WorldWideScience

Sample records for protein dlk preadipocyte

  1. Membrane-Tethered Delta-Like 1 Homolog (DLK1) Restricts Adipose Tissue Size By Inhibiting Preadipocyte Proliferation

    DEFF Research Database (Denmark)

    Mortensen, Sussi B; Jensen, Charlotte H; Schneider, Mikael

    2012-01-01

    Adipocyte renewal from preadipocytes has been shown to occur throughout life and to contribute to obesity, yet very little is known about the molecular circuits that control preadipocyte expansion. The soluble form of the preadipocyte factor (also known as pref-1) delta-like 1 homolog (DLK1(S...... in vivo. Here, we demonstrate for the first time that only membrane-bound DLK1 (DLK1(M)) exhibits a substantial repression effect on preadipocyte proliferation. Thus, by independently manipulating DLK1 isoform levels, we established that DLK1(M) inhibits G1-to-S-phase cell cycle progression and thereby...

  2. The non-canonical NOTCH1 ligand Delta-like 1 homolog (DLK1) self interacts in mammals

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte Harken; Garcia Ramirez, Jose Javier

    2017-01-01

    the proposed DLK1-IGFBP1 interaction was not supported by MTH. Very little has previously been described on the DLK1 self-interaction. Herein, we showed by immunoprecipitation as well as Sulfo-SBED label transfer that the DLK1-DLK1 interaction likely is part of Dlk1's function in preadipocytes. Furthermore our......Delta-like 1 homolog (DLK1) is an imprinted gene, which is widely expressed during mammalian development and plays a pivotal role in differentiation of various tissue types. Most recently, we have shown that DLK1 interacts with NOTCH1, yet several Notch independent mechanisms have previously been...... suggested as well, but only poorly confirmed in a mammalian context. In the present study, we employed the mammalian two-hybrid (MTH) system, a genetic in vivo protein-protein interaction system, to show robust DLK1-DLK1, DLK1-FnI (Fibronectin) and DLK1-CFR (cysteine-rich FGF receptor) interactions, whereas...

  3. MicroRNA-15a finetunes the level of Delta-like 1 homologue (DLK1) in proliferating 3T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Jensen, Charlotte H; Schneider, Mikael

    2010-01-01

    Delta like 1 homologue (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal...... increases with cell density, and peaks at the same stage where membrane DLK1(M) and soluble DLK1(S) are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1(M) protein while it increases the amount of DLK1(S) supporting a direct...... while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1(S). Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling...

  4. Regulation of human skeletal stem cells differentiation by Dlk1/Pref-1

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Jensen, Charlotte H; Gutierrez, Gloria

    2004-01-01

    Dlk-1/Pref-1 was identified as a novel regulator of human skeletal stem cell differentiation. Dlk1/Pref-1 is expressed in bone and cultured osteoblasts, and its constitutive overexpression led to inhibition of osteoblast and adipocyte differentiation of human marrow stromal cells. INTRODUCTION......: Molecular control of human mesenchymal stem cell (hMSC) differentiation into osteoblasts and adipocytes is not known. In this study, we examined the role of delta-like 1/preadipocyte factor-1 (Dlk1/Pref-1) in regulating the differentiation of hMSCs. MATERIALS AND METHODS: As a model for hMSCs, we have...... was used to confirm the in vitro effect of Dlk/Pref-1 on bone formation. RESULTS: Dlk1/Pref-1 was found to be expressed in fetal and adult bone, hMSCs, and some osteoblastic cell lines. A retroviral vector containing the human Dlk1/Pref-1 cDNA was used to create a cell line (hMSC-dlk1) expressing high...

  5. Growth hormone and prolactin stimulate the expression of rat preadipocyte factor-1/delta-like protein in pancreatic islets

    DEFF Research Database (Denmark)

    Carlsson, C; Tornehave, D; Lindberg, Karen

    1997-01-01

    GH-induced clone had 96% identity with mouse preadipocyte factor-1 (Pref-1, or delta-like protein (Dlk)]. The size of Pref-1 messenger RNA (mRNA) in islets was 1.6 kilobases, with two less abundant mRNAs of 3.7 and 6.2 kilobases. The Pref-1 mRNA content of islets from adult rats was only 1% of that in neonatal...... islets. Pref-1 mRNA was markedly up-regulated in islets from pregnant rats from day 12 to term compared with those from age-matched female rats. Two peaks in mRNA expression were observed during gestation, one on day 14 and the other at term, whereafter it decreased to nonpregnant levels. Pref-1 m...

  6. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype

    DEFF Research Database (Denmark)

    Davis, Erica; Jensen, Charlotte Harken; Farnir, Frédéric

    2004-01-01

    profile causes the callipyge muscular hypertrophy has remained unclear. Herein, we demonstrate that the callipyge phenotype is perfectly correlated with ectopic expression of DLK1 protein in hypertrophied muscle of +(MAT)/CLPG(PAT) sheep. We demonstrate the causality of this association by inducing...... a generalized muscular hypertrophy in transgenic mice that express DLK1 in skeletal muscle. The absence of DLK1 protein in skeletal muscle of CLPG/CLPG animals, despite the presence of DLK1 mRNA, supports a trans inhibition mediated by noncoding RNAs expressed from the maternal allele.......The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy described in sheep. It is characterized by an unusual mode of inheritance ("polar overdominance") in which only heterozygous individuals having received the CLPG mutation from their father (+(MAT)/CLPG(PAT)) express...

