-protein matches and thus is useful in protein docking. In addition to the practical application of the potentials, the study provides insights into the relative utility of the reference states, the scope of the distance dependence, and the coarse-graining of

  18. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  19. An Investigation of Molecular Docking and Molecular Dynamic Simulation on Imidazopyridines as B-Raf Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Huiding Xie

    2015-11-01

    Full Text Available In the recent cancer treatment, B-Raf kinase is one of key targets. Nowadays, a group of imidazopyridines as B-Raf kinase inhibitors have been reported. In order to investigate the interaction between this group of inhibitors and B-Raf kinase, molecular docking, molecular dynamic (MD simulation and binding free energy (ΔGbind calculation were performed in this work. Molecular docking was carried out to identify the key residues in the binding site, and MD simulations were performed to determine the detail binding mode. The results obtained from MD simulation reveal that the binding site is stable during the MD simulations, and some hydrogen bonds (H-bonds in MD simulations are different from H-bonds in the docking mode. Based on the obtained MD trajectories, ΔGbind was computed by using Molecular Mechanics Generalized Born Surface Area (MM-GBSA, and the obtained energies are consistent with the activities. An energetic analysis reveals that both electrostatic and van der Waals contributions are important to ΔGbind, and the unfavorable polar solvation contribution results in the instability of the inhibitor with the lowest activity. These results are expected to understand the binding between B-Raf and imidazopyridines and provide some useful information to design potential B-Raf inhibitors.

  20. Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs

    Directory of Open Access Journals (Sweden)

    Fereshteh Shiri

    2016-03-01

    Full Text Available Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD and the enhanced replacement method (ERM were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND approach. After variable selection, GRIND were correlated with activity values (pIC50 by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q2 value of 0.77, an rpred2 of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors.

  1. Alignment independent 3D-QSAR, quantum calculations and molecular docking of Mer specific tyrosine kinase inhibitors as anticancer drugs.

    Science.gov (United States)

    Shiri, Fereshteh; Pirhadi, Somayeh; Ghasemi, Jahan B

    2016-03-01

    Mer receptor tyrosine kinase is a promising novel cancer therapeutic target in many human cancers, because abnormal activation of Mer has been implicated in survival signaling and chemoresistance. 3D-QSAR analyses based on alignment independent descriptors were performed on a series of 81 Mer specific tyrosine kinase inhibitors. The fractional factorial design (FFD) and the enhanced replacement method (ERM) were applied and tested as variable selection algorithms for the selection of optimal subsets of molecular descriptors from a much greater pool of such regression variables. The data set was split into 65 molecules as the training set and 16 compounds as the test set. All descriptors were generated by using the GRid INdependent descriptors (GRIND) approach. After variable selection, GRIND were correlated with activity values (pIC50) by PLS regression. Of the two applied variable selection methods, ERM had a noticeable improvement on the statistical parameters of PLS model, and yielded a q (2) value of 0.77, an [Formula: see text] of 0.94, and a low RMSEP value of 0.25. The GRIND information contents influencing the affinity on Mer specific tyrosine kinase were also confirmed by docking studies. In a quantum calculation study, the energy difference between HOMO and LUMO (gap) implied the high interaction of the most active molecule in the active site of the protein. In addition, the molecular electrostatic potential energy at DFT level confirmed results obtained from the molecular docking. The identified key features obtained from the molecular modeling, enabled us to design novel kinase inhibitors.

  2. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    Science.gov (United States)

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  3. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors.

    Science.gov (United States)

    Sable, Rushikesh; Jois, Seetharama

    2015-06-23

    Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.

  4. PSOVina: The hybrid particle swarm optimization algorithm for protein-ligand docking.

    Science.gov (United States)

    Ng, Marcus C K; Fong, Simon; Siu, Shirley W I

    2015-06-01

    Protein-ligand docking is an essential step in modern drug discovery process. The challenge here is to accurately predict and efficiently optimize the position and orientation of ligands in the binding pocket of a target protein. In this paper, we present a new method called PSOVina which combined the particle swarm optimization (PSO) algorithm with the efficient Broyden-Fletcher-Goldfarb-Shannon (BFGS) local search method adopted in AutoDock Vina to tackle the conformational search problem in docking. Using a diverse data set of 201 protein-ligand complexes from the PDBbind database and a full set of ligands and decoys for four representative targets from the directory of useful decoys (DUD) virtual screening data set, we assessed the docking performance of PSOVina in comparison to the original Vina program. Our results showed that PSOVina achieves a remarkable execution time reduction of 51-60% without compromising the prediction accuracies in the docking and virtual screening experiments. This improvement in time efficiency makes PSOVina a better choice of a docking tool in large-scale protein-ligand docking applications. Our work lays the foundation for the future development of swarm-based algorithms in molecular docking programs. PSOVina is freely available to non-commercial users at http://cbbio.cis.umac.mo .

  5. Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1.

    Science.gov (United States)

    Min, Lie; Joseph, Raji E; Fulton, D Bruce; Andreotti, Amy H

    2009-12-15

    Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.

  6. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors

    Directory of Open Access Journals (Sweden)

    Rushikesh Sable

    2015-06-01

    Full Text Available Blocking protein-protein interactions (PPI using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.

  7. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  8. In Silico Exploration of 1,7-Diazacarbazole Analogs as Checkpoint Kinase 1 Inhibitors by Using 3D QSAR, Molecular Docking Study, and Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Xiaodong Gao

    2016-05-01

    Full Text Available Checkpoint kinase 1 (Chk1 is an important serine/threonine kinase with a self-protection function. The combination of Chk1 inhibitors and anti-cancer drugs can enhance the selectivity of tumor therapy. In this work, a set of 1,7-diazacarbazole analogs were identified as potent Chk1 inhibitors through a series of computer-aided drug design processes, including three-dimensional quantitative structure–activity relationship (3D-QSAR modeling, molecular docking, and molecular dynamics simulations. The optimal QSAR models showed significant cross-validated correlation q2 values (0.531, 0.726, fitted correlation r2 coefficients (higher than 0.90, and standard error of prediction (less than 0.250. These results suggested that the developed models possess good predictive ability. Moreover, molecular docking and molecular dynamics simulations were applied to highlight the important interactions between the ligand and the Chk1 receptor protein. This study shows that hydrogen bonding and electrostatic forces are key interactions that confer bioactivity.

  9. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps

    KAUST Repository

    Oliva, Romina; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  10. Analysis and Ranking of Protein-Protein Docking Models Using Inter-Residue Contacts and Inter-Molecular Contact Maps

    KAUST Repository

    Oliva, Romina

    2015-07-01

    In view of the increasing interest both in inhibitors of protein-protein interactions and in protein drugs themselves, analysis of the three-dimensional structure of protein-protein complexes is assuming greater relevance in drug design. In the many cases where an experimental structure is not available, protein-protein docking becomes the method of choice for predicting the arrangement of the complex. However, reliably scoring protein-protein docking poses is still an unsolved problem. As a consequence, the screening of many docking models is usually required in the analysis step, to possibly single out the correct ones. Here, making use of exemplary cases, we review our recently introduced methods for the analysis of protein complex structures and for the scoring of protein docking poses, based on the use of inter-residue contacts and their visualization in inter-molecular contact maps. We also show that the ensemble of tools we developed can be used in the context of rational drug design targeting protein-protein interactions.

  11. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    Science.gov (United States)

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  12. istar: a web platform for large-scale protein-ligand docking.

    Directory of Open Access Journals (Sweden)

    Hongjian Li

    Full Text Available Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1 filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2 monitoring job progress in real time, and 3 visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked

  13. istar: a web platform for large-scale protein-ligand docking.

    Science.gov (United States)

    Li, Hongjian; Leung, Kwong-Sak; Ballester, Pedro J; Wong, Man-Hon

    2014-01-01

    Protein-ligand docking is a key computational method in the design of starting points for the drug discovery process. We are motivated by the desire to automate large-scale docking using our popular docking engine idock and thus have developed a publicly-accessible web platform called istar. Without tedious software installation, users can submit jobs using our website. Our istar website supports 1) filtering ligands by desired molecular properties and previewing the number of ligands to dock, 2) monitoring job progress in real time, and 3) visualizing ligand conformations and outputting free energy and ligand efficiency predicted by idock, binding affinity predicted by RF-Score, putative hydrogen bonds, and supplier information for easy purchase, three useful features commonly lacked on other online docking platforms like DOCK Blaster or iScreen. We have collected 17,224,424 ligands from the All Clean subset of the ZINC database, and revamped our docking engine idock to version 2.0, further improving docking speed and accuracy, and integrating RF-Score as an alternative rescoring function. To compare idock 2.0 with the state-of-the-art AutoDock Vina 1.1.2, we have carried out a rescoring benchmark and a redocking benchmark on the 2,897 and 343 protein-ligand complexes of PDBbind v2012 refined set and CSAR NRC HiQ Set 24Sept2010 respectively, and an execution time benchmark on 12 diverse proteins and 3,000 ligands of different molecular weight. Results show that, under various scenarios, idock achieves comparable success rates while outperforming AutoDock Vina in terms of docking speed by at least 8.69 times and at most 37.51 times. When evaluated on the PDBbind v2012 core set, our istar platform combining with RF-Score manages to reproduce Pearson's correlation coefficient and Spearman's correlation coefficient of as high as 0.855 and 0.859 respectively between the experimental binding affinity and the predicted binding affinity of the docked conformation. istar

  14. PEPSI-Dock: a detailed data-driven protein-protein interaction potential accelerated by polar Fourier correlation.

    Science.gov (United States)

    Neveu, Emilie; Ritchie, David W; Popov, Petr; Grudinin, Sergei

    2016-09-01

    Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline, which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the precision of a very detailed data-driven model of the binding free energy used with a global and exhaustive rigid-body search space. As well as being accurate, our computations are among the fastest by virtue of the sparse representation of the pre-computed potentials and FFT-accelerated sampling techniques. Overall, this is the first demonstration of a FFT-accelerated docking method coupled with an arbitrary-shaped distance-dependent interaction potential. First, we present a novel learning process to compute data-driven distant-dependent pairwise potentials, adapted from our previous method used for rescoring of putative protein-protein binding poses. The potential coefficients are learned by combining machine-learning techniques with physically interpretable descriptors. Then, we describe the integration of the deduced potentials into a FFT-accelerated spherical sampling provided by the Hex library. Overall, on a training set of 163 heterodimers, PEPSI-Dock achieves a success rate of 91% mid-quality predictions in the top-10 solutions. On a subset of the protein docking benchmark v5, it achieves 44.4% mid-quality predictions in the top-10 solutions when starting from bound structures and 20.5% when starting from unbound structures. The method runs in 5-15 min on a modern laptop and can easily be extended to other types of interactions. https://team.inria.fr/nano-d/software/PEPSI-Dock sergei.grudinin@inria.fr. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e

  15. A historical overview of protein kinases and their targeted small molecule inhibitors.

    Science.gov (United States)

    Roskoski, Robert

    2015-10-01

    catalytic subunits. PKA and all other protein kinase domains have a small amino-terminal lobe and large carboxyterminal lobe as determined by X-ray crystallography. The N-lobe and C-lobe form a cleft that serves as a docking site for MgATP. Nearly all active protein kinases contain a K/E/D/D signature sequence that plays important structural and catalytic roles. Protein kinases contain hydrophobic catalytic and regulatory spines and collateral shell residues that are required to assemble the active enzyme. There are two general kinds of conformational changes associated with most protein kinases. The first conformational change involves the formation of an intact regulatory spine to form an active enzyme. The second conformational change occurs in active kinases as they toggle between open and closed conformations during their catalytic cycles. Because mutations and dysregulation of protein kinases play causal roles in human disease, this family of enzymes has become one of the most important drug targets over the past two decades. Imatinib was approved by the United States FDA for the treatment of chronic myelogenous leukemia in 2001; this small molecule inhibits the BCR-Abl protein kinase oncoprotein that results from the formation of the Philadelphia chromosome. More than two dozen other orally effective mechanism-based small molecule protein kinase inhibitors have been subsequently approved by the FDA. These drugs bind to the ATP-binding site of their target enzymes and extend into nearby hydrophobic pockets. Most of these protein kinase inhibitors prolong survival in cancer patients only weeks or months longer than standard cytotoxic therapies. In contrast, the clinical effectiveness of imatinib against chronic myelogenous leukemia is vastly superior to that of any other targeted protein kinase inhibitor with overall survival lasting a decade or more. However, the near universal and expected development of drug resistance in the treatment of neoplastic disorders

  16. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Uchikoga

    Full Text Available Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  17. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints.

    Science.gov (United States)

    Uchikoga, Nobuyuki; Matsuzaki, Yuri; Ohue, Masahito; Hirokawa, Takatsugu; Akiyama, Yutaka

    2013-01-01

    Interaction profile method is a useful method for processing rigid-body docking. After the docking process, the resulting set of docking poses could be classified by calculating similarities among them using these interaction profiles to search for near-native poses. However, there are some cases where the near-native poses are not included in this set of docking poses even when the bound-state structures are used. Therefore, we have developed a method for generating near-native docking poses by introducing a re-docking process. We devised a method for calculating the profile of interaction fingerprints by assembling protein complexes after determining certain core-protein complexes. For our analysis, we used 44 bound-state protein complexes selected from the ZDOCK benchmark dataset ver. 2.0, including some protein pairs none of which generated near-native poses in the docking process. Consequently, after the re-docking process we obtained profiles of interaction fingerprints, some of which yielded near-native poses. The re-docking process involved searching for possible docking poses in a restricted area using the profile of interaction fingerprints. If the profile includes interactions identical to those in the native complex, we obtained near-native docking poses. Accordingly, near-native poses were obtained for all bound-state protein complexes examined here. Application of interaction fingerprints to the re-docking process yielded structures with more native interactions, even when a docking pose, obtained following the initial docking process, contained only a small number of native amino acid interactions. Thus, utilization of the profile of interaction fingerprints in the re-docking process yielded more near-native poses.

  18. CPdock: the complementarity plot for docking of proteins: implementing multi-dielectric continuum electrostatics.

    Science.gov (United States)

    Basu, Sankar

    2017-12-07

    The complementarity plot (CP) is an established validation tool for protein structures, applicable to both globular proteins (folding) as well as protein-protein complexes (binding). It computes the shape and electrostatic complementarities (S m , E m ) for amino acid side-chains buried within the protein interior or interface and plots them in a two-dimensional plot having knowledge-based probabilistic quality estimates for the residues as well as for the whole structure. The current report essentially presents an upgraded version of the plot with the implementation of the advanced multi-dielectric functionality (as in Delphi version 6.2 or higher) in the computation of electrostatic complementarity to make the validation tool physico-chemically more realistic. The two methods (single- and multi-dielectric) agree decently in their resultant E m values, and hence, provisions for both methods have been kept in the software suite. So to speak, the global electrostatic balance within a well-folded protein and/or a well-packed interface seems only marginally perturbed by the choice of different internal dielectric values. However, both from theoretical as well as practical grounds, the more advanced multi-dielectric version of the plot is certainly recommended for potentially producing more reliable results. The report also presents a new methodology and a variant plot, namely CP dock , based on the same principles of complementarity specifically designed to be used in the docking of proteins. The efficacy of the method to discriminate between good and bad docked protein complexes has been tested on a recent state-of-the-art docking benchmark. The results unambiguously indicate that CP dock can indeed be effective in the initial screening phase of a docking scoring pipeline before going into more sophisticated and computationally expensive scoring functions. CP dock has been made available at https://github.com/nemo8130/CPdock . Graphical Abstract An example showing

  19. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  20. A unified conformational selection and induced fit approach to protein-peptide docking.

    Directory of Open Access Journals (Sweden)

    Mikael Trellet

    Full Text Available Protein-peptide interactions are vital for the cell. They mediate, inhibit or serve as structural components in nearly 40% of all macromolecular interactions, and are often associated with diseases, making them interesting leads for protein drug design. In recent years, large-scale technologies have enabled exhaustive studies on the peptide recognition preferences for a number of peptide-binding domain families. Yet, the paucity of data regarding their molecular binding mechanisms together with their inherent flexibility makes the structural prediction of protein-peptide interactions very challenging. This leaves flexible docking as one of the few amenable computational techniques to model these complexes. We present here an ensemble, flexible protein-peptide docking protocol that combines conformational selection and induced fit mechanisms. Starting from an ensemble of three peptide conformations (extended, a-helix, polyproline-II, flexible docking with HADDOCK generates 79.4% of high quality models for bound/unbound and 69.4% for unbound/unbound docking when tested against the largest protein-peptide complexes benchmark dataset available to date. Conformational selection at the rigid-body docking stage successfully recovers the most relevant conformation for a given protein-peptide complex and the subsequent flexible refinement further improves the interface by up to 4.5 Å interface RMSD. Cluster-based scoring of the models results in a selection of near-native solutions in the top three for ∼75% of the successfully predicted cases. This unified conformational selection and induced fit approach to protein-peptide docking should open the route to the modeling of challenging systems such as disorder-order transitions taking place upon binding, significantly expanding the applicability limit of biomolecular interaction modeling by docking.

  1. Evaluation of the novel algorithm of flexible ligand docking with moveable target-protein atoms.

    Science.gov (United States)

    Sulimov, Alexey V; Zheltkov, Dmitry A; Oferkin, Igor V; Kutov, Danil C; Katkova, Ekaterina V; Tyrtyshnikov, Eugene E; Sulimov, Vladimir B

    2017-01-01

    We present the novel docking algorithm based on the Tensor Train decomposition and the TT-Cross global optimization. The algorithm is applied to the docking problem with flexible ligand and moveable protein atoms. The energy of the protein-ligand complex is calculated in the frame of the MMFF94 force field in vacuum. The grid of precalculated energy potentials of probe ligand atoms in the field of the target protein atoms is not used. The energy of the protein-ligand complex for any given configuration is computed directly with the MMFF94 force field without any fitting parameters. The conformation space of the system coordinates is formed by translations and rotations of the ligand as a whole, by the ligand torsions and also by Cartesian coordinates of the selected target protein atoms. Mobility of protein and ligand atoms is taken into account in the docking process simultaneously and equally. The algorithm is realized in the novel parallel docking SOL-P program and results of its performance for a set of 30 protein-ligand complexes are presented. Dependence of the docking positioning accuracy is investigated as a function of parameters of the docking algorithm and the number of protein moveable atoms. It is shown that mobility of the protein atoms improves docking positioning accuracy. The SOL-P program is able to perform docking of a flexible ligand into the active site of the target protein with several dozens of protein moveable atoms: the native crystallized ligand pose is correctly found as the global energy minimum in the search space with 157 dimensions using 4700 CPU ∗ h at the Lomonosov supercomputer.

  2. Phosphorylation of Staphylococcus aureus Protein-Tyrosine Kinase Affects the Function of Glucokinase and Biofilm Formation.

    Science.gov (United States)

    Vasu, Dudipeta; Kumar, Pasupuleti Santhosh; Prasad, Uppu Venkateswara; Swarupa, Vimjam; Yeswanth, Sthanikam; Srikanth, Lokanathan; Sunitha, Manne Mudhu; Choudhary, Abhijith; Sarma, Potukuchi Venkata Gurunadha Krishna

    2017-03-01

    When Staphylococcus aureus is grown in the presence of high concentration of external glucose, this sugar is phosphorylated by glucokinase (glkA) to form glucose-6-phosphate. This product subsequently enters into anabolic phase, which favors biofilm formation. The presence of ROK (repressor protein, open reading frame, sugar kinase) motif, phosphate-1 and -2 sites, and tyrosine kinase sites in glkA of S. aureus indicates that phosphorylation must regulate the glkA activity. The aim of the present study was to identify the effect of phosphorylation on the function of S. aureus glkA and biofilm formation. Pure glkA and protein-tyrosine kinase (BYK) of S. aureus ATCC 12600 were obtained by fractionating the cytosolic fractions of glkA1 and BYK-1 expressing recombinant clones through nickel metal chelate column. The pure glkA was used as a substrate for BYK and the phosphorylation of glkA was confirmed by treating with reagent A and resolving in SDS-PAGE, as well as staining with reagent A. The kinetic parameters of glkA and phosphorylated glkA were determined spectrophotometrically, and in silico tools were used for validation. S. aureus was grown in brain heart infusion broth, which was supplemented with glucose, and then biofilm units were calculated. Fourfold elevated glkA activity was observed upon the phosphorylation by BYK. Protein-protein docking analysis revealed that glkA structure docked close to the adenosine triphosphate-binding site of BYK structure corroborating the kinetic results. Further, S. aureus grown in the presence of elevated glucose concentration exhibited an increase in the rate of biofilm formation. The elevated function of glkA is an essential requirement for increased biofilm units in S. aureus, a key pathogenic factor that helps its survival and spread the infection.

  3. Solvated protein-DNA docking using HADDOCK

    NARCIS (Netherlands)

    van Dijk, Marc; Visscher, Koen M; Bonvin, Alexandre M.J.J; Kastritis, Panagiotis L.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein-DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the

  4. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    Science.gov (United States)

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  5. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    Science.gov (United States)

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  6. PEPSI-Dock: a detailed data-driven protein–protein interaction potential accelerated by polar Fourier correlation

    OpenAIRE

    Neveu , Emilie; Ritchie , David; Popov , Petr; Grudinin , Sergei

    2016-01-01

    International audience; Motivation: Docking prediction algorithms aim to find the native conformation of a complex of proteins from knowledge of their unbound structures. They rely on a combination of sampling and scoring methods, adapted to different scales. Polynomial Expansion of Protein Structures and Interactions for Docking (PEPSI-Dock) improves the accuracy of the first stage of the docking pipeline , which will sharpen up the final predictions. Indeed, PEPSI-Dock benefits from the pre...

  7. A docking study of enhanced intracellular survival protein from Mycobacterium tuberculosis with human DUSP16/MKP-7

    International Nuclear Information System (INIS)

    Yoon, Hye-Jin; Kim, Kyoung Hoon; Yang, Jin Kuk; Suh, Se Won; Kim, Hyunsik; Jang, Soonmin

    2013-01-01

    A docking study of Mtb Eis with its substrate DUSP16/MKP-7 was performed. The docking model suggests dissociation of hexameric Mtb Eis into dimers or monomers. The intracellular pathogen Mycobacterium tuberculosis (Mtb) causes tuberculosis, and one of its secreted effector proteins, called enhanced intracellular survival (Eis) protein, enhances its survival in macrophages. Mtb Eis activates JNK-specific dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase-7 (MKP-7) through the acetylation on Lys55, thus inactivating JNK by dephosphorylation. Based on the recently reported crystal structure of Mtb Eis, a docking model for the binding of Mtb Eis to DUSP16/MKP-7 was generated. In the docking model, the substrate helix containing Lys55 of DUSP16/MKP-7 fits nicely into the active-site cleft of Mtb Eis; the twisted β-sheet of Eis domain II embraces the substrate helix from one side. Most importantly, the side-chain of Lys55 is inserted toward acetyl-CoA and the resulting distance is 4.6 Å between the NZ atom of Lys55 and the carbonyl carbon of the acetyl group in acetyl-CoA. The binding of Mtb Eis and DUSP16/MKP-7 is maintained by strong electrostatic interactions. The active-site cleft of Mtb Eis has a negatively charged surface formed by Asp25, Glu138, Asp286, Glu395 and the terminal carboxylic group of Phe396. In contrast, DUSP16/MKP-7 contains five basic residues, Lys52, Lys55, Arg56, Arg57 and Lys62, which point toward the negatively charged surface of the active-site pocket of Mtb Eis. Thus, the current docking model suggests that the binding of DUSP16/MKP-7 to Mtb Eis should be established by charge complementarity in addition to a very favorable geometric arrangement. The suggested mode of binding requires the dissociation of the hexameric Mtb Eis into dimers or monomers. This study may be useful for future studies aiming to develop inhibitors of Mtb Eis as a new anti-tuberculosis drug candidate

  8. A docking study of enhanced intracellular survival protein from Mycobacterium tuberculosis with human DUSP16/MKP-7

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Hye-Jin, E-mail: yoonhj@snu.ac.kr; Kim, Kyoung Hoon [Seoul National University, Seoul 151-747 (Korea, Republic of); Yang, Jin Kuk [Soongsil University, Seoul 156-743 (Korea, Republic of); Suh, Se Won [Seoul National University, Seoul 151-747 (Korea, Republic of); Seoul National University, Seoul 151-747 (Korea, Republic of); Kim, Hyunsik; Jang, Soonmin, E-mail: yoonhj@snu.ac.kr [Sejong University, Seoul 143-747 (Korea, Republic of)

    2013-11-01

    A docking study of Mtb Eis with its substrate DUSP16/MKP-7 was performed. The docking model suggests dissociation of hexameric Mtb Eis into dimers or monomers. The intracellular pathogen Mycobacterium tuberculosis (Mtb) causes tuberculosis, and one of its secreted effector proteins, called enhanced intracellular survival (Eis) protein, enhances its survival in macrophages. Mtb Eis activates JNK-specific dual-specificity protein phosphatase 16 (DUSP16)/mitogen-activated protein kinase phosphatase-7 (MKP-7) through the acetylation on Lys55, thus inactivating JNK by dephosphorylation. Based on the recently reported crystal structure of Mtb Eis, a docking model for the binding of Mtb Eis to DUSP16/MKP-7 was generated. In the docking model, the substrate helix containing Lys55 of DUSP16/MKP-7 fits nicely into the active-site cleft of Mtb Eis; the twisted β-sheet of Eis domain II embraces the substrate helix from one side. Most importantly, the side-chain of Lys55 is inserted toward acetyl-CoA and the resulting distance is 4.6 Å between the NZ atom of Lys55 and the carbonyl carbon of the acetyl group in acetyl-CoA. The binding of Mtb Eis and DUSP16/MKP-7 is maintained by strong electrostatic interactions. The active-site cleft of Mtb Eis has a negatively charged surface formed by Asp25, Glu138, Asp286, Glu395 and the terminal carboxylic group of Phe396. In contrast, DUSP16/MKP-7 contains five basic residues, Lys52, Lys55, Arg56, Arg57 and Lys62, which point toward the negatively charged surface of the active-site pocket of Mtb Eis. Thus, the current docking model suggests that the binding of DUSP16/MKP-7 to Mtb Eis should be established by charge complementarity in addition to a very favorable geometric arrangement. The suggested mode of binding requires the dissociation of the hexameric Mtb Eis into dimers or monomers. This study may be useful for future studies aiming to develop inhibitors of Mtb Eis as a new anti-tuberculosis drug candidate.

  9. DockingShop: A Tool for Interactive Molecular Docking

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ting-Cheng; Max, Nelson L.; Ding, Jinhui; Bethel, E. Wes; Crivelli, Silvia N.

    2005-04-24

    Given two independently determined molecular structures, the molecular docking problem predicts the bound association, or best fit between them, while allowing for conformational changes of the individual molecules during construction of a molecular complex. Docking Shop is an integrated environment that permits interactive molecular docking by navigating a ligand or protein to an estimated binding site of a receptor with real-time graphical feedback of scoring factors as visual guides. Our program can be used to create initial configurations for a protein docking prediction process. Its output--the structure of aprotein-ligand or protein-protein complex--may serve as an input for aprotein docking algorithm, or an optimization process. This tool provides molecular graphics interfaces for structure modeling, interactive manipulation, navigation, optimization, and dynamic visualization to aid users steer the prediction process using their biological knowledge.

  10. Evaluation of multiple protein docking structures using correctly predicted pairwise subunits

    Directory of Open Access Journals (Sweden)

    Esquivel-Rodríguez Juan

    2012-03-01

    Full Text Available Abstract Background Many functionally important proteins in a cell form complexes with multiple chains. Therefore, computational prediction of multiple protein complexes is an important task in bioinformatics. In the development of multiple protein docking methods, it is important to establish a metric for evaluating prediction results in a reasonable and practical fashion. However, since there are only few works done in developing methods for multiple protein docking, there is no study that investigates how accurate structural models of multiple protein complexes should be to allow scientists to gain biological insights. Methods We generated a series of predicted models (decoys of various accuracies by our multiple protein docking pipeline, Multi-LZerD, for three multi-chain complexes with 3, 4, and 6 chains. We analyzed the decoys in terms of the number of correctly predicted pair conformations in the decoys. Results and conclusion We found that pairs of chains with the correct mutual orientation exist even in the decoys with a large overall root mean square deviation (RMSD to the native. Therefore, in addition to a global structure similarity measure, such as the global RMSD, the quality of models for multiple chain complexes can be better evaluated by using the local measurement, the number of chain pairs with correct mutual orientation. We termed the fraction of correctly predicted pairs (RMSD at the interface of less than 4.0Å as fpair and propose to use it for evaluation of the accuracy of multiple protein docking.

  11. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  12. Fibronectin phosphorylation by ecto-protein kinase

    International Nuclear Information System (INIS)

    Imada, Sumi; Sugiyama, Yayoi; Imada, Masaru

    1988-01-01

    The presence of membrane-associated, extracellular protein kinase (ecto-protein kinase) and its substrate proteins was examined with serum-free cultures of Swiss 3T3 fibroblast. When cells were incubated with [γ- 32 ]ATP for 10 min at 37 degree C, four proteins with apparent molecular weights between 150 and 220 kDa were prominently phosphorylated. These proteins were also radiolabeled by lactoperoxidase catalyzed iodination and were sensitive to mild tryptic digestion, suggesting that they localized on the cell surface or in the extracellular matrix. Phosphorylation of extracellular proteins with [γ- 32 P]ATP in intact cell culture is consistent with the existence of ecto-protein kinase. Anti-fibronectin antibody immunoprecipitated one of the phosphoproteins which comigrated with a monomer and a dimer form of fibronectin under reducing and nonreducing conditions of electrophoresis, respectively. The protein had affinity for gelatin as demonstrated by retention with gelatin-conjugated agarose. This protein substrate of ecto-protein kinase was thus concluded to be fibronectin. The sites of phosphorylation by ecto-protein kinase were compared with those of intracellularly phosphorylated fibronectin by the analysis of radiolabeled amino acids and peptides. Ecto-protein kinase phosphorylated fibronectin at serine and threonine residues which were distinct from the sites of intracellular fibronectin phosphorylation

  13. A systematic evaluation of protein kinase a-a-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P|info:eu-repo/dai/nl/341566551; van der Heyden, Marcel A G; Kok, Bart; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Scholten, Arjen|info:eu-repo/dai/nl/313939780

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  14. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  15. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  16. The Ste20 kinase misshapen regulates both photoreceptor axon targeting and dorsal closure, acting downstream of distinct signals.

    Science.gov (United States)

    Su, Y C; Maurel-Zaffran, C; Treisman, J E; Skolnik, E Y

    2000-07-01

    We have previously shown that the Ste20 kinase encoded by misshapen (msn) functions upstream of the c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase module in Drosophila. msn is required to activate the Drosophila JNK, Basket (Bsk), to promote dorsal closure of the embryo. A mammalian homolog of Msn, Nck interacting kinase, interacts with the SH3 domains of the SH2-SH3 adapter protein Nck. We now show that Msn likewise interacts with Dreadlocks (Dock), the Drosophila homolog of Nck. dock is required for the correct targeting of photoreceptor axons. We have performed a structure-function analysis of Msn in vivo in Drosophila in order to elucidate the mechanism whereby Msn regulates JNK and to determine whether msn, like dock, is required for the correct targeting of photoreceptor axons. We show that Msn requires both a functional kinase and a C-terminal regulatory domain to activate JNK in vivo in Drosophila. A mutation in a PXXP motif on Msn that prevents it from binding to the SH3 domains of Dock does not affect its ability to rescue the dorsal closure defect in msn embryos, suggesting that Dock is not an upstream regulator of msn in dorsal closure. Larvae with only this mutated form of Msn show a marked disruption in photoreceptor axon targeting, implicating an SH3 domain protein in this process; however, an activated form of Msn is not sufficient to rescue the dock mutant phenotype. Mosaic analysis reveals that msn expression is required in photoreceptors in order for their axons to project correctly. The data presented here genetically link msn to two distinct biological events, dorsal closure and photoreceptor axon pathfinding, and thus provide the first evidence that Ste20 kinases of the germinal center kinase family play a role in axonal pathfinding. The ability of Msn to interact with distinct classes of adapter molecules in dorsal closure and photoreceptor axon pathfinding may provide the flexibility that allows it to link to distinct

  17. Receptor-interacting protein (RIP) kinase family

    OpenAIRE

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  18. Structure and Sequence Search on Aptamer-Protein Docking

    Science.gov (United States)

    Xiao, Jiajie; Bonin, Keith; Guthold, Martin; Salsbury, Freddie

    2015-03-01

    Interactions between proteins and deoxyribonucleic acid (DNA) play a significant role in the living systems, especially through gene regulation. However, short nucleic acids sequences (aptamers) with specific binding affinity to specific proteins exhibit clinical potential as therapeutics. Our capillary and gel electrophoresis selection experiments show that specific sequences of aptamers can be selected that bind specific proteins. Computationally, given the experimentally-determined structure and sequence of a thrombin-binding aptamer, we can successfully dock the aptamer onto thrombin in agreement with experimental structures of the complex. In order to further study the conformational flexibility of this thrombin-binding aptamer and to potentially develop a predictive computational model of aptamer-binding, we use GPU-enabled molecular dynamics simulations to both examine the conformational flexibility of the aptamer in the absence of binding to thrombin, and to determine our ability to fold an aptamer. This study should help further de-novo predictions of aptamer sequences by enabling the study of structural and sequence-dependent effects on aptamer-protein docking specificity.

  19. A rice kinase-protein interaction map.

    Science.gov (United States)

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  20. Molecular docking.

    Science.gov (United States)

    Morris, Garrett M; Lim-Wilby, Marguerita

    2008-01-01

    Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function that correctly ranks candidate dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead optimization. The setting up of the input structures for the docking is just as important as the docking itself, and analyzing the results of stochastic search methods can sometimes be unclear. This chapter discusses the background and theory of molecular docking software, and covers the usage of some of the most-cited docking software.

  1. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

    Science.gov (United States)

    Klett, Javier; Núñez-Salgado, Alfonso; Dos Santos, Helena G; Cortés-Cabrera, Álvaro; Perona, Almudena; Gil-Redondo, Rubén; Abia, David; Gago, Federico; Morreale, Antonio

    2012-09-11

    An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

  2. Radioimmunoassay of bovine heart protein kinase

    International Nuclear Information System (INIS)

    Fleischer, N.; Rosen, O.M.; Reichlin, M.

    1976-01-01

    Immunization of guinea pigs with bovine cardiac cAMP-dependent protein kinase (ATP : protein phosphotransferase, EC 2.7.1.37) resulted in the development of precipitating antibodies to the cAMP-binding subunit of the enzyme. Both the phosphorylated and nonphosphorylated cAMP-binding protein of the protein kinase reacted with the antiserum. A radioimmunoassay was developed that detects 10 ng of holoenzyme and permits measurement of enzyme concentrations in bovine cardiac muscle. Bovine liver, kidney, brain, and skeletal muscle contain protein kinases which are immunologically identical to those found in bovine cardiac muscle. However, the proportion of immunoreactive enzyme activity differed for each tissue. All of the immunologically nonreactive enzyme in skeletal muscle and heart was separable from immunoreactive enzyme by chromatography on DEAE-cellulose. Rat tissues and pig heart contained protein kinase activity that cross reacted immunologically in a nonparallel fashion with bovine cardiac enzyme. These results indicate that cAMP-dependent protein kinases within and between species are immunologically heterogeneous

  3. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  4. Parallel Evolutionary Optimization Algorithms for Peptide-Protein Docking

    Science.gov (United States)

    Poluyan, Sergey; Ershov, Nikolay

    2018-02-01

    In this study we examine the possibility of using evolutionary optimization algorithms in protein-peptide docking. We present the main assumptions that reduce the docking problem to a continuous global optimization problem and provide a way of using evolutionary optimization algorithms. The Rosetta all-atom force field was used for structural representation and energy scoring. We describe the parallelization scheme and MPI/OpenMP realization of the considered algorithms. We demonstrate the efficiency and the performance for some algorithms which were applied to a set of benchmark tests.

  5. dependent/calmodulin- stimulated protein kinase from moss

    Indian Academy of Sciences (India)

    Unknown

    stimulated protein kinase; CDPK, calmodulin domain-like protein kinase; KM14, 14 amino acid synthetic peptide; .... used were obtained from Sigma Chemical Company, USA, ..... Plant chimeric Ca2+/Calmodulin-dependent protein kinase.

  6. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima.

    Science.gov (United States)

    Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Alexey V; Kutov, Danil C; Sobolev, Sergey I; Voevodin, Vladimir V; Sulimov, Vladimir B

    2015-01-01

    The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  7. Evaluation of Docking Target Functions by the Comprehensive Investigation of Protein-Ligand Energy Minima

    Directory of Open Access Journals (Sweden)

    Igor V. Oferkin

    2015-01-01

    Full Text Available The adequate choice of the docking target function impacts the accuracy of the ligand positioning as well as the accuracy of the protein-ligand binding energy calculation. To evaluate a docking target function we compared positions of its minima with the experimentally known pose of the ligand in the protein active site. We evaluated five docking target functions based on either the MMFF94 force field or the PM7 quantum-chemical method with or without implicit solvent models: PCM, COSMO, and SGB. Each function was tested on the same set of 16 protein-ligand complexes. For exhaustive low-energy minima search the novel MPI parallelized docking program FLM and large supercomputer resources were used. Protein-ligand binding energies calculated using low-energy minima were compared with experimental values. It was demonstrated that the docking target function on the base of the MMFF94 force field in vacuo can be used for discovery of native or near native ligand positions by finding the low-energy local minima spectrum of the target function. The importance of solute-solvent interaction for the correct ligand positioning is demonstrated. It is shown that docking accuracy can be improved by replacement of the MMFF94 force field by the new semiempirical quantum-chemical PM7 method.

  8. Coordinating structural and functional synapse development: postsynaptic p21-activated kinase independently specifies glutamate receptor abundance and postsynaptic morphology.

    Science.gov (United States)

    Albin, Stephanie D; Davis, Graeme W

    2004-08-04

    Here, we show that postsynaptic p21-activated kinase (Pak) signaling diverges into two genetically separable pathways at the Drosophila neuromuscular junction. One pathway controls glutamate receptor abundance. Pak signaling within this pathway is specified by a required interaction with the adaptor protein Dreadlocks (Dock). We demonstrate that Dock is localized to the synapse via an Src homology 2-mediated protein interaction. Dock is not necessary for Pak localization but is necessary to restrict Pak signaling to control glutamate receptor abundance. A second genetically separable function of Pak kinase signaling controls muscle membrane specialization through the regulation of synaptic Discs-large. In this pathway, Dock is dispensable. We present a model in which divergent Pak signaling is able to coordinate two different features of postsynaptic maturation, receptor abundance, and muscle membrane specialization.

  9. Designing coarse grained-and atom based-potentials for protein-protein docking

    Directory of Open Access Journals (Sweden)

    Tobi Dror

    2010-11-01

    Full Text Available Abstract Background Protein-protein docking is a challenging computational problem in functional genomics, particularly when one or both proteins undergo conformational change(s upon binding. The major challenge is to define a scoring function soft enough to tolerate these changes and specific enough to distinguish between near-native and "misdocked" conformations. Results Using a linear programming (LP technique, we developed two types of potentials: (i Side chain-based and (ii Heavy atom-based. To achieve this we considered a set of 161 transient complexes and generated a large set of putative docked structures (decoys, based on a shape complementarity criterion, for each complex. The demand on the potentials was to yield, for the native (correctly docked structure, a potential energy lower than those of any of the non-native (misdocked structures. We show that the heavy atom-based potentials were able to comply with this requirement but not the side chain-based one. Thus, despite the smaller number of parameters, the capability of heavy atom-based potentials to discriminate between native and "misdocked" conformations is improved relative to those of the side chain-based potentials. The performance of the atom-based potentials was evaluated by a jackknife test on a set of 50 complexes taken from the Zdock2.3 decoys set. Conclusions Our results show that, using the LP approach, we were able to train our potentials using a dataset of transient complexes only the newly developed potentials outperform three other known potentials in this test.

  10. DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations

    Directory of Open Access Journals (Sweden)

    Alberto Cuzzolin

    2015-05-01

    Full Text Available Virtual screening (VS is a computational methodology that streamlines the drug discovery process by reducing costs and required resources through the in silico identification of potential drug candidates. Structure-based VS (SBVS exploits knowledge about the three-dimensional (3D structure of protein targets and uses the docking methodology as search engine for novel hits. The success of a SBVS campaign strongly depends upon the accuracy of the docking protocol used to select the candidates from large chemical libraries. The identification of suitable protocols is therefore a crucial step in the setup of SBVS experiments. Carrying out extensive benchmark studies, however, is usually a tangled task that requires users’ proficiency in handling different file formats and philosophies at the basis of the plethora of existing software packages. We present here DockBench 1.0, a platform available free of charge that eases the pipeline by automating the entire procedure, from docking benchmark to VS setups. In its current implementation, DockBench 1.0 handles seven docking software packages and offers the possibility to test up to seventeen different protocols. The main features of our platform are presented here and the results of the benchmark study of human Checkpoint kinase 1 (hChk1 are discussed as validation test.

  11. HDOCK: a web server for protein–protein and protein–DNA/RNA docking based on a hybrid strategy

    Science.gov (United States)

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong

    2017-01-01

    Abstract Protein–protein and protein–DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein–protein and protein–DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10–20 min for a docking run. Tested on the cases with weakly homologous complexes of server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. PMID:28521030

  12. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. MEGADOCK 4.0: an ultra-high-performance protein-protein docking software for heterogeneous supercomputers.

    Science.gov (United States)

    Ohue, Masahito; Shimoda, Takehiro; Suzuki, Shuji; Matsuzaki, Yuri; Ishida, Takashi; Akiyama, Yutaka

    2014-11-15

    The application of protein-protein docking in large-scale interactome analysis is a major challenge in structural bioinformatics and requires huge computing resources. In this work, we present MEGADOCK 4.0, an FFT-based docking software that makes extensive use of recent heterogeneous supercomputers and shows powerful, scalable performance of >97% strong scaling. MEGADOCK 4.0 is written in C++ with OpenMPI and NVIDIA CUDA 5.0 (or later) and is freely available to all academic and non-profit users at: http://www.bi.cs.titech.ac.jp/megadock. akiyama@cs.titech.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  14. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  15. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  16. Sibiriline, a new small chemical inhibitor of receptor-interacting protein kinase 1, prevents immune-dependent hepatitis.

    Science.gov (United States)

    Le Cann, Fabienne; Delehouzé, Claire; Leverrier-Penna, Sabrina; Filliol, Aveline; Comte, Arnaud; Delalande, Olivier; Desban, Nathalie; Baratte, Blandine; Gallais, Isabelle; Piquet-Pellorce, Claire; Faurez, Florence; Bonnet, Marion; Mettey, Yvette; Goekjian, Peter; Samson, Michel; Vandenabeele, Peter; Bach, Stéphane; Dimanche-Boitrel, Marie-Thérèse

    2017-09-01

    Necroptosis is a regulated form of cell death involved in several disease models including in particular liver diseases. Receptor-interacting protein kinases, RIPK1 and RIPK3, are the main serine/threonine kinases driving this cell death pathway. We screened a noncommercial, kinase-focused chemical library which allowed us to identify Sibiriline as a new inhibitor of necroptosis induced by tumor necrosis factor (TNF) in Fas-associated protein with death domain (FADD)-deficient Jurkat cells. Moreover, Sib inhibits necroptotic cell death induced by various death ligands in human or mouse cells while not protecting from caspase-dependent apoptosis. By using competition binding assay and recombinant kinase assays, we demonstrated that Sib is a rather specific competitive RIPK1 inhibitor. Molecular docking analysis shows that Sib is trapped closed to human RIPK1 adenosine triphosphate-binding site in a relatively hydrophobic pocket locking RIPK1 in an inactive conformation. In agreement with its RIPK1 inhibitory property, Sib inhibits both TNF-induced RIPK1-dependent necroptosis and RIPK1-dependent apoptosis. Finally, Sib protects mice from concanavalin A-induced hepatitis. These results reveal the small-molecule Sib as a new RIPK1 inhibitor potentially of interest for the treatment of immune-dependent hepatitis. © 2017 Federation of European Biochemical Societies.

  17. An Evaluation of Explicit Receptor Flexibility in Molecular Docking Using Molecular Dynamics and Torsion Angle Molecular Dynamics.

    Science.gov (United States)

    Armen, Roger S; Chen, Jianhan; Brooks, Charles L

    2009-10-13

    Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.

  18. Receptor-interacting protein (RIP) kinase family

    Science.gov (United States)

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, including those in innate immunity, but their downstream substrates are largely unknown. This review will give an overview of the structures and functions of RIP family members, and an update of recent progress in RIP kinase research. PMID:20383176

  19. A framework for classification of prokaryotic protein kinases.

    Directory of Open Access Journals (Sweden)

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  20. Glycogen synthase kinase-3 inhibition by 3-anilino-4-phenylmaleimides: insights from 3D-QSAR and docking

    Science.gov (United States)

    Prasanna, Sivaprakasam; Daga, Pankaj R.; Xie, Aihua; Doerksen, Robert J.

    2009-02-01

    Glycogen synthase kinase-3, a serine/threonine kinase, has been implicated in a wide variety of pathological conditions such as diabetes, Alzheimer's disease, stroke, bipolar disorder, malaria and cancer. Herein we report 3D-QSAR analyses using CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-phenylmaleimides as GSK-3α inhibitors, in order to better understand the mechanism of action and structure-activity relationship of these compounds. Comparison of the active site residues of GSK-3α and GSK-3β isoforms shows that all the key amino acids involved in polar interactions with the maleimides for the β isoform are the same in the α isoform, except that Asp133 in the β isoform is replaced by Glu196 in the α isoform. We prepared a homology model for GSK-3α, and showed that the change from Asp to Glu should not affect maleimide binding significantly. Docking studies revealed the binding poses of three subclasses of these ligands, namely anilino, N-methylanilino and indoline derivatives, within the active site of the β isoform, and helped to explain the difference in their inhibitory activity.

  1. Protein kinase C-dependent regulation of connexin43 gap junctions and hemichannels

    DEFF Research Database (Denmark)

    Alstrøm, Jette Skov; Stroemlund, Line Waring; Nielsen, Morten Schak

    2015-01-01

    Connexin43 (Cx43) generates intercellular gap junction channels involved in, among others, cardiac and brain function. Gap junctions are formed by the docking of two hemichannels from neighbouring cells. Undocked Cx43 hemichannels can upon different stimuli open towards the extracellular matrix...... and allow transport of molecules such as fluorescent dyes and ATP. A range of phosphorylated amino acids have been detected in the C-terminus of Cx43 and their physiological role has been intensively studied both in the gap junctional form of Cx43 and in its hemichannel configuration. We present the current...... knowledge of protein kinase C (PKC)-dependent regulation of Cx43 and discuss the divergent results....

  2. HPEPDOCK: a web server for blind peptide-protein docking based on a hierarchical algorithm.

    Science.gov (United States)

    Zhou, Pei; Jin, Bowen; Li, Hao; Huang, Sheng-You

    2018-05-09

    Protein-peptide interactions are crucial in many cellular functions. Therefore, determining the structure of protein-peptide complexes is important for understanding the molecular mechanism of related biological processes and developing peptide drugs. HPEPDOCK is a novel web server for blind protein-peptide docking through a hierarchical algorithm. Instead of running lengthy simulations to refine peptide conformations, HPEPDOCK considers the peptide flexibility through an ensemble of peptide conformations generated by our MODPEP program. For blind global peptide docking, HPEPDOCK obtained a success rate of 33.3% in binding mode prediction on a benchmark of 57 unbound cases when the top 10 models were considered, compared to 21.1% for pepATTRACT server. HPEPDOCK also performed well in docking against homology models and obtained a success rate of 29.8% within top 10 predictions. For local peptide docking, HPEPDOCK achieved a high success rate of 72.6% on a benchmark of 62 unbound cases within top 10 predictions, compared to 45.2% for HADDOCK peptide protocol. Our HPEPDOCK server is computationally efficient and consumed an average of 29.8 mins for a global peptide docking job and 14.2 mins for a local peptide docking job. The HPEPDOCK web server is available at http://huanglab.phys.hust.edu.cn/hpepdock/.

