WorldWideScience

Sample records for protein engineering security

  1. Computer security engineering management

    International Nuclear Information System (INIS)

    McDonald, G.W.

    1988-01-01

    For best results, computer security should be engineered into a system during its development rather than being appended later on. This paper addresses the implementation of computer security in eight stages through the life cycle of the system; starting with the definition of security policies and ending with continuing support for the security aspects of the system throughout its operational life cycle. Security policy is addressed relative to successive decomposition of security objectives (through policy, standard, and control stages) into system security requirements. This is followed by a discussion of computer security organization and responsibilities. Next the paper directs itself to analysis and management of security-related risks, followed by discussion of design and development of the system itself. Discussion of security test and evaluation preparations, and approval to operate (certification and accreditation), is followed by discussion of computer security training for users is followed by coverage of life cycle support for the security of the system

  2. Proteins engineering

    International Nuclear Information System (INIS)

    2000-01-01

    At the - Departement d'Ingenierie et d'etudes de proteines (Deip) of the CEA more than seventy researchers are working hard to understand the function of proteins. For that they use the molecular labelling technique (F.M.)

  3. Systems Security Engineering

    Science.gov (United States)

    2010-08-22

    environment that contains network- borne cybersecurity threats, an argument may be made that the firewall increases overall system functionality by reserving...the number of administered devices. This approach to security analysis is at once old and new. In the early days of eCommerce , security

  4. Security and trust requirements engineering

    NARCIS (Netherlands)

    Giorgini, P.; Massacci, F.; Zannone, N.; Aldini, A.; Gorrieri, R.; Martinelli, F.

    2005-01-01

    Integrating security concerns throughout the whole software development process is one of today’s challenges in software and requirements engineering research. A challenge that so far has proved difficult to meet. The major difficulty is that providing security does not only require to solve

  5. Security systems engineering overview

    International Nuclear Information System (INIS)

    Steele, B.J.

    1996-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at $70 billion in direct costs and up to $300 billion in indirect costs. Health insurance fraud alone is estimated to cost American businesses $100 billion. Theft, warranty fraud, and counterfeiting of computer hardware totaled $3 billion in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies (counterfeit currency, cellular phone billing, credit card fraud, health care fraud, passport, green cards, and questionable documents); industrial espionage detection and prevention (intellectual property, computer chips, etc.); and security barrier technology (creation of delay such as gates, vaults, etc.)

  6. Security systems engineering overview

    Science.gov (United States)

    Steele, Basil J.

    1997-01-01

    Crime prevention is on the minds of most people today. The concern for public safety and the theft of valuable assets are being discussed at all levels of government and throughout the public sector. There is a growing demand for security systems that can adequately safeguard people and valuable assets against the sophistication of those criminals or adversaries who pose a threat. The crime in this country has been estimated at 70 billion dollars in direct costs and up to 300 billion dollars in indirect costs. Health insurance fraud alone is estimated to cost American businesses 100 billion dollars. Theft, warranty fraud, and counterfeiting of computer hardware totaled 3 billion dollars in 1994. A threat analysis is a prerequisite to any security system design to assess the vulnerabilities with respect to the anticipated threat. Having established a comprehensive definition of the threat, crime prevention, detection, and threat assessment technologies can be used to address these criminal activities. This talk will outline the process used to design a security system regardless of the level of security. This methodology has been applied to many applications including: government high security facilities; residential and commercial intrusion detection and assessment; anti-counterfeiting/fraud detection technologies; industrial espionage detection and prevention; security barrier technology.

  7. Information technology security system engineering methodology

    Science.gov (United States)

    Childs, D.

    2003-01-01

    A methodology is described for system engineering security into large information technology systems under development. The methodology is an integration of a risk management process and a generic system development life cycle process. The methodology is to be used by Security System Engineers to effectively engineer and integrate information technology security into a target system as it progresses through the development life cycle. The methodology can also be used to re-engineer security into a legacy system.

  8. Security Research on Engineering Database System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Engine engineering database system is an oriented C AD applied database management system that has the capability managing distributed data. The paper discusses the security issue of the engine engineering database management system (EDBMS). Through studying and analyzing the database security, to draw a series of securi ty rules, which reach B1, level security standard. Which includes discretionary access control (DAC), mandatory access control (MAC) and audit. The EDBMS implem ents functions of DAC, ...

  9. Artificially Engineered Protein Polymers.

    Science.gov (United States)

    Yang, Yun Jung; Holmberg, Angela L; Olsen, Bradley D

    2017-06-07

    Modern polymer science increasingly requires precise control over macromolecular structure and properties for engineering advanced materials and biomedical systems. The application of biological processes to design and synthesize artificial protein polymers offers a means for furthering macromolecular tunability, enabling polymers with dispersities of ∼1.0 and monomer-level sequence control. Taking inspiration from materials evolved in nature, scientists have created modular building blocks with simplified monomer sequences that replicate the function of natural systems. The corresponding protein engineering toolbox has enabled the systematic development of complex functional polymeric materials across areas as diverse as adhesives, responsive polymers, and medical materials. This review discusses the natural proteins that have inspired the development of key building blocks for protein polymer engineering and the function of these elements in material design. The prospects and progress for scalable commercialization of protein polymers are reviewed, discussing both technology needs and opportunities.

  10. A Research Agenda for Security Engineering

    Directory of Open Access Journals (Sweden)

    Rich Goyette

    2013-08-01

    Full Text Available Despite nearly 30 years of research and application, the practice of information system security engineering has not yet begun to exhibit the traits of a rigorous scientific discipline. As cyberadversaries have become more mature, sophisticated, and disciplined in their tradecraft, the science of security engineering has not kept pace. The evidence of the erosion of our digital security – upon which society is increasingly dependent – appears in the news almost daily. In this article, we outline a research agenda designed to begin addressing this deficit and to move information system security engineering toward a mature engineering discipline. Our experience suggests that there are two key areas in which this movement should begin. First, a threat model that is actionable from the perspectives of risk management and security engineering should be developed. Second, a practical and relevant security-measurement framework should be developed to adequately inform security-engineering and risk-management processes. Advances in these areas will particularly benefit business/government risk assessors as well as security engineers performing security design work, leading to more accurate, meaningful, and quantitative risk analyses and more consistent and coherent security design decisions. Threat modelling and security measurement are challenging activities to get right – especially when they need to be applied in a general context. However, these are decisive starting points because they constitute the foundation of a scientific security-engineering practice. Addressing these challenges will require stronger and more coherent integration between the sub-disciplines of risk assessment and security engineering, including new tools to facilitate that integration. More generally, changes will be required in the way security engineering is both taught and practiced to take into account the holistic approach necessary from a mature, scientific

  11. Security Engineering FY17 Systems Aware Cybersecurity

    Science.gov (United States)

    2017-12-07

    Security Engineering – FY17 Systems Aware Cybersecurity Technical Report SERC-2017-TR-114 December 7 2017 Principal Investigator: Dr...December 7, 2017 Copyright © 2017 Stevens Institute of Technology, Systems Engineering Research Center The Systems Engineering Research Center (SERC...supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD

  12. Security, Privacy, and Applied Cryptography Engineering

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the Second International Conference on Security, Privacy and Applied Cryptography Engineering held in Chennai, India, in November 2012. The 11 papers presented were carefully reviewed and selected from 61 submissions. The papers are organized...... and applications, high-performance computing in cryptology and cryptography in ubiquitous devices....

  13. Security and computer forensics in web engineering education

    OpenAIRE

    Glisson, W.; Welland, R.; Glisson, L.M.

    2010-01-01

    The integration of security and forensics into Web Engineering curricula is imperative! Poor security in web-based applications is continuing to cost organizations millions and the losses are still increasing annually. Security is frequently taught as a stand-alone course, assuming that security can be 'bolted on' to a web application at some point. Security issues must be integrated into Web Engineering processes right from the beginning to create secure solutions and therefore security shou...

  14. Pattern and security requirements engineering-based establishment of security standards

    CERN Document Server

    Beckers, Kristian

    2015-01-01

    Security threats are a significant problem for information technology companies today. This book focuses on how to mitigate these threats by using security standards and provides ways to address associated problems faced by engineers caused by ambiguities in the standards. The security standards are analysed, fundamental concepts of the security standards presented, and the relations to the elementary concepts of security requirements engineering (SRE) methods explored. Using this knowledge, engineers can build customised methods that support the establishment of security standards. Standard

  15. Systems Security Engineering Capability Maturity Model SSE-CMM Model Description Document

    National Research Council Canada - National Science Library

    1999-01-01

    The Systems Security Engineering Capability Maturity Model (SSE-CMM) describes the essential characteristics of an organization's security engineering process that must exist to ensure good security engineering...

  16. Security Requirements Management in Software Product Line Engineering

    Science.gov (United States)

    Mellado, Daniel; Fernández-Medina, Eduardo; Piattini, Mario

    Security requirements engineering is both a central task and a critical success factor in product line development due to the complexity and extensive nature of product lines. However, most of the current product line practices in requirements engineering do not adequately address security requirements engineering. Therefore, in this chapter we will propose a security requirements engineering process (SREPPLine) driven by security standards and based on a security requirements decision model along with a security variability model to manage the variability of the artefacts related to security requirements. The aim of this approach is to deal with security requirements from the early stages of the product line development in a systematic way, in order to facilitate conformance with the most relevant security standards with regard to the management of security requirements, such as ISO/IEC 27001 and ISO/IEC 15408.

  17. Protein design for pathway engineering.

    Science.gov (United States)

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Security Engine Management of Router based on Security Policy

    OpenAIRE

    Su Hyung Jo; Ki Young Kim; Sang Ho Lee

    2007-01-01

    Security management has changed from the management of security equipments and useful interface to manager. It analyzes the whole security conditions of network and preserves the network services from attacks. Secure router technology has security functions, such as intrusion detection, IPsec(IP Security) and access control, are applied to legacy router for secure networking. It controls an unauthorized router access and detects an illegal network intrusion. This paper re...

  19. Security engineering: Phisical security measures for high-risk personnel

    Directory of Open Access Journals (Sweden)

    Jelena S. Cice

    2013-06-01

    Full Text Available The design of physical security measures is a specialized technical area that does not fall in the normal skill record and resume of commanders, architects, engineers, and project managers. This document provides guidance to those parties tasked with implementing existing and emerging physical protection system requirements: -    Creation of a single-source reference for the design and construction of physical security measures for high-risk personnel (HRP. -    Promulgation of multi-service standard recommendations and considerations. -    Potential increase of productivity of HRP and reduced temporary housing costs through clarification of considerations, guidance on planning, and provision of design solutions. -    Reduction of facility project costs. -    Better performance of modernized facilities, in terms of force protection, than original facilities. Throughout this process you must ensure: confidentiality, appropriate Public Relations, sustainability, compliance with all industrial guidelines and legal and regulatory requirement, constant review and revision to accommodate new circumstances or threats. Introduction Physical security is an extremely broad topic. It encompasses access control devices such as smart cards, air filtration and fireproofing. It is also heavily reliant on infrastructure. This means that many of the ideal physical security measures may not be economically or physically feasible for existing sites. Many businesses do not have the option of building their own facility from the ground up; thus physical security often must be integrated into an existing structure. This limits the overall set of security measures that can be installed. There is an aspect of physical security that is often overlooked; the humans that interact with it. Humans commit crime for a number of reasons. The document focuses on two building types: the HRP office and the HRP residence. HRP are personnel who are likely to be

  20. Security requirements engineering : the SI* modeling language and the Secure Tropos methodology

    NARCIS (Netherlands)

    Massacci, F.; Mylopoulos, J.; Zannone, N.; Ras, Z.W.; Tsay, L.-S.

    2010-01-01

    Security Requirements Engineering is an emerging field which lies at the crossroads of Security and Software Engineering. Much research has focused on this field in recent years, spurred by the realization that security must be dealt with in the earliest phases of the software development process as

  1. Model-based security engineering for the internet of things

    OpenAIRE

    NEISSE RICARDO; STERI GARY; NAI FOVINO Igor; BALDINI Gianmarco; VAN HOESEL Lodewijk

    2015-01-01

    We propose in this chapter a Model-based Security Toolkit (SecKit) and methodology to address the control and protection of user data in the deployment of the Internet of Things (IoT). This toolkit takes a more general approach for security engineering including risk analysis, establishment of aspect-specific trust relationships, and enforceable security policies. We describe the integrated metamodels used in the toolkit and the accompanying security engineering methodology for IoT systems...

  2. Engineering proteins for environmental applications

    NARCIS (Netherlands)

    Janssen, Dick B.; Schanstra, Joost P.

    1994-01-01

    Recently, significant new insight has been obtained into the structure and catalytic mechanism of enzymes that convert environmental pollutants. Recent advances in protein engineering make it possible to use this information for improving the catalytic performance of such enzymes to achieve

  3. Financial engineering on the corporate debt securities market of Ukraine

    OpenAIRE

    Bui, T.

    2009-01-01

    The approaches to the definition of financial engineering and its methods are highlighted, advisability of application of the new securities types created on the basis of financial engineering in Ukrainian corporate financing is grounded.

  4. Process Security in Chemical Engineering Education

    Science.gov (United States)

    Piluso, Cristina; Uygun, Korkut; Huang, Yinlun; Lou, Helen H.

    2005-01-01

    The threats of terrorism have greatly alerted the chemical process industries to assure plant security at all levels: infrastructure-improvement-focused physical security, information-protection-focused cyber security, and design-and-operation-improvement-focused process security. While developing effective plant security methods and technologies…

  5. Engineering Principles for Information Technology Security (A Baseline for Achieving Security)

    National Research Council Canada - National Science Library

    Stoneburner, Gary

    2001-01-01

    The purpose of the Engineering Principles for Information Technology (IT) Security (HP-ITS) is to present a list of system-level security principles to he considered in the design, development, and operation of an information system...

  6. Functional Security Model: Managers Engineers Working Together

    Science.gov (United States)

    Guillen, Edward Paul; Quintero, Rulfo

    2008-05-01

    Information security has a wide variety of solutions including security policies, network architectures and technological applications, they are usually designed and implemented by security architects, but in its own complexity this solutions are difficult to understand by company managers and they are who finally fund the security project. The main goal of the functional security model is to achieve a solid security platform reliable and understandable in the whole company without leaving of side the rigor of the recommendations and the laws compliance in a single frame. This paper shows a general scheme of the model with the use of important standards and tries to give an integrated solution.

  7. Development of security engineering curricula at US universities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.

    1998-08-01

    The Southwest Surety Institute was formed in June 1996 by Arizona State University (ASU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL) to provide educational programs in Security Engineering, and to conduct research and development in security technologies. This is the first science-based program of its kind in the US, focused on educating Security Engineers to help government and industry address their security needs. Each member brings a unique educational capability to the Institute. NM Tech has a formidable explosives testing and evaluation facility. ASU is developing a Masters program in Security Engineering at their School of Technology located on a new campus in Mesa, Arizona. NMSU provides a Security Technology minor, merging programs in Criminal Justice and Engineering Technology. The Sandia National Laboratories security system design and evaluation process forms the basis for the Security Engineering curricula. In an effort to leverage the special capabilities of each university, distance education will be used to share courses among Institute members and eventually with other sites across the country.

  8. How to Compare the Security Quality Requirements Engineering (SQUARE) Method with Other Methods

    National Research Council Canada - National Science Library

    Mead, Nancy R

    2007-01-01

    The Security Quality Requirements Engineering (SQUARE) method, developed at the Carnegie Mellon Software Engineering Institute, provides a systematic way to identify security requirements in a software development project...

  9. Spent fuel reprocessing system security engineering capability maturity model

    International Nuclear Information System (INIS)

    Liu Yachun; Zou Shuliang; Yang Xiaohua; Ouyang Zigen; Dai Jianyong

    2011-01-01

    In the field of nuclear safety, traditional work places extra emphasis on risk assessment related to technical skills, production operations, accident consequences through deterministic or probabilistic analysis, and on the basis of which risk management and control are implemented. However, high quality of product does not necessarily mean good safety quality, which implies a predictable degree of uniformity and dependability suited to the specific security needs. In this paper, we make use of the system security engineering - capability maturity model (SSE-CMM) in the field of spent fuel reprocessing, establish a spent fuel reprocessing systems security engineering capability maturity model (SFR-SSE-CMM). The base practices in the model are collected from the materials of the practice of the nuclear safety engineering, which represent the best security implementation activities, reflect the regular and basic work of the implementation of the security engineering in the spent fuel reprocessing plant, the general practices reveal the management, measurement and institutional characteristics of all process activities. The basic principles that should be followed in the course of implementation of safety engineering activities are indicated from 'what' and 'how' aspects. The model provides a standardized framework and evaluation system for the safety engineering of the spent fuel reprocessing system. As a supplement to traditional methods, this new assessment technique with property of repeatability and predictability with respect to cost, procedure and quality control, can make or improve the activities of security engineering to become a serial of mature, measurable and standard activities. (author)

  10. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  11. Protein Engineering: Case Studies of Commercialized Engineered Products

    Science.gov (United States)

    Walsh, Gary

    2007-01-01

    Programs in biochemistry invariably encompass the principles of protein engineering. Students often display increased understanding and enthusiasm when theoretical concepts are underpinned by practical example. Herein are presented five case studies, each focusing upon a commercial protein product engineered to enhance its application-relevant…

  12. Unmasking the social engineer the human element of security

    CERN Document Server

    Hadnagy, Christopher

    2014-01-01

    Learn to identify the social engineer by non-verbal behavior Unmasking the Social Engineer: The Human Element of Security focuses on combining the science of understanding non-verbal communications with the knowledge of how social engineers, scam artists and con men use these skills to build feelings of trust and rapport in their targets. The author helps readers understand how to identify and detect social engineers and scammers by analyzing their non-verbal behavior. Unmasking the Social Engineer shows how attacks work, explains nonverbal communications, and demonstrates with visuals the c

  13. Engineering Information Security The Application of Systems Engineering Concepts to Achieve Information Assurance

    CERN Document Server

    Jacobs, Stuart

    2011-01-01

    Information security is the act of protecting information from unauthorized access, use, disclosure, disruption, modification, or destruction. This book discusses why information security is needed and how security problems can have widespread impacts. It covers the complete security lifecycle of products and services, starting with requirements and policy development and progressing through development, deployment, and operations, and concluding with decommissioning. Professionals in the sciences, engineering, and communications fields will turn to this resource to understand the many legal,

  14. Engineering secure Internet of Things systems

    CERN Document Server

    Aziz, Benjamin; Crispo, Bruno

    2016-01-01

    This book examines important security considerations for the Internet of Things (IoT). IoT is collecting a growing amount of private and sensitive data about our lives, and requires increasing degrees of reliability and trustworthiness in terms of the levels of assurance provided with respect to confidentiality, integrity and availability.

  15. Engineering security agreements against external insider threat

    NARCIS (Netherlands)

    Nunes Leal Franqueira, V.; van Cleeff, A.; van Eck, Pascal; Wieringa, Roelf J.

    2013-01-01

    Companies are increasingly engaging in complex inter-organisational networks of business and trading part- ners, service and managed security providers to run their operations. Therefore, it is now common to outsource critical business processes and to completely move IT resources to the custody of

  16. Goal-Equivalent Secure Business Process Re-engineering

    DEFF Research Database (Denmark)

    Acosta, Hugo Andrés Lópes; Massacci, Fabio; Zannone, Nicola

    2008-01-01

    that they are somehow “equivalent”. In this paper we propose a method for passing from SI*, a modeling language for capturing and modeling functional, security, and trust organizational and system requirements, to business process specifications and vice versa. In particular, starting from an old secure business......The introduction of information technologies in health care systems often requires to re-engineer the business processes used to deliver care. Obviously, the new and re-engineered processes are observationally different and thus we cannot use existing model-based techniques to argue...... process, we reconstruct the functional and security requirements at organizational level that such a business process was supposed to meet (including the trust relations that existed among the members of the organization). To ensure that the re-engineered business process meets the elicited requirements...

  17. Protein engineering approaches to chemical biotechnology.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2016-12-01

    Protein engineering for the improvement of properties of biocatalysts and for the generation of novel metabolic pathways plays more and more important roles in chemical biotechnology aiming at the production of chemicals from biomass. Although widely used in single-enzyme catalysis process, protein engineering is only being increasingly explored in recent years to achieve more complex in vitro and in vivo biocatalytic processes. This review focuses on major contributions of protein engineering to chemical biotechnology in the field of multi-enzymatic cascade catalysis and metabolic engineering. Especially, we discuss and highlight recent strategies for combining pathway design and protein engineering for the production of novel products. Copyright © 2016. Published by Elsevier Ltd.

  18. The study on network security based on software engineering

    Science.gov (United States)

    Jia, Shande; Ao, Qian

    2012-04-01

    Developing a SP is a sensitive task because the SP itself can lead to security weaknesses if it is not conform to the security properties. Hence, appropriate techniques are necessary to overcome such problems. These techniques must accompany the policy throughout its deployment phases. The main contribution of this paper is then, the proposition of three of these activities: validation, test and multi-SP conflict management. Our techniques are inspired by the well established techniques of the software engineering for which we have found some similarities with the security domain.

  19. Master planning for successful safeguard/security systems engineering

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1987-01-01

    The development and phased implementation of an overall master plan for weapons systems and facilities engaged in the complexities of high technology provides a logical road map for system accomplishment. An essential factor in such a comprehensive plan is development of an integrated systems security engineering plan. Some DOD programs use new military regulations and policy directives to mandate consideration of the safeguard/security disciplines be considered for weapons systems and facilities during the entire life cycle of the program. The emphasis is to make certain the weapon system and applicable facilities have complementary security features. Together they must meet the needs of the operational mission and, at the same time, provide the security forces practical solutions to their requirements. This paper discusses the process of meshing the safe- guards/security requirements with an overall the master plan and the challenges attendant to this activity

  20. Development of security engineering curricula at US universities

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M.L.

    1998-06-01

    The Southwest Surety Institute was formed in 1996 to create unique, science-based educational programs in security engineering. The programs will integrate business, technology, and criminal justice elements to educate a new generation of security professionals. Graduates of the programs will better understand basic security system design and evaluation and contribute to strengthening of the body of knowledge in the area of security. A systematic approach incorporating people, procedures, and equipment will be taught that will emphasize basic security principles and establish the science of security engineering. The use of performance measures in the analysis of designed systems will enable effective decisions by an enterprise and provide the rationale for investment in security systems. Along with educational programs, Institute members will conduct original research and development built on existing relationships with sponsors from government and industry in areas such as counterterroism, microelectronics, banking, aviation, and sensor development. Additional information and updates on the Southwest Surety Institute are available via the Institute home page at www.emrtc.nmt.edu/ssi.

  1. Agent of opportunity risk mitigation: people, engineering, and security efficacy.

    Science.gov (United States)

    Graham, Margaret E; Tunik, Michael G; Farmer, Brenna M; Bendzans, Carly; McCrillis, Aileen M; Nelson, Lewis S; Portelli, Ian; Smith, Silas; Goldberg, Judith D; Zhang, Meng; Rosenberg, Sheldon D; Goldfrank, Lewis R

    2010-12-01

    Agents of opportunity (AO) are potentially harmful biological, chemical, radiological, and pharmaceutical substances commonly used for health care delivery and research. AOs are present in all academic medical centers (AMC), creating vulnerability in the health care sector; AO attributes and dissemination methods likely predict risk; and AMCs are inadequately secured against a purposeful AO dissemination, with limited budgets and competing priorities. We explored health care workers' perceptions of AMC security and the impact of those perceptions on AO risk. Qualitative methods (survey, interviews, and workshops) were used to collect opinions from staff working in a medical school and 4 AMC-affiliated hospitals concerning AOs and the risk to hospital infrastructure associated with their uncontrolled presence. Secondary to this goal, staff perception concerning security, or opinions about security behaviors of others, were extracted, analyzed, and grouped into themes. We provide a framework for depicting the interaction of staff behavior and access control engineering, including the tendency of staff to "defeat" inconvenient access controls. In addition, 8 security themes emerged: staff security behavior is a significant source of AO risk; the wide range of opinions about "open" front-door policies among AMC staff illustrates a disparity of perceptions about the need for security; interviewees expressed profound skepticism concerning the effectiveness of front-door access controls; an AO risk assessment requires reconsideration of the security levels historically assigned to areas such as the loading dock and central distribution sites, where many AOs are delivered and may remain unattended for substantial periods of time; researchers' view of AMC security is influenced by the ongoing debate within the scientific community about the wisdom of engaging in bioterrorism research; there was no agreement about which areas of the AMC should be subject to stronger access

  2. Security Engineering and Educational Initiatives for Critical Information Infrastructures

    Science.gov (United States)

    2013-06-01

    content. The curriculum development efforts are accompanied by exercises that expose students to practical tools and resources for security engineering...with relatively simple analytical features, but high pedagogical value. Information Assurance Courses Curriculum development has occurred for...tool chain and accompanying methodology confronts serious challenges posed by large heterogeneous networks (e.g., SCADA and corporate systems) from

  3. Security engineering: systems engineering of security through the adaptation and application of risk management

    Science.gov (United States)

    Gilliam, David P.; Feather, Martin S.

    2004-01-01

    Information Technology (IT) Security Risk Management is a critical task in the organization, which must protect its resources and data against the loss of confidentiality, integrity, and availability. As systems become more complex and diverse, and more vulnerabilities are discovered while attacks from intrusions and malicious content increase, it is becoming increasingly difficult to manage IT security. This paper describes an approach to address IT security risk through risk management and mitigation in both the institution and in the project life cycle.

  4. Engineered Proteins: Redox Properties and Their Applications

    Science.gov (United States)

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  5. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  6. Helping the Hacker? Library Information, Security, and Social Engineering

    Directory of Open Access Journals (Sweden)

    Samuel T. C. Thompson

    2006-12-01

    Full Text Available Social engineering is the use of nontechnical means to gain unauthorized access to information or computer systems. While this method is recognized as a major security threat in the computer industry, little has been done to address it in the library field. This is of particular concern because libraries increasingly have access to databases of both proprietary and personal information. This tutorial is designed to increase the awareness of library staff in regard to the issue of social engineering.

  7. Cross Kingdom Glyco Protein Engineering

    DEFF Research Database (Denmark)

    Möller, Svenning Rune

    delivered CRISPR/Cas9’, describes the use of viral replicons to deliver the CRISPR/Cas9 components to leaves of Nicotiana benthamiana, which we have optimized by fusing a Gfp marker to the Cas9 protein combined with FACS mediated cell sorting of Cas9-Gfp expressing protoplast cells....

  8. Protein engineering for biofuel production: Recent development

    Directory of Open Access Journals (Sweden)

    Nisha Singh

    2016-09-01

    Full Text Available The unstable and unsure handiness of crude oil sources moreover the rising price of fuels have shifted international efforts to utilize renewable resources for the assembly of greener energy and a replacement which might additionally meet the high energy demand of the globe. Biofuels represent a sustainable, renewable, and also the solely predictable energy supply to fossil fuels. During the green production of Biofuels, several in vivo processes place confidence in the conversion of biomass to sugars by engineered enzymes, and the subsequent conversion of sugars to chemicals via designed proteins in microbial production hosts. Enzymes are indispensable within the effort to provide fuels in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and potency while not using dangerous chemicals. Nature provides an in depth assortment of enzymes, however usually these should be altered to perform desired functions in needed conditions. Presently available enzymes like cellulose are subject to tight induction and regulation systems and additionally suffer inhibition from numerous end products. Therefore, more impregnable and economical catalyst preparations ought to be developed for the enzymatic method to be more economical. Approaches like protein engineering, reconstitution of protein mixtures and bio prospecting for superior enzymes are gaining importance. Advances in enzyme engineering allow the planning and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the production of improved enzymes to help with the conversion of biomass into fuels. The assembly of the many of those fuels is feasible due to advances in protein engineering. This review discusses the distinctive challenges that protein engineering faces in the method of changing lignocellulose to biofuels and the way they're addressed by recent advances in this field.

  9. Creation of security engineering programs by the Southwest Surety Institute

    Science.gov (United States)

    Romero, Van D.; Rogers, Bradley; Winfree, Tim; Walsh, Dan; Garcia, Mary Lynn

    1998-12-01

    The Southwest Surety Institute includes Arizona State University (ASU), Louisiana State University (LSU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL). The universities currently offer a full spectrum of post-secondary programs in security system design and evaluation, including an undergraduate minor, a graduate program, and continuing education programs. The programs are based on the methodology developed at Sandia National Laboratories over the past 25 years to protect critical nuclear assets. The programs combine basic concepts and principles from business, criminal justice, and technology to create an integrated performance-based approach to security system design and analysis. Existing university capabilities in criminal justice (NMSU), explosives testing and technology (NM Tech and LSU), and engineering technology (ASU) are leveraged to provide unique science-based programs that will emphasize the use of performance measures and computer analysis tools to prove the effectiveness of proposed systems in the design phase. Facility managers may then balance increased protection against the cost of implementation and risk mitigation, thereby enabling effective business decisions. Applications expected to benefit from these programs include corrections, law enforcement, counter-terrorism, critical infrastructure protection, financial and medical care fraud, industrial security, and border security.

  10. Adaptive engineering management tools of enterprise economic security

    Directory of Open Access Journals (Sweden)

    G.E. Krokhicheva

    2018-06-01

    Full Text Available This paper discusses the organizational and methodological foundations and methods exploited to forecast, analyze and scale down threats and risks in the sphere of economic security, to solve the adaptation problems, to implement and to evaluate of the potency of protective measures. The object of the conducted research is associated with various economic activities of the commercial enterprises affiliated in Rostov region. A suggested model of the formation and functioning of adaptive engineering tools for managing economic security in the form of derivative balance of the enterprise resources and the sources of their formation will allow the proprietors, executive board and mana-gerial staff to obtain necessary information within the requested context regarding the enterprise vital economic interests. In addition, the paper pays attention to the methodological aspects of accounting description and estimation of the iterative achievements to meet the desired adaptation results, implemented within the framework of the described iterative algorithm aimed at ensuring strategic prediction.

  11. Security engineering a guide to building dependable distributed systems

    CERN Document Server

    Anderson, Ross

    2008-01-01

    The world has changed radically since the first edition of this book was published in 2001. Spammers, virus writers, phishermen, money launderers, and spies now trade busily with each other in a lively online criminal economy and as they specialize, they get better. In this indispensable, fully updated guide, Ross Anderson reveals how to build systems that stay dependable whether faced with error or malice. Here?s straight talk on critical topics such as technical engineering basics, types of attack, specialized protection mechanisms, security psychology, policy, and more.

  12. Protein engineering and its applications in food industry.

    Science.gov (United States)

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2017-07-24

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  13. Probing Enzyme-Surface Interactions via Protein Engineering and Single-Molecule Techniques

    Science.gov (United States)

    2017-06-26

    SECURITY CLASSIFICATION OF: The overall objective of this research was to exploit protein engineering and fluorescence single-molecule methods to...enhance our understanding of the interaction of proteins and surfaces. Given this objective, the specific aims of this research were to: 1) exploit the...incorporation of unnatural amino acids in proteins to introduce single-molecule probes (i.e., fluorophores for fluorescence resonance energy transfer

  14. Lentiviral Delivery of Proteins for Genome Engineering.

    Science.gov (United States)

    Cai, Yujia; Mikkelsen, Jacob Giehm

    2016-01-01

    Viruses have evolved to traverse cellular barriers and travel to the nucleus by mechanisms that involve active transport through the cytoplasm and viral quirks to resist cellular restriction factors and innate immune responses. Virus-derived vector systems exploit the capacity of viruses to ferry genetic information into cells, and now - more than three decades after the discovery of HIV - lentiviral vectors based on HIV-1 have become instrumental in biomedical research and gene therapies that require genomic insertion of transgenes. By now, the efficacy of lentiviral gene delivery to stem cells, cells of the immune system including T cells, hepatic cells, and many other therapeutically relevant cell types is well established. Along with nucleic acids, HIV-1 virions carry the enzymatic tools that are essential for early steps of infection. Such capacity to package enzymes, even proteins of nonviral origin, has unveiled new ways of exploiting cellular intrusion of HIV-1. Based on early findings demonstrating the packaging of heterologous proteins into virus particles as part of the Gag and GagPol polypeptides, we have established lentiviral protein transduction for delivery of DNA transposases and designer nucleases. This strategy for delivering genome-engineering proteins facilitates high enzymatic activity within a short time frame and may potentially improve the safety of genome editing. Exploiting the full potential of lentiviral vectors, incorporation of foreign protein can be combined with the delivery of DNA transposons or a donor sequence for homology-directed repair in so-called 'all-in-one' lentiviral vectors. Here, we briefly describe intracellular restrictions that may affect lentiviral gene and protein delivery and review the current status of lentiviral particles as carriers of tool kits for genome engineering.

  15. Engineering of soybean seed storage proteins

    International Nuclear Information System (INIS)

    Dickinson, C.D.; Floener, L.A.; Evans, R.P.; Nielsen, N.C.

    1987-01-01

    Protein engineering is one approach to the improvement of seed quality. With this in mind, a rapid in vitro system has been developed to assay the effect structural modifications have on the assembly of glycinin and β-conglycinin subunit complexes. Transcription plasmids were constructed for production of synthetic glycinin and β-conglycinin mRNAs by SP6 RNA-polymerase. Radiolabeled translation products from these messages were tested for their ability to form complexes. Gy4 and Gy5 proglycinins (group-2 subunits) and the a-subunit of β-conglycinin self-assembled into trimers. Proglycinin Gy2 (group-1 subunit) did not self-assemble, but assembled into mixed trimers in combination with Gy4 proglycinin. No assembly was observed for preproglycinins Gyl and Gy4, or for a Gy4 proglycinin which lacked 27 amino acids in a highly conserved internal sequence. Insertion of alternating MET-ARG residues in predicted turn regions of a hypervariable sequence in Gy4 proglycinin were tolerated when the string was short but inhibited trimer assembly as it became longer. The response to several different long deletions in this hypervariable region have also been tested. Different levels of trimer assembly were obtained and may depend on the secondary structures of the regions being joined in the engineered subunits. This system will be useful to study the assembly of storage protein complexes and to screen against modifications that interfere with subunit assembly

  16. Secure Business Process Engineering: a socio-technical approach

    OpenAIRE

    Salnitri, Mattia

    2016-01-01

    Dealing with security is a central activity for todays organizations. Security breaches impact on the activities executed in organizations, preventing them to execute their business processes and, therefore, causing millions of dollars of losses. Security by design principles underline the importance of considering security as early as during the design of organizations to avoid expensive fixes during later phases of their lifecycle. However, the design of secure business processes cannot tak...

  17. Engineering protein scaffolds for protein separation, biocatalysis and nanotechnology applications

    Science.gov (United States)

    Liu, Fang

    Globally, there is growing appreciation for developing a sustainable economy that uses eco-efficient bio-processes. Biotechnology provides an increasing range of tools for industry to help reduce cost and improve environmental performance. Inspired by the naturally evolved machineries of protein scaffolds and their binding ligands, synthetic protein scaffolds were engineered based on cohesin-dockerin interactions and metal chelating peptides to tackle the challenges and make improvements in three specific areas: (1) protein purification, (2) biofuel cells, and (3) nanomaterial synthesis. The first objective was to develop efficient and cost-effective non-chromatographic purification processes to purify recombinant proteins in an effort to meet the dramatically growing market of protein drugs. In our design, the target protein was genetically fused with a dockerin domain from Clostridium thermocellum and direct purification and recovery was achieved using thermo-responsive elastin-like polypeptide (ELP) scaffold containing the cohesin domain from the same species. By exploiting the highly specific interaction between the dockerin and cohesin domain and the reversible aggregation property of ELP, highly purified and active dockerin-tagged proteins, such as endoglucanase CelA, chloramphenicol acetyl transferase (CAT) and enhanced green fluorescence protein (EGFP), were recovered directly from crude cell extracts in a single purification step with yields achieving over 90%. Incorporation of a self-cleaving intein domain enabled rapid removal of the affinity tag from the target proteins by another cycle of thermal precipitation. The purification cost can be further reduced by regenerating and recycling the ELP-cohesin capturing scaffolds. However, due to the high binding affinity between cohesin and dockerin domains, the bound dockerin-intein tag cannot be completely disassociated from ELP-cohesin scaffold after binding. Therefore, a truncated dockerin with the calcium

  18. The Unreasonable Ineffectiveness of Security Engineering: An Overview

    NARCIS (Netherlands)

    Pavlovic, Dusko

    2010-01-01

    In his 1960 essay, Eugene Wigner raised the question of ‿the unreasonable effectiveness of mathematics in natural sciences‿. After several decades of security research, we are tempted to ask the opposite question: Are we not unreasonably ineffective? Why are we not more secure from all the security

  19. 40 CFR 1068.225 - What are the provisions for exempting engines/equipment for national security?

    Science.gov (United States)

    2010-07-01

    ... engines/equipment for national security? 1068.225 Section 1068.225 Protection of Environment ENVIRONMENTAL...) Manufacturers may request a national security exemption for engines/equipment not meeting the conditions of... applicable): (i) “THIS ENGINE HAS AN EXEMPTION FOR NATIONAL SECURITY UNDER 40 CFR 1068.225.” (ii) “THIS...

  20. Protein engineering for metabolic engineering: current and next-generation tools

    Science.gov (United States)

    Marcheschi, Ryan J.; Gronenberg, Luisa S.; Liao, James C.

    2014-01-01

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically-produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. This article reviews advances of selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use, produce non-natural amino acids, alcohols, and carboxylic acids, and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes. PMID:23589443

  1. Systems Security Engineering Capability Maturity Model (SSECMM), Model Description, Version 1.1

    National Research Council Canada - National Science Library

    1997-01-01

    This document is designed to acquaint the reader with the SSE-CMM Project as a whole and present the project's major work product - the Systems Security Engineering Capability Maturity Model (SSE- CMM...

  2. Protein engineering and the use of molecular modeling and simulation: the case of heterodimeric Fc engineering.

    Science.gov (United States)

    Spreter Von Kreudenstein, Thomas; Lario, Paula I; Dixit, Surjit B

    2014-01-01

    Computational and structure guided methods can make significant contributions to the development of solutions for difficult protein engineering problems, including the optimization of next generation of engineered antibodies. In this paper, we describe a contemporary industrial antibody engineering program, based on hypothesis-driven in silico protein optimization method. The foundational concepts and methods of computational protein engineering are discussed, and an example of a computational modeling and structure-guided protein engineering workflow is provided for the design of best-in-class heterodimeric Fc with high purity and favorable biophysical properties. We present the engineering rationale as well as structural and functional characterization data on these engineered designs. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. EVALUATION OF ECONOMIC SECURITY NOVOSIBIRSK REGION (FOR EXAMPLE, A REGIONAL ENGINEERING

    Directory of Open Access Journals (Sweden)

    Lugacheva L. I.

    2014-12-01

    Full Text Available The article shows the importance of regional engineering for the Russian economy, it clarifies the factors of economic security of the Novosibirsk region (NSO. Analyzed the characteristics prevailing in the engineering industry, its competitive advantages. The research results of the export orientation of the regional engineering VAT: its direction and priorities; discusses the trends that influence the growth during the recovery has formed a new profile of its foreign economic relations. Threats identified in the development of engineering and to propose measures to overcome them to ensure the economic security of the region. The article deals with the problem-tional institutes provide for the sustainable development of regional engineering, discusses the possibility of using pub-lic-private partnerships. Sharing of risks and responsibilities between the subject of the Russian Federation, municipalities and entrepreneurs - one of the priorities in the creation of the necessary conditions for the economic security of the NSO.

  4. MODEL-BASED SECURITY ENGINEERING OF SOA SYSTEM USING SECURITY INTENT DSL

    OpenAIRE

    Muhammad Qaiser Saleem; Jafreezal Jaafar; Mohd Fadzil Hassan

    2011-01-01

    Currently most of the enterprises are using SOA and web services technologies to build their web information system. They are using MDA principles for design and development of WIS and using UML as a modelling language for business process modelling. Along with the increased connectivity in SOA environment, security risks rise exponentially. Security is not defined during the early phases of development and left onto developer. Properly configuring security requirements in SOA applications is...

  5. Advanced Course in Engineering (ACE) - Cyber Security Boot Camp

    National Research Council Canada - National Science Library

    Older, Susan

    2008-01-01

    .... ACE achieved its stated objectives by completely immersing students in the cyber-security discipline for ten weeks, through a combination of intense coursework, open-ended problems, and internship...

  6. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    Science.gov (United States)

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  7. Zephyr: A secure Internet process to streamline engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.W.; Niven, W.A.; Cavitt, R.E. [and others

    1998-05-12

    Lawrence Livermore National Laboratory (LLNL) is implementing an Internet-based process pilot called `Zephyr` to streamline engineering and commerce using the Internet. Major benefits have accrued by using Zephyr in facilitating industrial collaboration, speeding the engineering development cycle, reducing procurement time, and lowering overall costs. Programs at LLNL are potentializing the efficiencies introduced since implementing Zephyr. Zephyr`s pilot functionality is undergoing full integration with Business Systems, Finance, and Vendors to support major programs at the Laboratory.

  8. Deep sequencing methods for protein engineering and design.

    Science.gov (United States)

    Wrenbeck, Emily E; Faber, Matthew S; Whitehead, Timothy A

    2017-08-01

    The advent of next-generation sequencing (NGS) has revolutionized protein science, and the development of complementary methods enabling NGS-driven protein engineering have followed. In general, these experiments address the functional consequences of thousands of protein variants in a massively parallel manner using genotype-phenotype linked high-throughput functional screens followed by DNA counting via deep sequencing. We highlight the use of information rich datasets to engineer protein molecular recognition. Examples include the creation of multiple dual-affinity Fabs targeting structurally dissimilar epitopes and engineering of a broad germline-targeted anti-HIV-1 immunogen. Additionally, we highlight the generation of enzyme fitness landscapes for conducting fundamental studies of protein behavior and evolution. We conclude with discussion of technological advances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Integrating security issues in nuclear engineering curriculum in Indonesia. Classical vs policy approaches

    International Nuclear Information System (INIS)

    Putero, Susetyo Hario; Rosita, Widya; Sihana, Fnu; Ferdiansjah; Santosa, Haryono Budi; Muharini, Anung

    2015-01-01

    Recently, risk management for nuclear facilities becomes more complex due to security issue addressed by IAEA. The harmonization between safety, safeguards and security is still questionable. It also challenges to nuclear engineering curriculum in the world how to appropriately lecture the new issue. This paper would like to describe how to integrate this issue in developing nuclear engineering curriculum in Indonesia. Indonesia has still no nuclear power plant, but there are 3 research reactors laid in Indonesia. As addition, there are several hospitals and industries utilizing radioisotopes in their activities. The knowledge about nuclear security of their staffs is also not enough for handling radioactive material furthermore the security officers. Universitas Gadjah Mada (UGM) is the only university in Indonesia offering nuclear engineering program, as consequently the university should actively play the role in overcoming this issue not only in Indonesia, but also in Southeast Asia. In the other hand, students has to have proper knowledge in order to complete in the global nuclear industry. After visited several universities in USA and participated in INSEN meeting, we found that most of universities in the world anticipate this issue by giving the student courses related to policy (non-technical) study based on IAEA NSS 12. In the other hand, the rest just make nuclear security as a case study on their class. Furthermore, almost all of programs are graduate level. UGM decided to enhance several present related undergraduate courses with security topics as first step to develop the awareness of student to nuclear security. The next (curriculum 2016) is to integrate security topics into the entire of curriculum including designing a nuclear security elective course for undergraduate level. The first trial has successfully improved the student knowledge and awareness on nuclear security. (author)

  10. Protein design in systems metabolic engineering for industrial strain development.

    Science.gov (United States)

    Chen, Zhen; Zeng, An-Ping

    2013-05-01

    Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  12. Threshold-Dependent Camouflaged Cells to Secure Circuits Against Reverse Engineering Attacks

    OpenAIRE

    Collantes, Maria I. Mera; Massad, Mohamed El; Garg, Siddharth

    2016-01-01

    With current tools and technology, someone who has physical access to a chip can extract the detailed layout of the integrated circuit (IC). By using advanced visual imaging techniques, reverse engineering can reveal details that are meant to be kept secret, such as a secure protocol or novel implementation that offers a competitive advantage. A promising solution to defend against reverse engineering attacks is IC camouflaging. In this work, we propose a new camouflaging technique based on t...

  13. Development of undergraduate nuclear security curriculum at College of Engineering, Universiti Tenaga Nasional

    Science.gov (United States)

    Hamid, Nasri A.; Mujaini, Madihah; Mohamed, Abdul Aziz

    2017-01-01

    The Center for Nuclear Energy (CNE), College of Engineering, Universiti Tenaga Nasional (UNITEN) has a great responsibility to undertake educational activities that promote developing human capital in the area of nuclear engineering and technology. Developing human capital in nuclear through education programs is necessary to support the implementation of nuclear power projects in Malaysia in the near future. In addition, the educational program must also meet the nuclear power industry needs and requirements. In developing a certain curriculum, the contents must comply with the university's Outcomes Based Education (OBE) philosophy. One of the important courses in the nuclear curriculum is in the area of nuclear security. Basically the nuclear security course covers the current issues of law, politics, military strategy, and technology with regard to weapons of mass destruction and related topics in international security, and review legal regulations and political relationship that determine the state of nuclear security at the moment. In addition, the course looks into all aspects of the nuclear safeguards, builds basic knowledge and understanding of nuclear non-proliferation, nuclear forensics and nuclear safeguards in general. The course also discusses tools used to combat nuclear proliferation such as treaties, institutions, multilateral arrangements and technology controls. In this paper, we elaborate the development of undergraduate nuclear security course at the College of Engineering, Universiti Tenaga Nasional. Since the course is categorized as mechanical engineering subject, it must be developed in tandem with the program educational objectives (PEO) of the Bachelor of Mechanical Engineering program. The course outcomes (CO) and transferrable skills are also identified. Furthermore, in aligning the CO with program outcomes (PO), the PO elements need to be emphasized through the CO-PO mapping. As such, all assessments and distribution of Bloom Taxonomy

  14. Results in Developing an Engineering Degree Program in Safeguards and Security of Nuclear Materials at Moscow Engineering Physics Institute

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.; Geraskin, Nikolay I.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.; Duncan, Cristen L.

    2007-01-01

    The world's first master's degree program in nuclear safeguards and security, established at Moscow Engineering Physics Institute (MEPhI), has now graduated nine classes of students. Most of the graduates have gone on to work at government agencies, research organizations, or obtain their PhD. In order to meet the demand for safeguards and security specialists at nuclear facilities, MEPhI established a 5-1/2 year engineering degree program that provides more hands-on training desired by facilities. In February 2004, the first students began their studies in the new discipline Nuclear Material Safeguards and Nonproliferation. This class, as well as other subsequent classes, included students who started the program in their third year of studies, as the first 2-1/2 years consists of general engineering curriculum. Fourteen students made up the first graduating class, receiving their engineering degrees in February 2007. The topics addressed in this paper include specific features of the program caused by peculiarities of Russian education legislation and government quality control of academic education. This paper summarizes the main joint actions undertaken by MEPhI and the US National Laboratories in conjunction with the U.S. Department of Energy, to develop the engineering degree program. Also discussed are the program's specific training requirements, student internships, and job placement. The paper concludes with recommendations from a recent international seminar on nonproliferation education and training

  15. Using a security requirements engineering methodology in practice: The compliance with the Italian data protection legislation

    NARCIS (Netherlands)

    Massacci, F.; Prest, M.; Zannone, N.