  7. The Cross-talk Between TGF-β1 and Dlk1 Mediates Early Chondrogenesis During Embryonic Endochondral Ossification

    DEFF Research Database (Denmark)

    Taipaleenmaki, Hanna; M, Linda; Chen, Li

    2012-01-01

    Dlkl/Pref-1/FA1 (delta like-1/preadipocyte factor-1/Fetal Antigen-1) is a novel surface marker for embryonic chondroprogenitor cells undergoing lineage progression from proliferation to prehypertrophic stages. However, mechanisms mediating control of its expression during chondrogenesis...... during mesenchymal condensation and chondrocyte proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon the expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-β1-induced proliferation of chondroprogenitors...... was associated with decreased Dlk1 expression. This effect was abolished by TGF-β signalling inhibitor SB431542, suggesting regulation of Dlk1/FA1 by TGF-β1 signalling in chondrogenesis. TGF-β1-induced Smad phosphorylation and chondrogenesis were significantly increased in Dlk1 (-/-) MEF, while they were blocked...

  8. Delta-like protein (DLK) is a novel immunohistochemical marker for human hepatoblastomas

    DEFF Research Database (Denmark)

    Dezso, Katalin; Halász, Judit; Bisgaard, Hanne Cathrine

    2008-01-01

    Delta-like protein (DLK) is a membrane protein with mostly unknown function. It is expressed by several embryonic tissues among others by the hepatoblasts of rodent and human fetal livers. We have investigated in the present study if this protein is expressed in human hepatoblastomas. The presenc...

  9. DLK1 Regulates Whole-Body Glucose Metabolism

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Laborda, Jorge

    2015-01-01

    due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1(-/-) mice treated with Glu-OC experienced significantly lower blood glucose levels than Glu-OCN-treated wild-type mice. The data suggest that Glu-OCN-controlled production of DLK1 by pancreatic β-cells acts...... metabolism. We show that Glu-OCN specifically stimulates Dlk1 expression by the pancreas. Conversely, Dlk1-deficient (Dlk1(-/-) ) mice exhibited increased circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity...

  10. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats

    International Nuclear Information System (INIS)

    Baladron, Victoriano; Ruiz-Hidalgo, Maria Jose; Nueda, Maria Luisa; Diaz-Guerra, Maria Jose M.; Garcia-Ramirez, Jose Javier; Bonvini, Ezio; Gubina, Elena; Laborda, Jorge

    2005-01-01

    The protein dlk, encoded by the Dlk1 gene, belongs to the Notch epidermal growth factor (EGF)-like family of receptors and ligands, which participate in cell fate decisions during development. The molecular mechanisms by which dlk regulates cell differentiation remain unknown. By using the yeast two-hybrid system, we found that dlk interacts with Notch1 in a specific manner. Moreover, by using luciferase as a reporter gene under the control of a CSL/RBP-Jk/CBF-1-dependent promoter in the dlk-negative, Notch1-positive Balb/c 14 cell line, we found that addition of synthetic dlk EGF-like peptides to the culture medium or forced expression of dlk decreases endogenous Notch activity. Furthermore, the expression of the gene Hes-1, a target for Notch1 activation, diminishes in confluent Balb/c14 cells transfected with an expression construct encoding for the extracellular EGF-like region of dlk. The expression of Dlk1 and Notch1 increases in 3T3-L1 cells maintained in a confluent state for several days, which is associated with a concomitant decrease in Hes-1 expression. On the other hand, the decrease of Dlk1 expression in 3T3-L1 cells by antisense cDNA transfection is associated with an increase in Hes-1 expression. These results suggest that dlk functionally interacts in vivo with Notch1, which may lead to the regulation of differentiation processes modulated by Notch1 activation and signaling, including adipogenesis

  11. Dlk1 in normal and abnormal hematopoiesis

    DEFF Research Database (Denmark)

    Sakajiri, S; O'kelly, J; Yin, D

    2005-01-01

    normals. Also, Dlk1 mRNA was elevated in mononuclear, low density bone marrow cells from 11/38 MDS patients, 5/11 AML M6 and 2/4 AML M7 samples. Furthermore, 5/6 erythroleukemia and 2/2 megakaryocytic leukemia cell lines highly expressed Dlk1 mRNA. Levels of Dlk1 mRNA markedly increased during...... (particularly M6, M7), and it appears to be associated with normal development of megakaryocytes and B cells....

  12. Glycosylation analysis and protein structure determination of murine fetal antigen 1 (mFA1)--the circulating gene product of the delta-like protein (dlk), preadipocyte factor 1 (Pref-1) and stromal-cell-derived protein 1 (SCP-1) cDNAs

    DEFF Research Database (Denmark)

    Krogh, T N; Bachmann, E; Teisner, B

    1997-01-01

    By means of sequence analysis, murine fetal antigen 1 (mFA1) isolated from Mus musculus amniotic fluid was shown to be the circulating protein of the delta-like protein, stromal-cell-derived protein 1 (SCP-1) and preadipocyte factor 1 (Pref-1) gene products. The protein contains 36 cysteine...... residues arranged in six epidermal-growth-factor-like domains. The purification of several C-terminal peptides of varying lengths showed mFA1 to be C-terminal heterogeneous. O-linked glycosylations of the NeuNAc alpha2-3Gal beta1-3(NeuNAc alpha2-6)GalNAc type were present on all C-terminal peptides...... at residues Thr235, Thr244 and Thr248, although glycosylation on Thr244 was only partial. Three N-linked glycosylations were localized in mFA1 (Asn77, Asn142 and Asn151), two of which (Asn142 and Asn151) were in the unusual Asn-Xaa-Cys motif. Fucosylated biantennary complex-type and small amounts (less than 5...