  3. AnchorDock: Blind and Flexible Anchor-Driven Peptide Docking.

    Science.gov (United States)

    Ben-Shimon, Avraham; Niv, Masha Y

    2015-05-05

    The huge conformational space stemming from the inherent flexibility of peptides is among the main obstacles to successful and efficient computational modeling of protein-peptide interactions. Current peptide docking methods typically overcome this challenge using prior knowledge from the structure of the complex. Here we introduce AnchorDock, a peptide docking approach, which automatically targets the docking search to the most relevant parts of the conformational space. This is done by precomputing the free peptide's structure and by computationally identifying anchoring spots on the protein surface. Next, a free peptide conformation undergoes anchor-driven simulated annealing molecular dynamics simulations around the predicted anchoring spots. In the challenging task of a completely blind docking test, AnchorDock produced exceptionally good results (backbone root-mean-square deviation ≤ 2.2Å, rank ≤15) for 10 of 13 unbound cases tested. The impressive performance of AnchorDock supports a molecular recognition pathway that is driven via pre-existing local structural elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Complete cDNA sequence coding for human docking protein

    Energy Technology Data Exchange (ETDEWEB)

    Hortsch, M; Labeit, S; Meyer, D I

    1988-01-11

    Docking protein (DP, or SRP receptor) is a rough endoplasmic reticulum (ER)-associated protein essential for the targeting and translocation of nascent polypeptides across this membrane. It specifically interacts with a cytoplasmic ribonucleoprotein complex, the signal recognition particle (SRP). The nucleotide sequence of cDNA encoding the entire human DP and its deduced amino acid sequence are given.

  5. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  6. DARC 2.0: Improved Docking and Virtual Screening at Protein Interaction Sites.

    Directory of Open Access Journals (Sweden)

    Ragul Gowthaman

    Full Text Available Over the past decade, protein-protein interactions have emerged as attractive but challenging targets for therapeutic intervention using small molecules. Due to the relatively flat surfaces that typify protein interaction sites, modern virtual screening tools developed for optimal performance against "traditional" protein targets perform less well when applied instead at protein interaction sites. Previously, we described a docking method specifically catered to the shallow binding modes characteristic of small-molecule inhibitors of protein interaction sites. This method, called DARC (Docking Approach using Ray Casting, operates by comparing the topography of the protein surface when "viewed" from a vantage point inside the protein against the topography of a bound ligand when "viewed" from the same vantage point. Here, we present five key enhancements to DARC. First, we use multiple vantage points to more accurately determine protein-ligand surface complementarity. Second, we describe a new scheme for rapidly determining optimal weights in the DARC scoring function. Third, we incorporate sampling of ligand conformers "on-the-fly" during docking. Fourth, we move beyond simple shape complementarity and introduce a term in the scoring function to capture electrostatic complementarity. Finally, we adjust the control flow in our GPU implementation of DARC to achieve greater speedup of these calculations. At each step of this study, we evaluate the performance of DARC in a "pose recapitulation" experiment: predicting the binding mode of 25 inhibitors each solved in complex with its distinct target protein (a protein interaction site. Whereas the previous version of DARC docked only one of these inhibitors to within 2 Å RMSD of its position in the crystal structure, the newer version achieves this level of accuracy for 12 of the 25 complexes, corresponding to a statistically significant performance improvement (p < 0.001. Collectively then, we find

  7. Imidazo[1,2-c]pyrimidin-5(6H)-one as a novel core of cyclin-dependent kinase 2 inhibitors: Synthesis, activity measurement, docking, and quantum mechanical scoring.

    Science.gov (United States)

    Ajani, Haresh; Jansa, Josef; Köprülüoğlu, Cemal; Hobza, Pavel; Kryštof, Vladimír; Lyčka, Antonín; Lepsik, Martin

    2018-04-23

    We report on the synthesis, activity testing, docking, and quantum mechanical scoring of novel imidazo[1,2-c]pyrimidin-5(6H)-one scaffold for cyclin-dependent kinase 2 (CDK2) inhibition. A series of 26 compounds substituted with aromatic moieties at position 8 has been tested in in vitro enzyme assays and shown to inhibit CDK2. 2D structure-activity relationships have ascertained that small substituents at position 8 (up to the size of naphtyl or methoxyphenyl) generally lead to single-digit micromolar IC 50 values, whereas bigger substituents (substituted biphenyls) decreased the compounds' activities. The binding modes of the compounds obtained using Glide docking have exhibited up to 2 hinge-region hydrogen bonds to CDK2 and differed in the orientation of the inhibitor core and the placement of the 8-substituents. Semiempirical quantum mechanics-based scoring identified probable favourable binding modes, which will serve for future structure-based design and synthetic optimization of substituents of the heterocyclic core. In summary, we have identified a novel core for CDK2 inhibition and will explore it further to increase the potencies of the compounds and also monitor selectivities against other protein kinases. Copyright © 2018 John Wiley & Sons, Ltd.

  8. Contractions activate hormone-sensitive lipase in rat muscle by protein kinase C and mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Donsmark, Morten; Langfort, Jozef; Holm, Cecilia

    2003-01-01

    and contractions. Adrenaline acts via cAMP-dependent protein kinase (PKA). The signalling mediating the effect of contractions is unknown and was explored in this study. Incubated soleus muscles from 70 g male rats were electrically stimulated to perform repeated tetanic contractions for 5 min. The contraction......Intramuscular triacylglycerol is an important energy store and is also related to insulin resistance. The mobilization of fatty acids from this pool is probably regulated by hormone-sensitive lipase (HSL), which has recently been shown to exist in muscle and to be activated by both adrenaline......-induced activation of HSL was abolished by the protein kinase C (PKC) inhibitors bisindolylmaleimide I and calphostin C and reduced 50% by the mitogen-activated protein kinase kinase (MEK) inhibitor U0126, which also completely blocked extracellular signal-regulated kinase (ERK) 1 and 2 phosphorylation. None...

  9. Casein kinase II protein kinase is bound to lamina-matrix and phosphorylates lamin-like protein in isolated pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    A casein kinase II (CK II)-like protein kinase was identified and partially isolated from a purified envelope-matrix fraction of pea (Pisum sativum L.) nuclei. When [gamma-32P]ATP was directly added to the envelope-matrix preparation, the three most heavily labeled protein bands had molecular masses near 71, 48, and 46 kDa. Protein kinases were removed from the preparation by sequential extraction with Triton X-100, EGTA, 0.3 M NaCl, and a pH 10.5 buffer, but an active kinase still remained bound to the remaining lamina-matrix fraction after these treatments. This kinase had properties resembling CK II kinases previously characterized from animal and plant sources: it preferred casein as an artificial substrate, could use GTP as efficiently as ATP as the phosphoryl donor, was stimulated by spermine, was calcium independent, and had a catalytic subunit of 36 kDa. Some animal and plant CK II kinases have regulatory subunits near 29 kDa, and a lamina-matrix-bound protein of this molecular mass was recognized on immunoblot by anti-Drosophila CK II polyclonal antibodies. Also found associated with the envelope-matrix fraction of pea nuclei were p34cdc2-like and Ca(2+)-dependent protein kinases, but their properties could not account for the protein kinase activity bound to the lamina. The 71-kDa substrate of the CK II-like kinase was lamin A-like, both in its molecular mass and in its cross-reactivity with anti-intermediate filament antibodies. Lamin phosphorylation is considered a crucial early step in the entry of cells into mitosis, so lamina-bound CK II kinases may be important control points for cellular proliferation.

  10. Protein kinase CK2 in human diseases

    DEFF Research Database (Denmark)

    Guerra, Barbara; Issinger, Olaf-Georg

    2008-01-01

    Protein kinase CK2 (formerly referred to as casein kinase II) is an evolutionary conserved, ubiquitous protein kinase. There are two paralog catalytic subunits, i.e. alpha (A1) and alpha' (A2). The alpha and alpha' subunits are linked to two beta subunits to produce a heterotetrameric structure...

  11. Insight into the intermolecular recognition mechanism between Keap1 and IKKβ combining homology modelling, protein-protein docking, molecular dynamics simulations and virtual alanine mutation.

    Directory of Open Access Journals (Sweden)

    Zheng-Yu Jiang

    Full Text Available Degradation of certain proteins through the ubiquitin-proteasome pathway is a common strategy taken by the key modulators responsible for stress responses. Kelch-like ECH-associated protein-1(Keap1, a substrate adaptor component of the Cullin3 (Cul3-based ubiquitin E3 ligase complex, mediates the ubiquitination of two key modulators, NF-E2-related factor 2 (Nrf2 and IκB kinase β (IKKβ, which are involved in the redox control of gene transcription. However, compared to the Keap1-Nrf2 protein-protein interaction (PPI, the intermolecular recognition mechanism of Keap1 and IKKβ has been poorly investigated. In order to explore the binding pattern between Keap1 and IKKβ, the PPI model of Keap1 and IKKβ was investigated. The structure of human IKKβ was constructed by means of the homology modeling method and using reported crystal structure of Xenopus laevis IKKβ as the template. A protein-protein docking method was applied to develop the Keap1-IKKβ complex model. After the refinement and visual analysis of docked proteins, the chosen pose was further optimized through molecular dynamics simulations. The resulting structure was utilized to conduct the virtual alanine mutation for the exploration of hot-spots significant for the intermolecular interaction. Overall, our results provided structural insights into the PPI model of Keap1-IKKβ and suggest that the substrate specificity of Keap1 depend on the interaction with the key tyrosines, namely Tyr525, Tyr574 and Tyr334. The study presented in the current project may be useful to design molecules that selectively modulate Keap1. The selective recognition mechanism of Keap1 with IKKβ or Nrf2 will be helpful to further know the crosstalk between NF-κB and Nrf2 signaling.

  12. Heterotrimeric G protein beta1gamma2 subunits change orientation upon complex formation with G protein-coupled receptor kinase 2 (GRK2) on a model membrane.

    Science.gov (United States)

    Boughton, Andrew P; Yang, Pei; Tesmer, Valerie M; Ding, Bei; Tesmer, John J G; Chen, Zhan

    2011-09-13

    Few experimental techniques can assess the orientation of peripheral membrane proteins in their native environment. Sum Frequency Generation (SFG) vibrational spectroscopy was applied to study the formation of the complex between G protein-coupled receptor (GPCR) kinase 2 (GRK2) and heterotrimeric G protein β(1)γ(2) subunits (Gβγ) at a lipid bilayer, without any exogenous labels. The most likely membrane orientation of the GRK2-Gβγ complex differs from that predicted from the known protein crystal structure, and positions the predicted receptor docking site of GRK2 such that it would more optimally interact with GPCRs. Gβγ also appears to change its orientation after binding to GRK2. The developed methodology is widely applicable for the study of other membrane proteins in situ.

  13. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina; Absmanner, Birgit; Weller, Benjamin; Barbosa, Inê s CR; Willige, Bjö rn C; Fastner, Astrid; Streit, Verena; Port, Sarah A; Colcombet, Jean; de la Fuente van Bentem, Sergio; Hirt, Heribert; Kuster, Bernhard; Schulze, Waltraud X; Hammes, Ulrich Z; Schwechheimer, Claus

    2014-01-01

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  14. Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID

    KAUST Repository

    Zourelidou, Melina

    2014-06-19

    The development and morphology of vascular plants is critically determined by synthesis and proper distribution of the phytohormone auxin. The directed cell-to-cell distribution of auxin is achieved through a system of auxin influx and efflux transporters. PIN-FORMED (PIN) proteins are proposed auxin efflux transporters, and auxin fluxes can seemingly be predicted based on the-in many cells-asymmetric plasma membrane distribution of PINs. Here, we show in a heterologous Xenopus oocyte system as well as in Arabidopsis thaliana inflorescence stems that PIN-mediated auxin transport is directly activated by D6 PROTEIN KINASE (D6PK) and PINOID (PID)/WAG kinases of the Arabidopsis AGCVIII kinase family. At the same time, we reveal that D6PKs and PID have differential phosphosite preferences. Our study suggests that PIN activation by protein kinases is a crucial component of auxin transport control that must be taken into account to understand auxin distribution within the plant.

  15. Slit stimulation recruits Dock and Pak to the roundabout receptor and increases Rac activity to regulate axon repulsion at the CNS midline.

    Science.gov (United States)

    Fan, Xueping; Labrador, Juan Pablo; Hing, Huey; Bashaw, Greg J

    2003-09-25

    Drosophila Roundabout (Robo) is the founding member of a conserved family of repulsive axon guidance receptors that respond to secreted Slit proteins. Here we present evidence that the SH3-SH2 adaptor protein Dreadlocks (Dock), the p21-activated serine-threonine kinase (Pak), and the Rac1/Rac2/Mtl small GTPases can function during Robo repulsion. Loss-of-function and genetic interaction experiments suggest that limiting the function of Dock, Pak, or Rac partially disrupts Robo repulsion. In addition, Dock can directly bind to Robo's cytoplasmic domain, and the association of Dock and Robo is enhanced by stimulation with Slit. Furthermore, Slit stimulation can recruit a complex of Dock and Pak to the Robo receptor and trigger an increase in Rac1 activity. These results provide a direct physical link between the Robo receptor and an important cytoskeletal regulatory protein complex and suggest that Rac can function in both attractive and repulsive axon guidance.

  16. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  17. Interaction of new kinase inhibitors cabozantinib and tofacitinib with human serum alpha-1 acid glycoprotein. A comprehensive spectroscopic and molecular Docking approach

    Science.gov (United States)

    Ajmal, Mohammad Rehan; Abdelhameed, Ali Saber; Alam, Parvez; Khan, Rizwan Hasan

    2016-04-01

    In the current study we have investigated the interaction of newly approved kinase inhibitors namely Cabozantinib (CBZ) and Tofacitinib (TFB) with human Alpha-1 acid glycoprotein (AAG) under simulated physiological conditions using fluorescence quenching measurements, circular dichroism, dynamic light scattering and molecular docking methods. CBZ and TFB binds to AAG with significant affinity and the calculated binding constant for the drugs lie in the order of 104. With the increase in temperature the binding constant values decreased for both CBZ and TFB. The fluorescence resonance energy transfer (FRET) from AAG to CBZ and TFB suggested the fluorescence intensity of AAG was quenched by the two studied drugs via the formation of a non-fluorescent complex in the static manner. The molecular distance r value calculated from FRET is around 2 nm for both drugs, fluorescence spectroscopy data was employed for the study of thermodynamic parameters, standard Gibbs free energy change at 300K was calculated as - 5.234 kcal mol- 1 for CBZ-AAG interaction and - 6.237 kcal mol- 1 for TFB-AAG interaction, standard enthalpy change and standard entropy change for CBZ-AAG interaction are - 9.553 kcal mol- 1 and - 14.618 cal mol- 1K- 1 respectively while for AAG-TFB interaction, standard enthalpy and standard entropy change was calculated as 4.019 kcal mol- 1 and 7.206 cal mol- 1K- 1 respectively. Protein binding of the two drugs caused the tertiary structure alterations. Dynamic light scattering measurements demonstrated the reduction in the hydrodynamic radii of the protein. Furthermore molecular docking results suggested the Hydrophobic interaction and hydrogen bonding were the interactive forces in the binding process of CBZ to AAG while in case of TFB only hydrophobic interactions were found to be involved, overlap of the binding site for two studied drugs on the AAG molecule was revealed by docking results.

  18. The pepATTRACT web server for blind, large-scale peptide-protein docking.

    Science.gov (United States)

    de Vries, Sjoerd J; Rey, Julien; Schindler, Christina E M; Zacharias, Martin; Tuffery, Pierre

    2017-07-03

    Peptide-protein interactions are ubiquitous in the cell and form an important part of the interactome. Computational docking methods can complement experimental characterization of these complexes, but current protocols are not applicable on the proteome scale. pepATTRACT is a novel docking protocol that is fully blind, i.e. it does not require any information about the binding site. In various stages of its development, pepATTRACT has participated in CAPRI, making successful predictions for five out of seven protein-peptide targets. Its performance is similar or better than state-of-the-art local docking protocols that do require binding site information. Here we present a novel web server that carries out the rigid-body stage of pepATTRACT. On the peptiDB benchmark, the web server generates a correct model in the top 50 in 34% of the cases. Compared to the full pepATTRACT protocol, this leads to some loss of performance, but the computation time is reduced from ∼18 h to ∼10 min. Combined with the fact that it is fully blind, this makes the web server well-suited for large-scale in silico protein-peptide docking experiments. The rigid-body pepATTRACT server is freely available at http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Domain requirements for the Dock adapter protein in growth- cone signaling.

    Science.gov (United States)

    Rao, Y; Zipursky, S L

    1998-03-03

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly specialized for growth-cone guidance. In this paper, we demonstrate that Dock can couple signals in either an SH2-dependent or an SH2-independent fashion in photoreceptor (R cell) growth cones, and that Dock displays different domain requirements in different neurons.

  20. Alanine rich peptide from Populus trichocarpa inhibit growth of Staphylococcus aureus via targetting its extracellular domain of Sensor Histidine Kinase YycGex protein.

    Science.gov (United States)

    Al Akeel, Raid; Mateen, Ayesha; Syed, Rabbani; Al-Qahtani, Mohammed S; Alqahtani, A

    2018-05-11

    Due to growing concern towards microbial resistance, ongoing search for developing novel bioactive compounds such as peptides is on rise. The aim of this study was to evaluate antimicrobial effect of Populus trichocarpa extract, chemically identify the active peptide fraction and finds its target in Staphylococcus aureus. In this study the active fraction of P. trichocarpa crude extract was purified and characterized using MS/MS. This peptide PT13 antimicrobial activity was confirmed by in-vitro agar based disk diffusion and in-vivo infection model of G. mellonella. The proteomic expression analysis of S. aureus under influence of PT13 was studied using LTQ-Orbitrap-MS in-solution digestion and identity of target protein was acquired with their quantified expression using label-free approach of Progenesis QI software. Docking study was performed with peptide PT13 and its target YycG protein using CABS-dock. The active fraction PT13 sequence was identified as KVPVAAAAAAAAAVVASSMVVAAAK, with 25 amino acid including 13 alanine having M/Z 2194.2469. PT13 was uniformly inhibited growth S. aureus SA91 and MIC was determined 16 μg/mL for SA91 S. aureus strain. Sensor histidine kinase (YycG) was most significant target found differentially expressed under influence of PT13. G. mellonella larvae were killed rapidly due to S aureus infection, whereas death in protected group was insignificant in compare to control. The docking models showed ten docking models with RMSD value 1.89 for cluster 1 and RMSD value 3.95 for cluster 2 which is predicted to be high quality model. Alanine rich peptide could be useful in constructing as antimicrobial peptide for targeting extracellular Domain of Sensor Histidine Kinase YycG from S. aureus used in the study. Copyright © 2018. Published by Elsevier Ltd.

  1. Protein kinase CK2 in health and disease: Protein kinase CK2: from structures to insights

    DEFF Research Database (Denmark)

    Niefind, K; Raaf, J; Issinger, Olaf-Georg

    2009-01-01

    the critical region of CK2alpha recruitment is pre-formed in the unbound state. In CK2alpha the activation segment - a key element of protein kinase regulation - adapts invariably the typical conformation of the active enzymes. Recent structures of human CK2alpha revealed a surprising plasticity in the ATP......Within the last decade, 40 crystal structures corresponding to protein kinase CK2 (former name 'casein kinase 2'), to its catalytic subunit CK2alpha and to its regulatory subunit CK2beta were published. Together they provide a valuable, yet by far not complete basis to rationalize the biochemical...

  2. Systematic Protein-Protein Docking and Molecular Dynamics Studies of HIV-1 gp120 and CD4: Insights for New Drug Development

    Directory of Open Access Journals (Sweden)

    M. Rizman-Idid

    2011-12-01

    Full Text Available Background and the purpose of the study: The interactions between HIV-1 gp120 and mutated CD4 proteins were investigated in order to identify a lead structure for therapy based on competitive blocking of the HIV binding receptor for human T-cells. Crystal structures of HIV gp120-CD4 complexes reveal a close interaction of the virus receptor with CD4 Phe43, which is embedded in a pocket of the virus protein.Methods: This study applies computer simulations to determine the best binding of amino acid 43 CD4 mutants to HIV gp120. Besides natural CD4, three mutants carrying alternate aromatic residues His, Trp and Tyr at position 43 were investigated. Several docking programs were applied on isolated proteins based on selected crystal structures of gp120-CD4 complexes, as well as a 5 ns molecular dynamics study on the protein complexes. The initial structures were minimized in Gromacs to avoid crystal packing effects, and then subjected to docking experiments using AutoDock4, FireDock, ClusPro and ZDock. In molecular dynamics, the Gibbs free binding energy was calculated for the gp120-CD4 complexes. The docking outputs were analyzed on energy within the respective docking software.Results and conclusion: Visualization and hydrogen bonding analysis were performed using the Swiss-PdbViewer. Strong binding to HIV gp120 can be achieved with an extended aromatic group (Trp. However, the sterical demand of the interaction affects the binding kinetics. In conclusion, a ligand for an efficient blocking of HIV gp120 should involve an extended but conformational flexible aromatic group, i.e. a biphenyl. A docking study on biphenylalanine-43 confirms this expectation

  3. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    Directory of Open Access Journals (Sweden)

    Konrad Kubiński

    2017-02-01

    Full Text Available The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors.

  4. Role of adiponectin/phosphatidylinositol 3-kinase/protein kinase B ...

    African Journals Online (AJOL)

    The adiponectin/phosphatidylinositol 3-kinase/protein kinase B (ADP/PI3k/Akt) signal transduction pathway has an important role in promoting cell survival. This study was designed to determine if the ADP/PI3K/Akt signaling pathway has a role in the mechanism of ischemia–reperfusion injury in vivo. Sprague–Dawley rats ...

  5. Towards ligand docking including explicit interface water molecules.

    Directory of Open Access Journals (Sweden)

    Gordon Lemmon

    Full Text Available Small molecule docking predicts the interaction of a small molecule ligand with a protein at atomic-detail accuracy including position and conformation the ligand but also conformational changes of the protein upon ligand binding. While successful in the majority of cases, docking algorithms including RosettaLigand fail in some cases to predict the correct protein/ligand complex structure. In this study we show that simultaneous docking of explicit interface water molecules greatly improves Rosetta's ability to distinguish correct from incorrect ligand poses. This result holds true for both protein-centric water docking wherein waters are located relative to the protein binding site and ligand-centric water docking wherein waters move with the ligand during docking. Protein-centric docking is used to model 99 HIV-1 protease/protease inhibitor structures. We find protease inhibitor placement improving at a ratio of 9:1 when one critical interface water molecule is included in the docking simulation. Ligand-centric docking is applied to 341 structures from the CSAR benchmark of diverse protein/ligand complexes [1]. Across this diverse dataset we see up to 56% recovery of failed docking studies, when waters are included in the docking simulation.

  6. Calcium-dependent but calmodulin-independent protein kinase from soybean

    International Nuclear Information System (INIS)

    Harmon, A.C.; Putnam-Evans, C.; Cormier, M.J.

    1987-01-01

    A calcium-dependent protein kinase activity from suspension-cultured soybean cells (Glycine max L. Wayne) was shown to be dependent on calcium but not calmodulin. The concentrations of free calcium required for half-maximal histone H1 phosphorylation and autophosphorylation were similar (≥ 2 micromolar). The protein kinase activity was stimulated 100-fold by ≥ 10 micromolar-free calcium. When exogenous soybean or bovine brain calmodulin was added in high concentration (1 micromolar) to the purified kinase, calcium-dependent and -independent activities were weakly stimulated (≤ 2-fold). Bovine serum albumin had a similar effect on both activities. The kinase was separated from a small amount of contaminating calmodulin by sodium dodecyl sulfate polyacrylamide gel electrophoresis. After renaturation the protein kinase autophosphorylated and phosphorylated histone H1 in a calcium-dependent manner. Following electroblotting onto nitrocellulose, the kinase bound 45 Ca 2+ in the presence of KCl and MgCl 2 , which indicated that the kinase itself is a high-affinity calcium-binding protein. Also, the mobility of one of two kinase bands in SDS gels was dependent on the presence of calcium. Autophosphorylation of the calmodulin-free kinase was inhibited by the calmodulin-binding compound N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7), showing that the inhibition of activity by W-7 is independent of calmodulin. These results show that soybean calcium-dependent protein kinase represents a new class of protein kinase which requires calcium but not calmodulin for activity

  7. Protein Kinases in Shaping Plant Architecture.

    Science.gov (United States)

    Wu, Juan; Wang, Bo; Xin, Xiaoyun; Ren, Dongtao

    2018-02-13

    Plant architecture, the three-dimensional organization of the plant body, includes the branching pattern and the size, shape, and position of organs. Plant architecture is genetically controlled and is influenced by environmental conditions. The regulations occur at most of the stages from the first division of the fertilized eggs to the final establishment of plant architecture. Among the various endogenous regulators, protein kinases and their associated signaling pathways have been shown to play important roles in regulating the process of plant architecture establishment. In this review, we summarize recent progress in the understanding of the mechanisms by which plant architecture formation is regulated by protein kinases, especially mitogen-activated protein kinase (MAPK). Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    Science.gov (United States)

    Strecker, Claas; Meyer, Bernd

    2018-05-02

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  9. Roles of Apicomplexan protein kinases at each life cycle stage.

    Science.gov (United States)

    Kato, Kentaro; Sugi, Tatsuki; Iwanaga, Tatsuya

    2012-06-01

    Inhibitors of cellular protein kinases have been reported to inhibit the development of Apicomplexan parasites, suggesting that the functions of protozoan protein kinases are critical for their life cycle. However, the specific roles of these protein kinases cannot be determined using only these inhibitors without molecular analysis, including gene disruption. In this report, we describe the functions of Apicomplexan protein kinases in each parasite life stage and the potential of pre-existing protein kinase inhibitors as Apicomplexan drugs against, mainly, Plasmodium and Toxoplasma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Post processing of protein-compound docking for fragment-based drug discovery (FBDD): in-silico structure-based drug screening and ligand-binding pose prediction.

    Science.gov (United States)

    Fukunishi, Yoshifumi

    2010-01-01

    For fragment-based drug development, both hit (active) compound prediction and docking-pose (protein-ligand complex structure) prediction of the hit compound are important, since chemical modification (fragment linking, fragment evolution) subsequent to the hit discovery must be performed based on the protein-ligand complex structure. However, the naïve protein-compound docking calculation shows poor accuracy in terms of docking-pose prediction. Thus, post-processing of the protein-compound docking is necessary. Recently, several methods for the post-processing of protein-compound docking have been proposed. In FBDD, the compounds are smaller than those for conventional drug screening. This makes it difficult to perform the protein-compound docking calculation. A method to avoid this problem has been reported. Protein-ligand binding free energy estimation is useful to reduce the procedures involved in the chemical modification of the hit fragment. Several prediction methods have been proposed for high-accuracy estimation of protein-ligand binding free energy. This paper summarizes the various computational methods proposed for docking-pose prediction and their usefulness in FBDD.

  11. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking.

    Science.gov (United States)

    Su, Chinh; Nguyen, Thuy-Diem; Zheng, Jie; Kwoh, Chee-Keong

    2014-01-01

    Protein-protein docking is an in silico method to predict the formation of protein complexes. Due to limited computational resources, the protein-protein docking approach has been developed under the assumption of rigid docking, in which one of the two protein partners remains rigid during the protein associations and water contribution is ignored or implicitly presented. Despite obtaining a number of acceptable complex predictions, it seems to-date that most initial rigid docking algorithms still find it difficult or even fail to discriminate successfully the correct predictions from the other incorrect or false positive ones. To improve the rigid docking results, re-ranking is one of the effective methods that help re-locate the correct predictions in top high ranks, discriminating them from the other incorrect ones. Our results showed that the IFACEwat increased both the numbers of the near-native structures and improved their ranks as compared to the initial rigid docking ZDOCK3.0.2. In fact, the IFACEwat achieved a success rate of 83.8% for Antigen/Antibody complexes, which is 10% better than ZDOCK3.0.2. As compared to another re-ranking technique ZRANK, the IFACEwat obtains success rates of 92.3% (8% better) and 90% (5% better) respectively for medium and difficult cases. When comparing with the latest published re-ranking method F2Dock, the IFACEwat performed equivalently well or even better for several Antigen/Antibody complexes. With the inclusion of interfacial water, the IFACEwat improves mostly results of the initial rigid docking, especially for Antigen/Antibody complexes. The improvement is achieved by explicitly taking into account the contribution of water during the protein interactions, which was ignored or not fully presented by the initial rigid docking and other re-ranking techniques. In addition, the IFACEwat maintains sufficient computational efficiency of the initial docking algorithm, yet improves the ranks as well as the number of the near

  12. The Protein Kinase RSK Family - Roles in Prostate Cancer

    National Research Council Canada - National Science Library

    Lannigan, Deborah

    2006-01-01

    The Ser/Thr protein kinase p90-kDa ribosomal S6 kinase (RSK) is an important downstream effector of mitogen-activated protein kinase but its roles in prostate cancer have not been previously examined...

  13. Identification of new 2,5-diketopiperazine derivatives as simultaneous effective inhibitors of αβ-tubulin and BCRP proteins: Molecular docking, Structure-Activity Relationships and virtual consensus docking studies

    Science.gov (United States)

    Fani, Najmeh; Sattarinezhad, Elham; Bordbar, Abdol-Khalegh

    2017-06-01

    In the first part of this paper, docking method was employed in order to study the binding mechanism of breast cancer resistance protein (BCRP) with a group of previously synthesized TPS-A derivatives which known as potent inhibitors of this protein to get insight into drug binding site of BCRP and to explore structure-activity relationship of these compounds. Molecular docking results showed that most of these compounds bind in the binding site of BCRP at the interface between the membrane and outer environment. In the second part, a group of designed TPS-A derivatives which showed good binding energies in the binding site of αβ-tubulin in the previous study were chosen to study their binding energies in the binding site of BCRP to investigate their simultaneous inhibitory effect on both αβ-tubulin and BCRP. The results showed that all of these compounds bind to the binding site of BCRP with relatively suitable binding energies and therefore could be potential inhibitors of both αβ-tubulin and BCRP proteins. Finally, virtual consensus docking method was utilized with the aim of design of new 2,5-diketopiperazine derivatives with significant inhibitory effect on both αβ-tubulin and BCRP proteins. For this purpose binding energies of a library of 2,5-diketopiperazine derivatives in the binding sites of αβ-tubulin and BCRP was investigated by using AutoDock and AutoDock vina tools. Molecular docking results revealed that a group of 36 compounds among them exhibit strong anti-tubulin and anti-BCRP activity.

  14. QSAR, molecular docking studies of thiophene and imidazopyridine derivatives as polo-like kinase 1 inhibitors

    Science.gov (United States)

    Cao, Shandong

    2012-08-01

    The purpose of the present study was to develop in silico models allowing for a reliable prediction of polo-like kinase inhibitors based on a large diverse dataset of 136 compounds. As an effective method, quantitative structure activity relationship (QSAR) was applied using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The proposed QSAR models showed reasonable predictivity of thiophene analogs (Rcv2=0.533, Rpred2=0.845) and included four molecular descriptors, namely IC3, RDF075m, Mor02m and R4e+. The optimal model for imidazopyridine derivatives (Rcv2=0.776, Rpred2=0.876) was shown to perform good in prediction accuracy, using GATS2m and BEHe1 descriptors. Analysis of the contour maps helped to identify structural requirements for the inhibitors and served as a basis for the design of the next generation of the inhibitor analogues. Docking studies were also employed to position the inhibitors into the polo-like kinase active site to determine the most probable binding mode. These studies may help to understand the factors influencing the binding affinity of chemicals and to develop alternative methods for prescreening and designing of polo-like kinase inhibitors.

  15. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    Science.gov (United States)

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  16. Solvated protein-protein docking using Kyte-Doolittle-based water preferences

    NARCIS (Netherlands)

    Kastritis, P.; Visscher, K.M.; van Dijk, A.D.J.; Bonvin, A.M.J.J.

    2013-01-01

    HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on

  17. Solvated protein-protein docking using Kyte-Doolittle-based water preferences

    NARCIS (Netherlands)

    Kastritis, Panagiotis L.; Visscher, Koen M.; van Dijk, Aalt D.J.; Bonvin, Alexandre M.J.J.

    HADDOCK is one of the few docking programs that can explicitly account for water molecules in the docking process. Its solvated docking protocol starts from hydrated molecules and a fraction of the resulting interfacial waters is subsequently removed in a biased Monte Carlo procedure based on

  18. Purification and characterization of a thylakoid protein kinase

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1986-01-01

    Control of state transitions in the thylakoid by reversible phosphorylation of the light-harvesting chlorophyll a/b protein complex of photosystem II (LHC-II) is modulated by a kinase. The kinase catalyzing this phosphorylation is associated with the thylakoid membrane, and is regulated by the redox state of the plastoquinone pool. The isolation and partial purification from spinach thylakoids of two protein kinases (CPK1, CPK2) of apparent molecular masses 25 kDa and 38 kDa has been reported. Neither enzyme utilizes isolated LHC-II as a substrate. The partial purification of a third protein kinase (LHCK) which can utilize both lysine-rich histones (IIIs and Vs) and isolated LHC-II as substrate has now been purified to homogeneity and characterized by SDS-polyacrylamide gel electrophoresis as a 64 kDa peptide. From a comparison of the two isolation procedures we have concluded that CPK1 is indeed a protein kinase, but has a lower specific activity than that of LHCK. 8 refs., 4 figs

  19. Purification and characterization of a casein kinase 2-type protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Roux, S. J.

    1992-01-01

    Almost all the polyamine-stimulated protein kinase activity associated with the chromatin fraction of nuclei purified from etiolated pea (Pisum sativum L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.35 molar NaCl. This protein kinase can be further purified over 2000-fold by salt fractionation and anion-exchange and casein-agarose column chromatography, after which it is more than 90% pure. The purified kinase has a specific activity of about 650 nanomoles per minute per milligram protein in the absence of polyamines, with either ATP or GTP as phosphoryl donor. Spermidine can stimulate its activity fourfold, with half-maximal activation at about 2 millimolar. Spermine and putrescine also stimulate activity, although somewhat less effectively. This kinase has a tetrameric alpha 2 beta 2 structure with a native molecular weight of 130,000, and subunit molecular weights of 36,000 for the catalytic subunit (alpha) and 29,000 for the regulatory subunit (beta). In western blot analyses, only the alpha subunit reacts strongly with polyclonal antibodies to a Drosophila casein kinase II. The pea kinase can use casein and phosvitin as artificial substrates, phosphorylating both the serine and threonine residues of casein. It has a pH optimum near 8.0, a Vmax of 1.5 micromoles per minute per milligram protein, and a Km for ATP of approximately 75 micromolar. Its activity can be almost completely inhibited by heparin at 5 micrograms per milliliter, but is relatively insensitive to concentrations of staurosporine, K252a, and chlorpromazine that strongly antagonize Ca(2+) -regulated protein kinases. These results are discussed in relation to recent findings that casein kinase 2-type kinases may phosphorylate trans-acting factors that bind to light-regulated promoters in plants.

  20. Diversity, classification and function of the plant protein kinase superfamily

    OpenAIRE

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase r...

  1. CIKS, a connection to Ikappa B kinase and stress-activated protein kinase.

    Science.gov (United States)

    Leonardi, A; Chariot, A; Claudio, E; Cunningham, K; Siebenlist, U

    2000-09-12

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-kappaB and AP-1/ATF families. Activation of NF-kappaB factors is thought to be mediated primarily via IkappaB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKalpha and IKKbeta are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-kappaB essential modulator)/IKKgamma. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKgamma in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-kappaB-dependent reporter. Activation of NF-kappaB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins.

  2. CIKS, a connection to IκB kinase and stress-activated protein kinase

    Science.gov (United States)

    Leonardi, Antonio; Chariot, Alain; Claudio, Estefania; Cunningham, Kirk; Siebenlist, Ulrich

    2000-01-01

    Pathogens, inflammatory signals, and stress cause acute transcriptional responses in cells. The induced expression of genes in response to these signals invariably involves transcription factors of the NF-κB and AP-1/ATF families. Activation of NF-κB factors is thought to be mediated primarily via IκB kinases (IKK), whereas that of AP-1/ATF can be mediated by stress-activated protein kinases (SAPKs; also named Jun kinases or JNKs). IKKα and IKKβ are two catalytic subunits of a core IKK complex that also contains the regulatory subunit NEMO (NF-κB essential modulator)/IKKγ. The latter protein is essential for activation of the IKKs, but its mechanism of action is not known. Here we describe the molecular cloning of CIKS (connection to IKK and SAPK/JNK), a previously unknown protein that directly interacts with NEMO/IKKγ in cells. When ectopically expressed, CIKS stimulates IKK and SAPK/JNK kinases and it transactivates an NF-κB-dependent reporter. Activation of NF-κB is prevented in the presence of kinase-deficient, interfering mutants of the IKKs. CIKS may help to connect upstream signaling events to IKK and SAPK/JNK modules. CIKS could coordinate the activation of two stress-induced signaling pathways, functions reminiscent of those noted for tumor necrosis factor receptor-associated factor adaptor proteins. PMID:10962033

  3. Partial purification and characterization of a wortmannin-sensitive and insulin-stimulated protein kinase that activates heart 6-phosphofructo-2-kinase.

    OpenAIRE

    Deprez, J; Bertrand, L; Alessi, D R; Krause, U; Hue, L; Rider, M H

    2000-01-01

    A wortmannin-sensitive and insulin-stimulated protein kinase (WISK), which phosphorylates and activates cardiac 6-phosphofructo-2-kinase (PFK-2), was partially purified from perfused rat hearts. Immunoblotting showed that WISK was devoid of protein kinase B (PKB), serum- and glucocorticoid-regulated protein kinase and protein kinase Czeta (PKCzeta). Comparison of the inhibition of WISK, PKCalpha and PKCzeta by different protein kinase inhibitors suggested that WISK was not a member of the PKC...

  4. DOCLASP - Docking ligands to target proteins using spatial and electrostatic congruence extracted from a known holoenzyme and applying simple geometrical transformations.

    Science.gov (United States)

    Chakraborty, Sandeep

    2014-01-01

    The ability to accurately and effectively predict the interaction between proteins and small drug-like compounds has long intrigued researchers for pedagogic, humanitarian and economic reasons. Protein docking methods (AutoDock, GOLD, DOCK, FlexX and Glide to name a few) rank a large number of possible conformations of protein-ligand complexes using fast algorithms. Previously, it has been shown that structural congruence leading to the same enzymatic function necessitates the congruence of electrostatic properties (CLASP). The current work presents a methodology for docking a ligand into a target protein, provided that there is at least one known holoenzyme with ligand bound - DOCLASP (Docking using CLASP). The contact points of the ligand in the holoenzyme defines a motif, which is used to query the target enzyme using CLASP. If there are significant matches, the holoenzyme and the target protein are superimposed based on congruent atoms. The same linear and rotational transformations are also applied to the ligand, thus creating a unified coordinate framework having the holoenzyme, the ligand and the target enzyme. In the current work, the dipeptidyl peptidase-IV inhibitor vildagliptin was docked to the PI-PLC structure complexed with myo-inositol using DOCLASP. Also, corroboration of the docking of phenylthiourea to the modelled structure of polyphenol oxidase (JrPPO1) from walnut is provided based on the subsequently solved structure of JrPPO1 (PDBid:5CE9). Analysis of the binding of the antitrypanosomial drug suramin to nine non-homologous proteins in the PDB database shows a diverse set of binding motifs, and multiple binding sites in the phospholipase A2-likeproteins from the Bothrops genus of pitvipers. The conformational changes in the suramin molecule on binding highlights the challenges in docking flexible ligands into an already 'plastic' binding site. Thus, DOCLASP presents a method for 'soft docking' ligands to proteins with low computational

  5. Preferential Selectivity of Inhibitors with Human Tau Protein Kinase Gsk3 Elucidates Their Potential Roles for Off-Target Alzheimer’s Therapy

    Directory of Open Access Journals (Sweden)

    Jagadeesh Kumar Dasappa

    2013-01-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by the accumulation of amyloid beta peptides (A and neurofibrillary tangles (NFTs. The abnormal phosphorylation of tau leads to the formation of NFTs produced by the action of tau kinases, resulting in the loss of neurons and synapse, leading to dementia. Hence, tau kinases have become potential drug target candidates for small molecule inhibitors. With an aim to explore the identification of a common inhibitor, this investigation was undertaken towards analyzing all 10 tau kinases which are implicated in phosphorylation of AD. A set of 7 inhibitors with varied scaffolds were collected from the Protein Data Bank (PDB. The analysis, involving multiple sequence alignment, 3D structural alignment, catalytic active site overlap, and docking studies, has enabled elucidation of the pharmacophoric patterns for the class of 7 inhibitors. Our results divulge that tau protein kinases share a specific set of conserved structural elements for the binding of inhibitors and ATP, respectively. The scaffold of 3-aminopyrrolidine (inhibitor 6 exhibits high preferential affinity with GSK3. Surprisingly, the PDB does not contain the structural details of GSK3 with this specific inhibitor. Thus, our investigations provide vital clues towards design of novel off-target drugs for Alzheimer’s.

  6. Protein kinase A regulatory subunit distribution in medulloblastoma

    International Nuclear Information System (INIS)

    Mucignat-Caretta, Carla; Denaro, Luca; Redaelli, Marco; D'Avella, Domenico; Caretta, Antonio

    2010-01-01

    Previous studies showed a differential distribution of the four regulatory subunits of cAMP-dependent protein kinases inside the brain, that changed in rodent gliomas: therefore, the distribution of these proteins inside the brain can give information on the functional state of the cells. Our goal was to examine human brain tumors to provide evidence for a differential distribution of protein kinase A in different tumors. The distribution of detergent insoluble regulatory (R1 and R2) and catalytic subunits of cAMP dependent kinases was examined in pediatric brain tumors by immunohistochemistry and fluorescent cAMP analogues binding. R2 is organized in large single dots in medulloblastomas, while it has a different appearance in other tumors. Fluorescent cAMP labelling was observed only in medulloblastoma. A different distribution of cAMP dependent protein kinases has been observed in medulloblastoma

  7. The Drosophila DOCK family protein Sponge is required for development of the air sac primordium

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Kazushge; Anh Suong, Dang Ngoc; Yoshida, Hideki; Yamaguchi, Masamitsu, E-mail: myamaguc@kit.ac.jp

    2017-05-15

    Dedicator of cytokinesis (DOCK) family genes are known as DOCK1-DOCK11 in mammals. DOCK family proteins mainly regulate actin filament polymerization and/or depolymerization and are GEF proteins, which contribute to cellular signaling events by activating small G proteins. Sponge (Spg) is a Drosophila counterpart to mammalian DOCK3/DOCK4, and plays a role in embryonic central nervous system development, R7 photoreceptor cell differentiation, and adult thorax development. In order to conduct further functional analyses on Spg in vivo, we examined its localization in third instar larval wing imaginal discs. Immunostaining with purified anti-Spg IgG revealed that Spg mainly localized in the air sac primordium (ASP) in wing imaginal discs. Spg is therefore predicted to play an important role in the ASP. The specific knockdown of Spg by the breathless-GAL4 driver in tracheal cells induced lethality accompanied with a defect in ASP development and the induction of apoptosis. The monitoring of ERK signaling activity in wing imaginal discs by immunostaining with anti-diphospho-ERK IgG revealed reductions in the ERK signal cascade in Spg knockdown clones. Furthermore, the overexpression of D-raf suppressed defects in survival and the proliferation of cells in the ASP induced by the knockdown of Spg. Collectively, these results indicate that Spg plays a critical role in ASP development and tracheal cell viability that is mediated by the ERK signaling pathway. - Highlights: • Spg mainly localizes in the air sac primordium in wing imaginal discs. • Spg plays a critical role in air sac primordium development. • Spg positively regulates the ERK signal cascade.

  8. QSAR Study on Caffeine Derivatives Docked on Poly(ARNA Polymerase Protein Cid1

    Directory of Open Access Journals (Sweden)

    Teodora E. Harsa

    2016-06-01

    Full Text Available Caffeine is the most commonly ingested alkylxantine and is recognized as a psycho-stimulant. It improves some aspects of cognitive performance, however it reduces the cerebral blood flow both in animals and humans. In this paper a QSAR study on caffeine derivatives, docked on the Poly(ARNA polymerase protein cid1, is reported. A set of forty caffeine derivatives, downloaded from PubChem, was modeled, within the hypermolecule strategy; the predicted activity was LD50 and prediction was done on similarity clusters with the leaders chosen as the best docked ligands on the Poly(ARNA polymerase protein cid1. It was concluded that LD50 of the studied caffeines is not influenced by their binding to the target protein. This work is licensed under a Creative Commons Attribution 4.0 International License.

  9. Effect of triiodothyronine on rat liver chromatin protein kinase

    International Nuclear Information System (INIS)

    Kruh, J.; Tichonicky, L.

    1976-01-01

    1) Injection of triiodothyronine to rats stimulates protein kinase activity in liver chromatin nonhistone proteins. A significant increase was found after two daily injections. A 4-fold increase was observed with the purified enzyme after eight daily injections of the hormone. No variations were observed in cytosol protein kinase activity. Electrophoretic pattern, effect of heat denaturation, effect of p-hydroxymercuribenzoate seem to indicate that the enzyme present in treated rats is not identical to the enzyme in control animals, which suggests that thyroid hormone has induced nuclear protein kinase. Diiodothyronine, 3, 3', 5'-triiodothyronine have no effect on protein kinase. 2) Chromatin non-histone proteins isolated from rats injected with triiodothyronine incorporated more 32 P when incubated with [γ- 32 P]ATP than the chromatin proteins from untreated rats. Thyroidectomy reduced the in vitro 32 P incorporation. It is suggested that some of the biological activity of thyroid hormone could be mediated through its effect on chromatin non-histone proteins. (orig.) [de

  10. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury.

    Science.gov (United States)

    Cursio, R; Filippa, N; Miele, C; Van Obberghen, E; Gugenheim, J

    2006-06-01

    This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs. Copyright (c) 2006 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  11. Defining the limits of homology modeling in information-driven protein docking

    NARCIS (Netherlands)

    Garcia Lopes Maia Rodrigues, João; Melquiond, A S J; Karaca, E; Trellet, M; van Dijk, M; van Zundert, G C P; Schmitz, C; de Vries, S J; Bordogna, A; Bonati, L; Kastritis, P L; Bonvin, Alexandre M J J; Garcia Lopes Maia Rodrigues, João

    2013-01-01

    Information-driven docking is currently one of the most successful approaches to obtain structural models of protein interactions as demonstrated in the latest round of CAPRI. While various experimental and computational techniques can be used to retrieve information about the binding mode, the

  12. Structure and allosteric effects of low-molecular-weight activators on the protein kinase PDK1

    DEFF Research Database (Denmark)

    Hindie, Valerie; Stroba, Adriana; Zhang, Hua

    2009-01-01

    -dependent activation of AGC kinases. The AGC kinase PDK1 is activated by the docking of a phosphorylated motif from substrates. Here we present the crystallography of PDK1 bound to a rationally developed low-molecular-weight activator and describe the conformational changes induced by small compounds in the crystal...... molecular details of the allosteric changes induced by small compounds that trigger the activation of PDK1 through mimicry of phosphorylation-dependent conformational changes....