    2005-01-01

    Extending Requirements Engineering modelling and formal analysis methodologies to cope with Security Requirements has been a major effort in the past decade. Yet, only few works describe complex case studies that show the ability of the informal and formal approaches to cope with the level

  16. An Engineered Split Intein for Photoactivated Protein Trans-Splicing.

    Directory of Open Access Journals (Sweden)

    Stanley Wong

    Full Text Available Protein splicing is mediated by inteins that auto-catalytically join two separated protein fragments with a peptide bond. Here we engineered a genetically encoded synthetic photoactivatable intein (named LOVInC, by using the light-sensitive LOV2 domain from Avena sativa as a switch to modulate the splicing activity of the split DnaE intein from Nostoc punctiforme. Periodic blue light illumination of LOVInC induced protein splicing activity in mammalian cells. To demonstrate the broad applicability of LOVInC, synthetic protein systems were engineered for the light-induced reassembly of several target proteins such as fluorescent protein markers, a dominant positive mutant of RhoA, caspase-7, and the genetically encoded Ca2+ indicator GCaMP2. Spatial precision of LOVInC was demonstrated by targeting activity to specific mammalian cells. Thus, LOVInC can serve as a general platform for engineering light-based control for modulating the activity of many different proteins.

  17. Analysis of appraisal tool of system security engineering capability maturity based on component

    International Nuclear Information System (INIS)

    Liu Zhenghai; Yang Xiaohua; Zou Shuliang; Liu Yachun; Xiao Jiantian; Liu Zhiming

    2012-01-01

    Spent Fuel Reprocessing is a part of nuclear fuel cycle and is the inevitably choice of nuclear power sustainable development. Reprocessing needs to face with radiological, criticality, chemical hazards. Besides using the tradition appraisal methods based on the security goals, it is a beneficial supplement that using the appraisal method of system security engineering capability maturity model based on the process. Experts should check and approve large numbers of documents during the appraisal based on system security engineering capability maturity model, so it is necessary that developing a tool to assist the expert to complete the appraisal. The method of developing software based on component is highly effective, nimble and reliable. Component technology is analyzed, the methods of extraction model domain components and general components is introduced, and the appraisal system is developed based on component technology. (authors)

  18. Human engineering considerations in designing a computerized controlled access security system

    International Nuclear Information System (INIS)

    Moore, J.W.; Banks, W.W.

    1988-01-01

    This paper describes a human engineering effort in the design of a major security system upgrade at Lawrence Livermore National Laboratory. This upgrade was to be accomplished by replacing obsolete and difficult-to-man (i.e., multiple operator task actions required) security equipment and systems with a new, automated, computer-based access control system. The initial task was to assist the electronic and mechanical engineering staff in designing a computerized security access system too functionally and ergonomically accommodate 100% of the Laboratory user population. The new computerized access system was intended to control entry into sensitive exclusion areas by requiring personnel to use an entry booth-based system and/or a remote access control panel system. The primary user interface with the system was through a control panel containing a magnetic card reader, function buttons, LCD display, and push-button keypad

  19. Introduction to current and future protein therapeutics: a protein engineering perspective.

    Science.gov (United States)

    Carter, Paul J

    2011-05-15

    Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Engineered proteins with PUF scaffold to manipulate RNA metabolism

    Science.gov (United States)

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M.

    2013-01-01

    Pumilio/fem-3 mRNA binding factor (FBF) proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. Here we summarize the advancement in developing RNA regulatory tools and opportunities for the future. PMID:23731364

  1. Combined protein construct and synthetic gene engineering for heterologous protein expression and crystallization using Gene Composer

    Directory of Open Access Journals (Sweden)

    Walchli John

    2009-04-01

    Full Text Available Abstract Background With the goal of improving yield and success rates of heterologous protein production for structural studies we have developed the database and algorithm software package Gene Composer. This freely available electronic tool facilitates the information-rich design of protein constructs and their engineered synthetic gene sequences, as detailed in the accompanying manuscript. Results In this report, we compare heterologous protein expression levels from native sequences to that of codon engineered synthetic gene constructs designed by Gene Composer. A test set of proteins including a human kinase (P38α, viral polymerase (HCV NS5B, and bacterial structural protein (FtsZ were expressed in both E. coli and a cell-free wheat germ translation system. We also compare the protein expression levels in E. coli for a set of 11 different proteins with greatly varied G:C content and codon bias. Conclusion The results consistently demonstrate that protein yields from codon engineered Gene Composer designs are as good as or better than those achieved from the synonymous native genes. Moreover, structure guided N- and C-terminal deletion constructs designed with the aid of Gene Composer can lead to greater success in gene to structure work as exemplified by the X-ray crystallographic structure determination of FtsZ from Bacillus subtilis. These results validate the Gene Composer algorithms, and suggest that using a combination of synthetic gene and protein construct engineering tools can improve the economics of gene to structure research.

  2. The development and application of engineered proteins for bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J. [ed.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  3. Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2013-01-01

    Production of recombinant proteins for use as pharmaceuticals, so-called biopharmaceuticals, is a multi-billion dollar industry. Many different cell factories are used for the production of biopharmaceuticals, but the yeast Saccharomyces cerevisiae is an important cell factory as it is used for p...... production. The involvement of directed metabolic engineering through the integration of tools from genetic engineering, systems biology and mathematical modeling, is also discussed....... by yeast are human serum albumin, hepatitis vaccines and virus like particles used for vaccination against human papillomavirus. Here is given a brief overview of biopharmaceutical production by yeast and it is discussed how the secretory pathway can be engineered to ensure more efficient protein...

  4. Integrating protein engineering with process design for biocatalysis

    DEFF Research Database (Denmark)

    Woodley, John M.

    2017-01-01

    Biocatalysis uses enzymes for chemical synthesis and production, offering selective, safe and sustainable catalysis. While today the majority of applications are in the pharmaceutical sector, new opportunities are arising every day in other industry sectors, where production costs become a more...... important driver. In the early applications of the technology, it was necessary to design processes to match the properties of the biocatalyst. With the advent of protein engineering, organic chemists started to develop and improve enzymes to suit their needs. Likewise in industry, although not widespread......, a new paradigm was already implemented several years ago to engineer enzymes to suit process needs. Today, a new era is entered, where the effectiveness with which such integrated protein and process engineering is achieved becomes critical to implementation. In this paper, the development of a tool...

  5. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    important to address. Whenever glycosylation has been found to be an important PTM for function or bioactivity, human therapeutics have generally been produced in mammalian Chinese hamster ovary (CHO) cell line. Oglycosylation is one of the most complex regulated PTMs of proteins but also one of the least...... understood. Currently, mammalian cells are required for human O-glycosylation. Increasing efforts have been devoted to engineering non-mammalian cells for production of recombinant proteins with “human-like” glycosylation. Substantial success has been achieved with designed N-glycosylation in both lower......Recombinant expression of therapeutic proteins is one of the major tasks in modern biomedicine. One of the most important factors with respect to therapeutic use in human is posttranslational modifications (PTMs) of the recombinant proteins, of which protein glycosylation is by far the most...

  6. Coupling ligand recognition to protein folding in an engineered variant of rabbit ileal lipid binding protein.

    Science.gov (United States)

    Kouvatsos, Nikolaos; Meldrum, Jill K; Searle, Mark S; Thomas, Neil R

    2006-11-28

    We have engineered a variant of the beta-clam shell protein ILBP which lacks the alpha-helical motif that caps the central binding cavity; the mutant protein is sufficiently destabilised that it is unfolded under physiological conditions, however, it unexpectedly binds its natural bile acid substrates with high affinity forming a native-like beta-sheet rich structure and demonstrating strong thermodynamic coupling between ligand binding and protein folding.

  7. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  8. Genome engineering for improved recombinant protein expression in Escherichia coli.

    Science.gov (United States)

    Mahalik, Shubhashree; Sharma, Ashish K; Mukherjee, Krishna J

    2014-12-19

    A metabolic engineering perspective which views recombinant protein expression as a multistep pathway allows us to move beyond vector design and identify the downstream rate limiting steps in expression. In E.coli these are typically at the translational level and the supply of precursors in the form of energy, amino acids and nucleotides. Further recombinant protein production triggers a global cellular stress response which feedback inhibits both growth and product formation. Countering this requires a system level analysis followed by a rational host cell engineering to sustain expression for longer time periods. Another strategy to increase protein yields could be to divert the metabolic flux away from biomass formation and towards recombinant protein production. This would require a growth stoppage mechanism which does not affect the metabolic activity of the cell or the transcriptional or translational efficiencies. Finally cells have to be designed for efficient export to prevent buildup of proteins inside the cytoplasm and also simplify downstream processing. The rational and the high throughput strategies that can be used for the construction of such improved host cell platforms for recombinant protein expression is the focus of this review.

  9. Engineered Proteins Program Mammalian Cells to Target Inflammatory Disease Sites.

    Science.gov (United States)

    Qudrat, Anam; Mosabbir, Abdullah Al; Truong, Kevin

    2017-06-22

    Disease sites in atherosclerosis and cancer feature cell masses (e.g., plaques/tumors), a low pH extracellular microenvironment, and various pro-inflammatory cytokines such as tumor necrosis factor α (TNFα). The ability to engineer a cell to seek TNFα sources allows for targeted therapeutic delivery. To accomplish this, here we introduced a system of proteins: an engineered TNFα chimeric receptor (named TNFR1chi), a previously engineered Ca 2+ -activated RhoA (named CaRQ), vesicular stomatitis virus glycoprotein G (VSVG), and thymidine kinase. Upon binding TNFα, TNFR1chi generates a Ca 2+ signal that in turn activates CaRQ-mediated non-apoptotic blebs that allow migration toward the TNFα source. Next, the addition of VSVG, upon low pH induction, causes membrane fusion of the engineered and TNFα source cells. Finally, after ganciclovir treatment cells undergo death via the thymidine kinase suicide mechanism. Hence, we assembled a system of proteins that forms the basis of engineering a cell to target inflammatory disease sites characterized by TNFα secretion and a low-pH microenvironment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A Simple Combinatorial Codon Mutagenesis Method for Targeted Protein Engineering.

    Science.gov (United States)

    Belsare, Ketaki D; Andorfer, Mary C; Cardenas, Frida S; Chael, Julia R; Park, Hyun June; Lewis, Jared C

    2017-03-17

    Directed evolution is a powerful tool for optimizing enzymes, and mutagenesis methods that improve enzyme library quality can significantly expedite the evolution process. Here, we report a simple method for targeted combinatorial codon mutagenesis (CCM). To demonstrate the utility of this method for protein engineering, CCM libraries were constructed for cytochrome P450 BM3 , pfu prolyl oligopeptidase, and the flavin-dependent halogenase RebH; 10-26 sites were targeted for codon mutagenesis in each of these enzymes, and libraries with a tunable average of 1-7 codon mutations per gene were generated. Each of these libraries provided improved enzymes for their respective transformations, which highlights the generality, simplicity, and tunability of CCM for targeted protein engineering.

  11. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance

    Directory of Open Access Journals (Sweden)

    Asunción Delgado

    2017-05-01

    Full Text Available Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance.

  12. Novel blood protein based scaffolds for cardiovascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Kuhn Antonia I.

    2016-09-01

    Full Text Available A major challenge in cardiovascular tissue engineering is the fabrication of scaffolds, which provide appropriate morphological and mechanical properties while avoiding undesirable immune reactions. In this study electrospinning was used to fabricate scaffolds out of blood proteins for cardiovascular tissue engineering. Lyophilised porcine plasma was dissolved in deionised water at a final concentration of 7.5% m/v and blended with 3.7% m/v PEO. Electrospinning resulted in homogeneous fibre morphologies with a mean fibre diameter of 151 nm, which could be adapted to create macroscopic shapes (mats, tubes. Cross-linking with glutaraldehyde vapour improved the long-term stability of protein based scaffolds in comparison to untreated scaffolds, resulting in a mass loss of 41% and 96% after 28 days of incubation in aqueous solution, respectively.

  13. Protein engineering of subtilisins to improve stability in detergent formulations.

    Science.gov (United States)

    von der Osten, C; Branner, S; Hastrup, S; Hedegaard, L; Rasmussen, M D; Bisgård-Frantzen, H; Carlsen, S; Mikkelsen, J M

    1993-03-01

    Microbial proteases are used extensively in a large number of industrial processes and most importantly in detergent formulations facilitating the removal of proteinaceous stains. Site-directed mutagenesis has been employed in the construction of subtilisin variants with improved storage and oxidation stabilities. It is shown that in spite of significant structural homology between subtilisins subjected to protein engineering the effects of specific mutations can be quite different. Mutations that stabilize one subtilisin may destabilize another.

  14. Soy Protein Scaffold Biomaterials for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Chien, Karen B.

    Developing functional biomaterials using highly processable materials with tailorable physical and bioactive properties is an ongoing challenge in tissue engineering. Soy protein is an abundant, natural resource with potential use for regenerative medicine applications. Preliminary studies show that soy protein can be physically modified and fabricated into various biocompatible constructs. However, optimized soy protein structures for tissue regeneration (i.e. 3D porous scaffolds) have not yet been designed. Furthermore, little work has established the in vivo biocompatibility of implanted soy protein and the benefit of using soy over other proteins including FDA-approved bovine collagen. In this work, freeze-drying and 3D printing fabrication processes were developed using commercially available soy protein to create porous scaffolds that improve cell growth and infiltration compared to other soy biomaterials previously reported. Characterization of scaffold structure, porosity, and mechanical/degradation properties was performed. In addition, the behavior of human mesenchymal stem cells seeded on various designed soy scaffolds was analyzed. Biological characterization of the cell-seeded scaffolds was performed to assess feasibility for use in liver tissue regeneration. The acute and humoral response of soy scaffolds implanted in an in vivo mouse subcutaneous model was also investigated. All fabricated soy scaffolds were modified using thermal, chemical, and enzymatic crosslinking to change properties and cell growth behavior. 3D printing allowed for control of scaffold pore size and geometry. Scaffold structure, porosity, and degradation rate significantly altered the in vivo response. Freeze-dried soy scaffolds had similar biocompatibility as freeze-dried collagen scaffolds of the same protein content. However, the soy scaffolds degraded at a much faster rate, minimizing immunogenicity. Interestingly, subcutaneously implanted soy scaffolds affected blood

  15. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    Science.gov (United States)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  16. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  17. Engineering safe and secure cyber-physical systems the specification PEARL approach

    CERN Document Server

    Gumzej, Roman

    2016-01-01

    This book introduces the concept of holistic design and development of cyber physical systems to achieve their safe and secure operation. It shows that by following the standards for embedded system’s safety and using appropriate hardware and software components inherently safe system’s architectures can be devised and certified. While the standards already enable testing and certification of inherently safe and sound hardware, this is still not the case with software. The book demonstrates that Specification PEARL(SPEARL) addresses this issue and proposes appropriate solutions from the viewpoints of software engineering as well as concrete program components. By doing so it reduces the complexity of cyber physical systems design in an innovative way. Three ultimate goals are being followed in the course of defining this new PEARL standard, namely: 1. simplicity over complexity, 2. inherent real-time ability, and 3. conformity to safety integrity and security capability levels.

  18. Engineering self-assembled bioreactors from protein microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Univ. of California, Berkeley, CA (United States)

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, synthetic microcompartments for optimizing production of specific energy-rich compounds.

  19. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications.

    Science.gov (United States)

    Fernández-Caramés, Tiago M; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Castedo, Luis

    2016-12-24

    The Internet of Things (IoT) is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics) and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification), which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3) to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol.

  20. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications

    Directory of Open Access Journals (Sweden)

    Tiago M. Fernández-Caramés

    2016-12-01

    Full Text Available The Internet of Things (IoT is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification, which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3 to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol.

  1. Reverse Engineering and Security Evaluation of Commercial Tags for RFID-Based IoT Applications

    Science.gov (United States)

    Fernández-Caramés, Tiago M.; Fraga-Lamas, Paula; Suárez-Albela, Manuel; Castedo, Luis

    2016-01-01

    The Internet of Things (IoT) is a distributed system of physical objects that requires the seamless integration of hardware (e.g., sensors, actuators, electronics) and network communications in order to collect and exchange data. IoT smart objects need to be somehow identified to determine the origin of the data and to automatically detect the elements around us. One of the best positioned technologies to perform identification is RFID (Radio Frequency Identification), which in the last years has gained a lot of popularity in applications like access control, payment cards or logistics. Despite its popularity, RFID security has not been properly handled in numerous applications. To foster security in such applications, this article includes three main contributions. First, in order to establish the basics, a detailed review of the most common flaws found in RFID-based IoT systems is provided, including the latest attacks described in the literature. Second, a novel methodology that eases the detection and mitigation of such flaws is presented. Third, the latest RFID security tools are analyzed and the methodology proposed is applied through one of them (Proxmark 3) to validate it. Thus, the methodology is tested in different scenarios where tags are commonly used for identification. In such systems it was possible to clone transponders, extract information, and even emulate both tags and readers. Therefore, it is shown that the methodology proposed is useful for auditing security and reverse engineering RFID communications in IoT applications. It must be noted that, although this paper is aimed at fostering RFID communications security in IoT applications, the methodology can be applied to any RFID communications protocol. PMID:28029119

  2. Incorporating Security Quality Requirements Engineering (SQUARE) into Standard Life-Cycle Models

    National Research Council Canada - National Science Library

    Mead, Nancy R; Viswanathan, Venkatesh; Padmanabhan, Deepa; Raveendran, Anusha

    2008-01-01

    ...). This report is for information technology managers and security professionals, management personnel with technical and information security knowledge, and any personnel who manage security-critical...

  3. Genetic engineering of crops: a ray of hope for enhanced food security.

    Science.gov (United States)

    Gill, Sarvajeet Singh; Gill, Ritu; Tuteja, Renu; Tuteja, Narendra

    2014-01-01

    Crop improvement has been a basic and essential chase since organized cultivation of crops began thousands of years ago. Abiotic stresses as a whole are regarded as the crucial factors restricting the plant species to reach their full genetic potential to deliver desired productivity. The changing global climatic conditions are making them worse and pointing toward food insecurity. Agriculture biotechnology or genetic engineering has allowed us to look into and understand the complex nature of abiotic stresses and measures to improve the crop productivity under adverse conditions. Various candidate genes have been identified and transformed in model plants as well as agriculturally important crop plants to develop abiotic stress-tolerant plants for crop improvement. The views presented here are an attempt toward realizing the potential of genetic engineering for improving crops to better tolerate abiotic stresses in the era of climate change, which is now essential for global food security. There is great urgency in speeding up crop improvement programs that can use modern biotechnological tools in addition to current breeding practices for providing enhanced food security.

  4. Using Resurrected Ancestral Proviral Proteins to Engineer Virus Resistance.

    Science.gov (United States)

    Delgado, Asunción; Arco, Rocio; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2017-05-09

    Proviral factors are host proteins hijacked by viruses for processes essential for virus propagation such as cellular entry and replication. Pathogens and their hosts co-evolve. It follows that replacing a proviral factor with a functional ancestral form of the same protein could prevent viral propagation without fatally compromising organismal fitness. Here, we provide proof of concept of this notion. Thioredoxins serve as general oxidoreductases in all known cells. We report that several laboratory resurrections of Precambrian thioredoxins display substantial levels of functionality within Escherichia coli. Unlike E. coli thioredoxin, however, these ancestral thioredoxins are not efficiently recruited by the bacteriophage T7 for its replisome and therefore prevent phage propagation in E. coli. These results suggest an approach to the engineering of virus resistance. Diseases caused by viruses may have a devastating effect in agriculture. We discuss how the suggested approach could be applied to the engineering of plant virus resistance. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. A Malicious Pattern Detection Engine for Embedded Security Systems in the Internet of Things

    Directory of Open Access Journals (Sweden)

    Doohwan Oh

    2014-12-01

    Full Text Available With the emergence of the Internet of Things (IoT, a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns.

  6. A malicious pattern detection engine for embedded security systems in the Internet of Things.

    Science.gov (United States)

    Oh, Doohwan; Kim, Deokho; Ro, Won Woo

    2014-12-16

    With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns.

  7. A Malicious Pattern Detection Engine for Embedded Security Systems in the Internet of Things

    Science.gov (United States)

    Oh, Doohwan; Kim, Deokho; Ro, Won Woo

    2014-01-01

    With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns. PMID:25521382

  8. Effects of Bone Morphogenic Proteins on Engineered Cartilage

    Science.gov (United States)

    Gooch, Keith, J.; Blunk, Torsten; Courter, Donald L.; Sieminski, Alisha; Vunjak-Novakovic, Gordana; Freed, Lisa E.

    2007-01-01

    A report describes experiments on the effects of bone morphogenic proteins (BMPs) on engineered cartilage grown in vitro. In the experiments, bovine calf articular chondrocytes were seeded onto biodegradable polyglycolic acid scaffolds and cultured in, variously, a control medium or a medium supplemented with BMP-2, BMP-12, or BMP-13 in various concentrations. Under all conditions investigated, cell-polymer constructs cultivated for 4 weeks macroscopically and histologically resembled native cartilage. At a concentration of 100 ng/mL, BMP-2, BMP-12, or BMP-13 caused (1) total masses of the constructs to exceed those of the controls by 121, 80, or 62 percent, respectively; (2) weight percentages of glycosaminoglycans in the constructs to increase by 27, 18, or 15, respectively; and (3) total collagen contents of the constructs to decrease to 63, 89, or 83 percent of the control values, respectively. BMP-2, but not BMP-12 or BMP-13, promoted chondrocyte hypertrophy. These observations were interpreted as suggesting that the three BMPs increase the growth rates and modulate the compositions of engineered cartilage. It was also concluded that in vitro engineered cartilage is a suitable system for studying effects of BMPs on chondrogenesis in a well-defined environment.

  9. Protein engineering of CYP105s for their industrial uses.

    Science.gov (United States)

    Yasuda, Kaori; Sugimoto, Hiroshi; Hayashi, Keiko; Takita, Teisuke; Yasukawa, Kiyoshi; Ohta, Miho; Kamakura, Masaki; Ikushiro, Shinichi; Shiro, Yoshitsugu; Sakaki, Toshiyuki

    2018-01-01

    Cytochrome P450 enzymes belonging to the CYP105 family are predominantly found in bacteria belonging to the phylum Actinobacteria and the order Actinomycetales. In this review, we focused on the protein engineering of P450s belonging to the CYP105 family for industrial use. Two Arg substitutions to Ala of CYP105A1 enhanced its vitamin D 3 25- and 1α-hydroxylation activities by 400 and 100-fold, respectively. The coupling efficiency between product formation and NADPH oxidation was largely improved by the R84A mutation. The quintuple mutant Q87W/T115A/H132L/R194W/G294D of CYP105AB3 showed a 20-fold higher activity than the wild-type enzyme. Amino acids at positions 87 and 191 were located at the substrate entrance channel, and that at position 294 was located close to the heme group. Semi-rational engineering of CYP105A3 selected the best performing mutant, T85F/T119S/V194N/N363Y, for producing pravastatin. The T119S and N363Y mutations synergistically had remarkable effects on the interaction between CYP105A3 and putidaredoxin. Although wild-type CYP105AS1 hydroxylated compactin to 6-epi-pravastatin, the quintuple mutant I95T/Q127R/A180V/L236I/A265N converted almost all compactin to pravastatin. Five amino acid substitutions by two rounds of mutagenesis almost completely changed the stereo-selectivity of CYP105AS1. These results strongly suggest that the protein engineering of CYP105 enzymes greatly increase their industrial utility. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure-guided surface engineering.

    Science.gov (United States)

    Close, Devin W; Paul, Craig Don; Langan, Patricia S; Wilce, Matthew C J; Traore, Daouda A K; Halfmann, Randal; Rocha, Reginaldo C; Waldo, Geoffery S; Payne, Riley J; Rucker, Joseph B; Prescott, Mark; Bradbury, Andrew R M

    2015-07-01

    In this article, we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. © 2014 Wiley Periodicals, Inc.

  11. Engineering a novel multifunctional green fluorescent protein tag for a wide variety of protein research.

    Directory of Open Access Journals (Sweden)

    Takuya Kobayashi

    Full Text Available BACKGROUND: Genetically encoded tag is a powerful tool for protein research. Various kinds of tags have been developed: fluorescent proteins for live-cell imaging, affinity tags for protein isolation, and epitope tags for immunological detections. One of the major problems concerning the protein tagging is that many constructs with different tags have to be made for different applications, which is time- and resource-consuming. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a novel multifunctional green fluorescent protein (mfGFP tag which was engineered by inserting multiple peptide tags, i.e., octa-histidine (8xHis, streptavidin-binding peptide (SBP, and c-Myc tag, in tandem into a loop of GFP. When fused to various proteins, mfGFP monitored their localization in living cells. Streptavidin agarose column chromatography with the SBP tag successfully isolated the protein complexes in a native form with a high purity. Tandem affinity purification (TAP with 8xHis and SBP tags in mfGFP further purified the protein complexes. mfGFP was clearly detected by c-Myc-specific antibody both in immunofluorescence and immuno-electron microscopy (EM. These findings indicate that mfGFP works well as a multifunctional tag in mammalian cells. The tag insertion was also successful in other fluorescent protein, mCherry. CONCLUSIONS AND SIGNIFICANCE: The multifunctional fluorescent protein tag is a useful tool for a wide variety of protein research, and may have the advantage over other multiple tag systems in its higher expandability and compatibility with existing and future tag technologies.

  12. Engineering signal peptides for enhanced protein secretion from Lactococcus lactis.

    Science.gov (United States)

    Ng, Daphne T W; Sarkar, Casim A

    2013-01-01

    Lactococcus lactis is an attractive vehicle for biotechnological production of proteins and clinical delivery of therapeutics. In many such applications using this host, it is desirable to maximize secretion of recombinant proteins into the extracellular space, which is typically achieved by using the native signal peptide from a major secreted lactococcal protein, Usp45. In order to further increase protein secretion from L. lactis, inherent limitations of the Usp45 signal peptide (Usp45sp) must be elucidated. Here, we performed extensive mutagenesis on Usp45sp to probe the effects of both the mRNA sequence (silent mutations) and the peptide sequence (amino acid substitutions) on secretion. We screened signal peptides based on their resulting secretion levels of Staphylococcus aureus nuclease and further evaluated them for secretion of Bacillus subtilis α-amylase. Silent mutations alone gave an increase of up to 16% in the secretion of α-amylase through a mechanism consistent with relaxed mRNA folding around the ribosome binding site and enhanced translation. Targeted amino acid mutagenesis in Usp45sp, combined with additional silent mutations from the best clone in the initial screen, yielded an increase of up to 51% in maximum secretion of α-amylase while maintaining secretion at lower induction levels. The best sequence from our screen preserves the tripartite structure of the native signal peptide but increases the positive charge of the n-region. Our study presents the first example of an engineered L. lactis signal peptide with a higher secretion yield than Usp45sp and, more generally, provides strategies for further enhancing protein secretion in bacterial hosts.

  13. Biotechnology Conference: Protein Engineering Held in Oxford, United Kingdom on 5-8 April 1987.

    Science.gov (United States)

    1987-07-27

    engineered by protein engineering was reported by J. new variants which are now being checked. Brange (Novo Research Institute, Bags- Studies of a cassette...to Brange . Therefore, multidomain protein consisting of five Brange and his group applied protein en- putative domains: the fribonectin finger

  14. Roles of beta-turns in protein folding: from peptide models to protein engineering.

    Science.gov (United States)

    Marcelino, Anna Marie C; Gierasch, Lila M

    2008-05-01

    Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.

  15. Molecular basis of glyphosate resistance: Different approaches through protein engineering

    Science.gov (United States)

    Pollegioni, Loredano; Schonbrunn, Ernst; Siehl, Daniel

    2011-01-01

    Glyphosate (N-phosphonomethyl-glycine) is the most-used herbicide in the world: glyphosate-based formulations exhibit broad-spectrum herbicidal activity with minimal human and environmental toxicity. The extraordinary success of this simple small molecule is mainly due to the high specificity of glyphosate towards the plant enzyme enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway leading to biosynthesis of aromatic amino acids. Starting in 1996, transgenic glyphosate-resistant plants were introduced thus allowing the application of the herbicide to the crop (post-emergence) to remove emerged weeds without crop damage. This review focuses on the evolution of mechanisms of resistance to glyphosate as obtained through natural diversity, the gene shuffling approach to molecular evolution, and a rational, structure-based approach to protein engineering. In addition, we offer rationale for the means by which the modifications made have had their intended effect. PMID:21668647

  16. Engineering applications of fpgas chaotic systems, artificial neural networks, random number generators, and secure communication systems

    CERN Document Server

    Tlelo-Cuautle, Esteban; de la Fraga, Luis Gerardo

    2016-01-01

    This book offers readers a clear guide to implementing engineering applications with FPGAs, from the mathematical description to the hardware synthesis, including discussion of VHDL programming and co-simulation issues. Coverage includes FPGA realizations such as: chaos generators that are described from their mathematical models; artificial neural networks (ANNs) to predict chaotic time series, for which a discussion of different ANN topologies is included, with different learning techniques and activation functions; random number generators (RNGs) that are realized using different chaos generators, and discussions of their maximum Lyapunov exponent values and entropies. Finally, optimized chaotic oscillators are synchronized and realized to implement a secure communication system that processes black and white and grey-scale images. In each application, readers will find VHDL programming guidelines and computer arithmetic issues, along with co-simulation examples with Active-HDL and Simulink. Readers will b...

  17. Development and Validation of Mechanical Engineering Trade Skills Assessment Instrument for Sustainable Job Security in Yobe State

    Science.gov (United States)

    Adamu, Gishua Garba; Dawha, Josphine Musa; Kamar, Tiamiyu Salihu

    2015-01-01

    Mechanical Engineering Trade Skills Assessment Instrument (METSAI) is aimed at determining the extent to which students have acquired practical skills before graduation that will enable them get employment for sustainable job security in Yobe state. The study employed instrumentation research design. The populations of the study were 23 mechanical…

  18. Use of a protein engineering strategy to overcome limitations in the production of "Difficult to Express" recombinant proteins.

    Science.gov (United States)

    Hussain, Hirra; Fisher, David I; Abbott, W Mark; Roth, Robert G; Dickson, Alan J

    2017-10-01

    Certain recombinant proteins are deemed "difficult to express" in mammalian expression systems requiring significant cell and/or process engineering to abrogate expression bottlenecks. With increasing demand for the production of recombinant proteins in mammalian cells, low protein yields can have significant consequences for industrial processes. To investigate the molecular mechanisms that restrict expression of recombinant proteins, naturally secreted model proteins were analyzed from the tissue inhibitors of metalloproteinase (TIMP) protein family. In particular, TIMP-2 and TIMP-3 were subjected to detailed study. TIMP proteins share significant sequence homology (∼50% identity and ∼70% similarity in amino acid sequence). However, they show marked differences in secretion in mammalian expression systems despite this extensive sequence homology. Using these two proteins as models, this study characterized the molecular mechanisms responsible for poor recombinant protein production. Our results reveal that both TIMP-2 and TIMP-3 are detectable at mRNA and protein level within the cell but only TIMP-2 is secreted effectively into the extracellular medium. Analysis of protein localization and the nature of intracellular protein suggest TIMP-3 is severely limited in its post-translational processing. To overcome this challenge, modification of the TIMP-3 sequence to include a furin protease-cleavable pro-sequence resulted in secretion of the modified TIMP-3 protein, however, incomplete processing was observed. Based on the TIMP-3 data, the protein engineering approach was optimized and successfully applied in combination with cell engineering, the overexpression of furin, to another member of the TIMP protein family (the poorly expressed TIMP-4). Use of the described protein engineering strategy resulted in successful secretion of poorly (TIMP-4) and non-secreted (TIMP-3) targets, and presents a novel strategy to enhance the production of "difficult" recombinant

  19. Developments in the Nuclear Safeguards and Security Engineering Degree Program at Tomsk Polytechnic University

    International Nuclear Information System (INIS)

    Boiko, Vladimir I.; Demyanyuk, Dmitry G.; Silaev, Maxim E.; Duncan, Cristen L.; Heinberg, Cynthia L.; Killinger, Mark H.; Goodey, Kent O.; Butler, Gilbert W.

    2009-01-01

    Over the last six years, Tomsk Polytechnic University (TPU) has developed a 5 1/2 year engineering degree program in the field of Material Protection Control and Accounting (MPC and A). In 2009 the first students graduated with this new degree. There were 25 job offers from nuclear fuel cycle enterprises of Russia and Kazakhstan for 17 graduates of the program. Due to the rather wide selection of workplaces, all graduates have obtained positions at nuclear enterprises. The program was developed within the Applied Physics and Engineering Department (APED). The laboratory and methodological base has been created taking into consideration the experience of the similar program at the Moscow Engineering Physics Institute (MEPhI). However, the TPU program has some distinguishing features such as the inclusion of special courses pertaining to fuel enrichment and reprocessing. During the last two years, three MPC and A laboratories have been established at APED. This was made possible due to several factors such as establishment of the State innovative educational program at TPU, assistance of the U.S. Department of Energy through Pacific Northwest National Laboratory and Los Alamos National Laboratory, and the financial support of the Swedish Radiation Safety Authority and some Russian private companies. All three of the MPC and A laboratories are part of the Innovative Educational Center 'Nuclear Technologies and Non-Proliferation,' which deals with many topics including research activities, development of new curricula for experts training and retraining, and training of master's students. In 2008, TPU developed a relationship with the International Atomic Energy Agency (IAEA), which was familiarized with APED's current resources and activities. The IAEA has shown interest in creation of a master's degree educational program in the field of nuclear security at TPU. A future objective is to acquaint nuclear fuel cycle enterprises with new APED capabilities and involve

  20. A vulnerability-centric requirements engineering framework : Analyzing security attacks, countermeasures, and requirements based on vulnerabilities

    NARCIS (Netherlands)

    Elahi, G.; Yu, E.; Zannone, N.

    2010-01-01

    Many security breaches occur because of exploitation of vulnerabilities within the system. Vulnerabilities are weaknesses in the requirements, design, and implementation, which attackers exploit to compromise the system. This paper proposes a methodological framework for security requirements

  1. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  2. An adaptive algorithm for performance assessment of construction project management with respect to resilience engineering and job security

    Directory of Open Access Journals (Sweden)

    P. Hashemi

    2018-01-01

    Full Text Available Construction sites are accident-prone locations and therefore safety management plays an im-portant role in these workplaces. This study presents an adaptive algorithm for performance as-sessment of project management with respect to resilience engineering and job security in a large construction site. The required data are collected using questionnaires in a large construction site. The presented algorithm is composed of radial basis function (RBF, artificial neural networks multi-layer perceptron (ANN-MLP, and statistical tests. The results indicate that preparedness, fault-tolerance, and flexibility are the most effective factors on overall efficiency. Moreover, job security and resilience engineering have similar statistical impacts on overall system efficiency. The results are verified and validated by the proposed algorithm.

  3. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-01-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity

  4. PIA: An Intuitive Protein Inference Engine with a Web-Based User Interface.

    Science.gov (United States)

    Uszkoreit, Julian; Maerkens, Alexandra; Perez-Riverol, Yasset; Meyer, Helmut E; Marcus, Katrin; Stephan, Christian; Kohlbacher, Oliver; Eisenacher, Martin

    2015-07-02

    Protein inference connects the peptide spectrum matches (PSMs) obtained from database search engines back to proteins, which are typically at the heart of most proteomics studies. Different search engines yield different PSMs and thus different protein lists. Analysis of results from one or multiple search engines is often hampered by different data exchange formats and lack of convenient and intuitive user interfaces. We present PIA, a flexible software suite for combining PSMs from different search engine runs and turning these into consistent results. PIA can be integrated into proteomics data analysis workflows in several ways. A user-friendly graphical user interface can be run either locally or (e.g., for larger core facilities) from a central server. For automated data processing, stand-alone tools are available. PIA implements several established protein inference algorithms and can combine results from different search engines seamlessly. On several benchmark data sets, we show that PIA can identify a larger number of proteins at the same protein FDR when compared to that using inference based on a single search engine. PIA supports the majority of established search engines and data in the mzIdentML standard format. It is implemented in Java and freely available at https://github.com/mpc-bioinformatics/pia.

  5. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    eukaryotes and even prokaryotes. Insect and yeast cells produce O-glycosylation incompatible with use in humans, however recently the yeast Pichia was engineered to perform the first step of human-like O-glycosylation. This review provides an overview of past and current engineering efforts of N...

  6. Engineered elastomeric proteins with dual elasticity can be controlled by a molecular regulator.

    Science.gov (United States)

    Cao, Yi; Li, Hongbin

    2008-08-01

    Elastomeric proteins are molecular springs that confer excellent mechanical properties to many biological tissues and biomaterials. Depending on the role performed by the tissue or biomaterial, elastomeric proteins can behave as molecular springs or shock absorbers. Here we combine single-molecule atomic force microscopy and protein engineering techniques to create elastomeric proteins that can switch between two distinct types of mechanical behaviour in response to the binding of a molecular regulator. The proteins are mechanically labile by design and behave as entropic springs with an elasticity that is governed by their configurational entropy. However, when a molecular regulator binds to the protein, it switches into a mechanically stable state and can act as a shock absorber. These engineered proteins effectively mimic and combine the two extreme forms of elastic behaviour found in natural elastomeric proteins, and thus represent a new type of smart nanomaterial that will find potential applications in nanomechanics and material sciences.

  7. Engineered mammalian cells for production of recombinant proteins

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to mammalian cells modified to provide for improved expression of a recombinant protein of interest. In particular, the invention relates to CHO cells and other host cells in which the expression of one or more endogenous secreted proteins has been disrupted, as well...... as to the preparation, identification and use of such cells in the production of recombinant proteins....

  8. Fn3 proteins engineered to recognize tumor biomarker mesothelin internalize upon binding.

    Directory of Open Access Journals (Sweden)

    Allison R Sirois

    Full Text Available Mesothelin is a cell surface protein that is overexpressed in numerous cancers, including breast, ovarian, lung, liver, and pancreatic tumors. Aberrant expression of mesothelin has been shown to promote tumor progression and metastasis through interaction with established tumor biomarker CA125. Therefore, molecules that specifically bind to mesothelin have potential therapeutic and diagnostic applications. However, no mesothelin-targeting molecules are currently approved for routine clinical use. While antibodies that target mesothelin are in development, some clinical applications may require a targeting molecule with an alternative protein fold. For example, non-antibody proteins are more suitable for molecular imaging and may facilitate diverse chemical conjugation strategies to create drug delivery complexes. In this work, we engineered variants of the fibronectin type III domain (Fn3 non-antibody protein scaffold to bind to mesothelin with high affinity, using directed evolution and yeast surface display. Lead engineered Fn3 variants were solubly produced and purified from bacterial culture at high yield. Upon specific binding to mesothelin on human cancer cell lines, the engineered Fn3 proteins internalized and co-localized to early endosomes. To our knowledge, this is the first report of non-antibody proteins engineered to bind mesothelin. The results validate that non-antibody proteins can be engineered to bind to tumor biomarker mesothelin, and encourage the continued development of engineered variants for applications such as targeted diagnostics and therapeutics.

  9. Engineering and Characterization of a Superfolder Green Fluorescent Protein

    International Nuclear Information System (INIS)

    Pedelacq, J.; Cabantous, S.; Tran, T.; Terwilliger, T.; Waldo, G.

    2006-01-01

    Existing variants of green fluorescent protein (GFP) often misfold when expressed as fusions with other proteins. We have generated a robustly folded version of GFP, called 'superfolder' GFP, that folds well even when fused to poorly folded polypeptides. Compared to 'folding reporter' GFP, a folding-enhanced GFP containing the 'cycle-3' mutations and the 'enhanced GFP' mutations F64L and S65T, superfolder GFP shows improved tolerance of circular permutation, greater resistance to chemical denaturants and improved folding kinetics. The fluorescence of Escherichia coli cells expressing each of eighteen proteins from Pyrobaculum aerophilum as fusions with superfolder GFP was proportional to total protein expression. In contrast, fluorescence of folding reporter GFP fusion proteins was strongly correlated with the productive folding yield of the passenger protein. X-ray crystallographic structural analyses helped explain the enhanced folding of superfolder GFP relative to folding reporter GFP

  10. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  11. Protein Engineering: Development of a Metal Ion Dependent Switch

    Science.gov (United States)

    2017-05-22

    Society of Chemistry Royal Society of Chemistry Biochemistry PNAS Escherichia coli Journal of Biotechnology Biochemistry Nature Protocols Journal of...Molecular Biology Biochemistry Royal Society of Chemistry Proteins: Structure, Function, and Bioinformatics Journal of Molecular Biology Biophysical...Biophysical Journal Protein Science Journal of Computational Chemistry Current Opinion in Chemical Biology Royal Society of Chemistry

  12. Zephyr: A secure Internet-based process to streamline engineering procurements using the World Wide Web

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, C.W.; Cavitt, R.E.; Niven, W.A.; Warren, F.E.; Taylor, S.S.; Sharick, T.M.; Vickers, D.L.; Mitschkowetz, N.; Weaver, R.L.

    1996-08-13

    Lawrence Livermore National Laboratory (LLNL) is piloting an Internet- based paperless process called `Zephyr` to streamline engineering procurements. Major benefits have accrued by using Zephyr in reducing procurement time, speeding the engineering development cycle, facilitating industrial collaboration, and reducing overall costs. Programs at LLNL are benefiting by the efficiencies introduced since implementing Zephyr`s engineering and commerce on the Internet.

  13. Case Study Application of the Biodiversity Security Index to Ranking Feasibility Studies for Ecosystem Restoration Projects of the U.S. Army Corps of Engineers

    Science.gov (United States)

    2016-04-01

    ER D C/ EL C R- 16 -1 Ecosystem Management and Restoration Research Program Case Study Application of the Biodiversity Security Index... Biodiversity Security Index to Ranking Feasibility Studies for Ecosystem Restoration Projects of the U.S. Army Corps of Engineers Richard A. Cole... Biodiversity Security Index (BSI) was applied to 23 project sites ranked for restoration feasibility study annual funding by the U. S. Army Corps of

  14. Residue-specific incorporation of noncanonical amino acids for protein engineering

    NARCIS (Netherlands)

    van Eldijk, Mark B.; van Hest, Jan C.M.; Lemke, E.A.

    2018-01-01

    The incorporation of noncanonical amino acids has given protein chemists access to an expanded repertoire of amino acids. This methodology has significantly broadened the scope of protein engineering allowing introduction of amino acids with non-native functionalities, such as bioorthogonal reactive

  15. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    OpenAIRE

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2015-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP....

  16. Protein engineering in designing tailored enzymes and microorganisms for biofuels production

    Science.gov (United States)

    Wen, Fei; Nair, Nikhil U; Zhao, Huimin

    2009-01-01

    Summary Lignocellulosic biofuels represent a sustainable, renewable, and the only foreseeable alternative energy source to transportation fossil fuels. However, the recalcitrant nature of lignocellulose poses technical hurdles to an economically viable biorefinery. Low enzymatic hydrolysis efficiency and low productivity, yield, and titer of biofuels are among the top cost contributors. Protein engineering has been used to improve the performances of lignocellulose-degrading enzymes, as well as proteins involved in biofuel synthesis pathways. Unlike its great success seen in other industrial applications, protein engineering has achieved only modest results in improving the lignocellulose-to-biofuels efficiency. This review will discuss the unique challenges that protein engineering faces in the process of converting lignocellulose to biofuels and how they are addressed by recent advances in this field. PMID:19660930

  17. Science, Technology, Engineering, and Mathematics (STEM) Education Reform to Enhance Security of the Global Cyberspace

    Science.gov (United States)

    2014-05-01

    towards cloud computing technologies and capabilities demand needs for developing new tools that work in ensemble to handle security challenges. A...programs with the schools and/or hire from their pool of students. Therefore, no real STEM standards exist at the tertiary and beyond levels of education ...successful in cyber operations and network security related jobs much early on into the new STEM education model pipeline. Subjects such as computer

  18. Mis-translation of a Computationally Designed Protein Yields an Exceptionally Stable Homodimer: Implications for Protein Engineering and Evolution.

    Energy Technology Data Exchange (ETDEWEB)

    Dantas, Gautam; Watters, Alexander L.; Lunde, Bradley; Eletr, Ziad; Isern, Nancy G.; Roseman, Toby; Lipfert, Jan; Doniach, Sebastian; Tompa, Martin; Kuhlman, Brian; Stoddard, Barry L.; Varani, Gabriele; Baker, David

    2006-10-06

    We recently used computational protein design to create an extremely stable, globular protein, Top7, with a sequence and fold not observed previously in nature. Since Top7 was created in the absence of genetic selection, it provides a rare opportunity to investigate aspects of the cellular protein production and surveillance machinery that are subject to natural selection. Here we show that a portion of the Top7 protein corresponding to the final 49 C-terminal residues is efficiently mistranslated and accumulates at high levels in E. coli. We used circular dichroism spectroscopy, size-exclusion chromatography, small-angle x-ray scattering, analytical ultra-centrifugation, and NMR spectroscopy to show that the resulting CFr protein adopts a compact, extremely-stable, obligate, symmetric, homo-dimeric structure. Based on the solution structure, we engineered an even more stable variant of CFr by disulfide-induced covalent circularisation that should be an excellent platform for design of novel functions. The accumulation of high levels of CFr exposes the high error rate of the protein translation machinery, and the rarity of correspondingly stable fragments in natural proteins implies a stringent evolutionary pressure against protein sub-fragments that can independently fold into stable structures. The symmetric self-association between two identical mistranslated CFr sub-units to generate an extremely stable structure parallels a mechanism for natural protein-fold evolution by modular recombination of stable protein sub-structures.

  19. A human engineering and ergonomic evaluation of the security access panel interface

    International Nuclear Information System (INIS)

    Hartney, C.; Banks, W.W.

    1995-02-01

    The purpose of this study was to empirically determine which of several security hardware interface designs produced the highest levels of end-user performance and acceptance. The FESSP Security Alarms and Monitoring Systems program area commissioned the authors study as decision support for upgrading the Argus security system's primary user interface so that Argus equipment will support the new DOE and DoD security access badges. Twenty-two test subjects were repeatedly tested using six remote access panel (RAP) designs. Lawrence Livermore National Laboratory (LLNL) uses one of these interface designs in its security access booths. Along with the RAP B insert-style reader, the authors tested five prototype RAP variants, each with a different style of swipe badge reader, through which a badge is moved or swiped. The authors asked the untrained test subjects to use each RAP while they described how they thought they should respond so that the system would operate correctly in reading the magnetic strip on a security badge. With each RAP variant, subjects were required to make four successful card reads (swipes) in which the card reader correctly read and logged the transaction. After each trial, a subject completed a 10-item interface acceptance evaluation before approaching the next RAP. After interacting with the RAP interfaces (for a total of the six RAP trials), each subject completed a 7-item overview evaluation that compared and ranked the five experimental RAPs, using the original (RAP B) insert style as a standard

  20. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  1. A discussion of molecular biology methods for protein engineering

    CSIR Research Space (South Africa)

    Zawaira, A

    2011-09-01

    Full Text Available A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. The authors discuss the basic principles of these methods in a repertoire that may be used to achieve...