  13. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Meyer, M; Schrøder, Henrik Daa

    2001-01-01

    The gene DLK1 encodes a member of the epidermal growth factor (EGF) superfamily, delta-like (dlk). When exposed in vivo to the action of an unknown protease, this type 1 membrane protein generates a soluble peptide referred to as Fetal antigen 1 (FA1). By acting in juxtacrine as well as paracrine....../autocrine manners, both forms have been shown to be active in the differentiation/proliferation process of various cell types. In adults, FA1/dlk has been demonstrated mainly within (neuro) endocrine tissues. In this study we investigated the presence of FA1/dlk in other parts of the developing and adult rat...... and human CNS. Using immunocytochemistry and in situ hybridization we found that in both species FA1/dlk was expressed in neurons of the Edinger-Westphal's nucleus as well as in substantia nigra, ventral tegmental area (VTA), locus coeruleus and in certain parts of the raphe nuclei....

  14. TGFb signalling inhibits DLK1 expression during chondrogenesis in vitro

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Saamanen, Anna-Marja

    2011-01-01

    the effect of a number of signalling molecules on DLK1 expression during in vitro chondrogenic differentiation in mouse embryonic limb bud mesenchymal micromass cultures and mouse embryonic fibroblast (MEF) pellet cultures. Dlk1 was initially expressed during mesenchymal condensation and chondrocyte...... proliferation, in parallel with expression of Sox9 and Col2a1, and was down-regulated upon expression of Col10a1 by hypertrophic chondrocytes. Among a number of molecules that affected chondrogenesis, TGF-b signalling regulated Dlk1expression. TGF-b1-induced chondrogenesis was associated with decreased Dlk1...... expression and these effects were abolished by the TGF-b signalling inhibitor SB4311542 suggesting an involvement of DLK1/FA1 in mediating the function of TGF-b1 signalling in chondrogenesis. In support of this hypothesis, we found that TGF-b1 enhanced chondrocyte differentiation in dlk1-/- MEF compared...

  15. FA1 immunoreactivity in endocrine tumours and during development of the human fetal pancreas; negative correlation with glucagon expression

    DEFF Research Database (Denmark)

    Tornehave, D; Jensen, Charlotte Harken; Teisner, B

    1996-01-01

    Fetal antigen 1 (FA1) is a glycoprotein containing six epidermal growth factor (EGF)-like repeats. It is closely similar to the protein translated from the human delta-like (dlk) cDNA and probably constitutes a proteolytically processed form of dlk. dlk is homologous to the Drosophila homeotic...... proteins delta and notch and to the murine preadipocyte differentiation factor Pref-1. These proteins participate in determining cell fate choices during differentiation. We now report that FA1 immunoreactivity is present in a number of neuroectodermally derived tumours as well as in pancreatic endocrine...... tumours. A negative correlation between FA1 and glucagon immunoreactants in these tumours prompted a reexamination of FA1 immunoreactants during fetal pancreatic development. At the earliest stages of development, FA1 was expressed by most of the non-endocrine parenchymal cells and, with ensuing...

  16. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  17. Delta-like 1 homolog (dlk1: a marker for rhabdomyosarcomas implicated in skeletal muscle regeneration.

    Directory of Open Access Journals (Sweden)

    Louise H Jørgensen

    Full Text Available Dlk1, a member of the Epidermal Growth Factor family, is expressed in multiple tissues during development, and has been detected in carcinomas and neuroendocrine tumors. Dlk1 is paternally expressed and belongs to a group of imprinted genes associated with rhabdomyosarcomas but not with other primitive childhood tumors to date. Here, we investigate the possible roles of Dlk1 in skeletal muscle tumor formation. We analyzed tumors of different mesenchymal origin for expression of Dlk1 and various myogenic markers and found that Dlk1 was present consistently in myogenic tumors. The coincident observation of Dlk1 with a highly proliferative state in myogenic tumors led us to subsequently investigate the involvement of Dlk1 in the control of the adult myogenic programme. We performed an injury study in Dlk1 transgenic mice, ectopically expressing ovine Dlk1 (membrane bound C2 variant under control of the myosin light chain promotor, and detected an early, enhanced formation of myotubes in Dlk1 transgenic mice. We then stably transfected the mouse myoblast cell line, C2C12, with full-length Dlk1 (soluble A variant and detected an inhibition of myotube formation, which could be reversed by adding Dlk1 antibody to the culture supernatant. These results suggest that Dlk1 is involved in controlling the myogenic programme and that the various splice forms may exert different effects. Interestingly, both in the Dlk1 transgenic mice and the DLK1-C2C12 cells, we detected reduced myostatin expression, suggesting that the effect of Dlk1 on the myogenic programme might involve the myostatin signaling pathway. In support of a relationship between Dlk1 and myostatin we detected reciprocal expression of these two transcripts during different cell cycle stages of human myoblasts. Together our results suggest that Dlk1 is a candidate marker for skeletal muscle tumors and might be involved directly in skeletal muscle tumor formation through a modulatory effect on the

  18. Enhancement of inflammatory protein expression and nuclear factor Κb (NF-Κb) activity by trichostatin A (TSA) in OP9 preadipocytes.

    Science.gov (United States)

    Sato, Taiki; Kotake, Daisuke; Hiratsuka, Masahiro; Hirasawa, Noriyasu

    2013-01-01

    The production of inflammatory proteins such as interleukin-6 (IL-6) by preadipocytes and mature adipocytes is closely associated with the impairment of systemic glucose homeostasis. However, precisely how the production is regulated and the roles of histone deacetylases (HDACs) remain largely unknown. The aim of this study was to establish whether HDAC inhibitors affect the expression of inflammatory proteins in pre/mature adipocytes, and, if so, to determine the mechanism involved. Trichostatin A (TSA), an HDAC inhibitor, enhanced lipopolysaccharide (LPS)-induced production of IL-6 in OP9 preadipocytes but not the mature adipocytes. Moreover, TSA also enhanced palmitic acid-induced IL-6 production and the expression of inflammatory genes induced by LPS in preadipocytes. Although TSA did not affect TLR4 mRNA expression or the activation of MAPKs, a reporter gene assay revealed that the LPS-induced increase in nuclear factor κB (NF-κB) activity was enhanced by TSA. Moreover, TSA increased the level of NF-κB p65 acetylation at lysine 310 and duration of its translocation into the nucleus, which leads to enhancement of NF-κB activity and subsequently expression of inflammatory genes. These findings shed new light on the regulatory roles of HDACs in preadipocytes in the production of inflammatory proteins.