  13. SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions.

    Science.gov (United States)

    Sugden, Peter H; McGuffin, Liam J; Clerk, Angela

    2013-08-15

    The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly

  14. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  15. Oral protein kinase c β inhibition using ruboxistaurin

    DEFF Research Database (Denmark)

    Aiello, Lloyd Paul; Vignati, Louis; Sheetz, Matthew J

    2011-01-01

    To evaluate efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with moderately severe to very severe nonproliferative diabetic retinopathy from the Protein Kinase C β Inhibitor-Diabetic Retinopathy Study and Protein Kinase C β Inhibitor-Diabetic Retinopathy Study 2 ruboxi...

  16. A Global Protein Kinase and Phosphatase Interaction Network in Yeast

    Science.gov (United States)

    Breitkreutz, Ashton; Choi, Hyungwon; Sharom, Jeffrey R.; Boucher, Lorrie; Neduva, Victor; Larsen, Brett; Lin, Zhen-Yuan; Breitkreutz, Bobby-Joe; Stark, Chris; Liu, Guomin; Ahn, Jessica; Dewar-Darch, Danielle; Reguly, Teresa; Tang, Xiaojing; Almeida, Ricardo; Qin, Zhaohui Steve; Pawson, Tony; Gingras, Anne-Claude; Nesvizhskii, Alexey I.; Tyers, Mike

    2011-01-01

    The interactions of protein kinases and phosphatases with their regulatory subunits and substrates underpin cellular regulation. We identified a kinase and phosphatase interaction (KPI) network of 1844 interactions in budding yeast by mass spectrometric analysis of protein complexes. The KPI network contained many dense local regions of interactions that suggested new functions. Notably, the cell cycle phosphatase Cdc14 associated with multiple kinases that revealed roles for Cdc14 in mitogen-activated protein kinase signaling, the DNA damage response, and metabolism, whereas interactions of the target of rapamycin complex 1 (TORC1) uncovered new effector kinases in nitrogen and carbon metabolism. An extensive backbone of kinase-kinase interactions cross-connects the proteome and may serve to coordinate diverse cellular responses. PMID:20489023

  17. Docking ligands into flexible and solvated macromolecules. 7. Impact of protein flexibility and water molecules on docking-based virtual screening accuracy.

    Science.gov (United States)

    Therrien, Eric; Weill, Nathanael; Tomberg, Anna; Corbeil, Christopher R; Lee, Devin; Moitessier, Nicolas

    2014-11-24

    The use of predictive computational methods in the drug discovery process is in a state of continual growth. Over the last two decades, an increasingly large number of docking tools have been developed to identify hits or optimize lead molecules through in-silico screening of chemical libraries to proteins. In recent years, the focus has been on implementing protein flexibility and water molecules. Our efforts led to the development of Fitted first reported in 2007 and further developed since then. In this study, we wished to evaluate the impact of protein flexibility and occurrence of water molecules on the accuracy of the Fitted docking program to discriminate active compounds from inactive compounds in virtual screening (VS) campaigns. For this purpose, a total of 171 proteins cocrystallized with small molecules representing 40 unique enzymes and receptors as well as sets of known ligands and decoys were selected from the Protein Data Bank (PDB) and the Directory of Useful Decoys (DUD), respectively. This study revealed that implementing displaceable crystallographic or computationally placed particle water molecules and protein flexibility can improve the enrichment in active compounds. In addition, an informed decision based on library diversity or research objectives (hit discovery vs lead optimization) on which implementation to use may lead to significant improvements.

  18. Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1.

    Science.gov (United States)

    Yoo, Byung-Chun; Lee, Jung-Youn; Lucas, William J

    2002-05-03

    In angiosperms, functional, mature sieve elements lack nuclei, vacuoles, ribosomes, and most of the endomembrane network. In this study, the complexity, number, and nature of protein kinases within the phloem sap of Cucurbita maxima were investigated to test the hypothesis that the enucleate sieve tube system utilizes a simplified signal transduction network. Supporting evidence was obtained in that only five putative protein kinases (three calcium-independent and two calcium-dependent protein kinases) were detected within the phloem sap extracted from stem tissues. Biochemical methods were used to purify one such calcium-dependent protein kinase. The gene for this C. maxima calmodulin-like domain protein kinase 1 (CmCPK1), was cloned using peptide microsequences. A combination of mass spectrometry, peptide fingerprinting, and amino-terminal sequencing established that, in the phloem sap, CmCPK1 exists as an amino-terminally cleaved protein. A second highly homologous isoform, CmCPK2, was identified, but although transcripts could be detected in the companion cells, peptide fingerprint analysis suggested that CmCPK2 does not enter the phloem sap. Potential substrates for CmCPK1, within the phloem sap, were also detected using an on-membrane phosphorylation assay. Entry of CmCPK1 into sieve elements via plasmodesmata and the potential roles played by these phloem protein kinases are discussed.

  19. A casein-kinase-2-related protein kinase is tightly associated with the large T antigen of simian virus 40

    DEFF Research Database (Denmark)

    Götz, C; Koenig, M G; Issinger, O G

    1995-01-01

    by the addition of protein kinase CK2 suggest that at least one of the T-antigen-associated protein kinases is CK2 or a protein-kinase-CK2-related enzyme. The association of recombinant CK2 with T antigen was strongly confirmed by in vitro binding studies. Experiments with temperature-sensitive SV40-transformed......The simian virus 40 (SV40) large T antigen is a multifunctional protein involved in SV40 cell transformation and lytic virus infection. Some of its activities are regulated by interaction with cellular proteins and/or by phosphorylation of T antigen by various protein kinases. In this study, we...... show that immuno-purified T antigen from SV40-transformed cells and from baculovirus-infected insect cells is tightly associated with a protein kinase that phosphorylates T antigen in vitro. In the presence of heparin or a peptide resembling a protein kinase CK2 recognition site, the phosphorylation...

  20. On the computation of molecular surface correlations for protein docking using fourier techniques.

    Science.gov (United States)

    Sakk, Eric

    2007-08-01

    The computation of surface correlations using a variety of molecular models has been applied to the unbound protein docking problem. Because of the computational complexity involved in examining all possible molecular orientations, the fast Fourier transform (FFT) (a fast numerical implementation of the discrete Fourier transform (DFT)) is generally applied to minimize the number of calculations. This approach is rooted in the convolution theorem which allows one to inverse transform the product of two DFTs in order to perform the correlation calculation. However, such a DFT calculation results in a cyclic or "circular" correlation which, in general, does not lead to the same result as the linear correlation desired for the docking problem. In this work, we provide computational bounds for constructing molecular models used in the molecular surface correlation problem. The derived bounds are then shown to be consistent with various intuitive guidelines previously reported in the protein docking literature. Finally, these bounds are applied to different molecular models in order to investigate their effect on the correlation calculation.

  1. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  2. GPCR-Bench: A Benchmarking Set and Practitioners' Guide for G Protein-Coupled Receptor Docking.

    Science.gov (United States)

    Weiss, Dahlia R; Bortolato, Andrea; Tehan, Benjamin; Mason, Jonathan S

    2016-04-25

    Virtual screening is routinely used to discover new ligands and in particular new ligand chemotypes for G protein-coupled receptors (GPCRs). To prepare for a virtual screen, we often tailor a docking protocol that will enable us to select the best candidates for further screening. To aid this, we created GPCR-Bench, a publically available docking benchmarking set in the spirit of the DUD and DUD-E reference data sets for validation studies, containing 25 nonredundant high-resolution GPCR costructures with an accompanying set of diverse ligands and computational decoy molecules for each target. Benchmarking sets are often used to compare docking protocols; however, it is important to evaluate docking methods not by "retrospective" hit rates but by the actual likelihood that they will produce novel prospective hits. Therefore, docking protocols must not only rank active molecules highly but also produce good poses that a chemist will select for purchase and screening. Currently, no simple objective machine-scriptable function exists that can do this; instead, docking hit lists must be subjectively examined in a consistent way to compare between docking methods. We present here a case study highlighting considerations we feel are of importance when evaluating a method, intended to be useful as a practitioners' guide.

  3. Protein tyrosine kinase and mitogen-activated protein kinase signalling pathways contribute to differences in heterophil-mediated innate immune responsiveness between two lines of broilers

    Science.gov (United States)

    Protein tyrosine phosphorylation mediates signal transduction of cellular processes, with protein tyrosine kinases (PTKs) regulating virtually all signaling events. The mitogen-activated protein kinase (MAPK) super-family consists of three conserved pathways that convert receptor activation into ce...

  4. The focal adhesion-associated proteins DOCK5 and GIT2 comprise a rheostat in control of epithelial invasion

    DEFF Research Database (Denmark)

    Frank, Scott R; Köllmann, C P; van Lidth de Jeude, J F

    2017-01-01

    DOCK proteins are guanine nucleotide exchange factors for Rac and Cdc42 GTPases. DOCK1 is the founding member of the family and acts downstream of integrins via the canonical Crk-p130Cas complex to activate Rac GTPases in numerous contexts. In contrast, DOCK5, which possesses the greatest similar......:10.1038/onc.2016.345....

  5. SH2-dependent autophosphorylation within the Tec family kinase Itk.

    Science.gov (United States)

    Joseph, Raji E; Severin, Andrew; Min, Lie; Fulton, D Bruce; Andreotti, Amy H

    2009-08-07

    The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.

  6. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    Science.gov (United States)

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  7. New generation of docking programs: Supercomputer validation of force fields and quantum-chemical methods for docking.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Katkova, Ekaterina V; Ilin, Ivan S; Sulimov, Vladimir B

    2017-11-01

    Discovery of new inhibitors of the protein associated with a given disease is the initial and most important stage of the whole process of the rational development of new pharmaceutical substances. New inhibitors block the active site of the target protein and the disease is cured. Computer-aided molecular modeling can considerably increase effectiveness of new inhibitors development. Reliable predictions of the target protein inhibition by a small molecule, ligand, is defined by the accuracy of docking programs. Such programs position a ligand in the target protein and estimate the protein-ligand binding energy. Positioning accuracy of modern docking programs is satisfactory. However, the accuracy of binding energy calculations is too low to predict good inhibitors. For effective application of docking programs to new inhibitors development the accuracy of binding energy calculations should be higher than 1kcal/mol. Reasons of limited accuracy of modern docking programs are discussed. One of the most important aspects limiting this accuracy is imperfection of protein-ligand energy calculations. Results of supercomputer validation of several force fields and quantum-chemical methods for docking are presented. The validation was performed by quasi-docking as follows. First, the low energy minima spectra of 16 protein-ligand complexes were found by exhaustive minima search in the MMFF94 force field. Second, energies of the lowest 8192 minima are recalculated with CHARMM force field and PM6-D3H4X and PM7 quantum-chemical methods for each complex. The analysis of minima energies reveals the docking positioning accuracies of the PM7 and PM6-D3H4X quantum-chemical methods and the CHARMM force field are close to one another and they are better than the positioning accuracy of the MMFF94 force field. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cocoa Procyanidins Suppress Transformation by Inhibiting Mitogen-activated Protein Kinase Kinase*S⃞

    Science.gov (United States)

    Kang, Nam Joo; Lee, Ki Won; Lee, Dong Eun; Rogozin, Evgeny A.; Bode, Ann M.; Lee, Hyong Joo; Dong, Zigang

    2008-01-01

    Cocoa was shown to inhibit chemically induced carcinogenesis in animals and exert antioxidant activity in humans. However, the molecular mechanisms of the chemopreventive potential of cocoa and its active ingredient(s) remain unknown. Here we report that cocoa procyanidins inhibit neoplastic cell transformation by suppressing the kinase activity of mitogen-activated protein kinase kinase (MEK). A cocoa procyanidin fraction (CPF) and procyanidin B2 at 5 μg/ml and 40 μm, respectively, inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced neoplastic transformation of JB6 P+ mouse epidermal (JB6 P+) cells by 47 and 93%, respectively. The TPA-induced promoter activity and expression of cyclooxygenase-2, which is involved in tumor promotion and inflammation, were dose-dependently inhibited by CPF or procyanidin B2. The activation of activator protein-1 and nuclear factor-κB induced by TPA was also attenuated by CPF or procyanidin B2. The TPA-induced phosphorylation of MEK, extracellular signal-regulated kinase, and p90 ribosomal s6 kinase was suppressed by CPF or procyanidin B2. In vitro and ex vivo kinase assay data demonstrated that CPF or procyanidin B2 inhibited the kinase activity of MEK1 and directly bound with MEK1. CPF or procyanidin B2 suppressed JB6 P+ cell transformation induced by epidermal growth factor or H-Ras, both of which are known to be involved in MEK/ERK signal activation. In contrast, theobromine (up to 80 μm) had no effect on TPA-induced transformation, cyclooxygenase-2 expression, the transactivation of activator protein-1 or nuclear factor-κB, or MEK. Notably, procyanidin B2 exerted stronger inhibitory effects compared with PD098059 (a well known pharmacological inhibitor of MEK) on MEK1 activity and neoplastic cell transformation. PMID:18519570

  9. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  10. Semiconductor technology in protein kinase research and drug discovery: sensing a revolution.

    Science.gov (United States)

    Bhalla, Nikhil; Di Lorenzo, Mirella; Estrela, Pedro; Pula, Giordano

    2017-02-01

    Since the discovery of protein kinase activity in 1954, close to 600 kinases have been discovered that have crucial roles in cell physiology. In several pathological conditions, aberrant protein kinase activity leads to abnormal cell and tissue physiology. Therefore, protein kinase inhibitors are investigated as potential treatments for several diseases, including dementia, diabetes, cancer and autoimmune and cardiovascular disease. Modern semiconductor technology has recently been applied to accelerate the discovery of novel protein kinase inhibitors that could become the standard-of-care drugs of tomorrow. Here, we describe current techniques and novel applications of semiconductor technologies in protein kinase inhibitor drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dimerization of the docking/adaptor protein HEF1 via a carboxy-terminal helix-loop-helix domain.

    Science.gov (United States)

    Law, S F; Zhang, Y Z; Fashena, S J; Toby, G; Estojak, J; Golemis, E A

    1999-10-10

    HEF1, p130(Cas), and Efs define a family of multidomain docking proteins which plays a central coordinating role for tyrosine-kinase-based signaling related to cell adhesion. HEF1 function has been specifically implicated in signaling pathways important for cell adhesion and differentiation in lymphoid and epithelial cells. While the SH3 domains and SH2-binding site domains (substrate domains) of HEF1 family proteins are well characterized and binding partners known, to date the highly conserved carboxy-terminal domains of the three proteins have lacked functional definition. In this study, we have determined that the carboxy-terminal domain of HEF1 contains a divergent helix-loop-helix (HLH) motif. This motif mediates HEF1 homodimerization and HEF1 heterodimerization with a recognition specificity similar to that of the transcriptional regulatory HLH proteins Id2, E12, and E47. We had previously demonstrated that the HEF1 carboxy-terminus expressed as a separate domain in yeast reprograms cell division patterns, inducing constitutive pseudohyphal growth. Here we show that pseudohyphal induction by HEF1 requires an intact HLH, further supporting the idea that this motif has an effector activity for HEF1, and implying that HEF1 pseudohyphal activity derives in part from interactions with yeast helix-loop-helix proteins. These combined results provide initial insight into the mode of function of the HEF1 carboxy-terminal domain and suggest that the HEF1 protein may interact with cellular proteins which control differentiation. Copyright 1999 Academic Press.

  12. Identification of the protein kinase C phosphorylation site in neuromodulin

    International Nuclear Information System (INIS)

    Apel, E.D.; Byford, M.F.; Au, D.; Walsh, K.A.; Storm, D.R.

    1990-01-01

    Neuromodulin (P-57, GAP-43, B-50, F-1) is a neurospecific calmodulin binding protein that is phosphorylated by protein kinase C. Phosphorylation by protein kinase C has been shown to abolish the affinity of neuromodulin for calmodulin and the authors have proposed that the concentration of free CaM in neurons may be regulated by phosphorylation and dephosphorylation of neuromodulin. The purpose of this study was to identify the protein kinase C phosphorylation site(s) in neuromodulin using recombinant neuromodulin as a substrate. Toward this end, it was demonstrated that recombinant neuromodulin purified from Escherichia coli and bovine neuromodulin were phosphorylated with similar K m values and stoichiometries and that protein kinase C mediated phosphorylation of both proteins abolished binding to calmodulin-Sepharose. Recombinant neuromodulin was phosphorylated by using protein kinase C and [γ- 32 P]ATP and digested with trypsin, and the resulting peptides were separated by HPLC. Only one 32 P-labeled tryptic peptide was generated from phosphorylated neuromodulin. They conclude that serine-41 is the protein kinase C phosphorylation site of neuromodulin and that phosphorylation of this amino acid residue blocks binding of calmoculin to neuromodulin. The proximity of serine-41 to the calmodulin binding domain in neuromodulin very likely explains the effect of phosphorylation on the affinity of neuromodulin for calmodulin

  13. SOS2-LIKE PROTEIN KINASE5, an SNF1-RELATED PROTEIN KINASE3-Type Protein Kinase, Is Important for Abscisic Acid Responses in Arabidopsis through Phosphorylation of ABSCISIC ACID-INSENSITIVE51[OPEN

    Science.gov (United States)

    Zhou, Xiaona; Hao, Hongmei; Zhang, Yuguo; Bai, Yili; Zhu, Wenbo; Qin, Yunxia; Yuan, Feifei; Zhao, Feiyi; Wang, Mengyao; Hu, Jingjiang; Xu, Hong; Guo, Aiguang; Zhao, Huixian; Zhao, Yang; Cao, Cuiling; Yang, Yongqing; Schumaker, Karen S.; Guo, Yan; Xie, Chang Gen

    2015-01-01

    Abscisic acid (ABA) plays an essential role in seed germination. In this study, we demonstrate that one SNF1-RELATED PROTEIN KINASE3-type protein kinase, SOS2-LIKE PROTEIN KINASE5 (PKS5), is involved in ABA signal transduction via the phosphorylation of an interacting protein, ABSCISIC ACID-INSENSITIVE5 (ABI5). We found that pks5-3 and pks5-4, two previously identified PKS5 superactive kinase mutants with point mutations in the PKS5 FISL/NAF (a conserved peptide that is necessary for interaction with SOS3 or SOS3-LIKE CALCIUM BINDING PROTEINs) motif and the kinase domain, respectively, are hypersensitive to ABA during seed germination. PKS5 was found to interact with ABI5 in yeast (Saccharomyces cerevisiae), and this interaction was further confirmed in planta using bimolecular fluorescence complementation. Genetic studies revealed that ABI5 is epistatic to PKS5. PKS5 phosphorylates a serine (Ser) residue at position 42 in ABI5 and regulates ABA-responsive gene expression. This phosphorylation was induced by ABA in vivo and transactivated ABI5. Expression of ABI5, in which Ser-42 was mutated to alanine, could not fully rescue the ABA-insensitive phenotypes of the abi5-8 and pks5-4abi5-8 mutants. In contrast, mutating Ser-42 to aspartate rescued the ABA insensitivity of these mutants. These data demonstrate that PKS5-mediated phosphorylation of ABI5 at Ser-42 is critical for the ABA regulation of seed germination and gene expression in Arabidopsis (Arabidopsis thaliana). PMID:25858916

  14. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified...... LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric...... kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co...

  15. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Science.gov (United States)

    Barradas-Bautista, Didier; Fernández-Recio, Juan

    2017-01-01

    Next-generation sequencing (NGS) technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  16. Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations.

    Directory of Open Access Journals (Sweden)

    Didier Barradas-Bautista

    Full Text Available Next-generation sequencing (NGS technologies are providing genomic information for an increasing number of healthy individuals and patient populations. In the context of the large amount of generated genomic data that is being generated, understanding the effect of disease-related mutations at molecular level can contribute to close the gap between genotype and phenotype and thus improve prevention, diagnosis or treatment of a pathological condition. In order to fully characterize the effect of a pathological mutation and have useful information for prediction purposes, it is important first to identify whether the mutation is located at a protein-binding interface, and second to understand the effect on the binding affinity of the affected interaction/s. Computational methods, such as protein docking are currently used to complement experimental efforts and could help to build the human structural interactome. Here we have extended the original pyDockNIP method to predict the location of disease-associated nsSNPs at protein-protein interfaces, when there is no available structure for the protein-protein complex. We have applied this approach to the pathological interaction networks of six diseases with low structural data on PPIs. This approach can almost double the number of nsSNPs that can be characterized and identify edgetic effects in many nsSNPs that were previously unknown. This can help to annotate and interpret genomic data from large-scale population studies, and to achieve a better understanding of disease at molecular level.

  17. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta.

    Science.gov (United States)

    Li, Haiou; Lu, Liyao; Chen, Rong; Quan, Lijun; Xia, Xiaoyan; Lü, Qiang

    2014-01-01

    Structural information related to protein-peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein-peptide interactions explored by experimental ways. Protein-peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein-peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein-peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

  18. PaFlexPepDock: parallel ab-initio docking of peptides onto their receptors with full flexibility based on Rosetta.

    Directory of Open Access Journals (Sweden)

    Haiou Li

    Full Text Available Structural information related to protein-peptide complexes can be very useful for novel drug discovery and design. The computational docking of protein and peptide can supplement the structural information available on protein-peptide interactions explored by experimental ways. Protein-peptide docking of this paper can be described as three processes that occur in parallel: ab-initio peptide folding, peptide docking with its receptor, and refinement of some flexible areas of the receptor as the peptide is approaching. Several existing methods have been used to sample the degrees of freedom in the three processes, which are usually triggered in an organized sequential scheme. In this paper, we proposed a parallel approach that combines all the three processes during the docking of a folding peptide with a flexible receptor. This approach mimics the actual protein-peptide docking process in parallel way, and is expected to deliver better performance than sequential approaches. We used 22 unbound protein-peptide docking examples to evaluate our method. Our analysis of the results showed that the explicit refinement of the flexible areas of the receptor facilitated more accurate modeling of the interfaces of the complexes, while combining all of the moves in parallel helped the constructing of energy funnels for predictions.

  19. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    Science.gov (United States)

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.

  20. A python-based docking program utilizing a receptor bound ligand shape: PythDock.

    Science.gov (United States)

    Chung, Jae Yoon; Cho, Seung Joo; Hah, Jung-Mi

    2011-09-01

    PythDock is a heuristic docking program that uses Python programming language with a simple scoring function and a population based search engine. The scoring function considers electrostatic and dispersion/repulsion terms. The search engine utilizes a particle swarm optimization algorithm. A grid potential map is generated using the shape information of a bound ligand within the active site. Therefore, the searching area is more relevant to the ligand binding. To evaluate the docking performance of PythDock, two well-known docking programs (AutoDock and DOCK) were also used with the same data. The accuracy of docked results were measured by the difference of the ligand structure between x-ray structure, and docked pose, i.e., average root mean squared deviation values of the bound ligand were compared for fourteen protein-ligand complexes. Since the number of ligands' rotational flexibility is an important factor affecting the accuracy of a docking, the data set was chosen to have various degrees of flexibility. Although PythDock has a scoring function simpler than those of other programs (AutoDock and DOCK), our results showed that PythDock predicted more accurate poses than both AutoDock4.2 and DOCK6.2. This indicates that PythDock could be a useful tool to study ligand-receptor interactions and could also be beneficial in structure based drug design.

  1. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment

    KAUST Repository

    Lensink, Marc F.; Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen-You; Schneidman-Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez-Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan-Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie-Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaë l A.G.; Bates, Paul A.; Ben-Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Franç oise; Guerois, Raphaë l; Vangone, Anna; Rodrigues, Joã o P.G.L.M.; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung-Rae; Roy, Amit; Han, Xusi; Esquivel-Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero-Durana, Miguel; Jimé nez-Garcí a, Brian; Moal, Iain H.; Fé rnandez-Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey; Wodak, Shoshana J.

    2016-01-01

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. © 2016 Wiley Periodicals, Inc.

  2. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment

    KAUST Repository

    Lensink, Marc F.

    2016-04-28

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014. The targets included mostly homodimers, a few homotetramers, and two heterodimers, and comprised protein chains that could readily be modeled using templates from the Protein Data Bank. On average 24 CAPRI groups and 7 CASP groups submitted docking predictions for each target, and 12 CAPRI groups per target participated in the CAPRI scoring experiment. In total more than 9500 models were assessed against the 3D structures of the corresponding target complexes. Results show that the prediction of homodimer assemblies by homology modeling techniques and docking calculations is quite successful for targets featuring large enough subunit interfaces to represent stable associations. Targets with ambiguous or inaccurate oligomeric state assignments, often featuring crystal contact-sized interfaces, represented a confounding factor. For those, a much poorer prediction performance was achieved, while nonetheless often providing helpful clues on the correct oligomeric state of the protein. The prediction performance was very poor for genuine tetrameric targets, where the inaccuracy of the homology-built subunit models and the smaller pair-wise interfaces severely limited the ability to derive the correct assembly mode. Our analysis also shows that docking procedures tend to perform better than standard homology modeling techniques and that highly accurate models of the protein components are not always required to identify their association modes with acceptable accuracy. © 2016 Wiley Periodicals, Inc.

  3. Using Molecular Docking Analysis to Discovery Dregea sinensis Hemsl. Potential Mechanism of Anticancer, Antidepression, and Immunoregulation.

    Science.gov (United States)

    Liu, Xiujie; Shi, Yu; Deng, Yulin; Dai, Rongji

    2017-01-01

    Dregea sinensis Hemsl. plant of the genus Dregea volubilis (Asclepiadaceae), plays a vital role in anticancer, antidepression, and immunoregulation. Steroidal glycosides are the main constituents of this herb, which were significant biological active ingredients. The objective of this study is to recognize the mechanism of anticancer, antidepression, and immunoregulation of D. sinensis Hemsl. Seventy-two steroidal glycosides of D. sinensis Hemsl. were evaluated on the docking behavior of tumor-associated proteins (PI3K, Akt, mTOR), depression-related proteins (MAO-A, MAO-B) and immune-related proteins (tumor necrosis factor-α [TNF-α], tumor necrosis factor receptor 2 [TNFR2], interleukin-2Rα [IL-2Rα]) using Discovery Studio version 3.1 (Accelrys, San Diego, USA). The molecular docking analysis revealed that mostly steroidal glycosides of D. sinensis Hemsl. exhibited powerful interaction with the depression-related protein (MAO-A) and the immune-related proteins (TNFR2, IL-2Rα). Some ligands exhibited high binding energy for the tumor-associated proteins (PI3K, Akt, mTOR) and the immune-related protein (TNF-α), but MAO-B showed none interaction with the ligands. This study has paved better understanding of steroidal glycosides from D. sinensis Hemsl. as potential constituents to the prevention of associated cancer, depression and disorders of immunoregulation. The ligand database was consist of 72 steroidal glycosides from Dregea sinensis HemslSteroidal glycosides had the potential to dock with the tumor-associated proteins (PI3K, Akt, mTOR)Steroidal glycosides were bounded with MAO-A rather than MAO-B, accorded with the inhibitor selectivity of MAOs, can be considered as potent candidate inhibitors of MAO-A72 ligands got high interaction with TNFR2 and IL-2Rα, regard the steroidal glycoside as powerful candidate inhibitors of TNFR2 and IL-2Rα. Abbreviations used: PI3K: Phosphatidyl inositol 3-kinase; Akt: Protein kinase B; mTOR: Mammalian target of

  4. How protein kinases co-ordinate mitosis in animal cells.

    Science.gov (United States)

    Ma, Hoi Tang; Poon, Randy Y C

    2011-04-01

    Mitosis is associated with profound changes in cell physiology and a spectacular surge in protein phosphorylation. To accomplish these, a remarkably large portion of the kinome is involved in the process. In the present review, we will focus on classic mitotic kinases, such as cyclin-dependent kinases, Polo-like kinases and Aurora kinases, as well as more recently characterized players such as NIMA (never in mitosis in Aspergillus nidulans)-related kinases, Greatwall and Haspin. Together, these kinases co-ordinate the proper timing and fidelity of processes including centrosomal functions, spindle assembly and microtubule-kinetochore attachment, as well as sister chromatid separation and cytokinesis. A recurrent theme of the mitotic kinase network is the prevalence of elaborated feedback loops that ensure bistable conditions. Sequential phosphorylation and priming phosphorylation on substrates are also frequently employed. Another important concept is the role of scaffolds, such as centrosomes for protein kinases during mitosis. Elucidating the entire repertoire of mitotic kinases, their functions, regulation and interactions is critical for our understanding of normal cell growth and in diseases such as cancers.

  5. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  6. Development of diacyltetrol lipids as activators for the C1 domain of protein kinase C.

    Science.gov (United States)

    Mamidi, Narsimha; Gorai, Sukhamoy; Mukherjee, Rakesh; Manna, Debasis

    2012-04-01

    The protein kinase C (PKC) family of serine/threonine kinases is an attractive drug target for the treatment of cancer and other diseases. Diacylglycerol (DAG), phorbol esters and others act as ligands for the C1 domain of PKC isoforms. Inspection of the crystal structure of the PKCδ C1b subdomain in complex with phorbol-13-O-acetate shows that one carbonyl group and two hydroxyl groups play pivotal roles in recognition of the C1 domain. To understand the importance of two hydroxyl groups of phorbol esters in PKC binding and to develop effective PKC activators, we synthesized DAG like diacyltetrols (DATs) and studied binding affinities with C1b subdomains of PKCδ and PKCθ. DATs, with the stereochemistry of natural DAGs at the sn-2 position, were synthesized from (+)-diethyl L-tartrate in four to seven steps as single isomers. The calculated EC(50) values for the short and long chain DATs varied in the range of 3-6 μM. Furthermore, the fluorescence anisotropy values of the proteins were increased in the presence of DATs in a similar manner to that of DAGs. Molecular docking of DATs (1b-4b) with PKCδ C1b showed that the DATs form hydrogen bonds with the polar residues and backbone of the protein, at the same binding site, as that of DAG and phorbol esters. Our findings reveal that DATs represent an attractive group of C1 domain ligands that can be used as research tools or further structurally modified for potential drug development.

  7. Contraction-associated translocation of protein kinase C in rat skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Cleland, P J; Rattigan, S

    1987-01-01

    Electrical stimulation of the sciatic nerve of the anaesthetized rat in vivo led to a time-dependent translocation of protein kinase C from the muscle cytosol to the particulate fraction. Maximum activity of protein kinase C in the particulate fraction occurred after 2 min of intermittent short...... tetanic contractions of the gastrocnemius-plantaris-soleus muscle group and coincided with the loss of activity from the cytosol. Translocation of protein kinase C may imply a role for this kinase in contraction-initiated changes in muscle metabolism....

  8. SH2 dependent autophosphorylation within the Tec family kinase Itk

    Science.gov (United States)

    Joseph, Raji E.; Severin, Andrew; Min, Lie; Fulton, D. Bruce; Andreotti, Amy H.

    2009-01-01

    The Tec family kinase, Itk, undergoes an in cis autophosphorylation on Y180 within its SH3 domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening SH2 domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk, a Tec family kinase linked to the B cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA causing mutations might impair Btk phosphorylation. PMID:19523959

  9. Protein Kinase C-{delta} mediates down-regulation of heterogeneous nuclear ribonucleoprotein K protein: involvement in apoptosis induction

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng-Hou [NO.3 People' s Hospital affiliated to Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 201900 (China); The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Wu, Ying-Li [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Zhao, Meng [Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China); Liu, Chuan-Xu; Wang, Li-Shun [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Chen, Guo-Qiang, E-mail: chengq@shsmu.edu.cn [The Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao-Tong University School of Medicine (SJTU-SM), Shanghai 200025 (China); Institute of Health Science, SJTU-SM/Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai (China)

    2009-11-15

    We reported previously that NSC606985, a camptothecin analogue, induces apoptosis of acute myeloid leukemia (AML) cells through proteolytic activation of protein kinase C delta ({Delta}PKC-{delta}). By subcellular proteome analysis, heterogeneous nuclear ribonucleoprotein K (hnRNP K) was identified as being significantly down-regulated in NSC606985-treated leukemic NB4 cells. HnRNP K, a docking protein for DNA, RNA, and transcriptional or translational molecules, is implicated in a host of processes involving the regulation of gene expression. However, the molecular mechanisms of hnRNP K reduction and its roles during apoptosis are still not understood. In the present study, we found that, following the appearance of the {Delta}PKC-{delta}, hnRNP K protein was significantly down-regulated in NSC606985, doxorubicin, arsenic trioxide and ultraviolet-induced apoptosis. We further provided evidence that {Delta}PKC-{delta} mediated the down-regulation of hnRNP K protein during apoptosis: PKC-{delta} inhibitor could rescue the reduction of hnRNP K; hnRNP K failed to be decreased in PKC-{delta}-deficient apoptotic KG1a cells; conditional induction of {Delta}PKC-{delta} in U937T cells directly down-regulated hnRNP K protein. Moreover, the proteasome inhibitor also inhibited the down-regulation of hnRNP K protein by apoptosis inducer and the conditional expression of {Delta}PKC-{delta}. More intriguingly, the suppression of hnRNP K with siRNA transfection significantly induced apoptosis. To our knowledge, this is the first demonstration that proteolytically activated PKC-{delta} down-regulates hnRNP K protein in a proteasome-dependent manner, which plays an important role in apoptosis induction.

  10. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    Science.gov (United States)

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  11. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    OpenAIRE

    Jette, Nicholas; Lees-Miller, Susan P.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemi...

  12. [Effect of inhibitors serine/threonine protein kinases and protein phosphatases on mitosis progression of synchronized tobacco by-2 cells].

    Science.gov (United States)

    Sheremet, Ia A; Emets, A I; Azmi, A; Vissenberg, K; Verbelen, J-P; Blium, Ia B

    2012-01-01

    In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.

  13. Mitogen-activated protein kinases mediate Mycobacterium ...

    Indian Academy of Sciences (India)

    2012-01-19

    Jan 19, 2012 ... CD44, an adhesion molecule, has been reported to be a binding site for ... receptors in mediating mitogen-activated protein kinase activation. ... surface expression and tumour necrosis factor-alpha levels, ... Abbreviations used: Abs, antibodies; ANOVA, analysis of variance; AP-1, activator protein -1; BCG, ...

  14. Protein kinase C, focal adhesions and the regulation of cell migration

    DEFF Research Database (Denmark)

    Fogh, Betina S; Multhaupt, Hinke A B; Couchman, John Robert

    2014-01-01

    in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles...... and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components...

  15. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  16. Interaction of the minocycline with extracelluar protein and intracellular protein by multi-spectral techniques and molecular docking

    Science.gov (United States)

    Fang, Qing; Wang, Yirun; Hu, Taoying; Liu, Ying

    2017-02-01

    The interaction of minocyeline (MNC) with extracelluar protein (lysozyme, LYSO) or intracellular protein (bovine hemoglobin, BHb) was investigated using multi-spectral techniques and molecular docking in vitro. Fluorescence studies suggested that MNC quenched LYSO/BHb fluorescence in a static mode with binding constants of 2.01 and 0.26 × 104 L•mol-1 at 298 K, respectively. The LYZO-MNC system was more easily influenced by temperature (298 and 310 K) than the BHb-MNC system. The thermodynamic parameters demonstrated that hydrogen bonds and van der Waals forces played the major role in the binding process. Based on the Förster theory of nonradiative energy transfer, the binding distances between MNC and the inner tryptophan residues of LYSO and BHb were calculated to be 4.34 and 3.49 nm, respectively. Furthermore, circular dichroism spectra (CD), Fourier transforms infrared (FTIR), UV-vis, and three-dimensional fluorescence spectra results indicated the secondary structures of LYSO and BHb were partially destroyed by MNC with the α-helix percentage of LYZO-MNC increased (17.8-28.6%) while that of BHb-MNC was decreased (41.6-39.6%). UV-vis spectral results showed these binding interactions could cause conformational and some micro-environmental changes of LYSO and BHb. In accordance with the results of molecular docking, In LYZO-MNC system, MNC was mainly bound in the active site hinge region where Trp-62 and Trp-63 are located, and in MNC-BHb system, MNC was close to the subunit α 1 of BHb, molecular docking analysis supported the thermodynamic results well. The work contributes to clarify the mechanism of MNC with two proteins at molecular level.

  17. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin; Ntui, Valentine Otang; Zhang, Nianshu; Xiong, Liming

    2015-01-01

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  18. Arabidopsis Yak1 protein (AtYak1) is a dual specificity protein kinase

    KAUST Repository

    Kim, Dongjin

    2015-10-09

    Yak1 is a member of dual-specificity Tyr phosphorylation-regulated kinases (DYRKs) that are evolutionarily conserved. The downstream targets of Yak1 and their functions are largely unknown. Here, a homologous protein AtYAK1 was identified in Arabidopsis thaliana and the phosphoprotein profiles of the wild type and an atyak1 mutant were compared on two-dimensional gel following Pro-Q Diamond phosphoprotein gel staining. Annexin1, Annexin2 and RBD were phosphorylated at serine/ threonine residues by the AtYak1 kinase. Annexin1, Annexin2 and Annexin4 were also phosphorylated at tyrosine residues. Our study demonstrated that AtYak1 is a dual specificity protein kinase in Arabidopsis that may regulate the phosphorylation status of the annexin family proteins.

  19. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Directory of Open Access Journals (Sweden)

    Neil Arvin Bretaña

    Full Text Available Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase

  20. Identifying protein phosphorylation sites with kinase substrate specificity on human viruses.

    Science.gov (United States)

    Bretaña, Neil Arvin; Lu, Cheng-Tsung; Chiang, Chiu-Yun; Su, Min-Gang; Huang, Kai-Yao; Lee, Tzong-Yi; Weng, Shun-Long

    2012-01-01

    Viruses infect humans and progress inside the body leading to various diseases and complications. The phosphorylation of viral proteins catalyzed by host kinases plays crucial regulatory roles in enhancing replication and inhibition of normal host-cell functions. Due to its biological importance, there is a desire to identify the protein phosphorylation sites on human viruses. However, the use of mass spectrometry-based experiments is proven to be expensive and labor-intensive. Furthermore, previous studies which have identified phosphorylation sites in human viruses do not include the investigation of the responsible kinases. Thus, we are motivated to propose a new method to identify protein phosphorylation sites with its kinase substrate specificity on human viruses. The experimentally verified phosphorylation data were extracted from virPTM--a database containing 301 experimentally verified phosphorylation data on 104 human kinase-phosphorylated virus proteins. In an attempt to investigate kinase substrate specificities in viral protein phosphorylation sites, maximal dependence decomposition (MDD) is employed to cluster a large set of phosphorylation data into subgroups containing significantly conserved motifs. The experimental human phosphorylation sites are collected from Phospho.ELM, grouped according to its kinase annotation, and compared with the virus MDD clusters. This investigation identifies human kinases such as CK2, PKB, CDK, and MAPK as potential kinases for catalyzing virus protein substrates as confirmed by published literature. Profile hidden Markov model is then applied to learn a predictive model for each subgroup. A five-fold cross validation evaluation on the MDD-clustered HMMs yields an average accuracy of 84.93% for Serine, and 78.05% for Threonine. Furthermore, an independent testing data collected from UniProtKB and Phospho.ELM is used to make a comparison of predictive performance on three popular kinase-specific phosphorylation site

  1. Protein kinase C mediates platelet secretion and thrombus formation through protein kinase D2.

    Science.gov (United States)

    Konopatskaya, Olga; Matthews, Sharon A; Harper, Matthew T; Gilio, Karen; Cosemans, Judith M E M; Williams, Christopher M; Navarro, Maria N; Carter, Deborah A; Heemskerk, Johan W M; Leitges, Michael; Cantrell, Doreen; Poole, Alastair W

    2011-07-14

    Platelets are highly specialized blood cells critically involved in hemostasis and thrombosis. Members of the protein kinase C (PKC) family have established roles in regulating platelet function and thrombosis, but the molecular mechanisms are not clearly understood. In particular, the conventional PKC isoform, PKCα, is a major regulator of platelet granule secretion, but the molecular pathway from PKCα to secretion is not defined. Protein kinase D (PKD) is a family of 3 kinases activated by PKC, which may represent a step in the PKC signaling pathway to secretion. In the present study, we show that PKD2 is the sole PKD member regulated downstream of PKC in platelets, and that the conventional, but not novel, PKC isoforms provide the upstream signal. Platelets from a gene knock-in mouse in which 2 key phosphorylation sites in PKD2 have been mutated (Ser707Ala/Ser711Ala) show a significant reduction in agonist-induced dense granule secretion, but not in α-granule secretion. This deficiency in dense granule release was responsible for a reduced platelet aggregation and a marked reduction in thrombus formation. Our results show that in the molecular pathway to secretion, PKD2 is a key component of the PKC-mediated pathway to platelet activation and thrombus formation through its selective regulation of dense granule secretion.

  2. SKATE: a docking program that decouples systematic sampling from scoring.

    Science.gov (United States)

    Feng, Jianwen A; Marshall, Garland R

    2010-11-15

    SKATE is a docking prototype that decouples systematic sampling from scoring. This novel approach removes any interdependence between sampling and scoring functions to achieve better sampling and, thus, improves docking accuracy. SKATE systematically samples a ligand's conformational, rotational and translational degrees of freedom, as constrained by a receptor pocket, to find sterically allowed poses. Efficient systematic sampling is achieved by pruning the combinatorial tree using aggregate assembly, discriminant analysis, adaptive sampling, radial sampling, and clustering. Because systematic sampling is decoupled from scoring, the poses generated by SKATE can be ranked by any published, or in-house, scoring function. To test the performance of SKATE, ligands from the Asetex/CDCC set, the Surflex set, and the Vertex set, a total of 266 complexes, were redocked to their respective receptors. The results show that SKATE was able to sample poses within 2 A RMSD of the native structure for 98, 95, and 98% of the cases in the Astex/CDCC, Surflex, and Vertex sets, respectively. Cross-docking accuracy of SKATE was also assessed by docking 10 ligands to thymidine kinase and 73 ligands to cyclin-dependent kinase. 2010 Wiley Periodicals, Inc.

  3. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    Science.gov (United States)

    Almutairi, Maha S.; Hegazy, Gehan H.; Haiba, Mogedda E.; Ali, Hamed I.; Khalifa, Nagy M.; Soliman, Abd El-mohsen M.

    2014-01-01

    Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl) amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2) have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src) and platelet-derived growth factor receptor, PDGFR (c-Kit). The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src). PMID:25490139

  4. Asymmetric expression of protein kinase CK2 subunits in human kidney tumors

    DEFF Research Database (Denmark)

    Stalter, G; Siemer, S; Becht, E

    1994-01-01

    of protein kinase CK2 alpha in tumors/normal tissue (T/N) was 1.58 and that of the protein kinase CK2 beta (T/N) was 2.65. The data suggest that the generally described increase in protein kinase CK2 activity in tumor cells may to some extent result from a deregulation in subunit biosynthesis or degradation...

  5. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine

  6. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  7. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    Science.gov (United States)

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  8. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein.

    Science.gov (United States)

    Garrity, P A; Rao, Y; Salecker, I; McGlade, J; Pawson, T; Zipursky, S L

    1996-05-31

    Mutations in the Drosophila gene dreadlocks (dock) disrupt photoreceptor cell (R cell) axon guidance and targeting. Genetic mosaic analysis and cell-type-specific expression of dock transgenes demonstrate dock is required in R cells for proper innervation. Dock protein contains one SH2 and three SH3 domains, implicating it in tyrosine kinase signaling, and is highly related to the human proto-oncogene Nck. Dock expression is detected in R cell growth cones in the target region. We propose Dock transmits signals in the growth cone in response to guidance and targeting cues. These findings provide an important step for dissection of signaling pathways regulating growth cone motility.

  9. Detection of protein kinase activity by renaturation in sodium dodecyl sulfate-polyacrylamide gels

    International Nuclear Information System (INIS)

    Anostario, M. Jr.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    The authors have developed a procedure for identifying protein kinase activity in protein samples following electrophoresis on SDS-polyacrylamide gels. Proteins are allowed to renature directly in the gel by removal of detergent. The gel is then incubated with [γ- 32 P]ATP to allow renatured protein kinases to autophosphorylate or to phosphorylate various substrates which can be incorporated into the gel. The positions of the radiolabeled proteins can then be detected by autoradiography. With this technique, using purified catalytic subunit of cAMP-dependent protein kinase, enzyme concentrations as low as 0.01 μg can be detected on gels containing 1.0 mg/ml casein. The procedure is also applicable for the determination of active subunits of multisubunit protein kinases. For example, when the two subunits of casein kinase II are separated by SDS-polyacrylamide gel electrophoresis and allowed to renature, only the larger α subunit shows activity. This procedure can also be used to detect and distinguish kinases present in heterogeneous mixtures. Starting with a particulate fraction from LSTRA, a murine T cell lymphoma, several distinct enzymes were detected, including a 30,000 Dalton protein with protein-tyrosine kinase activity. This same enzyme has also been detected in T lymphocytes and other T lymphoid cell lines

  10. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling : A CASP-CAPRI experiment

    NARCIS (Netherlands)

    Lensink, Marc F.; Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen You; Schneidman-Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez-Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Rie Lee, Gyu; Seok, Chaok; Qin, Sanbo; Zhou, Huan Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A G; Bates, Paul A.; Ben-Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Garcia Lopes Maia Rodrigues, João; van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S J; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M J J; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung Rae; Roy, Amit; Han, Xusi; Esquivel-Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero-Durana, Miguel; Jiménez-García, Brian; Moal, Iain H.; Férnandez-Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey; Wodak, Shoshana J.

    2016-01-01

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014.

  11. Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: A CASP-CAPRI experiment

    NARCIS (Netherlands)

    Lensink, Marc F.; Velankar, Sameer; Kryshtafovych, Andriy; Huang, Shen You; Schneidman-Duhovny, Dina; Sali, Andrej; Segura, Joan; Fernandez-Fuentes, Narcis; Viswanath, Shruthi; Elber, Ron; Grudinin, Sergei; Popov, Petr; Neveu, Emilie; Lee, Hasup; Baek, Minkyung; Park, Sangwoo; Heo, Lim; Lee, Gyu Rie; Seok, Chaok; Qin, Sanbo; Zhou, Huan Xiang; Ritchie, David W.; Maigret, Bernard; Devignes, Marie Dominique; Ghoorah, Anisah; Torchala, Mieczyslaw; Chaleil, Raphaël A.G.; Bates, Paul A.; Ben-Zeev, Efrat; Eisenstein, Miriam; Negi, Surendra S.; Weng, Zhiping; Vreven, Thom; Pierce, Brian G.; Borrman, Tyler M.; Yu, Jinchao; Ochsenbein, Françoise; Guerois, Raphaël; Vangone, Anna; Rodrigues, João P.G.L.M.; Van Zundert, Gydo; Nellen, Mehdi; Xue, Li; Karaca, Ezgi; Melquiond, Adrien S.J.; Visscher, Koen; Kastritis, Panagiotis L.; Bonvin, Alexandre M.J.J.; Xu, Xianjin; Qiu, Liming; Yan, Chengfei; Li, Jilong; Ma, Zhiwei; Cheng, Jianlin; Zou, Xiaoqin; Shen, Yang; Peterson, Lenna X.; Kim, Hyung Rae; Roy, Amit; Han, Xusi; Esquivel-Rodriguez, Juan; Kihara, Daisuke; Yu, Xiaofeng; Bruce, Neil J.; Fuller, Jonathan C.; Wade, Rebecca C.; Anishchenko, Ivan; Kundrotas, Petras J.; Vakser, Ilya A.; Imai, Kenichiro; Yamada, Kazunori; Oda, Toshiyuki; Nakamura, Tsukasa; Tomii, Kentaro; Pallara, Chiara; Romero-Durana, Miguel; Jiménez-García, Brian; Moal, Iain H.; Férnandez-Recio, Juan; Joung, Jong Young; Kim, Jong Yun; Joo, Keehyoung; Lee, Jooyoung; Kozakov, Dima; Vajda, Sandor; Mottarella, Scott; Hall, David R.; Beglov, Dmitri; Mamonov, Artem; Xia, Bing; Bohnuud, Tanggis; Del Carpio, Carlos A.; Ichiishi, Eichiro; Marze, Nicholas; Kuroda, Daisuke; Roy Burman, Shourya S.; Gray, Jeffrey J.; Chermak, Edrisse; Cavallo, Luigi; Oliva, Romina; Tovchigrechko, Andrey; Wodak, Shoshana J.