  2. The persuasion and security awareness experiment: reducing the success of social engineering attacks

    NARCIS (Netherlands)

    Bullee, Jan-Willem; Montoya, L.; Pieters, Wolter; Junger, Marianne; Hartel, Pieter H.

    Objectives: The aim of the current study is to explore to what extent an intervention reduces the effects of social engineering (e.g. the obtaining of access by persuasion) in an office environment. In particular, we study the effect of authority during a `social engineering' attack. Methods: 31

  3. Gene composer: database software for protein construct design, codon engineering, and gene synthesis.

    Science.gov (United States)

    Lorimer, Don; Raymond, Amy; Walchli, John; Mixon, Mark; Barrow, Adrienne; Wallace, Ellen; Grice, Rena; Burgin, Alex; Stewart, Lance

    2009-04-21

    To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene assembly procedure with mis-match specific endonuclease

  4. Gene Composer: database software for protein construct design, codon engineering, and gene synthesis

    Directory of Open Access Journals (Sweden)

    Mixon Mark

    2009-04-01

    Full Text Available Abstract Background To improve efficiency in high throughput protein structure determination, we have developed a database software package, Gene Composer, which facilitates the information-rich design of protein constructs and their codon engineered synthetic gene sequences. With its modular workflow design and numerous graphical user interfaces, Gene Composer enables researchers to perform all common bio-informatics steps used in modern structure guided protein engineering and synthetic gene engineering. Results An interactive Alignment Viewer allows the researcher to simultaneously visualize sequence conservation in the context of known protein secondary structure, ligand contacts, water contacts, crystal contacts, B-factors, solvent accessible area, residue property type and several other useful property views. The Construct Design Module enables the facile design of novel protein constructs with altered N- and C-termini, internal insertions or deletions, point mutations, and desired affinity tags. The modifications can be combined and permuted into multiple protein constructs, and then virtually cloned in silico into defined expression vectors. The Gene Design Module uses a protein-to-gene algorithm that automates the back-translation of a protein amino acid sequence into a codon engineered nucleic acid gene sequence according to a selected codon usage table with minimal codon usage threshold, defined G:C% content, and desired sequence features achieved through synonymous codon selection that is optimized for the intended expression system. The gene-to-oligo algorithm of the Gene Design Module plans out all of the required overlapping oligonucleotides and mutagenic primers needed to synthesize the desired gene constructs by PCR, and for physically cloning them into selected vectors by the most popular subcloning strategies. Conclusion We present a complete description of Gene Composer functionality, and an efficient PCR-based synthetic gene

  5. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology

    Directory of Open Access Journals (Sweden)

    Lihong Jiang

    2018-06-01

    Full Text Available Advances in metabolic engineering and synthetic biology have facilitated the manufacturing of many valuable-added compounds and commodity chemicals using microbial cell factories in the past decade. However, due to complexity of cellular metabolism, the optimization of metabolic pathways for maximal production represents a grand challenge and an unavoidable barrier for metabolic engineering. Recently, cell-free protein synthesis system (CFPS has been emerging as an enabling alternative to address challenges in biomanufacturing. This review summarizes the recent progresses of CFPS in rapid prototyping of biosynthetic pathways and genetic circuits (biosensors to speed up design-build-test (DBT cycles of metabolic engineering and synthetic biology. Keywords: Cell-free protein synthesis, Metabolic pathway optimization, Genetic circuits, Metabolic engineering, Synthetic biology

  6. Engineering a pH responsive pore forming protein.

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-08

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  7. Engineering a pH responsive pore forming protein

    Science.gov (United States)

    Kisovec, Matic; Rezelj, Saša; Knap, Primož; Cajnko, Miša Mojca; Caserman, Simon; Flašker, Ajda; Žnidaršič, Nada; Repič, Matej; Mavri, Janez; Ruan, Yi; Scheuring, Simon; Podobnik, Marjetka; Anderluh, Gregor

    2017-02-01

    Listeriolysin O (LLO) is a cytolysin capable of forming pores in cholesterol-rich lipid membranes of host cells. It is conveniently suited for engineering a pH-governed responsiveness, due to a pH sensor identified in its structure that was shown before to affect its stability. Here we introduced a new level of control of its hemolytic activity by making a variant with hemolytic activity that was pH-dependent. Based on detailed structural analysis coupled with molecular dynamics and mutational analysis, we found that the bulky side chain of Tyr406 allosterically affects the pH sensor. Molecular dynamics simulation further suggested which other amino acid residues may also allosterically influence the pH-sensor. LLO was engineered to the point where it can, in a pH-regulated manner, perforate artificial and cellular membranes. The single mutant Tyr406Ala bound to membranes and oligomerized similarly to the wild-type LLO, however, the final membrane insertion step was pH-affected by the introduced mutation. We show that the mutant toxin can be activated at the surface of artificial membranes or living cells by a single wash with slightly acidic pH buffer. Y406A mutant has a high potential in development of novel nanobiotechnological applications such as controlled release of substances or as a sensor of environmental pH.

  8. A rapid, ensemble and free energy based method for engineering protein stabilities.

    Science.gov (United States)

    Naganathan, Athi N

    2013-05-02

    Engineering the conformational stabilities of proteins through mutations has immense potential in biotechnological applications. It is, however, an inherently challenging problem given the weak noncovalent nature of the stabilizing interactions. In this regard, we present here a robust and fast strategy to engineer protein stabilities through mutations involving charged residues using a structure-based statistical mechanical model that accounts for the ensemble nature of folding. We validate the method by predicting the absolute changes in stability for 138 experimental mutations from 16 different proteins and enzymes with a correlation of 0.65 and importantly with a success rate of 81%. Multiple point mutants are predicted with a higher success rate (90%) that is validated further by comparing meosphile-thermophile protein pairs. In parallel, we devise a methodology to rapidly engineer mutations in silico which we benchmark against experimental mutations of ubiquitin (correlation of 0.95) and check for its feasibility on a larger therapeutic protein DNase I. We expect the method to be of importance as a first and rapid step to screen for protein mutants with specific stability in the biotechnology industry, in the construction of stability maps at the residue level (i.e., hot spots), and as a robust tool to probe for mutations that enhance the stability of protein-based drugs.

  9. Protein Engineering for Nicotinamide Coenzyme Specificity in Oxidoreductases: Attempts and Challenges.

    Science.gov (United States)

    Chánique, Andrea M; Parra, Loreto P

    2018-01-01

    Oxidoreductases are ubiquitous enzymes that catalyze an extensive range of chemical reactions with great specificity, efficiency, and selectivity. Most oxidoreductases are nicotinamide cofactor-dependent enzymes with a strong preference for NADP or NAD. Because these coenzymes differ in stability, bioavailability and costs, the enzyme preference for a specific coenzyme is an important issue for practical applications. Different approaches for the manipulation of coenzyme specificity have been reported, with different degrees of success. Here we present various attempts for the switching of nicotinamide coenzyme preference in oxidoreductases by protein engineering. This review covers 103 enzyme engineering studies from 82 articles and evaluates the accomplishments in terms of coenzyme specificity and catalytic efficiency compared to wild type enzymes of different classes. We analyzed different protein engineering strategies and related them with the degree of success in inverting the cofactor specificity. In general, catalytic activity is compromised when coenzyme specificity is reversed, however when switching from NAD to NADP, better results are obtained. In most of the cases, rational strategies were used, predominantly with loop exchange generating the best results. In general, the tendency of removing acidic residues and incorporating basic residues is the strategy of choice when trying to change specificity from NAD to NADP, and vice versa . Computational strategies and algorithms are also covered as helpful tools to guide protein engineering strategies. This mini review aims to give a general introduction to the topic, giving an overview of tools and information to work in protein engineering for the reversal of coenzyme specificity.

  10. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  11. Defense Horizons. The Science and Engineering Workforce and National Security. April 2004, Number 39

    National Research Council Canada - National Science Library

    Marshall, Michael

    2004-01-01

    .... Especially worrisome are the following: (1) a general lack of interest among American-born youth in pursuing education in the physical sciences, mathematics, environmental sciences, and engineering at the undergraduate and graduate levels; (2...

  12. Efficient expression of SRK intracellular domain by a modeling-based protein engineering.

    Science.gov (United States)

    Murase, Kohji; Hirano, Yoshinori; Takayama, Seiji; Hakoshima, Toshio

    2017-03-01

    S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    DEFF Research Database (Denmark)

    Coles, Graeme D; Wratten, Stephen D; Porter, John Roy

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively...... and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies....

  14. Development of transport mechanical engineering as the condition of maintenance of social and economic security of region

    Directory of Open Access Journals (Sweden)

    Vsevolod Petrovich Babushkin

    2012-12-01

    Full Text Available In the article, the transport role in the decision of problems of innovative and scientifically-technological development of territory is defined. Dependence of quality, completeness and timeliness of granting of transport services on replenishment and updating of park of locomotives, cars, i.e. from a level of development of domestic transport mechanical engineering is shown. The basic problems of development given branches –low competitiveness of made production are revealed. The basic accent in the course of such analysis is made on research of competitive possibilities of the enterprises of railway mechanical engineering of Sverdlovsk area. Such enterprises play the increasing role, become points of development of region’s economy and maintenance of its social and economic safety. The cooperation communications, which have developed in an industrial complex of Sverdlovsk area on the basis of development of modern manufacture on building of electric locomotives, have allowed to generate in region cluster railway mechanical engineering. The structure cluster is shown, development prospects, the estimation of its influence on the economy of Sverdlovsk area and maintenance of its social and economic security is given

  15. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    Science.gov (United States)

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  16. Preparation of scaffolds from human hair proteins for tissue-engineering applications

    International Nuclear Information System (INIS)

    Verma, Vipin; Verma, Poonam; Ray, Alok R; Ray, Pratima

    2008-01-01

    Human hair proteins were isolated and purified for the fabrication of tissue-engineering scaffolds. Their cellular compatibility was studied using NIH3T3 mice fibroblast cells. The proteins were characterized using FTIR spectroscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis for molecular weights and two-dimensional polyacrylamide gel electrophoresis for their isoelectric points (pIs). The molecular weights of keratins were in the range of 40-60 kilo-Daltons (kDa) and of matrix proteins were in the range of 15-30 kDa. The pIs of keratins were found to be in the range of 4.5-5.3. Sponges of the proteins were formed by lyophilization. Scanning electron microscopy was performed to examine the surface. Swelling studies were carried out in phosphate buffer saline at physiological pH 7.4. The hydrophilic character of the protein surface was studied by determining an average contact angle, which came to be 37 0 . The wells of tissue culture plates were coated with these proteins for studying the attachment and morphology of the cells. The protein detachment study was done to ensure the adsorption of proteins on the wells until the completion of the experiments. The cellular growth on a protein-coated surface showed three-dimensional 'bulged' morphology due to cell-cell and cell-matrix contacts. The sponges of human hair proteins supported more cells for a longer period than control. The morphology and cell proliferation studies exhibited by NIH3T3 cells on these proteins have shown their potential to be used as tissue-engineering scaffolds with better cell-cell contacts and leucine-aspartic acid-valine (LDV)-mediated cell-matrix interactions

  17. Conversion of human choriogonadotropin into a follitropin by protein engineering

    International Nuclear Information System (INIS)

    Campbell, R.K.; Dean-Emig, D.M.; Moyle, W.R.

    1991-01-01

    Human reproduction is dependent upon the action of follicle-stimulating hormone (hFSH), luteinizing hormone (hLH), and chorionic gonadotropin (hCG). While the α subunits of these heterodimeric proteins can be interchanged without effect on receptor-binding specificity, their β subunits differ and direct hormone binding to either LH/CG or FSH receptors. Previous studies employing chemical modifications of the hormones, monoclonal antibodies, or synthetic peptides have implicated hCG β-subunit residues between Cys-38 and Cys-57 and corresponding regions of hLHβ and hFSHβ in receptor recognition and activation. Since the β subunits of hCG or hLH and hFSH exhibit very little sequence similarity in this region, the authors postulated that these residues might contribute to hormone specificity. To test this hypothesis the authors constructed chimeric hCG/hFSH β subunits, coexpressed them with the human α subunit, and examined their ability to interact with LH and FSH receptors and hormone-specific monoclonal antibodies. Surprisingly, substitution of hFSHβ residues 33-52 for hCGβ residues 39-58 had no effect on receptor binding or stimulation. However, substitution of hFSHβ residues 88-108 in place of the carboxyl terminus of hCGβ (residues 94-145) resulted in a hormone analog identical to hFSH in its ability to bind and stimulate FSH receptors. The altered binding specificity displayed by this analog is not attributable solely to the replacement of hCGβ residues 108-145 or substitution of residues in the determinant loop located between hCDβ residues 93 and 100

  18. PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack

    2006-07-01

    Full Text Available Abstract Background Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions. Results Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30 and YMR135C (gid8 yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c. The observed interaction was confirmed by tandem affinity purification (TAP tag, verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not

  19. Engineering and economics of lighting for closed circuit television (CCTV) security alarm assessment

    International Nuclear Information System (INIS)

    Faucett, R.E.; Schow, F.L.

    1979-01-01

    The study examines the economics and applicability of low and high pressure sodium sources in both streetlight and floodlight luminaires for CCTV illumination of high-security areas. In addition the signal outputs of several popular CCTV camera tube types operated in the presence of common lighting sources are calculated. These calculations take into consideration the spectral response of the camera tubes and the spectral output of the light sources. The results are presented in terms of dollars per unit camera signal strength and also camera signal strength per connected watt of electrical load

  20. Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds

    Directory of Open Access Journals (Sweden)

    Michaela Mühlberg

    2015-05-01

    Full Text Available To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide–alkyne cycloaddition (CuAAC and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.

  1. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    Science.gov (United States)

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies.

  2. Genetically Engineered Crops and Certified Organic Agriculture for Improving Nutrition Security in Africa and South Asia.

    Science.gov (United States)

    Pray, Carl; Ledermann, Samuel

    2016-01-01

    In Africa and South Asia, where nutrition insecurity is severe, two of the most prominent production technologies are genetically modified (GM) crops and certified organic agriculture. We analyze the potential impact pathways from agricultural production to nutrition. Our review of data and the literature reveals increasing farm-level income from cash crop production as the main pathway by which organic agriculture and GM agriculture improve nutrition. Potential secondary pathways include reduced prices of important food crops like maize due to GM maize production and increased food production using organic technology. Potential tertiary pathways are improvements in health due to reduced insecticide use. Challenges to the technologies achieving their impact include the politics of GM agriculture and the certification costs of organic agriculture. Given the importance of agricultural production in addressing nutrition security, accentuated by the post-2015 sustainable development agenda, the chapter concludes by stressing the importance of private and public sector research in improving the productivity and adoption of both GM and organic crops. In addition, the chapter reminds readers that increased farm income and productivity require complementary investments in health, education, food access and women's empowerment to actually improve nutrition security. © 2016 S. Karger AG, Basel.

  3. Engineering Synthetic Proteins to Generate Ca2+ Signals in Mammalian Cells.

    Science.gov (United States)

    Qudrat, Anam; Truong, Kevin

    2017-03-17

    The versatility of Ca 2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca 2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca 2+ signal upon binding various extracellular stimuli by creating fusions of protein domains that oligomerize to the transmembrane domain and the cytoplasmic tail of the VEGFR2. To test the strategy, we created chimeric proteins that generate Ca 2+ signals upon stimulation with various extracellular stimuli (e.g., rapamycin, EDTA or extracellular free Ca 2+ ). By coupling these chimeric proteins that generate Ca 2+ signals with proteins that respond to Ca 2+ signals, we rewired, for example, dynamic cellular blebbing to increases in extracellular free Ca 2+ . Thus, using this design strategy, it is possible to engineer proteins to generate a Ca 2+ signal to rewire a wide range of extracellular stimuli to a wide range of Ca 2+ -activated processes.

  4. ProtaBank: A repository for protein design and engineering data.

    Science.gov (United States)

    Wang, Connie Y; Chang, Paul M; Ary, Marie L; Allen, Benjamin D; Chica, Roberto A; Mayo, Stephen L; Olafson, Barry D

    2018-03-25

    We present ProtaBank, a repository for storing, querying, analyzing, and sharing protein design and engineering data in an actively maintained and updated database. ProtaBank provides a format to describe and compare all types of protein mutational data, spanning a wide range of properties and techniques. It features a user-friendly web interface and programming layer that streamlines data deposition and allows for batch input and queries. The database schema design incorporates a standard format for reporting protein sequences and experimental data that facilitates comparison of results across different data sets. A suite of analysis and visualization tools are provided to facilitate discovery, to guide future designs, and to benchmark and train new predictive tools and algorithms. ProtaBank will provide a valuable resource to the protein engineering community by storing and safeguarding newly generated data, allowing for fast searching and identification of relevant data from the existing literature, and exploring correlations between disparate data sets. ProtaBank invites researchers to contribute data to the database to make it accessible for search and analysis. ProtaBank is available at https://protabank.org. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  5. Operations research, engineering, and cyber security trends in applied mathematics and technology

    CERN Document Server

    Rassias, Themistocles

    2017-01-01

    Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists,...

  6. A real-time all-atom structural search engine for proteins.

    Science.gov (United States)

    Gonzalez, Gabriel; Hannigan, Brett; DeGrado, William F

    2014-07-01

    Protein designers use a wide variety of software tools for de novo design, yet their repertoire still lacks a fast and interactive all-atom search engine. To solve this, we have built the Suns program: a real-time, atomic search engine integrated into the PyMOL molecular visualization system. Users build atomic-level structural search queries within PyMOL and receive a stream of search results aligned to their query within a few seconds. This instant feedback cycle enables a new "designability"-inspired approach to protein design where the designer searches for and interactively incorporates native-like fragments from proven protein structures. We demonstrate the use of Suns to interactively build protein motifs, tertiary interactions, and to identify scaffolds compatible with hot-spot residues. The official web site and installer are located at http://www.degradolab.org/suns/ and the source code is hosted at https://github.com/godotgildor/Suns (PyMOL plugin, BSD license), https://github.com/Gabriel439/suns-cmd (command line client, BSD license), and https://github.com/Gabriel439/suns-search (search engine server, GPLv2 license).

  7. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes.

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-10

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes.

  8. From Protein Engineering to Immobilization: Promising Strategies for the Upgrade of Industrial Enzymes

    Science.gov (United States)

    Singh, Raushan Kumar; Tiwari, Manish Kumar; Singh, Ranjitha; Lee, Jung-Kul

    2013-01-01

    Enzymes found in nature have been exploited in industry due to their inherent catalytic properties in complex chemical processes under mild experimental and environmental conditions. The desired industrial goal is often difficult to achieve using the native form of the enzyme. Recent developments in protein engineering have revolutionized the development of commercially available enzymes into better industrial catalysts. Protein engineering aims at modifying the sequence of a protein, and hence its structure, to create enzymes with improved functional properties such as stability, specific activity, inhibition by reaction products, and selectivity towards non-natural substrates. Soluble enzymes are often immobilized onto solid insoluble supports to be reused in continuous processes and to facilitate the economical recovery of the enzyme after the reaction without any significant loss to its biochemical properties. Immobilization confers considerable stability towards temperature variations and organic solvents. Multipoint and multisubunit covalent attachments of enzymes on appropriately functionalized supports via linkers provide rigidity to the immobilized enzyme structure, ultimately resulting in improved enzyme stability. Protein engineering and immobilization techniques are sequential and compatible approaches for the improvement of enzyme properties. The present review highlights and summarizes various studies that have aimed to improve the biochemical properties of industrially significant enzymes. PMID:23306150

  9. Adhesive protein interactions with chitosan: consequences for valve endothelial cell growth on tissue-engineering materials.

    Science.gov (United States)

    Cuy, Janet L; Beckstead, Benjamin L; Brown, Chad D; Hoffman, Allan S; Giachelli, Cecilia M

    2003-11-01

    Stable endothelialization of a tissue-engineered heart valve is essential for proper valve function, although adhesive characteristics of the native valve endothelial cell (VEC) have rarely been explored. This research evaluated VEC adhesive qualities and attempted to enhance VEC growth on the biopolymer chitosan, a novel tissue-engineering scaffold material with promising biological and chemical properties. Aortic VEC cultures were isolated and found to preferentially adhere to fibronectin, collagen types IV and I over laminin and osteopontin in a dose-dependent manner. Seeding of VEC onto comparison substrates revealed VEC growth and morphology to be preferential in the order: tissue culture polystyrene > gelatin, poly(DL-lactide-co-glycolide), chitosan > poly(hydroxy alkanoate). Adhesive protein precoating of chitosan did not significantly enhance VEC growth, despite equivalent protein adsorption as to polystyrene. Initial cell adhesion to protein-precoated chitosan, however, was higher than for polystyrene. Composite chitosan/collagen type IV films were investigated as an alternative to simple protein precoatings, and were shown to improve VEC growth and morphology over chitosan alone. These findings suggest potential manipulation of chitosan properties to improve amenability to valve tissue-engineering applications. Copyright 2003 Wiley Periodicals, Inc.

  10. A dual-mode secure UHF RFID tag with a crypto engine in 0.13-μm CMOS

    Science.gov (United States)

    Tao, Yang; Linghao, Zhu; Xi, Tan; Junyu, Wang; Lirong, Zheng; Hao, Min

    2016-07-01

    An ultra-high-frequency (UHF) radio frequency identification (RFID) secure tag chip with a non-crypto mode and a crypto mode is presented. During the supply chain management, the tag works in the non-crypto mode in which the on-chip crypto engine is not enabled and the tag chip has a sensitivity of -12.8 dBm for long range communication. At the point of sales (POS), the tag will be switched to the crypto mode in order to protect the privacy of customers. In the crypto mode, an advanced encryption standard (AES) crypto engine is enabled and the sensitivity of the tag chip is switched to +2 dBm for short range communication, which is a method of physical protection. The tag chip is implemented and verified in a standard 0.13-μm CMOS process. Project supported by the National Science & Technology Pillar Program of China (No. 2015BAK36B01).

  11. Self-Assembly of Protein Monolayers Engineered for Improved Monoclonal Immunoglobulin G Binding

    Directory of Open Access Journals (Sweden)

    Jeremy H. Lakey

    2011-08-01

    Full Text Available Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.

  12. Homology modeling and protein engineering of alkane monooxygenase in Burkholderia thailandensis MSMB121: in silico insights.

    Science.gov (United States)

    Jain, Chakresh Kumar; Gupta, Money; Prasad, Yamuna; Wadhwa, Gulshan; Sharma, Sanjeev Kumar

    2014-07-01

    The degradation of hydrocarbons plays an important role in the eco-balancing of petroleum products, pesticides and other toxic products in the environment. The degradation of hydrocarbons by microbes such as Geobacillus thermodenitrificans, Burkhulderia, Gordonia sp. and Acinetobacter sp. has been studied intensively in the literature. The present study focused on the in silico protein engineering of alkane monooxygenase (ladA)-a protein involved in the alkane degradation pathway. We demonstrated the improvement in substrate binding energy with engineered ladA in Burkholderia thailandensis MSMB121. We identified an ortholog of ladA monooxygenase found in B. thailandensis MSMB121, and showed it to be an enzyme involved in an alkane degradation pathway studied extensively in Geobacillus thermodenitrificans. Homology modeling of the three-dimensional structure of ladA was performed with a crystal structure (protein databank ID: 3B9N) as a template in MODELLER 9v11, and further validated using PROCHECK, VERIFY-3D and WHATIF tools. Specific amino acids were substituted in the region corresponding to amino acids 305-370 of ladA protein, resulting in an enhancement of binding energy in different alkane chain molecules as compared to wild protein structures in the docking experiments. The substrate binding energy with the protein was calculated using Vina (Implemented in VEGAZZ). Molecular dynamics simulations were performed to study the dynamics of different alkane chain molecules inside the binding pockets of wild and mutated ladA. Here, we hypothesize an improvement in binding energies and accessibility of substrates towards engineered ladA enzyme, which could be further facilitated for wet laboratory-based experiments for validation of the alkane degradation pathway in this organism.

  13. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.

    Directory of Open Access Journals (Sweden)

    Ying Lin

    Full Text Available Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11-12 aa N-intein fragment and S11 split inteins having a very small (6 aa C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85-100% of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ~1.7 × 10(-4 s(-1 to ~3.8 × 10(-4 s(-1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation.

  14. Facile construction of a random protein domain insertion library using an engineered transposon.

    Science.gov (United States)

    Shah, Vandan; Pierre, Brennal; Kim, Jin Ryoun

    2013-01-15

    Insertional fusion between multiple protein domains represents a novel means of creating integrated functionalities. Currently, there is no robust guideline for selection of insertion sites ensuring the desired functional outcome of insertional fusion. Therefore, construction and testing of random domain insertion libraries, in which a host protein domain is randomly inserted into a guest protein domain, significantly benefit extensive exploration of sequence spaces for insertion sites. Short peptide residues are usually introduced between protein domains to alleviate structural conflicts, and the interdomain linker residues may affect the functional outcome of protein insertion complexes. Unfortunately, optimal control of interdomain linker residues is not always available in conventional methods used to construct random domain insertion libraries. Moreover, most conventional methods employ blunt-end rather than sticky-end ligation between host and guest DNA fragments, thus lowering library construction efficiency. Here, we report the facile construction of random domain insertion libraries using an engineered transposon. We show that random domain insertion with optimal control of interdomain linker residues was possible with our engineered transposon-based method. In addition, our method employs sticky-end rather than blunt-end ligation between host and guest DNA fragments, thus allowing for facile construction of relatively large sized libraries. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. TGP, an extremely stable, non-aggregating fluorescent protein created by structure-guided surface engineering

    Science.gov (United States)

    Close, Devin W.; Don Paul, Craig; Langan, Patricia S.; Wilce, Matthew C.J.; Traore, Daouda A.K.; Halfmann, Randal; Rocha, Reginaldo C.; Waldo, Geoffery S.; Payne, Riley J.; Rucker, Joseph B.; Prescott, Mark; Bradbury, Andrew R.M.

    2014-01-01

    In this paper we describe the engineering and X-ray crystal structure of Thermal Green Protein (TGP), an extremely stable, highly soluble, non-aggregating green fluorescent protein. TGP is a soluble variant of the fluorescent protein eCGP123, which despite being highly stable, has proven to be aggregation-prone. The X-ray crystal structure of eCGP123, also determined within the context of this paper, was used to carry out rational surface engineering to improve its solubility, leading to TGP. The approach involved simultaneously eliminating crystal lattice contacts while increasing the overall negative charge of the protein. Despite intentional disruption of lattice contacts and introduction of high entropy glutamate side chains, TGP crystallized readily in a number of different conditions and the X-ray crystal structure of TGP was determined to 1.9 Å resolution. The structural reasons for the enhanced stability of TGP and eCGP123 are discussed. We demonstrate the utility of using TGP as a fusion partner in various assays and significantly, in amyloid assays in which the standard fluorescent protein, EGFP, is undesirable because of aberrant oligomerization. PMID:25287913

  16. Modulating bacterial and gut mucosal interactions with engineered biofilm matrix proteins.

    Science.gov (United States)

    Duraj-Thatte, Anna M; Praveschotinunt, Pichet; Nash, Trevor R; Ward, Frederick R; Joshi, Neel S

    2018-02-22

    Extracellular appendages play a significant role in mediating communication between bacteria and their host. Curli fibers are a class of bacterial fimbria that is highly amenable to engineering. We demonstrate the use of engineered curli fibers to rationally program interactions between bacteria and components of the mucosal epithelium. Commensal E. coli strains were engineered to produce recombinant curli fibers fused to the trefoil family of human cytokines. Biofilms formed from these strains bound more mucins than those producing wild-type curli fibers, and modulated mucin rheology as well. When treated with bacteria producing the curli-trefoil fusions mammalian cells behaved identically in terms of their migration behavior as when they were treated with the corresponding soluble trefoil factors. Overall, this demonstrates the potential utility of curli fibers as a scaffold for the display of bioactive domains and an untapped approach to rationally modulating host-microbe interactions using bacterial matrix proteins.

  17. Mobile Security: A Systems Engineering Framework for Implementing Bring Your Own Device (BYOD) Security through the Combination of Policy Management and Technology

    Science.gov (United States)

    Zahadat, Nima

    2016-01-01

    With the rapid increase of smartphones and tablets, security concerns have also been on the rise. Traditionally, Information Technology (IT) departments set up devices, apply security, and monitor them. Such approaches do not apply to today's mobile devices due to a phenomenon called Bring Your Own Device or BYOD. Employees find it desirable to…

  18. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    Science.gov (United States)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  19. Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue

    Science.gov (United States)

    Armstrong, James P. K.; Shakur, Rameen; Horne, Joseph P.; Dickinson, Sally C.; Armstrong, Craig T.; Lau, Katherine; Kadiwala, Juned; Lowe, Robert; Seddon, Annela; Mann, Stephen; Anderson, J. L. Ross; Perriman, Adam W.; Hollander, Anthony P.

    2015-06-01

    Restricted oxygen diffusion can result in central cell necrosis in engineered tissue, a problem that is exacerbated when engineering large tissue constructs for clinical application. Here we show that pre-treating human mesenchymal stem cells (hMSCs) with synthetic membrane-active myoglobin-polymer-surfactant complexes can provide a reservoir of oxygen capable of alleviating necrosis at the centre of hyaline cartilage. This is achieved through the development of a new cell functionalization methodology based on polymer-surfactant conjugation, which allows the delivery of functional proteins to the hMSC membrane. This new approach circumvents the need for cell surface engineering using protein chimerization or genetic transfection, and we demonstrate that the surface-modified hMSCs retain their ability to proliferate and to undergo multilineage differentiation. The functionalization technology is facile, versatile and non-disruptive, and in addition to tissue oxygenation, it should have far-reaching application in a host of tissue engineering and cell-based therapies.

  20. Heart research advances using database search engines, Human Protein Atlas and the Sydney Heart Bank.

    Science.gov (United States)

    Li, Amy; Estigoy, Colleen; Raftery, Mark; Cameron, Darryl; Odeberg, Jacob; Pontén, Fredrik; Lal, Sean; Dos Remedios, Cristobal G

    2013-10-01

    This Methodological Review is intended as a guide for research students who may have just discovered a human "novel" cardiac protein, but it may also help hard-pressed reviewers of journal submissions on a "novel" protein reported in an animal model of human heart failure. Whether you are an expert or not, you may know little or nothing about this particular protein of interest. In this review we provide a strategic guide on how to proceed. We ask: How do you discover what has been published (even in an abstract or research report) about this protein? Everyone knows how to undertake literature searches using PubMed and Medline but these are usually encyclopaedic, often producing long lists of papers, most of which are either irrelevant or only vaguely relevant to your query. Relatively few will be aware of more advanced search engines such as Google Scholar and even fewer will know about Quertle. Next, we provide a strategy for discovering if your "novel" protein is expressed in the normal, healthy human heart, and if it is, we show you how to investigate its subcellular location. This can usually be achieved by visiting the website "Human Protein Atlas" without doing a single experiment. Finally, we provide a pathway to discovering if your protein of interest changes its expression level with heart failure/disease or with ageing. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  1. Arming Technology in Yeast—Novel Strategy for Whole-cell Biocatalyst and Protein Engineering

    Directory of Open Access Journals (Sweden)

    Mitsuyoshi Ueda

    2013-09-01

    Full Text Available Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called “arming technology”, can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  2. Arming Technology in Yeast-Novel Strategy for Whole-cell Biocatalyst and Protein Engineering.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2013-09-09

    Cell surface display of proteins/peptides, in contrast to the conventional intracellular expression, has many attractive features. This arming technology is especially effective when yeasts are used as a host, because eukaryotic modifications that are often required for functional use can be added to the surface-displayed proteins/peptides. A part of various cell wall or plasma membrane proteins can be genetically fused to the proteins/peptides of interest to be displayed. This technology, leading to the generation of so-called "arming technology", can be employed for basic and applied research purposes. In this article, we describe various strategies for the construction of arming yeasts, and outline the diverse applications of this technology to industrial processes such as biofuel and chemical productions, pollutant removal, and health-related processes, including oral vaccines. In addition, arming technology is suitable for protein engineering and directed evolution through high-throughput screening that is made possible by the feature that proteins/peptides displayed on cell surface can be directly analyzed using intact cells without concentration and purification. Actually, novel proteins/peptides with improved or developed functions have been created, and development of diagnostic/therapeutic antibodies are likely to benefit from this powerful approach.

  3. Overview on zein protein: a promising pharmaceutical excipient in drug delivery systems and tissue engineering.

    Science.gov (United States)

    Labib, Gihan

    2018-01-01

    Natural pharmaceutical excipients have been applied extensively in the past decades owing to their safety and biocompatibility. Zein, a natural protein of plant origin offers great benefit over other synthetic polymers used in controlled drug and biomedical delivery systems. It was used in a variety of medical fields including pharmaceutical and biomedical drug targeting, vaccine, tissue engineering, and gene delivery. Being biodegradable and biocompatible, the current review focuses on the history and the medical application of zein as an attractive still promising biopolymer. Areas covered: The current review gives a broadscope on zein as a still promising protein excipient in different fields. Zein- based drug and biomedical delivery systems are discussed with special focus on current and potential application in controlled drug delivery systems, and tissue engineering. Expert opinion: Zein as a protein of natural origin can still be considered a promising polymer in the field of drug delivery systems as well as in tissue engineering. Although different researchers spotted light on zein application in different industrial fields extensively, the feasibility of its use in the field of drug delivery replenished by investigators in recent years has not yet been fully approached.

  4. Engineered, highly reactive substrates of microbial transglutaminase enable protein labeling within various secondary structure elements.

    Science.gov (United States)

    Rachel, Natalie M; Quaglia, Daniela; Lévesque, Éric; Charette, André B; Pelletier, Joelle N

    2017-11-01

    Microbial transglutaminase (MTG) is a practical tool to enzymatically form isopeptide bonds between peptide or protein substrates. This natural approach to crosslinking the side-chains of reactive glutamine and lysine residues is solidly rooted in food and textile processing. More recently, MTG's tolerance for various primary amines in lieu of lysine have revealed its potential for site-specific protein labeling with aminated compounds, including fluorophores. Importantly, MTG can label glutamines at accessible positions in the body of a target protein, setting it apart from most labeling enzymes that react exclusively at protein termini. To expand its applicability as a labeling tool, we engineered the B1 domain of Protein G (GB1) to probe the selectivity and enhance the reactivity of MTG toward its glutamine substrate. We built a GB1 library where each variant contained a single glutamine at positions covering all secondary structure elements. The most reactive and selective variants displayed a >100-fold increase in incorporation of a recently developed aminated benzo[a]imidazo[2,1,5-cd]indolizine-type fluorophore, relative to native GB1. None of the variants were destabilized. Our results demonstrate that MTG can react readily with glutamines in α-helical, β-sheet, and unstructured loop elements and does not favor one type of secondary structure. Introducing point mutations within MTG's active site further increased reactivity toward the most reactive substrate variant, I6Q-GB1, enhancing MTG's capacity to fluorescently label an engineered, highly reactive glutamine substrate. This work demonstrates that MTG-reactive glutamines can be readily introduced into a protein domain for fluorescent labeling. © 2017 The Protein Society.

  5. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

    Science.gov (United States)

    Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C

    2017-05-01

    The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. A protein engineered to bind uranyl selectively and with femtomolar affinity

    Science.gov (United States)

    Zhou, Lu; Bosscher, Mike; Zhang, Changsheng; Özçubukçu, Salih; Zhang, Liang; Zhang, Wen; Li, Charles J.; Liu, Jianzhao; Jensen, Mark P.; Lai, Luhua; He, Chuan

    2014-03-01

    Uranyl (UO22+), the predominant aerobic form of uranium, is present in the ocean at a concentration of ~3.2 parts per 109 (13.7 nM) however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30-60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications.

  7. Analyzing Cyber Security Threats on Cyber-Physical Systems Using Model-Based Systems Engineering

    Science.gov (United States)

    Kerzhner, Aleksandr; Pomerantz, Marc; Tan, Kymie; Campuzano, Brian; Dinkel, Kevin; Pecharich, Jeremy; Nguyen, Viet; Steele, Robert; Johnson, Bryan

    2015-01-01

    The spectre of cyber attacks on aerospace systems can no longer be ignored given that many of the components and vulnerabilities that have been successfully exploited by the adversary on other infrastructures are the same as those deployed and used within the aerospace environment. An important consideration with respect to the mission/safety critical infrastructure supporting space operations is that an appropriate defensive response to an attack invariably involves the need for high precision and accuracy, because an incorrect response can trigger unacceptable losses involving lives and/or significant financial damage. A highly precise defensive response, considering the typical complexity of aerospace environments, requires a detailed and well-founded understanding of the underlying system where the goal of the defensive response is to preserve critical mission objectives in the presence of adversarial activity. In this paper, a structured approach for modeling aerospace systems is described. The approach includes physical elements, network topology, software applications, system functions, and usage scenarios. We leverage Model-Based Systems Engineering methodology by utilizing the Object Management Group's Systems Modeling Language to represent the system being analyzed and also utilize model transformations to change relevant aspects of the model into specialized analyses. A novel visualization approach is utilized to visualize the entire model as a three-dimensional graph, allowing easier interaction with subject matter experts. The model provides a unifying structure for analyzing the impact of a particular attack or a particular type of attack. Two different example analysis types are demonstrated in this paper: a graph-based propagation analysis based on edge labels, and a graph-based propagation analysis based on node labels.

  8. Integrating Protein Engineering and Bioorthogonal Click Conjugation for Extracellular Vesicle Modulation and Intracellular Delivery.

    Directory of Open Access Journals (Sweden)

    Ming Wang

    Full Text Available Exosomes are small, cell-secreted vesicles that transfer proteins and genetic information between cells. This intercellular transmission regulates many physiological and pathological processes. Therefore, exosomes have emerged as novel biomarkers for disease diagnosis and as nanocarriers for drug delivery. Here, we report an easy-to-adapt and highly versatile methodology to modulate exosome composition and conjugate exosomes for intracellular delivery. Our strategy combines the metabolic labeling of newly synthesized proteins or glycan/glycoproteins of exosome-secreting cells with active azides and bioorthogonal click conjugation to modify and functionalize the exosomes. The azide-integrated can be conjugated to a variety of small molecules and proteins and can efficiently deliver conjugates into cells. The metabolic engineering of exosomes diversifies the chemistry of exosomes and expands the functions that can be introduced into exosomes, providing novel, powerful tools to study the roles of exosomes in biology and expand the biomedical potential of exosomes.

  9. Specific Internalisation of Gold Nanoparticles into Engineered Porous Protein Cages via Affinity Binding.

    Science.gov (United States)

    Paramelle, David; Peng, Tao; Free, Paul; Fernig, David G; Lim, Sierin; Tomczak, Nikodem

    2016-01-01

    Porous protein cages are supramolecular protein self-assemblies presenting pores that allow the access of surrounding molecules and ions into their core in order to store and transport them in biological environments. Protein cages' pores are attractive channels for the internalisation of inorganic nanoparticles and an alternative for the preparation of hybrid bioinspired nanoparticles. However, strategies based on nanoparticle transport through the pores are largely unexplored, due to the difficulty of tailoring nanoparticles that have diameters commensurate with the pores size and simultaneously displaying specific affinity to the cages' core and low non-specific binding to the cages' outer surface. We evaluated the specific internalisation of single small gold nanoparticles, 3.9 nm in diameter, into porous protein cages via affinity binding. The E2 protein cage derived from the Geobacillus stearothermophilus presents 12 pores, 6 nm in diameter, and an empty core of 13 nm in diameter. We engineered the E2 protein by site-directed mutagenesis with oligohistidine sequences exposing them into the cage's core. Dynamic light scattering and electron microscopy analysis show that the structures of E2 protein cages mutated with bis- or penta-histidine sequences are well conserved. The surface of the gold nanoparticles was passivated with a self-assembled monolayer made of a mixture of short peptidols and thiolated alkane ethylene glycol ligands. Such monolayers are found to provide thin coatings preventing non-specific binding to proteins. Further functionalisation of the peptide coated gold nanoparticles with Ni2+ nitrilotriacetic moieties enabled the specific binding to oligohistidine tagged cages. The internalisation via affinity binding was evaluated by electron microscopy analysis. From the various mutations tested, only the penta-histidine mutated E2 protein cage showed repeatable and stable internalisation. The present work overcomes the limitations of currently

  10. A fluorescent cassette-based strategy for engineering multiple domain fusion proteins

    Directory of Open Access Journals (Sweden)

    Khorchid Ahmad

    2003-07-01

    Full Text Available Abstract Background The engineering of fusion proteins has become increasingly important and most recently has formed the basis of many biosensors, protein purification systems, and classes of new drugs. Currently, most fusion proteins consist of three or fewer domains, however, more sophisticated designs could easily involve three or more domains. Using traditional subcloning strategies, this requires micromanagement of restriction enzymes sites that results in complex workaround solutions, if any at all. Results Therefore, to aid in the efficient construction of fusion proteins involving multiple domains, we have created a new expression vector that allows us to rapidly generate a library of cassettes. Cassettes have a standard vector structure based on four specific restriction endonuclease sites and using a subtle property of blunt or compatible cohesive end restriction enzymes, they can be fused in any order and number of times. Furthermore, the insertion of PCR products into our expression vector or the recombination of cassettes can be dramatically simplified by screening for the presence or absence of fluorescence. Conclusions Finally, the utility of this new strategy was demonstrated by the creation of basic cassettes for protein targeting to subcellular organelles and for protein purification using multiple affinity tags.

  11. Engineering Trade-off Considerations Regarding Design-for-Security, Design-for-Verification, and Design-for-Test

    Science.gov (United States)

    Berg, Melanie; Label, Kenneth

    2018-01-01

    The United States government has identified that application specific integrated circuit (ASIC) and field programmable gate array (FPGA) hardware are at risk from a variety of adversary attacks. This finding affects system security and trust. Consequently, processes are being developed for system mitigation and countermeasure application. The scope of this tutorial pertains to potential vulnerabilities and countermeasures within the ASIC/FPGA design cycle. The presentation demonstrates how design practices can affect the risk for the adversary to: change circuitry, steal intellectual property, and listen to data operations. An important portion of the design cycle is assuring the design is working as specified or as expected. This is accomplished by exhaustive testing of the target design. Alternatively, it has been shown that well established schemes for test coverage enhancement (design-for-verification (DFV) and design-for-test (DFT)) can create conduits for adversary accessibility. As a result, it is essential to perform a trade between robust test coverage versus reliable design implementation. The goal of this tutorial is to explain the evolution of design practices; review adversary accessibility points due to DFV and DFT circuitry insertion (back door circuitry); and to describe common engineering trade-off considerations for test versus adversary threats.

  12. In-depth analysis of protein inference algorithms using multiple search engines and well-defined metrics.

    Science.gov (United States)

    Audain, Enrique; Uszkoreit, Julian; Sachsenberg, Timo; Pfeuffer, Julianus; Liang, Xiao; Hermjakob, Henning; Sanchez, Aniel; Eisenacher, Martin; Reinert, Knut; Tabb, David L; Kohlbacher, Oliver; Perez-Riverol, Yasset

    2017-01-06

    In mass spectrometry-based shotgun proteomics, protein identifications are usually the desired result. However, most of the analytical methods are based on the identification of reliable peptides and not the direct identification of intact proteins. Thus, assembling peptides identified from tandem mass spectra into a list of proteins, referred to as protein inference, is a critical step in proteomics research. Currently, different protein inference algorithms and tools are available for the proteomics community. Here, we evaluated five software tools for protein inference (PIA, ProteinProphet, Fido, ProteinLP, MSBayesPro) using three popular database search engines: Mascot, X!Tandem, and MS-GF+. All the algorithms were evaluated using a highly customizable KNIME workflow using four different public datasets with varying complexities (different sample preparation, species and analytical instruments). We defined a set of quality control metrics to evaluate the performance of each combination of search engines, protein inference algorithm, and parameters on each dataset. We show that the results for complex samples vary not only regarding the actual numbers of reported protein groups but also concerning the actual composition of groups. Furthermore, the robustness of reported proteins when using databases of differing complexities is strongly dependant on the applied inference algorithm. Finally, merging the identifications of multiple search engines does not necessarily increase the number of reported proteins, but does increase the number of peptides per protein and thus can generally be recommended. Protein inference is one of the major challenges in MS-based proteomics nowadays. Currently, there are a vast number of protein inference algorithms and implementations available for the proteomics community. Protein assembly impacts in the final results of the research, the quantitation values and the final claims in the research manuscript. Even though protein

  13. A divide and conquer approach to determine the Pareto frontier for optimization of protein engineering experiments

    Science.gov (United States)

    He, Lu; Friedman, Alan M.; Bailey-Kellogg, Chris

    2016-01-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. PMID:22180081

  14. Handheld highly selective plasmonic chem/biosensor using engineered binding proteins for extreme conformational changes

    Science.gov (United States)

    Kosciolek, Derek J.; Sonar, Ajay; Lepak, Lori A.; Schnatz, Peter; Bendoym, Igor; Brown, Mia C.; Koder, Ronald L.; Crouse, David T.

    2017-08-01

    In this project we develop a handheld, portable, highly selective and sensitive chem/biosensor that has potential applications in both airborne and water-based environmental sensing. The device relies on a plasmonic chip of subwavelength-scale periodic gold rods engineered to resonate in the near infrared. The chip is functionalized with a novel class of proteins that exhibit large conformational changes upon binding to a specific target analyte. The subsequent change in local refractive index near the surface of the gold is one to two orders of magnitude greater than current conventional methods, which produces a readily measurable 5 to 10 percent difference in light transmission. This allows us to forgo traditional, bulky tabletop setups in favor of a compact form factor. Using commercially available optics to construct a transmission-based optical train, measured changes in bulk refractive index are presented here. While synthesis of binding protein efforts are focused on heme as analyte for proof of concept validation, the functionalized protein can be engineered to pair with a wide variety of analytes with minimal alterations to the plasmonic chip or device design. Such flexibility allows for this device to potentially meet the needs of first responders and health care professionals in a multitude of scenarios.

  15. TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA targeting proteins

    Science.gov (United States)

    Doyle, Erin L.; Stoddard, Barry L.; Voytas, Daniel F.; Bogdanove, Adam J.

    2013-01-01

    Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria in the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting. PMID:23707478

  16. Strategies in megasynthase engineering – fatty acid synthases (FAS as model proteins

    Directory of Open Access Journals (Sweden)

    Manuel Fischer

    2017-06-01

    Full Text Available Megasynthases are large multienzyme proteins that produce a plethora of important natural compounds by catalyzing the successive condensation and modification of precursor units. Within the class of megasynthases, polyketide synthases (PKS are responsible for the production of a large spectrum of bioactive polyketides (PK, which have frequently found their way into therapeutic applications. Rational engineering approaches have been performed during the last 25 years that seek to employ the “assembly-line synthetic concept” of megasynthases in order to deliver new bioactive compounds. Here, we highlight PKS engineering strategies in the light of the newly emerging structural information on megasynthases, and argue that fatty acid synthases (FAS are and will be valuable objects for further developing this field.