  19. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  20. Delta-like 1/Fetal Antigen-1 (Dlk1/FA1) Is a Novel Regulator of Chondrogenic Cell Differentiation via Inhibition of the Akt Kinase-dependent Pathway*

    Science.gov (United States)

    Chen, Li; Qanie, Diyako; Jafari, Abbas; Taipaleenmaki, Hanna; Jensen, Charlotte H.; Säämänen, Anna-Marja; Sanz, Maria Luisa Nueda; Laborda, Jorge; Abdallah, Basem M.; Kassem, Moustapha

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1 protein to the medium strongly inhibited the activation of Akt, but not the ERK1/2, or p38 MAPK pathways, and the inhibition of Akt by Dlk1/FA1 was mediated through PI3K activation. Interestingly, inhibition of fibronectin expression by siRNA rescued the Dlk1/FA1-mediated inhibition of Akt, suggesting interaction of Dlk1/FA1 and fibronectin in chondrogenic cells. Our results identify Dlk1/FA1 as a novel regulator of chondrogenesis and suggest Dlk1/FA1 acts as an inhibitor of the PI3K/Akt pathways that leads to its inhibitory effects on chondrogenesis. PMID:21724852

  1. Delta-like 1 homolog (dlk1): a marker for rhabdomyosarcomas implicated in skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Jørgensen, Louise Helskov; Sellathurai, Jeeva; Davis, Erica E

    2013-01-01

    of the myosin light chain promotor, and detected an early, enhanced formation of myotubes in Dlk1 transgenic mice. We then stably transfected the mouse myoblast cell line, C2C12, with full-length Dlk1 (soluble A variant) and detected an inhibition of myotube formation, which could be reversed by adding Dlk1...... antibody to the culture supernatant. These results suggest that Dlk1 is involved in controlling the myogenic programme and that the various splice forms may exert different effects. Interestingly, both in the Dlk1 transgenic mice and the DLK1-C2C12 cells, we detected reduced myostatin expression......, suggesting that the effect of Dlk1 on the myogenic programme might involve the myostatin signaling pathway. In support of a relationship between Dlk1 and myostatin we detected reciprocal expression of these two transcripts during different cell cycle stages of human myoblasts. Together our results suggest...

  2. Delta-like 1/fetal antigen 1(DLK1/FA1) inhibits BMP2 induced osteoblast differentiation through modulation of NFκB signaling pathway

    DEFF Research Database (Denmark)

    Qiu, Weimin; Abdallah, Basem; Kassem, Moustapha

    DLK1/FA1 (delta-like 1/fetal antigen-1) is a negative regulator of bone mass that acts to inhibit osteoblast differentiation and stimulate osteoclast differentiation. However, the molecular mechanisms underlying these effects are not known. Thus, we studied the effect of DLK1/FA1 on different...... osteogenic factors-induced osteoblast differentiation. We identified DLK1/FA1 as an inhibitor of BMP2-induced osteogenesis in mouse myoblast C2C12 cells. Stable overexpression of DLK1/FA1 in C2C12 cells or the addition of its soluble form protein FA1 significantly inhibited BMP2-induced osteogenesis...... as assessed by reduced Alp activity and osteogenic gene expression including Alp, Col1a1, Runx2 and Bglap. In addition, DLK1/FA1 inhibited BMP signaling as demonstrated by reduced gene expression of BMP-responsive genes: Junb and Id1, reduced BMP2 induced luciferase activity in C2C12 BMP luciferase reporter...

  3. Assignment of the murine protein kinase gene DLK to chromosome 15 in the vicinity of the bt/Koa locus by genetic linkage analysis

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Toshio; Yanagisawa, Masahiro; Matsubara, Nobumichi [Tokyo Univ. (Japan)] [and others

    1997-03-01

    We have cloned protein kinase genes from murine primordial germ cell-derived EG cells by a PCR-based strategy using degenerate primers corresponding to the conserved sequences in the catalytic domain of protein kinases. One of these clones, designated Gek2 (germ cell kinase 2), was used as a probe for screening of a mouse brain cDNA library and obtained clones contained an entire coding sequence. Comparison of the sequence of Gek2 with those in databases revealed that it was identical to a previously reported protein kinase gene, DLK. 8 refs., 1 fig.

  4. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI3K and mTOR

    International Nuclear Information System (INIS)

    Wang, Yanling; Sato, Masaaki; Guo, Yuan; Bengtsson, Tore; Nedergaard, Jan

    2014-01-01

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI 3 K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI 3 K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias

  5. MicroRNA-2400 promotes bovine preadipocyte proliferation

    International Nuclear Information System (INIS)

    Wei, Yao; Cui, Ya Feng; Tong, Hui Li; Zhang, Wei Wei; Yan, Yun Qin

    2016-01-01

    MicroRNAs (miRNAs) play critical roles in the proliferation of bovine preadipocytes. miR-2400 is a novel and unique miRNA from bovines. In the present study, we separated and identified preadipocytes from bovine samples. miR-2400 overexpression increased the rate of preadipocyte proliferation, which was analyzed with a combination of EdU and flow cytometry. Simultaneously, functional genes related to proliferation (PCNA, CCND2, CCNB1) were also increased, which was detected by real-time PCR. Furthermore, luciferase reporter assays showed that miR-2400 bound directly to the 3'untranslated regions (3′UTRs) of PRDM11 mRNA. These data suggested that miR-2400 could promote preadipocyte proliferation by targeting PRDM11. - Highlights: • miRNAs are important in bovine preadipocyte proliferation. • miR-2400 is a novel miRNA from bovines. • miR-2400 overexpression increased preadipocyte proliferation. • Functional genes related to preadipocyte proliferation were upregulated. • Preadipocyte proliferation was promoted by targeting PRDM11.