    2016-01-01

    We present the results for CAPRI Round 30, the first joint CASP-CAPRI experiment, which brought together experts from the protein structure prediction and protein-protein docking communities. The Round comprised 25 targets from amongst those submitted for the CASP11 prediction experiment of 2014.

  12. Regulatory crosstalk by protein kinases on CFTR trafficking and activity

    Science.gov (United States)

    Farinha, Carlos Miguel; Swiatecka-Urban, Agnieszka; Brautigan, David; Jordan, Peter

    2016-01-01

    Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a member of the ATP binding cassette (ABC) transporter superfamily that functions as a cAMP-activated chloride ion channel in fluid-transporting epithelia. There is abundant evidence that CFTR activity (i.e. channel opening and closing) is regulated by protein kinases and phosphatases via phosphorylation and dephosphorylation. Here, we review recent evidence for the role of protein kinases in regulation of CFTR delivery to and retention in the plasma membrane. We review this information in a broader context of regulation of other transporters by protein kinases because the overall functional output of transporters involves the integrated control of both their number at the plasma membrane and their specific activity. While many details of the regulation of intracellular distribution of CFTR and other transporters remain to be elucidated, we hope that this review will motivate research providing new insights into how protein kinases control membrane transport to impact health and disease.

  13. Nuclear translocation of doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2

    Energy Technology Data Exchange (ETDEWEB)

    Nagamine, Tadashi; Nomada, Shohgo; Onouchi, Takashi; Kameshita, Isamu; Sueyoshi, Noriyuki, E-mail: sueyoshi@ag.kagawa-u.ac.jp

    2014-03-28

    Highlights: • Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase. • In living cells, DCLK was cleaved into two functional fragments. • zDCLK(kinase) was translocated into the nucleus by osmotic stresses. • Jun dimerization protein 2 (JDP2) was identified as zDCLK(kinase)-binding protein. • JDP2 was efficiently phosphorylated by zDCLK(kinase) only when histone was present. - Abstract: Doublecortin-like protein kinase (DCLK) is a microtubule-associated protein kinase predominantly expressed in brain. In a previous paper, we reported that zebrafish DCLK2 (zDCLK) was cleaved into two functional fragments; the N-terminal zDCLK(DC + SP) with microtubule-binding activity and the C-terminal zDCLK(kinase) with a Ser/Thr protein kinase activity. In this study, we demonstrated that zDCLK(kinase) was widely distributed in the cytoplasm and translocated into the nucleus when the cells were treated under hyperosmotic conditions with NaCl or mannitol. By two-hybrid screening using the C-terminal domain of DCLK, Jun dimerization protein 2 (JDP2), a nuclear transcription factor, was identified as zDCLK(kinase)-binding protein. Furthermore, JDP2 served as an efficient substrate for zDCLK(kinase) only when histone was present. These results suggest that the kinase fragment of DCLK is translocated into the nucleus upon hyperosmotic stresses and that the kinase efficiently phosphorylates JDP2, a possible target in the nucleus, with the aid of histones.

  14. ReFlexIn: a flexible receptor protein-ligand docking scheme evaluated on HIV-1 protease.

    Directory of Open Access Journals (Sweden)

    Simon Leis

    Full Text Available For many targets of pharmaceutical importance conformational changes of the receptor protein are relevant during the ligand binding process. A new docking approach, ReFlexIn (Receptor Flexibility by Interpolation, that combines receptor flexibility with the computationally efficient potential grid representation of receptor molecules has been evaluated on the retroviral HIV-1 (Human Immunodeficiency Virus 1 protease system. An approximate inclusion of receptor flexibility is achieved by using interpolation between grid representations of individual receptor conformations. For the retroviral protease the method was tested on an ensemble of protease structures crystallized in the presence of different ligands and on a set of structures obtained from morphing between the unbound and a ligand-bound protease structure. Docking was performed on ligands known to bind to the protease and several non-binders. For the binders the ReFlexIn method yielded in almost all cases ligand placements in similar or closer agreement with experiment than docking to any of the ensemble members without degrading the discrimination with respect to non-binders. The improved docking performance compared to docking to rigid receptors allows for systematic virtual screening applications at very small additional computational cost.

  15. Activation of protein kinase C inhibits synthesis and release of decidual prolactin

    International Nuclear Information System (INIS)

    Harman, I.; Costello, A.; Ganong, B.; Bell, R.M.; Handwerger, S.

    1986-01-01

    Activation of calcium-activated, phospholipid-dependent protein kinase C by diacylglycerol and phorbol esters has been shown to mediate release of hormones in many systems. To determine whether protein kinase C activation is also involved in the regulation of prolactin release from human decidual, the authors have examined the effects of various acylglycerols and phorbol esters on the synthesis and release of prolactin from cultured human decidual cells. sn-1,2-Dioctanolyglycerol (diC 8 ), which is known to stimulate protein kinase C in other systems, inhibited prolactin release in a dose-dependent manner with maximal inhibition of 53.1% at 100 μM. Diolein (100 μM), which also stimulates protein kinase C activity in some systems, inhibited prolactin release by 21.3%. Phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 4β-phorbol 12,13-dibutyrate, which activate protein kinase C in other systems, also inhibited the release of prolactin, which the protein kinase C inactivate 4α-phorbol-12,13-didecanoate was without effect. The inhibition of prolactin release was secondary to a decrease in prolactin synthesis. Although diC 8 and PMA inhibited the synthesis and release of prolactin, these agents had no effect on the synthesis or release of trichloroacetic acid-precipitable [ 35 S]methionine-labeled decidual proteins and did not cause the release of the cytosolic enzymes lactic dehydrogenase and alkaline phosphatase. DiC 8 and PMA stimulates the specific activity of protein kinase C in decidual tissue by 14.6 and 14.0-fold, respectively. The inhibition of the synthesis and release of prolactin by diC 8 and phorbol esters strongly implicates protein kinase C in the regulation of the production and release of prolactin from the decidua

  16. The Roles of Protein Kinases in Learning and Memory

    Science.gov (United States)

    Giese, Karl Peter; Mizuno, Keiko

    2013-01-01

    In the adult mammalian brain, more than 250 protein kinases are expressed, but only a few of these kinases are currently known to enable learning and memory. Based on this information it appears that learning and memory-related kinases either impact on synaptic transmission by altering ion channel properties or ion channel density, or regulate…

  17. SOCS proteins in regulation of receptor tyrosine kinase signaling

    DEFF Research Database (Denmark)

    Kazi, Julhash U.; Kabir, Nuzhat N.; Flores Morales, Amilcar

    2014-01-01

    Receptor tyrosine kinases (RTKs) are a family of cell surface receptors that play critical roles in signal transduction from extracellular stimuli. Many in this family of kinases are overexpressed or mutated in human malignancies and thus became an attractive drug target for cancer treatment....... The signaling mediated by RTKs must be tightly regulated by interacting proteins including protein-tyrosine phosphatases and ubiquitin ligases. The suppressors of cytokine signaling (SOCS) family proteins are well-known negative regulators of cytokine receptors signaling consisting of eight structurally similar...

  18. Interleukin-1 beta induced synthesis of protein kinase C-delta and protein kinase C-epsilon in EL4 thymoma cells: possible involvement of phosphatidylinositol 3-kinase.

    Science.gov (United States)

    Varley, C L; Royds, J A; Brown, B L; Dobson, P R

    2001-01-01

    We present evidence here that the proinflammatory cytokine, interleukin-1 beta (IL-1 beta) stimulates a significant increase in protein kinase C (PKC)-epsilon and PKC-delta protein levels and increases PKC-epsilon, but not PKC-delta, transcripts in EL4 thymoma cells. Incubation of EL4 cells with IL-1 beta induced protein synthesis of PKC-epsilon (6-fold increase) by 7 h and had a biphasic effect on PKC-delta levels with peaks at 4 h (2-fold increase) and 24 h (4-fold increase). At the level of mRNA, PKC-epsilon, but not PKC-delta levels, were induced after incubation of EL4 cells with IL-1 beta. The signalling mechanisms utilized by IL-1 beta to induce the synthesis of these PKC isoforms were investigated. Two phosphatidylinositol (PI) 3-kinase-specific inhibitors, wortmannin and LY294002, inhibited IL-1 beta-induced synthesis of PKC-epsilon. However, the PI 3-kinase inhibitors had little effect on the IL-1 beta-induced synthesis of PKC-delta in these cells. Our results indicate that IL-1 beta induced both PKC-delta and PKC-epsilon expression over different time periods. Furthermore, our evidence suggests that IL-1 beta induction of PKC-epsilon, but not PKC-delta, may occur via the PI 3-kinase pathway. Copyright 2001 S. Karger AG, Basel

  19. A cGMP kinase mutant with increased sensitivity to the protein kinase inhibitor peptide PKI(5-24).

    Science.gov (United States)

    Ruth, P; Kamm, S; Nau, U; Pfeifer, A; Hofmann, F

    1996-01-01

    Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein PKI are very potent inhibitors of cAMP-dependent protein kinase, but are extremely weak inhibitors of cGMP-dependent protein kinase. In this study, we tried to confer PKI sensitivity to cGMP kinase by site-directed mutagenesis. The molecular requirements for high affinity inhibition by PKI were deduced from the crystal structure of the cAMP kinase/PKI complex. A prominent site of interaction are residues Tyr235 and Phe239 in the catalytic subunit, which from a sandwich-like structure with Phe10 of the PKI(5-24) peptide. To increase the sensitivity for PKI, the cGMP kinase codons at the corresponding sites, Ser555 and Ser559, were changed to Tyr and Phe. The mutant cGMP kinase was stimulated half maximally by cGMP at 3-fold higher concentrations (240 nM) than the wild type (77 nM). Wild type and mutant cGMP kinase did not differ significantly in their Km and Vmax for three different substrate peptides. The PKI(5-24) peptide inhibited phosphotransferase activity of the mutant cGMP kinase with higher potency than that of wild type, with Ki values of 42 +/- .3 microM and 160 +/- .7 microM, respectively. The increased affinity of the mutant cGMP kinase was specific for the PKI(5-24) peptide. Mutation of the essential Phe10 in the PKI(5-24) sequence to an Ala yielded a peptide that inhibited mutant and wild type cGMP kinase with similar potency, with Ki values of 160 +/- 11 and 169 +/- 27 microM, respectively. These results suggest that the mutations Ser555Tyr and Ser559Phe are required, but not sufficient, for high affinity inhibition of cGMP kinase by PKI.

  20. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  1. The DNA-dependent protein kinase: a multifunctional protein kinase with roles in DNA double strand break repair and mitosis

    Science.gov (United States)

    Jette, Nicholas; Lees-Miller, Susan P.

    2015-01-01

    The DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein kinase composed of a large catalytic subunit (DNA-PKcs) and the Ku70/80 heterodimer. Over the past two decades, significant progress has been made in elucidating the role of DNA-PK in non-homologous end joining (NHEJ), the major pathway for repair of ionizing radiation-induced DNA double strand breaks in human cells and recently, additional roles for DNA-PK have been reported. In this review, we will describe the biochemistry, structure and function of DNA-PK, its roles in DNA double strand break repair and its newly described roles in mitosis and other cellular processes. PMID:25550082

  2. Incorporation of protein flexibility and conformational energy penalties in docking screens to improve ligand discovery

    Science.gov (United States)

    Fischer, Marcus; Coleman, Ryan G.; Fraser, James S.; Shoichet, Brian K.

    2014-07-01

    Proteins fluctuate between alternative conformations, which presents a challenge for ligand discovery because such flexibility is difficult to treat computationally owing to problems with conformational sampling and energy weighting. Here we describe a flexible docking method that samples and weights protein conformations using experimentally derived conformations as a guide. The crystallographically refined occupancies of these conformations, which are observable in an apo receptor structure, define energy penalties for docking. In a large prospective library screen, we identified new ligands that target specific receptor conformations of a cavity in cytochrome c peroxidase, and we confirm both ligand pose and associated receptor conformation predictions by crystallography. The inclusion of receptor flexibility led to ligands with new chemotypes and physical properties. By exploiting experimental measures of loop and side-chain flexibility, this method can be extended to the discovery of new ligands for hundreds of targets in the Protein Data Bank for which similar experimental information is available.

  3. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    Science.gov (United States)

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Structural basis of divergent cyclin-dependent kinase activation by Spy1/RINGO proteins

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Denise A.; Fifield, Bre-Anne; Marceau, Aimee H.; Tripathi, Sarvind; Porter, Lisa A.; Rubin, Seth M. (UCSC); (Windsor)

    2017-06-30

    Cyclin-dependent kinases (Cdks) are principal drivers of cell division and are an important therapeutic target to inhibit aberrant proliferation. Cdk enzymatic activity is tightly controlled through cyclin interactions, posttranslational modifications, and binding of inhibitors such as the p27 tumor suppressor protein. Spy1/RINGO (Spy1) proteins bind and activate Cdk but are resistant to canonical regulatory mechanisms that establish cell-cycle checkpoints. Cancer cells exploit Spy1 to stimulate proliferation through inappropriate activation of Cdks, yet the mechanism is unknown. We have determined crystal structures of the Cdk2-Spy1 and p27-Cdk2-Spy1 complexes that reveal how Spy1 activates Cdk. We find that Spy1 confers structural changes to Cdk2 that obviate the requirement of Cdk activation loop phosphorylation. Spy1 lacks the cyclin-binding site that mediates p27 and substrate affinity, explaining why Cdk-Spy1 is poorly inhibited by p27 and lacks specificity for substrates with cyclin-docking sites. We identify mutations in Spy1 that ablate its ability to activate Cdk2 and to proliferate cells. Our structural description of Spy1 provides important mechanistic insights that may be utilized for targeting upregulated Spy1 in cancer.

  5. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    Science.gov (United States)

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  6. Enhanced expression of a calcium-dependent protein kinase

    Indian Academy of Sciences (India)

    Among the downstream targets of calcium in plants, calcium-dependent protein kinases (CDPKs) form an interesting class of kinases which are activated by calcium binding. They have been implicated in a diverse array of responses to hormonal and environmental stimuli. In order to dissect the role of CDPKs in the moss ...

  7. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    OpenAIRE

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun

    2011-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, wh...

  8. Regulation of the vertebrate cell cycle by the cdc2 protein kinase

    International Nuclear Information System (INIS)

    Draetta, G.; Brizuela, L.; Moran, B.; Beach, D.

    1988-01-01

    A homolog of the cdc2/CDC28 protein kinase of yeast is found in all vertebrate species that have been investigated. Human cdc2 exists as a complex with a 13-kD protein that is homologous to the suc1 gene product of fission yeast. In both human and fission yeast cells, the protein kinase also exists in a complex with a 62-kD polypeptide that has not been identified genetically but acts as a substrate in vitro. The authors have studied the properties of the protein kinase in rat and human cells, as well as in Xenopus eggs. They find that in baby rat kidney (BRK) cells, which are quiescent in cell culture, the cdc2 protein is not synthesized. However, synthesis is rapidly induced in response to proliferative activation by infection with adenovirus. In human HeLa cells, the protein kinase is present continuously. It behaves as a cell-cycle oscillator that is inactive in G 1 but displays maximal enzymatic activity during mitotic metaphase. These observations indicate that in a wide variety of vertebrate cells, the cdc2 protein kinase is involved in regulating mitosis. The authors' approach taken toward study of the cdc2 protein kinase highlights the possibilities that now exist for combining the advantages of ascomycete genetics with the cell-free systems of Xenopus and the biochemical advantages of tissue culture cells to investigate fundamental problems of the cell cycle

  9. NPPD: A Protein-Protein Docking Scoring Function Based on Dyadic Differences in Networks of Hydrophobic and Hydrophilic Amino Acid Residues

    Directory of Open Access Journals (Sweden)

    Edward S. C. Shih

    2015-03-01

    Full Text Available Protein-protein docking (PPD predictions usually rely on the use of a scoring function to rank docking models generated by exhaustive sampling. To rank good models higher than bad ones, a large number of scoring functions have been developed and evaluated, but the methods used for the computation of PPD predictions remain largely unsatisfactory. Here, we report a network-based PPD scoring function, the NPPD, in which the network consists of two types of network nodes, one for hydrophobic and the other for hydrophilic amino acid residues, and the nodes are connected when the residues they represent are within a certain contact distance. We showed that network parameters that compute dyadic interactions and those that compute heterophilic interactions of the amino acid networks thus constructed allowed NPPD to perform well in a benchmark evaluation of 115 PPD scoring functions, most of which, unlike NPPD, are based on some sort of protein-protein interaction energy. We also showed that NPPD was highly complementary to these energy-based scoring functions, suggesting that the combined use of conventional scoring functions and NPPD might significantly improve the accuracy of current PPD predictions.

  10. Empirical scoring functions for advanced protein-ligand docking with PLANTS.

    Science.gov (United States)

    Korb, Oliver; Stützle, Thomas; Exner, Thomas E

    2009-01-01

    In this paper we present two empirical scoring functions, PLANTS(CHEMPLP) and PLANTS(PLP), designed for our docking algorithm PLANTS (Protein-Ligand ANT System), which is based on ant colony optimization (ACO). They are related, regarding their functional form, to parts of already published scoring functions and force fields. The parametrization procedure described here was able to identify several parameter settings showing an excellent performance for the task of pose prediction on two test sets comprising 298 complexes in total. Up to 87% of the complexes of the Astex diverse set and 77% of the CCDC/Astex clean listnc (noncovalently bound complexes of the clean list) could be reproduced with root-mean-square deviations of less than 2 A with respect to the experimentally determined structures. A comparison with the state-of-the-art docking tool GOLD clearly shows that this is, especially for the druglike Astex diverse set, an improvement in pose prediction performance. Additionally, optimized parameter settings for the search algorithm were identified, which can be used to balance pose prediction reliability and search speed.

  11. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase.

    Science.gov (United States)

    Venkitachalam, Srividya; Chueh, Fu-Yu; Leong, King-Fu; Pabich, Samantha; Yu, Chao-Lan

    2011-03-01

    Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.

  12. Domain requirements for the Dock adapter protein in growth- cone signaling

    OpenAIRE

    Rao, Yong; Zipursky, S. Lawrence

    1998-01-01

    Tyrosine phosphorylation has been implicated in growth-cone guidance through genetic, biochemical, and pharmacological studies. Adapter proteins containing src homology 2 (SH2) domains and src homology 3 (SH3) domains provide a means of linking guidance signaling through phosphotyrosine to downstream effectors regulating growth-cone motility. The Drosophila adapter, Dreadlocks (Dock), the homolog of mammalian Nck containing three N-terminal SH3 domains and a single SH2 domain, is highly speci...

  13. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    International Nuclear Information System (INIS)

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  14. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    Science.gov (United States)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  15. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    International Nuclear Information System (INIS)

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  16. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy

    2005-05-01

    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  17. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching.

    Science.gov (United States)

    Rininsland, Frauke; Stankewicz, Casey; Weatherford, Wendy; McBranch, Duncan

    2005-05-31

    High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Using a modified QTL Lightspeed assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP), Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1). Phosphorylation of the proteins was detected by Protein Kinase Calpha (PKCalpha) and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4). Enzyme inhibition yielded IC50 values that were comparable to those obtained using peptide substrates. Statistical parameters that

  18. Extracellular signal-regulated kinases control expression of G protein-coupled receptor kinase 2 (GRK2)

    DEFF Research Database (Denmark)

    Theilade, Juliane; Lerche Hansen, Jakob; Haunsø, Stig

    2002-01-01

    G protein-coupled receptor kinase 2 (GRK2) phosphorylates G protein-coupled receptors resulting in uncoupling from G proteins. Receptors modulate GRK2 expression, however the mechanistic basis for this effect is largely unknown. Here we report a novel mechanism by which receptors use...

  19. Three-Dimentional Structures of Autophosphorylation Complexes in Crystals of Protein Kinases

    KAUST Repository

    Dumbrack, Roland

    2016-01-26

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Several autophosphorylation complexes have been identified in crystals of protein kinases, with a known serine, threonine, or tyrosine autophosphorylation site of one kinase monomer sitting in the active site of another monomer of the same protein in the crystal. We utilized a structural bioinformatics method to identify all such autophosphorylation complexes in X-ray crystallographic structures in the Protein Data Bank (PDB) by generating all unique kinase/kinase interfaces within and between asymmetric units of each crystal and measuring the distance between the hydroxyl oxygen of potential autophosphorylation sites and the oxygen atoms of the active site aspartic acid residue side chain. We have identified 15 unique autophosphorylation complexes in the PDB, of which 5 complexes have not previously been described in the relevant publications on the crystal structures (N-terminal juxtamembrane regions of CSF1R and EPHA2, activation loop tyrosines of LCK and IGF1R, and a serine in a nuclear localization signal region of CLK2. Mutation of residues in the autophosphorylation complex interface of LCK either severely impaired autophosphorylation or increased it. Taking the autophosphorylation complexes as a whole and comparing them with peptide-substrate/kinase complexes, we observe a number of important features among them. The novel and previously observed autophosphorylation sites are conserved in many kinases, indicating that by homology we can extend the relevance of these complexes to many other clinically relevant drug targets.

  20. Synthesis, Docking and Biological Activities of Novel Hybrids Celecoxib and Anthraquinone Analogs as Potent Cytotoxic Agents

    Directory of Open Access Journals (Sweden)

    Maha S. Almutairi

    2014-12-01

    Full Text Available Herein, novel hybrid compounds of celecoxib and 2-aminoanthraquinone derivatives have been synthesized using condensation reactions of celecoxib with 2-aminoanthraquinone derivatives or 2-aminoanthraquinon with celecoxib derivatives. Celecoxib was reacted with different acid chlorides, 2-chloroethylisocyanate and bis (2-chloroethyl amine hydrochloride. These intermediates were then reacted with 2-aminoanthraquinone. Also the same different acid chlorides and 2-chloroethylisocyanate were reacted with 2-aminoanthraquinone and the resulting intermediates were reacted with celecoxib to give isomers for the previous compounds. The antitumor activities against hepatic carcinoma tumor cell line (HEPG2 have been investigated in vitro, and all these compounds showed promising activities, especially compound 3c, 7, and 12. Flexible docking studies involving AutoDock 4.2 was investigated to identify the potential binding affinities and the mode of interaction of the hybrid compounds into two protein tyrosine kinases namely, SRC (Pp60v-src and platelet-derived growth factor receptor, PDGFR (c-Kit. The compounds in this study have a preferential affinity for the c-Kit PDGFR PTK over the non-receptor tyrosine kinase SRC (Pp60v-src.

  1. Binding free energy analysis of protein-protein docking model structures by evERdock.

    Science.gov (United States)

    Takemura, Kazuhiro; Matubayasi, Nobuyuki; Kitao, Akio

    2018-03-14

    To aid the evaluation of protein-protein complex model structures generated by protein docking prediction (decoys), we previously developed a method to calculate the binding free energies for complexes. The method combines a short (2 ns) all-atom molecular dynamics simulation with explicit solvent and solution theory in the energy representation (ER). We showed that this method successfully selected structures similar to the native complex structure (near-native decoys) as the lowest binding free energy structures. In our current work, we applied this method (evERdock) to 100 or 300 model structures of four protein-protein complexes. The crystal structures and the near-native decoys showed the lowest binding free energy of all the examined structures, indicating that evERdock can successfully evaluate decoys. Several decoys that show low interface root-mean-square distance but relatively high binding free energy were also identified. Analysis of the fraction of native contacts, hydrogen bonds, and salt bridges at the protein-protein interface indicated that these decoys were insufficiently optimized at the interface. After optimizing the interactions around the interface by including interfacial water molecules, the binding free energies of these decoys were improved. We also investigated the effect of solute entropy on binding free energy and found that consideration of the entropy term does not necessarily improve the evaluations of decoys using the normal model analysis for entropy calculation.

  2. Simple fluorescence-based detection of protein kinase A activity using a molecular beacon probe.

    Science.gov (United States)

    Ma, Changbei; Lv, Xiaoyuan; Wang, Kemin; Jin, Shunxin; Liu, Haisheng; Wu, Kefeng; Zeng, Weimin

    2017-11-02

    Protein kinase A was detected by quantifying the amount of ATP used after a protein kinase reaction. The ATP assay was performed using the T4 DNA ligase and a molecular beacon (MB). In the presence of ATP, DNA ligase catalyzed the ligation of short DNA. The ligation product then hybridized to MB, resulting in a fluorescence enhancement of the MB. This assay was capable of determining protein kinase A in the range of 12.5∼150 nM, with a detection limit of 1.25 nM. Furthermore, this assay could also be used to investigate the effect of genistein on protein kinase A. It was a universal, non-radioisotopic, and homogeneous method for assaying protein kinase A.

  3. A scalable and accurate method for classifying protein-ligand binding geometries using a MapReduce approach.

    Science.gov (United States)

    Estrada, T; Zhang, B; Cicotti, P; Armen, R S; Taufer, M

    2012-07-01

    We present a scalable and accurate method for classifying protein-ligand binding geometries in molecular docking. Our method is a three-step process: the first step encodes the geometry of a three-dimensional (3D) ligand conformation into a single 3D point in the space; the second step builds an octree by assigning an octant identifier to every single point in the space under consideration; and the third step performs an octree-based clustering on the reduced conformation space and identifies the most dense octant. We adapt our method for MapReduce and implement it in Hadoop. The load-balancing, fault-tolerance, and scalability in MapReduce allow screening of very large conformation spaces not approachable with traditional clustering methods. We analyze results for docking trials for 23 protein-ligand complexes for HIV protease, 21 protein-ligand complexes for Trypsin, and 12 protein-ligand complexes for P38alpha kinase. We also analyze cross docking trials for 24 ligands, each docking into 24 protein conformations of the HIV protease, and receptor ensemble docking trials for 24 ligands, each docking in a pool of HIV protease receptors. Our method demonstrates significant improvement over energy-only scoring for the accurate identification of native ligand geometries in all these docking assessments. The advantages of our clustering approach make it attractive for complex applications in real-world drug design efforts. We demonstrate that our method is particularly useful for clustering docking results using a minimal ensemble of representative protein conformational states (receptor ensemble docking), which is now a common strategy to address protein flexibility in molecular docking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Na(+),K (+)-ATPase as a docking station: protein-protein complexes of the Na(+),K (+)-ATPase.

    Science.gov (United States)

    Reinhard, Linda; Tidow, Henning; Clausen, Michael J; Nissen, Poul

    2013-01-01

    The Na(+),K(+)-ATPase, or sodium pump, is well known for its role in ion transport across the plasma membrane of animal cells. It carries out the transport of Na(+) ions out of the cell and of K(+) ions into the cell and thus maintains electrolyte and fluid balance. In addition to the fundamental ion-pumping function of the Na(+),K(+)-ATPase, recent work has suggested additional roles for Na(+),K(+)-ATPase in signal transduction and biomembrane structure. Several signaling pathways have been found to involve Na(+),K(+)-ATPase, which serves as a docking station for a fast-growing number of protein interaction partners. In this review, we focus on Na(+),K(+)-ATPase as a signal transducer, but also briefly discuss other Na(+),K(+)-ATPase protein-protein interactions, providing a comprehensive overview of the diverse signaling functions ascribed to this well-known enzyme.

  5. Distribution of protein kinase Mzeta and the complete protein kinase C isoform family in rat brain

    DEFF Research Database (Denmark)

    Naik, M U; Benedikz, Eirikur; Hernandez, I

    2000-01-01

    Protein kinase C (PKC) is a multigene family of at least ten isoforms, nine of which are expressed in brain (alpha, betaI, betaII, gamma, delta, straightepsilon, eta, zeta, iota/lambda). Our previous studies have shown that many of these PKCs participate in synaptic plasticity in the CA1 region...

  6. Inhibition of protein kinase C induces differentiation in Neuro-2a cells

    International Nuclear Information System (INIS)

    Minana, M.D.; Felipo, V.; Grisolia, S.

    1990-01-01

    1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H7), a potent inhibitor of protein kinase C, induced neuritogenesis in Neuro-2a cells, whereas N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA 1004), which inhibits more efficiently cAMP- and cGMP-dependent protein kinases, did not. The effect, noticeable after 3 hr, was maximum (13-fold increase at 500 μM H7) between 1 and 3 days and was maintained over 2 months. In controls, 90% of the cells were undifferentiated, whereas after 3 hr with 500 μM H7 only 25% of the cells remained undifferentiated. DNA synthesis decreased as the number of differentiated cells increased. Differentiation is also functional since acetylcholinesterase activity increased ∼7-fold after 48 hr with 500 μM H7. Phorbol 12-myristate 13-acetate, a specific activator of protein kinase C, prevented or reversed the induction of neuritogenesis and the inhibition of DNA synthesis by H7. There is a good correlation between the level of protein kinase C and the percentage of differentiated cells. The results indicate that protein kinase C may play a key role in the control of differentiation of neural cells. Some possible clinical implications are briefly discussed

  7. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    International Nuclear Information System (INIS)

    Tang, Chun; Clore, G. Marius

    2006-01-01

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the δ-methyl groups of isoleucine, while the other component is uniformly 13 C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area ≥ 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA Glc -HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of ∼2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer

  8. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase.

    Science.gov (United States)

    Stoyanov, B; Volinia, S; Hanck, T; Rubio, I; Loubtchenkov, M; Malek, D; Stoyanova, S; Vanhaesebroeck, B; Dhand, R; Nürnberg, B

    1995-08-04

    Phosphoinositide-3 kinase activity is implicated in diverse cellular responses triggered by mammalian cell surface receptors and in the regulation of protein sorting in yeast. Receptors with intrinsic and associated tyrosine kinase activity recruit heterodimeric phosphoinositide-3 kinases that consist of p110 catalytic subunits and p85 adaptor molecules containing Src homology 2 (SH2) domains. A phosphoinositide-3 kinase isotype, p110 gamma, was cloned and characterized. The p110 gamma enzyme was activated in vitro by both the alpha and beta gamma subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and did not interact with p85. A potential pleckstrin homology domain is located near its amino terminus. The p110 gamma isotype may link signaling through G protein-coupled receptors to the generation of phosphoinositide second messengers phosphorylated in the D-3 position.

  9. Tumor promoter induced membrane-bound protein kinase C - its influence on hematogenous metastasis

    International Nuclear Information System (INIS)

    Gopalakrishna, R.; Barsky, S.H.

    1987-01-01

    A correlation between the amount of membrane-bound detergent-extractable protein kinase C activity in various B16 melanoma sublines (F10, F1, BL6) and their lung metastasizing abilities following intravenous injection was found. The F10 subline which exhibits higher metastasizing ability was found to have higher membrane-bound protein kinase C compared to the lower metastasizing subline, F1. Treatment of F1 cells with 100 nM 12-0 tetradecanoylphorbol-13-acetate (TPA) for 1h resulted in 90% decrease in protein kinase C activity in the cytosol with a concommitent increase in membrane-bound activity. These TPA-treated cells when injected intravenously in C57BL/6 mice produced 6-fold increase in pulmonary metastases compared to untreated F1 cells. However, biologically inactive analogues 4 α-phorbol 12,13-didecanoate and phorbol 13-acetate had no effect on either membrane-bound protein kinase C activity or pulmonary metastases. Treating F1 cells with the second-stage tumor promoter, mezerin, resulted in increase in both membrane association of protein kinase C and also lung metastases. Thus, these results strongly suggests that membrane associated protein kinase C activity influences hematogenous metastasis of these melanoma cells

  10. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Science.gov (United States)

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Differential effects of vasopressin and phenylephrine on protein kinase C-mediated protein phosphorylations in isolated hepatocytes

    International Nuclear Information System (INIS)

    Cooper, R.H.; Johanson, R.A.; Wiliamson, J.R.

    1986-01-01

    Receptor-mediated breakdown of inositol lipids produces two intracellular signals, diacylglycerol, which activates protein kinase C, and inositol trisphosphate, which causes release of intracellular vesicular Ca 2+ . This study examined the effects of Ca 2+ -ionophores, vasopressin, phenylephrine, and phorbol ester (PMA) on hepatocyte protein phosphorylations. [ 32 P] Phosphoproteins from hepatocytes prelabeled with 32 P were resolved by 2-dimensional SDS-PAGE and corresponding autoradiographs were quantitated by densitometric analysis. The phosphorylation of five proteins, a plasma membrane bound 16 kDa protein with pI 6.4, a cytosolic 16 kDa protein with pI 5.8, and proteins with Mr's of 36 kDa, 52 kDa, and 68 kDa, could be attributed to phosphorylation by protein kinase C since the phosphorylation was stimulated by PMA. When the vasopressin concentration was varied, low vasopressin stimulated the phosphorylation of only the membrane bound 16 kDa protein of the above set of proteins, while higher vasopressin concentrations were required to stimulate the phosphorylation of all five proteins. Phenylephrine, even at supramaximal concentrations, stimulated the phosphorylation of only the membrane bound 16 kDa protein. These results suggest that phenylephrine is a less potent activator of protein kinase C than vasopressin by virtue of limited or localized diacylglycerol production

  12. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    Science.gov (United States)

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. A-Raf kinase is a new interacting partner of protein kinase CK2 beta subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Issinger, O G

    1997-01-01

    In a search for protein kinase CK2 beta subunit binding proteins using the two-hybrid system, more than 1000 positive clones were isolated. Beside clones for the alpha' and beta subunit of CK2, there were clones coding for a so far unknown protein, whose partial cDNA sequence was already deposited...

  14. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  15. Organization of functional domains in the docking protein p130Cas

    International Nuclear Information System (INIS)

    Nasertorabi, Fariborz; Garcia-Guzman, Miguel; Briknarova, Klara; Larsen, Elise; Havert, Marnie L.; Vuori, Kristiina; Ely, Kathryn R.

    2004-01-01

    The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130 kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling

  16. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  17. Leptospira borgpetersenii hybrid leucine-rich repeat protein: Cloning and expression, immunogenic identification and molecular docking evaluation.

    Science.gov (United States)

    Sritrakul, Tepyuda; Nitipan, Supachai; Wajjwalku, Worawidh; La-Ard, Anchalee; Suphatpahirapol, Chattip; Petkarnjanapong, Wimol; Ongphiphadhanakul, Boonsong; Prapong, Siriwan

    2017-11-01

    Leptospirosis is an important zoonotic disease, and the major outbreak of this disease in Thailand in 1999 was due largely to the Leptospira borgpetersenii serovar Sejroe. Identification of the leucine-rich repeat (LRR) LBJ_2271 protein containing immunogenic epitopes and the discovery of the LBJ_2271 ortholog in Leptospira serovar Sejroe, KU_Sej_R21_2271, led to further studies of the antigenic immune properties of KU_Sej_LRR_2271. The recombinant hybrid (rh) protein was created and expressed from a hybrid PCR fragment of KU_Sej_R21_2271 fused with DNA encoding the LBJ_2271 signal sequence for targeting protein as a membrane-anchoring protein. The fusion DNA was cloned into pET160/GW/D-TOPO® to form the pET160_hKU_R21_2271 plasmid. The plasmid was used to express the rhKU_Sej_LRR_2271 protein in Escherichia coli BL21 Star™ (DE3). The expressed protein was immunologically detected by Western blotting and immunoreactivity detection with hyperimmune sera, T cell epitope prediction by HLA allele and epitope peptide binding affinity, and potential T cell reactivity analysis. The immunogenic epitopes of the protein were evaluated and verified by HLA allele and epitope peptide complex structure molecular docking. Among fourteen best allele epitopes of this protein, binding affinity values of 12 allele epitopes remained unchanged compared to LBJ_2271. Two epitopes for alleles HLA-A0202 and -A0301 had higher IC 50 values, while T cell reactivity values of these peptides were better than values from LBJ_2271 epitopes. Eight of twelve epitope peptides had positive T-cell reactivity scores. Although the molecular docking of two epitopes, 3FPLLKEFLV11/47FPLLKEFLV55 and 50KLSTVPEGV58, into an HLA-A0202 model revealed a good fit in the docked structures, 50KLSTVPEGV58 and 94KLSTVPEEV102 are still considered as the proteins' best epitopes for allele HLA-A0202. The results of this study showed that rhKU_Sej_LRR_2271 protein contained natural immunological properties that should

  18. Neuron membrane trafficking and protein kinases involved in autism and ADHD.

    Science.gov (United States)

    Kitagishi, Yasuko; Minami, Akari; Nakanishi, Atsuko; Ogura, Yasunori; Matsuda, Satoru

    2015-01-30

    A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1) are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT) and cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD) is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT). AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  19. Neuron Membrane Trafficking and Protein Kinases Involved in Autism and ADHD

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2015-01-01

    Full Text Available A brain-enriched multi-domain scaffolding protein, neurobeachin has been identified as a candidate gene for autism patients. Mutations in the synaptic adhesion protein cell adhesion molecule 1 (CADM1 are also associated with autism spectrum disorder, a neurodevelopmental disorder of uncertain molecular origin. Potential roles of neurobeachin and CADM1 have been suggested to a function of vesicle transport in endosomal trafficking. It seems that protein kinase B (AKT and cyclic adenosine monophosphate (cAMP-dependent protein kinase A (PKA have key roles in the neuron membrane trafficking involved in the pathogenesis of autism. Attention deficit hyperactivity disorder (ADHD is documented to dopaminergic insufficiencies, which is attributed to synaptic dysfunction of dopamine transporter (DAT. AKT is also essential for the DAT cell-surface redistribution. In the present paper, we summarize and discuss the importance of several protein kinases that regulate the membrane trafficking involved in autism and ADHD, suggesting new targets for therapeutic intervention.

  20. Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation?

    Directory of Open Access Journals (Sweden)

    Darja Lavogina

    2018-04-01

    Full Text Available Protein kinases catalyze phosphorylation, a small yet crucial modification that affects participation of the substrate proteins in the intracellular signaling pathways. The activity of 538 protein kinases encoded in human genome relies upon spatiotemporally controlled mechanisms, ensuring correct progression of virtually all physiological processes on the cellular level—from cell division to cell death. The aberrant functioning of protein kinases is linked to a wide spectrum of major health issues including cancer, cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, etc. Hence, significant effort of scientific community has been dedicated to the dissection of protein kinase pathways in their natural milieu. The combination of recent advances in the field of light microscopy, the wide variety of genetically encoded or synthetic photoluminescent scaffolds, and the techniques for intracellular delivery of cargoes has enabled design of a plethora of probes that can report activation of target protein kinases in human live cells. The question remains: how much do we bias intracellular signaling of protein kinases by monitoring it? This review seeks answers to this question by analyzing different classes of probes according to their general structure, mechanism of recognition of biological target, and optical properties necessary for the reporting of intracellular events.

  1. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.

    Science.gov (United States)

    Granovsky, Alexey E; Rosner, Marsha Rich

    2008-04-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  2. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Science.gov (United States)

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  3. A simple and reliable approach to docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chun; Clore, G. Marius [National Institutes of Health, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (United States)], E-mail: mariusc@intra.niddk.nih.gov

    2006-09-15

    A simple and reliable approach for docking protein-protein complexes from very sparse NOE-derived intermolecular distance restraints (as few as three from a single point) in combination with a novel representation for an attractive potential between mapped interaction surfaces is described. Unambiguous assignments of very sparse intermolecular NOEs are obtained using a reverse labeling strategy in which one the components is fully deuterated with the exception of selective protonation of the {delta}-methyl groups of isoleucine, while the other component is uniformly {sup 13}C-labeled. This labeling strategy can be readily extended to selective protonation of Ala, Leu, Val or Met. The attractive potential is described by a 'reduced' radius of gyration potential applied specifically to a subset of interfacial residues (those with an accessible surface area {>=} 50% in the free proteins) that have been delineated by chemical shift perturbation. Docking is achieved by rigid body minimization on the basis of a target function comprising the sparse NOE distance restraints, a van der Waals repulsion potential and the 'reduced' radius of gyration potential. The method is demonstrated for two protein-protein complexes (EIN-HPr and IIA{sup Glc}-HPr) from the bacterial phosphotransferase system. In both cases, starting from 100 different random orientations of the X-ray structures of the free proteins, 100% convergence is achieved to a single cluster (with near identical atomic positions) with an overall backbone accuracy of {approx}2 A. The approach described is not limited to NMR, since interfaces can also be mapped by alanine scanning mutagenesis, and sparse intermolecular distance restraints can be derived from double cycle mutagenesis, cross-linking combined with mass spectrometry, or fluorescence energy transfer.

  4. Comparison of phosphorylation of ribosomal proteins from HeLa and Krebs II ascites-tumour cells by cyclic AMP-dependent and cyclic GMP-dependent protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Beier, H; Speichermann, N

    1980-01-01

    Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were...... by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins...... from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates...

  5. Arctigenin protects against steatosis in WRL68 hepatocytes through activation of phosphoinositide 3-kinase/protein kinase B and AMP-activated protein kinase pathways.

    Science.gov (United States)

    Chen, Kung-Yen; Lin, Jui-An; Yao, Han-Yun; Hsu, An-Chih; Tai, Yu-Ting; Chen, Jui-Tai; Hsieh, Mao-Chih; Shen, Tang-Long; Hsu, Ren-Yi; Wu, Hong-Tan; Wang, Guey Horng; Ho, Bing-Ying; Chen, Yu-Pei

    2018-04-01

    Arctigenin (ATG), a lignin extracted from Arctium lappa (L.), exerts antioxidant and anti-inflammatory effects. We hypothesized that ATG exerts a protective effect on hepatocytes by preventing nonalcoholic fatty liver disease (NAFLD) progression associated with lipid oxidation-associated lipotoxicity and inflammation. We established an in vitro NAFLD cell model by using normal WRL68 hepatocytes to investigate oleic acid (OA) accumulation and the potential bioactive role of ATG. The results revealed that ATG inhibited OA-induced lipid accumulation, lipid peroxidation, and inflammation in WRL68 hepatocytes, as determined using Oil Red O staining, thiobarbituric acid reactive substance assay, and inflammation antibody array assays. Quantitative RT-PCR analysis demonstrated that ATG significantly mitigated the expression of acetylcoenzyme A carboxylase 1 and sterol regulatory element-binding protein-1 and significantly increased the expression of carnitine palmitoyltransferase 1 and peroxisome proliferator-activated receptor alpha. The 40 targets of the Human Inflammation Antibody Array indicated that ATG significantly inhibited the elevation of the U937 lymphocyte chemoattractant, ICAM-1, IL-1β, IL-6, IL-6sR, IL-7, and IL-8. ATG could activate the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) and AMP-activated protein kinase (AMPK) pathways and could increase the phosphorylation levels of Akt and AMPK to mediate cell survival, lipid metabolism, oxidation stress, and inflammation. Thus, we demonstrated that ATG could inhibit NAFLD progression associated with lipid oxidation-associated lipotoxicity and inflammation, and we provided insights into the underlying mechanisms and revealed potential targets to enable a thorough understanding of NAFLD progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin

    International Nuclear Information System (INIS)

    Mohrmann, M.; Cantiello, H.F.; Ausiello, D.A.

    1987-01-01

    The authors have recently shown the selective inhibition of an amiloride-sensitive, conductive pathway for Na + by atrial natriuretic peptide and 8-bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP) in the renal epithelial cell line, LLC-PK i . Using 22 Na + fluxes, they further investigated the modulation of Na + transport by atrial natriuretic peptide and by agents that increase cGMP production, activate protein kinase c, or modulate guanine nucleotide regulatory protein function. Sodium nitroprusside increases intracellular cGMP concentrations without affecting cAMP concentrations and completely inhibits amiloride-sensitive Na + uptake in a time- and concentration-dependent manner. Oleoyl 2-acetylglycerol and phorbol 12-myristate 13-acetate, activators of protein kinase c, inhibit Na + uptake by 93 ± 13 and 51 ± 10%, respectively. Prolonged incubation with phorbol ester results in the downregulation of protein kinase c activity and reduces the inhibitory effect of atrial natriuretic peptide, suggesting that the action of this peptide involves stimulation of protein kinase c. Pertussis toxin, which induces the ADP-ribosylation of a 41-kDa guanine nucleotide regulatory protein in LLC-PK i cells, inhibits 22 Na + influx to the same extent as amiloride. Thus, increasing cGMP, activating protein kinase c, and ADP-ribosylating a guanine nucleotide regulatory protein all inhibit Na + uptake. These events may be sequentially involved in the action of atrial natriuretic peptide

  7. An unusual protein kinase phosphorylates the chemotactic receptor of Dictystelium discoideum

    International Nuclear Information System (INIS)

    Meier, K.; Klein, C.

    1988-01-01

    The authors report the cAMP-dependent phosphorylation of the chemotactic receptor of Dictyostelium discoideum in partially purified plasma membranes. The protein kinase responsible for receptor phosphorylation is associated with this fraction and preferentially phosphorylates the ligand-occupied form of the receptor. 8-Azido[ 32 P]cAMP labeling of the cell surface has shown that the cAMP receptor exists in two forms. A 45-kDa protein is predominant on unstimulated cells. cAMP stimulation results in an increased receptor phosphorylation such that the receptor migrates on NaDodSO 4 /PAGE as a 47-kDa protein. Phosphorylation of the chemotactic receptor is not detected in membrane preparations unless cAMP is added to the incubation mixture. Only under those conditions is the phosphorylated 47-kDa form observed. The requirement for cAMP reflects the fact that the kinase involved preferentially uses the ligand-occupied receptor as a substrate. In vitro phosphorylation of the receptor does not involve tyrosine residues. The enzyme does not appear to be a cAMP- or cGMP-dependent protein kinase nor is it sensitive to guanine nucleotides, Ca 2+ /calmodulin, Ca 2+ /phospholipid, or EGTA. Similarities with the β-adrenergic receptor protein kinase are discussed

  8. Distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases of Actinobacteria.

    Science.gov (United States)

    Ogawara, Hiroshi

    2016-09-01

    PASTA domains (penicillin-binding protein and serine/threonine kinase-associated domains) have been identified in penicillin-binding proteins and serine/threonine kinases of Gram-positive Firmicutes and Actinobacteria. They are believed to bind β-lactam antibiotics, and be involved in peptidoglycan metabolism, although their biological function is not definitively clarified. Actinobacteria, especially Streptomyces species, are distinct in that they undergo complex cellular differentiation and produce various antibiotics including β-lactams. This review focuses on the distribution of PASTA domains in penicillin-binding proteins and serine/threonine kinases in Actinobacteria. In Actinobacteria, PASTA domains are detectable exclusively in class A but not in class B penicillin-binding proteins, in sharp contrast to the cases in other bacteria. In penicillin-binding proteins, PASTA domains distribute independently from taxonomy with some distribution bias. Particularly interesting thing is that no Streptomyces species have penicillin-binding protein with PASTA domains. Protein kinases in Actinobacteria possess 0 to 5 PASTA domains in their molecules. Protein kinases in Streptomyces can be classified into three groups: no PASTA domain, 1 PASTA domain and 4 PASTA domain-containing groups. The 4 PASTA domain-containing groups can be further divided into two subgroups. The serine/threonine kinases in different groups may perform different functions. The pocket region in one of these subgroup is more dense and extended, thus it may be involved in binding of ligands like β-lactams more efficiently.

  9. Insulin-induced decrease in protein phosphorylation in rat adipocytes not explained by decreased A-kinase activity

    International Nuclear Information System (INIS)

    Egan, J.J.; Greenberg, A.S.; Chang, M.K.; Londos, C.