  17. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research.

    Science.gov (United States)

    Kim, Moon-Soo; Kini, Anu Ganesh

    2017-08-01

    Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.

  18. Recoding aminoacyl-tRNA synthetases for synthetic biology by rational protein-RNA engineering.

    Science.gov (United States)

    Hadd, Andrew; Perona, John J

    2014-12-19

    We have taken a rational approach to redesigning the amino acid binding and aminoacyl-tRNA pairing specificities of bacterial glutaminyl-tRNA synthetase. The four-stage engineering incorporates generalizable design principles and improves the pairing efficiency of noncognate glutamate with tRNA(Gln) by over 10(5)-fold compared to the wild-type enzyme. Better optimized designs of the protein-RNA complex include substantial reengineering of the globular core region of the tRNA, demonstrating a role for specific tRNA nucleotides in specifying the identity of the genetically encoded amino acid. Principles emerging from this engineering effort open new prospects for combining rational and genetic selection approaches to design novel aminoacyl-tRNA synthetases that ligate noncanonical amino acids onto tRNAs. This will facilitate reconstruction of the cellular translation apparatus for applications in synthetic biology.

  19. Untangle network security

    CERN Document Server

    El-Bawab, Abd El-Monem A

    2014-01-01

    If you are a security engineer or a system administrator and want to secure your server infrastructure with the feature-rich Untangle, this book is for you. For individuals who want to start their career in the network security field, this book would serve as a perfect companion to learn the basics of network security and how to implement it using Untangle NGFW.

  20. Engineering Aromatic-Aromatic Interactions To Nucleate Folding in Intrinsically Disordered Regions of Proteins.

    Science.gov (United States)

    Balakrishnan, Swati; Sarma, Siddhartha P

    2017-08-22

    Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.

  1. Mutational breeding and genetic engineering in the development of high grain protein content.

    Science.gov (United States)

    Wenefrida, Ida; Utomo, Herry S; Linscombe, Steve D

    2013-12-04

    Cereals are the most important crops in the world for both human consumption and animal feed. Improving their nutritional values, such as high protein content, will have significant implications, from establishing healthy lifestyles to helping remediate malnutrition problems worldwide. Besides providing a source of carbohydrate, grain is also a natural source of dietary fiber, vitamins, minerals, specific oils, and other disease-fighting phytocompounds. Even though cereal grains contain relatively little protein compared to legume seeds, they provide protein for the nutrition of humans and livestock that is about 3 times that of legumes. Most cereal seeds lack a few essential amino acids; therefore, they have imbalanced amino acid profiles. Lysine (Lys), threonine (Thr), methionine (Met), and tryptophan (Trp) are among the most critical and are a limiting factor in many grain crops for human nutrition. Tremendous research has been put into the efforts to improve these essential amino acids. Development of high protein content can be outlined in four different approaches through manipulating seed protein bodies, modulating certain biosynthetic pathways to overproduce essential and limiting amino acids, increasing nitrogen relocation to the grain through the introduction of transgenes, and exploiting new genetic variance. Various technologies have been employed to improve protein content including conventional and mutational breeding, genetic engineering, marker-assisted selection, and genomic analysis. Each approach involves a combination of these technologies. Advancements in nutrigenomics and nutrigenetics continue to improve public knowledge at a rapid pace on the importance of specific aspects of food nutrition for optimum fitness and health. An understanding of the molecular basis for human health and genetic predisposition to certain diseases through human genomes enables individuals to personalize their nutritional requirements. It is critically important

  2. The Utah Nuclear Engineering Program and DevonWay are Developing One and Unique Approach to PLiM for Securing the Nation's Nuclear Future

    International Nuclear Information System (INIS)

    Jevremovic, Tatjana; Choe, Dongok; Yang, Haori; White, Sally; Kelly, Mike

    2012-01-01

    The safety culture involving a comprehensive training of the employed engineers at the power plant facilities is neither a simple nor a straightforward task. With aging management and operators, impact of the Fukushima nuclear event, unforeseen and timely unpredictable effects of nuclear memories (Three Mile Island, Chernobyl, Second World War) as evoked every time we have worldwide challenges or discussions of where the nuclear technology will/would further develop, we face a fearful question - is our educational and training approach the right one; is it going to assure continuous and secured practices in providing safe operation of our nuclear power plants?... We at the University of Utah with our just recently revitalized Nuclear Engineering Program, find that the root of securing the safety culture and providing its sustainability in our existing and future nuclear power plants, lies in very early educational practices. We believe that every program in nuclear engineering education shall include training in nuclear safety. That training shall certainly include industrial based practices and involve experts from the companies that develop and contribute to nuclear power safety to add to class practices at the University teaching settings. Working with DevonWay, a leading company in developing software to improve the safety cultures at nuclear power plants in the country, we have implemented the 'Track and Trace' software into our nuclear engineering program, emphasizing high quality training of our undergraduate and graduate students, and promoting a higher level safety culture practices at our nuclear engineering facilities. (author)

  3. Enzymes in lipid modification: From classical biocatalysis with commercial enzymes to advanced protein engineering tools

    Directory of Open Access Journals (Sweden)

    Bornscheuer Uwe T.

    2013-01-01

    Full Text Available In this review, the application of enzymes, especially lipases, for the modification of fats and oils is covered. This includes the lipase-catalyzed selective production of structured triglycerides and the isolation or incorporation of specific fatty acids. Protein engineering methods to modify lipases on a molecular level were used to alter the fatty acid chain-length and ‘‘trans over cis’’ selectivity of lipase A from Candida antarctica. Furthermore, an enzymatic cascade reaction to remove 3-monochloropropanediol and the identification of a phospholipase C for degumming are briefly covered.

  4. Combining Protein and Strain Engineering for the Production of Glyco-Engineered Horseradish Peroxidase C1A in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Simona Capone

    2015-09-01

    Full Text Available Horseradish peroxidase (HRP, conjugated to antibodies and lectins, is widely used in medical diagnostics. Since recombinant production of the enzyme is difficult, HRP isolated from plant is used for these applications. Production in the yeast Pichia pastoris (P. pastoris, the most promising recombinant production platform to date, causes hyperglycosylation of HRP, which in turn complicates conjugation to antibodies and lectins. In this study we combined protein and strain engineering to obtain an active and stable HRP variant with reduced surface glycosylation. We combined four mutations, each being beneficial for either catalytic activity or thermal stability, and expressed this enzyme variant as well as the unmutated wildtype enzyme in both a P. pastoris benchmark strain and a strain where the native α-1,6-mannosyltransferase (OCH1 was knocked out. Considering productivity in the bioreactor as well as enzyme activity and thermal stability, the mutated HRP variant produced in the P. pastoris benchmark strain turned out to be interesting for medical diagnostics. This variant shows considerable catalytic activity and thermal stability and is less glycosylated, which might allow more controlled and efficient conjugation to antibodies and lectins.

  5. DoD Identity Matching Engine for Security and Analysis (IMESA) Access to Criminal Justice Information (CJI) and Terrorist Screening Databases (TSDB)

    Science.gov (United States)

    2016-05-04

    Department of Defense INSTRUCTION NUMBER 5525.19 May 4, 2016 USD(P&R) SUBJECT: DoD Identity Matching Engine for Security and Analysis...DoD Identity Management Capability Enterprise Services Application (IMESA) Access to FBI National Crime Information Center (NCIC) Files,” April 22...Coordinates with: (1) The USD(I) for oversight and maintenance responsibilities, and for changes to digital DoD personnel identity data and

  6. Integrating enzyme immobilization and protein engineering: An alternative path for the development of novel and improved industrial biocatalysts.

    Science.gov (United States)

    Bernal, Claudia; Rodríguez, Karen; Martínez, Ronny

    2018-06-09

    Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, -thus not reusable- and their performance under real operational conditions is uncertain. Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts. In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel "immobilized biocatalyst engineering" research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications. Copyright © 2018. Published by Elsevier Inc.

  7. Enhanced Missing Proteins Detection in NCI60 Cell Lines Using an Integrative Search Engine Approach.

    Science.gov (United States)

    Guruceaga, Elizabeth; Garin-Muga, Alba; Prieto, Gorka; Bejarano, Bartolomé; Marcilla, Miguel; Marín-Vicente, Consuelo; Perez-Riverol, Yasset; Casal, J Ignacio; Vizcaíno, Juan Antonio; Corrales, Fernando J; Segura, Victor

    2017-12-01

    The Human Proteome Project (HPP) aims deciphering the complete map of the human proteome. In the past few years, significant efforts of the HPP teams have been dedicated to the experimental detection of the missing proteins, which lack reliable mass spectrometry evidence of their existence. In this endeavor, an in depth analysis of shotgun experiments might represent a valuable resource to select a biological matrix in design validation experiments. In this work, we used all the proteomic experiments from the NCI60 cell lines and applied an integrative approach based on the results obtained from Comet, Mascot, OMSSA, and X!Tandem. This workflow benefits from the complementarity of these search engines to increase the proteome coverage. Five missing proteins C-HPP guidelines compliant were identified, although further validation is needed. Moreover, 165 missing proteins were detected with only one unique peptide, and their functional analysis supported their participation in cellular pathways as was also proposed in other studies. Finally, we performed a combined analysis of the gene expression levels and the proteomic identifications from the common cell lines between the NCI60 and the CCLE project to suggest alternatives for further validation of missing protein observations.

  8. An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    Science.gov (United States)

    Natarajan, Aravind; Haitjema, Charles H; Lee, Robert; Boock, Jason T; DeLisa, Matthew P

    2017-05-19

    The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved for most synthetic biology and metabolic engineering applications. To address this challenge, we developed a generalizable survival-based selection strategy that effectively couples extracellular protein secretion to antibiotic resistance and enables facile isolation of rare mutants from very large populations (i.e., 10 10-12 clones) based simply on cell growth. Using this strategy in the context of the YebF pathway, a comprehensive library of E. coli single-gene knockout mutants was screened and several gain-of-function mutations were isolated that increased the efficiency of extracellular expression without compromising the integrity of the outer membrane. We anticipate that this user-friendly strategy could be leveraged to better understand the YebF pathway and other secretory mechanisms-enabling the exploration of protein secretion in pathogenesis as well as the creation of designer E. coli strains with greatly expanded secretomes-all without the need for expensive exogenous reagents, assay instruments, or robotic automation.

  9. Biotechnology and genetic engineering in the new drug development. Part I. DNA technology and recombinant proteins.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Pharmaceutical biotechnology has a long tradition and is rooted in the last century, first exemplified by penicillin and streptomycin as low molecular weight biosynthetic compounds. Today, pharmaceutical biotechnology still has its fundamentals in fermentation and bioprocessing, but the paradigmatic change affected by biotechnology and pharmaceutical sciences has led to an updated definition. The biotechnology revolution redrew the research, development, production and even marketing processes of drugs. Powerful new instruments and biotechnology related scientific disciplines (genomics, proteomics) make it possible to examine and exploit the behavior of proteins and molecules. Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. This technology, now approximately 25 years old, is becoming one of the most important technologies developed in the 20(th) century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances regarding rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we describe these processes.

  10. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications.

    Science.gov (United States)

    Briggs, Tonye; Matos, Jeffrey; Collins, George; Arinzeh, Treena Livingston

    2015-10-01

    Electrospun polymer/ceramic composites have gained interest for use as scaffolds for bone tissue engineering applications. In this study, we investigated methods to incorporate Platelet Derived Growth Factor-BB (PDGF-BB) in electrospun polycaprolactone (PCL) or PCL prepared with polyethylene oxide (PEO), where both contained varying levels (up to 30 wt %) of ceramic composed of biphasic calcium phosphates, hydroxyapatite (HA)/β-tricalcium phosphate (TCP). Using a model protein, lysozyme, we compared two methods of protein incorporation, adsorption and emulsion electrospinning. Adsorption of lysozyme on scaffolds with ceramic resulted in minimal release of lysozyme over time. Using emulsion electrospinning, lysozyme released from scaffolds containing a high concentration of ceramic where the majority of the release occurred at later time points. We investigated the effect of reducing the electrostatic interaction between the protein and the ceramic on protein release with the addition of the cationic surfactant, cetyl trimethylammonium bromide (CTAB). In vitro release studies demonstrated that electrospun scaffolds prepared with CTAB released more lysozyme or PDGF-BB compared with scaffolds without the cationic surfactant. Human mesenchymal stem cells (MSCs) on composite scaffolds containing PDGF-BB incorporated through emulsion electrospinning expressed higher levels of osteogenic markers compared to scaffolds without PDGF-BB, indicating that the bioactivity of the growth factor was maintained. This study revealed methods for incorporating growth factors in polymer/ceramic scaffolds to promote osteoinduction and thereby facilitate bone regeneration. © 2015 Wiley Periodicals, Inc.

  11. Cell biology of sarcomeric protein engineering: disease modeling and therapeutic potential.

    Science.gov (United States)

    Thompson, Brian R; Metzger, Joseph M

    2014-09-01

    The cardiac sarcomere is the functional unit for myocyte contraction. Ordered arrays of sarcomeric proteins, held in stoichiometric balance with each other, respond to calcium to coordinate contraction and relaxation of the heart. Altered sarcomeric structure-function underlies the primary basis of disease in multiple acquired and inherited heart disease states. Hypertrophic and restrictive cardiomyopathies are caused by inherited mutations in sarcomeric genes and result in altered contractility. Ischemia-mediated acidosis directly alters sarcomere function resulting in decreased contractility. In this review, we highlight the use of acute genetic engineering of adult cardiac myocytes through stoichiometric replacement of sarcomeric proteins in these disease states with particular focus on cardiac troponin I. Stoichiometric replacement of disease causing mutations has been instrumental in defining the molecular mechanisms of hypertrophic and restrictive cardiomyopathy in a cellular context. In addition, taking advantage of stoichiometric replacement through gene therapy is discussed, highlighting the ischemia-resistant histidine-button, A164H cTnI. Stoichiometric replacement of sarcomeric proteins offers a potential gene therapy avenue to replace mutant proteins, alter sarcomeric responses to pathophysiologic insults, or neutralize altered sarcomeric function in disease. © 2014 Wiley Periodicals, Inc.

  12. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.

    Directory of Open Access Journals (Sweden)

    A Sesilja Aranko

    Full Text Available BACKGROUND: Protein trans-splicing by naturally occurring split DnaE inteins is used for protein ligation of foreign peptide fragments. In order to widen biotechnological applications of protein trans-splicing, it is highly desirable to have split inteins with shorter C-terminal fragments, which can be chemically synthesized. PRINCIPAL FINDINGS: We report the identification of new functional split sites in DnaE inteins from Synechocystis sp. PCC6803 and from Nostoc punctiforme. One of the newly engineered split intein bearing C-terminal 15 residues showed more robust protein trans-splicing activity than naturally occurring split DnaE inteins in a foreign context. During the course of our experiments, we found that protein ligation by protein trans-splicing depended not only on the splicing junction sequences, but also on the foreign extein sequences. Furthermore, we could classify the protein trans-splicing reactions in foreign contexts with a simple kinetic model into three groups according to their kinetic parameters in the presence of various reducing agents. CONCLUSION: The shorter C-intein of the newly engineered split intein could be a useful tool for biotechnological applications including protein modification, incorporation of chemical probes, and segmental isotopic labelling. Based on kinetic analysis of the protein splicing reactions, we propose a general strategy to improve ligation yields by protein trans-splicing, which could significantly enhance the applications of protein ligation by protein trans-splicing.

  13. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin.

    Directory of Open Access Journals (Sweden)

    Johan Nilvebrant

    Full Text Available The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein.

  14. Engineer medium and feed for modulating N-glycosylation of recombinant protein production in CHO cell culture

    DEFF Research Database (Denmark)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N......-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell...

  15. Security Engineering Project

    Science.gov (United States)

    2015-01-31

    aircraft. The backend database affords the storage of a variety of relevant hardware information. For example, the database could be expanded to...to query for this information, but with an empty database these elements are currently nonfunctional. The Django backend handling the routing of...expanding our design into the mobile market, allowing the cyber commander to monitor aircraft status on a tablet device such as an Apple iPad. We imagine

  16. A genetic replacement system for selection-based engineering of essential proteins

    Science.gov (United States)

    2012-01-01

    Background Essential genes represent the core of biological functions required for viability. Molecular understanding of essentiality as well as design of synthetic cellular systems includes the engineering of essential proteins. An impediment to this effort is the lack of growth-based selection systems suitable for directed evolution approaches. Results We established a simple strategy for genetic replacement of an essential gene by a (library of) variant(s) during a transformation. The system was validated using three different essential genes and plasmid combinations and it reproducibly shows transformation efficiencies on the order of 107 transformants per microgram of DNA without any identifiable false positives. This allowed for reliable recovery of functional variants out of at least a 105-fold excess of non-functional variants. This outperformed selection in conventional bleach-out strains by at least two orders of magnitude, where recombination between functional and non-functional variants interfered with reliable recovery even in recA negative strains. Conclusions We propose that this selection system is extremely suitable for evaluating large libraries of engineered essential proteins resulting in the reliable isolation of functional variants in a clean strain background which can readily be used for in vivo applications as well as expression and purification for use in in vitro studies. PMID:22898007

  17. IdentiPy: an extensible search engine for protein identification in shotgun proteomics.

    Science.gov (United States)

    Levitsky, Lev I; Ivanov, Mark V; Lobas, Anna A; Bubis, Julia A; Tarasova, Irina A; Solovyeva, Elizaveta M; Pridatchenko, Marina L; Gorshkov, Mikhail V

    2018-04-23

    We present an open-source, extensible search engine for shotgun proteomics. Implemented in Python programming language, IdentiPy shows competitive processing speed and sensitivity compared with the state-of-the-art search engines. It is equipped with a user-friendly web interface, IdentiPy Server, enabling the use of a single server installation accessed from multiple workstations. Using a simplified version of X!Tandem scoring algorithm and its novel ``auto-tune'' feature, IdentiPy outperforms the popular alternatives on high-resolution data sets. Auto-tune adjusts the search parameters for the particular data set, resulting in improved search efficiency and simplifying the user experience. IdentiPy with the auto-tune feature shows higher sensitivity compared with the evaluated search engines. IdentiPy Server has built-in post-processing and protein inference procedures and provides graphic visualization of the statistical properties of the data set and the search results. It is open-source and can be freely extended to use third-party scoring functions or processing algorithms, and allows customization of the search workflow for specialized applications.

  18. Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance.

    Science.gov (United States)

    Ali, Sajad; Ganai, Bashir Ahmad; Kamili, Azra N; Bhat, Ajaz Ali; Mir, Zahoor Ahmad; Bhat, Javaid Akhter; Tyagi, Anshika; Islam, Sheikh Tajamul; Mushtaq, Muntazir; Yadav, Prashant; Rawat, Sandhya; Grover, Anita

    Pathogenesis-related (PR) proteins and antimicrobial peptides (AMPs) are a group of diverse molecules that are induced by phytopathogens as well as defense related signaling molecules. They are the key components of plant innate immune system especially systemic acquired resistance (SAR), and are widely used as diagnostic molecular markers of defense signaling pathways. Although, PR proteins and peptides have been isolated much before but their biological function remains largely enigmatic despite the availability of new scientific tools. The earlier studies have demonstrated that PR genes provide enhanced resistance against both biotic and abiotic stresses, which make them one of the most promising candidates for developing multiple stress tolerant crop varieties. In this regard, plant genetic engineering technology is widely accepted as one of the most fascinating approach to develop the disease resistant transgenic crops using different antimicrobial genes like PR genes. Overexpression of PR genes (chitinase, glucanase, thaumatin, defensin and thionin) individually or in combination have greatly uplifted the level of defense response in plants against a wide range of pathogens. However, the detailed knowledge of signaling pathways that regulates the expression of these versatile proteins is critical for improving crop plants to multiple stresses, which is the future theme of plant stress biology. Hence, this review provides an overall overview on the PR proteins like their classification, role in multiple stresses (biotic and abiotic) as well as in various plant defense signaling cascades. We also highlight the success and snags of transgenic plants expressing PR proteins and peptides. Copyright © 2018 Elsevier GmbH. All rights reserved.

  19. How to integrate legal requirements into a requirements engineering methodology for the development of security and privacy patterns

    NARCIS (Netherlands)

    Compagna, L.; El Khoury, P.; Krausová, A.; Massacci, F.; Zannone, N.

    2009-01-01

    Laws set requirements that force organizations to assess the security and privacy of their IT systems and impose them to implement minimal precautionary security measures. Several IT solutions (e.g., Privacy Enhancing Technologies, Access Control Infrastructure, etc.) have been proposed to address

  20. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety.

    Science.gov (United States)

    Young, Patricia A; Morrison, Sherie L; Timmerman, John M

    2014-10-01

    The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks

    Science.gov (United States)

    Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther

    2017-12-01

    The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.

  2. P185-M Protein Identification and Validation of Results in Workflows that Integrate over Various Instruments, Datasets, Search Engines

    Science.gov (United States)

    Hufnagel, P.; Glandorf, J.; Körting, G.; Jabs, W.; Schweiger-Hufnagel, U.; Hahner, S.; Lubeck, M.; Suckau, D.

    2007-01-01

    Analysis of complex proteomes often results in long protein lists, but falls short in measuring the validity of identification and quantification results on a greater number of proteins. Biological and technical replicates are mandatory, as is the combination of the MS data from various workflows (gels, 1D-LC, 2D-LC), instruments (TOF/TOF, trap, qTOF or FTMS), and search engines. We describe a database-driven study that combines two workflows, two mass spectrometers, and four search engines with protein identification following a decoy database strategy. The sample was a tryptically digested lysate (10,000 cells) of a human colorectal cancer cell line. Data from two LC-MALDI-TOF/TOF runs and a 2D-LC-ESI-trap run using capillary and nano-LC columns were submitted to the proteomics software platform ProteinScape. The combined MALDI data and the ESI data were searched using Mascot (Matrix Science), Phenyx (GeneBio), ProteinSolver (Bruker and Protagen), and Sequest (Thermo) against a decoy database generated from IPI-human in order to obtain one protein list across all workflows and search engines at a defined maximum false-positive rate of 5%. ProteinScape combined the data to one LC-MALDI and one LC-ESI dataset. The initial separate searches from the two combined datasets generated eight independent peptide lists. These were compiled into an integrated protein list using the ProteinExtractor algorithm. An initial evaluation of the generated data led to the identification of approximately 1200 proteins. Result integration on a peptide level allowed discrimination of protein isoforms that would not have been possible with a mere combination of protein lists.

  3. Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells.

    Science.gov (United States)

    Ho, Steven C L; Yang, Yuansheng

    2014-08-01

    Promoters are essential on plasmid vectors to initiate transcription of the transgenes when generating therapeutic recombinant proteins expressing mammalian cell lines. High and sustained levels of gene expression are desired during therapeutic protein production while gene expression is useful for cell engineering. As many finely controlled promoters exhibit cell and product specificity, new promoters need to be identified, optimized and carefully evaluated before use. Suitable promoters can be identified using techniques ranging from simple molecular biology methods to modern high-throughput omics screenings. Promoter engineering is often required after identification to either obtain high and sustained expression or to provide a wider range of gene expression. This review discusses some of the available methods to identify and engineer promoters for therapeutic recombinant protein expression in mammalian cells.

  4. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  5. Single-Point Mutation with a Rotamer Library Toolkit: Toward Protein Engineering.

    Science.gov (United States)

    Pottel, Joshua; Moitessier, Nicolas

    2015-12-28

    Protein engineers have long been hard at work to harness biocatalysts as a natural source of regio-, stereo-, and chemoselectivity in order to carry out chemistry (reactions and/or substrates) not previously achieved with these enzymes. The extreme labor demands and exponential number of mutation combinations have induced computational advances in this domain. The first step in our virtual approach is to predict the correct conformations upon mutation of residues (i.e., rebuilding side chains). For this purpose, we opted for a combination of molecular mechanics and statistical data. In this work, we have developed automated computational tools to extract protein structural information and created conformational libraries for each amino acid dependent on a variable number of parameters (e.g., resolution, flexibility, secondary structure). We have also developed the necessary tool to apply the mutation and optimize the conformation accordingly. For side-chain conformation prediction, we obtained overall average root-mean-square deviations (RMSDs) of 0.91 and 1.01 Å for the 18 flexible natural amino acids within two distinct sets of over 3000 and 1500 side-chain residues, respectively. The commonly used dihedral angle differences were also evaluated and performed worse than the state of the art. These two metrics are also compared. Furthermore, we generated a family-specific library for kinases that produced an average 2% lower RMSD upon side-chain reconstruction and a residue-specific library that yielded a 17% improvement. Ultimately, since our protein engineering outlook involves using our docking software, Fitted/Impacts, we applied our mutation protocol to a benchmarked data set for self- and cross-docking. Our side-chain reconstruction does not hinder our docking software, demonstrating differences in pose prediction accuracy of approximately 2% (RMSD cutoff metric) for a set of over 200 protein/ligand structures. Similarly, when docking to a set of over 100

  6. Exploring the Properties of Genetically Engineered Silk-Elastin-Like Protein Films.

    Science.gov (United States)

    Machado, Raul; da Costa, André; Sencadas, Vitor; Pereira, Ana Margarida; Collins, Tony; Rodríguez-Cabello, José Carlos; Lanceros-Méndez, Senentxu; Casal, Margarida

    2015-12-01

    Free standing films of a genetically engineered silk-elastin-like protein (SELP) were prepared using water and formic acid as solvents. Exposure to methanol-saturated air promoted the formation of aggregated β-strands rendering aqueous insolubility and improved the mechanical properties leading to a 10-fold increase in strain-to-failure. The films were optically clear with resistivity values similar to natural rubber and thermally stable up to 180 °C. Addition of glycerol showed to enhance the flexibility of SELP/glycerol films by interacting with SELP molecules through hydrogen bonding, interpenetrating between the polymer chains and granting more conformational freedom. This detailed characterization provides cues for future and unique applications using SELP based biopolymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Change, exchange, and rearrange: protein engineering for the biotechnological production of fuels, pharmaceuticals, and other chemicals.

    Science.gov (United States)

    Fisher, Michael A; Tullman-Ercek, Danielle

    2013-12-01

    Enzymes are indispensable in the effort to produce chemicals from fuels to pharmaceuticals in an ecologically friendly manner. They have the potential to catalyze reactions with high specificity and efficiency without the use of hazardous chemicals. Nature provides an extensive collection of enzymes, but often these must be altered to perform desired functions under required conditions. Advances in protein engineering permit the design and/or directed evolution of enzymes specifically tailored for such industrial applications. Recent years have seen the development of improved enzymes to assist in both the conversion of biomass into fuels and chemicals, and the creation of key intermediates in pharmaceutical production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Genome-Wide Tuning of Protein Expression Levels to Rapidly Engineer Microbial Traits.

    Science.gov (United States)

    Freed, Emily F; Winkler, James D; Weiss, Sophie J; Garst, Andrew D; Mutalik, Vivek K; Arkin, Adam P; Knight, Rob; Gill, Ryan T

    2015-11-20

    The reliable engineering of biological systems requires quantitative mapping of predictable and context-independent expression over a broad range of protein expression levels. However, current techniques for modifying expression levels are cumbersome and are not amenable to high-throughput approaches. Here we present major improvements to current techniques through the design and construction of E. coli genome-wide libraries using synthetic DNA cassettes that can tune expression over a ∼10(4) range. The cassettes also contain molecular barcodes that are optimized for next-generation sequencing, enabling rapid and quantitative tracking of alleles that have the highest fitness advantage. We show these libraries can be used to determine which genes and expression levels confer greater fitness to E. coli under different growth conditions.

  9. High Performance Protein Sequence Database Scanning on the Cell Broadband Engine

    Directory of Open Access Journals (Sweden)

    Adrianto Wirawan

    2009-01-01

    Full Text Available The enormous growth of biological sequence databases has caused bioinformatics to be rapidly moving towards a data-intensive, computational science. As a result, the computational power needed by bioinformatics applications is growing rapidly as well. The recent emergence of low cost parallel multicore accelerator technologies has made it possible to reduce execution times of many bioinformatics applications. In this paper, we demonstrate how the Cell Broadband Engine can be used as a computational platform to accelerate two approaches for protein sequence database scanning: exhaustive and heuristic. We present efficient parallelization techniques for two representative algorithms: the dynamic programming based Smith–Waterman algorithm and the popular BLASTP heuristic. Their implementation on a Playstation®3 leads to significant runtime savings compared to corresponding sequential implementations.

  10. Tissue-engineered matrices as functional delivery systems: adsorption and release of bioactive proteins from degradable composite scaffolds.

    Science.gov (United States)

    Cushnie, Emily K; Khan, Yusuf M; Laurencin, Cato T

    2010-08-01

    A tissue-engineered bone graft should imitate the ideal autograft in both form and function. However, biomaterials that have appropriate chemical and mechanical properties for grafting applications often lack biological components that may enhance regeneration. The concept of adding proteins such as growth factors to scaffolds has therefore emerged as a possible solution to improve overall graft design. In this study, we investigated this concept by loading porous hydroxyapatite-poly(lactide-co-glycolide) (HA-PLAGA) scaffolds with a model protein, cytochrome c, and then studying its release in a phosphate-buffered saline solution. The HA-PLAGA scaffold has previously been shown to be bioactive, osteoconductive, and to have appropriate physical properties for tissue engineering applications. The loading experiments demonstrated that the HA-PLAGA scaffold could also function effectively as a substrate for protein adsorption and release. Scaffold protein adsorptive loading (as opposed to physical entrapment within the matrix) was directly related to levels of scaffold HA-content. The HA phase of the scaffold facilitated protein retention in the matrix following incubation in aqueous buffer for periods up to 8 weeks. Greater levels of protein retention time may improve the protein's effective activity by increasing the probability for protein-cell interactions. The ability to control protein loading and delivery simply via composition of the HA-PLAGA scaffold offers the potential of forming robust functionalized bone grafts. (c) 2010 Wiley Periodicals, Inc.

  11. Branched-chain Amino Acid Biosensing Using Fluorescent Modified Engineered Leucine/Isoleucine/Valine Binding Protein

    Directory of Open Access Journals (Sweden)

    Koji Sode

    2007-06-01

    Full Text Available A novel fluorescence sensing system for branched-chain amino acids (BCAAswas developed based on engineered leucine/isoleucine/valine-binding proteins (LIVBPsconjugated with environmentally sensitive fluorescence probes. LIVBP was cloned fromEscherichia coli and Gln149Cys, Gly227Cys, and Gln254Cys mutants were generated bygenetic engineering. The mutant LIVBPs were then modified with environmentallysensitive fluorophores. Based on the fluorescence intensity change observed upon thebinding of the ligands, the MIANS-conjugated Gln149Cys mutant (Gln149Cys-M showedthe highest and most sensitive response. The BCAAs Leu, Ile, and Val can each bemonitored at the sub-micromolar level using Gln149Cys-M. Measurements were alsocarried out on a mixture of BCAFAs and revealed that Gln149Cys-M-based measurementis not significantly affected by the change in the molar ratio of Leu, Ile and Val in thesample. Its high sensitivity and group-specific molecular recognition ability make the newsensing system ideally suited for the measurement of BCAAs and the determination of theFischer ratio, an indicator of hepatic disease involving metabolic dysfunction.

  12. Direct protein quantification in complex sample solutions by surface-engineered nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2017-06-30

    Detecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes. By careful nanorod surface engineering and homogeneous assay design, we demonstrate that the formation of a protein corona around the nanoparticles does not limit the applicability of our detection method, but on the contrary enables us to conduct in-situ reference measurements, thus further strengthening the point-of-care applicability of our method. Making use of sandwich assays on top of the nanorods, we obtain a limit of detection of 110 pM and 470 pM in 10-fold diluted spiked saliva and serum samples, respectively. In conclusion, our results open up numerous applications in direct protein biomarker quantification, specifically in point-of-care settings where resources are limited and ease-of-use is of essence.

  13. Direct protein quantification in complex sample solutions by surface-engineered nanorod probes

    KAUST Repository

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Schotter, Joerg

    2017-01-01

    Detecting biomarkers from complex sample solutions is the key objective of molecular diagnostics. Being able to do so in a simple approach that does not require laborious sample preparation, sophisticated equipment and trained staff is vital for point-of-care applications. Here, we report on the specific detection of the breast cancer biomarker sHER2 directly from serum and saliva samples by a nanorod-based homogeneous biosensing approach, which is easy to operate as it only requires mixing of the samples with the nanorod probes. By careful nanorod surface engineering and homogeneous assay design, we demonstrate that the formation of a protein corona around the nanoparticles does not limit the applicability of our detection method, but on the contrary enables us to conduct in-situ reference measurements, thus further strengthening the point-of-care applicability of our method. Making use of sandwich assays on top of the nanorods, we obtain a limit of detection of 110 pM and 470 pM in 10-fold diluted spiked saliva and serum samples, respectively. In conclusion, our results open up numerous applications in direct protein biomarker quantification, specifically in point-of-care settings where resources are limited and ease-of-use is of essence.

  14. Engineering of an E. coli outer membrane protein FhuA with increased channel diameter

    Directory of Open Access Journals (Sweden)

    Dworeck Tamara

    2011-08-01

    Full Text Available Abstract Background Channel proteins like FhuA can be an alternative to artificial chemically synthesized nanopores. To reach such goals, channel proteins must be flexible enough to be modified in their geometry, i.e. length and diameter. As continuation of a previous study in which we addressed the lengthening of the channel, here we report the increasing of the channel diameter by genetic engineering. Results The FhuA Δ1-159 diameter increase has been obtained by doubling the amino acid sequence of the first two N-terminal β-strands, resulting in variant FhuA Δ1-159 Exp. The total number of β-strands increased from 22 to 24 and the channel surface area is expected to increase by ~16%. The secondary structure analysis by circular dichroism (CD spectroscopy shows a high β-sheet content, suggesting the correct folding of FhuA Δ1-159 Exp. To further prove the FhuA Δ1-159 Exp channel functionality, kinetic measurement using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine were conducted. The results indicated a 17% faster diffusion kinetic for FhuA Δ1-159 Exp as compared to FhuA Δ1-159, well correlated to the expected channel surface area increase of ~16%. Conclusion In this study using a simple "semi rational" approach the FhuA Δ1-159 diameter was enlarged. By combining the actual results with the previous ones on the FhuA Δ1-159 lengthening a new set of synthetic nanochannels with desired lengths and diameters can be produced, broadening the FhuA Δ1-159 applications. As large scale protein production is possible our approach can give a contribution to nanochannel industrial applications.

  15. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering.

    Science.gov (United States)

    Der, Bryan S; Edwards, David R; Kuhlman, Brian

    2012-05-08

    Here we show that a recent computationally designed zinc-mediated protein interface is serendipitously capable of catalyzing carboxyester and phosphoester hydrolysis. Although the original motivation was to design a de novo zinc-mediated protein-protein interaction (called MID1-zinc), we observed in the homodimer crystal structure a small cleft and open zinc coordination site. We investigated if the cleft and zinc site at the designed interface were sufficient for formation of a primitive active site that can perform hydrolysis. MID1-zinc hydrolyzes 4-nitrophenyl acetate with a rate acceleration of 10(5) and a k(cat)/K(M) of 630 M(-1) s(-1) and 4-nitrophenyl phosphate with a rate acceleration of 10(4) and a k(cat)/K(M) of 14 M(-1) s(-1). These rate accelerations by an unoptimized active site highlight the catalytic power of zinc and suggest that the clefts formed by protein-protein interactions are well-suited for creating enzyme active sites. This discovery has implications for protein evolution and engineering: from an evolutionary perspective, three-coordinated zinc at a homodimer interface cleft represents a simple evolutionary path to nascent enzymatic activity; from a protein engineering perspective, future efforts in de novo design of enzyme active sites may benefit from exploring clefts at protein interfaces for active site placement.

  16. Protein design and engineering of a de novo pathway for microbial production of 1,3-propanediol from glucose.

    Science.gov (United States)

    Chen, Zhen; Geng, Feng; Zeng, An-Ping

    2015-02-01

    Protein engineering to expand the substrate spectrum of native enzymes opens new possibilities for bioproduction of valuable chemicals from non-natural pathways. No natural microorganism can directly use sugars to produce 1,3-propanediol (PDO). Here, we present a de novo route for the biosynthesis of PDO from sugar, which may overcome the mentioned limitations by expanding the homoserine synthesis pathway. The accomplishment of pathway from homoserine to PDO is achieved by protein engineering of glutamate dehydrogenase (GDH) and pyruvate decarboxylase to sequentially convert homoserine to 4-hydroxy-2-ketobutyrate and 3-hydroxypropionaldehyde. The latter is finally converted to PDO by using a native alcohol dehydrogenase. In this work, we report on experimental accomplishment of this non-natural pathway, especially by protein engineering of GDH for the key step of converting homoserine to 4-hydroxy-2-ketobutyrate. These results show the feasibility and significance of protein engineering for de novo pathway design and overproduction of desired industrial products. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    Science.gov (United States)

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we show that chemically unmodified mRNA can achieve those goals as well by applying sequence-engineered molecules. Using erythropoietin (EPO) driven production of red blood cells as the biological model, engineered Epo mRNA elicited meaningful physiological responses from mice to nonhuman primates. Even in pigs of about 20 kg in weight, a single adequate dose of engineered mRNA encapsulated in lipid nanoparticles (LNPs) induced high systemic Epo levels and strong physiological effects. Our results demonstrate that sequence-engineered mRNA has the potential to revolutionize human protein therapies. PMID:26050989

  18. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  19. Introduction of potential helix-capping residues into an engineered helical protein.

    Science.gov (United States)

    Parker, M H; Hefford, M A

    1998-08-01

    MB-1 is an engineered protein that was designed to incorporate high percentages of four amino acid residues and to fold into a four-alpha-helix bundle motif. Mutations were made in the putative loop I and III regions of this protein with the aim of increasing the stability of the helix ends. Four variants, MB-3, MB-5, MB-11 and MB-13, have replacements intended to promote formation of an 'N-capping box'. The loop I and III sequences of MB-3 (both GDLST) and MB-11 (GGDST) were designed to cause alphaL C-terminal 'capping' motifs to form in helices I and III. MB-5 has a sequence, GPDST, that places proline in a favourable position for forming beta-turns, whereas MB-13 (GLDST) has the potential to form Schellman C-capping motifs. Size-exclusion chromatography suggested that MB-1, MB-3, MB-5, MB-11 and MB-13 all form dimers, or possibly trimers. Free energies for the unfolding of each of these variants were determined by urea denaturation, with the loss of secondary structure followed by CD spectroscopy. Assuming an equilibrium between folded dimer and unfolded monomer, MB-13 had the highest apparent stability (40.5 kJ/mol, with +/-2.5 kJ/mol 95% confidence limits), followed by MB-11 (39.3+/-5.9 kJ/mol), MB-3 (36.4+/-1.7 kJ/mol), MB-5 (34.7+/-2.1 kJ/mol) and MB-1 (29.3+/-1.3 kJ/mol); the same relative stabilities of the variants were found when a folded trimer to unfolded monomer model was used to calculate stabilities. All of the variants were relatively unstable for dimeric proteins, but were significantly more stable than MB-1. These findings suggest that it might be possible to increase the stability of a protein for which the three-dimensional structure is unknown by placing amino acid residues in positions that have the potential to form helix- and turn-stabilizing motifs.

  20. A Systems Engineering Framework for Implementing a Security and Critical Patch Management Process in Diverse Environments (Academic Departments' Workstations)

    Science.gov (United States)

    Mohammadi, Hadi

    2014-01-01

    Use of the Patch Vulnerability Management (PVM) process should be seriously considered for any networked computing system. The PVM process prevents the operating system (OS) and software applications from being attacked due to security vulnerabilities, which lead to system failures and critical data leakage. The purpose of this research is to…

  1. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.

    Science.gov (United States)

    Fan, Yuzhou; Kildegaard, Helene Faustrup; Andersen, Mikael Rørdam

    2017-01-01

    Chinese hamster ovary (CHO) cells have become the primary expression system for the production of complex recombinant proteins due to their long-term success in industrial scale production and generating appropriate protein N-glycans similar to that of humans. Control and optimization of protein N-glycosylation is crucial, as the structure of N-glycans can largely influence both biological and physicochemical properties of recombinant proteins. Protein N-glycosylation in CHO cell culture can be controlled and tuned by engineering medium, feed, culture process, as well as genetic elements of the cell. In this chapter, we will focus on how to carry out experiments for N-glycosylation modulation through medium and feed optimization. The workflow and typical methods involved in the experiment process will be presented.

  2. Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants

    International Nuclear Information System (INIS)

    Mérola, Fabienne; Erard, Marie; Fredj, Asma; Pasquier, Hélène

    2016-01-01

    New fluorescent proteins (FPs) are constantly discovered from natural sources, and submitted to intensive engineering based on random mutagenesis and directed evolution. However, most of these newly developed FPs fail to achieve all the performances required for their bioimaging applications. The design of highly optimised FP-based reporters, simultaneously displaying appropriate colour, multimeric state, chromophore maturation, brightness, photostability and environmental sensitivity will require a better understanding of the structural and dynamic determinants of FP photophysics. The recent development of cyan fluorescent proteins (CFPs) like mCerulean3, mTurquoise2 and Aquamarine brings a different view on these questions, as in this particular case, a step by step evaluation of critical mutations has been performed within a family of spectrally identical and evolutionary close variants. These efforts have led to CFPs with quantum yields close to unity, near single exponential emission decays, high photostability and complete insensitivity to pH, making them ideal choices as energy transfer donors in FRET and FLIM imaging applications. During this process, it was found that a proper amino-acid choice at only two positions (148 and 65) is sufficient to transform the performances of CFPs: with the help of structural and theoretical investigations, we rationalise here how these two positions critically control the CFP photophysics, in the context of FPs derived from the Aequorea victoria species. Today, these results provide a useful toolbox for upgrading the different CFP donors carried by FRET biosensors. They also trace the route towards the de novo design of FP-based optogenetic devices that will be perfectly tailored to dedicated imaging and sensing applications. (topical review)

  3. Impact of subunit linkages in an engineered homodimeric binding protein to α-synuclein.

    Science.gov (United States)

    Gauhar, Aziz; Shaykhalishahi, Hamed; Gremer, Lothar; Mirecka, Ewa A; Hoyer, Wolfgang

    2014-12-01

    Aggregation of the protein α-synuclein (α-syn) has been implicated in Parkinson's disease and other neurodegenerative disorders, collectively referred to as synucleinopathies. The β-wrapin AS69 is a small engineered binding protein to α-syn that stabilizes a β-hairpin conformation of monomeric α-syn and inhibits α-syn aggregation at substoichiometric concentrations. AS69 is a homodimer whose subunits are linked via a disulfide bridge between their single cysteine residues, Cys-28. Here we show that expression of a functional dimer as a single polypeptide chain is achievable by head-to-tail linkage of AS69 subunits. Choice of a suitable linker is essential for construction of head-to-tail dimers that exhibit undiminished α-syn affinity compared with the solely disulfide-linked dimer. We characterize AS69-GS3, a head-to-tail dimer with a glycine-serine-rich linker, under oxidized and reduced conditions in order to evaluate the impact of the Cys28-disulfide bond on structure, stability and α-syn binding. Formation of the disulfide bond causes compaction of AS69-GS3, increases its thermostability, and is a prerequisite for high-affinity binding to α-syn. Comparison of AS69-GS3 and AS69 demonstrates that head-to-tail linkage promotes α-syn binding by affording accelerated disulfide bond formation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Design, Engineering and Application of an Amyloidogenic Protein, SBAFP-m1, for use in Nanotechnological Applications

    Science.gov (United States)

    Peralta, Maria del Refugio

    Nanotechnology relies on collaborations across scientific disciplines such as physics, engineering, chemistry and biology. In nanotechnology, researchers manipulate molecules on the nanometer scale for various applications, ranging from tissue engineering, nanowire synthesis, and alternative energy devices. By utilizing various biological scaffolds, namely amyloid fibrils, the work of nanometer molecular control can be achieved through the use of self-assembly systems. Here, a systematic design scheme was developed to engineer protein based amyloid fibrils and was successfully applied to the design of two, unique self-assembled monomers, SBAFP-m1 and RGAFP-m1, from naturally occurring ice binding proteins found in insects and plants. A highly idealized, in-register dimer interface was designed and experimentally synthesized and demonstrated to form micron long amyloid fibrils (Chapter 2). The strength and resistance of the designer amyloid fibrils formed by SBAFP-m1 were probed in Chapter 3. Most notably, the ultimate tensile strength of SBAFP-m1 fibrils was experimentally determined to be 2.1 +/- 1.7 GPa, on par with that of naturally occurring amyloid fibrils in literature and steel. The fibrils were found to maintain their beta-sheet structure over a wide range of temperatures, from - 80 °C to 90 °C. Fibrils were resistant to common protein denaturants like 8M urea, 2.5 M guanidine hydrochloride, 2.5 M NaCl, organic solvents (methanol, ethanol, isopropanol and acetone), and across the pH range two to 11. SBAFP-m1 was mutated to add a 5x cysteine tag to the N-terminus, allowing for gold nanoparticle conjugation along the fibril axis (Chapter 4). The gold-conjugated fibrils were then enhanced with silver to produce nanowires. Various attempts to selectively synthesize heterogeneous fibrils from SBAFP-m1 mutants were attempted in Chapter 5. An attempt to de-stabilize the homogeneous fibril assembly through unfavorable homogeneous protein interactions was not

  5. Modelling security and trust with Secure Tropos

    NARCIS (Netherlands)

    Giorgini, P.; Mouratidis, H.; Zannone, N.; Mouratidis, H.; Giorgini, P.

    2006-01-01

    Although the concepts of security and trust play an important issue in the development of information systems, they have been mainly neglected by software engineering methodologies. In this chapter we present an approach that considers security and trust throughout the software development process.

  6. Engineered Protein Coatings to Improve the Osseointegration of Dental and Orthopaedic Implants

    Science.gov (United States)

    Raphel, Jordan; Karlsson, Johan; Galli, Silvia; Wennerberg, Ann; Lindsay, Christopher; Haugh, Matthew; Pajarinen, Jukka; Goodman, Stuart B.; Jimbo, Ryo; Andersson, Martin; Heilshorn, Sarah C.

    2016-01-01

    Here we present the design of an engineered, elastin-like protein (ELP) that is chemically modified to enable stable coatings on the surfaces of titanium-based dental and orthopaedic implants by novel photocrosslinking and solution processing steps. The ELP includes an extended RGD sequence to confer bio-signaling and an elastin-like sequence for mechanical stability. ELP thin films were fabricated on cp-Ti and Ti6Al4V surfaces using scalable spin and dip coating processes with photoactive covalent crosslinking through a carbene insertion mechanism. The coatings withstood procedures mimicking dental screw and hip replacement stem implantations, a key metric for clinical translation. They promoted rapid adhesion of MG63 osteoblast-like cells, with over 80% adhesion after 24 hours, compared to 38% adhesion on uncoated Ti6Al4V. MG63 cells produced significantly more mineralization on ELP coatings compared to uncoated Ti6Al4V. Human bone marrow mesenchymal stem cells (hMSCs) had an earlier increase in alkaline phosphatase activity, indicating more rapid osteogenic differentiation and mineral deposition on adhesive ELP coatings. Rat tibia and femur in vivo studies demonstrated that cell-adhesive ELP-coated implants increased bone-implant contact area and interfacial strength after one week. These results suggest that ELP coatings withstand surgical implantation and promote rapid osseointegration, enabling earlier implant loading and potentially preventing micromotion that leads to aseptic loosening and premature implant failure. PMID:26790146

  7. Bio-Orthogonally Crosslinked, Engineered Protein Hydrogels with Tunable Mechanics and Biochemistry for Cell Encapsulation.