  6. Estrogen Inhibits Dlk1/FA1 Production: A Potential Mechanism for Estrogen Effects on Bone Turnover

    Science.gov (United States)

    Abdallah, B. M.; Bay-Jensen, A.; Srinivasan, B.; Tabassi, N. C.; Garnero, P.; Delaissé, J.; Khosla, S.; Kassem, M.

    2011-01-01

    We have recently identified Dlk1/FA1 (Delta-like 1/FA1) as a novel regulator of bone mass that functions to mediate bone loss, under estrogen deficiency, in mice. In this report, we investigated the effects of estrogen (E)-deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (s-CTx and s-osteocalcin), were measured in two cohorts: a group of pre- and postmenopausal women (n=100) and a group of postmenopausal women, where half had received estrogen replacement therapy (ERT) (n=166). s-Dlk1/FA1, and s-CTX were elevated in postmenopausal E-deficient compared to premenopausal E-replete women (both; P<0.001). s-Dlk1/FA1 was correlated with s-CTX (r=0.30, P<0.01). ERT, in postmenopausal women, decreased s-Dlk1/FA1, as well as s-CTX and s-osteoclacin (all; P<0.0001). Changes in s-Dlk1 were significantly correlated with those observed in s-CTx (r=0.18, P<0.05) and s-osteocalcin (r=0.28, P<0.001). In conclusion, s-Dlk1/FA1 is influenced by E-deficiency and is correlated with bone turnover. Increased levels of s-Dlk1/FA1 in post-menopausal women may be a mechanism mediating the effects estrogen deficiency on bone turnover. PMID:21681814

  7. Expression, biosynthesis and release of preadipocyte factor-1/ delta-like protein/fetal antigen-1 in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, B N; Carlsson, C; Møldrup, Annette

    2003-01-01

    Preadipocyte factor-1 (Pref-1)/delta-like protein/fetal antigen-1 (FA1) is a member of the epidermal growth factor-like family. It is widely expressed in embryonic tissues, whereas in adults it is confined to the adrenal gland, the anterior pituitary, the endocrine pancreas, the testis...

  8. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI{sub 3}K and mTOR

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yanling; Sato, Masaaki; Guo, Yuan; Bengtsson, Tore; Nedergaard, Jan, E-mail: jan@metabol.su.se

    2014-10-15

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.

  9. Novel pathway of adipogenesis through cross-talk between adipose tissue macrophages, adipose stem cells and adipocytes: evidence of cell plasticity.

    Directory of Open Access Journals (Sweden)

    Gregorio Chazenbalk

    Full Text Available INTRODUCTION: Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs, adipose stem cells (ASCs, and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes. RESEARCH DESIGN AND METHODS: Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes, CD14 and CD68 (ATMs, CD34 (ASCs, and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+ ATMs. RESULTS: Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+/CD68(+/DLK (+ cell spheres supported the interaction of ATMs, ASCs and preadipocytes. CONCLUSIONS: Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+/CD68(+/DLK(+ cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and

  10. The Wnt-target gene Dlk-1 is regulated by the Prmt5-associated factor Copr5 during adipogenic conversion

    Directory of Open Access Journals (Sweden)

    Conception Paul

    2015-02-01

    Full Text Available Protein arginine methyl transferase 5 (Prmt5 regulates various differentiation processes, including adipogenesis. Here, we investigated adipogenic conversion in cells and mice in which Copr5, a Prmt5- and histone-binding protein, was genetically invalidated. Compared to control littermates, the retroperitoneal white adipose tissue (WAT of Copr5 KO mice was slightly but significantly reduced between 8 and 16 week/old and contained fewer and larger adipocytes. Moreover, the adipogenic conversion of Copr5 KO embryoid bodies (EB and of primary embryo fibroblasts (Mefs was markedly delayed. Differential transcriptomic analysis identified Copr5 as a negative regulator of the Dlk-1 gene, a Wnt target gene involved in the control of adipocyte progenitors cell fate. Dlk-1 expression was upregulated in Copr5 KO Mefs and the Vascular Stromal Fraction (VSF of Copr5 KO WAT. Chromatin immunoprecipitation (ChIP show that the ablation of Copr5 has impaired both the recruitment of Prmt5 and β-catenin at the Dlk-1 promoter. Overall, our data suggest that Copr5 is involved in the transcriptional control exerted by the Wnt pathway on early steps of adipogenesis.