    1987-01-01

    In isolated rat adipocytes, insulin inhibits lipolysis to a greater extent than would be predicted by the decrease in (-/+)cAMP activity ratio of cAMP-dependent protein kinase [A-kinase], from which it was speculated that insulin promotes the dephosphorylation of hormone-sensitive lipase. They have examined the phosphorylation state of cellular proteins under conditions of varying A-kinase activities in the presence and absence of insulin. Protein phosphorylation was determined by SDS-PAGE electrophoresis of extracts from 32 P-loaded cells; glycerol and A-kinase activity ratios were measured in the cytosolic extracts from control, non-radioactive cells. Increased protein phosphorylation in general occurred over the same range of A-kinase activity ratios, 0.1-0.3, associated with increased glycerol release. The insulin-induced decrease in lipolysis was associated with a decrease in the 32 P content of several proteins, an effect not explained by the modest reduction in A-kinase activity by insulin. This effect of insulin on protein phosphorylation was lost as the A-kinase activity ratios exceeded 0.5. The results suggest that insulin promotes the dephosphorylation of those adipocyte proteins which are subject to phosphorylation by A-kinase

  10. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    International Nuclear Information System (INIS)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2012-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  11. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M.H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric (Van Andel); (Scripps); (NWU); (Purdue); (UCR); (Chinese Aca. Sci.); (NU Singapore)

    2014-10-02

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.

  12. Determination and validation of mTOR kinase-domain 3D structure by homology modeling

    Directory of Open Access Journals (Sweden)

    Lakhlili W

    2015-07-01

    Full Text Available Wiame Lakhlili,1 Gwénaël Chevé,2 Abdelaziz Yasri,2 Azeddine Ibrahimi1 1Laboratoire de Biotechnologie (MedBiotech, Faculté de Médecine et de Pharmacie de Rabat, Université Mohammed V de Rabat, Rabat, Morroco; 2OriBase Pharma, Cap Gamma, Parc Euromédecine, Montpellier, France Abstract: The AKT/mammalian target of rapamycin (mTOR pathway is considered as one of the commonly activated and deregulated signaling pathways in human cancer. mTOR is associated with other proteins in two molecular complexes: mTOR complex 1/Raptor and the mTOR complex 2/Rictor. Using the crystal structure of the related lipid kinase PI3Kγ, we built a model of the catalytic region of mTOR. The modeling of the three-dimensional (3D structure of the mTOR was performed by homology modeling program SWISS-MODEL. The quality and validation of the obtained model were performed using PROCHECK and PROVE softwares. The overall stereochemical property of the protein was assessed by the Ramachandran plot. The model validation was also done by docking of known inhibitors. In this paper, we describe and validate a 3D model for the mTOR catalytic site.Keywords: mTOR, homology modeling, mTOR kinase-domain, docking

  13. Insulin receptors mediate growth effects in cultured fetal neurons. II. Activation of a protein kinase that phosphorylates ribosomal protein S6

    International Nuclear Information System (INIS)

    Heidenreich, K.A.; Toledo, S.P.

    1989-01-01

    As an initial attempt to identify early steps in insulin action that may be involved in the growth responses of neurons to insulin, we investigated whether insulin receptor activation increases the phosphorylation of ribosomal protein S6 in cultured fetal neurons and whether activation of a protein kinase is involved in this process. When neurons were incubated for 2 h with 32Pi, the addition of insulin (100 ng/ml) for the final 30 min increased the incorporation of 32Pi into a 32K microsomal protein. The incorporation of 32Pi into the majority of other neuronal proteins was unaltered by the 30-min exposure to insulin. Cytosolic extracts from insulin-treated neurons incubated in the presence of exogenous rat liver 40S ribosomes and [gamma-32P]ATP displayed a 3- to 8-fold increase in the phosphorylation of ribosomal protein S6 compared to extracts from untreated cells. Inclusion of cycloheximide during exposure of the neurons to insulin did not inhibit the increased cytosolic kinase activity. Activation of S6 kinase activity by insulin was dose dependent (seen at insulin concentration as low as 0.1 ng/ml) and reached a maximum after 20 min of incubation. Addition of phosphatidylserine, diolein, and Ca2+ to the in vitro kinase reaction had no effect on the phosphorylation of ribosomal protein S6. Likewise, treatment of neurons with (Bu)2cAMP did not alter the phosphorylation of ribosomal protein S6 by neuronal cytosolic extracts. We conclude that insulin activates a cytosolic protein kinase that phosphorylates ribosomal S6 in neurons and is distinct from protein kinase-C and cAMP-dependent protein kinase. Stimulation of this kinase may play a role in insulin signal transduction in neurons

  14. Polo-like kinase 1 (PLK1) and protein phosphatase 6 (PP6) regulate DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation in mitosis.

    Science.gov (United States)

    Douglas, Pauline; Ye, Ruiqiong; Trinkle-Mulcahy, Laura; Neal, Jessica A; De Wever, Veerle; Morrice, Nick A; Meek, Katheryn; Lees-Miller, Susan P

    2014-06-25

    The protein kinase activity of the DNA-PKcs (DNA-dependent protein kinase catalytic subunit) and its autophosphorylation are critical for DBS (DNA double-strand break) repair via NHEJ (non-homologous end-joining). Recent studies have shown that depletion or inactivation of DNA-PKcs kinase activity also results in mitotic defects. DNA-PKcs is autophosphorylated on Ser2056, Thr2647 and Thr2609 in mitosis and phosphorylated DNA-PKcs localize to centrosomes, mitotic spindles and the midbody. DNA-PKcs also interacts with PP6 (protein phosphatase 6), and PP6 has been shown to dephosphorylate Aurora A kinase in mitosis. Here we report that DNA-PKcs is phosphorylated on Ser3205 and Thr3950 in mitosis. Phosphorylation of Thr3950 is DNA-PK-dependent, whereas phosphorylation of Ser3205 requires PLK1 (polo-like kinase 1). Moreover, PLK1 phosphorylates DNA-PKcs on Ser3205 in vitro and interacts with DNA-PKcs in mitosis. In addition, PP6 dephosphorylates DNA-PKcs at Ser3205 in mitosis and after IR (ionizing radiation). DNA-PKcs also phosphorylates Chk2 on Thr68 in mitosis and both phosphorylation of Chk2 and autophosphorylation of DNA-PKcs in mitosis occur in the apparent absence of Ku and DNA damage. Our findings provide mechanistic insight into the roles of DNA-PKcs and PP6 in mitosis and suggest that DNA-PKcs' role in mitosis may be mechanistically distinct from its well-established role in NHEJ.

  15. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Science.gov (United States)

    LaBute, Montiago X; Zhang, Xiaohua; Lenderman, Jason; Bennion, Brian J; Wong, Sergio E; Lightstone, Felice C

    2014-01-01

    Late-stage or post-market identification of adverse drug reactions (ADRs) is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC) to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409) of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs) during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively). Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with increasing number

  16. Adverse drug reaction prediction using scores produced by large-scale drug-protein target docking on high-performance computing machines.

    Directory of Open Access Journals (Sweden)

    Montiago X LaBute

    Full Text Available Late-stage or post-market identification of adverse drug reactions (ADRs is a significant public health issue and a source of major economic liability for drug development. Thus, reliable in silico screening of drug candidates for possible ADRs would be advantageous. In this work, we introduce a computational approach that predicts ADRs by combining the results of molecular docking and leverages known ADR information from DrugBank and SIDER. We employed a recently parallelized version of AutoDock Vina (VinaLC to dock 906 small molecule drugs to a virtual panel of 409 DrugBank protein targets. L1-regularized logistic regression models were trained on the resulting docking scores of a 560 compound subset from the initial 906 compounds to predict 85 side effects, grouped into 10 ADR phenotype groups. Only 21% (87 out of 409 of the drug-protein binding features involve known targets of the drug subset, providing a significant probe of off-target effects. As a control, associations of this drug subset with the 555 annotated targets of these compounds, as reported in DrugBank, were used as features to train a separate group of models. The Vina off-target models and the DrugBank on-target models yielded comparable median area-under-the-receiver-operating-characteristic-curves (AUCs during 10-fold cross-validation (0.60-0.69 and 0.61-0.74, respectively. Evidence was found in the PubMed literature to support several putative ADR-protein associations identified by our analysis. Among them, several associations between neoplasm-related ADRs and known tumor suppressor and tumor invasiveness marker proteins were found. A dual role for interstitial collagenase in both neoplasms and aneurysm formation was also identified. These associations all involve off-target proteins and could not have been found using available drug/on-target interaction data. This study illustrates a path forward to comprehensive ADR virtual screening that can potentially scale with

  17. A comprehensive protein-protein interactome for yeast PAS kinase 1 reveals direct inhibition of respiration through the phosphorylation of Cbf1.

    Science.gov (United States)

    DeMille, Desiree; Bikman, Benjamin T; Mathis, Andrew D; Prince, John T; Mackay, Jordan T; Sowa, Steven W; Hall, Tacie D; Grose, Julianne H

    2014-07-15

    Per-Arnt-Sim (PAS) kinase is a sensory protein kinase required for glucose homeostasis in yeast, mice, and humans, yet little is known about the molecular mechanisms of its function. Using both yeast two-hybrid and copurification approaches, we identified the protein-protein interactome for yeast PAS kinase 1 (Psk1), revealing 93 novel putative protein binding partners. Several of the Psk1 binding partners expand the role of PAS kinase in glucose homeostasis, including new pathways involved in mitochondrial metabolism. In addition, the interactome suggests novel roles for PAS kinase in cell growth (gene/protein expression, replication/cell division, and protein modification and degradation), vacuole function, and stress tolerance. In vitro kinase studies using a subset of 25 of these binding partners identified Mot3, Zds1, Utr1, and Cbf1 as substrates. Further evidence is provided for the in vivo phosphorylation of Cbf1 at T211/T212 and for the subsequent inhibition of respiration. This respiratory role of PAS kinase is consistent with the reported hypermetabolism of PAS kinase-deficient mice, identifying a possible molecular mechanism and solidifying the evolutionary importance of PAS kinase in the regulation of glucose homeostasis. © 2014 DeMille et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The role of DNA dependent protein kinase in synapsis of DNA ends

    NARCIS (Netherlands)

    E.P.W.C. Weterings (Eric); N.S. Verkaik (Nicole); H.T. Brüggenwirth (Hennie); D.C. van Gent (Dik); J.H.J. Hoeijmakers (Jan)

    2003-01-01

    textabstractDNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PK(CS)) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks

  19. Redundant role of protein kinase C delta and epsilon during mouse embryonic development.

    Directory of Open Access Journals (Sweden)

    Sergio Carracedo

    Full Text Available Protein Kinase C delta and epsilon are mediators of important cellular events, such as cell proliferation, migration or apoptosis. The formation of blood vessels, i.e., vasculo- and angiogenesis, is a process where these isoforms have also been shown to participate. However, mice deficient in either Protein Kinase C delta or epsilon are viable and therefore their individual contribution to the formation of the vasculature appeared so far dispensable. In this study, we show that double null mutation of Protein Kinase C delta and epsilon causes embryonic lethality at approximately E9.5. At this stage, whole mount staining of the endothelial marker CD31 in double null embryos revealed defective blood vessel formation. Moreover, culture of double deficient mouse allantois showed impaired endothelial cell organization, and analyses of double deficient embryo sections showed dilated vessels, decreased endothelial-specific adherent junctions, and decreased contact of endothelial cells with mural cells. Protein kinase C delta and epsilon also appeared essential for vascular smooth muscle cell differentiation, since α-smooth muscle actin, a classical marker for vascular smooth muscle cells, was almost undetectable in double deficient embryonic aorta at E9.5. Subsequent qPCR analyses showed decreased VE-cadherin, Vegfr2, Cd31, Cdh2, Ets1, and Fli-1, among other angiogenesis related transcripts in double deficient embryos. Taken together, these data suggest for the first time an in vivo redundant role between members of the novel Protein Kinase C subfamily that allows for mutual compensation during mouse embryonic development, with vasculogenesis/angiogenesis as an obvious common function of these two Protein Kinase Cs. Protein Kinase C delta and epsilon might therefore be useful targets for inhibiting vasculo- and/or angiogenesis.

  20. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Science.gov (United States)

    Grover, Prerna; Shi, Haibin; Baumgartner, Matthew; Camacho, Carlos J; Smithgall, Thomas E

    2015-01-01

    The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP) assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein) and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery for this important

  1. Fluorescence Polarization Screening Assays for Small Molecule Allosteric Modulators of ABL Kinase Function.

    Directory of Open Access Journals (Sweden)

    Prerna Grover

    Full Text Available The ABL protein-tyrosine kinase regulates intracellular signaling pathways controlling diverse cellular processes and contributes to several forms of cancer. The kinase activity of ABL is repressed by intramolecular interactions involving its regulatory Ncap, SH3 and SH2 domains. Small molecules that allosterically regulate ABL kinase activity through its non-catalytic domains may represent selective probes of ABL function. Here we report a screening assay for chemical modulators of ABL kinase activity that target the regulatory interaction of the SH3 domain with the SH2-kinase linker. This fluorescence polarization (FP assay is based on a purified recombinant ABL protein consisting of the N-cap, SH3 and SH2 domains plus the SH2-kinase linker (N32L protein and a short fluorescein-labeled probe peptide that binds to the SH3 domain. In assay development experiments, we found that the probe peptide binds to the recombinant ABL N32L protein in vitro, producing a robust FP signal that can be competed with an excess of unlabeled peptide. The FP signal is not observed with control N32L proteins bearing either an inactivating mutation in the SH3 domain or enhanced SH3:linker interaction. A pilot screen of 1200 FDA-approved drugs identified four compounds that specifically reduced the FP signal by at least three standard deviations from the untreated controls. Secondary assays showed that one of these hit compounds, the antithrombotic drug dipyridamole, enhances ABL kinase activity in vitro to a greater extent than the previously described ABL agonist, DPH. Docking studies predicted that this compound binds to a pocket formed at the interface of the SH3 domain and the linker, suggesting that it activates ABL by disrupting this regulatory interaction. These results show that screening assays based on the non-catalytic domains of ABL can identify allosteric small molecule regulators of kinase function, providing a new approach to selective drug discovery

  2. A dual-specificity isoform of the protein kinase inhibitor PKI produced by alternate gene splicing.

    Science.gov (United States)

    Kumar, Priyadarsini; Walsh, Donal A

    2002-03-15

    We have previously shown that the protein kinase inhibitor beta (PKIbeta) form of the cAMP-dependent protein kinase inhibitor exists in multiple isoforms, some of which are specific inhibitors of the cAMP-dependent protein kinase, whereas others also inhibit the cGMP-dependent enzyme [Kumar, Van Patten and Walsh (1997), J. Biol. Chem. 272, 20011-20020]. We have now demonstrated that the switch from a cAMP-dependent protein kinase (PKA)-specific inhibitor to one with dual specificity arises as a consequence of alternate gene splicing. We have confirmed using bacterially produced pure protein that a single inhibitor species has dual specificity for both PKA and cGMP-dependent protein kinase (PKG), inhibiting each with very high and closely similar inhibitory potencies. The gene splicing converted a protein with 70 amino acids into one of 109 amino acids, and did not change the inhibitory potency to PKA, but changed it from a protein that had no detectable PKG inhibitory activity to one that now inhibited PKG in the nanomolar range.

  3. In Silico Molecular Docking Analysis of Natural Pyridoacridines as Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Vikas Sharma

    2016-01-01

    Full Text Available Docking studies are proved to be an essential tool that facilitates the structural diversity of natural products to be harnessed in an organized manner. In this study, pyridoacridines containing natural anticancer pigments were subjected to docking studies using Glide (Schrodinger. Investigations were carried out to find out the potential molecular targets for these selected pigments. The docking was carried out on different cancer macromolecules involved in different cell cycle pathways, that is, CDK-2, CDK-6, Bcl-2, VEGFR-2, IGF-1R kinase, and G-Quadruplexes. CDK-6 was found to be the most suitable anticancer target for the pyridoacridines. In addition, effectiveness of the study was further evaluated by performing docking of known inhibitors against their respective selected macromolecules. However, the results are preliminary and experimental evaluation will be carried out in near future.

  4. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  5. Exploring the function of protein kinases in schistosomes: perspectives from the laboratory and from comparative genomics

    Directory of Open Access Journals (Sweden)

    Anthony John Walker

    2014-07-01

    Full Text Available Eukaryotic protein kinases are well conserved through evolution. The genome of Schistosoma mansoni, which causes intestinal schistosomiasis, encodes over 250 putative protein kinases with all of the main eukaryotic groups represented. However, unraveling functional roles for these kinases is a considerable endeavour, particularly as protein kinases regulate multiple and sometimes overlapping cell and tissue functions in organisms. In this article, elucidating protein kinase signal transduction and function in schistosomes is considered from the perspective of the state-of-the-art methodologies used and comparative organismal biology, with a focus on current advances and future directions. Using the free-living nematode Caenorhabditis elegans as a comparator we predict roles for various schistosome protein kinases in processes vital for host invasion and successful parasitism such as sensory behaviour, growth and development. It is anticipated that the characterization of schistosome protein kinases in the context of parasite function will catalyze cutting edge research into host-parasite interactions and will reveal new targets for developing drug interventions against human schistosomiasis.

  6. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  7. Guanylate kinase domains of the MAGUK family scaffold proteins as specific phospho-protein-binding modules

    OpenAIRE

    Zhu, Jinwei; Shang, Yuan; Xia, Caihao; Wang, Wenning; Wen, Wenyu; Zhang, Mingjie

    2011-01-01

    Membrane-associated guanylate kinases (MAGUK) family proteins contain an inactive guanylate kinase (GK) domain, whose function has been elusive. Here, this domain is revealed as a new type of phospho-peptide-binding module, in which the GMP-binding site has evolved to accommodate phospho-serines or -threonines.

  8. A cytoplasmic serine protein kinase binds and may regulate the Fanconi anemia protein FANCA.

    Science.gov (United States)

    Yagasaki, H; Adachi, D; Oda, T; Garcia-Higuera, I; Tetteh, N; D'Andrea, A D; Futaki, M; Asano, S; Yamashita, T

    2001-12-15

    Fanconi anemia (FA) is an autosomal recessive disease with congenital anomalies, bone marrow failure, and susceptibility to leukemia. Patient cells show chromosome instability and hypersensitivity to DNA cross-linking agents. At least 8 complementation groups (A-G) have been identified and 6 FA genes (for subtypes A, C, D2, E, F, and G) have been cloned. Increasing evidence indicates that a protein complex assembly of multiple FA proteins, including FANCA and FANCG, plays a crucial role in the FA pathway. Previously, it was reported that FANCA was phosphorylated in lymphoblasts from normal controls, whereas the phosphorylation was defective in those derived from patients with FA of multiple complementation groups. The present study examined phosphorylation of FANCA ectopically expressed in FANCA(-) cells. Several patient-derived mutations abrogated in vivo phosphorylation of FANCA in this system, suggesting that FANCA phosphorylation is associated with its function. In vitro phosphorylation studies indicated that a physiologic protein kinase for FANCA (FANCA-PK) forms a complex with the substrate. Furthermore, at least a part of FANCA-PK as well as phosphorylated FANCA were included in the FANCA/FANCG complex. Thus, FANCA-PK appears to be another component of the FA protein complex and may regulate function of FANCA. FANCA-PK was characterized as a cytoplasmic serine kinase sensitive to wortmannin. Identification of the protein kinase is expected to elucidate regulatory mechanisms that control the FA pathway.

  9. Deceleration of arginine kinase refolding by induced helical structures.

    Science.gov (United States)

    Li, Hai-Long; Zhou, Sheng-Mei; Park, Daeui; Jeong, Hyoung Oh; Chung, Hae Young; Yang, Jun-Mo; Meng, Fan-Guo; Hu, Wei-Jiang

    2012-04-01

    Arginine kinase (AK) is a key metabolic enzyme for keeping energy balance in invertebrates. Therefore, regulation of the enzymatic activity and the folding studies of AK from the various invertebrates have been the focus of investigation. We studied the effects of helical structures by using hexafluoroisopropanol (HFIP) on AK folding. Folding kinetic studies showed that the folding rates of the urea-denatured AKs were significantly decelerated after being induced in various concentrations of HFIP. AK lost its activity completely at concentrations greater than 60%. The results indicated that the HFIP-induced helical structures in the denatured state play a negative role in protein folding, and the helical structures induced in 5% (v/v) HFIP act as the most effective barrier against AK taking its native structure. The computational docking simulations (binding energies for -2.19 kcal/mol for AutoDock4.2 and -20.47 kcal/mol for Dock6.3) suggested that HFIP interacts with the several important residues that are predicted by both programs. The excessively pre-organized helical structures not only hampered the folding process, but also ultimately brought about changes in the three-dimensional conformation and biological function of AK.

  10. Phosphorylation of sites 3 and 2 in rabbit skeletal muscle glycogen synthase by a multifunctional protein kinase (ATP-citrate lyase kinase)

    International Nuclear Information System (INIS)

    Sheorain, V.S.; Ramakrishna, S.; Benjamin, W.B.; Soderling, T.R.

    1985-01-01

    A multifunctional protein kinase, purified from rat liver as ATP-citrate lyase kinase, has been identified as a glycogen synthase kinase. This kinase catalyzed incorporation of up to 1.5 mol of and]2number 2 PO 4 /mol of synthase subunit associated with a decrease in the glycogen synthase activity ratio from 0.85 to a value of 0.15. Approximately 65-70% of the 34 PO 4 was incorporated into site 3 and 30-35% into site 2 as determined by reverse phase high performance liquid chromatography. This multifunctional kinase was distinguished from glycogen synthase kinase-3 on the basis of nucleotide and protein substrate specificities. Since the phosphate contents in glycogen synthase of sites 3 and 2 are altered in diabetes and by insulin administration, the possible involvement of the multifunctional kinase was explored. Glycogen synthase purified from diabetic rabbits was phosphorylated in vitro by this multifunctional kinase at only 10% of the rate compared to synthase purified from control rabbits. Treatment of the diabetics with insulin restored the synthase to a form that was readily phosphorylated in vitro

  11. Kinases and Cancer

    OpenAIRE

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  12. Ghrelin augments murine T-cell proliferation by activation of the phosphatidylinositol-3-kinase, extracellular signal-regulated kinase and protein kinase C signaling pathways

    Science.gov (United States)

    Lee, Jun Ho; Patel, Kalpesh; Tae, Hyun Jin; Lustig, Ana; Kim, Jie Wan; Mattson, Mark P.; Taub, Dennis D.

    2014-01-01

    Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levelsand impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo. PMID:25447526

  13. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.

    Science.gov (United States)

    Pottel, Joshua; Moitessier, Nicolas

    2015-12-28

    Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100

  14. A collaborative filtering approach for protein-protein docking scoring functions.

    Science.gov (United States)

    Bourquard, Thomas; Bernauer, Julie; Azé, Jérôme; Poupon, Anne

    2011-04-22

    A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions. In this work, we introduce a new procedure for conformation ranking. We previously developed a set of scoring functions where learning was performed using a genetic algorithm. These functions were used to assign a rank to each possible conformation. We now have a refined rank using different classifiers (decision trees, rules and support vector machines) in a collaborative filtering scheme. The scoring function newly obtained is evaluated using 10 fold cross-validation, and compared to the functions obtained using either genetic algorithms or collaborative filtering taken separately. This new approach was successfully applied to the CAPRI scoring ensembles. We show that for 10 targets out of 12, we are able to find a near-native conformation in the 10 best ranked solutions. Moreover, for 6 of them, the near-native conformation selected is of high accuracy. Finally, we show that this function dramatically enriches the 100 best-ranking conformations in near-native structures.

  15. Discovery of Novel Inhibitors for Nek6 Protein through Homology Model Assisted Structure Based Virtual Screening and Molecular Docking Approaches

    Directory of Open Access Journals (Sweden)

    P. Srinivasan

    2014-01-01

    Full Text Available Nek6 is a member of the NIMA (never in mitosis, gene A-related serine/threonine kinase family that plays an important role in the initiation of mitotic cell cycle progression. This work is an attempt to emphasize the structural and functional relationship of Nek6 protein based on homology modeling and binding pocket analysis. The three-dimensional structure of Nek6 was constructed by molecular modeling studies and the best model was further assessed by PROCHECK, ProSA, and ERRAT plot in order to analyze the quality and consistency of generated model. The overall quality of computed model showed 87.4% amino acid residues under the favored region. A 3 ns molecular dynamics simulation confirmed that the structure was reliable and stable. Two lead compounds (Binding database ID: 15666, 18602 were retrieved through structure-based virtual screening and induced fit docking approaches as novel Nek6 inhibitors. Hence, we concluded that the potential compounds may act as new leads for Nek6 inhibitors designing.

  16. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  17. Molecular docking study of Papaver alkaloids to some alkaloid receptors

    Directory of Open Access Journals (Sweden)

    A. Nofallah

    2017-11-01

    Full Text Available Background and objectives: More than 40 different alkaloids have been obtained from opium the most important of which are morphine, codeine, papaverine, noscapine and tabaine. Opioid alkaloids produce analgesia by affecting areas of the brain that have peptides with pharmacological pseudo-opioid properties. These alkaloids show important effects on some intracellular peptides like mu, delta, and kappa receptors. Therefore, studying the effects of these alkaloids on different receptors is essential. Methods: Molecular docking is a well-known method in exploring the protein-ligand interactions. In this research, five important alkaloids were docked to crystal structure of human mu opioid receptor (4DKL, human delta opioid receptor (4EJ4 and human kappa opioid receptor (4DJH which were retrieved from protein databank. The 3D-structures of alkaloids were drawn by chembiooffice2010 and minimized with hyperchem package and submitted to molecular docking utilizing autodock-vina. Flexibility of the proteins was considered. The docking studies were performed to compare the affinity of these five alkaloids to the mentioned receptors. Results: We computationally docked each alkaloid compound onto each receptor structure and estimated their binding affinity based on dock scores. Dock score is a criteria including binding energy which utilized here for prediction and comparison of the binding affinities. Binding interactions of the docked alkaloids in receptor pockets were also visually inspected and compared. Conclusion: In this approach, using docking study as a computational method provided a valuable insight of opioid receptor pocket structures which would be essential to design more efficient drugs in pain managements and addiction treatments.

  18. Structural Insight into the 14-3-3 Protein-dependent Inhibition of Protein Kinase ASK1 (Apoptosis Signal-regulating kinase 1)

    Czech Academy of Sciences Publication Activity Database

    Petrvalská, Olivia; Košek, Dalibor; Kukačka, Zdeněk; Tošner, Z.; Man, Petr; Večeř, J.; Herman, P.; Obšilová, Veronika; Obšil, Tomáš

    2016-01-01

    Roč. 291, č. 39 (2016), s. 20753-20765 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA14-10061S Institutional support: RVO:67985823 ; RVO:61388971 Keywords : 14-3-3 protein * apoptosis signal-regulating kinase 1 (ASK1) * fluorescence * nuclear magnetic resonance (NMR) * protein cross-linking * small-angle x-ray scattering (SAXS) Subject RIV: CE - Biochemistry Impact factor: 4.125, year: 2016

  19. Molecular Mimicry Regulates ABA Signaling by SnRK2 Kinases and PP2C Phosphatases

    Science.gov (United States)

    Soon, Fen-Fen; Ng, Ley-Moy; Zhou, X. Edward; West, Graham M.; Kovach, Amanda; Tan, M. H. Eileen; Suino-Powell, Kelly M.; He, Yuanzheng; Xu, Yong; Chalmers, Michael J.; Brunzelle, Joseph S.; Zhang, Huiming; Yang, Huaiyu; Jiang, Hualiang; Li, Jun; Yong, Eu-Leong; Cutler, Sean; Zhu, Jian-Kang; Griffin, Patrick R.; Melcher, Karsten; Xu, H. Eric

    2013-01-01

    Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites. PMID:22116026

  20. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-07-01

    Full Text Available Wei Liu,1,* Jin-Feng Ning,2,* Qing-Wei Meng,1 Jing Hu,1 Yan-Bin Zhao,1 Chao Liu,3 Li Cai11The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 2The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China; 3General Surgery Department, Mudanjiang Guanliju Central Hospital, Mishan, Heilongjiang Province, People’s Republic of China*These authors contributed equally to this workAbstract: The epidermal growth factor receptor (EGFR family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC, particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB. Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10 against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB.Keywords: EGFR, kinase

  1. Activity of cAMP-dependent protein kinases and cAMP-binding proteins of rat kidney cytosol during dehydration

    International Nuclear Information System (INIS)

    Zelenina, M.N.; Solenov, E.I.; Ivanova, L.N.

    1985-01-01

    The activity of cAMP-dependent protein kinases, the binding of cAMP, and the spectrum of cAMP-binding proteins in the cytosol of the renal papilla was studied in intact rats and in rats after 24 h on a water-deprived diet. It was found that the activation of protein kinases by 10 -6 M cAMP is significantly higher in the experimental animals than in the intact animals. In chromatography on DEAE-cellulose, the positions of the peaks of specific reception of cAMP corresponded to the peaks of the regulatory subunits of cAMP-dependent protein kinases of types I and II. In this case, in intact animals more than 80% of the binding activity was detected in peaks II, whereas in rats subjected to water deprivation, more than 60% of the binding was observed in peak I. The general regulatory activity of the cytosol was unchanged in the experimental animals in comparison with intact animals. It is suggested that during dehydration there is an induction of the synthesis of the regulatory subunit of type I cAMP-dependent protein kinase in the renal papilla

  2. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  3. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase

    Science.gov (United States)

    Birch, Louise; Murray, Christopher W.; Hartshorn, Michael J.; Tickle, Ian J.; Verdonk, Marcel L.

    2002-12-01

    Many proteins undergo small side chain or even backbone movements on binding of different ligands into the same protein structure. This is known as induced fit and is potentially problematic for virtual screening of databases against protein targets. In this report we investigate the limits of the rigid protein approximation used by the docking program, GOLD, through cross-docking using protein structures of influenza neuraminidase. Neuraminidase is known to exhibit small but significant induced fit effects on ligand binding. Some neuraminidase crystal structures caused concern due to the bound ligand conformation and GOLD performed poorly on these complexes. A `clean' set, which contained unique, unambiguous complexes, was defined. For this set, the lowest energy structure was correctly docked (i.e. RMSD < 1.5 Å away from the crystal reference structure) in 84% of proteins, and the most promiscuous protein (1mwe) was able to dock all 15 ligands accurately including those that normally required an induced fit movement. This is considerably better than the 70% success rate seen with GOLD against general validation sets. Inclusion of specific water molecules involved in water-mediated hydrogen bonds did not significantly improve the docking performance for ligands that formed water-mediated contacts but it did prevent docking of ligands that displaced these waters. Our data supports the use of a single protein structure for virtual screening with GOLD in some applications involving induced fit effects, although care must be taken to identify the protein structure that performs best against a wide variety of ligands. The performance of GOLD was significantly better than the GOLD implementation of ChemScore and the reasons for this are discussed. Overall, GOLD has shown itself to be an extremely good, robust docking program for this system.

  4. Improving Docking Performance Using Negative Image-Based Rescoring.

    Science.gov (United States)

    Kurkinen, Sami T; Niinivehmas, Sanna; Ahinko, Mira; Lätti, Sakari; Pentikäinen, Olli T; Postila, Pekka A

    2018-01-01

    Despite the large computational costs of molecular docking, the default scoring functions are often unable to recognize the active hits from the inactive molecules in large-scale virtual screening experiments. Thus, even though a correct binding pose might be sampled during the docking, the active compound or its biologically relevant pose is not necessarily given high enough score to arouse the attention. Various rescoring and post-processing approaches have emerged for improving the docking performance. Here, it is shown that the very early enrichment (number of actives scored higher than 1% of the highest ranked decoys) can be improved on average 2.5-fold or even 8.7-fold by comparing the docking-based ligand conformers directly against the target protein's cavity shape and electrostatics. The similarity comparison of the conformers is performed without geometry optimization against the negative image of the target protein's ligand-binding cavity using the negative image-based (NIB) screening protocol. The viability of the NIB rescoring or the R-NiB, pioneered in this study, was tested with 11 target proteins using benchmark libraries. By focusing on the shape/electrostatics complementarity of the ligand-receptor association, the R-NiB is able to improve the early enrichment of docking essentially without adding to the computing cost. By implementing consensus scoring, in which the R-NiB and the original docking scoring are weighted for optimal outcome, the early enrichment is improved to a level that facilitates effective drug discovery. Moreover, the use of equal weight from the original docking scoring and the R-NiB scoring improves the yield in most cases.

  5. PTP1B inhibitor promotes endothelial cell motility by activating the DOCK180/Rac1 pathway.

    Science.gov (United States)

    Wang, Yuan; Yan, Feng; Ye, Qing; Wu, Xiao; Jiang, Fan

    2016-04-07

    Promoting endothelial cell (EC) migration is important not only for therapeutic angiogenesis, but also for accelerating re-endothelialization after vessel injury. Several recent studies have shown that inhibition of protein tyrosine phosphatase 1B (PTP1B) may promote EC migration and angiogenesis by enhancing the vascular endothelial growth factor receptor-2 (VEGFR2) signalling. In the present study, we demonstrated that PTP1B inhibitor could promote EC adhesion, spreading and migration, which were abolished by the inhibitor of Rac1 but not RhoA GTPase. PTP1B inhibitor significantly increased phosphorylation of p130Cas, and the interactions among p130Cas, Crk and DOCK180; whereas the phosphorylation levels of focal adhesion kinase, Src, paxillin, or Vav2 were unchanged. Gene silencing of DOCK180, but not Vav2, abrogated the effects of PTP1B inhibitor on EC motility. The effects of PTP1B inhibitor on EC motility and p130Cas/DOCK180 activation persisted in the presence of the VEGFR2 antagonist. In conclusion, we suggest that stimulation of the DOCK180 pathway represents an alternative mechanism of PTP1B inhibitor-stimulated EC motility, which does not require concomitant VEGFR2 activation as a prerequisite. Therefore, PTP1B inhibitor may be a useful therapeutic strategy for promoting EC migration in cardiovascular patients in which the VEGF/VEGFR functions are compromised.

  6. Identification of Ser/Thr kinase and Forkhead Associated Domains in Mycobacterium ulcerans: Characterization of Novel Association between Protein Kinase Q and MupFHA

    Science.gov (United States)

    Singhal, Anshika; Joshi, Jayadev; Virmani, Richa; Gupta, Meetu; Verma, Nupur; Maji, Abhijit; Misra, Richa; Baronian, Grégory; Pandey, Amit K.; Molle, Virginie; Singh, Yogendra

    2014-01-01

    Background Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK) PknQ. Methodology/Principal Findings In this study, we have characterized PknQ and explored its interaction with MupFHA (Mup018c), a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA (Mup012c), which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this interaction may also involve phospho-threonine/serine residues of MupDivIVA. Conclusions/Significance Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need of further re-evaluating the FHA domain –pThr/pSer interaction model. MupFHA may serve as the ideal candidate for structural studies on this unique class of modular enzymes. PMID:25412098

  7. Identification of Ser/Thr kinase and forkhead associated domains in Mycobacterium ulcerans: characterization of novel association between protein kinase Q and MupFHA.

    Directory of Open Access Journals (Sweden)

    Gunjan Arora

    2014-11-01

    Full Text Available Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK PknQ.In this study, we have characterized PknQ and explored its interaction with MupFHA (Mup018c, a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA (Mup012c, which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this interaction may also involve phospho-threonine/serine residues of MupDivIVA.Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need of further re-evaluating the FHA domain -pThr/pSer interaction model. MupFHA may serve as the ideal candidate for structural studies on this unique class of modular enzymes.

  8. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases

    Science.gov (United States)

    Xu, Qifang; Malecka, Kimberly L.; Fink, Lauren; Jordan, E. Joseph; Duffy, Erin; Kolander, Samuel; Peterson, Jeffrey; Dunbrack, Roland L.

    2016-01-01

    Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an “autophosphorylation complex.” We developed and applied a structural bioinformatics method to identify all such autophosphorylation kinase complexes in X-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which 5 complexes had not previously been described in the publications describing the crystal structures. These 5 consist of tyrosine residues in the N-terminal juxtamembrane regions of colony stimulating factor 1 receptor (CSF1R, Tyr561) and EPH receptor A2 (EPHA2, Tyr594), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr394) and insulin-like growth factor 1 receptor (IGF1R, Tyr1166), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser142). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro447 to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets. PMID:26628682

  9. A cross docking pipeline for improving pose prediction and virtual screening performance

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2018-01-01

    Pose prediction and virtual screening performance of a molecular docking method depend on the choice of protein structures used for docking. Multiple structures for a target protein are often used to take into account the receptor flexibility and problems associated with a single receptor structure. However, the use of multiple receptor structures is computationally expensive when docking a large library of small molecules. Here, we propose a new cross-docking pipeline suitable to dock a large library of molecules while taking advantage of multiple target protein structures. Our method involves the selection of a suitable receptor for each ligand in a screening library utilizing ligand 3D shape similarity with crystallographic ligands. We have prospectively evaluated our method in D3R Grand Challenge 2 and demonstrated that our cross-docking pipeline can achieve similar or better performance than using either single or multiple-receptor structures. Moreover, our method displayed not only decent pose prediction performance but also better virtual screening performance over several other methods.

  10. Adenosine monophosphate-activated protein kinase from the mud ...

    Indian Academy of Sciences (India)

    2016-12-01

    Dec 1, 2016 ... to the understanding of the molecular mechanism of acclimation to cold hardiness in S. ... have shown that the stress associated with cold temperature ..... vation by cyclic-AMP-dependent protein kinase, studied using.

  11. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast...

  12. Fluorescent Reporters and Biosensors for Probing the Dynamic Behavior of Protein Kinases

    Directory of Open Access Journals (Sweden)

    Juan A. González-Vera

    2015-11-01

    Full Text Available Probing the dynamic activities of protein kinases in real-time in living cells constitutes a major challenge that requires specific and sensitive tools tailored to meet the particular demands associated with cellular imaging. The development of genetically-encoded and synthetic fluorescent biosensors has provided means of monitoring protein kinase activities in a non-invasive fashion in their native cellular environment with high spatial and temporal resolution. Here, we review existing technologies to probe different dynamic features of protein kinases and discuss limitations where new developments are required to implement more performant tools, in particular with respect to infrared and near-infrared fluorescent probes and strategies which enable improved signal-to-noise ratio and controlled activation of probes.

  13. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn 2+ and [γ- 32 P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  14. Characterization and enzymatic properties of protein kinase ACR4 from Arabidopsis thaliana.

    Science.gov (United States)

    Zhao, Yu; Liu, Xuehe; Xu, Ziyan; Yang, Hui; Li, Jixi

    2017-07-22

    Serine/threonine-protein kinase-like protein ARABIDOPSIS CRINKLY4 (ACR4), a transmembrane protein of Arabidopsis thaliana, plays important roles in cell division and differentiation. Although accumulating studies shed light on the function of ACR4, the structure and catalytic mechanism of ACR4 remain to be elucidated. Here, we report the purification and enzymatic properties of the intracellular kinase domain (residues 464-799) of ACR4 (ACR4 IKD ). Through Ni-affinity chromatography and gel filter chromatography methods, we successfully obtain high-purity ACR4 IKD protein from Escherichia coli. Dynamic light scattering and gel-filtration methods reveal that ACR4 IKD distributes with high homogeneity and exists as a monomer in solution. In addition, the ACR4 IKD protein has typical kinase activity with myelin basic protein (MBP) as the substrate. Our study may lay the foundation for structure determination of ACR4 IKD and further functional research, for example, screening significant substrates of ACR4 in Arabidopsis thaliana. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. AMP-activated protein kinase induces actin cytoskeleton reorganization in epithelial cells

    International Nuclear Information System (INIS)

    Miranda, Lisa; Carpentier, Sarah; Platek, Anna; Hussain, Nusrat; Gueuning, Marie-Agnes; Vertommen, Didier; Ozkan, Yurda; Sid, Brice; Hue, Louis; Courtoy, Pierre J.; Rider, Mark H.; Horman, Sandrine

    2010-01-01

    AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca 2+ -dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.

  16. Heat Shock Proteins and Mitogen-activated Protein Kinases in Steatotic Livers Undergoing Ischemia-Reperfusion: Some Answers

    Science.gov (United States)

    Massip-Salcedo, Marta; Casillas-Ramirez, Araní; Franco-Gou, Rosah; Bartrons, Ramón; Ben Mosbah, Ismail; Serafin, Anna; Roselló-Catafau, Joan; Peralta, Carmen

    2006-01-01

    Ischemic preconditioning protects steatotic livers against ischemia-reperfusion (I/R) injury, but just how this is achieved is poorly understood. Here, I/R or preconditioning plus I/R was induced in steatotic and nonsteatotic livers followed by investigating the effect of pharmacological treatments that modulate heat shock proteins (HSPs) and mitogen-activated protein kinases (MAPKs). MAPKs, HSPs, protein kinase C, and transaminase levels were measured after reperfusion. We report that preconditioning increased HSP72 and heme-oxygenase-1 (HO-1) at 6 and 24 hours of reperfusion, respectively. Unlike nonsteatotic livers, steatotic livers benefited from HSP72 activators (geranylgeranylacetone) throughout reperfusion. This protection seemed attributable to HO-1 induction. In steatotic livers, preconditioning and geranylgeranylacetone treatment (which are responsible for HO-1 induction) increased protein kinase C activity. HO-1 activators (cobalt(III) protoporphyrin IX) protected both liver types. Preconditioning reduced p38 MAPK and c-Jun N-terminal kinase (JNK), resulting in HSP72 induction though HO-1 remained unmodified. Like HSP72, both p38 and JNK appeared not to be crucial in preconditioning, and inhibitors of p38 (SB203580) and JNK (SP600125) were less effective against hepatic injury than HO-1 activators. These results provide new data regarding the mechanisms of preconditioning and may pave the way to the development of new pharmacological strategies in liver surgery. PMID:16651615

  17. GOMoDo: A GPCRs online modeling and docking webserver.

    Directory of Open Access Journals (Sweden)

    Massimo Sandal

    Full Text Available G-protein coupled receptors (GPCRs are a superfamily of cell signaling membrane proteins that include >750 members in the human genome alone. They are the largest family of drug targets. The vast diversity and relevance of GPCRs contrasts with the paucity of structures available: only 21 unique GPCR structures have been experimentally determined as of the beginning of 2013. User-friendly modeling and small molecule docking tools are thus in great demand. While both GPCR structural predictions and docking servers exist separately, with GOMoDo (GPCR Online Modeling and Docking, we provide a web server to seamlessly model GPCR structures and dock ligands to the models in a single consistent pipeline. GOMoDo can automatically perform template choice, homology modeling and either blind or information-driven docking by combining together proven, state of the art bioinformatic tools. The web server gives the user the possibility of guiding the whole procedure. The GOMoDo server is freely accessible at http://molsim.sci.univr.it/gomodo.

  18. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs) Effects on AMP-Activated Protein Kinase (AMPK) Regulation of Chicken Sperm Functions.

    Science.gov (United States)

    Nguyen, Thi Mong Diep; Combarnous, Yves; Praud, Christophe; Duittoz, Anne; Blesbois, Elisabeth

    2016-01-01

    Sperm require high levels of energy to ensure motility and acrosome reaction (AR) accomplishment. The AMP-activated protein kinase (AMPK) has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca(2+)/calmodulin-dependent protein kinase kinases (CaMKKs) mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca(2+), or of CaMKKs inhibitor (STO-609). Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β), CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca(2+) but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca(2+) than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca(2+). Our results show for the first time the presence of CaMKKs (α and β) and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca(2+) entry in sperm through the Ca(2+)/CaM/CaMKKs/CaMKI pathway. The Ca(2+)/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca(2+) entry

  19. Ca2+/Calmodulin-Dependent Protein Kinase Kinases (CaMKKs Effects on AMP-Activated Protein Kinase (AMPK Regulation of Chicken Sperm Functions.

    Directory of Open Access Journals (Sweden)

    Thi Mong Diep Nguyen

    Full Text Available Sperm require high levels of energy to ensure motility and acrosome reaction (AR accomplishment. The AMP-activated protein kinase (AMPK has been demonstrated to be strongly involved in the control of these properties. We address here the question of the potential role of calcium mobilization on AMPK activation and function in chicken sperm through the Ca(2+/calmodulin-dependent protein kinase kinases (CaMKKs mediated pathway. The presence of CaMKKs and their substrates CaMKI and CaMKIV was evaluated by western-blotting and indirect immunofluorescence. Sperm were incubated in presence or absence of extracellular Ca(2+, or of CaMKKs inhibitor (STO-609. Phosphorylations of AMPK, CaMKI, and CaMKIV, as well as sperm functions were evaluated. We demonstrate the presence of both CaMKKs (α and β, CaMKI and CaMKIV in chicken sperm. CaMKKα and CaMKI were localized in the acrosome, the midpiece, and at much lower fluorescence in the flagellum, whereas CaMKKβ was mostly localized in the flagellum and much less in the midpiece and the acrosome. CaMKIV was only present in the flagellum. The presence of extracellular calcium induced an increase in kinases phosphorylation and sperm activity. STO-609 reduced AMPK phosphorylation in the presence of extracellular Ca(2+ but not in its absence. STO-609 did not affect CaMKIV phosphorylation but decreased CaMKI phosphorylation and this inhibition was quicker in the presence of extracellular Ca(2+ than in its absence. STO-609 efficiently inhibited sperm motility and AR, both in the presence and absence of extracellular Ca(2+. Our results show for the first time the presence of CaMKKs (α and β and one of its substrate, CaMKI in different subcellular compartments in germ cells, as well as the changes in the AMPK regulation pathway, sperm motility and AR related to Ca(2+ entry in sperm through the Ca(2+/CaM/CaMKKs/CaMKI pathway. The Ca(2+/CaMKKs/AMPK pathway is activated only under conditions of extracellular Ca(2

  20. Protein implicated in nonsyndromic mental retardation regulates protein kinase A (PKA) activity

    KAUST Repository

    Altawashi, Azza; Jung, Sung Yun; Liu, Dou; Su, Bing; Qin, Jun

    2012-01-01

    capacitytoformdendritesandsynapsesinculture. Atthebiochemical level,CC2D1Atransduces signals to the cyclic adenosine 3?,5?-monophosphate (cAMP)-protein kinase A (PKA) pathway during neuronal cell differentiation. PKA activity is compromised, and the translocation of its catalytic subunit

  1. Toscana virus NSs protein promotes degradation of double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Kalveram, Birte; Ikegami, Tetsuro

    2013-04-01

    Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.