    Science.gov (United States)

    Madl, Christopher M; Katz, Lily M; Heilshorn, Sarah C

    2016-06-07

    Covalently-crosslinked hydrogels are commonly used as 3D matrices for cell culture and transplantation. However, the crosslinking chemistries used to prepare these gels generally cross-react with functional groups present on the cell surface, potentially leading to cytotoxicity and other undesired effects. Bio-orthogonal chemistries have been developed that do not react with biologically relevant functional groups, thereby preventing these undesirable side reactions. However, previously developed biomaterials using these chemistries still possess less than ideal properties for cell encapsulation, such as slow gelation kinetics and limited tuning of matrix mechanics and biochemistry. Here, engineered elastin-like proteins (ELPs) are developed that cross-link via strain-promoted azide-alkyne cycloaddition (SPAAC) or Staudinger ligation. The SPAAC-crosslinked materials form gels within seconds and complete gelation within minutes. These hydrogels support the encapsulation and phenotypic maintenance of human mesenchymal stem cells, human umbilical vein endothelial cells, and murine neural progenitor cells. SPAAC-ELP gels exhibit independent tuning of stiffness and cell adhesion, with significantly improved cell viability and spreading observed in materials containing a fibronectin-derived arginine-glycine-aspartic acid (RGD) domain. The crosslinking chemistry used permits further material functionalization, even in the presence of cells and serum. These hydrogels are anticipated to be useful in a wide range of applications, including therapeutic cell delivery and bioprinting.

  8. Alternative Conformations of the Tau Repeat Domain in Complex with an Engineered Binding Protein*

    Science.gov (United States)

    Grüning, Clara S. R.; Mirecka, Ewa A.; Klein, Antonia N.; Mandelkow, Eckhard; Willbold, Dieter; Marino, Stephen F.; Stoldt, Matthias; Hoyer, Wolfgang

    2014-01-01

    The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau. PMID:24966331

  9. The Search Engine for Multi-Proteoform Complexes: An Online Tool for the Identification and Stoichiometry Determination of Protein Complexes.

    Science.gov (United States)

    Skinner, Owen S; Schachner, Luis F; Kelleher, Neil L

    2016-12-08

    Recent advances in top-down mass spectrometry using native electrospray now enable the analysis of intact protein complexes with relatively small sample amounts in an untargeted mode. Here, we describe how to characterize both homo- and heteropolymeric complexes with high molecular specificity using input data produced by tandem mass spectrometry of whole protein assemblies. The tool described is a "search engine for multi-proteoform complexes," (SEMPC) and is available for free online. The output is a list of candidate multi-proteoform complexes and scoring metrics, which are used to define a distinct set of one or more unique protein subunits, their overall stoichiometry in the intact complex, and their pre- and post-translational modifications. Thus, we present an approach for the identification and characterization of intact protein complexes from native mass spectrometry data. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  10. CERN Computing Colloquia Spring Series: IT Security - A High-Performance Pattern Matching Engine for Intrusion Detection

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    The flexible and modular design of the engine allows a broad spectrum of applications, ranging from high-end enterprise level network devices that need to match hundreds of thousands of patterns at speeds of tens of gigabits per second, to low-end dev...

  11. Engineering of a parainfluenza virus type 5 fusion protein (PIV-5 F): development of an autonomous and hyperfusogenic protein by a combinational mutagenesis approach.

    Science.gov (United States)

    Terrier, O; Durupt, F; Cartet, G; Thomas, L; Lina, B; Rosa-Calatrava, M

    2009-12-01

    The entry of enveloped viruses into host cells is accomplished by fusion of the viral envelope with the target cell membrane. For the paramyxovirus parainfluenza virus type 5 (PIV-5), this fusion involves an attachment protein (HN) and a class I viral fusion protein (F). We investigated the effect of 20 different combinations of 12 amino-acid substitutions within functional domains of the PIV-5 F glycoprotein, by performing cell surface expression measurements, quantitative fusion and syncytia assays. We found that combinations of mutations conferring an autonomous phenotype with mutations leading to an increased fusion activity were compatible and generated functional PIV-5 F proteins. The addition of mutations in the heptad-repeat domains led to both autonomous and hyperfusogenic phenotypes, despite the low cell surface expression of the corresponding mutants. Such engineering approach may prove useful not only for deciphering the fundamental mechanism behind viral-mediated membrane fusion but also in the development of potential therapeutic applications.

  12. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    Science.gov (United States)

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  13. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    Science.gov (United States)

    2012-01-01

    Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co

  14. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    Directory of Open Access Journals (Sweden)

    Krainer Florian W

    2012-02-01

    Full Text Available Abstract Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein

  15. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Min Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Mun, Ji-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Kwon, Ohsuk [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of); Kwon, Ki-Sun [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Oh, Doo-Byoung, E-mail: dboh@kribb.re.kr [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of); Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon 305-350 (Korea, Republic of)

    2013-07-19

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method.

  16. Efficient myogenic differentiation of human adipose-derived stem cells by the transduction of engineered MyoD protein

    International Nuclear Information System (INIS)

    Sung, Min Sun; Mun, Ji-Young; Kwon, Ohsuk; Kwon, Ki-Sun; Oh, Doo-Byoung

    2013-01-01

    Highlights: •MyoD was engineered to contain protein transduction domain and endosome-disruptive INF7 peptide. •The engineered MyoD-IT showed efficient nuclear targeting through an endosomal escape by INF7 peptide. •By applying MyoD-IT, human adipose-derived stem cells (hASCs) were differentiated into myogenic cells. •hASCs differentiated by applying MyoD-IT fused to myotubes through co-culturing with mouse myoblasts. •Myogenic differentiation using MyoD-IT is a safe method without the concern of altering the genome. -- Abstract: Human adipose-derived stem cells (hASCs) have great potential as cell sources for the treatment of muscle disorders. To provide a safe method for the myogenic differentiation of hASCs, we engineered the MyoD protein, a key transcription factor for myogenesis. The engineered MyoD (MyoD-IT) was designed to contain the TAT protein transduction domain for cell penetration and the membrane-disrupting INF7 peptide, which is an improved version of the HA2 peptide derived from influenza. MyoD-IT showed greatly improved nuclear targeting ability through an efficient endosomal escape induced by the pH-sensitive membrane disruption of the INF7 peptide. By applying MyoD-IT to a culture, hASCs were efficiently differentiated into long spindle-shaped myogenic cells expressing myosin heavy chains. Moreover, these cells differentiated by an application of MyoD-IT fused to myotubes with high efficiency through co-culturing with mouse C2C12 myoblasts. Because internalized proteins can be degraded in cells without altering the genome, the myogenic differentiation of hASCs using MyoD-IT would be a safe and clinically applicable method

  17. Engineering nutritious proteins: improvement of stability in the designer protein MB-1 via introduction of disulfide bridges.

    Science.gov (United States)

    Doucet, Alain; Williams, Martin; Gagnon, Mylene C; Sasseville, Maxime; Beauregard, Marc

    2002-01-02

    Protein design is currently used for the creation of new proteins with desirable traits. In this laboratory the focus has been on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations faced in this endeavor is achieving stable proteins despite a highly biased amino acid content. Reported here are the synthesis and characterization of two disulfide-bridged mutants derived from the MB-1 designer protein. Both mutants outperformed their parent protein MB-1 with their bridge formed, as shown by circular dichroism, size exclusion chromatography, thermal denaturation, and proteolytic degradation experiments. When the disulfide bridges were cleaved, the mutants' behavior changed: the mutants significantly unfolded, suggesting that the introduction of Cys residues was deleterious to MB-1-folding. In an attempt to compensate for the mutations used, a Tyr62-Trp mutation was performed, leading to an increase in bulk and hydrophobicity in the core. The Trp-containing disulfide-bridged mutants did not behave as well as the original MB-1Trp, suggesting that position 62 might not be adequate for a compensatory mutation.

  18. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    Science.gov (United States)

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  19. Engineering FKBP-Based Destabilizing Domains to Build Sophisticated Protein Regulation Systems.

    Directory of Open Access Journals (Sweden)

    Wenlin An

    Full Text Available Targeting protein stability with small molecules has emerged as an effective tool to control protein abundance in a fast, scalable and reversible manner. The technique involves tagging a protein of interest (POI with a destabilizing domain (DD specifically controlled by a small molecule. The successful construction of such fusion proteins may, however, be limited by functional interference of the DD epitope with electrostatic interactions required for full biological function of proteins. Another drawback of this approach is the remaining endogenous protein. Here, we combined the Cre-LoxP system with an advanced DD and generated a protein regulation system in which the loss of an endogenous protein, in our case the tumor suppressor PTEN, can be coupled directly with a conditionally fine-tunable DD-PTEN. This new system will consolidate and extend the use of DD-technology to control protein function precisely in living cells and animal models.

  20. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    Energy Technology Data Exchange (ETDEWEB)

    Bouhelal, Oum Keltoum [National School of Mineral Industry, ENIM, BP 753, Agdal, 10000 Rabat (Morocco)

    2008-07-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R

  1. Infrastructures Development Strategy in Energy Engineering Education and Research: a Bonus to Introduce a Safe and Secure Nuclear Power Program

    International Nuclear Information System (INIS)

    Bouhelal, Oum Keltoum

    2008-01-01

    In the area of Energy Engineering, high education programs including nuclear activities are currently running in collaboration with the employment sector to provide skills oriented profiles; the available packages are thus characterized by a limited size and a low impact in enhancing power technology teaching and industrial partnerships. However, ongoing nuclear applications activities are undertaken through strong legal and institutional infrastructures as Morocco has joined a large number of international conventions and agreements trusted by the IAEA. The introduction of nuclear power is subject to a close attention today to investigate if it is an alternative solution to meet the increasing energy needs. For a country not much industrialized and characterized by a medium electricity grid, the decision on the recourse to nuclear power needs to carry up early a training, R and D federative program on behalf of the engineering sector and the international cooperation. As the challenges associated to develop a successful nuclear power program requires an important effort directed toward increasing capacity, new education and training programs in the field of Energy Sciences and Engineering are presently targeted in several high education institutions prior to the goals of the education and research national reform. The preparation of a new master and engineer diploma at ENIM 'Power Systems Engineering and Management' is in process: the curricula introduces innovative concepts bringing together academic teachers, researchers and stakeholders to establish new discipline-based teaching and learning tools: what is mainly focused is to increase competency profile in consultation with the industry sector and to attract high quality students to ensure availability of human resources at the right time in the field of power technology utilization including nuclear power. A coordinated approach joining national and international partnership to implement oriented R and D

  2. State-of-the-art protein engineering approaches using biological macromolecules: A review from immobilization to implementation view point.

    Science.gov (United States)

    Bilal, Muhammad; Iqbal, Hafiz M N; Guo, Shuqi; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2018-03-01

    Over the past years, technological and scientific advances have proven biocatalysis as a sustainable alternative than traditional chemical catalysis including organo- or metallocatalysis. In this context, immobilization based approaches represent simple but effective routes for engineering enzyme catalysts with higher activities than wild-type derivatives. Many enzymes including oxidoreductases have been engineered by rational and directed evolution, to realize the catalytic activity, enantioselectivity, and stability attributes which are essential for their biotechnological exploitation. Induce yet stable activity in enzyme catalysis offer new insights and motivation to engineer efficient catalysts for practical and commercial purposes. It has now become possible to envisage substrate accessibility to the catalytic site of the enzyme by current computational capabilities that reduce the experimental work related to the enzyme selection, screening, and engineering. Herein, state-of-the-art protein engineering approaches for improving enzymatic activities including chemical modification, directed evolution, and rational design or their combination methods are discussed. The emphasis is also given to the applications of the resulting tailored catalysts ranging from fine chemicals to novel pharmaceutical compounds that use biocatalysts as a vital step. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Security in Computer Applications

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    Computer security has been an increasing concern for IT professionals for a number of years, yet despite all the efforts, computer systems and networks remain highly vulnerable to attacks of different kinds. Design flaws and security bugs in the underlying software are among the main reasons for this. This lecture addresses the following question: how to create secure software? The lecture starts with a definition of computer security and an explanation of why it is so difficult to achieve. It then introduces the main security principles (like least-privilege, or defense-in-depth) and discusses security in different phases of the software development cycle. The emphasis is put on the implementation part: most common pitfalls and security bugs are listed, followed by advice on best practice for security development. The last part of the lecture covers some miscellaneous issues like the use of cryptography, rules for networking applications, and social engineering threats. This lecture was first given on Thursd...

  4. Quantitative Characterization of Configurational Space Sampled by HIV-1 Nucleocapsid Using Solution NMR, X-ray Scattering and Protein Engineering.

    Science.gov (United States)

    Deshmukh, Lalit; Schwieters, Charles D; Grishaev, Alexander; Clore, G Marius

    2016-06-03

    Nucleic-acid-related events in the HIV-1 replication cycle are mediated by nucleocapsid, a small protein comprising two zinc knuckles connected by a short flexible linker and flanked by disordered termini. Combining experimental NMR residual dipolar couplings, solution X-ray scattering and protein engineering with ensemble simulated annealing, we obtain a quantitative description of the configurational space sampled by the two zinc knuckles, the linker and disordered termini in the absence of nucleic acids. We first compute the conformational ensemble (with an optimal size of three members) of an engineered nucleocapsid construct lacking the N- and C-termini that satisfies the experimental restraints, and then validate this ensemble, as well as characterize the disordered termini, using the experimental data from the full-length nucleocapsid construct. The experimental and computational strategy is generally applicable to multidomain proteins. Differential flexibility within the linker results in asymmetric motion of the zinc knuckles which may explain their functionally distinct roles despite high sequence identity. One of the configurations (populated at a level of ≈40 %) closely resembles that observed in various ligand-bound forms, providing evidence for conformational selection and a mechanistic link between protein dynamics and function. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    Science.gov (United States)

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Structure of anti-FLAG M2 Fab domain and its use in the stabilization of engineered membrane proteins

    International Nuclear Information System (INIS)

    Roosild, Tarmo P.; Castronovo, Samantha; Choe, Senyon

    2006-01-01

    The X-ray crystallographic analysis of anti-FLAG M2 Fab is reported and the implications of the structure on FLAG epitope binding are described as a first step in the development of a tool for the structural and biophysical study of membrane proteins. The inherent difficulties of stabilizing detergent-solubilized integral membrane proteins for biophysical or structural analysis demand the development of new methodologies to improve success rates. One proven strategy is the use of antibody fragments to increase the ‘soluble’ portion of any membrane protein, but this approach is limited by the difficulties and expense associated with producing monoclonal antibodies to an appropriate exposed epitope on the target protein. Here, the stabilization of a detergent-solubilized K + channel protein, KvPae, by engineering a FLAG-binding epitope into a known loop region of the protein and creating a complex with Fab fragments from commercially available anti-FLAG M2 monoclonal antibodies is reported. Although well diffracting crystals of the complex have not yet been obtained, during the course of crystallization trials the structure of the anti-FLAG M2 Fab domain was solved to 1.86 Å resolution. This structure, which should aid future structure-determination efforts using this approach by facilitating molecular-replacement phasing, reveals that the binding pocket appears to be specific only for the first four amino acids of the traditional FLAG epitope, namely DYKD. Thus, the use of antibody fragments for improving the stability of target proteins can be rapidly applied to the study of membrane-protein structure by placing the short DKYD motif within a predicted peripheral loop of that protein and utilizing commercially available anti-FLAG M2 antibody fragments

  7. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  8. PERMutation Using Transposase Engineering (PERMUTE): A Simple Approach for Constructing Circularly Permuted Protein Libraries.

    Science.gov (United States)

    Jones, Alicia M; Atkinson, Joshua T; Silberg, Jonathan J

    2017-01-01

    Rearrangements that alter the order of a protein's sequence are used in the lab to study protein folding, improve activity, and build molecular switches. One of the simplest ways to rearrange a protein sequence is through random circular permutation, where native protein termini are linked together and new termini are created elsewhere through random backbone fission. Transposase mutagenesis has emerged as a simple way to generate libraries encoding different circularly permuted variants of proteins. With this approach, a synthetic transposon (called a permuteposon) is randomly inserted throughout a circularized gene to generate vectors that express different permuted variants of a protein. In this chapter, we outline the protocol for constructing combinatorial libraries of circularly permuted proteins using transposase mutagenesis, and we describe the different permuteposons that have been developed to facilitate library construction.

  9. Engineered mutations in fibrillin-1 leading to Marfan syndrome act at the protein, cellular and organismal levels.

    Science.gov (United States)

    Zeyer, Karina A; Reinhardt, Dieter P

    2015-01-01

    Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-elastic tissues. They are multi-domain proteins, containing primarily calcium binding epidermal growth factor-like (cbEGF) domains and 8-cysteine/transforming growth factor-beta binding protein-like (TB) domains. Mutations in the fibrillin-1 gene give rise to Marfan syndrome, a connective tissue disorder with clinical complications in the cardiovascular, skeletal, ocular and other organ systems. Here, we review the consequences of engineered Marfan syndrome mutations in fibrillin-1 at the protein, cellular and organismal levels. Representative point mutations associated with Marfan syndrome in affected individuals have been introduced and analyzed in recombinant fibrillin-1 fragments. Those mutations affect fibrillin-1 on a structural and functional level. Mutations which impair folding of cbEGF domains can affect protein trafficking. Protein folding disrupted by some mutations can lead to defective secretion in mutant fibrillin-1 fragments, whereas fragments with other Marfan mutations are secreted normally. Many Marfan mutations render fibrillin-1 more susceptible to proteolysis. There is also evidence that some mutations affect heparin binding. Few mutations have been further analyzed in mouse models. An extensively studied mouse model of Marfan syndrome expresses mouse fibrillin-1 with a missense mutation (p.C1039G). The mice display similar characteristics to human patients with Marfan syndrome. Overall, the analyses of engineered mutations leading to Marfan syndrome provide important insights into the pathogenic molecular mechanisms exerted by mutated fibrillin-1. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments.

    Science.gov (United States)

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.

  11. Tissue engineering for lateral ridge augmentation with recombinant human bone morphogenetic protein 2 combination therapy: a case report.

    Science.gov (United States)

    Mandelaris, George A; Spagnoli, Daniel B; Rosenfeld, Alan L; McKee, James; Lu, Mei

    2015-01-01

    This case report describes a tissue-engineered reconstruction with recombinant human bone morphogenetic protein 2/acellular collagen sponge (rhBMP-2/ ACS) + cancellous allograft and space maintenance via Medpor Contain mesh in the treatment of a patient requiring maxillary and mandibular horizontal ridge augmentation to enable implant placement. The patient underwent a previously unsuccessful corticocancellous bone graft at these sites. Multiple and contiguous sites in the maxilla and in the mandibular anterior, demonstrating advanced lateral ridge deficiencies, were managed using a tissue engineering approach as an alternative to autogenous bone harvesting. Four maxillary and three mandibular implants were placed 9 and 10 months, respectively, after tissue engineering reconstruction, and all were functioning successfully after 24 months of follow-up. Histomorphometric analysis of a bone core obtained at the time of the maxillary implant placement demonstrated a mean of 76.1% new vital bone formation, 22.2% marrow/cells, and 1.7% residual graft tissue. Tissue engineering for lateral ridge augmentation with combination therapy requires further research to determine predictability and limitations.

  12. In silico engineering of aggregation-prone recombinant proteins for substrate recognition by the chaperonin GroEL.

    Science.gov (United States)

    Kumar, Vipul; Punetha, Ankita; Sundar, Durai; Chaudhuri, Tapan K

    2012-01-01

    Molecular chaperones appear to have been evolved to facilitate protein folding in the cell through entrapment of folding intermediates on the interior of a large cavity formed between GroEL and its co-chaperonin GroES. They bind newly synthesized or non-native polypeptides through hydrophobic interactions and prevent their aggregation. Some proteins do not interact with GroEL, hence even though they are aggregation prone, cannot be assisted by GroEL for their folding. In this study, we have attempted to engineer these non-substrate proteins to convert them as the substrate for GroEL, without compromising on their function. We have used a computational biology approach to generate mutants of the selected proteins by selectively mutating residues in the hydrophobic patch, similar to GroES mobile loop region that are responsible for interaction with GroEL, and compared with the wild counterparts for calculation of their instability and aggregation propensities. The energies of the newly designed mutants were computed through molecular dynamics simulations. We observed increased aggregation propensity of some of the mutants formed after replacing charged amino acid residues with hydrophobic ones in the well defined hydrophobic patch, raising the possibility of their binding ability to GroEL. The newly generated mutants may provide potential substrates for Chaperonin GroEL, which can be experimentally generated and tested for their tendency of aggregation, interactions with GroEL and the possibility of chaperone-assisted folding to produce functional proteins.

  13. Alternative security

    International Nuclear Information System (INIS)

    Weston, B.H.

    1990-01-01

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  14. Engineering Designed Proteins for Light Capture, Energy Transfer, and Emissive Sensing In Vivo

    Science.gov (United States)

    Mancini, Joshua A.

    Proteins that are used for photosynthetic light harvesting and biological signaling are critical to life. These types of proteins act as scaffolds that hold small, sometimes metal-containing organic molecules in precise locations for light absorption and successive use. For signaling proteins, this energy can be used to induce a photoisomerization of the small molecule that can turn on or off a signaling cascade that controls the physiology of an organism. Alternatively, photosynthetic light-harvesting proteins funnel this energy in a directional manner towards a charge separating catalytic component that can change this light energy into chemical energy. The protein environment also serves to tune the photophysical properties of the small molecules. This is seen extensively with the linear tetrapyrroles that are used in both photosynthetic and signaling proteins. Many efforts have been made to harness these natural proteins for societal use, including improving photophysical properties and interfacing capabilities with manmade catalytic components. Several methods of achieving improvement have entailed structurally guided mutation and directed evolution. However, these methods all have their limitations due to the inherent complexity and fragility of the natural proteins. This work presents an alternative more robust method to natural proteins. My thesis states: that man-made proteins, known as maquettes, employing basic rules of protein folding, can be designed to become light harvesting and signaling proteins that can be assembled fully in vivo providing an alternative, robust, and versatile platform for meeting the diverse array of societal "green chemistry" and biomedical needs. This in vivo assembly is carried out by interacting with cyanobacterial protein and pigment machinery, both as stand-alone units and as protein fusions with natural antenna complexes. Additionally, this work offers insight for fast and tight binding of circular and linear tetrapyrroles

  15. Homeland Security

    Science.gov (United States)

    Provides an overview of EPA's homeland security roles and responsibilities, and links to specific homeland security issues: water security, research, emergency response, recovery, and waste management.

  16. An Agro-Climatological Early Warning Tool Based on the Google Earth Engine to Support Regional Food Security Analysis

    Science.gov (United States)

    Landsfeld, M. F.; Daudert, B.; Friedrichs, M.; Morton, C.; Hegewisch, K.; Husak, G. J.; Funk, C. C.; Peterson, P.; Huntington, J. L.; Abatzoglou, J. T.; Verdin, J. P.; Williams, E. L.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) focuses on food insecurity in developing nations and provides objective, evidence based analysis to help government decision-makers and relief agencies plan for and respond to humanitarian emergencies. The Google Earth Engine (GEE) is a platform provided by Google Inc. to support scientific research and analysis of environmental data in their cloud environment. The intent is to allow scientists and independent researchers to mine massive collections of environmental data and leverage Google's vast computational resources to detect changes and monitor the Earth's surface and climate. GEE hosts an enormous amount of satellite imagery and climate archives, one of which is the Climate Hazards Group Infrared Precipitation with Stations dataset (CHIRPS). The CHIRPS dataset is land based, quasi-global (latitude 50N-50S), 0.05 degree resolution, and has a relatively long term period of record (1981-present). CHIRPS is on a continuous monthly feed into the GEE as new data fields are generated each month. This precipitation dataset is a key input for FEWS NET monitoring and forecasting efforts. FEWS NET intends to leverage the GEE in order to provide analysts and scientists with flexible, interactive tools to aid in their monitoring and research efforts. These scientists often work in bandwidth limited regions, so lightweight Internet tools and services that bypass the need for downloading massive datasets to analyze them, are preferred for their work. The GEE provides just this type of service. We present a tool designed specifically for FEWS NET scientists to be utilized interactively for investigating and monitoring for agro-climatological issues. We are able to utilize the enormous GEE computing power to generate on-the-fly statistics to calculate precipitation anomalies, z-scores, percentiles and band ratios, and allow the user to interactively select custom areas for statistical time series comparisons and predictions.

  17. Improving the success and impact of the metabolic engineering design, build, test, learn cycle by addressing proteins of unknown function.

    Science.gov (United States)

    Jarboe, Laura R

    2018-01-04

    Rational, predictive metabolic engineering of organisms requires an ability to associate biological activity to the corresponding gene(s). Despite extensive advances in the 20 years since the Escherichia coli genome was published, there are still gaps in our knowledge of protein function. The substantial amount of data that has been published, such as: omics-level characterization in a myriad of conditions; genome-scale libraries; and evolution and genome sequencing, provide means of identifying and prioritizing proteins for characterization. This review describes the scale of this knowledge gap, demonstrates the benefit of addressing the knowledge gap, and demonstrates the availability of interesting candidates for characterization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. On the merits of plant-based proteins for global food security: Marrying macro and micro perspectives

    NARCIS (Netherlands)

    de Boer, J.; Aiking, H.

    2011-01-01

    This paper aims to demonstrate the importance of protein production for the global environment and to give insight into the way consumers frame the protein part of their meal. Using a macro perspective, it presents a review of the literature on current and future impacts of the nutritional

  19. Core software security security at the source

    CERN Document Server

    Ransome, James

    2013-01-01

    First and foremost, Ransome and Misra have made an engaging book that will empower readers in both large and small software development and engineering organizations to build security into their products. This book clarifies to executives the decisions to be made on software security and then provides guidance to managers and developers on process and procedure. Readers are armed with firm solutions for the fight against cyber threats.-Dr. Dena Haritos Tsamitis. Carnegie Mellon UniversityIn the wake of cloud computing and mobile apps, the issue of software security has never been more importan

  20. Secure computing, economy, and trust

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Damgård, Ivan B.; Jakobsen, Thomas

    In this paper we consider the problem of constructing secure auctions based on techniques from modern cryptography. We combine knowledge from economics, cryptography and security engineering and develop and implement secure auctions for practical real-world problems. In essence this paper is an o...

  1. Security Dilemma

    DEFF Research Database (Denmark)

    Wivel, Anders

    2011-01-01

    What is a security dilemma? What are the consequences of security dilemmas in international politics?......What is a security dilemma? What are the consequences of security dilemmas in international politics?...

  2. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    Science.gov (United States)

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  3. Generation of a monoclonal antibody against the glycosylphosphatidylinositol-linked protein Rae-1 using genetically engineered tumor cells.

    Science.gov (United States)

    Hu, Jiemiao; Vien, Long T; Xia, Xueqing; Bover, Laura; Li, Shulin

    2014-02-04

    Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry. The lack of high-quality mAbs limits the in-depth analysis of Rae-1 fate, such as shedding and internalization, in murine models. Moreover, currently available screening approaches for identifying high-quality mAbs are excessively time-consuming and costly. We used Rae-1-overexpressing CT26 tumor cells to generate 60 hybridomas that secreted mAbs against Rae-1. We also developed a streamlined screening strategy for selecting the best anti-Rae-1 mAb for use in flow cytometry assay, enzyme-linked immunosorbent assay, Western blotting, and immunostaining. Our cell line-based immunization approach can yield mAbs against GPI-anchored proteins, and our streamlined screening strategy can be used to select the ideal hybridoma for producing such mAbs.

  4. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-01-01

    is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain

  5. Information engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, D.N.

    1997-02-01

    The Information Engineering thrust area develops information technology to support the programmatic needs of Lawrence Livermore National Laboratory`s Engineering Directorate. Progress in five programmatic areas are described in separate reports contained herein. These are entitled Three-dimensional Object Creation, Manipulation, and Transport, Zephyr:A Secure Internet-Based Process to Streamline Engineering Procurements, Subcarrier Multiplexing: Optical Network Demonstrations, Parallel Optical Interconnect Technology Demonstration, and Intelligent Automation Architecture.

  6. Site-specific antibody-drug conjugates: the nexus of bioorthogonal chemistry, protein engineering, and drug development.

    Science.gov (United States)

    Agarwal, Paresh; Bertozzi, Carolyn R

    2015-02-18

    Antibody-drug conjugates (ADCs) combine the specificity of antibodies with the potency of small molecules to create targeted drugs. Despite the simplicity of this concept, generation of clinically successful ADCs has been very difficult. Over the past several decades, scientists have learned a great deal about the constraints on antibodies, linkers, and drugs as they relate to successful construction of ADCs. Once these components are in hand, most ADCs are prepared by nonspecific modification of antibody lysine or cysteine residues with drug-linker reagents, which results in heterogeneous product mixtures that cannot be further purified. With advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in producing ADCs by site-specific conjugation to the antibody, yielding more homogeneous products that have demonstrated benefits over their heterogeneous counterparts in vivo. Here, we chronicle the development of a multitude of site-specific conjugation strategies for assembly of ADCs and provide a comprehensive account of key advances and their roots in the fields of bioorthogonal chemistry and protein engineering.

  7. Tuning the allosteric regulation of artificial muscarinic and dopaminergic ligand-gated potassium channels by protein engineering of G protein-coupled receptors

    Science.gov (United States)

    Moreau, Christophe J.; Revilloud, Jean; Caro, Lydia N.; Dupuis, Julien P.; Trouchet, Amandine; Estrada-Mondragón, Argel; Nieścierowicz, Katarzyna; Sapay, Nicolas; Crouzy, Serge; Vivaudou, Michel

    2017-01-01

    Ligand-gated ion channels enable intercellular transmission of action potential through synapses by transducing biochemical messengers into electrical signal. We designed artificial ligand-gated ion channels by coupling G protein-coupled receptors to the Kir6.2 potassium channel. These artificial channels called ion channel-coupled receptors offer complementary properties to natural channels by extending the repertoire of ligands to those recognized by the fused receptors, by generating more sustained signals and by conferring potassium selectivity. The first artificial channels based on the muscarinic M2 and the dopaminergic D2L receptors were opened and closed by acetylcholine and dopamine, respectively. We find here that this opposite regulation of the gating is linked to the length of the receptor C-termini, and that C-terminus engineering can precisely control the extent and direction of ligand gating. These findings establish the design rules to produce customized ligand-gated channels for synthetic biology applications. PMID:28145461

  8. Noncoded amino acids in protein engineering: Structure-activity relationship studies of hirudin-thrombin interaction.

    Science.gov (United States)

    De Filippis, Vincenzo; Acquasaliente, Laura; Pontarollo, Giulia; Peterle, Daniele

    2018-01-01

    The advent of recombinant DNA technology allowed to site-specifically insert, delete, or mutate almost any amino acid in a given protein, significantly improving our knowledge of protein structure, stability, and function. Nevertheless, a quantitative description of the physical and chemical basis that makes a polypeptide chain to efficiently fold into a stable and functionally active conformation is still elusive. This mainly originates from the fact that nature combined, in a yet unknown manner, different properties (i.e., hydrophobicity, conformational propensity, polarizability, and hydrogen bonding capability) into the 20 standard natural amino acids, thus making difficult, if not impossible, to univocally relate the change in protein stability or function to the alteration of physicochemical properties caused by amino acid exchange(s). In this view, incorporation of noncoded amino acids with tailored side chains, allowing to finely tune the structure at a protein site, would facilitate to dissect the effects of a given mutation in terms of one or a few physicochemical properties, thus much expanding the scope of physical organic chemistry in the study of proteins. In this review, relevant applications from our laboratory will be presented on the use of noncoded amino acids in structure-activity relationships studies of hirudin binding to thrombin. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  9. Crescendo: A Protein Sequence Database Search Engine for Tandem Mass Spectra.

    Science.gov (United States)

    Wang, Jianqi; Zhang, Yajie; Yu, Yonghao

    2015-07-01

    A search engine that discovers more peptides reliably is essential to the progress of the computational proteomics. We propose two new scoring functions (L- and P-scores), which aim to capture similar characteristics of a peptide-spectrum match (PSM) as Sequest and Comet do. Crescendo, introduced here, is a software program that implements these two scores for peptide identification. We applied Crescendo to test datasets and compared its performance with widely used search engines, including Mascot, Sequest, and Comet. The results indicate that Crescendo identifies a similar or larger number of peptides at various predefined false discovery rates (FDR). Importantly, it also provides a better separation between the true and decoy PSMs, warranting the future development of a companion post-processing filtering algorithm.

  10. Shedding light on disulfide bond formation: engineering a redox switch in green fluorescent protein

    DEFF Research Database (Denmark)

    Østergaard, H.; Henriksen, A.; Hansen, Flemming G.

    2001-01-01

    To visualize the formation of disulfide bonds in living cells, a pair of redox-active cysteines was introduced into the yellow fluorescent variant of green fluorescent protein. Formation of a disulfide bond between the two cysteines was fully reversible and resulted in a >2-fold decrease...... in the intrinsic fluorescence. Inter conversion between the two redox states could thus be followed in vitro as well as in vivoby non- invasive fluorimetric measurements. The 1.5 Angstrom crystal structure of the oxidized protein revealed a disulfide bond- induced distortion of the beta -barrel, as well...... the physiological range for redox-active cysteines. In the cytoplasm of Escherichia coli, the protein was a sensitive probe for the redox changes that occur upon disruption of the thioredoxin reductive pathway....

  11. Nuclear Engineering of Microalgae for High Yield Secretion of Recombinant Proteins

    DEFF Research Database (Denmark)

    Ramos Martinez, Erick Miguel

    biotechnology hosts including safety, metabolic diversity, scalability, sustainability and low production cost. Over the past decades, considerable improvement has been made to express and secrete recombinant proteins in high levels: however current yields are still low. The first research project presented...... to the glycomodules, accumulation of a fusion protein was dramatically increased by up to 12 folds, with the maximum yield of 15 mg L-1. Characterization of the secreted Venus showed the presence of glycosylations and increased resistance to proteolytic degradation. The results from this thesis demonstrate...... the potential of microalgae as a cell factory for secretion of recombinant proteins. The second research project presented in this thesis aimed to establish a new robust method to allow in vivo measurements of metabolic enzyme activities in cyanobacteria, with a hope that the method would facilitate further...

  12. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  13. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  14. Engineering of the E. coli outer membrane protein FhuA to overcome the hydrophobic mismatch in thick polymeric membranes.

    Science.gov (United States)

    Muhammad, Noor; Dworeck, Tamara; Fioroni, Marco; Schwaneberg, Ulrich

    2011-03-17

    Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext). The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB(1000)-PEG(6000)-PIB(1000) (PIB = polyisobutylene, PEG = polyethyleneglycol) has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine). Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB(1000)-PEG(6000)-PIB(1000) membrane. Furthermore labeling of the Lys-NH(2) groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  15. Engineering of the E. coli Outer Membrane Protein FhuA to overcome the Hydrophobic Mismatch in Thick Polymeric Membranes

    Directory of Open Access Journals (Sweden)

    Fioroni Marco

    2011-03-01

    Full Text Available Abstract Background Channel proteins like the engineered FhuA Δ1-159 often cannot insert into thick polymeric membranes due to a mismatch between the hydrophobic surface of the protein and the hydrophobic surface of the polymer membrane. To address this problem usually specific block copolymers are synthesized to facilitate protein insertion. Within this study in a reverse approach we match the protein to the polymer instead of matching the polymer to the protein. Results To increase the FhuA Δ1-159 hydrophobic surface by 1 nm, the last 5 amino acids of each of the 22 β-sheets, prior to the more regular periplasmatic β-turns, were doubled leading to an extended FhuA Δ1-159 (FhuA Δ1-159 Ext. The secondary structure prediction and CD spectroscopy indicate the β-barrel folding of FhuA Δ1-159 Ext. The FhuA Δ1-159 Ext insertion and functionality within a nanocontainer polymeric membrane based on the triblock copolymer PIB1000-PEG6000-PIB1000 (PIB = polyisobutylene, PEG = polyethyleneglycol has been proven by kinetic analysis using the HRP-TMB assay (HRP = Horse Radish Peroxidase, TMB = 3,3',5,5'-tetramethylbenzidine. Identical experiments with the unmodified FhuA Δ1-159 report no kinetics and presumably no insertion into the PIB1000-PEG6000-PIB1000 membrane. Furthermore labeling of the Lys-NH2 groups present in the FhuA Δ1-159 Ext channel, leads to controllability of in/out flux of substrates and products from the nanocontainer. Conclusion Using a simple "semi rational" approach the protein's hydrophobic transmembrane region was increased by 1 nm, leading to a predicted lower hydrophobic mismatch between the protein and polymer membrane, minimizing the insertion energy penalty. The strategy of adding amino acids to the FhuA Δ1-159 Ext hydrophobic part can be further expanded to increase the protein's hydrophobicity, promoting the efficient embedding into thicker/more hydrophobic block copolymer membranes.

  16. Genetically engineered endostatin-lidamycin fusion proteins effectively inhibit tumor growth and metastasis

    International Nuclear Information System (INIS)

    Jiang, Wen-guo; Zhen, Yong-su; Lu, Xin-an; Shang, Bo-yang; Fu, Yan; Zhang, Sheng-hua; Zhou, Daifu; Li, Liang; Li, Yi; Luo, Yongzhang

    2013-01-01

    Endostatin (ES) inhibits endothelial cell proliferation, migration, invasion, and tube formation. It also shows antiangiogenesis and antitumor activities in several animal models. Endostatin specifically targets tumor vasculature to block tumor growth. Lidamycin (LDM), which consists of an active enediyne chromophore (AE) and a non-covalently bound apo-protein (LDP), is a member of chromoprotein family of antitumor antibiotics with extremely potent cytotoxicity to cancer cells. Therefore, we reasoned that endostatin-lidamycin (ES-LDM) fusion proteins upon energizing with enediyne chromophore may obtain the combined capability targeting tumor vasculature and tumor cell by respective ES and LDM moiety. In this study, we designed and obtained two new endostatin-based fusion proteins, endostatin-LDP (ES-LDP) and LDP-endostatin (LDP-ES). In vitro, the antiangiogenic effect of fusion proteins was determined by the wound healing assay and tube formation assay and the cytotoxicity of their enediyne-energized analogs was evaluated by CCK-8 assay. Tissue microarray was used to analyze the binding affinity of LDP, ES or ES-LDP with specimens of human lung tissue and lung tumor. The in vivo efficacy of the fusion proteins was evaluated with human lung carcinoma PG-BE1 xenograft and the experimental metastasis model of 4T1-luc breast cancer. ES-LDP and LDP-ES disrupted the formation of endothelial tube structures and inhibited endothelial cell migration. Evidently, ES-LDP accumulated in the tumor and suppressed tumor growth and metastasis. ES-LDP and ES show higher binding capability than LDP to lung carcinoma; in addition, ES-LDP and ES share similar binding capability. Furthermore, the enediyne-energized fusion protein ES-LDP-AE demonstrated significant efficacy against lung carcinoma xenograft in athymic mice. The ES-based fusion protein therapy provides some fundamental information for further drug development. Targeting both tumor vasculature and tumor cells by endostatin

  17. Enhancing E. coli tolerance towards oxidative stress via engineering its global regulator cAMP receptor protein (CRP.

    Directory of Open Access Journals (Sweden)

    Souvik Basak

    Full Text Available Oxidative damage to microbial hosts often occurs under stressful conditions during bioprocessing. Classical strain engineering approaches are usually both time-consuming and labor intensive. Here, we aim to improve E. coli performance under oxidative stress via engineering its global regulator cAMP receptor protein (CRP, which can directly or indirectly regulate redox-sensing regulators SoxR and OxyR, and other ~400 genes in E. coli. Error-prone PCR technique was employed to introduce modifications to CRP, and three mutants (OM1~OM3 were identified with improved tolerance via H(2O(2 enrichment selection. The best mutant OM3 could grow in 12 mM H(2O(2 with the growth rate of 0.6 h(-1, whereas the growth of wild type was completely inhibited at this H(2O(2 concentration. OM3 also elicited enhanced thermotolerance at 48°C as well as resistance against cumene hydroperoxide. The investigation about intracellular reactive oxygen species (ROS, which determines cell viability, indicated that the accumulation of ROS in OM3 was always lower than in WT with or without H(2O(2 treatment. Genome-wide DNA microarray analysis has shown not only CRP-regulated genes have demonstrated great transcriptional level changes (up to 8.9-fold, but also RpoS- and OxyR-regulated genes (up to 7.7-fold. qRT-PCR data and enzyme activity assay suggested that catalase (katE could be a major antioxidant enzyme in OM3 instead of alkyl hydroperoxide reductase or superoxide dismutase. To our knowledge, this is the first work on improving E. coli oxidative stress resistance by reframing its transcription machinery through its native global regulator. The positive outcome of this approach may suggest that engineering CRP can be successfully implemented as an efficient strain engineering alternative for E. coli.

  18. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    Science.gov (United States)

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Surface Immobilization of Human Arginase-1 with an Engineered Ice Nucleation Protein Display System in E. coli.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    Full Text Available Ice nucleation protein (INP is frequently used as a surface anchor for protein display in gram-negative bacteria. Here, MalE and TorA signal peptides, and three charged polypeptides, 6×Lys, 6×Glu and 6×Asp, were anchored to the N-terminus of truncated INP (InaK-N to improve its surface display efficiency for human Arginase1 (ARG1. Our results indicated that the TorA signal peptide increased the surface translocation of non-protein fused InaK-N and human ARG1 fused InaK-N (InaK-N/ARG1 by 80.7% and 122.4%, respectively. Comparably, the MalE signal peptide decreased the display efficiencies of both the non-protein fused InaK-N and InaK-N/ARG1. Our results also suggested that the 6×Lys polypeptide significantly increased the surface display efficiency of K6-InaK-N/ARG1 by almost 2-fold, while also practically abolishing the surface translocation of non-protein fused InaK-N, indicating the interesting roles of charged polypeptides in bacteria surface display systems. Cell surface-immobilized K6-InaK-N/ARG1 presented an arginase activity of 10.7 U/OD600 under the optimized conditions of 40°C, pH 10.0 and 1 mM Mn2+, which could convert more than 95% of L-Arginine (L-Arg to L-Ornithine (L-Orn in 16 hours. The engineered InaK-Ns expanded the INP surface display system, which aided in the surface immobilization of human ARG1 in E. coli cells.

  20. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code.

    Science.gov (United States)

    Rubini, Marina; Lepthien, Sandra; Golbik, Ralph; Budisa, Nediljko

    2006-07-01

    The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.

  1. Fueling the engine: induction of AMP-activated protein kinase in trout skeletal muscle by swimming

    NARCIS (Netherlands)

    Magnoni, L.J.; Palstra, A.P.; Planas, J.V.

    2014-01-01

    AMP-activated protein kinase (AMPK) is well known to be induced by exercise and to mediate important metabolic changes in the skeletal muscle of mammals. Despite the physiological importance of exercise as a modulator of energy use by locomotory muscle, the regulation of this enzyme by swimming has

  2. Resolution of Disulfide Heterogeneity in Nogo Receptor 1 Fusion Proteins by Molecular Engineering

    Energy Technology Data Exchange (ETDEWEB)

    P Weinreb; D Wen; F Qian; C Wildes; E Garber; L Walus; M Jung; J Wang; J Relton; et al.

    2011-12-31

    NgRI (Nogo-66 receptor) is part of a signalling complex that inhibits axon regeneration in the central nervous system. Truncated soluble versions of NgRI have been used successfully to promote axon regeneration in animal models of spinal-cord injury, raising interest in this protein as a potential therapeutic target. The LRR (leucine-rich repeat) regions in NgRI are flanked by N- and C-terminal disulfide-containing 'cap' domains (LRRNT and LRRCT respectively). In the present work we show that, although functionally active, the NgRI(310)-Fc fusion protein contains mislinked and heterogeneous disulfide patterns in the LRRCT domain, and we report the generation of a series of variant molecules specifically designed to prevent this heterogeneity. Using these variants we explored the effects of modifying the NgRI truncation site or the spacing between the NgRI and Fc domains, or replacing cysteines within the NgRI or IgG hinge regions. One variant, which incorporates replacements of Cys{sup 266} and Cys{sup 309} with alanine residues, completely eliminated disulfide scrambling while maintaining functional in vitro and in vivo efficacy. This modified NgRI-Fc molecule represents a significantly improved candidate for further pharmaceutical development, and may serve as a useful model for the optimization of other IgG fusion proteins made from LRR proteins.

  3. De novo design and engineering of functional metal and porphyrin-binding protein domains

    Science.gov (United States)

    Everson, Bernard H.

    In this work, I describe an approach to the rational, iterative design and characterization of two functional cofactor-binding protein domains. First, a hybrid computational/experimental method was developed with the aim of algorithmically generating a suite of porphyrin-binding protein sequences with minimal mutual sequence information. This method was explored by generating libraries of sequences, which were then expressed and evaluated for function. One successful sequence is shown to bind a variety of porphyrin-like cofactors, and exhibits light- activated electron transfer in mixed hemin:chlorin e6 and hemin:Zn(II)-protoporphyrin IX complexes. These results imply that many sophisticated functions such as cofactor binding and electron transfer require only a very small number of residue positions in a protein sequence to be fixed. Net charge and hydrophobic content are important in determining protein solubility and stability. Accordingly, rational modifications were made to the aforementioned design procedure in order to improve its overall success rate. The effects of these modifications are explored using two `next-generation' sequence libraries, which were separately expressed and evaluated. Particular modifications to these design parameters are demonstrated to effectively double the purification success rate of the procedure. Finally, I describe the redesign of the artificial di-iron protein DF2 into CDM13, a single chain di-Manganese four-helix bundle. CDM13 acts as a functional model of natural manganese catalase, exhibiting a kcat of 0.08s-1 under steady-state conditions. The bound manganese cofactors have a reduction potential of +805 mV vs NHE, which is too high for efficient dismutation of hydrogen peroxide. These results indicate that as a high-potential manganese complex, CDM13 may represent a promising first step toward a polypeptide model of the Oxygen Evolving Complex of the photosynthetic enzyme Photosystem II.

  4. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    Energy Technology Data Exchange (ETDEWEB)

    Lagos, L. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami FL 33174 (United States)

    2013-07-01

    presentations given at WM. The DOE Fellows participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)

  5. Training and Mentoring the Next Generation of Scientists and Engineers to Secure Continuity and Successes of the US DOE's Environmental Remediation Efforts - 13387

    International Nuclear Information System (INIS)

    Lagos, L.