  11. Pingmu Decoction Induces Orbital Preadipocytes Apoptosis In Vitro

    Directory of Open Access Journals (Sweden)

    Yali Zhang

    2017-01-01

    Full Text Available Pingmu Decoction is the Traditional Chinese Medicine which has treated Graves’ Ophthalmopathy (GO in the inactive stage for more than ten years. This study was to explore the mechanism of Pingmu Decoction of inhibiting preadipocytes in GO patients from differentiating into mature adipocytes. Human orbital preadipocytes were isolated and cultured through tissue explant method. Orbital preadipocytes were induced into mature adipocytes. The medicinal serum was prepared from rats. The cells were treated with medicinal serum which were divided into three groups, low dose group (5%, medium dose group (10%, and high dose group (20%. The cells viabilities were observed by Oil Red O staining, MTT method, and Annexin V/propidium iodide (PI double staining. Effect of Pingmu Decoction on cell apoptosis rate of orbital matured adipocytes was measured by flow cytometry. The genes Fas and Fas L from cell groups were tested by RT-PCR and Western blotting. The expression of master adipogenic transcription factors, including peroxisome proliferation-activity receptor (PPAR γ and CCAAT/enhancer binding protein (C/EBP α, was tested by Western blotting. Pingmu Decoction could reduce orbital preadipocytes viability and induce apoptosis of mature adipocyte via Fas/Fas L signaling pathway. Pingmu Decoction reduced lipid accumulation and downregulated the expression of PPAR γ and C/EBP α. Pingmu Decoction may play a therapeutic effect by reducing the accumulation of orbital adipocytes.

  12. ClC-3 deficiency protects preadipocytes against apoptosis induced by palmitate in vitro and in type 2 diabetes mice.

    Science.gov (United States)

    Huang, Yun-Ying; Huang, Xiong-Qin; Zhao, Li-Yan; Sun, Fang-Yun; Chen, Wen-Liang; Du, Jie-Yi; Yuan, Feng; Li, Jie; Huang, Xue-Lian; Liu, Jie; Lv, Xiao-Fei; Guan, Yong-Yuan; Chen, Jian-Wen; Wang, Guan-Lei

    2014-11-01

    Palmitate, a common saturated free fatty acid (FFA), has been demonstrated to induce preadipocyte apoptosis in the absence of adipogenic stimuli, suggesting that preadipocytes may be prone to apoptosis under adipogenic insufficient conditions, like type 2 diabetes mellitus (T2DM). ClC-3, encoding Cl(-) channel or Cl(-)/H(+) antiporter, is critical for cell fate choices of proliferation versus apoptosis under diseased conditions. However, it is unknown whether ClC-3 is related with preadipocyte apoptosis induced by palmitate or T2DM. Palmitate, but not oleate, induced apoptosis and increase in ClC-3 protein expression and endoplasmic reticulum (ER) stress in 3T3-L1 preadipocyte. ClC-3 specific siRNA attenuated palmitate-induced apoptosis and increased protein levels of Grp78, ATF4, CHOP and phosphorylation of JNK1/2, whereas had no effects on increased phospho-PERK and phospho-eIF2α protein expression. Moreover, the enhanced apoptosis was shown in preadipocytes from high-sucrose/fat, low-dose STZ induced T2DM mouse model with hyperglycemia, hyperlipidemia (elevated serum TG and FFA levels) and insulin resistance. ClC-3 knockout significantly attenuated preadipocyte apoptosis and the above metabolic disorders in T2DM mice. These data demonstrated that ClC-3 deficiency prevent preadipocytes against palmitate-induced apoptosis via suppressing ER stress, and also suggested that ClC-3 may play a role in regulating cellular apoptosis and disorders of glucose and lipid metabolism during T2DM.

  13. Prokineticin receptor 1 as a novel suppressor of preadipocyte proliferation and differentiation to control obesity.

    Directory of Open Access Journals (Sweden)

    Cécilia Szatkowski

    Full Text Available BACKGROUND: Adipocyte renewal from preadipocytes occurs throughout the lifetime and contributes to obesity. To date, little is known about the mechanisms that control preadipocyte proliferation and differentiation. Prokineticin-2 is an angiogenic and anorexigenic hormone that activate two G protein-coupled receptors (GPCRs: PKR1 and PKR2. Prokineticin-2 regulates food intake and energy metabolism via central mechanisms (PKR2. The peripheral effect of prokineticin-2 on adipocytes/preadipocytes has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: Since adipocytes and preadipocytes express mainly prokineticin receptor-1 (PKR1, here, we explored the role of PKR1 in adipose tissue expansion, generating PKR1-null (PKR1(-/- and adipocyte-specific (PKR1(ad-/- mutant mice, and using murine and human preadipocyte cell lines. Both PKR1(-/- and PKR1(ad-/- had excessive abdominal adipose tissue, but only PKR1(-/- mice showed severe obesity and diabetes-like syndrome. PKR1(ad-/- mice had increased proliferating preadipocytes and newly formed adipocyte levels, leading to expansion of adipose tissue. Using PKR1-knockdown in 3T3-L1 preadipocytes, we show that PKR1 directly inhibits preadipocyte proliferation and differentiation. These PKR1 cell autonomous actions appear targeted at preadipocyte cell cycle regulatory pathways, through reducing cyclin D, E, cdk2, c-Myc levels. CONCLUSIONS/SIGNIFICANCE: These results suggest PKR1 to be a crucial player in the preadipocyte proliferation and differentiation. Our data should facilitate studies of both the pathogenesis and therapy of obesity in humans.

  14. Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro.

    Science.gov (United States)

    Sun, W X; Dodson, M V; Jiang, Z H; Yu, S G; Chu, W W; Chen, J

    2016-04-01

    This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P Myostatin also significantly (P myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The adaptor SASH1 acts through NOTCH1 and its inhibitor DLK1 in a 3D model of lumenogenesis involving CEACAM1.