  2. Mechanisms of regulation of SNF1/AMPK/SnRK1 protein kinases

    Science.gov (United States)

    Crozet, Pierre; Margalha, Leonor; Confraria, Ana; Rodrigues, Américo; Martinho, Cláudia; Adamo, Mattia; Elias, Carlos A.; Baena-González, Elena

    2014-01-01

    The SNF1 (sucrose non-fermenting 1)-related protein kinases 1 (SnRKs1) are the plant orthologs of the budding yeast SNF1 and mammalian AMPK (AMP-activated protein kinase). These evolutionarily conserved kinases are metabolic sensors that undergo activation in response to declining energy levels. Upon activation, SNF1/AMPK/SnRK1 kinases trigger a vast transcriptional and metabolic reprograming that restores energy homeostasis and promotes tolerance to adverse conditions, partly through an induction of catabolic processes and a general repression of anabolism. These kinases typically function as a heterotrimeric complex composed of two regulatory subunits, β and γ, and an α-catalytic subunit, which requires phosphorylation of a conserved activation loop residue for activity. Additionally, SNF1/AMPK/SnRK1 kinases are controlled by multiple mechanisms that have an impact on kinase activity, stability, and/or subcellular localization. Here we will review current knowledge on the regulation of SNF1/AMPK/SnRK1 by upstream components, post-translational modifications, various metabolites, hormones, and others, in an attempt to highlight both the commonalities of these essential eukaryotic kinases and the divergences that have evolved to cope with the particularities of each one of these systems. PMID:24904600

  3. Thioredoxin h regulates calcium dependent protein kinases in plasma membranes.

    Science.gov (United States)

    Ueoka-Nakanishi, Hanayo; Sazuka, Takashi; Nakanishi, Yoichi; Maeshima, Masayoshi; Mori, Hitoshi; Hisabori, Toru

    2013-07-01

    Thioredoxin (Trx) is a key player in redox homeostasis in various cells, modulating the functions of target proteins by catalyzing a thiol-disulfide exchange reaction. Target proteins of cytosolic Trx-h of higher plants were studied, particularly in the plasma membrane, because plant plasma membranes include various functionally important protein molecules such as transporters and signal receptors. Plasma membrane proteins from Arabidopsis thaliana cell cultures were screened using a resin Trx-h1 mutant-immobilized, and a total of 48 candidate proteins obtained. These included two calcium-sensing proteins: a phosphoinositide-specific phospholipase 2 (AtPLC2) and a calcium-dependent protein kinase 21 (AtCPK21). A redox-dependent change in AtCPK21 kinase activity was demonstrated in vitro. Oxidation of AtCPK21 resulted in a decrease in kinase activity to 19% of that of untreated AtCPK21, but Trx-h1 effectively restored the activity to 90%. An intramolecular disulfide bond (Cys97-Cys108) that is responsible for this redox modulation was then identified. In addition, endogenous AtCPK21 was shown to be oxidized in vivo when the culture cells were treated with H2 O2 . These results suggest that redox regulation of AtCPK21 by Trx-h in response to external stimuli is important for appropriate cellular responses. The relationship between the redox regulation system and Ca(2+) signaling pathways is discussed. © 2013 The Authors. FEBS Journal published by John Wiley & Sons Ltd on behalf of FEBS.

  4. A New Approach for Flexible Molecular Docking Based on Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Yi Fu

    2015-01-01

    Full Text Available Molecular docking methods play an important role in the field of computer-aided drug design. In the work, on the basis of the molecular docking program AutoDock, we present QLDock as a tool for flexible molecular docking. For the energy evaluation, the algorithm uses the binding free energy function that is provided by the AutoDock 4.2 tool. The new search algorithm combines the features of a quantum-behaved particle swarm optimization (QPSO algorithm and local search method of Solis and Wets for solving the highly flexible protein-ligand docking problem. We compute the interaction of 23 protein-ligand complexes and compare the results with those of the QDock and AutoDock programs. The experimental results show that our approach leads to substantially lower docking energy and higher docking precision in comparison to Lamarckian genetic algorithm and QPSO algorithm alone. QPSO-ls algorithm was able to identify the correct binding mode of 74% of the complexes. In comparison, the accuracy of QPSO and LGA is 52% and 61%, respectively. This difference in performance rises with increasing complexity of the ligand. Thus, the novel algorithm QPSO-ls may be used to dock ligand with many rotatable bonds with high accuracy.

  5. Ranking docking poses by graph matching of protein-ligand interactions: lessons learned from the D3R Grand Challenge 2

    Science.gov (United States)

    da Silva Figueiredo Celestino Gomes, Priscila; Da Silva, Franck; Bret, Guillaume; Rognan, Didier

    2018-01-01

    A novel docking challenge has been set by the Drug Design Data Resource (D3R) in order to predict the pose and affinity ranking of a set of Farnesoid X receptor (FXR) agonists, prior to the public release of their bound X-ray structures and potencies. In a first phase, 36 agonists were docked to 26 Protein Data Bank (PDB) structures of the FXR receptor, and next rescored using the in-house developed GRIM method. GRIM aligns protein-ligand interaction patterns of docked poses to those of available PDB templates for the target protein, and rescore poses by a graph matching method. In agreement with results obtained during the previous 2015 docking challenge, we clearly show that GRIM rescoring improves the overall quality of top-ranked poses by prioritizing interaction patterns already visited in the PDB. Importantly, this challenge enables us to refine the applicability domain of the method by better defining the conditions of its success. We notably show that rescoring apolar ligands in hydrophobic pockets leads to frequent GRIM failures. In the second phase, 102 FXR agonists were ranked by decreasing affinity according to the Gibbs free energy of the corresponding GRIM-selected poses, computed by the HYDE scoring function. Interestingly, this fast and simple rescoring scheme provided the third most accurate ranking method among 57 contributions. Although the obtained ranking is still unsuitable for hit to lead optimization, the GRIM-HYDE scoring scheme is accurate and fast enough to post-process virtual screening data.

  6. Partial purification and characterization of a Ca(2+)-dependent protein kinase from pea nuclei

    Science.gov (United States)

    Li, H.; Dauwalder, M.; Roux, S. J.

    1991-01-01

    Almost all the Ca(2+)-dependent protein kinase activity in nuclei purified from etiolated pea (Pisum sativum, L.) plumules is present in a single enzyme that can be extracted from chromatin by 0.3 molar NaCl. This protein kinase can be further purified 80,000-fold by salt fractionation and high performance liquid chromatography, after which it has a high specific activity of about 100 picomoles per minute per microgram in the presence of Ca2+ and reaches half-maximal activation at about 3 x 10(-7) molar free Ca2+, without calmodulin. It is a monomer with a molecular weight near 90,000. It can efficiently use histone III-S, ribosomal S6 protein, and casein as artificial substrates, but it phosphorylates phosvitin only weakly. Its Ca(2+)-dependent kinase activity is half-maximally inhibited by 0.1 millimolar chlorpromazine, by 35 nanomolar K-252a and by 7 nanomolar staurosporine. It is insensitive to sphingosine, an inhibitor of protein kinase C, and to basic polypeptides that block other Ca(2+)-dependent protein kinases. It is not stimulated by exogenous phospholipids or fatty acids. In intact isolated pea nuclei it preferentially phosphorylates several chromatin-associated proteins, with the most phosphorylated protein band being near the same molecular weight (43,000) as a nuclear protein substrate whose phosphorylation has been reported to be stimulated by phytochrome in a calcium-dependent fashion.

  7. Application of the docking program SOL for CSAR benchmark.

    Science.gov (United States)

    Sulimov, Alexey V; Kutov, Danil C; Oferkin, Igor V; Katkova, Ekaterina V; Sulimov, Vladimir B

    2013-08-26

    This paper is devoted to results obtained by the docking program SOL and the post-processing program DISCORE at the CSAR benchmark. SOL and DISCORE programs are described. SOL is the original docking program developed on the basis of the genetic algorithm, MMFF94 force field, rigid protein, precalculated energy grid including desolvation in the frame of simplified GB model, vdW, and electrostatic interactions and taking into account the ligand internal strain energy. An important SOL feature is the single- or multi-processor performance for up to hundreds of CPUs. DISCORE improves the binding energy scoring by the local energy optimization of the ligand docked pose and a simple linear regression on the base of available experimental data. The docking program SOL has demonstrated a good ability for correct ligand positioning in the active sites of the tested proteins in most cases of CSAR exercises. SOL and DISCORE have not demonstrated very exciting results on the protein-ligand binding free energy estimation. Nevertheless, for some target proteins, SOL and DISCORE were among the first in prediction of inhibition activity. Ways to improve SOL and DISCORE are discussed.

  8. Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types

    DEFF Research Database (Denmark)

    Dümmler, Bettina A; Hauge, Camilla; Silber, Joachim

    2005-01-01

    characterization of a predicted new human RSK homologue, RSK4. We showed that RSK4 is a predominantly cytosolic protein with very low expression and several characteristics of the RSK family kinases, including the presence of two functional kinase domains and a C-terminal docking site for ERK. Surprisingly......, however, in all cell types analyzed, endogenous RSK4 was maximally (constitutively) activated under serum-starved conditions where other RSKs are inactive due to their requirement for growth factor stimulation. Constitutive activation appeared to result from constitutive phosphorylation of Ser232, Ser372...

  9. Differential regulation of synaptic and extrasynaptic α4 GABA(A) receptor populations by protein kinase A and protein kinase C in cultured cortical neurons.

    Science.gov (United States)

    Bohnsack, John Peyton; Carlson, Stephen L; Morrow, A Leslie

    2016-06-01

    The GABAA α4 subunit exists in two distinct populations of GABAA receptors. Synaptic GABAA α4 receptors are localized at the synapse and mediate phasic inhibitory neurotransmission, while extrasynaptic GABAA receptors are located outside of the synapse and mediate tonic inhibitory transmission. These receptors have distinct pharmacological and biophysical properties that contribute to interest in how these different subtypes are regulated under physiological and pathological states. We utilized subcellular fractionation procedures to separate these populations of receptors in order to investigate their regulation by protein kinases in cortical cultured neurons. Protein kinase A (PKA) activation decreases synaptic α4 expression while protein kinase C (PKC) activation increases α4 subunit expression, and these effects are associated with increased β3 S408/409 or γ2 S327 phosphorylation respectively. In contrast, PKA activation increases extrasynaptic α4 and δ subunit expression, while PKC activation has no effect. Our findings suggest synaptic and extrasynaptic GABAA α4 subunit expression can be modulated by PKA to inform the development of more specific therapeutics for neurological diseases that involve deficits in GABAergic transmission. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon).

    Science.gov (United States)

    Hazarika, Ridip; Parida, Pratap; Neog, Bijoy; Yadav, Raj Narain Singh

    2012-01-01

    Diabetes is one of the major life threatening diseases worldwide. It creates major health problems in urban India. Glycogen Synthase Kinase-3 (GSK-3) protein of human is known for phosphorylating and inactivating glycogen synthase which also acts as a negative regulator in the hormonal control of glucose homeostasis. In traditional medicine, Momordica charantia is used as antidiabetic plant because of its hypoglycemic effect. Hence to block the active site of the GSK-3 protein three anti-diabetic compounds namely, charantin, momordenol & momordicilin were taken from Momordica charantia for docking study and calculation of binding energy. The aim of present investigation is to find the binding energy of three major insulin-like active compounds against glycogen synthase kinase-3 (GSK-3), one of the key proteins involved in carbohydrate metabolism, with the help of molecular docking using ExomeTM Horizon suite. The study recorded minimum binding energy by momordicilin in comparison to the others.

  11. Protein Kinase C δ: a Gatekeeper of Immune Homeostasis.

    Science.gov (United States)

    Salzer, Elisabeth; Santos-Valente, Elisangela; Keller, Bärbel; Warnatz, Klaus; Boztug, Kaan

    2016-10-01

    Human autoimmune disorders present in various forms and are associated with a life-long burden of high morbidity and mortality. Many different circumstances lead to the loss of immune tolerance and often the origin is suspected to be multifactorial. Recently, patients with autosomal recessive mutations in PRKCD encoding protein kinase c delta (PKCδ) have been identified, representing a monogenic prototype for one of the most prominent forms of humoral systemic autoimmune diseases, systemic lupus erythematosus (SLE). PKCδ is a signaling kinase with multiple downstream target proteins and with functions in various signaling pathways. Interestingly, mouse models have indicated a special role of the ubiquitously expressed protein in the control of B-cell tolerance revealed by the severe autoimmunity in Prkcd (-/-) knockout mice as the major phenotype. As such, the study of PKCδ deficiency in humans has tremendous potential in enhancing our knowledge on the mechanisms of B-cell tolerance.

  12. Molecular modelling of calcium dependent protein kinase 4 (CDPK4) from Plasmodium falciparum

    CSIR Research Space (South Africa)

    Tsekoa, Tsepo L

    2009-10-01

    Full Text Available eukaryotic protein kinases (ePKs) as defined in model organisms. A novel family of phylogenetically distinct ePK-related genes in P. falciparum has been identified. These kinases (up to 20 in number [2], designated the FIKK family due to a conserved amino...]. The protein kinase complement of Plasmodium falciparum, the main infectious agent of lethal malaria in humans, has been analysed in detail [2, 3]. These analyses revealed that the P. falciparum kinome comprises as many as 65 sequences related to typical...

  13. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    Science.gov (United States)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  14. Human and server docking prediction for CAPRI round 30-35 using LZerD with combined scoring functions.

    Science.gov (United States)

    Peterson, Lenna X; Kim, Hyungrae; Esquivel-Rodriguez, Juan; Roy, Amitava; Han, Xusi; Shin, Woong-Hee; Zhang, Jian; Terashi, Genki; Lee, Matt; Kihara, Daisuke

    2017-03-01

    We report the performance of protein-protein docking predictions by our group for recent rounds of the Critical Assessment of Prediction of Interactions (CAPRI), a community-wide assessment of state-of-the-art docking methods. Our prediction procedure uses a protein-protein docking program named LZerD developed in our group. LZerD represents a protein surface with 3D Zernike descriptors (3DZD), which are based on a mathematical series expansion of a 3D function. The appropriate soft representation of protein surface with 3DZD makes the method more tolerant to conformational change of proteins upon docking, which adds an advantage for unbound docking. Docking was guided by interface residue prediction performed with BindML and cons-PPISP as well as literature information when available. The generated docking models were ranked by a combination of scoring functions, including PRESCO, which evaluates the native-likeness of residues' spatial environments in structure models. First, we discuss the overall performance of our group in the CAPRI prediction rounds and investigate the reasons for unsuccessful cases. Then, we examine the performance of several knowledge-based scoring functions and their combinations for ranking docking models. It was found that the quality of a pool of docking models generated by LZerD, that is whether or not the pool includes near-native models, can be predicted by the correlation of multiple scores. Although the current analysis used docking models generated by LZerD, findings on scoring functions are expected to be universally applicable to other docking methods. Proteins 2017; 85:513-527. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Protein kinase C alpha controls erythropoietin receptor signaling.

    NARCIS (Netherlands)

    M.M. von Lindern (Marieke); M. Parren-Van Amelsvoort (Martine); T.B. van Dijk (Thamar); E. Deiner; B. Löwenberg (Bob); E. van den Akker (Emile); S. van Emst-de Vries (Sjenet); P.J. Willems (Patrick); H. Beug (Hartmut)

    2000-01-01

    textabstractProtein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We

  16. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  17. Differential expression of mRNAs for protein kinase inhibitor isoforms in mouse brain.

    OpenAIRE

    Seasholtz, A F; Gamm, D M; Ballestero, R P; Scarpetta, M A; Uhler, M D

    1995-01-01

    Many neurotransmitters are known to regulate neuronal cell function by means of activation of cAMP-dependent protein kinase (PKA) and phosphorylation of neuronal substrate proteins, including transcription factors and ion channels. Here, we have characterized the gene expression of two isoforms of a protein kinase inhibitor (PKI) specific for PKA in mouse brain by RNase protection and in situ hybridization histochemistry. The studies demonstrate that the PKI alpha isoform is abundant in many ...

  18. Protective features of resveratrol on human spermatozoa cryopreservation may be mediated through 5' AMP-activated protein kinase activation.

    Science.gov (United States)

    Shabani Nashtaei, M; Amidi, F; Sedighi Gilani, M A; Aleyasin, A; Bakhshalizadeh, Sh; Naji, M; Nekoonam, S

    2017-03-01

    Biochemical and physical modifications during the freeze-thaw process adversely influence the restoration of energy-dependent sperm functions required for fertilization. Resveratrol, a phytoalexin, has been introduced to activate 5' AMP-activated protein kinase which is a cell energy sensor and a cell metabolism regulator. The cryoprotection of resveratrol on sperm cryoinjury via activation of AMP-activated protein kinase also remains to be elucidated. Our aim, thus, was to investigate: (i) the presence and intracellular localization of AMP-activated protein kinase protein; (ii) whether resveratrol may exert a protective effect on certain functional properties of fresh and post-thaw human spermatozoa through modulation of AMP-activated protein kinase. Spermatozoa from normozoospermic men were incubated with or without different concentrations of Compound C as an AMP-activated protein kinase inhibitor or resveratrol as an AMP-activated protein kinase activator for different lengths of time and were then cryopreserved. AMP-activated protein kinase is expressed essentially in the entire flagellum and the post-equatorial region. Viability of fresh spermatozoa was not significantly affected by the presence of Compound C or resveratrol. However, although Compound C caused a potent inhibition of spermatozoa motility parameters, resveratrol did not induce negative effect, except a significant reduction in motility at 25 μm for 1 h. Furthermore, resveratrol significantly increased AMP-activated protein kinase phosphorylation and mitochondrial membrane potential and decreased reactive oxygen species and apoptosis-like changes in frozen-thawed spermatozoa. Nevertheless, it was not able to compensate decreased sperm viability and motility parameters following cryopreservation. In contrast, Compound C showed opposite effects to resveratrol on AMP-activated protein kinase phosphorylation, reactive oxygen species, apoptosis-like changes, mitochondrial membrane potential, and

  19. Rosetta Ligand docking with flexible XML protocols.

    Science.gov (United States)

    Lemmon, Gordon; Meiler, Jens

    2012-01-01

    RosettaLigand is premiere software for predicting how a protein and a small molecule interact. Benchmark studies demonstrate that 70% of the top scoring RosettaLigand predicted interfaces are within 2Å RMSD from the crystal structure [1]. The latest release of Rosetta ligand software includes many new features, such as (1) docking of multiple ligands simultaneously, (2) representing ligands as fragments for greater flexibility, (3) redesign of the interface during docking, and (4) an XML script based interface that gives the user full control of the ligand docking protocol.

  20. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    International Nuclear Information System (INIS)

    Goettel, Jeremy A.; Liang, Dongchun; Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R.; Gould, Kathleen L.; Hanks, Steven K.; Polk, D. Brent

    2011-01-01

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1 -/- colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  1. The interaction of CK2alpha and CK2beta, the subunits of protein kinase CK2, requires CK2beta in a preformed conformation and is enthalpically driven

    DEFF Research Database (Denmark)

    Raaf, Jennifer; Brunstein, Elena; Issinger, Olaf-Georg

    2008-01-01

    . In contrast to the cyclins in the case of the cyclin-dependent kinases CK2beta is no on-switch of CK2alpha; rather the formation of the CK2 holoenzyme is accompanied with an overall change of the enzyme's profile including a modulation of the substrate specificity, an increase of the thermostability......, and an allocation of docking sites for membranes and other proteins. In this study we used C-terminal deletion variants of human CK2alpha and CK2beta that were enzymologically fully competent and in particular able to form a heterotetrameric holoenzyme. With differential scanning calorimetry (DSC) we confirmed...

  2. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  3. Automated docking screens: a feasibility study.

    Science.gov (United States)

    Irwin, John J; Shoichet, Brian K; Mysinger, Michael M; Huang, Niu; Colizzi, Francesco; Wassam, Pascal; Cao, Yiqun

    2009-09-24

    Molecular docking is the most practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCK Blaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCK Blaster recapitulates the crystal ligand pose within 2 A rmsd 50-60% of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5% of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5% of 100 property-matched decoys while also posing within 2 A rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available at http://blaster.docking.org .

  4. Structure of Human G Protein-Coupled Receptor Kinase 2 in Complex with the Kinase Inhibitor Balanol

    Energy Technology Data Exchange (ETDEWEB)

    Tesmer, John J.G.; Tesmer, Valerie M.; Lodowski, David T.; Steinhagen, Henning; Huber, Jochen (Sanofi); (Michigan); (Texas)

    2010-07-19

    G protein-coupled receptor kinase 2 (GRK2) is a pharmaceutical target for the treatment of cardiovascular diseases such as congestive heart failure, myocardial infarction, and hypertension. To better understand how nanomolar inhibition and selectivity for GRK2 might be achieved, we have determined crystal structures of human GRK2 in complex with G{beta}{gamma} in the presence and absence of the AGC kinase inhibitor balanol. The selectivity of balanol among human GRKs is assessed.

  5. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases

    NARCIS (Netherlands)

    Beekmann, Karsten; Haan, De Laura H.J.; Actis-Goretta, Lucas; Bladeren, Van Peter J.; Rietjens, Ivonne M.C.M.

    2016-01-01

    To study the effect of metabolic conjugation of flavonoids on the potential to inhibit protein kinase activity, the inhibitory effects of the dietary flavonol kaempferol and its major plasma conjugate kaempferol-3-O-glucuronide on protein kinases were studied. To this end, the inhibition of the

  6. Phosphorylation of acidic ribosomal proteins from rabbit reticulocytes by a ribosome-associated casein kinase

    DEFF Research Database (Denmark)

    Issinger, O G

    1977-01-01

    Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate polyacryl......Two acidic proteins from 80-S ribosomes were isolated and purified to homogeneity. The purified acidic proteins could be phosphorylated by casein kinase using [gamma-32P]ATP and [gamma-32P]GTP as a phosphoryl donor. The proteins became phosphorylated in situ, too. Sodium dodecyl sulfate...

  7. Sensitization of human colon cancer cells to sodium butyrate-induced apoptosis by modulation of sphingosine kinase 2 and protein kinase D

    International Nuclear Information System (INIS)

    Xiao, Min; Liu, Yungang; Zou, Fei

    2012-01-01

    Sphingosine kinases (SphKs) have been recognized as important proteins regulating cell proliferation and apoptosis. Of the two isoforms of SphK (SphK1 and SphK2), little is known about the functions of SphK2. Sodium butyrate (NaBT) has been established as a promising chemotherapeutic agent, but the precise mechanism for its effects is unknown. In this study, we investigated the role of SphK2 in NaBT-induced apoptosis of HCT116 colon cancer cells. The results indicated that following NaBT treatment SphK2 was translocated from the nucleus to the cytoplasm, leading to its accumulation in the cytoplasm; in the meantime, only mild apoptosis occurred. However, downregulation of SphK2 resulted in sensitized apoptosis, and overexpression of SphK2 led to even lighter apoptosis; these strongly indicate an inhibitory role of SphK2 in cell apoptosis induced by NaBT. After knocking down protein kinase D (PKD), another protein reported to be critical in cell proliferation/apoptosis process, by using siRNA, blockage of cytoplasmic accumulation of SphK2 and sensitized apoptosis following NaBT treatment were observed. The present study suggests that PKD and SphK2 may form a mechanism for the resistance of cancer cells to tumor chemotherapies, such as HCT116 colon cancer cells to NaBT, and these two proteins may become molecular targets for designation of new tumor-therapeutic drugs. -- Highlights: ► In the present study sodium butyrate (10 mM) induced mild apoptosis of cancer cells. ► The apoptosis was negatively regulated by cytoplasmic Sphingosine Kinase 2 (SphK2). ► Translocation of SphK2 from nucleus to cytoplasm was mediated by protein kinase D. ► Downregulation of SphK2 or protein kinase D leads to sensitized cell apoptosis.

  8. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    Science.gov (United States)

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  9. Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer.

    Science.gov (United States)

    Michie, Alison M; McCaig, Alison M; Nakagawa, Rinako; Vukovic, Milica

    2010-01-01

    Death-associated protein kinase (DAPK) is a pro-apoptotic serine/threonine protein kinase that is dysregulated in a wide variety of cancers. The mechanism by which this occurs has largely been attributed to promoter hypermethylation, which results in gene silencing. However, recent studies indicate that DAPK expression can be detected in some cancers, but its function is still repressed, suggesting that DAPK activity can be subverted at a post-translational level in cancer cells. This review will focus on recent data describing potential mechanisms that may alter the expression, regulation or function of DAPK.

  10. AMP-activated protein kinase downregulates Kv7.1 cell surface expression

    DEFF Research Database (Denmark)

    Andersen, Martin N; Krzystanek, Katarzyna; Jespersen, Thomas

    2012-01-01

    in response to polarization of the epithelial Madin-Darby canine kidney (MDCK) cell line and that this was mediated by activation of protein kinase C (PKC). In this study, the pathway downstream of PKC, which leads to internalization of Kv7.1 upon cell polarization, is elucidated. We show by confocal...... microscopy that Kv7.1 is endocytosed upon initiation of the polarization process and sent for degradation by the lysosomal pathway. The internalization could be mimicked by pharmacological activation of the AMP-activated protein kinase (AMPK) using three different AMPK activators. We demonstrate...

  11. Protein kinase C alpha controls erythropoietin receptor signaling

    NARCIS (Netherlands)

    von Lindern, M.; Parren-van Amelsvoort, M.; van Dijk, T.; Deiner, E.; van den Akker, E.; van Emst-de Vries, S.; Willems, P.; Beug, H.; Löwenberg, B.

    2000-01-01

    Protein kinase C (PKC) is implied in the activation of multiple targets of erythropoietin (Epo) signaling, but its exact role in Epo receptor (EpoR) signal transduction and in the regulation of erythroid proliferation and differentiation remained elusive. We analyzed the effect of PKC inhibitors

  12. Resveratrol Inhibits Porcine Intestinal Glucose and Alanine Transport: Potential Roles of Na+/K+-ATPase Activity, Protein Kinase A, AMP-Activated Protein Kinase and the Association of Selected Nutrient Transport Proteins with Detergent Resistant Membranes

    Directory of Open Access Journals (Sweden)

    Stefanie Klinger

    2018-03-01

    Full Text Available Background: Beneficial effects of Resveratrol (RSV have been demonstrated, including effects on transporters and channels. However, little is known about how RSV influences intestinal transport. The aim of this study was to further characterize the effects of RSV on intestinal transport and the respective mechanisms. Methods: Porcine jejunum and ileum were incubated with RSV (300 µM, 30 min in Ussing chambers (functional studies and tissue bathes (detection of protein expression, phosphorylation, association with detergent resistant membranes (DRMs. Results: RSV reduced alanine and glucose-induced short circuit currents (ΔIsc and influenced forskolin-induced ΔIsc. The phosphorylation of sodium–glucose-linked transporter 1 (SGLT1, AMP-activated protein kinase (AMPK, protein kinase A substrates (PKA-S and liver kinase B1 (LKB1 increased but a causative relation to the inhibitory effects could not directly be established. The DRM association of SGLT1, peptide transporter 1 (PEPT1 and (phosphorylated Na+/H+-exchanger 3 (NHE3 did not change. Conclusion: RSV influences the intestinal transport of glucose, alanine and chloride and is likely to affect other transport processes. As the effects of protein kinase activation vary between the intestinal localizations, it would appear that increasing cyclic adenosine monophosphate (cAMP levels are part of the mechanism. Nonetheless, the physiological responses depend on cell type-specific structures.

  13. The potent, indirect adenosine monophosphate-activated protein kinase activator R419 attenuates mitogen-activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice

    Directory of Open Access Journals (Sweden)

    Galo L. Mejia

    2016-07-01

    Full Text Available Abstract. There is a great need for new therapeutics for the treatment of pain. A possible avenue to development of such therapeutics is to interfere with signaling pathways engaged in peripheral nociceptors that cause these neurons to become hyperexcitable. There is strong evidence that mitogen-activated protein kinases and phosphoinositide 3-kinase (PI3K/mechanistic target of rapamycin signaling pathways are key modulators of nociceptor excitability in vitro and in vivo. Activation of adenosine monophosphate-activated protein kinase (AMPK can inhibit signaling in both of these pathways, and AMPK activators have been shown to inhibit nociceptor excitability and pain hypersensitivity in rodents. R419 is one of, if not the most potent AMPK activator described to date. We tested whether R419 activates AMPK in dorsal root ganglion (DRG neurons and if this leads to decreased pain hypersensitivity in mice. We find that R419 activates AMPK in DRG neurons resulting in decreased mitogen-activated protein kinase signaling, decreased nascent protein synthesis, and enhanced P body formation. R419 attenuates nerve growth factor (NGF-induced changes in excitability in DRG neurons and blocks NGF-induced mechanical pain amplification in vivo. Moreover, locally applied R419 attenuates pain hypersensitivity in a model of postsurgical pain and blocks the development of hyperalgesic priming in response to both NGF and incision. We conclude that R419 is a promising lead candidate compound for the development of potent and specific AMPK activation to inhibit pain hypersensitivity as a result of injury.

  14. The development of an affinity evaluation and prediction system by using protein–protein docking simulations and parameter tuning

    Directory of Open Access Journals (Sweden)

    Koki Tsukamoto

    2009-01-01

    Full Text Available Koki Tsukamoto1, Tatsuya Yoshikawa1,2, Kiyonobu Yokota1, Yuichiro Hourai1, Kazuhiko Fukui11Computational Biology Research Center (CBRC, National Institute of Advanced Industrial Science and Technology (AIST, Koto-ku, Tokyo, Japan; 2Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka, JapanAbstract: A system was developed to evaluate and predict the interaction between protein pairs by using the widely used shape complementarity search method as the algorithm for docking simulations between the proteins. We used this system, which we call the affinity evaluation and prediction (AEP system, to evaluate the interaction between 20 protein pairs. The system first executes a “round robin” shape complementarity search of the target protein group, and evaluates the interaction between the complex structures obtained by the search. These complex structures are selected by using a statistical procedure that we developed called ‘grouping’. At a prevalence of 5.0%, our AEP system predicted protein–protein interactions with a 50.0% recall, 55.6% precision, 95.5% accuracy, and an F-measure of 0.526. By optimizing the grouping process, our AEP system successfully predicted 10 protein pairs (among 20 pairs that were biologically relevant combinations. Our ultimate goal is to construct an affinity database that will provide cell biologists and drug designers with crucial information obtained using our AEP system.Keywords: protein–protein interaction, affinity analysis, protein–protein docking, FFT, massive parallel computing

  15. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Resorufin: a lead for a new protein kinase CK2 inhibitor

    DEFF Research Database (Denmark)

    Sandholt, Iben Skjøth; Olsen, Birgitte Brinkmann; Guerra, Barbara

    2009-01-01

    Screening a natural compound library led to the identification of resorufin as a highly selective and potent inhibitor of protein kinase CK2. Out of 52 kinases tested, only CK2 was inhibited, in contrast to emodin, a structurally related, known CK2 inhibitor that, in addition to CK2, inhibited te...

  17. Activation of Protein Kinase C and Protein Kinase D in Human Natural Killer Cells: Effects of Tributyltin, Dibutyltin, and Tetrabromobisphenol A

    Science.gov (United States)

    Rana, Krupa; Whalen, Margaret M.

    2015-01-01

    Up to now, the ability of target cells to activate protein kinase C (PKC) and protein kinase D (PKD) (which is often a downstream target of PKC) has not been examined in natural killer (NK) lymphocytes. Here we examined whether exposure of human NK cells to lysis sensitive tumor cells activated PKC and PKD. The results of these studies show for the first time that activation of PKC and PKD occurs in response to target cell binding to NK cells. Exposure of NK cells to K562 tumor cells for 10 and 30 minutes increased phosphorylation/activation of both PKC and PKD by roughly 2 fold. Butyltins (tributyltin (TBT); dibutyltin (DBT)) and brominated compounds (tetrabromobisphenol A (TBBPA)) are environmental contaminants that are found in human blood. Exposures of NK cells to TBT, DBT or TBBPA decrease NK cell lytic function in part by activating the mitogen activated protein kinases (MAPKs) that are part of the NK lytic pathway. We established that PKC and PKD are part of the lytic pathway upstream of MAPKs and thus we investigated whether DBT, TBT, and TBBPA exposures activated PKC and PKD. TBT activated PKC by 2–3 fold at 10 min at concentrations ranging from 50–300 nM while DBT caused a 1.3 fold activation at 2.5 μM at 10 min. Both TBT and DBT caused an approximately 2 fold increase in phosphorylation/activation of PKC. Exposures to TBBPA caused no statistically significant changes in either PKC or PKD activation. PMID:26228090

  18. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    Science.gov (United States)

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. 3D-QSAR and molecular docking studies on derivatives of MK-0457, GSK1070916 and SNS-314 as inhibitors against Aurora B kinase.

    Science.gov (United States)

    Zhang, Baidong; Li, Yan; Zhang, Huixiao; Ai, Chunzhi

    2010-11-02

    Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q(2) = 0.605, r(2) (pred) = 0.826), (q(2) = 0.52, r(2) (pred) = 0.798) and (q(2) = 0.582, r(2) (pred) = 0.971) for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.

  20. The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes.

    OpenAIRE

    Standaert, M L; Avignon, A; Yamada, K; Bandyopadhyay, G; Farese, R V

    1996-01-01

    We questioned whether phosphatidylinositol 3-kinase (PI 3-kinase) and protein kinase C (PKC) function as interrelated signalling mechanisms during insulin action in rat adipocytes. Insulin rapidly activated a phospholipase D that hydrolyses phosphatidylcholine (PC), and this activation was accompanied by increases in diacylglycerol and translocative activation of PKC-alpha and PKC-beta in the plasma membrane. Wortmannin, an apparently specific PI 3-kinase inhibitor, inhibited insulin-stimulat...

  1. Solvated protein–DNA docking using HADDOCK

    International Nuclear Information System (INIS)

    Dijk, Marc van; Visscher, Koen M.; Kastritis, Panagiotis L.; Bonvin, Alexandre M. J. J.

    2013-01-01

    Interfacial water molecules play an important role in many aspects of protein–DNA specificity and recognition. Yet they have been mostly neglected in the computational modeling of these complexes. We present here a solvated docking protocol that allows explicit inclusion of water molecules in the docking of protein–DNA complexes and demonstrate its feasibility on a benchmark of 30 high-resolution protein–DNA complexes containing crystallographically-determined water molecules at their interfaces. Our protocol is capable of reproducing the solvation pattern at the interface and recovers hydrogen-bonded water-mediated contacts in many of the benchmark cases. Solvated docking leads to an overall improvement in the quality of the generated protein–DNA models for cases with limited conformational change of the partners upon complex formation. The applicability of this approach is demonstrated on real cases by docking a representative set of 6 complexes using unbound protein coordinates, model-built DNA and knowledge-based restraints. As HADDOCK supports the inclusion of a variety of NMR restraints, solvated docking is also applicable for NMR-based structure calculations of protein–DNA complexes.

  2. Novel adenosine 3',5'-cyclic monophosphate dependent protein kinases in a marine diatom

    International Nuclear Information System (INIS)

    Lin, P.P.C.; Volcani, B.E.

    1989-01-01

    Two novel adenosine 3',5'-cyclic monophosphate (cAMP) dependent protein kinases have been isolated from the diatom Cylindrotheca fusiformis. The kinases, designated I and II, are eluted from DEAE-Sephacel at 0.10 and 0.15 M NaCl. They have a high affinity for cAMP and are activated by micromolar cAMP. They exhibit maximal activity at 5 mM Mg 2+ and pH 8 with the preferred phosphate donor ATP and phosphate acceptor histone H1. They phosphorylate sea urchin sperm histone H1 on a single serine site in the sequence Arg-Lys-Gly-Ser( 32 P)-Ser-Asn-Ala-Arg and have an apparent M r of 75,000 as determined by gel filtration and sucrose density sedimentation. In the kinase I preparation a single protein band with an apparent M r of about 78,000 is photolabeled with 8-azido[ 32 P]cAMP and is also phosphorylated with [γ- 32 P]ATP in a cAMP-dependent manner, after autoradiography following sodium dodecyl sulfate gel electrophoresis. The rate of phosphorylation of the 78,000-dalton band is independent of the enzyme concentration. The results indicate that (i) these diatom cAMP-dependent protein kinases are monomeric proteins, possessing both the cAMP-binding regulatory and catalytic domains on the same polypeptide chain, (ii) the enzymes do not dissociate into smaller species upon activation by binding cAMP, and (iii) self-phosphorylation of the enzymes by an intrapeptide reaction is cAMP dependent. The two diatom cAMP kinases are refractory to the heat-stable protein kinase modulator from rabbit muscle, but they respond differently to proteolytic degradation and to inhibition by arachidonic acid and several microbial alkaloids

  3. GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation.

    Science.gov (United States)

    Černohorská, Markéta; Sulimenko, Vadym; Hájková, Zuzana; Sulimenko, Tetyana; Sládková, Vladimíra; Vinopal, Stanislav; Dráberová, Eduarda; Dráber, Pavel

    2016-06-01

    Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    Science.gov (United States)

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  5. HRR25, a putative protein kinase from budding yeast: Association with repair of damaged DNA

    International Nuclear Information System (INIS)

    Hoekstra, M.F.; Ou, A.C.; DeMaggio, A.J.; Burbee, D.G.; Liskay, R.M.; Heffron, F.

    1991-01-01

    In simple eukaryotes, protein kinases regulate mitotic and meiotic cell cycles, the response to polypeptide pheromones, and the initiation of nuclear DNA synthesis. The protein HRR25 from the budding yeast Saccharomyces cerevisiae was defined by the mutation hrr25-1. This mutation resulted in sensitivity to continuous expression of the HO double-strand endonuclease, to methyl methanesulfonate, and to x-irradiation. Homozygotes of hrr25-1 were unable to sporulate and disruption and deletion of HRR25 interfered with mitotic and meiotic cell division. Sequence analysis revealed two distinctive regions in the protein. The NH 2 -terminus of HRR25 contains the hallmark features of protein kinases, whereas the COOH-terminus is rich in proline and glutamine. Mutations in HRR25 at conserved residues found in all protein kinases inactivated the gene, and these mutants exhibited the hrr25 null phenotypes. Taken together, the hrr25 mutant phenotypes and the features of the gene product indicate that HRR25 is a distinctive member of the protein kinase superfamily

  6. Evolutionary Paths of the cAMP-Dependent Protein Kinase (PKA) Catalytic Subunits

    Science.gov (United States)

    Søberg, Kristoffer; Jahnsen, Tore; Rognes, Torbjørn; Skålhegg, Bjørn S.; Laerdahl, Jon K.

    2013-01-01

    3′,5′-cyclic adenosine monophosphate (cAMP) dependent protein kinase or protein kinase A (PKA) has served as a prototype for the large family of protein kinases that are crucially important for signal transduction in eukaryotic cells. The PKA catalytic subunits Cα and Cβ, encoded by the two genes PRKACA and PRKACB, respectively, are among the best understood and characterized human kinases. Here we have studied the evolution of this gene family in chordates, arthropods, mollusks and other animals employing probabilistic methods and show that Cα and Cβ arose by duplication of an ancestral PKA catalytic subunit in a common ancestor of vertebrates. The two genes have subsequently been duplicated in teleost fishes. The evolution of the PRKACG retroposon in simians was also investigated. Although the degree of sequence conservation in the PKA Cα/Cβ kinase family is exceptionally high, a small set of signature residues defining Cα and Cβ subfamilies were identified. These conserved residues might be important for functions that are unique to the Cα or Cβ clades. This study also provides a good example of a seemingly simple phylogenetic problem which, due to a very high degree of sequence conservation and corresponding weak phylogenetic signals, combined with problematic nonphylogenetic signals, is nontrivial for state-of-the-art probabilistic phylogenetic methods. PMID:23593352

  7. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    Yang, Se-Ran; Cho, Sung-Dae; Ahn, Nam-Shik; Jung, Ji-Won; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sung-Hoon; Lee, Bong-Hee; Kang, Kyung-Sun; Lee, Yong-Soon

    2005-01-01

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  8. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  9. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    International Nuclear Information System (INIS)

    Cross, Janet V; Foss, Frank W; Rady, Joshua M; Macdonald, Timothy L; Templeton, Dennis J

    2007-01-01

    Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of 'Phase 2' enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. These results demonstrate that MEKK1 is directly modified and inhibited by

  10. Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis.

    Science.gov (United States)

    Parulekar, Rishikesh S; Barage, Sagar H; Jalkute, Chidambar B; Dhanavade, Maruti J; Fandilolu, Prayagraj M; Sonawane, Kailas D

    2013-08-01

    Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.

  11. Integrin-linked kinase: a Scaffold protein unique among its ilk.

    Science.gov (United States)

    Dagnino, Lina

    2011-06-01

    Integrin-linked kinase (ILK) is a scaffolding protein with central roles in tissue development and homeostasis. Much debate has focused on whether ILK is a bona fide or a pseudo- kinase. This aspect of ILK function has been complicated by the large volumes of conflicting observations obtained from a wide variety of experimental approaches, from in vitro models, to analyses in invertebrates and in mammals. Key findings in support or against the notion that ILK is catalytically active are summarized. The importance of ILK as an adaptor protein is well established, and defining its role as a signaling hub will be the next key step to understand its distinct biological roles across tissues and species.

  12. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3

    OpenAIRE

    Halfter, Ursula; Ishitani, Manabu; Zhu, Jian-Kang

    2000-01-01

    The Arabidopsis thaliana SOS2 and SOS3 genes are required for intracellular Na+ and K+ homeostasis and plant tolerance to high Na+ and low K+ environments. SOS3 is an EF hand type calcium-binding protein having sequence similarities with animal neuronal calcium sensors and the yeast calcineurin B. SOS2 is a serine/threonine protein kinase in the SNF1/AMPK family. We report here that SOS3 physically interacts with and activates SOS2 protein kinase. Genetically, sos2sos3 double mutant analysis ...

  13. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    Science.gov (United States)

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  14. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  15. Regulation of AMP-activated protein kinase by LKB1 and CaMKK in adipocytes

    DEFF Research Database (Denmark)

    Gormand, Amélie; Henriksson, Emma; Ström, Kristoffer

    2011-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine kinase that regulates cellular and whole body energy homeostasis. In adipose tissue, activation of AMPK has been demonstrated in response to a variety of extracellular stimuli. However, the upstream kinase that activates AMPK in adipocytes...

  16. Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation.

    Directory of Open Access Journals (Sweden)

    Andrew Pierce

    Full Text Available Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.

  17. A multi-angular mass spectrometric view at cyclic nucleotide signaling proteins : Structure/function and protein interactions of cAMP- and cGMP-dependent protein kinase

    NARCIS (Netherlands)

    Scholten, A.

    2006-01-01

    The primary focus of this thesis is the two kinases PKA and PKG, cAMP and cGMP dependent protein kinase respectively. PKA and PKG are studied both at structure/function level as well as at the level of interaction with other proteins in tissue. Our primary methods are all based on mass spectrometry.

  18. Structures of apicomplexan calcium-dependent protein kinases reveal mechanism of activation by calcium

    Energy Technology Data Exchange (ETDEWEB)

    Wernimont, Amy K; Artz, Jennifer D.; Jr, Patrick Finerty; Lin, Yu-Hui; Amani, Mehrnaz; Allali-Hassani, Abdellah; Senisterra, Guillermo; Vedadi, Masoud; Tempel, Wolfram; Mackenzie, Farrell; Chau, Irene; Lourido, Sebastian; Sibley, L. David; Hui, Raymond (Toronto); (WU-MED)

    2010-09-21

    Calcium-dependent protein kinases (CDPKs) have pivotal roles in the calcium-signaling pathway in plants, ciliates and apicomplexan parasites and comprise a calmodulin-dependent kinase (CaMK)-like kinase domain regulated by a calcium-binding domain in the C terminus. To understand this intramolecular mechanism of activation, we solved the structures of the autoinhibited (apo) and activated (calcium-bound) conformations of CDPKs from the apicomplexan parasites Toxoplasma gondii and Cryptosporidium parvum. In the apo form, the C-terminal CDPK activation domain (CAD) resembles a calmodulin protein with an unexpected long helix in the N terminus that inhibits the kinase domain in the same manner as CaMKII. Calcium binding triggers the reorganization of the CAD into a highly intricate fold, leading to its relocation around the base of the kinase domain to a site remote from the substrate binding site. This large conformational change constitutes a distinct mechanism in calcium signal-transduction pathways.

  19. Insulin resistance enhances the mitogen-activated protein kinase signaling pathway in ovarian granulosa cells.

    Directory of Open Access Journals (Sweden)

    Linghui Kong

    Full Text Available The ovary is the main regulator of female fertility. Granulosa cell dysfunction may be involved in various reproductive endocrine disorders. Here we investigated the effect of insulin resistance on the metabolism and function of ovarian granulosa cells, and dissected the functional status of the mitogen-activated protein kinase signaling pathway in these cells. Our data showed that dexamethasone-induced insulin resistance in mouse granulosa cells reduced insulin sensitivity, accompanied with an increase in phosphorylation of p44/42 mitogen-activated protein kinase. Furthermore, up-regulation of cytochrome P450 subfamily 17 and testosterone and down-regulation of progesterone were observed in insulin-resistant mouse granulosa cells. Inhibition of p44/42 mitogen-activated protein kinase after induction of insulin resistance in mouse granulosa cells decreased phosphorylation of p44/42 mitogen-activated protein kinase, downregulated cytochrome P450 subfamily 17 and lowered progesterone production. This insulin resistance cell model can successfully demonstrate certain mechanisms such as hyperandrogenism, which may inspire a new strategy for treating reproductive endocrine disorders by regulating cell signaling pathways.

  20. Combining self- and cross-docking as benchmark tools: the performance of DockBench in the D3R Grand Challenge 2

    Science.gov (United States)

    Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano

    2018-01-01

    Molecular docking is a powerful tool in the field of computer-aided molecular design. In particular, it is the technique of choice for the prediction of a ligand pose within its target binding site. A multitude of docking methods is available nowadays, whose performance may vary depending on the data set. Therefore, some non-trivial choices should be made before starting a docking simulation. In the same framework, the selection of the target structure to use could be challenging, since the number of available experimental structures is increasing. Both issues have been explored within this work. The pose prediction of a pool of 36 compounds provided by D3R Grand Challenge 2 organizers was preceded by a pipeline to choose the best protein/docking-method couple for each blind ligand. An integrated benchmark approach including ligand shape comparison and cross-docking evaluations was implemented inside our DockBench software. The results are encouraging and show that bringing attention to the choice of the docking simulation fundamental components improves the results of the binding mode predictions.

  1. MORPH-PRO: a novel algorithm and web server for protein morphing.

    Science.gov (United States)

    Castellana, Natalie E; Lushnikov, Andrey; Rotkiewicz, Piotr; Sefcovic, Natasha; Pevzner, Pavel A; Godzik, Adam; Vyatkina, Kira

    2013-07-11

    Proteins are known to be dynamic in nature, changing from one conformation to another while performing vital cellular tasks. It is important to understand these movements in order to better understand protein function. At the same time, experimental techniques provide us with only single snapshots of the whole ensemble of available conformations. Computational protein morphing provides a visualization of a protein structure transitioning from one conformation to another by producing a series of intermediate conformations. We present a novel, efficient morphing algorithm, Morph-Pro based on linear interpolation. We also show that apart from visualization, morphing can be used to provide plausible intermediate structures. We test this by using the intermediate structures of a c-Jun N-terminal kinase (JNK1) conformational change in a virtual docking experiment. The structures are shown to dock with higher score to known JNK1-binding ligands than structures solved using X-Ray crystallography. This experiment demonstrates the potential applications of the intermediate structures in modeling or virtual screening efforts. Visualization of protein conformational changes is important for characterization of protein function. Furthermore, the intermediate structures produced by our algorithm are good approximations to true structures. We believe there is great potential for these computationally predicted structures in protein-ligand docking experiments and virtual screening. The Morph-Pro web server can be accessed at http://morph-pro.bioinf.spbau.ru.

  2. Diacylglycerol kinase regulation of protein kinase D during oxidative stress-induced intestinal cell injury

    International Nuclear Information System (INIS)

    Song Jun; Li Jing; Mourot, Joshua M.; Mark Evers, B.; Chung, Dai H.

    2008-01-01

    We recently demonstrated that protein kinase D (PKD) exerts a protective function during oxidative stress-induced intestinal epithelial cell injury; however, the exact role of DAG kinase (DGK)ζ, an isoform expressed in intestine, during this process is unknown. We sought to determine the role of DGK during oxidative stress-induced intestinal cell injury and whether DGK acts as an upstream regulator of PKD. Inhibition of DGK with R59022 compound or DGKζ siRNA transfection decreased H 2 O 2 -induced RIE-1 cell apoptosis as measured by DNA fragmentation and increased PKD phosphorylation. Overexpression of kinase-dead DGKζ also significantly increased PKD phosphorylation. Additionally, endogenous nuclear DGKζ rapidly translocated to the cytoplasm following H 2 O 2 treatment. Our findings demonstrate that DGK is involved in the regulation of oxidative stress-induced intestinal cell injury. PKD activation is induced by DGKζ, suggesting DGK is an upstream regulator of oxidative stress-induced activation of the PKD signaling pathway in intestinal epithelial cells

  3. MOLECULAR DOCKING AND DYNAMICS STUDIES ON THE PROTEIN-PROTEIN INTERACTIONS OF ELECTRICALLY ACTIVE PILIN NANOWIRES OF GEOBACTER SULFURREDUCENS.