    2013-01-01

    participation at WM has resulted in three Best Student Poster Awards (WM09, WM10, and WM11) and one Best Professional Poster Award (WM09). DOE Fellows have also presented their research at ANS DD and R and ANS Robotics Topical meetings. Moreover, several of our DOE Fellows have already obtained employment with DOE-EM, other federal agencies, DOE contractors. This paper will discuss how DOE Fellows program is training and mentoring FIU STEM students in Department of Energy's Office of Environmental Management technical challenges and research. This training and mentoring has resulted in the development of well trained and polished young scientists and engineers that will become the future workforce in charge of carrying on DOE-EM's environmental cleanup mission. The paper will showcase FIU's DOE Fellows model and highlight some of the applied research the DOE Fellows have conducted at FIU's Applied Research Center and across the Complex by participating in summer internship assignments. This paper will also present and highlight other Fellowships and internships programs sponsored by National Nuclear Security Agency (NNSA), DOE-EM, NRC, Energy (NE), and other federal agencies targeting workforce development. (authors)

  6. Integrated cell and process engineering for improved transient production of a "difficult-to-express" fusion protein by CHO cells.

    Science.gov (United States)

    Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C

    2015-12-01

    Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized

  7. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes

    Science.gov (United States)

    Shepon, A.; Eshel, G.; Noor, E.; Milo, R.

    2016-10-01

    Feeding a growing population while minimizing environmental degradation is a global challenge requiring thoroughly rethinking food production and consumption. Dietary choices control food availability and natural resource demands. In particular, reducing or avoiding consumption of low production efficiency animal-based products can spare resources that can then yield more food. In quantifying the potential food gains of specific dietary shifts, most earlier research focused on calories, with less attention to other important nutrients, notably protein. Moreover, despite the well-known environmental burdens of livestock, only a handful of national level feed-to-food conversion efficiency estimates of dairy, beef, poultry, pork, and eggs exist. Yet such high level estimates are essential for reducing diet related environmental impacts and identifying optimal food gain paths. Here we quantify caloric and protein conversion efficiencies for US livestock categories. We then use these efficiencies to calculate the food availability gains expected from replacing beef in the US diet with poultry, a more efficient meat, and a plant-based alternative. Averaged over all categories, caloric and protein efficiencies are 7%-8%. At 3% in both metrics, beef is by far the least efficient. We find that reallocating the agricultural land used for beef feed to poultry feed production can meet the caloric and protein demands of ≈120 and ≈140 million additional people consuming the mean American diet, respectively, roughly 40% of current US population.

  8. An antibody based approach for multi-coloring osteogenic and chondrogenic proteins in tissue engineered constructs.

    Science.gov (United States)

    Leferink, Anne M; Reis, Diogo Santos; van Blitterswijk, Clemens A; Moroni, Lorenzo

    2018-04-11

    When tissue engineering strategies rely on the combination of three-dimensional (3D) polymeric or ceramic scaffolds with cells to culture implantable tissue constructs in vitro, it is desirable to monitor tissue growth and cell fate to be able to more rationally predict the quality and success of the construct upon implantation. Such a 3D construct is often referred to as a 'black-box' since the properties of the scaffolds material limit the applicability of most imaging modalities to assess important construct parameters. These parameters include the number of cells, the amount and type of tissue formed and the distribution of cells and tissue throughout the construct. Immunolabeling enables the spatial and temporal identification of multiple tissue types within one scaffold without the need to sacrifice the construct. In this report, we concisely review the applicability of antibodies (Abs) and their conjugation chemistries in tissue engineered constructs. With some preliminary experiments, we show an efficient conjugation strategy to couple extracellular matrix Abs to fluorophores. The conjugated probes proved to be effective in determining the presence of collagen type I and type II on electrospun and additive manufactured 3D scaffolds seeded with adult human bone marrow derived mesenchymal stromal cells. The conjugation chemistry applied in our proof of concept study is expected to be applicable in the coupling of any other fluorophore or particle to the Abs. This could ultimately lead to a library of probes to permit high-contrast imaging by several imaging modalities.

  9. Control of silicification by genetically engineered fusion proteins: Silk–silica binding peptides

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J.; Simmons, Leo O.; Perry, Carole C.; Wang, Xiaoqin; Kaplan, David L.

    2014-01-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk–silica composite in two different bioinspired silicification systems: solution–solution and solution– solid. Condensed silica nanoscale particles (600–800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras [1], revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution–solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer–silica composites for biomaterial related needs. PMID:25462851

  10. Evaluation of Biological Toxicity of CdTe Quantum Dots with Different Coating Reagents according to Protein Expression of Engineering Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2015-01-01

    Full Text Available The results obtained from toxicity assessment of quantum dots (QDs can be used to establish guidelines for the application of QDs in bioimaging. This paper focused on the design of a novel method to evaluate the toxicity of CdTe QDs using engineering Escherichia coli as a model. The toxicity of mercaptoacetic acid (MPA, glutathione (GSH, and L-cysteine (Cys capped CdTe QDs was analyzed according to the heterologous protein expression in BL21/DE3, engineering Escherichia coli extensively used for protein expression. The results showed that the MPA-CdTe QDs had more serious toxicity than the other two kinds of CdTe QDs. The microscopic images and SEM micrographs further proved that both the proliferation and the protein expression of engineering Escherichia coli were inhibited after treatment with MPA-CdTe QDs. The proposed method is important to evaluate biological toxicity of both QDs and other nanoparticles.

  11. Security Evolution.

    Science.gov (United States)

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  12. Facile synthesis of biphasic calcium phosphate microspheres with engineered surface topography for controlled delivery of drugs and proteins.

    Science.gov (United States)

    Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban

    2017-09-01

    Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  14. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    Directory of Open Access Journals (Sweden)

    Sau-Ching Wu

    Full Text Available Development of a high-affinity streptavidin-binding peptide (SBP tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine in this loop selectively reduces the biotin binding affinity (Kd from 4 × 10(-14 M to 4.45 × 10(-10 M without affecting the SBP binding affinity. Introduction of a second mutation (S27A to the first mutein (G48T results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable

  15. Structure-guided design of an engineered streptavidin with reusability to purify streptavidin-binding peptide tagged proteins or biotinylated proteins.

    Science.gov (United States)

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin and SBP with streptavidin were explored. Loop3-4 which serves as a mobile lid for the biotin binding pocket in streptavidin is in the closed state with biotin binding. In contrast, this loop is in the open state with SBP binding. Replacement of glycine-48 with a bulkier residue (threonine) in this loop selectively reduces the biotin binding affinity (Kd) from 4 × 10(-14) M to 4.45 × 10(-10) M without affecting the SBP binding affinity. Introduction of a second mutation (S27A) to the first mutein (G48T) results in the development of a novel engineered streptavidin SAVSBPM18 which could be recombinantly produced in the functional form from Bacillus subtilis via secretion. To form an intact binding pocket for tight binding of SBP, two diagonally oriented subunits in a tetrameric streptavidin are required. It is vital for SAVSBPM18 to be stably in the tetrameric state in solution. This was confirmed using an HPLC/Laser light scattering system. SAVSBPM18 retains high binding affinity to SBP but has reversible biotin binding capability. The SAVSBPM18 matrix can be applied to affinity purify SBP-tagged proteins or biotinylated molecules to homogeneity with high recovery in a reusable manner. A mild washing step is sufficient to regenerate the matrix which can be reused for multiple rounds. Other applications including development of automated protein purification systems, lab-on-a-chip micro-devices, reusable biosensors, bioreactors and microarrays, and strippable detection agents for

  16. Engineering of a Potent Recombinant Lectin-Toxin Fusion Protein to Eliminate Human Pluripotent Stem Cells.

    Science.gov (United States)

    Tateno, Hiroaki; Saito, Sayoko

    2017-07-10

    The use of human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) in regenerative medicine is hindered by their tumorigenic potential. Previously, we developed a recombinant lectin-toxin fusion protein of the hPSC-specific lectin rBC2LCN, which has a 23 kDa catalytic domain (domain III) of Pseudomonas aeruginosa exotoxin A (rBC2LCN-PE23). This fusion protein could selectively eliminate hPSCs following its addition to the cell culture medium. Here we conjugated rBC2LCN lectin with a 38 kDa domain of exotoxin A containing domains Ib and II in addition to domain III (PE38). The developed rBC2LCN-PE38 fusion protein could eliminate 50% of 201B7 hPSCs at a concentration of 0.003 μg/mL (24 h incubation), representing an approximately 556-fold higher activity than rBC2LCN-PE23. Little or no effect on human fibroblasts, human mesenchymal stem cells, and hiPSC-derived hepatocytes was observed at concentrations lower than 1 μg/mL. Finally, we demonstrate that rBC2LCN-PE38 selectively eliminates hiPSCs from a mixed culture of hiPSCs and hiPSC-derived hepatocytes. Since rBC2LCN-PE38 can be prepared from soluble fractions of E. coli culture at a yield of 9 mg/L, rBC2LCN-PE38 represents a practical reagent to remove human pluripotent stem cells residing in cultured cells destined for transplantation.

  17. Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

    Science.gov (United States)

    Zhou, Shun; Huang, Wenwen; Belton, David J; Simmons, Leo O; Perry, Carole C; Wang, Xiaoqin; Kaplan, David L

    2015-03-01

    In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Engineering specific chemical modification sites into a collagen-like protein from Streptococcus pyogenes.

    Science.gov (United States)

    Stoichevska, Violet; Peng, Yong Y; Vashi, Aditya V; Werkmeister, Jerome A; Dumsday, Geoff J; Ramshaw, John A M

    2017-03-01

    Recombinant bacterial collagens provide a new opportunity for safe biomedical materials. They are readily expressed in Escherichia coli in good yield and can be readily purified by simple approaches. However, recombinant proteins are limited in that direct secondary modification during expression is generally not easily achieved. Thus, inclusion of unusual amino acids, cyclic peptides, sugars, lipids, and other complex functions generally needs to be achieved chemically after synthesis and extraction. In the present study, we have illustrated that bacterial collagens that have had their sequences modified to include cysteine residue(s), which are not normally present in bacterial collagen-like sequences, enable a range of specific chemical modification reactions to be produced. Various model reactions were shown to be effective for modifying the collagens. The ability to include alkyne (or azide) functions allows the extensive range of substitutions that are available via "click" chemistry to be accessed. When bifunctional reagents were used, some crosslinking occurred to give higher molecular weight polymeric proteins, but gels were not formed. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 806-813, 2017. © 2016 Wiley Periodicals, Inc.

  19. Structure based protein engineering of Bacillus stearothermophilus {alpha}-amylase: toward a new substrate specificity

    Energy Technology Data Exchange (ETDEWEB)

    Rasera, Ana Claudia [Sao Paulo Univ., SP (Brazil). Inst. de Ciencias Biomedicas; Iulek, Jorge [Universidade Estadual de Ponta Grossa, PR (Brazil). Inst. de Quimica; Delboni, Luis Fernando; Barbosa, Valma Martins Barbosa [Parana Univ., Curitiba, PR (Brazil). Dept. de Bioquimica

    1997-12-31

    Full text. Structural similarity is observed in all members of {alpha}-amylase family but different products are generated during hydrolysis of starch due to different affinities for intermediate dextrins. In order to understand the structural determinants for this property and to introduce different specificity to {alpha}-amylase of Bacillus stearothermophilus we intend to solve the three dimensional structure by X-ray crystallography of the native protein by using synchrotron radiation at Brazilian National Synchrotron Light Laboratory (LNLS). Protein was over expressed in E. coli, purified and crystallization experiments were carried out by using sparse matrix Crystal Screen and Crystal Screen II from Hampton Research (Laguna Hills, CA, USA). Several condition have produced crystals with some defined characteristic: MDP seems to be important to the crystallization: the preferential pH is around 7.5 with organic buffer (HEPES); organic solvent as 2-propanol seems to be also important for the crystallization. On those condition crystals appeared as cluster of needles or small crystals with high number of nucleation. New conditions are being prepared to improve the site and quality of crystals. Data collection of native of Bacillus stearothermophilus {alpha}-amylase will e done at Protein Crystallography Station at LNLS. Crystal structure of mutated {alpha}-amylase bu site direct mutagenesis of residues suggested by the native crystal structure will be obtained. Co-crystallization of Bacillus stearothermophilus {alpha}-amylase and oligosaccharide will be carried out to identify residues involved in the binding site to plan new mutation. In another series of mutation the putative binding site residues, once identified, will be mutated to residues observed in TAKA amylase to confer different specificity to {alpha}-amylase. Based on the available TAKA amylase structure, in the primary sequence homology and in the three dimensional model of Bacillus stearothermophilus

  20. Structure based protein engineering of Bacillus stearothermophilus α-amylase: toward a new substrate specificity

    International Nuclear Information System (INIS)

    Rasera, Ana Claudia; Iulek, Jorge; Delboni, Luis Fernando; Barbosa, Valma Martins Barbosa

    1997-01-01

    Full text. Structural similarity is observed in all members of α-amylase family but different products are generated during hydrolysis of starch due to different affinities for intermediate dextrins. In order to understand the structural determinants for this property and to introduce different specificity to α-amylase of Bacillus stearothermophilus we intend to solve the three dimensional structure by X-ray crystallography of the native protein by using synchrotron radiation at Brazilian National Synchrotron Light Laboratory (LNLS). Protein was over expressed in E. coli, purified and crystallization experiments were carried out by using sparse matrix Crystal Screen and Crystal Screen II from Hampton Research (Laguna Hills, CA, USA). Several condition have produced crystals with some defined characteristic: MDP seems to be important to the crystallization: the preferential pH is around 7.5 with organic buffer (HEPES); organic solvent as 2-propanol seems to be also important for the crystallization. On those condition crystals appeared as cluster of needles or small crystals with high number of nucleation. New conditions are being prepared to improve the site and quality of crystals. Data collection of native of Bacillus stearothermophilus α-amylase will e done at Protein Crystallography Station at LNLS. Crystal structure of mutated α-amylase bu site direct mutagenesis of residues suggested by the native crystal structure will be obtained. Co-crystallization of Bacillus stearothermophilus α-amylase and oligosaccharide will be carried out to identify residues involved in the binding site to plan new mutation. In another series of mutation the putative binding site residues, once identified, will be mutated to residues observed in TAKA amylase to confer different specificity to α-amylase. Based on the available TAKA amylase structure, in the primary sequence homology and in the three dimensional model of Bacillus stearothermophilus α-amylase (using Bacillus

  1. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin

    International Nuclear Information System (INIS)

    Rouhier, Nicolas; Gama, Filipe; Wingsle, Gunnar; Gelhaye, Eric; Gans, Pierre; Jacquot, Jean-Pierre

    2006-01-01

    The existence of natural peroxiredoxin-glutaredoxin hybrid enzymes in several bacteria is in line with previous findings indicating that poplar peroxiredoxin II can use glutaredoxin as an electron donor. This peroxiredoxin remains however unique since it also uses thioredoxin with a quite good efficiency. Based on the existing fusions, we have created artificial enzymes containing a poplar peroxiredoxin module linked to glutaredoxin or thioredoxin modules. The recombinant fusion enzymes folded properly into non-covalently bound homodimers or homotetramers. Two of the three protein constructs exhibit peroxidase activity, a reaction where the two modules need to function together, but they also display enzymatic activities specific of each module. In addition, mass spectrometry analyses indicate that the Prx module can be both glutathiolated or overoxidized in vitro. This is discussed in the light of the Prx reactivity

  2. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Nair, Lakshmi S; Khan, Yusuf M; Deng, Meng; Laurencin, Cato T

    2007-01-01

    A number of bone tissue engineering approaches are aimed at (i) increasing the osteconductivity and osteoinductivity of matrices, and (ii) incorporating bioactive molecules within the scaffolds. In this study we examined the growth of a nano-crystalline mineral layer on poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds for tissue engineering. In addition, the influence of the mineral precipitate layer on protein adsorption on the scaffolds was studied. Scaffolds were mineralized by incubation in simulated body fluid (SBF). Scanning electron microscopy (SEM) analysis revealed that mineralized scaffolds possess a rough surface with a plate-like nanostructure covering the surface of microspheres. The results of protein adsorption and release studies showed that while the protein release pattern was similar for PLAGA and mineralized PLAGA scaffolds, precipitation of the mineral layer on PLAGA led to enhanced protein adsorption and slower protein release. Mineralization of tissue-engineered surfaces provides a method for both imparting bioactivity and controlling levels of protein adsorption and release.

  3. Versatile de novo enzyme activity in capsid proteins from an engineered M13 bacteriophage library.

    Science.gov (United States)

    Casey, John P; Barbero, Roberto J; Heldman, Nimrod; Belcher, Angela M

    2014-11-26

    Biocatalysis has grown rapidly in recent decades as a solution to the evolving demands of industrial chemical processes. Mounting environmental pressures and shifting supply chains underscore the need for novel chemical activities, while rapid biotechnological progress has greatly increased the utility of enzymatic methods. Enzymes, though capable of high catalytic efficiency and remarkable reaction selectivity, still suffer from relative instability, high costs of scaling, and functional inflexibility. Herein, we developed a biochemical platform for engineering de novo semisynthetic enzymes, functionally modular and widely stable, based on the M13 bacteriophage. The hydrolytic bacteriophage described in this paper catalyzes a range of carboxylic esters, is active from 25 to 80 °C, and demonstrates greater efficiency in DMSO than in water. The platform complements biocatalysts with characteristics of heterogeneous catalysis, yielding high-surface area, thermostable biochemical structures readily adaptable to reactions in myriad solvents. As the viral structure ensures semisynthetic enzymes remain linked to the genetic sequences responsible for catalysis, future work will tailor the biocatalysts to high-demand synthetic processes by evolving new activities, utilizing high-throughput screening technology and harnessing M13's multifunctionality.

  4. A Rational Engineering Strategy for Designing Protein A-Binding Camelid Single-Domain Antibodies

    Science.gov (United States)

    Henry, Kevin A.; Sulea, Traian; van Faassen, Henk; Hussack, Greg; Purisima, Enrico O.; MacKenzie, C. Roger; Arbabi-Ghahroudi, Mehdi

    2016-01-01

    Staphylococcal protein A (SpA) and streptococcal protein G (SpG) affinity chromatography are the gold standards for purifying monoclonal antibodies (mAbs) in therapeutic applications. However, camelid VHH single-domain Abs (sdAbs or VHHs) are not bound by SpG and only sporadically bound by SpA. Currently, VHHs require affinity tag-based purification, which limits their therapeutic potential and adds considerable complexity and cost to their production. Here we describe a simple and rapid mutagenesis-based approach designed to confer SpA binding upon a priori non-SpA-binding VHHs. We show that SpA binding of VHHs is determined primarily by the same set of residues as in human mAbs, albeit with an unexpected degree of tolerance to substitutions at certain core and non-core positions and some limited dependence on at least one residue outside the SpA interface, and that SpA binding could be successfully introduced into five VHHs against three different targets with no adverse effects on expression yield or antigen binding. Next-generation sequencing of llama, alpaca and dromedary VHH repertoires suggested that species differences in SpA binding may result from frequency variation in specific deleterious polymorphisms, especially Ile57. Thus, the SpA binding phenotype of camelid VHHs can be easily modulated to take advantage of tag-less purification techniques, although the frequency with which this is required may depend on the source species. PMID:27631624

  5. Built-in adjuvanticity of genetically and protein-engineered chimeric molecules for targeting of influenza A peptide epitopes.

    Science.gov (United States)

    Kerekov, Nikola S; Ivanova, Iva I; Mihaylova, Nikolina M; Nikolova, Maria; Prechl, Jozsef; Tchorbanov, Andrey I

    2014-10-01

    Highly purified, subunit, or synthetic viral antigens are known to be weakly immunogenic and potentate only the antibody, rather than cell-mediated immune responses. An alternative approach for inducing protective immunity with small viral peptides would be the direct targeting of viral epitopes to the immunocompetent cells by DNA vaccines encoding antibody fragments specific to activating cell surface co-receptor molecules. Here, we are exploring as a new genetic vaccine, a DNA chimeric molecule encoding a T and B cell epitope-containing influenza A virus hemagglutinin peptide joined to sequences encoding a single-chain variable fragment antibody fragment specific for the costimulatory B cell complement receptors 1 and 2. This recombinant DNA molecule was inserted into eukaryotic expression vector and used as a naked DNA vaccine in WT and CR1/2 KO mice. The intramuscular administration of the DNA construct resulted in the in vivo expression of an immunogenic chimeric protein, which cross-links cell surface receptors on influenza-specific B cells. The DNA vaccination was followed by prime-boosting with the protein-engineered replica of the DNA construct, thus delivering an activation intracellular signal. Immunization with an expression vector containing the described construct and boosting with the protein chimera induced a strong anti-influenza cytotoxic response, modulation of cytokine profile, and a weak antibody response in Balb/c mice. The same immunization scheme did not result in generation of influenza-specific response in mice lacking the target receptor, underlining the molecular adjuvant effect of receptor targeting.

  6. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics

    NARCIS (Netherlands)

    Hontani, Yusaku; Shcherbakova, Daria M.; Baloban, Mikhail; Zhu, Jingyi; Verkhusha, Vladislav V.; Kennis, John T. M.

    2016-01-01

    Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes (BphPs) are of great interest for in vivo imaging. They utilize biliverdin (BV) as a chromophore, which is a heme degradation product, and therefore they are straightforward to use in mammalian tissues. Here, we

  7. Financial security

    NARCIS (Netherlands)

    de Goede, M.; Burgess, J.P.

    2010-01-01

    1. Introduction J. Peter Burgess Part 1: New Security Concepts 2. Civilizational Security Brett Bowden 3. Risk Oliver Kessler 4. Small Arms Keith Krause 5. Critical Human Security Taylor Owen 6. Critical Geopolitics Simon Dalby Part 2: New Security Subjects 7. Biopolitics Michael Dillon 8. Gendered

  8. Cyber security

    CERN Document Server

    Voeller, John G

    2014-01-01

    Cyber Security features articles from the Wiley Handbook of Science and Technology for Homeland Security covering topics related to cyber security metrics and measure  and related technologies that meet security needs. Specific applications to web services, the banking and the finance sector, and industrial process control systems are discussed.

  9. Center for Coastline Security Technology, Year-2

    National Research Council Canada - National Science Library

    Glegg, Stewart; Glenn, William; Furht, Borko; Beaujean, P. P; Frisk, G; Schock, S; VonEllenrieder, K; Ananthakrishnan, P; An, E; Granata, R

    2007-01-01

    ...), the Imaging Technology Center, the Department of Computer Science and Engineering, and the University Consortium for Intermodal Transportation Safety and Security at Florida Atlantic University...

  10. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Directory of Open Access Journals (Sweden)

    Tohru Minamino

    2016-03-01

    Full Text Available The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  11. The Bacterial Flagellar Type III Export Gate Complex Is a Dual Fuel Engine That Can Use Both H+ and Na+ for Flagellar Protein Export.

    Science.gov (United States)

    Minamino, Tohru; Morimoto, Yusuke V; Hara, Noritaka; Aldridge, Phillip D; Namba, Keiichi

    2016-03-01

    The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+-protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.

  12. Security negotiation

    OpenAIRE

    Mitrović, Miroslav M.; Ivaniš, Željko

    2013-01-01

    Contemporary security challenges, risks and threats represent a resultant of the achieved level of interaction between various entities within the paradigm of global security relations. Asymmetry and nonlinearity are main features of contemporary challenges in the field of global security. Negotiation in the area of security, namely the security negotiation, thus goes beyond just the domain of negotiation in conflicts and takes into consideration particularly asymmetric forms of possible sour...

  13. Smart grid security

    Energy Technology Data Exchange (ETDEWEB)

    Cuellar, Jorge (ed.) [Siemens AG, Muenchen (Germany). Corporate Technology

    2013-11-01

    The engineering, deployment and security of the future smart grid will be an enormous project requiring the consensus of many stakeholders with different views on the security and privacy requirements, not to mention methods and solutions. The fragmentation of research agendas and proposed approaches or solutions for securing the future smart grid becomes apparent observing the results from different projects, standards, committees, etc, in different countries. The different approaches and views of the papers in this collection also witness this fragmentation. This book contains the following papers: 1. IT Security Architecture Approaches for Smart Metering and Smart Grid. 2. Smart Grid Information Exchange - Securing the Smart Grid from the Ground. 3. A Tool Set for the Evaluation of Security and Reliability in Smart Grids. 4. A Holistic View of Security and Privacy Issues in Smart Grids. 5. Hardware Security for Device Authentication in the Smart Grid. 6. Maintaining Privacy in Data Rich Demand Response Applications. 7. Data Protection in a Cloud-Enabled Smart Grid. 8. Formal Analysis of a Privacy-Preserving Billing Protocol. 9. Privacy in Smart Metering Ecosystems. 10. Energy rate at home Leveraging ZigBee to Enable Smart Grid in Residential Environment.

  14. Security Expertise

    DEFF Research Database (Denmark)

    systematic study of security expertise and opens up a productive dialogue between science and technology studies and security studies to investigate the character and consequences of this expertise. In security theory, the study of expertise is crucial to understanding whose knowledge informs security making......This volume brings together scholars from different fields to explore the power, consequences and everyday practices of security expertise. Expertise mediates between different forms of knowledge: scientific and technological, legal, economic and political knowledge. This book offers the first...... and to reflect on the impact and responsibility of security analysis. In science and technology studies, the study of security politics adds a challenging new case to the agenda of research on expertise and policy. The contributors investigate cases such as academic security studies, security think tanks...

  15. Quantum Security of Cryptographic Primitives

    OpenAIRE

    Gagliardoni, Tommaso

    2017-01-01

    We call quantum security the area of IT security dealing with scenarios where one or more parties have access to quantum hardware. This encompasses both the fields of post-quantum cryptography (that is, traditional cryptography engineered to be resistant against quantum adversaries), and quantum cryptography (that is, security protocols designed to be natively run on a quantum infrastructure, such as quantum key distribution). Moreover, there exist also hybrid models, where traditional crypto...

  16. Security and Network Operations [video

    OpenAIRE

    Myrick, Matthew

    2012-01-01

    Senior Security Engineer, Matthew Myrick discusses the current cyber threats that we are all facing, the five W's (who, what, when, where, and how) of cyber security, past and present cyber-attack trends, and ways you can help protect yourself and your enterprise from cyber-attack.

  17. Engineering a Biocompatible Scaffold with Either Micrometre or Nanometre Scale Surface Topography for Promoting Protein Adsorption and Cellular Response

    Directory of Open Access Journals (Sweden)

    Xuan Le

    2013-01-01

    Full Text Available Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

  18. Optimization of Search Engines and Postprocessing Approaches to Maximize Peptide and Protein Identification for High-Resolution Mass Data.

    Science.gov (United States)

    Tu, Chengjian; Sheng, Quanhu; Li, Jun; Ma, Danjun; Shen, Xiaomeng; Wang, Xue; Shyr, Yu; Yi, Zhengping; Qu, Jun

    2015-11-06

    The two key steps for analyzing proteomic data generated by high-resolution MS are database searching and postprocessing. While the two steps are interrelated, studies on their combinatory effects and the optimization of these procedures have not been adequately conducted. Here, we investigated the performance of three popular search engines (SEQUEST, Mascot, and MS Amanda) in conjunction with five filtering approaches, including respective score-based filtering, a group-based approach, local false discovery rate (LFDR), PeptideProphet, and Percolator. A total of eight data sets from various proteomes (e.g., E. coli, yeast, and human) produced by various instruments with high-accuracy survey scan (MS1) and high- or low-accuracy fragment ion scan (MS2) (LTQ-Orbitrap, Orbitrap-Velos, Orbitrap-Elite, Q-Exactive, Orbitrap-Fusion, and Q-TOF) were analyzed. It was found combinations involving Percolator achieved markedly more peptide and protein identifications at the same FDR level than the other 12 combinations for all data sets. Among these, combinations of SEQUEST-Percolator and MS Amanda-Percolator provided slightly better performances for data sets with low-accuracy MS2 (ion trap or IT) and high accuracy MS2 (Orbitrap or TOF), respectively, than did other methods. For approaches without Percolator, SEQUEST-group performs the best for data sets with MS2 produced by collision-induced dissociation (CID) and IT analysis; Mascot-LFDR gives more identifications for data sets generated by higher-energy collisional dissociation (HCD) and analyzed in Orbitrap (HCD-OT) and in Orbitrap Fusion (HCD-IT); MS Amanda-Group excels for the Q-TOF data set and the Orbitrap Velos HCD-OT data set. Therefore, if Percolator was not used, a specific combination should be applied for each type of data set. Moreover, a higher percentage of multiple-peptide proteins and lower variation of protein spectral counts were observed when analyzing technical replicates using Percolator

  19. Argumentation-Based Security Requirements Elicitation: The Next Round

    NARCIS (Netherlands)

    Ionita, Dan; Bullee, Jan-Willem; Wieringa, Roelf J.

    2014-01-01

    Information Security Risk Assessment can be viewed as part of requirements engineering because it is used to translate security goals into security requirements, where security requirements are the desired system properties that mitigate threats to security goals. To improve the defensibility of

  20. Integrated security system definition

    International Nuclear Information System (INIS)

    Campbell, G.K.; Hall, J.R. II

    1985-01-01

    The objectives of an integrated security system are to detect intruders and unauthorized activities with a high degree of reliability and the to deter and delay them until effective response/engagement can be accomplished. Definition of an effective integrated security system requires proper application of a system engineering methodology. This paper summarizes a methodology and describes its application to the problem of integrated security system definition. This process includes requirements identification and analysis, allocation of identified system requirements to the subsystem level and provides a basis for identification of synergistic subsystem elements and for synthesis into an integrated system. The paper discusses how this is accomplished, emphasizing at each step how system integration and subsystem synergism is considered. The paper concludes with the product of the process: implementation of an integrated security system

  1. Watermarking security

    CERN Document Server

    Bas, Patrick; Cayre, François; Doërr, Gwenaël; Mathon, Benjamin

    2016-01-01

    This book explains how to measure the security of a watermarking scheme, how to design secure schemes but also how to attack popular watermarking schemes. This book gathers the most recent achievements in the field of watermarking security by considering both parts of this cat and mouse game. This book is useful to industrial practitioners who would like to increase the security of their watermarking applications and for academics to quickly master this fascinating domain.

  2. Security Locks

    Science.gov (United States)

    Hart, Kevin

    2010-01-01

    According to a 2008 "Year in Review" report by Educational Security Incidents, an online repository that collects data on higher education security issues, the total number of security incidents reported at universities and colleges worldwide rose to 173 in 2008, a 24.5 percent increase over 2007. The number of institutions…

  3. Capturing security requirements for software systems.

    Science.gov (United States)

    El-Hadary, Hassan; El-Kassas, Sherif

    2014-07-01

    Security is often an afterthought during software development. Realizing security early, especially in the requirement phase, is important so that security problems can be tackled early enough before going further in the process and avoid rework. A more effective approach for security requirement engineering is needed to provide a more systematic way for eliciting adequate security requirements. This paper proposes a methodology for security requirement elicitation based on problem frames. The methodology aims at early integration of security with software development. The main goal of the methodology is to assist developers elicit adequate security requirements in a more systematic way during the requirement engineering process. A security catalog, based on the problem frames, is constructed in order to help identifying security requirements with the aid of previous security knowledge. Abuse frames are used to model threats while security problem frames are used to model security requirements. We have made use of evaluation criteria to evaluate the resulting security requirements concentrating on conflicts identification among requirements. We have shown that more complete security requirements can be elicited by such methodology in addition to the assistance offered to developers to elicit security requirements in a more systematic way.

  4. Capturing security requirements for software systems

    Directory of Open Access Journals (Sweden)

    Hassan El-Hadary

    2014-07-01

    Full Text Available Security is often an afterthought during software development. Realizing security early, especially in the requirement phase, is important so that security problems can be tackled early enough before going further in the process and avoid rework. A more effective approach for security requirement engineering is needed to provide a more systematic way for eliciting adequate security requirements. This paper proposes a methodology for security requirement elicitation based on problem frames. The methodology aims at early integration of security with software development. The main goal of the methodology is to assist developers elicit adequate security requirements in a more systematic way during the requirement engineering process. A security catalog, based on the problem frames, is constructed in order to help identifying security requirements with the aid of previous security knowledge. Abuse frames are used to model threats while security problem frames are used to model security requirements. We have made use of evaluation criteria to evaluate the resulting security requirements concentrating on conflicts identification among requirements. We have shown that more complete security requirements can be elicited by such methodology in addition to the assistance offered to developers to elicit security requirements in a more systematic way.

  5. Capturing security requirements for software systems

    Science.gov (United States)

    El-Hadary, Hassan; El-Kassas, Sherif

    2014-01-01

    Security is often an afterthought during software development. Realizing security early, especially in the requirement phase, is important so that security problems can be tackled early enough before going further in the process and avoid rework. A more effective approach for security requirement engineering is needed to provide a more systematic way for eliciting adequate security requirements. This paper proposes a methodology for security requirement elicitation based on problem frames. The methodology aims at early integration of security with software development. The main goal of the methodology is to assist developers elicit adequate security requirements in a more systematic way during the requirement engineering process. A security catalog, based on the problem frames, is constructed in order to help identifying security requirements with the aid of previous security knowledge. Abuse frames are used to model threats while security problem frames are used to model security requirements. We have made use of evaluation criteria to evaluate the resulting security requirements concentrating on conflicts identification among requirements. We have shown that more complete security requirements can be elicited by such methodology in addition to the assistance offered to developers to elicit security requirements in a more systematic way. PMID:25685514

  6. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor

    DEFF Research Database (Denmark)

    Cherezov, Vadim; Rosenbaum, Daniel M; Hanson, Michael A

    2007-01-01

    Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human beta2-adrenergic receptor-T4 lysozyme fusion protein bound to t...

  7. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  8. Information Security Management in Context of Globalization

    OpenAIRE

    Wawak, Slawomir

    2012-01-01

    Modern information technologies are the engine of globalization. At the same time, the global market influences the way of looking at information security. Information security thus becomes an increasingly important field. The article discuses the results of research on information security management systems in public administration in Poland.

  9. Security controls in a Cullinet database environment

    International Nuclear Information System (INIS)

    Thompson, R.E.

    1988-01-01

    Security controls using Cullinet's Integrated Data Management System (IDMS) are examined. IDMS software integrity problems, with emphasis on security package interfaces, are disclosed. Solutions applied at Sandia Laboratories Engineering Information Management computing facilty are presented. An overall IDMS computer security philosophy is reviewed

  10. Computer-aided support for Secure Tropos

    NARCIS (Netherlands)

    Massacci, F.; Mylopoulos, J.; Zannone, N.

    2007-01-01

    In earlier work, we have introduced Secure Tropos, a requirements engineering methodology that extends the Tropos methodology and is intended for the design and analysis of security requirements. This paper briefly recaps the concepts proposed for capturing security aspects, and presents an

  11. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Science.gov (United States)

    Jin, Han; Zhang, Kai; Qiao, Chunyan; Yuan, Anliang; Li, Daowei; Zhao, Liang; Shi, Ce; Xu, Xiaowei; Ni, Shilei; Zheng, Changyu; Liu, Xiaohua; Yang, Bai; Sun, Hongchen

    2014-01-01

    Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2) gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al) nanocomposites plus human BMP-2 complementary(c)DNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI–al nanocomposites efficiently deliver the BMP-2 gene to bone marrow mesenchymal stem cells and that BMP-2 gene-engineered cell sheet is an effective way for promoting bone regeneration. PMID:24855355

  12. Structural and biophysical characterization of an epitope-specific engineered Fab fragment and complexation with membrane proteins: implications for co-crystallization.

    Science.gov (United States)

    Johnson, Jennifer L; Entzminger, Kevin C; Hyun, Jeongmin; Kalyoncu, Sibel; Heaner, David P; Morales, Ivan A; Sheppard, Aly; Gumbart, James C; Maynard, Jennifer A; Lieberman, Raquel L

    2015-04-01

    Crystallization chaperones are attracting increasing interest as a route to crystal growth and structure elucidation of difficult targets such as membrane proteins. While strategies to date have typically employed protein-specific chaperones, a peptide-specific chaperone to crystallize multiple cognate peptide epitope-containing client proteins is envisioned. This would eliminate the target-specific chaperone-production step and streamline the co-crystallization process. Previously, protein engineering and directed evolution were used to generate a single-chain variable (scFv) antibody fragment with affinity for the peptide sequence EYMPME (scFv/EE). This report details the conversion of scFv/EE to an anti-EE Fab format (Fab/EE) followed by its biophysical characterization. The addition of constant chains increased the overall stability and had a negligible impact on the antigen affinity. The 2.0 Å resolution crystal structure of Fab/EE reveals contacts with larger surface areas than those of scFv/EE. Surface plasmon resonance, an enzyme-linked immunosorbent assay, and size-exclusion chromatography were used to assess Fab/EE binding to EE-tagged soluble and membrane test proteins: namely, the β-barrel outer membrane protein intimin and α-helical A2a G protein-coupled receptor (A2aR). Molecular-dynamics simulation of the intimin constructs with and without Fab/EE provides insight into the energetic complexities of the co-crystallization approach.

  13. Security electronics circuits manual

    CERN Document Server

    MARSTON, R M

    1998-01-01

    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  14. Guarding the Gates: Confronting Social Engineering in Nuclear Power

    International Nuclear Information System (INIS)

    LeClair, Jane

    2014-01-01

    The presentation is structured as follows: Overview; Physical Security; Data Security; Intrusion from the Outside; Intrusion From the Inside; Isolate ‘Protected’ Areas; Social Engineering; Questions?

  15. Long-term security of electrical and control engineering equipment in nuclear power stations to withstand a loss of coolant accident

    International Nuclear Information System (INIS)

    Mueller, H.

    1996-01-01

    Electrical and control engineering equipment, which has to function even after many years of operation in the event of a fault in a saturated steam atmosphere of 160 C maximum, is essential in nuclear power stations in order to control a loss of coolant accident. The nuclear power station operators have, for this purpose, developed verification strategies for groups of components, by means of which it is ensured that the electrical and control engineering components are capable of dealing with a loss of coolant accident even at the end of their planned operating life. (orig.) [de

  16. Ligand-directed tosyl chemistry for in situ native protein labeling and engineering in living systems: from basic properties to applications.

    Science.gov (United States)

    Tsukiji, Shinya; Hamachi, Itaru

    2014-08-01

    The ability to introduce any chemical probe to any endogenous target protein in its native environment, that is in cells and in vivo, is anticipated to provide various new exciting tools for biological and biomedical research. Although still at the prototype stage, the ligand-directed tosyl (LDT) chemistry is a novel type of affinity labeling technique that we developed for such a dream. This chemistry allows for modifying native proteins by various chemical probes with high specificity in various biological settings ranging from in vitro (in test tubes) to in living cells and in vivo. Since the first report, the list of proteins that are successfully labeled by the LDT chemistry has been increasing. A growing number of studies have demonstrated its utility to create semisynthetic proteins directly in cellular contexts. The in situ generated semisynthetic proteins are applicable for various types of analysis and imaging of intracellular biological processes. In this review, we summarize the basic properties of the LDT chemistry and its applications toward in situ engineering and analysis of native proteins in living systems. Current limitations and future challenges of this area are also described. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Securing Hadoop

    CERN Document Server

    Narayanan, Sudheesh

    2013-01-01

    This book is a step-by-step tutorial filled with practical examples which will focus mainly on the key security tools and implementation techniques of Hadoop security.This book is great for Hadoop practitioners (solution architects, Hadoop administrators, developers, and Hadoop project managers) who are looking to get a good grounding in what Kerberos is all about and who wish to learn how to implement end-to-end Hadoop security within an enterprise setup. It's assumed that you will have some basic understanding of Hadoop as well as be familiar with some basic security concepts.

  18. Grid Security

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The aim of Grid computing is to enable the easy and open sharing of resources between large and highly distributed communities of scientists and institutes across many independent administrative domains. Convincing site security officers and computer centre managers to allow this to happen in view of today's ever-increasing Internet security problems is a major challenge. Convincing users and application developers to take security seriously is equally difficult. This paper will describe the main Grid security issues, both in terms of technology and policy, that have been tackled over recent years in LCG and related Grid projects. Achievements to date will be described and opportunities for future improvements will be addressed.

  19. Keeping electronic records secure.

    Science.gov (United States)

    Easton, David

    2013-10-01

    Are electronic engineering maintenance records relating to the hospital estate or a medical device as important as electronic patient records? Computer maintenance management systems (CMMS) are increasingly being used to manage all-round maintenance activities. However, the accuracy of the data held on them, and a level of security that prevents tampering with records, or other unauthorised changes to them to 'cover' poor practice, are both essential, so that, should an individual be injured or killed on hospital grounds, and a law suit follow, the estates team can be confident that it has accurate data to prove it has fulfilled its duty of care. Here David Easton MSc CEng FIHEEM MIET, director of Zener Engineering Services, and chair of IHEEM's Medical Devices Advisory Group, discusses the issues around maintenance databases, and the security and integrity of maintenance data.

  20. 40 CFR 91.1008 - National security exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false National security exemption. 91.1008... Engines § 91.1008 National security exemption. (a)(1) Any marine SI engine, otherwise subject to this part... for purposes of national security. No request for exemption is necessary. (2) Manufacturers may...

  1. Cyber-Informed Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Robert S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Benjamin, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinones, Luis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Paz, Jonathan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-03-01

    A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.

  2. Cyber-Informed Engineering

    International Nuclear Information System (INIS)

    Anderson, Robert S.; Benjamin, Jacob; Wright, Virginia L.; Quinones, Luis; Paz, Jonathan

    2017-01-01

    A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.

  3. Social Security.

    Science.gov (United States)

    Social and Labour Bulletin, 1983

    1983-01-01

    This group of articles discusses a variety of studies related to social security and retirement benefits. These studies are related to both developing and developed nations and are also concerned with studying work conditions and government role in administering a democratic social security system. (SSH)

  4. Structure-Guided Design of an Engineered Streptavidin with Reusability to Purify Streptavidin-Binding Peptide Tagged Proteins or Biotinylated Proteins

    OpenAIRE

    Wu, Sau-Ching; Wong, Sui-Lam

    2013-01-01

    Development of a high-affinity streptavidin-binding peptide (SBP) tag allows the tagged recombinant proteins to be affinity purified using the streptavidin matrix without the need of biotinylation. The major limitation of this powerful technology is the requirement to use biotin to elute the SBP-tagged proteins from the streptavidin matrix. Tight biotin binding by streptavidin essentially allows the matrix to be used only once. To address this problem, differences in interactions of biotin an...

  5. Security management

    International Nuclear Information System (INIS)

    Adams, H.W.

    1990-01-01

    Technical progress is moving more and more quickly and the systems thus produced are so complex and have become so unclear to the individual that he can no longer estimate the consequences: Faith in progress has given way to deep mistrust. Companies have adjusted to this change in consciousness. An interesting tendency can be identified: technical security is already available - now the organization of security has become an important objective for companies. The key message of the book is: If outworn technical systems are no longer adequate, the organization must be thoroughly overhauled. Five chapters deal with the following themes: organization as an aspect of society; risk control; aspects of security; is there security in ADP; the broader concept of security. (orig./HP) [de

  6. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals

    OpenAIRE

    Thess, Andreas; Grund, Stefanie; Mui, Barbara L; Hope, Michael J; Baumhof, Patrick; Fotin-Mleczek, Mariola; Schlake, Thomas

    2015-01-01

    Being a transient carrier of genetic information, mRNA could be a versatile, flexible, and safe means for protein therapies. While recent findings highlight the enormous therapeutic potential of mRNA, evidence that mRNA-based protein therapies are feasible beyond small animals such as mice is still lacking. Previous studies imply that mRNA therapeutics require chemical nucleoside modifications to obtain sufficient protein expression and avoid activation of the innate immune system. Here we sh...

  7. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    Science.gov (United States)

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-07-01

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Binding of ReO4- with an engineered MoO42--binding protein: towards a new approach in radiopharmaceutical applications

    International Nuclear Information System (INIS)

    Aryal, Baikuntha P.; Brugarolas, Pedro; He, Chuan

    2012-01-01

    Radiolabeled biomolecules are routinely used for clinical diagnostics. 99m Tc is the most commonly used radioactive tracer in radiopharmaceuticals. 188 Re and 186 Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO 4 - ) ion as a new way to label proteins. We found that a molybdate (MoO 4 2- )-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO 4 - to be 541 nM and we solved a crystal structure of ModA with a bound ReO 4 - . On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K d = 104 nM). High-resolution crystal structures of ModA (1.7 (angstrom)) and A11C/R153C mutant (2.0 (angstrom)) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond.

  9. Binding of ReO4(-) with an engineered MoO4(2-)-binding protein: towards a new approach in radiopharmaceutical applications.

    Science.gov (United States)

    Aryal, Baikuntha P; Brugarolas, Pedro; He, Chuan

    2012-01-01

    Radiolabeled biomolecules are routinely used for clinical diagnostics. (99m)Tc is the most commonly used radioactive tracer in radiopharmaceuticals. (188)Re and (186)Re are also commonly used as radioactive tracers in medicine. However, currently available methods for radiolabeling are lengthy and involve several steps in bioconjugation processes. In this work we present a strategy to engineer proteins that may selectively recognize the perrhenate (ReO(4)(-)) ion as a new way to label proteins. We found that a molybdate (MoO(4)(2-))-binding protein (ModA) from Escherichia coli can bind perrhenate with high affinity. Using fluorescence and isothermal titration calorimetry measurements, we determined the dissociation constant of ModA for ReO(4)(-) to be 541 nM and we solved a crystal structure of ModA with a bound ReO(4)(-). On the basis of the structure we created a mutant protein containing a disulfide linkage, which exhibited increased affinity for perrhenate (K(d) = 104 nM). High-resolution crystal structures of ModA (1.7 Å) and A11C/R153C mutant (2.0 Å) were solved with bound perrhenate. Both structures show that a perrhenate ion occupies the molybdate binding site using the same amino acid residues that are involved in molybdate binding. The overall structure of the perrhenate-bound ModA is unchanged compared with that of the molybdate-bound form. In the mutant protein, the bound perrhenate is further stabilized by the engineered disulfide bond. © SBIC 2011

  10. INFORMATION SYSTEM SECURITY (CYBER SECURITY

    Directory of Open Access Journals (Sweden)

    Muhammad Siddique Ansari

    2016-03-01

    Full Text Available Abstract - Business Organizations and Government unequivocally relies on upon data to deal with their business operations. The most unfavorable impact on association is disappointment of friendship, goodness, trustworthiness, legitimacy and probability of data and administrations. There is an approach to ensure data and to deal with the IT framework's Security inside association. Each time the new innovation is made, it presents some new difficulties for the insurance of information and data. To secure the information and data in association is imperative on the grounds that association nowadays inside and remotely joined with systems of IT frameworks. IT structures are inclined to dissatisfaction and security infringement because of slips and vulnerabilities. These slips and vulnerabilities can be brought on by different variables, for example, quickly creating headway, human slip, poor key particulars, poor movement schedules or censuring the threat. Likewise, framework changes, new deserts and new strikes are a huge piece of the time displayed, which helpers augmented vulnerabilities, disappointments and security infringement all through the IT structure life cycle. The business went to the confirmation that it is essentially difficult to ensure a slip free, risk free and secure IT structure in perspective of the disfigurement of the disavowing security parts, human pass or oversight, and part or supplies frustration. Totally secure IT frameworks don't exist; just those in which the holders may have changing degrees of certainty that security needs of a framework are fulfilled do. The key viewpoints identified with security of data outlining are examined in this paper. From the start, the paper recommends pertinent legitimate structure and their duties including open association obligation, and afterward it returns to present and future time, system limits, structure security in business division. At long last, two key inadequacy markers

  11. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India.