    Science.gov (United States)

    Stubblefield, Kandis; Chean, Jennifer; Nguyen, Tung; Chen, Charng-Jui; Shively, John E

    2017-10-15

    CEACAM1 transfection into breast cancer cells restores lumen formation in a 3D culture model. Among the top up-regulated genes that were associated with restoration of lumen formation, the adaptor protein SASH1 was identified. Furthermore, SASH1 was shown to be critical for lumen formation by RNAi inhibition. Upon analyzing the gene array from CEACAM1/MCF7 cells treated with SASH1 RNAi, DLK1, an inhibitor of NOTCH1 signaling, was found to be down-regulated to the same extent as SASH1. Subsequent treatment of CEACAM1/MCF7 cells with RNAi to DLK1 also inhibited lumen formation, supporting its association with SASH1. In agreement with the role of DLK1 as a NOTCH1 inhibitor, NOTCH1, as well as its regulated genes HES1 and HEY1, were down-regulated in CEACAM1/MCF7 cells by the action of DLK1 RNAi, and up-regulated by SASH1 RNAi. When CEACAM1/MCF7 cells were treated with a γ-secretase inhibitor known to inhibit NOTCH signaling, lumen formation was inhibited. We conclude that restoration of lumen formation by CEACAM1 regulates the NOTCH1 signaling pathway via the adaptor protein SASH1 and the NOTCH1 inhibitor DLK1. These data suggest that the putative involvement of NOTCH1 as a tumor-promoting gene in breast cancer may depend on its lack of regulation in cancer, whereas its involvement in normal lumen formation requires activation of its expression, and subsequently, inhibition of its signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Estrogen inhibits Dlk1/FA1 production: A potential mechanism for estrogen effects on bone turnover

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Bay-Jensen, Anne-Christine; Srinivasan, Bhuma

    2011-01-01

    We have recently identified delta-like 1/fetal antigen 1 (Dlk1/FA1) as a novel regulator of bone mass that functions to mediate bone loss under estrogen deficiency in mice. In this report, we investigated the effects of estrogen (E) deficiency and E replacement on serum (s) levels of Dlk1/FA1 (s......-Dlk1FA1) and its correlation with bone turnover markers. s-Dlk1/FA1 and bone turnover markers (serum cross-linked C-telopeptide [s-CTX] and serum osteocalcin) were measured in two cohorts: a group of pre- and postmenopausal women (n = 100) and a group of postmenopausal women, where half had received...... estrogen-replacement therapy (ERT, n = 166). s-Dlk1/FA1 and s-CTX were elevated in postmenopausal E-deficient women compared with premenopausal E-replete women (both p ...

  17. Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury

    DEFF Research Database (Denmark)

    Andersen, Ditte C; Petersson, Stine J; Jørgensen, Louise H

    2009-01-01

    , DLK1 was upregulated in all human myopathies analyzed, including Duchenne- and Becker muscular dystrophies. Substantial numbers of DLK1(+) satellite cells were observed in normal neonatal and Duchenne muscle, and furthermore, myogenic DLK1(+) cells were identified during muscle regeneration in animal...

  18. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  19. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence

    International Nuclear Information System (INIS)

    Alvarez, María Soledad; Fernandez-Alvarez, Ana; Cucarella, Carme; Casado, Marta

    2014-01-01

    Highlights: • SGBS cells mostly expressed SREBP-1a variant. • SREBP-1a knockdown decreased the proliferation of SGBS cells without inducing senescence. • We have identified RBBP8 and CDKN3 genes as potential SREBP-1a targets. - Abstract: Sterol regulatory element binding proteins (SREBP), encoded by the Srebf1 and Srebf2 genes, are important regulators of genes involved in cholesterol and fatty acid metabolism. Whereas SREBP-2 controls the cholesterol synthesis, SREBP-1 proteins (-1a and -1c) function as the central hubs in lipid metabolism. Despite the key function of these transcription factors to promote adipocyte differentiation, the roles of SREBP-1 proteins during the preadipocyte state remain unknown. Here, we evaluate the role of SREBP-1 in preadipocyte proliferation using RNA interference technology. Knockdown of the SREBP-1a gene decreased the proliferation rate in human SGBS preadipocyte cell strain without inducing senescence. Furthermore, our data identified retinoblastoma binding protein 8 and cyclin-dependent kinase inhibitor 3 genes as new potential SREBP-1 targets, in addition to cyclin-dependent kinase inhibitor 1A which had already been described as a gene regulated by SREBP-1a. These data suggested a new role of SREBP-1 in adipogenesis via regulation of preadipocyte proliferation

  20. Stable SREBP-1a knockdown decreases the cell proliferation rate in human preadipocyte cells without inducing senescence

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, María Soledad [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Fernandez-Alvarez, Ana [Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires C1405BWE (Argentina); Cucarella, Carme [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain); Casado, Marta, E-mail: mcasado@ibv.csic.es [Instituto de Biomedicina de Valencia (IBV-CSIC), Jaime Roig 11, E-46010 Valencia (Spain)

    2014-04-25

    Highlights: • SGBS cells mostly expressed SREBP-1a variant. • SREBP-1a knockdown decreased the proliferation of SGBS cells without inducing senescence. • We have identified RBBP8 and CDKN3 genes as potential SREBP-1a targets. - Abstract: Sterol regulatory element binding proteins (SREBP), encoded by the Srebf1 and Srebf2 genes, are important regulators of genes involved in cholesterol and fatty acid metabolism. Whereas SREBP-2 controls the cholesterol synthesis, SREBP-1 proteins (-1a and -1c) function as the central hubs in lipid metabolism. Despite the key function of these transcription factors to promote adipocyte differentiation, the roles of SREBP-1 proteins during the preadipocyte state remain unknown. Here, we evaluate the role of SREBP-1 in preadipocyte proliferation using RNA interference technology. Knockdown of the SREBP-1a gene decreased the proliferation rate in human SGBS preadipocyte cell strain without inducing senescence. Furthermore, our data identified retinoblastoma binding protein 8 and cyclin-dependent kinase inhibitor 3 genes as new potential SREBP-1 targets, in addition to cyclin-dependent kinase inhibitor 1A which had already been described as a gene regulated by SREBP-1a. These data suggested a new role of SREBP-1 in adipogenesis via regulation of preadipocyte proliferation.