    Directory of Open Access Journals (Sweden)

    D. Jeya Sundara Sharmila1 *

    2017-06-01

    Full Text Available Molecular interactions are key aspects in biological recognitions applicable in nano/micro systems. Bacterial nanowires are pilus filament based structures that can conduct electrons. The transport of electron is proposed to be facilitated by filamentous fibers made up of polymeric assemblies of proteins called pilin. Geobacter sulfurreducens is capable of delivering electrons through extracellular electron transport (EET by employing conductive nanowires, which are pilin proteins composed of type IV subunit PilA. Protein-protein interactions play an important role in the stabilization of the pilin nanowire assembly complex and it contains transmembrane (TM domain. In current study, protein-protein docking and multiple molecular dynamic (MD simulations were performed to understand the binding mode of pilin nanowires. The MD result explains the conformational behavior and folding of pilin nanowires in water environment in different time scale duration 20, 5, 5, 10 and 20ns (total of 60ns. Direct hydrogen bonds and water mediated hydrogen bonds that play a crucial role during the simulation were investigated. The conformational state, folding, end-toend distance profile and hydrogen bonding behavior had indicated that the Geobacter sulfurreducens pilin nanowires have electrical conductivity properties.

  4. FlexAID: Revisiting Docking on Non-Native-Complex Structures.

    Science.gov (United States)

    Gaudreault, Francis; Najmanovich, Rafael J

    2015-07-27

    Small-molecule protein docking is an essential tool in drug design and to understand molecular recognition. In the present work we introduce FlexAID, a small-molecule docking algorithm that accounts for target side-chain flexibility and utilizes a soft scoring function, i.e. one that is not highly dependent on specific geometric criteria, based on surface complementarity. The pairwise energy parameters were derived from a large dataset of true positive poses and negative decoys from the PDBbind database through an iterative process using Monte Carlo simulations. The prediction of binding poses is tested using the widely used Astex dataset as well as the HAP2 dataset, while performance in virtual screening is evaluated using a subset of the DUD dataset. We compare FlexAID to AutoDock Vina, FlexX, and rDock in an extensive number of scenarios to understand the strengths and limitations of the different programs as well as to reported results for Glide, GOLD, and DOCK6 where applicable. The most relevant among these scenarios is that of docking on flexible non-native-complex structures where as is the case in reality, the target conformation in the bound form is not known a priori. We demonstrate that FlexAID, unlike other programs, is robust against increasing structural variability. FlexAID obtains equivalent sampling success as GOLD and performs better than AutoDock Vina or FlexX in all scenarios against non-native-complex structures. FlexAID is better than rDock when there is at least one critical side-chain movement required upon ligand binding. In virtual screening, FlexAID results are lower on average than those of AutoDock Vina and rDock. The higher accuracy in flexible targets where critical movements are required, intuitive PyMOL-integrated graphical user interface and free source code as well as precompiled executables for Windows, Linux, and Mac OS make FlexAID a welcome addition to the arsenal of existing small-molecule protein docking methods.

  5. Bacillus subtilis strain deficient for the protein-tyrosine kinase PtkA exhibits impaired DNA replication

    DEFF Research Database (Denmark)

    Petranovic, Dina; Michelsen, Ole; Zahradka, K

    2007-01-01

    Bacillus subtilis has recently come into the focus of research on bacterial protein-tyrosine phosphorylation, with several proteins kinases, phosphatases and their substrates identified in this Gram-positive model organism. B. subtilis protein-tyrosine phosphorylation system Ptk...... microscopy. B. subtilis cells lacking the kinase PtkA accumulated extra chromosome equivalents, exhibited aberrant initiation mass for DNA replication and an unusually long D period....

  6. Domain wise docking analyses of the modular chitin binding protein CBP50 from Bacillus thuringiensis serovar konkukian S4.

    Science.gov (United States)

    Sehar, Ujala; Mehmood, Muhammad Aamer; Hussain, Khadim; Nawaz, Salman; Nadeem, Shahid; Siddique, Muhammad Hussnain; Nadeem, Habibullah; Gull, Munazza; Ahmad, Niaz; Sohail, Iqra; Gill, Saba Shahid; Majeed, Summera

    2013-01-01

    This paper presents an in silico characterization of the chitin binding protein CBP50 from B. thuringiensis serovar konkukian S4 through homology modeling and molecular docking. The CBP50 has shown a modular structure containing an N-terminal CBM33 domain, two consecutive fibronectin-III (Fn-III) like domains and a C-terminal CBM5 domain. The protein presented a unique modular structure which could not be modeled using ordinary procedures. So, domain wise modeling using MODELLER and docking analyses using Autodock Vina were performed. The best conformation for each domain was selected using standard procedure. It was revealed that four amino acid residues Glu-71, Ser-74, Glu-76 and Gln-90 from N-terminal domain are involved in protein-substrate interaction. Similarly, amino acid residues Trp-20, Asn-21, Ser-23 and Val-30 of Fn-III like domains and Glu-15, Ala-17, Ser-18 and Leu-35 of C-terminal domain were involved in substrate binding. Site-directed mutagenesis of these proposed amino acid residues in future will elucidate the key amino acids involved in chitin binding activity of CBP50 protein.

  7. Protein kinase C is activated in glomeruli from streptozotocin diabetic rats. Possible mediation by glucose

    International Nuclear Information System (INIS)

    Craven, P.A.; DeRubertis, F.R.

    1989-01-01

    Glomerular inositol content and the turnover of polyphosphoinositides was reduced by 58% in 1-2 wk streptozotocin diabetic rats. Addition of inositol to the incubation medium increased polyphosphoinositide turnover in glomeruli from diabetic rats to control values. Despite the reduction in inositol content and polyphosphoinositide turnover, protein kinase C was activated in glomeruli from diabetic rats, as assessed by an increase in the percentage of enzyme activity associated with the particulate cell fraction. Total protein kinase C activity was not different between glomeruli from control and diabetic rats. Treatment of diabetic rats with insulin to achieve near euglycemia prevented the increase in particulate protein kinase C. Moreover, incubation of glomeruli from control rats with glucose (100-1,000 mg/dl) resulted in a progressive increase in labeled diacylglycerol production and in the percentage of protein kinase C activity which was associated with the particulate fraction. These results support a role for hyperglycemia per se in the enhanced state of activation of protein kinase C seen in glomeruli from diabetic rats. Glucose did not appear to increase diacylglycerol by stimulating inositol phospholipid hydrolysis in glomeruli. Other pathways for diacylglycerol production, including de novo synthesis and phospholipase C mediated hydrolysis of phosphatidylcholine or phosphatidyl-inositol-glycan are not excluded

  8. Ethyl p-methoxycinnamate from Kaempferia galanga inhibits angiogenesis through tyrosine kinase

    Directory of Open Access Journals (Sweden)

    Juni Ekowati

    2015-04-01

    Full Text Available Background Many tumors express on their receptor tyrosine kinases vascular endothelial growth factor activity associated with angiogenesis. Inhibition of angiogenesis through reduction of tyrosine kinase activity is a promising strategy for cancer therapy. The present study aimed to determine the mechanism and potency of ethyl p-methoxycinnamate (EPMC isolated from Kaempferia galanga as angiogenesis inhibitor. Methods A laboratory experimental study was conducted using chorio-allantoic membranes (CAMs of nine-day old chicken eggs induced by 60ng basic fibroblast growth factor (bFGF. Ethyl p-methoxycinnamate (EPMC potency was determined at dosages of 30, 60, 90 and 120 mg and compared with celecoxib 60 mg as reference drug and one negative bFGF-induced control group. Neovascularization and endothelial cell count in CAM blood vessels were evaluated. To predict the antiangiogenic mechanism of EPMC, a docking study was performed with the Molegro Virtual Docker program on tyrosine kinase as receptor (PDB 1XKK. Results Angiogenesis stimulation by bFGF was prevented significantly (p<0.05 by EPMC at dosages of 30, 60, 90 and 120 mg and this activity was dose dependent. Molecular docking showed interaction between EPMC functional groups and tyrosine kinase amino acids at Met766, Met793, Thr854, Thr790, Gln791 and Ala743. There was an association between EPMC antiangiogenic activity and docking study results. Conclusions Ethyl p-methoxycinnamate is a potential new angiogenesis inhibitor through interaction with tyrosine kinase. EPMC could be a promising therapeutic agent for treatment of angiogenesis-related diseases.

  9. Neuronal phosphorylated RNA-dependent protein kinase in Creutzfeldt-Jakob disease.

    LENUS (Irish Health Repository)

    Paquet, Claire

    2009-02-01

    The mechanisms of neuronal apoptosis in Creutzfeldt-Jakob disease (CJD) and their relationship to accumulated prion protein (PrP) are unclear. A recent cell culture study showed that intracytoplasmic PrP may induce phosphorylated RNA-dependent protein kinase (PKR(p))-mediated cell stress. The double-stranded RNA protein kinase PKR is a proapoptotic and stress kinase that accumulates in degenerating neurons in Alzheimer disease. To determine whether neuronal apoptosis in human CJD is associated with activation of the PKR(p) signaling pathway, we assessed in situ end labeling and immunocytochemistry for PrP, glial fibrillary acidic protein, CD68, activated caspase 3, and phosphorylated PKR (Thr451) in samples of frontal, occipital, and temporal cortex, striatum, and cerebellum from 6 patients with sporadic CJD and 5 controls. Neuronal immunostaining for activated PKR was found in all CJD cases. The most staining was in nuclei and, in contrast to findings in Alzheimer disease, cytoplasmic labeling was not detected. Both the number and distribution of PKR(p)-positive neurons correlated closely with the extent of neuronal apoptosis, spongiosis, astrocytosis, and microglial activation and with the phenotype and disease severity. There was no correlation with the type, topography, or amount of extracellular PrP deposits. These findings suggest that neuronal apoptosis in human CJD may result from PKR(p)-mediated cell stress and are consistent with recent studies supporting a pathogenic role for intracellular or transmembrane PrP.

  10. Complexes of γ-tubulin with nonreceptor protein tyrosine kinases Src and Fyn in differentiating P19 embryonal carcinoma cells

    International Nuclear Information System (INIS)

    Kukharskyy, Vitaliy; Sulimenko, Vadym; Macurek, Libor; Sulimenko, Tetyana; Draberova, Eduarda; Draber, Pavel

    2004-01-01

    Nonreceptor protein tyrosine kinases of the Src family have been shown to play an important role in signal transduction as well as in regulation of microtubule protein interactions. Here we show that γ-tubulin (γ-Tb) in P19 embryonal carcinoma cells undergoing neuronal differentiation is phosphorylated and forms complexes with protein tyrosine kinases of the Src family, Src and Fyn. Elevated expression of both kinases during differentiation corresponded with increased level of proteins phosphorylated on tyrosine. Immunoprecipitation experiments with antibodies against Src, Fyn, γ-tubulin, and with anti-phosphotyrosine antibody revealed that γ-tubulin appeared in complexes with these kinases. In vitro kinase assays showed tyrosine phosphorylation of proteins in γ-tubulin complexes isolated from differentiated cells. Pretreatment of cells with Src family selective tyrosine kinase inhibitor PP2 reduced the amount of phosphorylated γ-tubulin in the complexes. Binding experiments with recombinant SH2 and SH3 domains of Src and Fyn kinases revealed that protein complexes containing γ-tubulin bound to SH2 domains and that these interactions were of SH2-phosphotyrosine type. The combined data suggest that Src family kinases might have an important role in the regulation of γ-tubulin interaction with tubulin dimers or other proteins during neurogenesis

  11. An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates.

    Science.gov (United States)

    Molle, Virginie; Leiba, Jade; Zanella-Cléon, Isabelle; Becchi, Michel; Kremer, Laurent

    2010-11-01

    Identification of the phosphorylated residues of bacterial Ser/Thr protein kinase (STPK) substrates still represents a challenging task. Herein, we present a new strategy allowing the rapid determination of phosphoacceptors in kinase substrates, essentially based on the dual expression of the kinase with its substrate in the surrogate E. coli, followed by MS analysis in a single-step procedure. The performance of this strategy is illustrated using two distinct proteins from Mycobacterium tuberculosis as model substrates, the GroEL2 and HspX chaperones. A comparative analysis with a standard method that includes mass spectrometry analysis of in vitro phosphorylated substrates is also addressed.

  12. Radioimmunoassay of inactive creatine kinase B protein in human plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burnam, M H; Shell, W E [California Univ., Los Angeles (USA). School of Medicine

    1981-08-27

    The authors describe a rapid, sensitive radioimmunoassay for enzymatically inactive creatine kinase B protein (CK-Bi) in plasma. /sup 125/I-CK-Bi of high specific activity and good stability was prepared by oxidant-based iodination. A 12-minute first antibody incubation was used. Bound and free antigen were separated by a second antibody system. Large excesses of purified CK-MM from human skeletal muscle did not react in the assay. Cross reactivity to CK-MB purified from the plasma of patients with acute myocardial infarction was negligible. The 95th percentile of plasma CK-Bi in 150 adults was 145 ..mu..g equivalents/ml. Within-assay and between-assay precision ranged from 5% to 9% and 6% to 10%, respectively. Evidence is presented indicating that the assay measures inactive creatine kinase B protein, a protein not measured by current assay systems dependent on biological activity.

  13. Radioimmunoassay of inactive creatine kinase B protein in human plasma

    International Nuclear Information System (INIS)

    Burnam, M.H.; Shell, W.E.

    1981-01-01

    The authors describe a rapid, sensitive radioimmunoassay for enzymatically inactive creatine kinase B protein (CK-Bi) in plasma. 125 I-CK-Bi of high specific activity and good stability was prepared by oxidant-based iodination. A 12-minute first antibody incubation was used. Bound and free antigen were separated by a second antibody system. Large excesses of purified CK-MM from human skeletal muscle did not react in the assay. Cross reactivity to CK-MB purified from the plasma of patients with acute myocardial infarction was negligible. The 95th percentile of plasma CK-Bi in 150 adults was 145 μg equivalents/ml. Within-assay and between-assay precision ranged from 5% to 9% and 6% to 10%, respectively. Evidence is presented indicating that the assay measures inactive creatine kinase B protein, a protein not measured by current assay systems dependent on biological activity. (Auth.)

  14. 2,5-hexanedione (HD) treatment alters calmodulin, Ca2+/calmodulin-dependent protein kinase II, and protein kinase C in rats' nerve tissues

    International Nuclear Information System (INIS)

    Wang Qingshan; Hou Liyan; Zhang Cuili; Zhao Xiulan; Yu Sufang; Xie, Ke-Qin

    2008-01-01

    Calcium-dependent mechanisms, particularly those mediated by Ca 2+ /calmodulin (CaM)-dependent protein kinase II (CaMKII), have been implicated in neurotoxicant-induced neuropathy. However, it is unknown whether similar mechanisms exist in 2,5-hexanedione (HD)-induced neuropathy. For that, we investigated the changes of CaM, CaMKII, protein kinase C (PKC) and polymerization ratios (PRs) of NF-L, NF-M and NF-H in cerebral cortex (CC, including total cortex and some gray), spinal cord (SC) and sciatic nerve (SN) of rats treated with HD at a dosage of 1.75 or 3.50 mmol/kg for 8 weeks (five times per week). The results showed that CaM contents in CC, SC and SN were significantly increased, which indicated elevation of Ca 2+ concentrations in nerve tissues. CaMKII contents and activities were also increased in CC and were positively correlated with gait abnormality, but it could not be found in SC and SN. The increases of PKC contents and activities were also observed in SN and were positively correlated with gait abnormality. Except for that of NF-M in CC, the PRs of NF-L, NF-M and NF-H were also elevated in nerve tissues, which was consistent with the activation of protein kinases. The results suggested that CaMKII might be partly (in CC but not in SC and SN) involved in HD-induced neuropathy. CaMKII and PKC might mediate the HD neurotoxicity by altering the NF phosphorylation status and PRs

  15. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2009-06-01

    Full Text Available Raf Kinase Inhibitory Protein (RKIP, also PEBP1, a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/- mouse embryonic fibroblasts (MEFs to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/- MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  16. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Science.gov (United States)

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  17. Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning.

    Science.gov (United States)

    Farley, J; Auerbach, S

    Phosphorylation of ion channels has been suggested as one molecular mechanism responsible for learning-produced long-term changes in neuronal excitability. Persistent training-produced changes in two distinct K+ currents (IA (ref. 2), IK-Ca (refs 3,4)) and a voltage-dependent calcium current (ICa; refs 3,4) have previously been shown to occur in type B photoreceptors of Hermissenda, as a result of associative learning. But the identity of the phosphorylation pathway(s) responsible for these changes has not as yet been determined. Injections of cyclic AMP-dependent protein kinase reduce a K+ current (IK) in B cells which is different from those changed by training, but fails to reduce IA and IK-Ca. Phosphorylase b kinase (an exogenous calcium/calmodulin-dependent kinase) reduces IA, but whether IK-Ca and ICa are changed in the manner of associative training is not yet known. Another protein kinase present in high concentrations in both mammalian brain and molluscan nervous systems is protein kinase C, which is both calcium- and phospholipid-sensitive. We now present evidence that activation of protein kinase C by the tumour promoter phorbol ester (PDB) and intracellular injection of the enzyme induce conductance changes similar to those caused by associative training in Hermissenda B cells (that is a reduction of IA and IK-Ca, and enhancement of ICa). These results represent the first direct demonstration that protein kinase C affects membrane K+ ion conductance mechanisms.

  18. DMPD: Protein kinase C epsilon: a new target to control inflammation andimmune-mediated disorders. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14643884 Protein kinase C epsilon: a new target to control inflammation andimmune-m...g) (.html) (.csml) Show Protein kinase C epsilon: a new target to control inflammation andimmune-mediated di...sorders. PubmedID 14643884 Title Protein kinase C epsilon: a new target to contro

  19. Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein ...

    African Journals Online (AJOL)

    Aldehyde Dehydrogenase 1 and Raf Kinase Inhibitor Protein Expression Defines the Proliferative Nature of Cervical Cancer Stem Cells. ... of cervical cancer stem cells and also to validate them in initial and advanced stages of cervical cancer. Keywords: Cervical cancer, ALDH1, BALB/c-nu/nu, HeLa cells, RKIP, Sox2 ...

  20. Combination of scoring schemes for protein docking

    Directory of Open Access Journals (Sweden)

    Schomburg Dietmar

    2007-08-01

    Full Text Available Abstract Background Docking algorithms are developed to predict in which orientation two proteins are likely to bind under natural conditions. The currently used methods usually consist of a sampling step followed by a scoring step. We developed a weighted geometric correlation based on optimised atom specific weighting factors and combined them with our previously published amino acid specific scoring and with a comprehensive SVM-based scoring function. Results The scoring with the atom specific weighting factors yields better results than the amino acid specific scoring. In combination with SVM-based scoring functions the percentage of complexes for which a near native structure can be predicted within the top 100 ranks increased from 14% with the geometric scoring to 54% with the combination of all scoring functions. Especially for the enzyme-inhibitor complexes the results of the ranking are excellent. For half of these complexes a near-native structure can be predicted within the first 10 proposed structures and for more than 86% of all enzyme-inhibitor complexes within the first 50 predicted structures. Conclusion We were able to develop a combination of different scoring schemes which considers a series of previously described and some new scoring criteria yielding a remarkable improvement of prediction quality.

  1. Free radical-mediated stimulation of tyrosine-specific protein kinase in rat liver plasma membrane

    International Nuclear Information System (INIS)

    Chan, T.M.; Tatoyan, A.; Cheng, E.; Shargill, N.S.; Pleta, M.

    1986-01-01

    Incorporation of 32 P from (γ- 32 P)-ATP into endogenous proteins of plasma membranes isolated from rat liver was significantly increased by several naphthoquinones including menadione. This apparent stimulation of membrane-associated protein kinase activity by these compounds was most striking (up to 6-7 fold) when the synthetic copolymers containing glutamate and tyrosine residues (4:1) was used as substrate. Since tyrosine residues are the only possible phosphate acceptor in the copolymers, the quinone-stimulated liver membrane protein kinase is most likely tyrosine specific. Although not required for protein kinase activity, dithiothreitol (DTT) was necessary for its stimulation by these quinonoid compounds. Hydrolysis of ATP was not significantly affected by quinones under the experimental conditions. Both menadione and vitamin k 5 increased phosphorylation of plasma membrane proteins of molecular weight 45 and 60 kd. The stimulatory effect of menadione on protein phosphorylation was prevented by the addition of superoxide dismutase. Dihydroxyfumerate, which spontaneously produces various radical species, and H 2 O 2 , also stimulated tyrosine-specific protein phosphorylation. DTT was also required for their full effect. It, therefore, appears that quinonone stimulation of tyrosine-specific protein phosphorylation is mediated by oxygen radicals

  2. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  3. Protein kinase Cepsilon is important for migration of neuroblastoma cells

    International Nuclear Information System (INIS)

    Stensman, Helena; Larsson, Christer

    2008-01-01

    Migration is important for the metastatic capacity and thus for the malignancy of cancer cells. There is limited knowledge on regulatory factors that promote the migration of neuroblastoma cells. This study investigates the hypothesis that protein kinase C (PKC) isoforms regulate neuroblastoma cell motility. PKC isoforms were downregulated with siRNA or modulated with activators and inhibitors. Migration was analyzed with scratch and transwell assays. Protein phosphorylation and expression levels were measured with Western blot. Stimulation with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced migration of SK-N-BE(2)C neuroblastoma cells. Treatment with the general protein kinase C (PKC) inhibitor GF109203X and the inhibitor of classical isoforms Gö6976 inhibited migration while an inhibitor of PKCβ isoforms did not have an effect. Downregulation of PKCε, but not of PKCα or PKCδ, with siRNA led to a suppression of both basal and TPA-stimulated migration. Experiments using PD98059 and LY294002, inhibitors of the Erk and phosphatidylinositol 3-kinase (PI3K) pathways, respectively, showed that PI3K is not necessary for TPA-induced migration. The Erk pathway might be involved in TPA-induced migration but not in migration driven by PKCε. TPA induced phosphorylation of the PKC substrate myristoylated alanine-rich C kinase substrate (MARCKS) which was suppressed by the PKC inhibitors. Treatment with siRNA oligonucleotides against different PKC isoforms before stimulation with TPA did not influence the phosphorylation of MARCKS. PKCε is important for migration of SK-N-BE(2)C neuroblastoma cells. Neither the Erk pathway nor MARCKS are critical downstream targets of PKCε but they may be involved in TPA-mediated migration

  4. GREEN: A program package for docking studies in rational drug design

    Science.gov (United States)

    Tomioka, Nobuo; Itai, Akiko

    1994-08-01

    A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.

  5. Sensitization of TRPA1 by Protein Kinase A.

    Directory of Open Access Journals (Sweden)

    Jannis E Meents

    Full Text Available The TRPA1 ion channel is expressed in nociceptive (pain-sensitive somatosensory neurons and is activated by a wide variety of chemical irritants, such as acrolein in smoke or isothiocyanates in mustard. Here, we investigate the enhancement of TRPA1 function caused by inflammatory mediators, which is thought to be important in lung conditions such as asthma and COPD. Protein kinase A is an important kinase acting downstream of inflammatory mediators to cause sensitization of TRPA1. By using site-directed mutagenesis, patch-clamp electrophysiology and calcium imaging we identify four amino acid residues, S86, S317, S428, and S972, as the principal targets of PKA-mediated phosphorylation and sensitization of TRPA1.

  6. Characterization of a MAPKK-like protein kinase TOPK

    International Nuclear Information System (INIS)

    Matsumoto, Suguru; Abe, Yasuhito; Fujibuchi, Taketsugu; Takeuchi, Takashi; Kito, Katsumi; Ueda, Norifumi; Shigemoto, Kazuhiro; Gyo, Kiyofumi

    2004-01-01

    A MAPKK-like protein kinase TOPK expresses in a wide range of proliferating cells and tissues such as cancer cells and testis. However, details of this kinase are still uncovered. We investigated the intracellular distribution of TOPK and its association with cdk1/cyclin B and microtubules. In interphase cells, TOPK expresses in cytosol and nucleus without any significant association with microtubule networks. During mitosis, TOPK-Thr-9 was phosphorylated by cdk1/cyclin B and TOPK significantly associates with mitotic spindles. When TOPK expression was suppressed, formation of spindle midzone was thinned and dimmed and cytokinesis was disturbed. We propose that TOPK plays a role in the formation of spindle midzone and in cytokinesis

  7. Diverse role of CBL-interacting protein kinases in plant

    Indian Academy of Sciences (India)

    admin

    Diverse role of CBL-interacting protein kinases in plant. Most of the extracellular and ... to their role in stress signalling. Their role in transport of plant hormone auxin and mechanism of action in stress response shed new light on diverse role of.

  8. Fragment-Based Drug Discovery of Potent Protein Kinase C Iota Inhibitors.

    Science.gov (United States)

    Kwiatkowski, Jacek; Liu, Boping; Tee, Doris Hui Ying; Chen, Guoying; Ahmad, Nur Huda Binte; Wong, Yun Xuan; Poh, Zhi Ying; Ang, Shi Hua; Tan, Eldwin Sum Wai; Ong, Esther Hq; Nurul Dinie; Poulsen, Anders; Pendharkar, Vishal; Sangthongpitag, Kanda; Lee, May Ann; Sepramaniam, Sugunavathi; Ho, Soo Yei; Cherian, Joseph; Hill, Jeffrey; Keller, Thomas H; Hung, Alvin W

    2018-05-24

    Protein kinase C iota (PKC-ι) is an atypical kinase implicated in the promotion of different cancer types. A biochemical screen of a fragment library has identified several hits from which an azaindole-based scaffold was chosen for optimization. Driven by a structure-activity relationship and supported by molecular modeling, a weakly bound fragment was systematically grown into a potent and selective inhibitor against PKC-ι.

  9. Phosphorylation in vitro of eukaryotic initiation factors IF-E2 and IF-E3 by protein kinases

    DEFF Research Database (Denmark)

    Issinger, O G; Benne, R; Hershey, J W

    1976-01-01

    Purified protein synthesis initiation factors IF-E2 and IF-E3 from rabbit reticulocytes were phosphorylated in vitro with protein kinases isolated from the same source. The highest levels of phosphorylation resulted from incubation of the factors with a cyclic nucleotide-independent protein kinase...

  10. Molecular Modeling, Docking, Dynamics and simulation of Gefitinib and its derivatives with EGFR in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Reddy, Pulakuntla Swetha; Lokhande, Kiran Bharat; Nagar, Shuchi; Reddy, Vaddi Damodara; Murthy, P Sushma; Swamy, K Venkateswara

    2018-02-27

    Gefitinib (lressa) is the most prescribed drug, highly effective to treat of non-small cell lung cancer; primarily it was considered targeted therapy is a kinase inhibitor. The non-small cell lung cancer caused by the mutation in the Epithelial Growth Factor Receptor (EGFR) gene, Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. To explore research on Gefitinib and its derivatives interaction with crystal structure EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR was done using GROMACS 5.1.1 software to explore the interaction stability in a cell. The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signalling in non-small cell lung cancer. These result suggested that a computer aided screening approach of a Gefitinib derivatives compounds with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase.

    Science.gov (United States)

    Matsushita, Y; Hanazawa, K; Yoshioka, K; Oguchi, T; Kawakami, S; Watanabe, Y; Nishiguchi, M; Nyunoya, H

    2000-08-01

    The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.

  12. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    Directory of Open Access Journals (Sweden)

    Macdonald Timothy L

    2007-09-01

    Full Text Available Abstract Background Dietary isothiocyanates (ITCs are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. Methods The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. Results ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. Conclusion These results

  13. Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin

    International Nuclear Information System (INIS)

    Nasruddin, Ahmad N.; Feroz, Shevin R.; Mukarram, Abdul K.; Mohamad, Saharuddin B.; Tayyab, Saad

    2016-01-01

    The interaction of SB202190, a p38 mitogen-activated protein kinase inhibitor with the main drug transporter in human circulation, human serum albumin (HSA) was studied using fluorescence spectroscopy and in silico docking methods. The association constant, K a of the binding reaction was determined to be 3.24±0.07×10 4 M −1 at 25 °C based on fluorescence quenching titration results. The values of enthalpy change and entropy change for the interaction were found as −8.54 kJ mol −1 and 58.01 J mol −1 K −1 , respectively. Both thermodynamic data and docking results suggested the involvement of hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of SB202190–HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Comparison of HSA thermograms obtained in the absence and the presence of SB202190 suggested improved protein thermal stability upon complexation with the drug. Competitive drug displacement results as well as modeling data concluded the preferred binding site of SB202190 on HSA as Sudlow's site I. - Highlights: • SB202190 interacts with HSA with moderate affinity. • Involvement of hydrophobic and van der Waals forces in SB202190 binding. • SB202190 binding results in microenvironmental changes around fluorophores. • Sudlow's site I is the preferred binding site of SB202190.

  14. Fluorometric and molecular docking investigation on the binding characteristics of SB202190 to human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Nasruddin, Ahmad N.; Feroz, Shevin R. [Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mukarram, Abdul K. [Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mohamad, Saharuddin B. [Bioinformatics Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Tayyab, Saad, E-mail: saadtayyab2004@yahoo.com [Biomolecular Research Group, Biochemistry Programme, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Centre of Research for Computational Sciences and Informatics for Biology, Bioindustry, Environment, Agriculture and Healthcare, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2016-06-15

    The interaction of SB202190, a p38 mitogen-activated protein kinase inhibitor with the main drug transporter in human circulation, human serum albumin (HSA) was studied using fluorescence spectroscopy and in silico docking methods. The association constant, K{sub a} of the binding reaction was determined to be 3.24±0.07×10{sup 4} M{sup −1} at 25 °C based on fluorescence quenching titration results. The values of enthalpy change and entropy change for the interaction were found as −8.54 kJ mol{sup −1} and 58.01 J mol{sup −1} K{sup −1}, respectively. Both thermodynamic data and docking results suggested the involvement of hydrophobic and van der Waals forces in the complex formation. Three-dimensional fluorescence data of SB202190–HSA complex demonstrated significant changes in the microenvironment around the protein fluorophores upon drug binding. Comparison of HSA thermograms obtained in the absence and the presence of SB202190 suggested improved protein thermal stability upon complexation with the drug. Competitive drug displacement results as well as modeling data concluded the preferred binding site of SB202190 on HSA as Sudlow's site I. - Highlights: • SB202190 interacts with HSA with moderate affinity. • Involvement of hydrophobic and van der Waals forces in SB202190 binding. • SB202190 binding results in microenvironmental changes around fluorophores. • Sudlow's site I is the preferred binding site of SB202190.

  15. Outer Membrane Protein 25 of Brucella Activates Mitogen-Activated Protein Kinase Signal Pathway in Human Trophoblast Cells

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2017-12-01

    Full Text Available Outer membrane protein 25 (OMP25, a virulence factor from Brucella, plays an important role in maintaining the structural stability of Brucella. Mitogen-activated protein kinase (MAPK signal pathway widely exists in eukaryotic cells. In this study, human trophoblast cell line HPT-8 and BALB/c mice were infected with Brucella abortus 2308 strain (S2308 and 2308ΔOmp25 mutant strain. The expression of cytokines and activation of MAPK signal pathway were detected. We found that the expressions of tumor necrosis factor-α, interleukin-1, and interleukin-10 (IL-10 were increased in HPT-8 cells infected with S2308 and 2308ΔOmp25 mutant. S2308 also activated p38 phosphorylation protein, extracellular-regulated protein kinases (ERK, and Jun-N-terminal kinase (JNK from MAPK signal pathway. 2308ΔOmp25 could not activate p38, ERK, and JNK branches. Immunohistochemistry experiments showed that S2308 was able to activate phosphorylation of p38 and ERK in BABL/c mice. However, 2308ΔOmp25 could weakly activate phosphorylation of p38 and ERK. These results suggest that Omp25 played an important role in the process of Brucella activation of the MAPK signal pathway.

  16. Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors

    DEFF Research Database (Denmark)

    Nguyen, E.D.; Meiler, J.; Norn, C.

    2013-01-01

    screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone...... extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top ranked comparative models. In contrast to the comparative models themselves...

  17. Possible Inhibitor from Traditional Chinese Medicine for the β Form of Calcium-Dependent Protein Kinase Type II in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Tzu-Chieh Hung

    2014-01-01

    Full Text Available Recently, an important topic of major depressive disorder (MDD had been published in 2013. MDD is one of the most prevalent and disabling mental disorders. Consequently, much research is being undertaken into the causes and treatment. It has been found that inhibition of the β form of calcium/calmodulin-dependent protein kinase type II (β-CaMKII can ameliorate the disorder. Upon screening the traditional Chinese medicine (TCM database by molecular docking, sengesterone, labiatic acid, and methyl 3-O-feruloylquinate were selected for molecular dynamics. After 20 ns simulation, the RMSD, total energy, and structure variation could define the protein-ligand interaction. Furthermore, sengesterone, the principle candidate compound, has been found to have an effect on the regulation of emotions and memory development. In structure variation, we find the sample functional group of important amino acids make the protein stable and have limited variation. Due to similarity of structure variations, we suggest that these compounds may have an effect on β-CaMKII and that sengesterone may have a similar efficacy as the control. However labiatic acid may be a stronger inhibitor of β-CaMKII based on the larger RMSD and variation.

  18. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    International Nuclear Information System (INIS)

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  19. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  20. Opportunities to Target Specific Contractile Abnormalities with Smooth Muscle Protein Kinase Inhibitors

    Directory of Open Access Journals (Sweden)

    Annegret Ulke-Lemée

    2010-05-01

    Full Text Available Smooth muscle is a major component of most hollow organ systems (e.g., airways, vasculature, bladder and gut/gastrointestine; therefore, the coordinated regulation of contraction is a key property of smooth muscle. When smooth muscle functions normally, it contributes to general health and wellness, but its dysfunction is associated with morbidity and mortality. Rho-associated protein kinase (ROCK is central to calcium-independent, actomyosin-mediated contractile force generation in the vasculature, thereby playing a role in smooth muscle contraction, cell motility and adhesion. Recent evidence supports an important role for ROCK in the increased vasoconstriction and remodeling observed in various models of hypertension. This review will provide a commentary on the development of specific ROCK inhibitors and their clinical application. Fasudil will be discussed as an example of bench-to-bedside development of a clinical therapeutic that is used to treat conditions of vascular hypercontractility. Due to the wide spectrum of biological processes regulated by ROCK, many additional clinical indications might also benefit from ROCK inhibition. Apart from the importance of ROCK in smooth muscle contraction, a variety of other protein kinases are known to play similar roles in regulating contractile force. The zipper-interacting protein kinase (ZIPK and integrin-linked kinase (ILK are two well-described regulators of contraction. The relative contribution of each kinase to contraction depends on the muscle bed as well as hormonal and neuronal stimulation. Unfortunately, specific inhibitors for ZIPK and ILK are still in the development phase, but the success of fasudil suggests that inhibitors for these other kinases may also have valuable clinical applications. Notably, the directed inhibition of ZIPK with a pseudosubstrate molecule shows unexpected effects on the contractility of gastrointestinal smooth muscle.

  1. Structural aspects of protein kinase ASK1 regulation

    Czech Academy of Sciences Publication Activity Database

    Obšil, Tomáš; Obšilová, Veronika

    2017-01-01

    Roč. 66, 1 Dec (2017), s. 31-36 ISSN 2212-4926 R&D Projects: GA ČR(CZ) GA16-02739S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : ASK1 kinase * apoptosis * thioredoxin * 14-3-3 protein Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  2. Involvement of protein kinase C-δ activation in betulininduced ...

    African Journals Online (AJOL)

    Purpose: To investigate the clinical benefits and underlying mechanisms of action of betulin in the treatment of cancer using a neuroblastoma (NB) cell model. Method: Cell viability ... of tumor recurrence. Keywords: Betulin, Neuroblastoma, Apoptosis, protein kinase C-δ, Adjuvant chemotherapy, Tumor recurrence, Caspase ...

  3. Molecular Analysis of AFP and HSA Interactions with PTEN Protein

    Directory of Open Access Journals (Sweden)

    Mingyue Zhu

    2015-01-01

    Full Text Available Human cytoplasmic alpha-fetoprotein (AFP has been classified as a member of the albuminoid gene family. The protein sequence of AFP has significant homology to that of human serum albumin (HSA, but its biological characteristics are vastly different from HSA. The AFP functions as a regulator in the phosphatidylinositol 3-kinase (PI3K/protein kinase B (AKT pathway, but HSA plays a key role as a transport protein. To probe their molecular mechanisms, we have applied colocalization, coimmunoprecipitation (co-IP, and molecular docking approaches to analyze the differences between AFP and HSA. The data from colocalization and co-IP displayed a strong interaction between AFP and PTEN (phosphatase and tensin homolog, demonstrating that AFP did bind to PTEN, but HSA did not. The molecular docking study further showed that the AFP domains I and III could contact with PTEN. In silicon substitutions of AFP binding site residues at position 490M/K and 105L/R corresponding to residues K490 and R105 in HSA resulted in steric clashes with PTEN residues R150 and K46, respectively. These steric clashes may explain the reason why HSA cannot bind to PTEN. Ultimately, the experimental results and the molecular modeling data from the interactions of AFP and HSA with PTEN will help us to identify targets for designing drugs and vaccines against human hepatocellular carcinoma.

  4. Evolution of the cAMP-dependent protein kinase (PKA catalytic subunit isoforms.

    Directory of Open Access Journals (Sweden)

    Kristoffer Søberg

    Full Text Available The 3',5'-cyclic adenosine monophosphate (cAMP-dependent protein kinase, or protein kinase A (PKA, pathway is one of the most versatile and best studied signaling pathways in eukaryotic cells. The two paralogous PKA catalytic subunits Cα and Cβ, encoded by the genes PRKACA and PRKACB, respectively, are among the best understood model kinases in signal transduction research. In this work, we explore and elucidate the evolution of the alternative 5' exons and the splicing pattern giving rise to the numerous PKA catalytic subunit isoforms. In addition to the universally conserved Cα1/Cβ1 isoforms, we find kinase variants with short N-termini in all main vertebrate classes, including the sperm-specific Cα2 isoform found to be conserved in all mammals. We also describe, for the first time, a PKA Cα isoform with a long N-terminus, paralogous to the PKA Cβ2 N-terminus. An analysis of isoform-specific variation highlights residues and motifs that are likely to be of functional importance.

  5. Role of the mixed-lineage protein kinase pathway in the metabolic stress response to obesity

    OpenAIRE

    Kant, Shashi; Barrett, Tamera; Vertii, Anastassiia; Noh, Yun Hee; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    Saturated free fatty acid (FFA) is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK) pathway that activates cJun NH2-terminal kinase (JNK). Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that l...

  6. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    Science.gov (United States)

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  7. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    International Nuclear Information System (INIS)

    Tang, Zhaohua; Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse; Lin, Ren-Jang; Murray, Johanne; Carr, Antony

    2012-01-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A) + RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G 2 phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  8. Interacting factors and cellular localization of SR protein-specific kinase Dsk1

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhaohua, E-mail: ztang@jsd.claremont.edu [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Luca, Maria; Taggart-Murphy, Laura; Portillio, Jessica; Chang, Cathey; Guven, Ayse [W.M. Keck Science Center, The Claremont Colleges, Claremont, CA 91711 (United States); Lin, Ren-Jang [Department of Molecular and Cellular Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 (United States); Murray, Johanne; Carr, Antony [Genome Damage and Stability Center, University of Sussex, Falmer, BN1 9RQ (United Kingdom)

    2012-10-01

    Schizosaccharomyces pombe Dsk1 is an SR protein-specific kinase (SRPK), whose homologs have been identified in every eukaryotic organism examined. Although discovered as a mitotic regulator with protein kinase activity toward SR splicing factors, it remains largely unknown about what and how Dsk1 contributes to cell cycle and pre-mRNA splicing. In this study, we investigated the Dsk1 function by determining interacting factors and cellular localization of the kinase. Consistent with its reported functions, we found that pre-mRNA processing and cell cycle factors are prominent among the proteins co-purified with Dsk1. The identification of these factors led us to find Rsd1 as a novel Dsk1 substrate, as well as the involvement of Dsk1 in cellular distribution of poly(A){sup +} RNA. In agreement with its role in nuclear events, we also found that Dsk1 is mainly localized in the nucleus during G{sub 2} phase and at mitosis. Furthermore, we revealed the oscillation of Dsk1 protein in a cell cycle-dependent manner. This paper marks the first comprehensive analysis of in vivo Dsk1-associated proteins in fission yeast. Our results reflect the conserved role of SRPK family in eukaryotic organisms, and provide information about how Dsk1 functions in pre-mRNA processing and cell-division cycle.

  9. 5' adenosine monophosphate-activated protein kinase, metabolism and exercise.

    Science.gov (United States)

    Aschenbach, William G; Sakamoto, Kei; Goodyear, Laurie J

    2004-01-01

    The 5' adenosine monophosphate-activated protein kinase (AMPK) is a member of a metabolite-sensing protein kinase family that functions as a metabolic 'fuel gauge' in skeletal muscle. AMPK is a ubiquitous heterotrimeric protein, consisting of an alpha catalytic, and beta and gamma regulatory subunits that exist in multiple isoforms and are all required for full enzymatic activity. During exercise, AMPK becomes activated in skeletal muscle in response to changes in cellular energy status (e.g. increased adenosine monophosphate [AMP]/adenosine triphosphate [ATP] and creatine/phosphocreatine ratios) in an intensity-dependent manner, and serves to inhibit ATP-consuming pathways, and activate pathways involved in carbohydrate and fatty-acid metabolism to restore ATP levels. Recent evidence shows that although AMPK plays this key metabolic role during acute bouts of exercise, it is also an important component of the adaptive response of skeletal muscles to endurance exercise training because of its ability to alter muscle fuel reserves and expression of several exercise-responsive genes. This review discusses the putative roles of AMPK in acute and chronic exercise responses, and suggests avenues for future AMPK research in exercise physiology and biochemistry.

  10. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    OpenAIRE

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Ak...

  11. VHH Activators and Inhibitors for Protein Kinase C Epsilon

    NARCIS (Netherlands)

    Summanen, M.M.I.

    2012-01-01

    Protein kinase C epsilon (PKCε), which is one of the novel PKC isozymes, is widely expressed throughout the body and has important roles in the function of the nervous, cardiovascular and immune systems. In order to better understand PKCε regulated pathways, isozyme specific activity modulators are

  12. Discovery of imidazopyridine derivatives as novel c-Met kinase inhibitors: Synthesis, SAR study, and biological activity.

    Science.gov (United States)

    Yang, Yifei; Zhang, Yuan; Yang, LingYun; Zhao, Leilei; Si, Lianghui; Zhang, Huibin; Liu, Qingsong; Zhou, Jinpei

    2017-02-01

    Receptor tyrosine kinase c-Met acts as an alternative angiogenic pathway in the process and contents of cancers. A series of imidazopyridine derivatives were designed and synthesized according to the established docking studies as possible c-Met inhibitors. Most of these imidazopyridine derivatives displayed nanomolar potency against c-Met in both biochemical enzymatic screens and cellular pharmacology studies. Especially, compound 7g exhibited the most inhibitory activity against c-Met with IC 50 of 53.4nM and 253nM in enzymatic and cellular level, respectively. Following that, the compound 7g was docked into the protein of c-Met and the structure-activity relationship was analyzed in detail. These findings indicated that the novel imidazopyridine derivative compound 7g was a potential c-Met inhibitor deserving further investigation for cancer treatment. Copyright © 2016. Published by Elsevier Inc.

  13. Induction of rat hepatic zinc thionein by phorbol ester-mediated protein kinase C pathway

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, S.H.; Funk, A.E.; Brady, F.O.

    1986-05-01

    Metallothionein (MT) exists in rat liver mainly as a zinc protein. The levels of this protein fluctuate in response to a variety of internal and external stimuli. Among these inducers of MT are metals, glucocorticoids, catecholamines, and polypeptide hormones. Metals and glucocorticoids are primary inducers of MT, while the others operate either via adenylate cyclase/cAMP/cAMP-dependent protein kinase, or via phospholipase C/inositol 1,4,5-triphosphate, diacylglycerol/Ca/sup 2 +/-dependent protein kinase, protein kinase C. The authors have examined the role of the protein kinase C pathway in the induction of MT by using a phorbol ester, 12-O-tetradecanoyl-phorbol 13-acetate (TPA), to activate it. In vivo TPA is a good inducer of Zn/sub 7/-MT with an ED/sub 0.5/ of 26.5 nmoles/kg b.w. Maximal levels reached were about 7..mu..g Zn in MT/g liver, an induction increase of 8 to 10-fold. An inactive compound, 4..beta..-phorbol, and the vehicle (DMSO) did not stimulate the synthesis of Zn/sub 7/-MT. This induction by TPA requires de novo protein synthesis, as demonstrated by a cycloheximide/(/sup 35/S)-cysteine experiment. TPA stimulated Zn incorporation by 8.6-fold and (/sup 35/S)-cysteine incorporation by 4.8-fold during an 11h induction. These increases were blocked 100% by treatment with cycloheximide at -1 and +5h. These experiments have been repeated in cultured hepatocytes, using (/sup 35/S)-cysteine incorporation, slab SDS-PAGE, and autoradiography to quantitate MT levels.

  14. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing

    Science.gov (United States)

    Fang, Ye; Ding, Yun; Feinstein, Wei P.; Koppelman, David M.; Moreno, Juana; Jarrell, Mark; Ramanujam, J.; Brylinski, Michal

    2016-01-01

    Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs) as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU). First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249. PMID:27420300

  15. GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing.

    Directory of Open Access Journals (Sweden)

    Ye Fang

    Full Text Available Computational modeling of drug binding to proteins is an integral component of direct drug design. Particularly, structure-based virtual screening is often used to perform large-scale modeling of putative associations between small organic molecules and their pharmacologically relevant protein targets. Because of a large number of drug candidates to be evaluated, an accurate and fast docking engine is a critical element of virtual screening. Consequently, highly optimized docking codes are of paramount importance for the effectiveness of virtual screening methods. In this communication, we describe the implementation, tuning and performance characteristics of GeauxDock, a recently developed molecular docking program. GeauxDock is built upon the Monte Carlo algorithm and features a novel scoring function combining physics-based energy terms with statistical and knowledge-based potentials. Developed specifically for heterogeneous computing platforms, the current version of GeauxDock can be deployed on modern, multi-core Central Processing Units (CPUs as well as massively parallel accelerators, Intel Xeon Phi and NVIDIA Graphics Processing Unit (GPU. First, we carried out a thorough performance tuning of the high-level framework and the docking kernel to produce a fast serial code, which was then ported to shared-memory multi-core CPUs yielding a near-ideal scaling. Further, using Xeon Phi gives 1.9× performance improvement over a dual 10-core Xeon CPU, whereas the best GPU accelerator, GeForce GTX 980, achieves a speedup as high as 3.5×. On that account, GeauxDock can take advantage of modern heterogeneous architectures to considerably accelerate structure-based virtual screening applications. GeauxDock is open-sourced and publicly available at www.brylinski.org/geauxdock and https://figshare.com/articles/geauxdock_tar_gz/3205249.

  16. Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2004-01-01

    Full Text Available Protein kinases (PKs play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs, successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.