    Science.gov (United States)

    Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C

    2018-01-15

    Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio

  12. Information security management handbook

    CERN Document Server

    Tipton, Harold F

    2006-01-01

    Access Control Systems and Methodology. Telecommunications and Network Security. Security Management Practices. Application Program Security. Cryptography. Computer, System, and Security Architecture. Operations Security. Business Continuity Planning and Disaster Recovery Planning. Law, Investigation and Ethics. Physical Security.

  13. IPv6 Security

    Science.gov (United States)

    Babik, M.; Chudoba, J.; Dewhurst, A.; Finnern, T.; Froy, T.; Grigoras, C.; Hafeez, K.; Hoeft, B.; Idiculla, T.; Kelsey, D. P.; López Muñoz, F.; Martelli, E.; Nandakumar, R.; Ohrenberg, K.; Prelz, F.; Rand, D.; Sciabà, A.; Tigerstedt, U.; Traynor, D.; Wartel, R.

    2017-10-01

    IPv4 network addresses are running out and the deployment of IPv6 networking in many places is now well underway. Following the work of the HEPiX IPv6 Working Group, a growing number of sites in the Worldwide Large Hadron Collider Computing Grid (WLCG) are deploying dual-stack IPv6/IPv4 services. The aim of this is to support the use of IPv6-only clients, i.e. worker nodes, virtual machines or containers. The IPv6 networking protocols while they do contain features aimed at improving security also bring new challenges for operational IT security. The lack of maturity of IPv6 implementations together with the increased complexity of some of the protocol standards raise many new issues for operational security teams. The HEPiX IPv6 Working Group is producing guidance on best practices in this area. This paper considers some of the security concerns for WLCG in an IPv6 world and presents the HEPiX IPv6 working group guidance for the system administrators who manage IT services on the WLCG distributed infrastructure, for their related site security and networking teams and for developers and software engineers working on WLCG applications.

  14. Strategic information security

    CERN Document Server

    Wylder, John

    2003-01-01

    Introduction to Strategic Information SecurityWhat Does It Mean to Be Strategic? Information Security Defined The Security Professional's View of Information Security The Business View of Information SecurityChanges Affecting Business and Risk Management Strategic Security Strategic Security or Security Strategy?Monitoring and MeasurementMoving Forward ORGANIZATIONAL ISSUESThe Life Cycles of Security ManagersIntroductionThe Information Security Manager's Responsibilities The Evolution of Data Security to Information SecurityThe Repository Concept Changing Job Requirements Business Life Cycles

  15. Security Bingo

    CERN Multimedia

    Computer Security Team

    2011-01-01

    Want to check your security awareness and win one of three marvellous books on computer security? Just print out this page, mark which of the 25 good practices below you already follow, and send the sheet back to us by 31 October 2011 at either Computer.Security@cern.ch or P.O. Box G19710.   Winners[1] must show that they fulfil at least five good practices in a continuous vertical, horizontal or diagonal row. For details on CERN Computer Security, please consult http://cern.ch/security. I personally…   …am concerned about computer security. …run my computer with an anti-virus software and up-to-date signature files. …lock my computer screen whenever I leave my office. …have chosen a reasonably complex password. …have restricted access to all my files and data. …am aware of the security risks and threats to CERN’s computing facilities. &hell...

  16. Protein Engineering by Random Mutagenesis and Structure-Guided Consensus of Geobacillus stearothermophilus Lipase T6 for Enhanced Stability in Methanol

    Science.gov (United States)

    Dror, Adi; Shemesh, Einav; Dayan, Natali

    2014-01-01

    The abilities of enzymes to catalyze reactions in nonnatural environments of organic solvents have opened new opportunities for enzyme-based industrial processes. However, the main drawback of such processes is that most enzymes have a limited stability in polar organic solvents. In this study, we employed protein engineering methods to generate a lipase for enhanced stability in methanol, which is important for biodiesel production. Two protein engineering approaches, random mutagenesis (error-prone PCR) and structure-guided consensus, were applied in parallel on an unexplored lipase gene from Geobacillus stearothermophilus T6. A high-throughput colorimetric screening assay was used to evaluate lipase activity after an incubation period in high methanol concentrations. Both protein engineering approaches were successful in producing variants with elevated half-life values in 70% methanol. The best variant of the random mutagenesis library, Q185L, exhibited 23-fold-improved stability, yet its methanolysis activity was decreased by one-half compared to the wild type. The best variant from the consensus library, H86Y/A269T, exhibited 66-fold-improved stability in methanol along with elevated thermostability (+4.3°C) and a 2-fold-higher fatty acid methyl ester yield from soybean oil. Based on in silico modeling, we suggest that the Q185L substitution facilitates a closed lid conformation that limits access for both the methanol and substrate excess into the active site. The enhanced stability of H86Y/A269T was a result of formation of new hydrogen bonds. These improved characteristics make this variant a potential biocatalyst for biodiesel production. PMID:24362426

  17. Efficiently engineered cell sheet using a complex of polyethylenimine–alginate nanocomposites plus bone morphogenetic protein 2 gene to promote new bone formation

    Directory of Open Access Journals (Sweden)

    Jin H

    2014-05-01

    Full Text Available Han Jin,1 Kai Zhang,2 Chunyan Qiao,1 Anliang Yuan,1 Daowei Li,1 Liang Zhao,1 Ce Shi,1 Xiaowei Xu,1 Shilei Ni,1 Changyu Zheng,3 Xiaohua Liu,4 Bai Yang,2 Hongchen Sun11Department of Pathology, School of Stomatology, Jilin University, Changchun, People’s Republic of China; 2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, People’s Republic of China; 3Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA; 4Department of Biomedical Sciences, Texas A&M University Baylor College of Dentistry, Dallas, TX, USAAbstract: Regeneration of large bone defects is a common clinical problem. Recently, stem cell sheet has been an emerging strategy in bone tissue engineering. To enhance the osteogenic potential of stem cell sheet, we fabricated bone morphogenetic protein 2 (BMP-2 gene-engineered cell sheet using a complex of polyethylenimine–alginate (PEI–al nanocomposites plus human BMP-2 complementary(cDNA plasmid, and studied its osteogenesis in vitro and in vivo. PEI–al nanocomposites carrying BMP-2 gene could efficiently transfect bone marrow mesenchymal stem cells. The cell sheet was made by culturing the cells in medium containing vitamin C for 10 days. Assays on the cell culture showed that the genetically engineered cells released the BMP-2 for at least 14 days. The expression of osteogenesis-related gene was increased, which demonstrated that released BMP-2 could effectively induce the cell sheet osteogenic differentiation in vitro. To further test the osteogenic potential of the cell sheet in vivo, enhanced green fluorescent protein or BMP-2-producing cell sheets were treated on the cranial bone defects. The results indicated that the BMP-2-producing cell sheet group was more efficient than other groups in promoting bone formation in the defect area. Our results suggested that PEI

  18. Green Secure Processors: Towards Power-Efficient Secure Processor Design

    Science.gov (United States)

    Chhabra, Siddhartha; Solihin, Yan

    With the increasing wealth of digital information stored on computer systems today, security issues have become increasingly important. In addition to attacks targeting the software stack of a system, hardware attacks have become equally likely. Researchers have proposed Secure Processor Architectures which utilize hardware mechanisms for memory encryption and integrity verification to protect the confidentiality and integrity of data and computation, even from sophisticated hardware attacks. While there have been many works addressing performance and other system level issues in secure processor design, power issues have largely been ignored. In this paper, we first analyze the sources of power (energy) increase in different secure processor architectures. We then present a power analysis of various secure processor architectures in terms of their increase in power consumption over a base system with no protection and then provide recommendations for designs that offer the best balance between performance and power without compromising security. We extend our study to the embedded domain as well. We also outline the design of a novel hybrid cryptographic engine that can be used to minimize the power consumption for a secure processor. We believe that if secure processors are to be adopted in future systems (general purpose or embedded), it is critically important that power issues are considered in addition to performance and other system level issues. To the best of our knowledge, this is the first work to examine the power implications of providing hardware mechanisms for security.

  19. Computer security

    CERN Document Server

    Gollmann, Dieter

    2011-01-01

    A completely up-to-date resource on computer security Assuming no previous experience in the field of computer security, this must-have book walks you through the many essential aspects of this vast topic, from the newest advances in software and technology to the most recent information on Web applications security. This new edition includes sections on Windows NT, CORBA, and Java and discusses cross-site scripting and JavaScript hacking as well as SQL injection. Serving as a helpful introduction, this self-study guide is a wonderful starting point for examining the variety of competing sec

  20. Secure PVM

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.H.; Venugopal, N.

    1996-09-01

    This research investigates techniques for providing privacy, authentication, and data integrity to PVM (Parallel Virtual Machine). PVM is extended to provide secure message passing with no changes to the user`s PVM application, or, optionally, security can be provided on a message-by message basis. Diffe-Hellman is used for key distribution of a single session key for n-party communication. Keyed MD5 is used for message authentication, and the user may select from various secret-key encryption algorithms for message privacy. The modifications to PVM are described, and the performance of secure PVM is evaluated.

  1. Junos Security

    CERN Document Server

    Cameron, Rob; Giecco, Patricio; Eberhard, Timothy; Quinn, James

    2010-01-01

    Junos® Security is the complete and authorized introduction to the new Juniper Networks SRX hardware series. This book not only provides a practical, hands-on field guide to deploying, configuring, and operating SRX, it also serves as a reference to help you prepare for any of the Junos Security Certification examinations offered by Juniper Networks. Network administrators and security professionals will learn how to use SRX Junos services gateways to address an array of enterprise data network requirements -- including IP routing, intrusion detection, attack mitigation, unified threat manag

  2. Information security practices emerging threats and perspectives

    CERN Document Server

    Awad, Ahmed; Woungang, Isaac

    2017-01-01

    This book introduces novel research targeting technical aspects of protecting information security and establishing trust in the digital space. New paradigms, and emerging threats and solutions are presented in topics such as application security and threat management; modern authentication paradigms; digital fraud detection; social engineering and insider threats; cyber threat intelligence; intrusion detection; behavioral biometrics recognition; hardware security analysis. The book presents both the important core and the specialized issues in the areas of protection, assurance, and trust in information security practice. It is intended to be a valuable resource and reference for researchers, instructors, students, scientists, engineers, managers, and industry practitioners. .

  3. Your employees: the front line in cyber security

    OpenAIRE

    Ashenden, D

    2016-01-01

    First published in The Chemical Engineer and reproduced by Crest - Centre for Research and Evidence on Security Threats, 26/01/2016 (https://crestresearch.ac.uk/comment/employees-front-line-cyber-security/)

  4. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tissue engineering.

    Science.gov (United States)

    Zhang, Ning; Gao, Tianlin; Wang, Yu; Wang, Zongliang; Zhang, Peibiao; Liu, Jianguo

    2015-01-01

    To explore the controlled delivery of protein drugs in micro-environment established by osteoblasts or osteoclasts, the loading/release properties of bovine serum albumin (BSA) depending on pH environment were assessed. The adsorption amounts over mesoporous hydroxyapatite (MHA) or hydroxyapatite (HA) decreased as the pH increased, negatively correlating with zeta-potential values. The adsorption behavior over MHA fits well with the Freundlich and Langmuir models at different pHs. The results suggest that the adsorbed amount of protein on MHA or HA depended on the pH of protein solution. MHA adsorbed BSA at basic pH (MHApH 8.4) exhibited a different release kinetics compared with those in acid and neutral environments (MHApH 4.7 and MHApH 7.4), indicating that the release of protein could be regulated by environmental pH at which MHAs adsorb protein. MHApH 8.4 showed a sustained release for 6h before a gradual release when immersing in acidic environment, which is 2h longer than that in neutral environment. This suggests that MHApH 8.4 showed a more sustained release in acidic environment, which can be established by osteoclasts. The variation of adsorption strength between protein and MHA may be responsible for these behaviors. Our findings may be very useful for the development of MHA applications on both bone repair and protein delivery. Copyright © 2014. Published by Elsevier B.V.

  5. Engineering [Ln(DPA){sub 3}]{sup 3-} binding sites in proteins: a widely applicable method for tagging proteins with lanthanide ions

    Energy Technology Data Exchange (ETDEWEB)

    Jia Xinying; Yagi, Hiromasa; Su Xuncheng; Stanton-Cook, Mitchell; Huber, Thomas; Otting, Gottfried, E-mail: gottfried.otting@anu.edu.au [Australian National University, Research School of Chemistry (Australia)

    2011-08-15

    Paramagnetic relaxation enhancements from unpaired electrons observed in nuclear magnetic resonance (NMR) spectra present powerful long-range distance restraints. The most frequently used paramagnetic tags, however, are tethered to the protein via disulfide bonds, requiring proteins with single cysteine residues for covalent attachment. Here we present a straightforward strategy to tag proteins site-specifically with paramagnetic lanthanides without a tether and independent of cysteine residues. It relies on preferential binding of the complex between three dipicolinic acid molecules (DPA) and a lanthanide ion (Ln{sup 3+}), [Ln(DPA){sub 3}]{sup 3-}, to a pair of positively charged amino acids whose charges are not compensated by negatively charged residues nearby. This situation rarely occurs in wild-type proteins, allowing the creation of specific binding sites simply by introduction of positively charged residues that are positioned far from glutamate or aspartate residues. The concept is demonstrated with the hnRNPLL RRM1 domain. In addition, we show that histidine- and arginine-tags present binding sites for [Ln(DPA){sub 3}]{sup 3-}.

  6. Collective Security

    DEFF Research Database (Denmark)

    Galster, Kjeld

    in worldwide market conditions left perceptible ripples in Danish economy, budget discussions grew in importance over this period. The pacifist stance entailed disinclination to accept that the collective security concept and international treaties and accords signed by Denmark should necessitate credible...... and other international treaties provided arguments for adjusting the foreign and security policy ambitions, and since the general flux in worldwide market conditions left perceptible ripples in Danish economy, budget discussions grew in importance over this period. The pacifist stance entailed......Collective Security: National Egotism (Abstract) In Danish pre-World War I defence debate the notion of collective security is missing. During the early years of the 19th century, the political work is influenced by a pervasive feeling of rising tension and danger on the continent of Europe...

  7. Security Transformation

    National Research Council Canada - National Science Library

    Metz, Steven

    2003-01-01

    ... adjustment. With American military forces engaged around the world in both combat and stabilization operations, the need for rigorous and critical analysis of security transformation has never been greater...

  8. European Security

    DEFF Research Database (Denmark)

    Møller, Bjørn

    Theoretical chapters on "Security", "Organisations" and "Regions," Historical Chapters on "Europe and Its Distinguishing Features" and on "The United Nations," "NATO," "The CSCE/OSCE and the Council of Europe" and "The European Union"......Theoretical chapters on "Security", "Organisations" and "Regions," Historical Chapters on "Europe and Its Distinguishing Features" and on "The United Nations," "NATO," "The CSCE/OSCE and the Council of Europe" and "The European Union"...

  9. Data Security

    OpenAIRE

    Lopez, Diego

    2013-01-01

    Training specialists in the field of data security and security administrators for the information systems represents a significant priority demanded by both governmental environments and the central and local administrations, as well as by the private sector - companies, banks. They are responsible for implementing information services and systems, but they are also their beneficiaries, with applicability in fields such as: e government, e-administration, e-banking, e-commerce, e-payment, wh...

  10. Iris Cryptography for Security Purpose

    Science.gov (United States)

    Ajith, Srighakollapu; Balaji Ganesh Kumar, M.; Latha, S.; Samiappan, Dhanalakshmi; Muthu, P.

    2018-04-01

    In today's world, the security became the major issue to every human being. A major issue is hacking as hackers are everywhere, as the technology was developed still there are many issues where the technology fails to meet the security. Engineers, scientists were discovering the new products for security purpose as biometrics sensors like face recognition, pattern recognition, gesture recognition, voice authentication etcetera. But these devices fail to reach the expected results. In this work, we are going to present an approach to generate a unique secure key using the iris template. Here the iris templates are processed using the well-defined processing techniques. Using the encryption and decryption process they are stored, traversed and utilized. As of the work, we can conclude that the iris cryptography gives us the expected results for securing the data from eavesdroppers.

  11. Nuclear security

    International Nuclear Information System (INIS)

    1991-12-01

    This paper reports that despite their crucial importance to national security, safeguards at the Department of Energy's (DOE) weapons facilities may be falling short. DOE security inspections have identified many weaknesses, including poor performance by members of DOE's security force, poor accountability for quantities of nuclear materials, and the inability of personnel to locate documents containing classified information. About 13 percent of the 2,100 identified weakness resulted in DOE inspectors giving out unsatisfactory security ratings; another 38 percent led to marginal ratings. In addition, DOE's centralized safeguards and security information tracking system lacks current data on whether DOE field offices have corrected the identified weaknesses. Without reliable information, DOE has no way of knowing whether timely action was taken to correct problems, nor can it determine whether weaknesses are systematic. DOE has tried to minimize the impact of these security weaknesses at its facilities by establishing multiple layers of protection measures and instituting interim and compensatory measures for identified weaknesses. DOE is planning enhancements to the centralized tracking system that should improve its reliability and increase its effectiveness

  12. FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Dorina Ardelean

    2013-12-01

    Full Text Available The assurance of food security at the individual level doesn’t implicitly provide for the one at family level as the concepts of hunger, malnutrition and food insecurity are the steps of the same process of access restricted to a sufficient supply of food. In order to achieve food security at the individual level the following is necessary: ensuring food availability (production, reserve stocks; redistribution of food availability within the country or out through international exchanges; effective access of the population to purchase food consumer goods, by ensuring its effective demand as required. Food security of families (FFS is required for assuring individual food security (IFS, but it is not sufficient because the food available may be unevenly distributed between family members. National food security (NFS corresponds to the possibilities that different countries have to ensure both FFS and IFS without sacrificing other important objectives. Under the name of GAS is defined the global food security which represents permanent access for the entire population of the globe to the necessary food for a healthy and active life.

  13. A Security Approach in System Development Life Cycle

    OpenAIRE

    P.Mahizharuvi; Dr.Alagarsamy

    2011-01-01

    Many software organizations today are confronted with challenge of building secure software systems. Traditional software engineering principles place little emphasis on security. These principles tend to tread security as one of a long list of quality factors that are expected from all professionally developed software. As software systems of today have a wide reach, security has become a more important factor than ever in the history of software engineering can no longer be treated as Separ...

  14. Security an introduction

    CERN Document Server

    Purpura, Philip P

    2011-01-01

    Section I The History and Profession of SecurityDefinition, Role, and History of Security Security Defined The Contexts of Security The Roles of Security The History of Security Security in an Environment of Threats, Terrorism, and All-Hazards Threats and Hazards Terrorism National Strategies The Profession and Business of Security The Business of Security Professionalism and Security Associations Ethics Regulation of the Security Industry Security Training Higher Education Careers Section II Protecting People and AssetsSecurity Methodology Methodology Defined Security Business Proposals Secur

  15. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation

    Directory of Open Access Journals (Sweden)

    Gómez-Pastor Rocío

    2012-01-01

    Full Text Available Abstract Background In the yeast biomass production process, protein carbonylation has severe adverse effects since it diminishes biomass yield and profitability of industrial production plants. However, this significant detriment of yeast performance can be alleviated by increasing thioredoxins levels. Thioredoxins are important antioxidant defenses implicated in many functions in cells, and their primordial functions include scavenging of reactive oxygen species that produce dramatic and irreversible alterations such as protein carbonylation. Results In this work we have found several proteins specifically protected by yeast Thioredoxin 2 (Trx2p. Bidimensional electrophoresis and carbonylated protein identification from TRX-deficient and TRX-overexpressing cells revealed that glycolysis and fermentation-related proteins are specific targets of Trx2p protection. Indeed, the TRX2 overexpressing strain presented increased activity of the central carbon metabolism enzymes. Interestingly, Trx2p specifically preserved alcohol dehydrogenase I (Adh1p from carbonylation, decreased oligomer aggregates and increased its enzymatic activity. Conclusions The identified proteins suggest that the fermentative capacity detriment observed under industrial conditions in T73 wine commercial strain results from the oxidative carbonylation of specific glycolytic and fermentation enzymes. Indeed, increased thioredoxin levels enhance the performance of key fermentation enzymes such as Adh1p, which consequently increases fermentative capacity.

  16. A Development Framework for Software Security in Nuclear Safety Systems: Integrating Secure Development and System Security Activities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jaekwan; Suh, Yongsuk [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-02-15

    The protection of nuclear safety software is essential in that a failure can result in significant economic loss and physical damage to the public. However, software security has often been ignored in nuclear safety software development. To enforce security considerations, nuclear regulator commission recently issued and revised the security regulations for nuclear computer-based systems. It is a great challenge for nuclear developers to comply with the security requirements. However, there is still no clear software development process regarding security activities. This paper proposes an integrated development process suitable for the secure development requirements and system security requirements described by various regulatory bodies. It provides a three-stage framework with eight security activities as the software development process. Detailed descriptions are useful for software developers and licensees to understand the regulatory requirements and to establish a detailed activity plan for software design and engineering.

  17. Security Technologies for Open Networking Environments (STONE)

    Energy Technology Data Exchange (ETDEWEB)

    Muftic, Sead

    2005-03-31

    Under this project SETECS performed research, created the design, and the initial prototype of three groups of security technologies: (a) middleware security platform, (b) Web services security, and (c) group security system. The results of the project indicate that the three types of security technologies can be used either individually or in combination, which enables effective and rapid deployment of a number of secure applications in open networking environments. The middleware security platform represents a set of object-oriented security components providing various functions to handle basic cryptography, X.509 certificates, S/MIME and PKCS No.7 encapsulation formats, secure communication protocols, and smart cards. The platform has been designed in the form of security engines, including a Registration Engine, Certification Engine, an Authorization Engine, and a Secure Group Applications Engine. By creating a middleware security platform consisting of multiple independent components the following advantages have been achieved - Object-oriented, Modularity, Simplified Development, and testing, Portability, and Simplified extensions. The middleware security platform has been fully designed and a preliminary Java-based prototype has been created for the Microsoft Windows operating system. The Web services security system, designed in the project, consists of technologies and applications that provide authentication (i.e., single sign), authorization, and federation of identities in an open networking environment. The system is based on OASIS SAML and XACML standards for secure Web services. Its topology comprises three major components: Domain Security Server (DSS) is the main building block of the system Secure Application Server (SAS) Secure Client In addition to the SAML and XACML engines, the authorization system consists of two sets of components An Authorization Administration System An Authorization Enforcement System Federation of identities in multi

  18. Security and privacy in smart grids

    CERN Document Server

    Xiao, Yang

    2013-01-01

    Presenting the work of prominent researchers working on smart grids and related fields around the world, Security and Privacy in Smart Grids identifies state-of-the-art approaches and novel technologies for smart grid communication and security. It investigates the fundamental aspects and applications of smart grid security and privacy and reports on the latest advances in the range of related areas-making it an ideal reference for students, researchers, and engineers in these fields. The book explains grid security development and deployment and introduces novel approaches for securing today'

  19. DIRAC Security

    CERN Document Server

    Casajús Ramo, A

    2006-01-01

    DIRAC is the LHCb Workload and Data Management System. Based on a service-oriented architecture, it enables generic distributed computing with lightweight Agents and Clients for job execution and data transfers. DIRAC implements a client-server architecture exposing server methods through XML Remote Procedure Call (XML-RPC) protocol. DIRAC is mostly coded in python. DIRAC security infrastructure has been designed to be a completely generic XML-RPC transport over a SSL tunnel. This new security layer is able to handle standard X509 certificates as well as grid-proxies to authenticate both sides of the connection. Serve and client authentication relies over OpenSSL and py-Open SSL, but to be able to handle grid proxies some modifications have been added to those libraries. DIRAC security infrastructure handles authorization and authorization as well as provides extended capabilities like secure connection tunneling and file transfer. Using this new security infrastructure all LHCb users can safely make use o...

  20. CCNA Security Study Guide, Exam 640-553

    CERN Document Server

    Boyles, Tim

    2010-01-01

    A complete study guide for the new CCNA Security certification exam. In keeping with its status as the leading publisher of CCNA study guides, Sybex introduces the complete guide to the new CCNA security exam. The CCNA Security certification is the first step towards Cisco's new Cisco Certified Security Professional (CCSP) and Cisco Certified Internetworking Engineer-Security. With a foreword by CCNA networking authority Todd Lammle, CCNA Security Study Guide fully covers every exam objective. The companion CD includes the Sybex Test Engine, flashcards, and a PDF of the book.: The CCNA Securit

  1. Privatising Security

    Directory of Open Access Journals (Sweden)

    Irina Mindova-Docheva

    2016-06-01

    Full Text Available The article proposes an analysis of the different approaches towards employing the international legal framework in the regulation and oversight of private military and security companies’ operation in armed conflicts and in peace time security systems. It proposes a partnership-based approach for public and private actors aiming at creating and sharing common values under the principles of solidarity, protection of human rights and rule of law. A focus of further research should be the process of shaping those common values.

  2. Construction of multifunctional proteins for tissue engineering: epidermal growth factor with collagen binding and cell adhesive activities.

    Science.gov (United States)

    Hannachi Imen, Elloumi; Nakamura, Makiko; Mie, Masayasu; Kobatake, Eiry

    2009-01-01

    The development of different techniques based on natural and polymeric scaffolds are useful for the design of different biomimetic materials. These approaches, however, require supplementary steps for the chemical or physical modification of the biomaterial. To avoid such steps, in the present study, we constructed a new multifunctional protein that can be easily immobilized onto hydrophobic surfaces, and at the same time helps enhance specific cell adhesion and proliferation onto collagen substrates. A collagen binding domain was fused to a previously constructed protein, which had an epidermal growth factor fused to a hydrophobic peptide that allows for cell adhesion. The new fusion protein, designated fnCBD-ERE-EGF is produced in Escherichia coli, and its abilities to bind to collagen and promote cell proliferation were investigated. fnCBD-ERE-EGF was shown to keep both collagen binding and cell growth-promoting activities comparable to those of the corresponding unfused proteins. The results obtained in this study also suggest the use of a fnCBD-ERE-EGF as an alternative for the design of multifunctional ECM-bound growth factor based materials.

  3. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  4. Teaching Information Security Students to "Think thief"

    NARCIS (Netherlands)

    Hartel, Pieter H.; Junger, Marianne

    2012-01-01

    We report on an educational experiment where information security master students were encouraged to think out of the box. Instead of taking the usual point of view of the security engineer we challenged the students to take the point of view of the motivated offender. We report on the exciting

  5. Securities issues in reserves reporting

    International Nuclear Information System (INIS)

    Legg, M.B.

    1997-01-01

    Securities issues in oil and gas reserves reporting were discussed. Alberta requires specific information regarding important oil and gas properties, plants, facilities and installations. When preparing the reserves report, the following elements are important to consider: (1) the author of the report must be a registered professional engineer or registered professional geologist, (2) the report itself must be an engineering document, (3) the content of the report must be extensive, (4) it should be prepared in accordance with petroleum engineering and evaluation practices, and must include a summary of estimated net reserves

  6. Information Security

    NARCIS (Netherlands)

    Hartel, Pieter H.; Suryana Herman, Nanna; Leukfeldt, E.R.; Stol, W.Ph.

    2012-01-01

    Information security is all about the protection of digital assets, such as digital content, personal health records, state secrets etc. These assets can be handled by a party who is authorised to access and control the asset or a party who is not authorised to do so. Authorisation determines who is

  7. Food security

    NARCIS (Netherlands)

    Ridder, M. de

    2011-01-01

    Food security is back on the agenda as a top priority for policy makers. In January 2011, record high food prices resulted in protests in Tunisia, which subsequently led to the spread of the revolutions in other North African and Middle Eastern countries. Although experts have asserted that no

  8. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Peng, Bingyin; Nielsen, Lars K.; Kampranis, Sotirios C

    2018-01-01

    Monoterpene production in Saccharomyces cerevisae requires the introduction of heterologous monoterpene synthases (MTSs). The endogenous farnesyl pyrosphosphate synthase (FPPS; Erg20p) competes with MTSs for the precursor geranyl pyrophosphate (GPP), which limits the production of monoterpenes. ERG......20 is an essential gene that cannot be deleted and transcriptional down-regulation of ERG20 has failed to improve monoterpene production. Here, we investigated an N-degron-dependent protein degradation strategy to down-regulate Erg20p activity. Degron tagging decreased GFP protein half......-life drastically to 1 h (degron K3K15) or 15 min (degrons KN113 and KN119). Degron tagging of ERG20 was therefore paired with a sterol responsive promoter to ensure sufficient metabolic flux to essential downstream sterols despite the severe destabilisation effect of degron tagging. A dual monoterpene...

  9. Enhanced expression of membrane proteins in E. coli with a PBAD promoter mutant: synergies with chaperone pathway engineering strategies

    Directory of Open Access Journals (Sweden)

    Nannenga Brent L

    2011-12-01

    Full Text Available Abstract Background Membrane proteins (MPs populate 20-30% of genomes sequenced to date and hold potential as therapeutic targets as well as for practical applications in bionanotechnology. However, MP toxicity and low yields in normally robust expression hosts such as E. coli has curtailed progress in our understanding of their structure and function. Results Using the seven transmembrane segments H. turkmenica deltarhodopsin (HtdR as a reporter, we isolated a spontaneous mutant in the arabinose-inducible PBAD promoter leading to improved cell growth and a twofold increase in the recovery of active HtdR at 37°C. A single transversion in a conserved region of the cyclic AMP receptor protein binding site caused the phenotype by reducing htdR transcript levels by 65%. When the mutant promoter was used in conjunction with a host lacking the molecular chaperone Trigger Factor (Δtig cells, toxicity was further suppressed and the amount of correctly folded HtdR was 4-fold that present in the membranes of control cells. More importantly, while improved growth barely compensated for the reduction in transcription rates when another polytopic membrane protein (N. pharonis sensory rhodopsin II was expressed under control of the mutant promoter in wild type cells, a 4-fold increase in productivity could be achieved in a Δtig host. Conclusions Our system, which combines a downregulated version of the tightly repressed PBAD promoter with a TF-deficient host may prove a valuable alternative to T7-based expression for the production of membrane proteins that have so far remained elusive targets.

  10. Magnesium Presence Prevents Removal of Antigenic Nuclear-Associated Proteins from Bovine Pericardium for Heart Valve Engineering.

    Science.gov (United States)

    Dalgliesh, Ailsa J; Liu, Zhi Zhao; Griffiths, Leigh G

    2017-07-01

    Current heart valve prostheses are associated with significant complications, including aggressive immune response, limited valve life expectancy, and inability to grow in juvenile patients. Animal derived "tissue" valves undergo glutaraldehyde fixation to mask tissue antigenicity; however, chronic immunological responses and associated calcification still commonly occur. A heart valve formed from an unfixed bovine pericardium (BP) extracellular matrix (ECM) scaffold, in which antigenic burden has been eliminated or significantly reduced, has potential to overcome deficiencies of current bioprostheses. Decellularization and antigen removal methods frequently use sequential solutions extrapolated from analytical chemistry approaches to promote solubility and removal of tissue components from resultant ECM scaffolds. However, the extent to which such prefractionation strategies may inhibit removal of antigenic tissue components has not been explored. We hypothesize that presence of magnesium in prefractionation steps causes DNA precipitation and reduces removal of nuclear-associated antigenic proteins. Keeping all variables consistent bar the addition or absence of magnesium (2 mM magnesium chloride hexahydrate), residual BP ECM scaffold antigenicity and removed antigenicity were assessed, along with residual and removed DNA content, ECM morphology, scaffold composition, and recellularization potential. Furthermore, we used proteomic methods to determine the mechanism by which magnesium presence or absence affects scaffold residual antigenicity. This study demonstrates that absence of magnesium from antigen removal solutions enhances solubility and subsequent removal of antigenic nuclear-associated proteins from BP. We therefore conclude that the primary mechanism of action for magnesium removal during antigen removal processes is avoidance of DNA precipitation, facilitating solubilization and removal of nuclear-associated antigenic proteins. Future studies are

  11. The making of the minibody: an engineered beta-protein for the display of conformationally constrained peptides.

    Science.gov (United States)

    Tramontano, A; Bianchi, E; Venturini, S; Martin, F; Pessi, A; Sollazzo, M

    1994-03-01

    Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost the drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue beta-protein aimed at retaining some desirable features of immunoglobulin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of the main chain conformation of the same regions, based on the 'canonical structures' model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical synthesis and expression in E. coli and characterized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low solubility. We were able to overcome this problem both by further mutagenesis of the framework and by addition of a solubilizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.

  12. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody.

    Science.gov (United States)

    Fatemi, Farnaz; Amini, Seyed Mohammad; Kharrazi, Sharmin; Rasaee, Mohammad Javad; Mazlomi, Mohammad Ali; Asadi-Ghalehni, Majid; Rajabibazl, Masoumeh; Sadroddiny, Esmaeil

    2017-11-01

    The most common techniques of antibody phage display are based on the use of M13 filamentous bacteriophages. This study introduces a new genetically engineered M13K07 helper phage displaying multiple copies of a known gold binding peptide on p8 coat proteins. The recombinant helper phages were used to rescue a phagemid vector encoding the p3 coat protein fused to the nuclear matrix protein 22 (NMP22) ScFv antibody. Transmission electron microscopy (TEM), UV-vis absorbance spectroscopy, and field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDX) analysis revealed that the expression of gold binding peptide 1 (GBP1) on major coat protein p8 significantly enhances the gold-binding affinity of M13 phages. The recombinant bacteriophages at concentrations above 5×10 4 pfu/ml red-shifted the UV-vis absorbance spectra of gold nanoparticles (AuNPs); however, the surface plasmon resonance of gold nanoparticles was not changed by the wild type bacteriophages at concentrations up to 10 12 pfu/ml. The phage ELISA assay demonstrated the high affinity binding of bifunctional bacteriophages to NMP22 antigen at concentrations of 10 5 and 10 6 pfu/ml. Thus, the p3 end of the bifunctional bacteriophages would be able to bind to specific target antigen, while the AuNPs were assembled along the coat of virus for signal generation. Our results indicated that the complex of antigen-bacteriophages lead to UV-vis spectral changes of AuNPs and NMP22 antigen in concentration range of 10-80μg/ml can be detected by bifunctional bacteriophages at concentration of 10 4 pfu/ml. The ability of bifunctional bacteriophages to bind to antigen and generate signal at the same time, makes this approach applicable for identifying different antigens in immunoassay techniques. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Comparative analysis of the folding dynamics and kinetics of an engineered knotted protein and its variants derived from HP0242 of Helicobacter pylori

    Science.gov (United States)

    Wang, Liang-Wei; Liu, Yu-Nan; Lyu, Ping-Chiang; Jackson, Sophie E.; Hsu, Shang-Te Danny

    2015-09-01

    Understanding the mechanism by which a polypeptide chain thread itself spontaneously to attain a knotted conformation has been a major challenge in the field of protein folding. HP0242 is a homodimeric protein from Helicobacter pylori with intertwined helices to form a unique pseudo-knotted folding topology. A tandem HP0242 repeat has been constructed to become the first engineered trefoil-knotted protein. Its small size renders it a model system for computational analyses to examine its folding and knotting pathways. Here we report a multi-parametric study on the folding stability and kinetics of a library of HP0242 variants, including the trefoil-knotted tandem HP0242 repeat, using far-UV circular dichroism and fluorescence spectroscopy. Equilibrium chemical denaturation of HP0242 variants shows the presence of highly populated dimeric and structurally heterogeneous folding intermediates. Such equilibrium folding intermediates retain significant amount of helical structures except those at the N- and C-terminal regions in the native structure. Stopped-flow fluorescence measurements of HP0242 variants show that spontaneous refolding into knotted structures can be achieved within seconds, which is several orders of magnitude faster than previously observed for other knotted proteins. Nevertheless, the complex chevron plots indicate that HP0242 variants are prone to misfold into kinetic traps, leading to severely rolled-over refolding arms. The experimental observations are in general agreement with the previously reported molecular dynamics simulations. Based on our results, kinetic folding pathways are proposed to qualitatively describe the complex folding processes of HP0242 variants.

  14. Size versus polarizability in protein-ligand interactions: binding of noble gases within engineered cavities in phage T4 lysozyme.

    Science.gov (United States)

    Quillin, M L; Breyer, W A; Griswold, I J; Matthews, B W

    2000-09-29

    To investigate the relative importance of size and polarizability in ligand binding within proteins, we have determined the crystal structures of pseudo wild-type and cavity-containing mutant phage T4 lysozymes in the presence of argon, krypton, and xenon. These proteins provide a representative sample of predominantly apolar cavities of varying size and shape. Even though the volumes of these cavities range up to the equivalent of five xenon atoms, the noble gases bind preferentially at highly localized sites that appear to be defined by constrictions in the walls of the cavities, coupled with the relatively large radii of the noble gases. The cavities within pseudo wild-type and L121A lysozymes each bind only a single atom of noble gas, while the cavities within mutants L133A and F153A have two independent binding sites, and the L99A cavity has three interacting sites. The binding of noble gases within two double mutants was studied to characterize the additivity of binding at such sites. In general, when a cavity in a protein is created by a "large-to-small" substitution, the surrounding residues relax somewhat to reduce the volume of the cavity. The binding of xenon and, to a lesser degree, krypton and argon, tend to expand the volume of the cavity and to return it closer to what it would have been had no relaxation occurred. In nearly all cases, the extent of binding of the noble gases follows the trend xenon>krypton>argon. Pressure titrations of the L99A mutant have confirmed that the crystallographic occupancies accurately reflect fractional saturation of the binding sites. The trend in noble gas affinity can be understood in terms of the effects of size and polarizability on the intermolecular potential. The plasticity of the protein matrix permits repulsion due to increased ligand size to be more than compensated for by attraction due to increased ligand polarizability. These results have implications for the mechanism of general anesthesia, the migration

  15. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2

    Directory of Open Access Journals (Sweden)

    De Pourcq Karen

    2012-05-01

    Full Text Available Abstract Background Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS. Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. Results We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi α-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the α-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained α-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. Conclusions We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a

  16. Crystallization and preliminary X-ray analysis of a U2AF65 variant in complex with a polypyrimidine-tract analogue by use of protein engineering

    International Nuclear Information System (INIS)

    Sickmier, E. Allen; Frato, Katherine E.; Kielkopf, Clara L.

    2006-01-01

    A complex of the essential splicing factor U2AF 65 and a deoxyuridine oligonucleotide has been crystallized by modification of an interdomain linker. The large subunit of the essential pre-mRNA splicing factor U2 auxiliary factor (U2AF 65 ) binds the polypyrimidine tract near the 3′ splice site of pre-mRNA introns and directs the association of the U2 small nuclear ribonucleoprotein particle (U2 snRNP) of the spliceosome with the pre-mRNA. Protein engineering, in which the flexible linker region connecting tandem RNA-recognition motifs (RRMs) within the U2AF 65 RNA-binding domain was partially deleted, allowed successful crystallization of the protein–nucleic acid complex. Cocrystals of a U2AF 65 variant with a deoxyuridine dodecamer diffract X-rays to 2.9 Å resolution and contain one complex per asymmetric unit

  17. Computer Security: the security marathon

    CERN Multimedia

    Computer Security Team

    2014-01-01

    If you believe that “security” is a sprint, that a quick hack is invulnerable, that quick bug fixing is sufficient, that plugging security measures on top of existing structures is good, that once you are secure your life will be easy... then let me convince you otherwise.   An excellent example of this is when the summer students join us at CERN. As the summer period is short, software projects must be accomplished quickly, like a sprint. Rush, rush! But often, this sprint ends with aching muscles. Regularly, these summer students approach us to have their project or web server made visible to the Internet. Regularly, quick security reviews of those web servers diagnose severe underperformance with regards to security: the web applications are flawed or use insecure protocols; the employed software tools, databases or web frameworks are sub-optimal and not adequately chosen for that project; the operating system is non-standard and has never been brought up-to-date; and ...

  18. Automatic and integrated micro-enzyme assay (AIμEA) platform for highly sensitive thrombin analysis via an engineered fluorescence protein-functionalized monolithic capillary column.

    Science.gov (United States)

    Lin, Lihua; Liu, Shengquan; Nie, Zhou; Chen, Yingzhuang; Lei, Chunyang; Wang, Zhen; Yin, Chao; Hu, Huiping; Huang, Yan; Yao, Shouzhuo

    2015-04-21

    Nowadays, large-scale screening for enzyme discovery, engineering, and drug discovery processes require simple, fast, and sensitive enzyme activity assay platforms with high integration and potential for high-throughput detection. Herein, a novel automatic and integrated micro-enzyme assay (AIμEA) platform was proposed based on a unique microreaction system fabricated by a engineered green fluorescence protein (GFP)-functionalized monolithic capillary column, with thrombin as an example. The recombinant GFP probe was rationally engineered to possess a His-tag and a substrate sequence of thrombin, which enable it to be immobilized on the monolith via metal affinity binding, and to be released after thrombin digestion. Combined with capillary electrophoresis-laser-induced fluorescence (CE-LIF), all the procedures, including thrombin injection, online enzymatic digestion in the microreaction system, and label-free detection of the released GFP, were integrated in a single electrophoretic process. By taking advantage of the ultrahigh loading capacity of the AIμEA platform and the CE automatic programming setup, one microreaction column was sufficient for many times digestion without replacement. The novel microreaction system showed significantly enhanced catalytic efficiency, about 30 fold higher than that of the equivalent bulk reaction. Accordingly, the AIμEA platform was highly sensitive with a limit of detection down to 1 pM of thrombin. Moreover, the AIμEA platform was robust and reliable to detect thrombin in human serum samples and its inhibition by hirudin. Hence, this AIμEA platform exhibits great potential for high-throughput analysis in future biological application, disease diagnostics, and drug screening.

  19. Cyber security analytics, technology and automation

    CERN Document Server

    Neittaanmäki, Pekka

    2015-01-01

    Over the last two decades, the Internet and more broadly cyberspace has had a tremendous impact on all parts of society. Governments across the world have started to develop cyber security strategies and to consider cyberspace as an increasingly important international issue. The book, in addition to the cyber threats and technology, processes cyber security from many sides as a social phenomenon and how the implementation of the cyber security strategy is carried out. The book gives a profound idea of the most spoken phenomenon of this time. The book is suitable for a wide-ranging audience from graduate to professionals/practitioners and researchers. Relevant disciplines for the book are  Telecommunications / Network security, Applied mathematics / Data analysis, Mobile systems / Security, Engineering / Security of critical infrastructure and Military science / Security.

  20. Security Administration Reports Application

    Data.gov (United States)

    Social Security Administration — Contains SSA Security Reports that allow Information Security Officers (ISOs) to access, review and take appropriate action based on the information contained in the...

  1. Security Investigation Database (SID)

    Data.gov (United States)

    US Agency for International Development — Security Investigation & Personnel Security Clearance - COTS personnel security application in a USAID virtualized environement that can support USAID's business...

  2. Nuclear security

    International Nuclear Information System (INIS)

    1991-07-01

    This paper reports that despite an Executive Order limiting the authority to make original classification decisions to government officials, DOE has delegated this authority to a number of contractor employees. Although the number of original classification decisions made by these contractors is small, this neither negates nor diminishes the significance of the improper delegation of authority. If misclassification were to occur, particularly at the Top Secret level, U.S. national security interests could potentially be seriously affected and threatened. DOE's argument that the delegation of such authority is a long-standing policy and done on a selective basis does not legitimize the practice and does not relieve DOE of its responsibility to meet the requirements of the Executive Order. DOE needs to independently assess all original classification determinations made by contractors; otherwise, it cannot be sure that U.S. national security interests have been or are being adequately protected

  3. Security seal

    Science.gov (United States)

    Gobeli, Garth W.

    1985-01-01

    Security for a package or verifying seal in plastic material is provided by a print seal with unique thermally produced imprints in the plastic. If tampering is attempted, the material is irreparably damaged and thus detectable. The pattern of the imprints, similar to "fingerprints" are recorded as a positive identification for the seal, and corresponding recordings made to allow comparison. The integrity of the seal is proved by the comparison of imprint identification records made by laser beam projection.

  4. Security system

    Science.gov (United States)

    Baumann, Mark J.; Kuca, Michal; Aragon, Mona L.

    2016-02-02

    A security system includes a structure having a structural surface. The structure is sized to contain an asset therein and configured to provide a forceful breaching delay. The structure has an opening formed therein to permit predetermined access to the asset contained within the structure. The structure includes intrusion detection features within or associated with the structure that are activated in response to at least a partial breach of the structure.

  5. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks.

    Science.gov (United States)

    Fragkostefanakis, Sotirios; Röth, Sascha; Schleiff, Enrico; Scharf, Klaus-Dieter

    2015-09-01

    Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops. © 2014 John Wiley & Sons Ltd.

  6. Automated Security Testing of Web Widget Interactions

    NARCIS (Netherlands)

    Bezemer, C.P.; Mesbah, A.; Van Deursen, A.

    2009-01-01

    This paper is a pre-print of: Cor-Paul Bezemer, Ali Mesbah, and Arie van Deursen. Automated Security Testing of Web Widget Interactions. In Proceedings of the 7th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering

  7. Bioconjugates of luminescent CdSe-ZnS quantum dots with an engineered two-domain protein G for use in fluoroimmunoassays

    Science.gov (United States)

    Tran, Phan T.; Goldman, Ellen R.; Mattoussi, Hedi M.; Anderson, George P.; Mauro, J. Matthew

    2001-06-01

    Colloidal semiconductor quantum dots (QDs) seem suitable for labeling certain biomolecules for use in fluorescent tagging applications, such as fluoro-immunoassays. Compared to organic dye labels, Qds are resistant to photo-degradation, and these luminescent nanoparticles have size-dependent emission spectra spanning a wide range of wavelengths in the visible and near IR. We previously described an electrostatic self-assembly approach for conjugating highly luminescent colloidal CdSe-ZnS core-shell Qds with engineered two-domain recombinant proteins. Here we describe the application of this approach to prepare QD conjugates with the (Beta) 2 immunoglobin G (IgG) binding domain of streptococcal protein G (PG) appended with a basic lucine zipper attachment domain (PG-zb). We also demonstrate that the QD/PG conjugates retain their ability to bind IgG antibodies, and that a specific antibody coupled to QD via the PG functional domain efficiently binds its antigen. These preliminary results indicate that electrostatically self-assembled QD/PG-zb/IgG bioconjugates can be used in fluoro-immunoassays.

  8. Security studies

    International Nuclear Information System (INIS)

    Venot, R.