  17. Calcium-Dependent Protein Kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates

    Directory of Open Access Journals (Sweden)

    Amy eCurran

    2011-08-01

    Full Text Available The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs. While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16 and 34. Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ~70 µM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites. Of these, 74 (27% were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  18. 3D-QSAR and Molecular Docking Studies on Derivatives of MK-0457, GSK1070916 and SNS-314 as Inhibitors against Aurora B Kinase

    Directory of Open Access Journals (Sweden)

    Chunzhi Ai

    2010-11-01

    Full Text Available Development of anticancer drugs targeting Aurora B, an important member of the serine/threonine kinases family, has been extensively focused on in recent years. In this work, by applying an integrated computational method, including comparative molecular field analysis (CoMFA, comparative molecular similarity indices analysis (CoMSIA, homology modeling and molecular docking, we investigated the structural determinants of Aurora B inhibitors based on three different series of derivatives of 108 molecules. The resultant optimum 3D-QSAR models exhibited (q2 = 0.605, r2pred = 0.826, (q2 = 0.52, r2pred = 0.798 and (q2 = 0.582, r2pred = 0.971 for MK-0457, GSK1070916 and SNS-314 classes, respectively, and the 3D contour maps generated from these models were analyzed individually. The contour map analysis for the MK-0457 model revealed the relative importance of steric and electrostatic effects for Aurora B inhibition, whereas, the electronegative groups with hydrogen bond donating capacity showed a great impact on the inhibitory activity for the derivatives of GSK1070916. Additionally, the predictive model of the SNS-314 class revealed the great importance of hydrophobic favorable contour, since hydrophobic favorable substituents added to this region bind to a deep and narrow hydrophobic pocket composed of residues that are hydrophobic in nature and thus enhanced the inhibitory activity. Moreover, based on the docking study, a further comparison of the binding modes was accomplished to identify a set of critical residues that play a key role in stabilizing the drug-target interactions. Overall, the high level of consistency between the 3D contour maps and the topographical features of binding sites led to our identification of several key structural requirements for more potency inhibitors. Taken together, the results will serve as a basis for future drug development of inhibitors against Aurora B kinase for various tumors.

  19. Discovery of novel EGFR tyrosine kinase inhibitors by structure-based virtual screening.

    Science.gov (United States)

    Li, Siyuan; Sun, Xianqiang; Zhao, Hongli; Tang, Yun; Lan, Minbo

    2012-06-15

    By using of structure-based virtual screening, 13 novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were discovered from 197,116 compounds in the SPECS database here. Among them, 8 compounds significantly inhibited EGFR kinase activity with IC(50) values lower than 10 μM. 3-{[1-(3-Chloro-4-fluorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}phenyl 2-thiophenecarboxylate (13), particularly, was the most potent inhibitor possessing the IC(50) value of 3.5 μM. The docking studies also provide some useful information that the docking models of the 13 compounds are beneficial to find a new path for designing novel EGFR inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella.

    Science.gov (United States)

    Wilson, M E; Consigli, R A

    1985-06-01

    A cyclic-nucleotide independent protein kinase activity has been demonstrated in highly purified preparations of the granulosis virus infecting the Indian meal moth, Plodia interpunctella. A divalent cation was required for activity. Manganese was the preferred cation and a pH of 8.0 resulted in optimal incorporation of 32P radiolabel into acid-precipitable protein. Although both ATP and GTP could serve as phosphate donors, ATP was utilized more efficiently by the enzyme. The kinase activity was localized to purified capsids; and the basic, internal core protein, VP12, was found to be the predominant viral acceptor. Histones and protamine sulfate could also serve as acceptors for the capsid-associated kinase activity. Using acid hydrolysis and phosphoamino acid analysis of phosphorylated nucleocapsid protein and nuclear magnetic resonance of phosphorylated VP12, it was determined that the enzyme catalyzes the transfer of phosphate to both serine and arginine residues of acceptor proteins. We believe this kinase activity may play a significant role in the viral replication cycle.

  1. Navigating the conformational landscape of G protein-coupled receptor kinases during allosteric activation.

    Science.gov (United States)

    Yao, Xin-Qiu; Cato, M Claire; Labudde, Emily; Beyett, Tyler S; Tesmer, John J G; Grant, Barry J

    2017-09-29

    G protein-coupled receptors (GPCRs) are essential for transferring extracellular signals into carefully choreographed intracellular responses controlling diverse aspects of cell physiology. The duration of GPCR-mediated signaling is primarily regulated via GPCR kinase (GRK)-mediated phosphorylation of activated receptors. Although many GRK structures have been reported, the mechanisms underlying GRK activation are not well-understood, in part because it is unknown how these structures map to the conformational landscape available to this enzyme family. Unlike most other AGC kinases, GRKs rely on their interaction with GPCRs for activation and not phosphorylation. Here, we used principal component analysis of available GRK and protein kinase A crystal structures to identify their dominant domain motions and to provide a framework that helps evaluate how close each GRK structure is to being a catalytically competent state. Our results indicated that disruption of an interface formed between the large lobe of the kinase domain and the regulator of G protein signaling homology domain (RHD) is highly correlated with establishment of the active conformation. By introducing point mutations in the GRK5 RHD-kinase domain interface, we show with both in silico and in vitro experiments that perturbation of this interface leads to higher phosphorylation activity. Navigation of the conformational landscape defined by this bioinformatics-based study is likely common to all GPCR-activated GRKs. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A novel non-canonical mechanism of regulation of MST3 (mammalian Sterile20-related kinase 3).

    Science.gov (United States)

    Fuller, Stephen J; McGuffin, Liam J; Marshall, Andrew K; Giraldo, Alejandro; Pikkarainen, Sampsa; Clerk, Angela; Sugden, Peter H

    2012-03-15

    The canonical pathway of regulation of the GCK (germinal centre kinase) III subgroup member, MST3 (mammalian Sterile20-related kinase 3), involves a caspase-mediated cleavage between N-terminal catalytic and C-terminal regulatory domains with possible concurrent autophosphorylation of the activation loop MST3(Thr(178)), induction of serine/threonine protein kinase activity and nuclear localization. We identified an alternative 'non-canonical' pathway of MST3 activation (regulated primarily through dephosphorylation) which may also be applicable to other GCKIII (and GCKVI) subgroup members. In the basal state, inactive MST3 co-immunoprecipitated with the Golgi protein GOLGA2/gm130 (golgin A2/Golgi matrix protein 130). Activation of MST3 by calyculin A (a protein serine/threonine phosphatase 1/2A inhibitor) stimulated (auto)phosphorylation of MST3(Thr(178)) in the catalytic domain with essentially simultaneous cis-autophosphorylation of MST3(Thr(328)) in the regulatory domain, an event also requiring the MST3(341-376) sequence which acts as a putative docking domain. MST3(Thr(178)) phosphorylation increased MST3 kinase activity, but this activity was independent of MST3(Thr(328)) phosphorylation. Interestingly, MST3(Thr(328)) lies immediately C-terminal to a STRAD (Sterile20-related adaptor) pseudokinase-like site identified recently as being involved in binding of GCKIII/GCKVI members to MO25 scaffolding proteins. MST3(Thr(178)/Thr(328)) phosphorylation was concurrent with dissociation of MST3 from GOLGA2/gm130 and association of MST3 with MO25, and MST3(Thr(328)) phosphorylation was necessary for formation of the activated MST3-MO25 holocomplex.

  3. Protein Kinase A in Cancer

    International Nuclear Information System (INIS)

    Caretta, Antonio; Mucignat-Caretta, Carla

    2011-01-01

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors

  4. Protein Kinase A in Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Caretta, Antonio; Mucignat-Caretta, Carla, E-mail: carla.mucignat@unipd.it [Department of Human Anatomy and Physiology, University of Padova, Via Marzolo 3, 35131 Padova (Italy)

    2011-02-28

    In the past, many chromosomal and genetic alterations have been examined as possible causes of cancer. However, some tumors do not display a clear molecular and/or genetic signature. Therefore, other cellular processes may be involved in carcinogenesis. Genetic alterations of proteins involved in signal transduction have been extensively studied, for example oncogenes, while modifications in intracellular compartmentalization of these molecules, or changes in the expression of unmodified genes have received less attention. Yet, epigenetic modulation of second messenger systems can deeply modify cellular functioning and in the end may cause instability of many processes, including cell mitosis. It is important to understand the functional meaning of modifications in second messenger intracellular pathways and unravel the role of downstream proteins in the initiation and growth of tumors. Within this framework, the cAMP system has been examined. cAMP is a second messenger involved in regulation of a variety of cellular functions. It acts mainly through its binding to cAMP-activated protein kinases (PKA), that were suggested to participate in the onset and progression of various tumors. PKA may represent a biomarker for tumor detection, identification and staging, and may be a potential target for pharmacological treatment of tumors.

  5. Protein kinase activity associated with the corticosteroid binder IB

    International Nuclear Information System (INIS)

    Vujicic, M.; Djordjevic-Markovic, R.; Radic, O.; Krstic, M.; Kanazir, D.

    1997-01-01

    The physiological effects elicited by glucocorticoids are mediated via glucocorticoid receptors (GR). Analysis of specific glucocorticoid binding to radioactively labelled [ 3 H] triamcinolone acetonide in rat liver cytosol and analysis by ion exchange chromatography have revealed the presence of two distinct molecular species. The major form, designated as binder II appears to correspond to the well characterized glucocorticoid receptor by virtue of its size, charge, steroid binding characteristics and ability to bind to DNA.The second form, designated as corticosteroid binder IB, is a minor binding component in the liver. The binder IB differs from the binder II receptor by virtue of its lower molecular weight and its elution in the pre gradient of DEAE-Sephadex A-50 column which retains the un activated binder II receptor complexes. We examined the kinase activity of partially purified corticosteroid binder IB. Using (γ 3 2 P) ATP we detected kinase activity associated with the IB fraction from the rat liver. This kinase phosphorylate mixed histones and and dose not phosphorylate IB protein in vitro. The kinase activity is completely inhibited by the addition of Mg 2 + ions and is partially inhibited by the addition of Ca 2 +ions. (author)

  6. Kinase-loaded magnetic beads for sequential in vitro phosphorylation of peptides and proteins.

    Science.gov (United States)

    Hromadkova, Lenka; Kupcik, Rudolf; Vajrychova, Marie; Prikryl, Petr; Charvatova, Andrea; Jankovicova, Barbora; Ripova, Daniela; Bilkova, Zuzana; Slovakova, Marcela

    2018-01-15

    Post-translational modifications, including phosphorylation, greatly impact the physiological function of proteins, especially those that are natively unfolded and implicated in many neurodegenerative diseases. However, structural and functional studies of such proteins require fully defined phosphorylation, including those that are not physiological. Thus, the kinases ERK2 and GSK-3β were immobilized to various superparamagnetic beads with carboxylic, aldehyde, Ni 2+ , or Co 3+ functional groups, with a view to efficiently phosphorylate peptides and proteins in vitro. Full phosphorylation of specific synthetic peptides confirmed that beads were successfully loaded with kinases. Remarkably, enzymes covalently immobilized on carboxylated SeraMag beads remained active upon reuse, with residual activity after 10 uses 99.5 ± 0.34% for GSK-3β and 36.2 ± 2.01% for ERK2. The beads were also used to sequentially phosphorylate recombinant tau, which in vivo is a biomarker of Alzheimer's disease. Thus, a system consisting of two fully active kinases immobilized to magnetic beads is demonstrated for the first time. In comparison to soluble enzymes, the beads are easier to handle, reusable, and thus low-cost. Importantly, these beads are also convenient to remove from reactions to minimize contamination of phosphorylated products or to exchange with other kinases.

  7. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay

    2016-12-01

    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  8. Phosphorylation of protein kinase A (PKA) regulatory subunit RIα by protein kinase G (PKG) primes PKA for catalytic activity in cells.

    Science.gov (United States)

    Haushalter, Kristofer J; Casteel, Darren E; Raffeiner, Andrea; Stefan, Eduard; Patel, Hemal H; Taylor, Susan S

    2018-03-23

    cAMP-dependent protein kinase (PKAc) is a pivotal signaling protein in eukaryotic cells. PKAc has two well-characterized regulatory subunit proteins, RI and RII (each having α and β isoforms), which keep the PKAc catalytic subunit in a catalytically inactive state until activation by cAMP. Previous reports showed that the RIα regulatory subunit is phosphorylated by cGMP-dependent protein kinase (PKG) in vitro , whereupon phosphorylated RIα no longer inhibits PKAc at normal (1:1) stoichiometric ratios. However, the significance of this phosphorylation as a mechanism for activating type I PKA holoenzymes has not been fully explored, especially in cellular systems. In this study, we further examined the potential of RIα phosphorylation to regulate physiologically relevant "desensitization" of PKAc activity. First, the serine 101 site of RIα was validated as a target of PKGIα phosphorylation both in vitro and in cells. Analysis of a phosphomimetic substitution in RIα (S101E) showed that modification of this site increases PKAc activity in vitro and in cells, even without cAMP stimulation. Numerous techniques were used to show that although Ser 101 variants of RIα can bind PKAc, the modified linker region of the S101E mutant has a significantly reduced affinity for the PKAc active site. These findings suggest that RIα phosphorylation may be a novel mechanism to circumvent the requirement of cAMP stimulus to activate type I PKA in cells. We have thus proposed a model to explain how PKG phosphorylation of RIα creates a "sensitized intermediate" state that is in effect primed to trigger PKAc activity.

  9. Structural interface parameters are discriminatory in recognising near-native poses of protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Sony Malhotra

    Full Text Available Interactions at the molecular level in the cellular environment play a very crucial role in maintaining the physiological functioning of the cell. These molecular interactions exist at varied levels viz. protein-protein interactions, protein-nucleic acid interactions or protein-small molecules interactions. Presently in the field, these interactions and their mechanisms mark intensively studied areas. Molecular interactions can also be studied computationally using the approach named as Molecular Docking. Molecular docking employs search algorithms to predict the possible conformations for interacting partners and then calculates interaction energies. However, docking proposes number of solutions as different docked poses and hence offers a serious challenge to identify the native (or near native structures from the pool of these docked poses. Here, we propose a rigorous scoring scheme called DockScore which can be used to rank the docked poses and identify the best docked pose out of many as proposed by docking algorithm employed. The scoring identifies the optimal interactions between the two protein partners utilising various features of the putative interface like area, short contacts, conservation, spatial clustering and the presence of positively charged and hydrophobic residues. DockScore was first trained on a set of 30 protein-protein complexes to determine the weights for different parameters. Subsequently, we tested the scoring scheme on 30 different protein-protein complexes and native or near-native structure were assigned the top rank from a pool of docked poses in 26 of the tested cases. We tested the ability of DockScore to discriminate likely dimer interactions that differ substantially within a homologous family and also demonstrate that DOCKSCORE can distinguish correct pose for all 10 recent CAPRI targets.

  10. Protein kinase C regulates human pluripotent stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Masaki Kinehara

    Full Text Available The self-renewal of human pluripotent stem (hPS cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2 appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells.In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC, GF109203X (GFX, increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β, suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2 synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells.Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK, PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long-term stable undifferentiated state of hPS cells even though h

  11. Protein Kinase C Regulates Human Pluripotent Stem Cell Self-Renewal

    Science.gov (United States)

    Kinehara, Masaki; Kawamura, Suguru; Tateyama, Daiki; Suga, Mika; Matsumura, Hiroko; Mimura, Sumiyo; Hirayama, Noriko; Hirata, Mitsuhi; Uchio-Yamada, Kozue; Kohara, Arihiro; Yanagihara, Kana; Furue, Miho K.

    2013-01-01

    Background The self-renewal of human pluripotent stem (hPS) cells including embryonic stem and induced pluripotent stem cells have been reported to be supported by various signal pathways. Among them, fibroblast growth factor-2 (FGF-2) appears indispensable to maintain self-renewal of hPS cells. However, downstream signaling of FGF-2 has not yet been clearly understood in hPS cells. Methodology/Principal Findings In this study, we screened a kinase inhibitor library using a high-throughput alkaline phosphatase (ALP) activity-based assay in a minimal growth factor-defined medium to understand FGF-2-related molecular mechanisms regulating self-renewal of hPS cells. We found that in the presence of FGF-2, an inhibitor of protein kinase C (PKC), GF109203X (GFX), increased ALP activity. GFX inhibited FGF-2-induced phosphorylation of glycogen synthase kinase-3β (GSK-3β), suggesting that FGF-2 induced PKC and then PKC inhibited the activity of GSK-3β. Addition of activin A increased phosphorylation of GSK-3β and extracellular signal-regulated kinase-1/2 (ERK-1/2) synergistically with FGF-2 whereas activin A alone did not. GFX negated differentiation of hPS cells induced by the PKC activator, phorbol 12-myristate 13-acetate whereas Gö6976, a selective inhibitor of PKCα, β, and γ isoforms could not counteract the effect of PMA. Intriguingly, functional gene analysis by RNA interference revealed that the phosphorylation of GSK-3β was reduced by siRNA of PKCδ, PKCε, and ζ, the phosphorylation of ERK-1/2 was reduced by siRNA of PKCε and ζ, and the phosphorylation of AKT was reduced by PKCε in hPS cells. Conclusions/Significance Our study suggested complicated cross-talk in hPS cells that FGF-2 induced the phosphorylation of phosphatidylinositol-3 kinase (PI3K)/AKT, mitogen-activated protein kinase/ERK-1/2 kinase (MEK), PKC/ERK-1/2 kinase, and PKC/GSK-3β. Addition of GFX with a MEK inhibitor, U0126, in the presence of FGF-2 and activin A provided a long

  12. Dynamic Docking: A Paradigm Shift in Computational Drug Discovery

    Directory of Open Access Journals (Sweden)

    Dario Gioia

    2017-11-01

    Full Text Available Molecular docking is the methodology of choice for studying in silico protein-ligand binding and for prioritizing compounds to discover new lead candidates. Traditional docking simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of ligands and targets. They also neglect solvation and entropic effects, which strongly limits their predictive power. During the last decade, methods based on full atomistic molecular dynamics (MD have emerged as a valid alternative for simulating macromolecular complexes. In principle, compared to traditional docking, MD allows the full exploration of drug-target recognition and binding from both the mechanistic and energetic points of view (dynamic docking. Binding and unbinding kinetic constants can also be determined. While dynamic docking is still too computationally expensive to be routinely used in fast-paced drug discovery programs, the advent of faster computing architectures and advanced simulation methodologies are changing this scenario. It is feasible that dynamic docking will replace static docking approaches in the near future, leading to a major paradigm shift in in silico drug discovery. Against this background, we review the key achievements that have paved the way for this progress.

  13. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  14. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand

    2016-02-01

    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  15. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  16. Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Science.gov (United States)

    Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy

    2009-01-01

    Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel

  17. Selectivity analysis of protein kinase CK2 inhibitors DMAT, TBB and resorufin in cisplatin-induced stress responses

    DEFF Research Database (Denmark)

    Fritz, Gerhard; Issinger, Olaf-Georg; Olsen, Birgitte Brinkmann

    2009-01-01

    Targeting protein kinases as a therapeutic approach to treat various diseases, especially cancer is currently a fast growing business. Although many inhibitors are available, exhibiting remarkable potency, the major challenge is their selectivity. Here we show that the protein kinase CK2 inhibito...

  18. A Discovery Strategy for Selective Inhibitors of c-Src in Complex with the Focal Adhesion Kinase SH3/SH2-binding Region.

    Science.gov (United States)

    Moroco, Jamie A; Baumgartner, Matthew P; Rust, Heather L; Choi, Hwan Geun; Hur, Wooyoung; Gray, Nathanael S; Camacho, Carlos J; Smithgall, Thomas E

    2015-08-01

    The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition. © 2014 John Wiley & Sons A/S.

  19. Vital role of protein kinase C-related kinase (PRK1) in the formation and stability of neurites during hypoxia

    OpenAIRE

    Thauerer, Bettina; zur Nedden, Stephanie; Baier-Bitterlich, Gabriele

    2010-01-01

    Exposure of pheochromocytoma (PC12) cells to hypoxia (1% O2) favors differentiation at the expense of cell viability. Additional incubation with nerve growth factor (NGF) and guanosine, a purine nucleoside with neurotrophin characteristics, rescued cell viability and further enhanced the extension of neurites. In parallel, an increase in the activity of protein kinase C-related kinase (PRK1), which is known to be involved in regulation of the actin cytoskeleton, was observed in hypoxic cells....

  20. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    Energy Technology Data Exchange (ETDEWEB)

    Simarro, Maria [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Gimenez-Cassina, Alfredo [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Kedersha, Nancy [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A. [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Rhee, Kirsten [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States); Tisdale, Sarah; Danial, Nika [Department of Cancer Biology at Dana Farber Institute, Boston, MA 02115 (United States); Benarafa, Charaf [Theodor Kocher Institute, University of Bern, 3012 Bern (Switzerland); Orduna, Anonio [Unidad de Investigacion, Hospital Clinico Universitario de Valladolid, 47005 Valladolid (Spain); Anderson, Paul, E-mail: panderson@rics.bwh.harvard.edu [Division of Rheumatology, Immunology and Allergy, Brigham and Women' s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115 (United States)

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  1. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    International Nuclear Information System (INIS)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-01-01

    Research highlights: → Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. → The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. → Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  2. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    Science.gov (United States)

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  3. SNF1-related protein kinases 2 are negatively regulated by a plant-specific calcium sensor.

    Science.gov (United States)

    Bucholc, Maria; Ciesielski, Arkadiusz; Goch, Grażyna; Anielska-Mazur, Anna; Kulik, Anna; Krzywińska, Ewa; Dobrowolska, Grażyna

    2011-02-04

    SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.

  4. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  5. Lithium blocks ethanol-induced modulation of protein kinases in the developing brain

    International Nuclear Information System (INIS)

    Chakraborty, Goutam; Saito, Mitsuo; Mao, Rui-Fen; Wang, Ray; Vadasz, Csaba; Saito, Mariko

    2008-01-01

    Lithium has been shown to be neuroprotective against various insults including ethanol exposure. We previously reported that ethanol-induced apoptotic neurodegeneration in the postnatal day 7 (P7) mice is associated with decreases in phosphorylation levels of Akt, glycogen synthase kinase-3β (GSK-3β), and AMP-activated protein kinase (AMPK), and alteration in lipid profiles in the brain. Here, P7 mice were injected with ethanol and lithium, and the effects of lithium on ethanol-induced alterations in phosphorylation levels of protein kinases and lipid profiles in the brain were examined. Immunoblot and immunohistochemical analyses showed that lithium significantly blocked ethanol-induced caspase-3 activation and reduction in phosphorylation levels of Akt, GSK-3β, and AMPK. Further, lithium inhibited accumulation of cholesterol ester (ChE) and N-acylphosphatidylethanolamine (NAPE) triggered by ethanol in the brain. These results suggest that Akt, GSK-3β, and AMPK are involved in ethanol-induced neurodegeneration and the neuroprotective effects of lithium by modulating both apoptotic and survival pathways

  6. Regulation of CD93 cell surface expression by protein kinase C isoenzymes.

    Science.gov (United States)

    Ikewaki, Nobunao; Kulski, Jerzy K; Inoko, Hidetoshi

    2006-01-01

    Human CD93, also known as complement protein 1, q subcomponent, receptor (C1qRp), is selectively expressed by cells with a myeloid lineage, endothelial cells, platelets, and microglia and was originally reported to be involved in the complement protein 1, q subcomponent (C1q)-mediated enhancement of phagocytosis. The intracellular molecular events responsible for the regulation of its expression on the cell surface, however, have not been determined. In this study, the effect of protein kinases in the regulation of CD93 expression on the cell surface of a human monocyte-like cell line (U937), a human NK-like cell line (KHYG-1), and a human umbilical vein endothelial cell line (HUV-EC-C) was investigated using four types of protein kinase inhibitors, the classical protein kinase C (cPKC) inhibitor Go6976, the novel PKC (nPKC) inhibitor Rottlerin, the protein kinase A (PKA) inhibitor H-89 and the protein tyrosine kinase (PTK) inhibitor herbimycin A at their optimum concentrations for 24 hr. CD93 expression was analyzed using flow cytometry and glutaraldehyde-fixed cellular enzyme-linked immunoassay (EIA) techniques utilizing a CD93 monoclonal antibody (mAb), mNI-11, that was originally established in our laboratory as a CD93 detection probe. The nPKC inhibitor Rottlerin strongly down-regulated CD93 expression on the U937 cells in a dose-dependent manner, whereas the other inhibitors had little or no effect. CD93 expression was down-regulated by Go6976, but not by Rottlerin, in the KHYG-1 cells and by both Rottlerin and Go6976 in the HUV-EC-C cells. The PKC stimulator, phorbol myristate acetate (PMA), strongly up-regulated CD93 expression on the cell surface of all three cell-lines and induced interleukin-8 (IL-8) production by the U937 cells and interferon-gamma (IFN-gamma) production by the KHYG-1 cells. In addition, both Go6976 and Rottlerin inhibited the up-regulation of CD93 expression induced by PMA and IL-8 or IFN-gamma production in the respective cell

  7. Effects of protein kinase C activators on phorbol ester-sensitive and -resistant EL4 thymoma cells.

    Science.gov (United States)

    Sansbury, H M; Wisehart-Johnson, A E; Qi, C; Fulwood, S; Meier, K E

    1997-09-01

    Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.

  8. Regulation of hematopoietic cell function by protein tyrosine kinase-encoding oncogenes, a review

    NARCIS (Netherlands)

    Punt, C. J.

    1992-01-01

    Tyrosine phosphorylation of proteins by protein tyrosine kinases (PTKs) is an important mechanism in the regulation of various cellular processes such as proliferation, differentiation, and transformation. Accumulating data implicate PTKs as essential intermediates in the transduction of

  9. Exchange Protein Activated by cAMP Enhances Long-Term Memory Formation Independent of Protein Kinase A

    Science.gov (United States)

    Ma, Nan; Abel, Ted; Hernandez, Pepe J.

    2009-01-01

    It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…

  10. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Glycogen synthase kinase 3β promotes liver innate immune activation by restraining AMP-activated protein kinase activation.

    Science.gov (United States)

    Zhou, Haoming; Wang, Han; Ni, Ming; Yue, Shi; Xia, Yongxiang; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Lu, Ling; Wang, Xuehao; Zhai, Yuan

    2018-02-13

    Glycogen synthase kinase 3β (Gsk3β [Gsk3b]) is a ubiquitously expressed kinase with distinctive functions in different types of cells. Although its roles in regulating innate immune activation and ischaemia and reperfusion injuries (IRIs) have been well documented, the underlying mechanisms remain ambiguous, in part because of the lack of cell-specific tools in vivo. We created a myeloid-specific Gsk3b knockout (KO) strain to study the function of Gsk3β in macrophages in a murine liver partial warm ischaemia model. Compared with controls, myeloid Gsk3b KO mice were protected from IRI, with diminished proinflammatory but enhanced anti-inflammatory immune responses in livers. In bone marrow-derived macrophages, Gsk3β deficiency resulted in an early reduction of Tnf gene transcription but sustained increase of Il10 gene transcription on Toll-like receptor 4 stimulation in vitro. These effects were associated with enhanced AMP-activated protein kinase (AMPK) activation, which led to an accelerated and higher level of induction of the novel innate immune negative regulator small heterodimer partner (SHP [Nr0b2]). The regulatory function of Gsk3β on AMPK activation and SHP induction was confirmed in wild-type bone marrow-derived macrophages with a Gsk3 inhibitor. Furthermore, we found that this immune regulatory mechanism was independent of Gsk3β Ser9 phosphorylation and the phosphoinositide 3-kinase-Akt signalling pathway. In vivo, myeloid Gsk3β deficiency facilitated SHP upregulation by ischaemia-reperfusion in liver macrophages. Treatment of Gsk3b KO mice with either AMPK inhibitor or SHP small interfering RNA before the onset of liver ischaemia restored liver proinflammatory immune activation and IRI in these otherwise protected hosts. Additionally, pharmacological activation of AMPK protected wild-type mice from liver IRI, with reduced proinflammatory immune activation. Inhibition of the AMPK-SHP pathway by liver ischaemia was demonstrated in tumour resection

  12. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  13. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  14. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  15. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  16. Identification of SH2-Bbeta as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling.

    OpenAIRE

    Rui, L; Mathews, L S; Hotta, K; Gustafson, T A; Carter-Su, C

    1997-01-01

    Activation of the tyrosine kinase JAK2 is an essential step in cellular signaling by growth hormone (GH) and multiple other hormones and cytokines. Murine JAK2 has a total of 49 tyrosines which, if phosphorylated, could serve as docking sites for Src homology 2 (SH2) or phosphotyrosine binding domain-containing signaling molecules. Using a yeast two-hybrid screen of a rat adipocyte cDNA library, we identified a splicing variant of the SH2 domain-containing protein SH2-B, designated SH2-Bbeta,...

  17. Protein kinase C involvement in focal adhesion formation

    DEFF Research Database (Denmark)

    Woods, A; Couchman, J R

    1992-01-01

    Matrix molecules such as fibronectin can promote cell attachment, spreading and focal adhesion formation. Although some interactions of fibronectin with cell surface receptors have now been identified, the consequent activation of intracellular messenger systems by cell/matrix interactions have...... still to be elucidated. We show here that the kinase inhibitors H7 and HA1004 reduce focal adhesion and stress fiber formation in response to fibronectin in a dose-dependent manner, and that activators of protein kinase C can promote their formation under conditions where they do not normally form....... Fibroblasts spread within 1h on substrata composed of fibronectin and formed focal adhesions by 3h, as monitored by interference reflection microscopy (IRM) and by labeling for talin, vinculin and integrin beta 1 subunits. In addition, stress fibers were visible. When cells were allowed to spread for 1h...

  18. Mitogen-activated protein kinases in the acute diabetic myocardium

    Czech Academy of Sciences Publication Activity Database

    Strnisková, M.; Barančík, M.; Neckář, Jan; Ravingerová, T.

    2003-01-01

    Roč. 249, 1-2 (2003), s. 59-65 ISSN 0300-8177 R&D Projects: GA MŠk LN00A069 Grant - others:VEGA(SK) 2/2063/22 Institutional research plan: CEZ:AV0Z5011922 Keywords : experimental diabetes * ischemia * mitogen-activated protein kinases (MAPK) Subject RIV: ED - Physiology Impact factor: 1.763, year: 2003

  19. The carboxy terminus of p53 mimics the polylysine effect of protein kinase CK2-catalyzed MDM2 phosphorylation

    DEFF Research Database (Denmark)

    Guerra, B; Götz, C; Wagner, P

    1997-01-01

    The oncogene product MDM2 can be phosphorylated by protein kinase CK2 in vitro 0.5-1 mol of phosphate were incorporated per mol MDM2 protein. The catalytic subunit of protein kinase CK2 (alpha-subunit) catalyzed the incorporation of twice as much phosphate into the MDM2 protein as it was obtained...

  20. Protein kinases mediate increment of the phosphorylation of cyclic AMP -responsive element binding protein in spinal cord of rats following capsaicin injection

    Directory of Open Access Journals (Sweden)

    Li Junfa

    2005-09-01

    Full Text Available Abstract Background Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB is a well-characterized stimulus-induced transcription factor whose activation requires phosphorylation of the Serine-133 residue. Phospho-CREB can further induce gene transcription and strengthen synaptic transmission by the activation of the protein kinase cascades. However, little is known about the mechanisms by which CREB phosphorylation is regulated by protein kinases during nociception. This study was designed to use Western blot analysis to investigate the role of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK 1/2, PKA and PKC in regulating the phosphorylation of CREB in the spinal cord of rats following intraplantar capsaicin injection. Results We found that capsaicin injection significantly increased the phosphorylation level of CREB in the ipsilateral side of the spinal cord. Pharmacological manipulation of MEK 1/2, PKA and PKC with their inhibitors (U0126, H89 and NPC 15473, respectively significantly blocked this increment of CREB phosphorylation. However, the expression of CREB itself showed no change in any group. Conclusion These findings suggest that the activation of intracellular MAP kinase, PKA and PKC cascades may contribute to the regulation of phospho-CREB in central nociceptive neurons following peripheral painful stimuli.

  1. Using the multi-objective optimization replica exchange Monte Carlo enhanced sampling method for protein-small molecule docking.

    Science.gov (United States)

    Wang, Hongrui; Liu, Hongwei; Cai, Leixin; Wang, Caixia; Lv, Qiang

    2017-07-10

    In this study, we extended the replica exchange Monte Carlo (REMC) sampling method to protein-small molecule docking conformational prediction using RosettaLigand. In contrast to the traditional Monte Carlo (MC) and REMC sampling methods, these methods use multi-objective optimization Pareto front information to facilitate the selection of replicas for exchange. The Pareto front information generated to select lower energy conformations as representative conformation structure replicas can facilitate the convergence of the available conformational space, including available near-native structures. Furthermore, our approach directly provides min-min scenario Pareto optimal solutions, as well as a hybrid of the min-min and max-min scenario Pareto optimal solutions with lower energy conformations for use as structure templates in the REMC sampling method. These methods were validated based on a thorough analysis of a benchmark data set containing 16 benchmark test cases. An in-depth comparison between MC, REMC, multi-objective optimization-REMC (MO-REMC), and hybrid MO-REMC (HMO-REMC) sampling methods was performed to illustrate the differences between the four conformational search strategies. Our findings demonstrate that the MO-REMC and HMO-REMC conformational sampling methods are powerful approaches for obtaining protein-small molecule docking conformational predictions based on the binding energy of complexes in RosettaLigand.

  2. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  3. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases.

    OpenAIRE

    Schlaepfer, D D; Hunter, T

    1996-01-01

    Focal adhesion kinase (FAK) is a nonreceptor protein-tyrosine kinase (PTK) that associates with integrin receptors and participates in extracellular matrix-mediated signal transduction events. We showed previously that the c-Src nonreceptor PTK and the Grb2 SH2/SH3 adaptor protein bound directly to FAK after fibronectin stimulation (D. D. Schlaepfer, S.K. Hanks, T. Hunter, and P. van der Geer, Nature [London] 372:786-791, 1994). Here, we present evidence that c-Src association with FAK is req...

  4. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Directory of Open Access Journals (Sweden)

    Xiquan Gao

    2014-03-01

    Full Text Available An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP, which is called PAMP-triggered immunity (PTI. The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI. Calcium (Ca2+ signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response.

  5. Functions of Calcium-Dependent Protein Kinases in Plant Innate Immunity

    Science.gov (United States)

    Gao, Xiquan; Cox, Kevin L.; He, Ping

    2014-01-01

    An increase of cytosolic Ca2+ is generated by diverse physiological stimuli and stresses, including pathogen attack. Plants have evolved two branches of the immune system to defend against pathogen infections. The primary innate immune response is triggered by the detection of evolutionarily conserved pathogen-associated molecular pattern (PAMP), which is called PAMP-triggered immunity (PTI). The second branch of plant innate immunity is triggered by the recognition of specific pathogen effector proteins and known as effector-triggered immunity (ETI). Calcium (Ca2+) signaling is essential in both plant PTI and ETI responses. Calcium-dependent protein kinases (CDPKs) have emerged as important Ca2+ sensor proteins in transducing differential Ca2+ signatures, triggered by PAMPs or effectors and activating complex downstream responses. CDPKs directly transmit calcium signals by calcium binding to the elongation factor (EF)-hand domain at the C-terminus and substrate phosphorylation by the catalytic kinase domain at the N-terminus. Emerging evidence suggests that specific and overlapping CDPKs phosphorylate distinct substrates in PTI and ETI to regulate diverse plant immune responses, including production of reactive oxygen species, transcriptional reprogramming of immune genes, and the hypersensitive response. PMID:27135498

  6. Characterization of CoPK02, a Ca2+/calmodulin-dependent protein kinase in mushroom Coprinopsis cinerea.

    Science.gov (United States)

    Yamashita, Masashi; Sueyoshi, Noriyuki; Yamada, Hiroki; Katayama, Syouichi; Senga, Yukako; Takenaka, Yasuhiro; Ishida, Atsuhiko; Kameshita, Isamu; Shigeri, Yasushi

    2018-04-20

    We surveyed genome sequences from the basidiomycetous mushroom Coprinopsis cinerea and isolated a cDNA homologous to CMKA, a calmodulin-dependent protein kinase (CaMK) in Aspergillus nidulans. We designated this sequence, encoding 580 amino acids with a molecular weight of 63,987, as CoPK02. CoPK02 possessed twelve subdomains specific to protein kinases and exhibited 43, 35, 40% identity with rat CaMKI, CaMKII, CaMKIV, respectively, and 40% identity with CoPK12, one of the CaMK orthologs in C. cinerea. CoPK02 showed significant autophosphorylation activity and phosphorylated exogenous proteins in the presence of Ca 2+ /CaM. By the CaM-overlay assay we confirmed that the C-terminal sequence (Trp346-Arg358) was the calmodulin-binding site, and that the binding of Ca 2+ /CaM to CoPK02 was reduced by the autophosphorylation of CoPK02. Since CoPK02 evolved in a different clade from CoPK12, and showed different gene expression compared to that of CoPK32, which is homologous to mitogen-activated protein kinase-activated protein kinase, CoPK02 and CoPK12 might cooperatively regulate Ca 2+ -signaling in C. cinerea.

  7. A bipolar clamp mechanism for activation of Jak-family protein tyrosine kinases.

    Directory of Open Access Journals (Sweden)

    Dipak Barua

    2009-04-01

    Full Text Available Most cell surface receptors for growth factors and cytokines dimerize in order to mediate signal transduction. For many such receptors, the Janus kinase (Jak family of non-receptor protein tyrosine kinases are recruited in pairs and juxtaposed by dimerized receptor complexes in order to activate one another by trans-phosphorylation. An alternative mechanism for Jak trans-phosphorylation has been proposed in which the phosphorylated kinase interacts with the Src homology 2 (SH2 domain of SH2-B, a unique adaptor protein with the capacity to homo-dimerize. Building on a rule-based kinetic modeling approach that considers the concerted nature and combinatorial complexity of modular protein domain interactions, we examine these mechanisms in detail, focusing on the growth hormone (GH receptor/Jak2/SH2-Bbeta system. The modeling results suggest that, whereas Jak2-(SH2-Bbeta(2-Jak2 heterotetramers are scarcely expected to affect Jak2 phosphorylation, SH2-Bbeta and dimerized receptors synergistically promote Jak2 trans-activation in the context of intracellular signaling. Analysis of the results revealed a unique mechanism whereby SH2-B and receptor dimers constitute a bipolar 'clamp' that stabilizes the active configuration of two Jak2 molecules in the same macro-complex.

  8. Mitogen activated protein kinase signaling in the kidney: Target for intervention?

    NARCIS (Netherlands)

    de Borst, M.H.; Wassef, L.; Kelly, D.J.; van Goor, H.; Navis, Ger Jan

    2006-01-01

    Mitogen activated protein kinases (MAPKs) are intracellular signal transduction molecules, which connect cell-surface receptor signals to intracellular processes. MAPKs regulate a range of cellular activities including cell proliferation, gene expression, apoptosis, cell differentiation and cytokine

  9. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways.

    Directory of Open Access Journals (Sweden)

    Waka Omata

    Full Text Available The syncytiotrophoblast of the human placenta is an epithelial barrier that interacts with maternal blood and is a key for the transfer of nutrients and other solutes to the developing fetus. The syncytiotrophoblast is a true syncytium and fusion of progenitor cytotrophoblasts is the cardinal event leading to the formation of this layer. BeWo cells are often used as a surrogate for cytotrophoblasts, since they can be induced to fuse, and then express certain differentiation markers associated with trophoblast syncytialization. Dysferlin, a syncytiotrophoblast membrane repair protein, is up-regulated in BeWo cells induced to fuse by treatment with forskolin; this fusion is thought to occur through cAMP/protein kinase A-dependent mechanisms. We hypothesized that dysferlin may also be up-regulated in response to fusion through other pathways. Here, we show that BeWo cells can also be induced to fuse by treatment with an activator of protein kinase C, and that this fusion is accompanied by increased expression of dysferlin. Moreover, a dramatic synergistic increase in dysferlin expression is observed when both the protein kinase A and protein kinase C pathways are activated in BeWo cells. This synergy in fusion is also accompanied by dramatic increases in mRNA for the placental fusion proteins syncytin 1, syncytin 2, as well as dysferlin. Dysferlin, however, was shown to be dispensable for stimulus-induced BeWo cell syncytialization, since dysferlin knockdown lines fused to the same extent as control cells. The classical trophoblast differentiation marker human chorionic gonadotropin was also monitored and changes in the expression closely parallel that of dysferlin in all of the experimental conditions employed. Thus different biochemical markers of trophoblast fusion behave in concert supporting the hypothesis that activation of both protein kinase C and A pathways lead to trophoblastic differentiation.

  10. Protein kinase that phosphorylates light-harvesting complex is autophosphorylated and is associated with photosystem II

    International Nuclear Information System (INIS)

    Coughlan, S.J.; Hind, G.

    1987-01-01

    Thylakoid membranes were phosphorylated with [γ- 32 P]ATP and extracted with octyl glucoside and cholate. Among the radiolabeled phosphoproteins in the extract was a previously characterized protein kinase of 64-kDa apparent mass. The ability of this enzyme to undergo autophosphorylation in situ was used to monitor its distribution in the membrane. Fractionation studies showed that the kinase is confined to granal regions of the thylakoid, where it appears to be associated with the light-harvesting chlorophyll-protein complex of photosystem II. The kinetics of kinase autophosphorylation were investigated both in situ and in extracted, purified enzyme. In the membrane, autophosphorylation saturated within 20-30 min and was reversed with a half-time of 7-8 min upon removal of ATP or oxidative inactivation of the kinase; the accompanying dephosphorylation of light-harvesting complex was slower and kinetically complex. Fluoride (10 mM) inhibited these dephosphorylations. Autophosphorylation of the isolated kinase was independent of enzyme concentration, indicative of an intramolecular mechanism. A maximum of one serine residue per mole of kinase was esterified. Autophosphorylation was more rapid in the presence of histone IIIs, an exogenous substrate. Dephosphorylation of the isolated enzyme was not observed

  11. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits

    NARCIS (Netherlands)

    Jimenez-Sainz, MC; Murga, C; Kavelaars, A; Jurado-Pueyo, M; Krakstad, BF; Heijnen, CJ; Mayor, F; Aragay, AM

    The G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes ligand-activated G protein-coupled-receptors. Here, evidence is shown for a novel role of GRK2 in regulating chemokine-mediated signals. The presence of increased levels of GRK2 in human embryonic kidney (HEK) 293 cells

  12. A role for barley calcium-dependent protein kinase CPK2a in the response to drought

    Directory of Open Access Journals (Sweden)

    Agata Cieśla

    2016-10-01

    Full Text Available Increasing the drought tolerance of crops is one of the most challenging goals in plant breeding. To improve crop productivity during periods of water deficit, it is essential to understand the complex regulatory pathways that adapt plant metabolism to environmental conditions. Among various plant hormones and second messengers, calcium ions are known to be involved in drought stress perception and signaling. Plants have developed specific calcium-dependent protein kinases that convert calcium signals into phosphorylation events. In this study we attempted to elucidate the role of a calcium-dependent protein kinase in the drought stress response of barley (Hordeum vulgare L., one of the most economically important crops worldwide. The ongoing barley genome project has provided useful information about genes potentially involved in the drought stress response, but information on the role of calcium-dependent kinases is still limited. We found that the gene encoding the calcium-dependent protein kinase HvCPK2a was significantly upregulated in response to drought. To better understand the role of HvCPK2a in drought stress signaling, we generated transgenic Arabidopsis plants that overexpressed the corresponding coding sequence. Overexpressing lines displayed drought sensitivity, reduced nitrogen balance index, an increase in total chlorophyll content and decreased relative water content. In addition, in vitro kinase assay experiments combined with mass spectrometry allowed HvCPK2a autophosphorylation sites to be identified. Our results suggest that HvCPK2a is a dual-specificity calcium-dependent protein kinase that functions as a negative regulator of the drought stress response in barley.

  13. Inhibition of PKA anchoring to A-kinase anchoring proteins impairs consolidation and facilitates extinction of contextual fear memories

    NARCIS (Netherlands)

    Nijholt, Ingrid M.; Ostroveanu, Anghelus; Scheper, Wouter A.; Penke, Botond; Luiten, Paul G. M.; Van der Zee, Eddy A.; Eisel, Ulrich L. M.

    Both genetic and pharmacological studies demonstrated that contextual fear conditioning is critically regulated by cyclic AMP-dependent protein kinase (PKA). Since PKA is a broad range protein kinase, a mechanism for confining its activity is required. It has been shown that intracellular spatial

  14. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  15. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    Science.gov (United States)

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    Energy Technology Data Exchange (ETDEWEB)

    Boonsri, Pornthip [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States); Herdendorf, Timothy J.; Miziorko, Henry M. [Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110 (United States); Hannongbua, Supa [Department of Chemistry, NANOTEC Center of Nanotechnology, National Nanotechnology Center, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Sem, Daniel S., E-mail: daniel.sem@cuw.edu [Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201 (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  17. Docking based 3d-QSAR studies applied at the BRAF inhibitors to understand the binding mechanism

    International Nuclear Information System (INIS)

    Mahmood, U.; Haq, Z.U.

    2011-01-01

    BRAF is a great therapeutic target in a wide variety of human cancers. It is the member of Ras Activating Factor (RAF) family of serine/throenine kinase. The mutated form of the BRAF has diverted all the attention towards itself because of increase severity and elevated kinase activity. The RAF signal transduction cascade is a conserved protein pathway that is involved in cell cycle progression and apoptosis. The ERK regulates phosphorylation of different proteins either in cytosol or in nucleus but disorders in ERK signaling pathway cause mutation in BRAF. This cascade in these cells may provide selection of mutated BRAF in which valine is substituted with glutamatic acid at position 600. This mutation occurs in activation loop. A number of inhibitors reported to target different members of RAF, some of them have potential to target the BRAF as well. Major reason for failure of previously reported inhibitors was due to the highly conserved sequence and confirmation of catalytic cleft which is always a center of consideration for binding of inhibitors to suppress the kinase activity. This is the first attempt to study and understand the BARF inhibitors - protein interactions in detail by utilizing 3D-QSAR and molecular docking techniques. Most reliable techniques of 3D QSAR i.e Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA) were applied for three different data sets. The data sets selected for better evaluation of BRAF inhibitors belongs to 2, 6-Disubstituted Pyrazine, Pyridoimidazolones and its derivatives. Our models would offer help to better understand the structure-activity relationships that exist for these classes of compounds and also facilitate the design of novel inhibitors with good chemical diversity. (Author)

  18. Crystal structure of the Src family kinase Hck SH3-SH2 linker regulatory region supports an SH3-dominant activation mechanism.

    Science.gov (United States)

    Alvarado, John J; Betts, Laurie; Moroco, Jamie A; Smithgall, Thomas E; Yeh, Joanne I

    2010-11-12

    Most mammalian cell types depend on multiple Src family kinases (SFKs) to regulate diverse signaling pathways. Strict control of SFK activity is essential for normal cellular function, and loss of kinase regulation contributes to several forms of cancer and other diseases. Previous x-ray crystal structures of the SFKs c-Src and Hck revealed that intramolecular association of their Src homology (SH) 3 domains and SH2 kinase linker regions has a key role in down-regulation of kinase activity. However, the amino acid sequence of the Hck linker represents a suboptimal ligand for the isolated SH3 domain, suggesting that it may form the polyproline type II helical conformation required for SH3 docking only in the context of the intact structure. To test this hypothesis directly, we determined the crystal structure of a truncated Hck protein consisting of the SH2 and SH3 domains plus the linker. Despite the absence of the kinase domain, the structures and relative orientations of the SH2 and SH3 domains in this shorter protein were very similar to those observed in near full-length, down-regulated Hck. However, the SH2 kinase linker adopted a modified topology and failed to engage the SH3 domain. This new structure supports the idea that these noncatalytic regions work together as a "conformational switch" that modulates kinase activity in a manner unique to the SH3 domain and linker topologies present in the intact Hck protein. Our results also provide fresh structural insight into the facile induction of Hck activity by HIV-1 Nef and other Hck SH3 domain binding proteins and implicate the existence of innate conformational states unique to individual Src family members that "fine-tune" their sensitivities to activation by SH3-based ligands.

  19. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    Science.gov (United States)

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  20. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.