    2001-01-01

    Full text: Security studies constitute one of the major tools for evaluating the provisions implemented at facilities to protect and control Nuclear Material against unauthorized removal. Operators use security studies to demonstrate that they are complying with objectives set by the Competent Authority to counter internal or external acts aimed at unauthorized removal of NM. The paper presents the context of security studies carried out in France. The philosophy of these studies is based on a postulated unauthorized removal of NM and the study of the behavior of the systems implemented to control and protect NM in a facility. The potential unauthorized removal of NM usually may take place in two stages. The first stage involves the sequence leading to handling of the NM. It occurs inside the physical barriers of a facility and may include action involving the documents corresponding to Material Control and Accounting systems. At this stage it is possible to limit the risk of unauthorized removal of NM by means of detection capabilities of the MC and A systems. The second stage is more specific to theft and involves removing the NM out of the physical barriers of a facility in which they are being held, notably by affecting the Physical Protection System. Operators have to study, from a quantity and time lapse point of view, the ability of the installed systems to detect unauthorized removal, as well as the possibility of tampering with the systems to mask unlawful operations. Operators have also to analyze the sequences during which NM are accessed, removed from their containment and further removed from the facility in which they are stored. At each stage in the process, the probability of detection and the time taken to carry out the above actions have to be estimated. Of course, these two types of studies complement each other. Security studies have begun, in France, for more than fifteen years. Up to now more than fifty security studies are available in the

  9. The secure reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1987-01-01

    The principle of Process Inherent Ultimate Safety (PIUS) is a new approach to Light Water Reactor (LWR) safety that could represent a solution to the present problems of public distrust, regulatory maze and plant design complexity plaguing the nuclear industry in many countries. A unique thermohydraulic design of the primary system ensures core integrity, and thereby gurarantees freedom from significant releases of radioactive matter, in all credible emergencies. This is accomplished entirely without reliance on potentially failure prone engineered safety systems and with immunity to operator mistskes. The potential for human fallibility to cause accidents is thereby drastically reduced in an easily understood way. Plant design can be greatly simplified because redundant, diverse safety systems are no longer needed. The paper briefly describes the PIUS design principle and the two SECURE reactor designs based on it, i.e. SECURE-H for district heating and process steam and SECURE-P (usually known simply as PIUS) for electric power generation. Demonstration of simulated system over-all thermohydraulic function and transient response in a large electrically heated test loop is described and results from some component development work is given. (author)

  10. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  11. Improved ethanol production at high temperature by consolidated bioprocessing using Saccharomyces cerevisiae strain engineered with artificial zinc finger protein.

    Science.gov (United States)

    Khatun, M Mahfuza; Yu, Xinshui; Kondo, Akihiko; Bai, Fengwu; Zhao, Xinqing

    2017-12-01

    In this work, the consolidated bioprocessing (CBP) yeast Saccharomyces cerevisiae MNII/cocδBEC3 was transformed by an artificial zinc finger protein (AZFP) library to improve its thermal tolerance, and the strain MNII-AZFP with superior growth at 42°C was selected. Improved degradation of acid swollen cellulose by 45.9% led to an increase in ethanol production, when compared to the control strain. Moreover, the fermentation of Jerusalem artichoke stalk (JAS) by MNII-AZFP was shortened by 12h at 42°C with a concomitant improvement in ethanol production. Comparative transcriptomics analysis suggested that the AZFP in the mutant exerted beneficial effect by modulating the expression of multiple functional genes. These results provide a feasible strategy for efficient ethanol production from JAS and other cellulosic biomass through CBP based-fermentation at elevated temperatures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.

    Science.gov (United States)

    Chen, Ana; Li, Yamei; Nie, Jianqi; McNeil, Brian; Jeffrey, Laura; Yang, Yankun; Bai, Zhonghu

    2015-10-01

    Thermostability has been considered as a requirement in the starch processing industry to maintain high catalytic activity of pullulanase under high temperatures. Four data driven rational design methods (B-FITTER, proline theory, PoPMuSiC-2.1, and sequence consensus approach) were adopted to identify the key residue potential links with thermostability, and 39 residues of Bacillus acidopullulyticus pullulanase were chosen as mutagenesis targets. Single mutagenesis followed by combined mutagenesis resulted in the best mutant E518I-S662R-Q706P, which exhibited an 11-fold half-life improvement at 60 °C and a 9.5 °C increase in Tm. The optimum temperature of the mutant increased from 60 to 65 °C. Fluorescence spectroscopy results demonstrated that the tertiary structure of the mutant enzyme was more compact than that of the wild-type (WT) enzyme. Structural change analysis revealed that the increase in thermostability was most probably caused by a combination of lower stability free-energy and higher hydrophobicity of E518I, more hydrogen bonds of S662R, and higher rigidity of Q706P compared with the WT. The findings demonstrated the effectiveness of combined data-driven rational design approaches in engineering an industrial enzyme to improve thermostability. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. 40 CFR 90.908 - National security exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false National security exemption. 90.908... Exemption of Nonroad Engines from Regulations § 90.908 National security exemption. (a)(1) Any nonroad... defense, will be considered exempt from this part for purposes of national security. No request for...

  14. 40 CFR 94.908 - National security exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false National security exemption. 94.908... § 94.908 National security exemption. (a)(1) Any marine engine, otherwise subject to this part, that is... regulations in this subpart for reasons of national security. No request for this exemption is necessary. (2...

  15. 40 CFR 85.1708 - National security exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false National security exemption. 85.1708... Vehicle Engines § 85.1708 National security exemption. A manufacturer requesting a national security... agency of the Federal Government charged with responsibility for national defense. [39 FR 32611, Sept. 10...

  16. 40 CFR 89.908 - National security exemption.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false National security exemption. 89.908... Provisions § 89.908 National security exemption. (a)(1) Any nonroad engine, otherwise subject to this part... regulations for purposes of national security. No request for exemption is necessary. (2) Manufacturers may...

  17. National Cyber Security Policy

    Indian Academy of Sciences (India)

    National Cyber Security Policy. Salient Features: Caters to ... Creating a secure cyber ecosystem. Creating an assurance framework. Encouraging Open Standards. Strengthening the Regulatory framework. Creating mechanisms for security threat early warning, vulnerability management and response to security threats.

  18. Perimeter security for Minnesota correctional facilities

    Energy Technology Data Exchange (ETDEWEB)

    Crist, D. [Minnesota Department of Corrections, St. Paul, MN (United States); Spencer, D.D. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31

    For the past few years, the Minnesota Department of Corrections, assisted by Sandia National Laboratories, has developed a set of standards for perimeter security at medium, close, and maximum custody correctional facilities in the state. During this process, the threat to perimeter security was examined and concepts about correctional perimeter security were developed. This presentation and paper will review the outcomes of this effort, some of the lessons learned, and the concepts developed during this process and in the course of working with architects, engineers and construction firms as the state upgraded perimeter security at some facilities and planned new construction at other facilities.

  19. Software To Secure Distributed Propulsion Simulations

    Science.gov (United States)

    Blaser, Tammy M.

    2003-01-01

    Distributed-object computing systems are presented with many security threats, including network eavesdropping, message tampering, and communications middleware masquerading. NASA Glenn Research Center, and its industry partners, has taken an active role in mitigating the security threats associated with developing and operating their proprietary aerospace propulsion simulations. In particular, they are developing a collaborative Common Object Request Broker Architecture (CORBA) Security (CORBASec) test bed to secure their distributed aerospace propulsion simulations. Glenn has been working with its aerospace propulsion industry partners to deploy the Numerical Propulsion System Simulation (NPSS) object-based technology. NPSS is a program focused on reducing the cost and time in developing aerospace propulsion engines

  20. Statistical security for Social Security.

    Science.gov (United States)

    Soneji, Samir; King, Gary

    2012-08-01

    The financial viability of Social Security, the single largest U.S. government program, depends on accurate forecasts of the solvency of its intergenerational trust fund. We begin by detailing information necessary for replicating the Social Security Administration's (SSA's) forecasting procedures, which until now has been unavailable in the public domain. We then offer a way to improve the quality of these procedures via age- and sex-specific mortality forecasts. The most recent SSA mortality forecasts were based on the best available technology at the time, which was a combination of linear extrapolation and qualitative judgments. Unfortunately, linear extrapolation excludes known risk factors and is inconsistent with long-standing demographic patterns, such as the smoothness of age profiles. Modern statistical methods typically outperform even the best qualitative judgments in these contexts. We show how to use such methods, enabling researchers to forecast using far more information, such as the known risk factors of smoking and obesity and known demographic patterns. Including this extra information makes a substantial difference. For example, by improving only mortality forecasting methods, we predict three fewer years of net surplus, $730 billion less in Social Security Trust Funds, and program costs that are 0.66% greater for projected taxable payroll by 2031 compared with SSA projections. More important than specific numerical estimates are the advantages of transparency, replicability, reduction of uncertainty, and what may be the resulting lower vulnerability to the politicization of program forecasts. In addition, by offering with this article software and detailed replication information, we hope to marshal the efforts of the research community to include ever more informative inputs and to continue to reduce uncertainties in Social Security forecasts.

  1. Network security

    CERN Document Server

    Perez, André

    2014-01-01

    This book introduces the security mechanisms deployed in Ethernet, Wireless-Fidelity (Wi-Fi), Internet Protocol (IP) and MultiProtocol Label Switching (MPLS) networks. These mechanisms are grouped throughout the book according to the following four functions: data protection, access control, network isolation, and data monitoring. Data protection is supplied by data confidentiality and integrity control services. Access control is provided by a third-party authentication service. Network isolation is supplied by the Virtual Private Network (VPN) service. Data monitoring consists of applying

  2. Information Security

    OpenAIRE

    2005-01-01

    Information security is all about the protection of digital assets, such as digital content, personal health records, state secrets etc. These assets can be handled by a party who is authorised to access and control the asset or a party who is not authorised to do so. Authorisation determines who is trusted to actually handle an asset. Two concepts complement authorisation. Authentication deter-mines who makes a request to handle an asset. To decide who is authorised, a system needs to au-the...

  3. Mastering the Nmap scripting engine

    CERN Document Server

    Pale, Paulino Calderón

    2015-01-01

    If you want to learn to write your own scripts for the Nmap Scripting Engine, this is the book for you. It is perfect for network administrators, information security professionals, and even Internet enthusiasts who are familiar with Nmap.

  4. Cloning of an epoxide hydrolase-encoding gene from Aspergillus niger M200, overexpression in E. coli, and modification of aktivity and enantioselectivity of the enzyme by protein engineering

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Štěpánek, Václav; Kyslík, Pavel; Marešová, Helena

    2007-01-01

    Roč. 132, - (2007), s. 8-15 ISSN 0168-1656 R&D Projects: GA ČR GA204/06/0458 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein engineering * saturation mutagenesis * enantioselectivity Subject RIV: EE - Microbiology, Virology Impact factor: 2.565, year: 2007

  5. Bone Morphogenic Protein-2 (rhBMP2)-Loaded Silk Fibroin Scaffolds to Enhance the Osteoinductivity in Bone Tissue Engineering

    Science.gov (United States)

    Du, Guang-Yu; He, Sheng-Wei; Sun, Chuan-Xiu; Mi, Li-Dong

    2017-10-01

    There is an increasing demand for formulations of silk fibroin (SF) scaffolds in biomedical applications. SF was crosslinked via glutaraldehyde with osteoinductive recombinant human bone morphogenic protein-2 (rhBMP2) of different ratios viz. (i) 3% SF with no rhBMP2 (SF), (ii) 3% SF with equal amount of rhBMP2 (SF+BMP2), and (iii) 12% SF with 3% of rhBMP2 (4SF+BMP2), and these solutions were used in electrospinning-based fabrication of nanoscaffolds for evaluating increased osteoinductive potential of SF scaffolds with rhBMP2. Stress-strain relationship suggested there is no loss in mechanical strength of fibers with addition of rhBMP2, and mechanical strength of scaffold was improved with increase in concentration of SF. rhBMP2 association increased the water retention capacity of scaffold as evident from swelling studies. Viability of hMSCs was found to be higher in conjugated scaffolds, and scaffolds do not exhibit any cytotoxicity towards guest cells. Cells were found to have higher alkaline phosphatase activity in conjugated scaffolds under in vitro and in vivo conditions which establishes the increased osteoinductivity of the novel construct. The scaffolds were found to be effective for in vivo bone formation as well.

  6. Enhanced cellulase production from Trichoderma reesei Rut-C30 by engineering with an artificial zinc finger protein library.

    Science.gov (United States)

    Zhang, Fei; Bai, Fengwu; Zhao, Xinqing

    2016-10-01

    Trichoderma reesei Rut-C30 is a well-known cellulase producer, and improvement of its cellulase production is of great interest. An artificial zinc finger protein (AZFP) library is constructed for expression in T. reesei Rut-C30, and a mutant strain T. reesei U3 is selected based on its enhanced cellulase production. The U3 mutant shows a 55% rise in filter paper activity and 8.1-fold increased β-glucosidase activity, when compared to the native strain T. reesei Rut-C30. It is demonstrated that enhanced β-glucosidase activity was due to elevated transcription level of β-glucosidase gene in the U3 mutant. Moreover, significant elevation in transcription levels of several putative Azfp-U3 target genes is detected in the U3 mutant, including genes encoding hypothetical transcription factors and a putative glycoside hydrolase. Furthermore, U3 cellulase shows 115% higher glucose yield from pretreated corn stover, when compared to the cellulase of T. reesei Rut-C30. These results demonstrate that AZFP can be used to improve cellulase production in T. reesei Rut-C30. Our current work offers the establishment of an alternative strategy to develop fungal cell factories for improved production of high value industrial products. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tumour eradication using synchronous thermal ablation and Hsp90 chemotherapy with protein engineered triblock biopolymer-geldanamycin conjugates.

    Science.gov (United States)

    Chen, Yizhe; Youn, Pilju; Pysher, Theodore J; Scaife, Courtney L; Furgeson, Darin Y

    2014-12-01

    Hepatocellular carcinoma (HCC) suffers high tumour recurrence rate after thermal ablation. Heat shock protein 90 (Hsp90) induced post-ablation is critical for tumour survival and progression. A combination therapy of thermal ablation and polymer conjugated Hsp90 chemotherapy was designed and evaluated for complete tumour eradication of HCC. A thermo-responsive, elastin-like polypeptide (ELP)-based tri-block biopolymer was developed and conjugated with a potent Hsp90 inhibitor, geldanamycin (GA). The anti-cancer efficacy of conjugates was evaluated in HCC cell cultures with and without hyperthermia (43 °C). The conjugates were also administered twice weekly in a murine HCC model as a single treatment or in combination with single electrocautery as the ablation method. ELP-GA conjugates displayed enhanced cytotoxicity in vitro and effective heat shock inhibition under hyperthermia. The conjugates alone significantly slowed the tumour growth without systemic toxicity. Four doses of thermo-responsive ELP-GA conjugates with concomitant simple electrocautery accomplished significant Hsp90 inhibition and sustained tumour suppression. Hsp90 inhibition plays a key role in preventing the recurrence of HCC, and the combination of ablation with targeted therapy holds great potential to improve prognosis and survival of HCC patients.

  8. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  9. Security infrastructures: towards the INDECT system security

    OpenAIRE

    Stoianov, Nikolai; Urueña, Manuel; Niemiec, Marcin; Machník, Petr; Maestro, Gema

    2012-01-01

    This paper provides an overview of the security infrastructures being deployed inside the INDECT project. These security infrastructures can be organized in five main areas: Public Key Infrastructure, Communication security, Cryptography security, Application security and Access control, based on certificates and smartcards. This paper presents the new ideas and deployed testbeds for these five areas. In particular, it explains the hierarchical architecture of the INDECT PKI...

  10. Internet Banking Security Strategy: Securing Customer Trust

    OpenAIRE

    Frimpong Twum; Kwaku Ahenkora

    2012-01-01

    Internet banking strategies should enhance customers¡¯ online experiences which are affected by trust and security issues. This study provides perspectives of users and nonusers on internet banking security with a view to understanding trust and security factors in relation to adoption and continuous usage. Perception of internet banking security influenced usage intentions. Nonusers viewed internet banking to be insecure but users perceived it to be secure with perceived ease of use influenc...

  11. Ancillary contributions of heterologous biotin protein ligase and carbonic anhydrase for CO2 incorporation into 3-hydroxypropionate by metabolically engineered Pyrococcus furiosus.

    Science.gov (United States)

    Lian, Hong; Zeldes, Benjamin M; Lipscomb, Gina L; Hawkins, Aaron B; Han, Yejun; Loder, Andrew J; Nishiyama, Declan; Adams, Michael W W; Kelly, Robert M

    2016-12-01

    Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO 3 - and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO 2 . Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, while the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the β-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO 2 -sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. While further efforts to improve 3HP production by regulating gene dosage, improving carbon flux and optimizing bioreactor operation are needed, these results illustrate the ancillary benefits of accessory enzymes for incorporating CO 2 into 3HP production in metabolically engineered P

  12. Engineering allostery.

    Science.gov (United States)

    Raman, Srivatsan; Taylor, Noah; Genuth, Naomi; Fields, Stanley; Church, George M

    2014-12-01

    Allosteric proteins have great potential in synthetic biology, but our limited understanding of the molecular underpinnings of allostery has hindered the development of designer molecules, including transcription factors with new DNA-binding or ligand-binding specificities that respond appropriately to inducers. Such allosteric proteins could function as novel switches in complex circuits, metabolite sensors, or as orthogonal regulators for independent, inducible control of multiple genes. Advances in DNA synthesis and next-generation sequencing technologies have enabled the assessment of millions of mutants in a single experiment, providing new opportunities to study allostery. Using the classic LacI protein as an example, we describe a genetic selection system using a bidirectional reporter to capture mutants in both allosteric states, allowing the positions most crucial for allostery to be identified. This approach is not limited to bacterial transcription factors, and could reveal new mechanistic insights and facilitate engineering of other major classes of allosteric proteins such as nuclear receptors, two-component systems, G protein-coupled receptors, and protein kinases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Problem of Information Security Traffic on Internet

    Directory of Open Access Journals (Sweden)

    Slavko Šarić

    2012-10-01

    Full Text Available Internet information traffic becomes greater and moreimportant. With increasing growth of information importancerequirement for its security becomes indispensable. Theinformation security problem especially affect large and smallcompanies whose prosperity is depending on Internet presence.This affecting the three areas of Internet commerce: credit cardtransactions, virtual private networks and digital certification.To ensure information traffic it is necessary to find a solution,in a proper way, for three major problems: frontier problem,market problem and government problem. While the eventualemergence of security standards for Internet transactions isexpected, it will not automatically result in secure Internettransactions. In future, there is a wealth of security issues thatwill continue to require attention: internal security, continuedhacking, social engineering, malicious code, reliability andperformance, skills shortages and denial of se1vice attacks.

  14. Optical and digital techniques for information security

    CERN Document Server

    2005-01-01

    Optical and Digital Techniques for Information Security is the first book in a series focusing on Advanced Sciences and Technologies for Security Applications. This book encompases the results of research investigation and technologies used to secure, verify, recognize, track, and authenticate objects and information from theft, counterfeiting, and manipulation by unauthorized persons and agencies. This Information Security book will draw on the diverse expertise in optical sciences and engineering, digital image processing, imaging systems, information processing, computer based information systems, sensors, detectors, and biometrics to report innovative technologies that can be applied to information security issues. The Advanced Sciences and Technologies for Security Applications series focuses on research monographs in the areas of: -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection...

  15. Cyber security best practices for the nuclear industry

    International Nuclear Information System (INIS)

    Badr, I.

    2012-01-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  16. Cyber security best practices for the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Badr, I. [Rational IBM Software Group, IBM Corporation, Evanston, IL 60201 (United States)

    2012-07-01

    When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)

  17. Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

    Science.gov (United States)

    Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2018-03-01

    Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.

  18. Planning security for supply security

    International Nuclear Information System (INIS)

    Spies von Buellesheim.

    1994-01-01

    The situation of the hardcoal mining industry is still difficult, however better than last year. Due to better economic trends in the steel industry, though on a lower level, sales in 1994 have stabilised. Stocks are being significantly reduced. As to the production, we have nearly reached a level which has been politically agreed upon in the long run. Due to the determined action of the coalmining companies, a joint action of management and labour, the strong pressure has been mitigated. On the energy policy sector essential targets have been achieved: First of all the ECSC decision on state aid which will be in force up to the year 2002 and which will contribute to accomplish the results of the 1991 Coal Round. Furthermore, the 1994 Act on ensuring combustion of hardcoal in electricity production up to the year 2005. The hardcoal mining industry is grateful to all political decision makers for the achievements. The industry demands, however, that all questions still left open, including the procurement of financial means after 1996, should be settled soon on the basis of the new act and in accordance with the 1991 Coal Round and the energy concept of the Federal Government. German hardcoal is an indispensable factor within a balanced energy mix which guarantees the security of our energy supply, the security of the price structure and the respect of the environment. (orig.) [de

  19. Information security fundamentals

    CERN Document Server

    Peltier, Thomas R

    2013-01-01

    Developing an information security program that adheres to the principle of security as a business enabler must be the first step in an enterprise's effort to build an effective security program. Following in the footsteps of its bestselling predecessor, Information Security Fundamentals, Second Edition provides information security professionals with a clear understanding of the fundamentals of security required to address the range of issues they will experience in the field.The book examines the elements of computer security, employee roles and r

  20. ORACLE DATABASE SECURITY

    OpenAIRE

    Cristina-Maria Titrade

    2011-01-01

    This paper presents some security issues, namely security database system level, data level security, user-level security, user management, resource management and password management. Security is a constant concern in the design and database development. Usually, there are no concerns about the existence of security, but rather how large it should be. A typically DBMS has several levels of security, in addition to those offered by the operating system or network. Typically, a DBMS has user a...

  1. European perspectives on security research

    CERN Document Server

    2011-01-01

    Europe’s networked societies of today are shaped by a growing interconnection in almost all areas of life. The complexity of our infrastructures and the concurrent accessibility to means of destruction by terrorist groups and individual perpetrators call for innovative security solutions. However, such evolving innovations inevitably raise fundamental questions of concern in our societies. How do we balance the imperatives of securing our citizens and infrastructures on the one hand, and of protecting of our sacredly held civil liberties on the other? The topical network ‘Safety and Security’ of acatech – the German Academy of Science and Engineering – invited experts from the science academies of various European countries to share their perspectives on security research and the aspect of safety during a two-day workshop hosted by the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut in March 2010. This publication is a compilation of contributions made during the workshop.

  2. Requirements engineering for trust management: Model, methodology, and reasoning

    NARCIS (Netherlands)

    Giorgini, P.; Massacci, F.; Mylopoulos, J.; Zannone, N.

    2006-01-01

    A number of recent proposals aim to incorporate security engineering into mainstream software engineering. Yet, capturing trust and security requirements at an organizational level, as opposed to an IT system level, and mapping these into security and trust management policies is still an open

  3. Computer Security: the security marathon, part 2

    CERN Multimedia

    Computer Security Team

    2014-01-01

    Do you recall our latest article on the “Security Marathon” (see here) and why it’s wrong to believe that computer security is a sprint, that a quick hack is invulnerable, that quick bug-fixing is sufficient, that plugging security measures on top of existing structures is a good idea, that once you are secure, your life is cosy?   In fact, security is a marathon for us too. Again and again, we have felt comfortable with the security situation at CERN, with dedicated protections deployed on individual hosts, with the security measures deployed by individual service managers, with the attentiveness and vigilance of our users, and with the responsiveness of the Management. Again and again, however, we subsequently detect or receive reports that this is wrong, that protections are incomplete, that security measures are incomplete, that security awareness has dropped. Thus, unfortunately, we often have to go back to square one and address similar issues over and over...

  4. In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer-bone morphogenetic protein matrices.

    Science.gov (United States)

    Lu, Helen H; Kofron, Michelle D; El-Amin, Saadiq F; Attawia, Mohammed A; Laurencin, Cato T

    2003-06-13

    Over 800,000 bone grafting procedures are performed in the United States annually, creating a demand for viable alternatives to autogenous bone, the grafting standard in osseous repair. The objective of this study was to examine the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype and in vitro bone formation by muscle-derived cells. Specifically, we evaluated the ability of bone morphogenetic protein-7 (BMP-7), delivered from a poly(lactide-co-glycolide) (PLAGA) matrix, to induce the differentiation of cells derived from rabbit skeletal muscle into osteoblast-like cells and subsequently form mineralized tissue. Results confirmed that muscle-derived cells attached and proliferated on the PLAGA substrates. BMP-7 released from PLAGA induced the muscle-derived cells to increase bone marker expression and form mineralized cultures. These results demonstrate the efficacy of a BMP-polymer matrix in inducing the expression of the osteoblastic phenotype by muscle-derived cells and present a new paradigm for bone tissue engineering.

  5. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering.

    Science.gov (United States)

    Gawin, Agnieszka; Valla, Svein; Brautaset, Trygve

    2017-07-01

    The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low- and high-level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose-dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β-lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5' untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  6. Integrated Controlling System and Unified Database for High Throughput Protein Crystallography Experiments

    International Nuclear Information System (INIS)

    Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.; Sasajima, K.; Matsugaki, N.; Suzuki, M.; Kosuge, T.; Wakatsuki, S.

    2004-01-01

    An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view, create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments

  7. Engineering Encounters: Engineering Adaptations

    Science.gov (United States)

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  8. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development.

    Science.gov (United States)

    Ye, Dekai; Zuo, Xiaolei; Fan, Chunhai

    2018-06-12

    Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.

  9. Information Systems Security Audit

    OpenAIRE

    Gheorghe Popescu; Veronica Adriana Popescu; Cristina Raluca Popescu

    2007-01-01

    The article covers:Defining an information system; benefits obtained by introducing new information technologies; IT management;Defining prerequisites, analysis, design, implementation of IS; Information security management system; aspects regarding IS security policy; Conceptual model of a security system; Auditing information security systems and network infrastructure security.

  10. Security for grids

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Marty; Thompson, Mary R.; Jackson, Keith R.

    2005-08-14

    Securing a Grid environment presents a distinctive set of challenges. This paper groups the activities that need to be secured into four categories: naming and authentication; secure communication; trust, policy, and authorization; and enforcement of access control. It examines the current state of the art in securing these processes and introduces new technologies that promise to meet the security requirements of Grids more completely.

  11. New computer security measures

    CERN Multimedia

    IT Department

    2008-01-01

    As a part of the long-term strategy to improve computer security at CERN, and especially given the attention focused to CERN by the start-up of the LHC, two additional security measures concerning DNS and Tor will shortly be introduced. These are described in the following texts and will affect only a small number of users. "PHISHING" ATTACKS CONTINUE CERN computer users continue to be subjected to attacks by people trying to infect our machines and obtain passwords and other confidential information by social engineering trickery. Recent examples include an e-mail message sent from "La Poste" entitled "Colis Postal" on 21 August, a fake mail sent from web and mail services on 8 September, and an e-mail purporting to come from Hallmark Cards announcing the arrival of an electronic postcard. However, there are many other examples and there are reports of compromised mail accounts being used for more realistic site-specific phishing attempts. Given the increased publicity rela...

  12. Improving industrial process control systems security

    CERN Document Server

    Epting, U; CERN. Geneva. TS Department

    2004-01-01

    System providers are today creating process control systems based on remote connectivity using internet technology, effectively exposing these systems to the same threats as corporate computers. It is becoming increasingly difficult and costly to patch/maintain the technical infrastructure monitoring and control systems to remove these vulnerabilities. A strategy including risk assessment, security policy issues, service level agreements between the IT department and the controls engineering groups must be defined. In addition an increased awareness of IT security in the controls system engineering domain is needed. As consequence of these new factors the control system architectures have to take into account security requirements, that often have an impact on both operational aspects as well as on the project and maintenance cost. Manufacturers of industrial control system equipment do however also propose progressively security related solutions that can be used for our active projects. The paper discusses ...

  13. Security and privacy for implantable medical devices

    CERN Document Server

    Carrara, Sandro

    2014-01-01

     This book presents a systematic approach to analyzing the challenging engineering problems posed by the need for security and privacy in implantable medical devices (IMD).  It describes in detail new issues termed as lightweight security, due to the associated constraints on metrics such as available power, energy, computing ability, area, execution time, and memory requirements. Coverage includes vulnerabilities and defense across multiple levels, with basic abstractions of cryptographic services and primitives such as public key cryptography, block ciphers and digital signatures. Experts from engineering introduce to some IMD systems that have  recently been proposed and developed. Experts from Computer Security and Cryptography present new research, which shows vulnerabilities in existing IMDs and proposes solutions. Experts from Privacy Technology and Policy will discuss the societal, legal and ethical challenges surrounding IMD security as well as technological solutions that build on the latest in C...

  14. Non-protein amino acids in Australian acacia seed: implications for food security and recommended processing methods to reduce djenkolic acid.

    Science.gov (United States)

    Boughton, Berin A; Reddy, Priyanka; Boland, Martin P; Roessner, Ute; Yates, Peter

    2015-07-15

    Seed of Australian acacia species, Acacia colei, Acacia elecantha, Acacia torulosa, Acacia turmida and Acacia saligna, were analysed for the presence of toxic non-protein amino acids and the levels of essential amino acids. Amines were derivatised with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate before analysis using liquid chromatography electrospray ionisation triple quadrupole mass spectrometry (LC-ESI-QQQ-MS). Multiple reaction monitoring (MRM) with optimised transitions and collision energies for each analyte were employed. The known nephrotoxic compound djenkolic acid was found to be present at elevated levels in all species tested. The lowest levels were in A. colei (0.49% w/w) and the highest in A. saligna (1.85% w/w). Observed levels of djenkolic acid are comparable to measured and reported levels found in the djenkol bean. Subsequent testing of seed processing methods showed djenkolic acid levels can be significantly reduced by over 90% by dry roasting at 180 °C rendering the seed safe for human consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. 77 FR 56662 - Homeland Security Science and Technology Advisory Committee (HSSTAC)

    Science.gov (United States)

    2012-09-13

    ... its business. ADDRESSES: The meeting will be held at the Department of Homeland Security (DHS... as new developments in systems engineering, cyber-security, knowledge management and how best to... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0053] Homeland Security Science and...

  16. 77 FR 59407 - Homeland Security Science and Technology Advisory Committee (HSSTAC)

    Science.gov (United States)

    2012-09-27

    ... Secretary for Science and Technology, such as new developments in systems engineering, cyber-security... Security Challenges; Accelerating Innovation Through Systems Analysis; and Leveraging Industry for Impact... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2012-0053] Homeland Security Science and...

  17. 78 FR 14101 - Homeland Security Science and Technology Advisory Committee (HSSTAC)

    Science.gov (United States)

    2013-03-04

    ... Secretary for Science and Technology, such as new developments in systems engineering, cyber-security... HSSTAC input on how to improve that collaboration. --Cyber Security and the evolution of the Cyber... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2013-0014] Homeland Security Science and...

  18. 78 FR 66949 - Homeland Security Science and Technology Advisory Committee (HSSTAC)

    Science.gov (United States)

    2013-11-07

    ... Technology, such as new developments in systems engineering, cyber-security, knowledge management and how... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2013-0071] Homeland Security Science and... Management; Notice of Federal Advisory Committee Meeting. SUMMARY: The Homeland Security Science and...

  19. Design tools for complex dynamic security systems.

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Raymond Harry; Rigdon, James Brian; Rohrer, Brandon Robinson; Laguna, Glenn A.; Robinett, Rush D. III (.; ); Groom, Kenneth Neal; Wilson, David Gerald; Bickerstaff, Robert J.; Harrington, John J.

    2007-01-01

    The development of tools for complex dynamic security systems is not a straight forward engineering task but, rather, a scientific task where discovery of new scientific principles and math is necessary. For years, scientists have observed complex behavior but have had difficulty understanding it. Prominent examples include: insect colony organization, the stock market, molecular interactions, fractals, and emergent behavior. Engineering such systems will be an even greater challenge. This report explores four tools for engineered complex dynamic security systems: Partially Observable Markov Decision Process, Percolation Theory, Graph Theory, and Exergy/Entropy Theory. Additionally, enabling hardware technology for next generation security systems are described: a 100 node wireless sensor network, unmanned ground vehicle and unmanned aerial vehicle.

  20. Quality of Security Service: Adaptive Security

    National Research Council Canada - National Science Library

    Levin, Timothy E; Irvine, Cynthia E; Spyropoulou, Evdoxia

    2004-01-01

    The premise of Quality of Security Service is that system and network management functions can be more effective if variable levels of security services and requirements can be presented to users or network tasks...

  1. Scaffold preferences of mesenchymal stromal cells and adipose-derived stem cells from green fluorescent protein transgenic mice influence the tissue engineering of bone.

    Science.gov (United States)

    Wittenburg, Gretel; Flade, Viktoria; Garbe, Annette I; Lauer, Günter; Labudde, Dirk

    2014-05-01

    We have analysed the growth and differentiation of mesenchymal stromal cells (MSC) from bone marrow, and of adipose derived stem cells (ASC) from murine abdominal fat tissue, of green fluorescent protein (GFP) transgenic animals grown directly on two types of hydroxyapatite ceramic bone substitutes. BONITmatrix® and NanoBone® have specific mechanical and physiochemical properties such as porosity and an inner surface that influence cellular growth. Both MSC and ASC were separately seeded on 200mg of each biomaterial and cultured for 3 weeks under osteogenic differentiation conditions. The degree of mineralisation was assessed by alizarin red dye and the specific alkaline phosphatase activity of the differentiated cells. The morphology of the cells was examined by scanning electron microscopy and confocal microscopy. The osteoblastic phenotype of the cells was confirmed by analysing the expression of bone-specific genes (Runx2, osteocalcin, osteopontin, and osteonectin) by semiquantitative reverse transcriptase polymerase chain reaction (PCR). Comparison of BONITmatrix® and NanoBone® showed cell type-specific preferences in terms of osteogenic differentiation. MSC-derived osteoblast-like cells spread optimally on the surface of NanoBone® but not BONITmatrix® granules. In contrast BONITmatrix® granules conditioned the growth of osteoblast-like cells derived from ASC. The osteoblastic phenotype of the cultured cells on all matrices was confirmed by specific gene expression. Our results show that the in vitro growth and osteogenic differentiation of murine MSC or ASC of GFP transgenic mice are distinctly influenced by the ceramic substratum. While NanoBone® granules support the proliferation and differentiation of murine MSC isolated from bone marrow, the growth of murine ASC is supported by BONITmatrix® granules. NanoBone® is therefore recommended for use as scaffold in tissue engineering that requires MSC, whereas ASC can be combined with BONITmatrix® for

  2. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Pon-On, Weeraphat, E-mail: fsciwpp@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand); Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip [Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University (Thailand); Department of Physiology, Faculty of Science, Mahidol University (Thailand); Tang, I-Ming [ThEP Center, Commission of Higher Education, 328 Si Ayutthaya Rd. (Thailand); Department of Materials Science, Faculty of Science, Kasetsart University, Bangkok 10900 (Thailand)

    2014-05-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  3. Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications

    International Nuclear Information System (INIS)

    Pon-On, Weeraphat; Charoenphandhu, Narattaphol; Teerapornpuntakit, Jarinthorn; Thongbunchoo, Jirawan; Krishnamra, Nateetip; Tang, I-Ming

    2014-01-01

    In the present study, composite scaffolds made with different weight ratios (0.5:1, 1:1 and 2:1) of bioactive glass (15Ca:80Si:5P) (BG)/polyvinyl alcohol (PVA) (PVABG) and chitosan (Chi)/collagen (Col) (ChiCol) were prepared by three mechanical freeze–thaw followed by freeze-drying to obtain the porous scaffolds. The mechanical properties and the in vitro biocompatibility of the composite scaffolds to simulated body fluid (SBF) and to rat osteoblast-like UMR-106 cells were investigated. The results from the studies indicated that the porosity and compressive strength were controlled by the weight ratio of PVABG:ChiCol. The highest compressive modulus of the composites made was 214.64 MPa which was for the 1:1 weight ratio PVABG:ChiCol. Mineralization study in SBF showed the formation of apatite crystals on the PVABG:ChiCol surface after 7 days of incubation. In vitro cell availability and proliferation tests confirmed the osteoblast attachment and growth on the PVABG:ChiCol surface. MTT and ALP tests on the 1:1 weight ratio PVABG:ChiCol composite indicated that the UMR-106 cells were viable. Alkaline phosphatase activity was found to increase with increasing culturing time. In addition, we showed the potential of PVABG:ChiCol drug delivery through PBS solution studies. 81.14% of BSA loading had been achieved and controlled release for over four weeks was observed. Our results indicated that the PVABG:ChiCol composites, especially the 1:1 weight ratio composite exhibited significantly improved mechanical, mineral deposition, biological properties and controlled release. This made them potential candidates for bone tissue engineering applications. - Graphical abstract: Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: A bone tissue engineering applications. - Highlights: • Preparation of PVABG:ChiCol hybrid composites and their bioactivities • Mechanical

  4. Social Security Bulletin

    Data.gov (United States)

    Social Security Administration — The Social Security Bulletin (ISSN 1937-4666) is published quarterly by the Social Security Administration. The Bulletin is prepared in the Office of Retirement and...

  5. Transportation Security Administration

    Science.gov (United States)

    ... content Official website of the Department of Homeland Security Transportation Security Administration A - Z Index Blog What Can I ... Search form Search the Site Main menu Travel Security Screening Special Procedures TSA Pre✓® Passenger Support Travel ...

  6. Security, Fraud Detection

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Secure. Secure. Server – Intruder prevention/detection; Network – Encryption, PKI; Client - Secure. Fraud detection based on audit trails. Automatic alerts like credit-card alerts based on suspicious patterns.

  7. USCG Security Plan Review

    Data.gov (United States)

    Department of Homeland Security — The Security Plan Review module is intended for vessel and facility operators to check on the status of their security plans submitted to the US Coast Guard. A MISLE...

  8. Institute of Industrial Engineers Asian Conference 2013

    CERN Document Server

    Tsao, Yu-Chung; Lin, Shi-Woei

    2013-01-01

    This book is based on the research papers presented during The Institute of Industrial Engineers Asian Conference 2013 held at Taipei in July 2013. It presents information on the most recent and relevant research, theories and practices in industrial and systems engineering. Key topics include: Engineering and Technology Management Engineering Economy and Cost Analysis Engineering Education and Training Facilities Planning and Management Global Manufacturing and Management Human Factors Industrial & Systems Engineering Education Information Processing and Engineering Intelligent Systems Manufacturing Systems Operations Research Production Planning and Control Project Management Quality Control and Management Reliability and Maintenance Engineering Safety, Security and Risk Management Supply Chain Management Systems Modeling and Simulation Large scale complex systems.

  9. Kyrgyzstan's security problems today

    OpenAIRE

    Abduvalieva, Ryskul

    2009-01-01

    Regional stability and security consist of two levels-the external security of each country at the regional level and the internal security of each of them individually. A state's external and internal security are closely interrelated concepts. It stands to reason that ensuring internal security and stability is the primary and most important task. But the external aspect also requires attention. This article takes a look at the most important problems of ensuring Kyrgyzstan's security.

  10. Information Security Maturity Model

    OpenAIRE

    Information Security Maturity Model

    2011-01-01

    To ensure security, it is important to build-in security in both the planning and the design phases andadapt a security architecture which makes sure that regular and security related tasks, are deployedcorrectly. Security requirements must be linked to the business goals. We identified four domains thataffect security at an organization namely, organization governance, organizational culture, thearchitecture of the systems, and service management. In order to identify and explore the strengt...

  11. Security By Design

    OpenAIRE

    Tanner, M. James

    2009-01-01

    Securing a computer from unwanted intrusion requires astute planning and effort to effectively minimize the security invasions computers are plagued with today. While all of the efforts to secure a computer are needed, it seems that the underlying issue of what is being secured has been overlooked. The operating system is at the core of the security issue. Many applications and devices have been put into place to add layers of protection to an already weak operating system. Security did not u...

  12. Foundational aspects of security

    DEFF Research Database (Denmark)

    Chatzikokolakis, Konstantinos; Mödersheim, Sebastian Alexander; Palamidessi, Catuscia

    2014-01-01

    This Special Issue of the Journal of Computer Security focuses on foundational aspects of security, which in recent years have helped change much of the way we think about and approach system security.......This Special Issue of the Journal of Computer Security focuses on foundational aspects of security, which in recent years have helped change much of the way we think about and approach system security....

  13. Security guide for subcontractors

    Energy Technology Data Exchange (ETDEWEB)

    Adams, R.C.

    1991-01-01

    This security guide of the Department of Energy covers contractor and subcontractor access to DOE and Mound facilities. The topics of the security guide include responsibilities, physical barriers, personnel identification system, personnel and vehicular access controls, classified document control, protecting classified matter in use, storing classified matter repository combinations, violations, security education clearance terminations, security infractions, classified information nondisclosure agreement, personnel security clearances, visitor control, travel to communist-controlled or sensitive countries, shipment security, and surreptitious listening devices.

  14. Redefining security.

    Science.gov (United States)

    Mathews, J T

    1989-01-01

    The concept of US national security was redefined in the 1970s to include international economics, and lately environmental degradation has also become a factor, as pollution transcends boundaries. By 2100 another 5-6 billion people may be added to the world's population requiring dramatic production and technology transformation with the resultant expanded energy use, emissions, and waste impacting the ecosystem. Climate change through global warming is in the offing. The exponential growth of the population in the developing world poses a crucial challenge for food production, housing, and employment. At a 1% growth rate population doubles in 72 years, while at 3% it doubles in 24 years. Africa's growth rate is almost 3%, it is close to 2% in Latin America, and it is somewhat less in Asia. Renewable resources such as overfished fishing grounds can become nonrenewable, and vanished species can never be resurrected. Deforestation leads to soil erosion, damage to water resources through floods and silting of irrigation networks, and accelerated loss of species. 20% of species could disappear by 2000 thereby losing genetic resources for chemicals, drugs, and food sources. Overcultivation has caused major erosion and decline of agricultural productivity in Haiti, Guatemala, Turkey, and India. Lopsided land ownership in Latin America requires land reform for sustainable agricultural production in the face of the majority of people cultivating plots for bare subsistence. Human practices that have caused environmental damage include concessions granted to logging companies in the Philippines, mismanagement of natural resources in sub-Saharan Africa, the ozone hole, and the greenhouse effect with potential climate changes. Solutions include family planning, efficient energy use, sustainable agroforestry techniques, and environmental accounting of goods and services.

  15. Personnel Security Investigations -

    Data.gov (United States)

    Department of Transportation — This data set contains the types of background investigations, decisions, level of security clearance, date of security clearance training, and credentials issued to...

  16. Nuclear Security Education Program at the Pennsylvania State University

    Energy Technology Data Exchange (ETDEWEB)

    Uenlue, Kenan [The Pennsylvania State University, Radiation Science and Engineering Center, University Park, PA 16802-2304 (United States); The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States); Jovanovic, Igor [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16802-2304 (United States)

    2015-07-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  17. Nuclear Security Education Program at the Pennsylvania State University

    International Nuclear Information System (INIS)

    Uenlue, Kenan; Jovanovic, Igor

    2015-01-01

    The availability of trained and qualified nuclear and radiation security experts worldwide has decreased as those with hands-on experience have retired while the demand for these experts and skills have increased. The U.S. Department of Energy's National Nuclear Security Administration's (NNSA) Global Threat Reduction Initiative (GTRI) has responded to the continued loss of technical and policy expertise amongst personnel and students in the security field by initiating the establishment of a Nuclear Security Education Initiative, in partnership with Pennsylvania State University (PSU), Texas A and M (TAMU), and Massachusetts Institute of Technology (MIT). This collaborative, multi-year initiative forms the basis of specific education programs designed to educate the next generation of personnel who plan on careers in the nonproliferation and security fields with both domestic and international focus. The three universities worked collaboratively to develop five core courses consistent with the GTRI mission, policies, and practices. These courses are the following: Global Nuclear Security Policies, Detectors and Source Technologies, Applications of Detectors/Sensors/Sources for Radiation Detection and Measurements Nuclear Security Laboratory, Threat Analysis and Assessment, and Design and Analysis of Security Systems for Nuclear and Radiological Facilities. The Pennsylvania State University (PSU) Nuclear Engineering Program is a leader in undergraduate and graduate-level nuclear engineering education in the USA. The PSU offers undergraduate and graduate programs in nuclear engineering. The PSU undergraduate program in nuclear engineering is the largest nuclear engineering programs in the USA. The PSU Radiation Science and Engineering Center (RSEC) facilities are being used for most of the nuclear security education program activities. Laboratory space and equipment was made available for this purpose. The RSEC facilities include the Penn State Breazeale

  18. Security 2020 Reduce Security Risks This Decade

    CERN Document Server

    Howard, Doug; Schneier, Bruce

    2010-01-01

    Identify real security risks and skip the hype After years of focusing on IT security, we find that hackers are as active and effective as ever. This book gives application developers, networking and security professionals, those that create standards, and CIOs a straightforward look at the reality of today's IT security and a sobering forecast of what to expect in the next decade. It debunks the media hype and unnecessary concerns while focusing on the knowledge you need to combat and prioritize the actual risks of today and beyond.IT security needs are constantly evolving; this guide examine

  19. Computational Intelligence, Cyber Security and Computational Models

    CERN Document Server

    Anitha, R; Lekshmi, R; Kumar, M; Bonato, Anthony; Graña, Manuel

    2014-01-01

    This book contains cutting-edge research material presented by researchers, engineers, developers, and practitioners from academia and industry at the International Conference on Computational Intelligence, Cyber Security and Computational Models (ICC3) organized by PSG College of Technology, Coimbatore, India during December 19–21, 2013. The materials in the book include theory and applications for design, analysis, and modeling of computational intelligence and security. The book will be useful material for students, researchers, professionals, and academicians. It will help in understanding current research trends and findings and future scope of research in computational intelligence, cyber security, and computational models.

  20. Processing multilevel secure test and evaluation information

    Science.gov (United States)

    Hurlburt, George; Hildreth, Bradley; Acevedo, Teresa

    1994-07-01

    The Test and Evaluation Community Network (TECNET) is building a Multilevel Secure (MLS) system. This system features simultaneous access to classified and unclassified information and easy access through widely available communications channels. It provides the necessary separation of classification levels, assured through the use of trusted system design techniques, security assessments and evaluations. This system enables cleared T&E users to view and manipulate classified and unclassified information resources either using a single terminal interface or multiple windows in a graphical user interface. TECNET is in direct partnership with the National Security Agency (NSA) to develop and field the MLS TECNET capability in the near term. The centerpiece of this partnership is a state-of-the-art Concurrent Systems Security Engineering (CSSE) process. In developing the MLS TECNET capability, TECNET and NSA are providing members, with various expertise and diverse backgrounds, to participate in the CSSE process. The CSSE process is founded on the concepts of both Systems Engineering and Concurrent Engineering. Systems Engineering is an interdisciplinary approach to evolve and verify an integrated and life cycle balanced set of system product and process solutions that satisfy customer needs (ASD/ENS-MIL STD 499B 1992). Concurrent Engineering is design and development using the simultaneous, applied talents of a diverse group of people with the appropriate skills. Harnessing diverse talents to support CSSE requires active participation by team members in an environment that both respects and encourages diversity.