  1. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  2. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR γ ) and CCAAT element binding protein α (C/EBP α ), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  3. In Vivo Over-expression of Circulating Dlk1/Pref-1 Protein Using Hydrodynamic-based Gene Transfer Leads to Lower Bone mass With Marked Effects on Trabecular Bone Micro-architecture

    DEFF Research Database (Denmark)

    Ding, Ming

    determined by PIXImus (LunarR) and micro-CT (ScancoR) respectively. We could only localize the plasmid in the liver and no complications were detected due to transgene expression. Serum levels of FA1 in Dlk1 injected mice (Dlk1+mice) was elevated by more than 15 folds compared to control saline injected mice...... and BMD was negatively correlated with the circulating levels of FA1. Micro-CT analysis revealed significantly decreased micro-architectural parameters of trabecular bone in the distal femur and proximal tibia of the Dlk1+mice compared to controls (see table). Naked DNA delivery by hydrodynamic injection...

  4. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Figeac, Florence; Andersen, Ditte C.; Nipper Nielsen, Casper A.

    2018-01-01

    /TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss....... resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E...

  5. Andrographolide suppresses preadipocytes proliferation through glutathione antioxidant systems abrogation.

    Science.gov (United States)

    Chen, Wei; Su, Hongming; Feng, Lina; Zheng, Xiaodong

    2016-07-01

    Oxidative stress is considered to play a profound role in lipid storage and whole-body energy homeostasis. Inhibition of preadipocytes proliferation by natural products is one of the strategies to prevent obesity. Andrographolide, a small molecule, has been reported to possess versatile bioactivities. However, molecular mechanism underlying the potential effect of andrographolide on preadipocytes proliferation remains obscure. In the present study, 3T3-L1 preadipocytes were employed to determine whether andrographolide could affect the proliferation of preadipocytes. Our results demonstrated andrographolide suppressed 3T3-L1 preadipocytes proliferation. The casual relationship analysis indicated that andrographolide (10 and 20μg/ml) appeared to exert the proliferation inhibitory effect through suppression of glutathione peroxidase 1 (GPX1) activity and depleting GSH by promoting its efflux in 3T3-L1 preadipocytes, which subsequently resulted in 2.06-2.41 fold increase in ROS accumulation. Excessive ROS eruption could account for oxidative damage to mitochondrial membranes as well as ultimately inhibition of cell proliferation. Taken together, our study reveals that suppression of GPX1 and GSH depletion by andrographolide seems to play a critical role in the inhibition of 3T3-L1 preadipocytes proliferation, which might have implication for obesity prevention and treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    Science.gov (United States)

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  7. Comparison of DLK incidence after laser in situ keratomileusis associated with two femtosecond lasers: Femto LDV and IntraLase FS60

    Directory of Open Access Journals (Sweden)

    Tomita M

    2013-07-01

    Full Text Available Minoru Tomita,1–3 Yuko Sotoyama,1 Satoshi Yukawa,1 Tadayuki Nakamura1 1Shinagawa LASIK Center, Chiyoda-ku, Tokyo, Japan; 2Department of Ophthalmology, Wenzhou Medical College, Wenzhou, People’s Republic of China; 3Eye Can Cataract Surgery Center, Manila, Philippines Purpose: To compare the incidence of diffuse lamellar keratitis (DLK after laser in situ keratomileusis (LASIK with flap creation using the Femto LDV and IntraLase™ FS60 femtosecond lasers. Methods: A total of 818 consecutive myopic eyes had LASIK performed using either Femto LDV or IntraLase FS60 for flap creation. The same excimer laser, the Allegretto Wave® Eye-Q Laser, was used for correcting refractive errors for all patients. In the preoperative examination, uncorrected distance visual acuity, corrected distance visual acuity, and manifest refraction spherical equivalent were measured. At the postop examination, the same examinations were performed along with a slit-lamp biomicroscopic examination, and patients with DLK were classified into stages. For the statistical analysis of the DLK occurrence rate and the visual and refractive outcomes, the Mann-Whitney’s U-test was used. Results: In the Femto LDV group with 514 eyes, 42 (8.17% had DLK. In the IntraLase FS60 group with 304 eyes, 114 (37.5% had DLK. There was a statistically significant difference in the DLK incidence rate between these groups (P < 0.0001. Both groups had excellent visual and refractive outcomes. Although low levels of DLK were observed for both groups, they did not affect visual acuity. Conclusion: While there were significantly fewer incidences of low level DLK when using Femto LDV, neither femtosecond laser induced high levels of DLK, and any postoperative DLK cleared up within 1 week. Therefore, both lasers provide excellent results, with no clinical differences, and both excel at flap creation for LASIK. Keywords: LASIK, Ziemer, Femto LDV, DLK, IntraLase FS60, femtosecond laser

  8. MiR-378 Plays an Important Role in the Differentiation of Bovine Preadipocytes.

    Science.gov (United States)

    Liu, Si-Yuan; Zhang, Yang-Yang; Gao, Yan; Zhang, Lian-Jiang; Chen, Hong-Yan; Zhou, Qian; Chai, Meng-Long; Li, Qing-Ying; Jiang, Hao; Yuan, Bao; Dai, Li-Sheng; Zhang, Jia-Bao

    2015-01-01

    Adipocyte, the main cellular component of white adipose tissue, plays a vital role in energy balance in higher eukaryotes. In recent years, adipocytes have also been identified as a major endocrine organ involved in immunological responses, vascular diseases, and appetite regulation. In farm animals, fat content and categories are closely correlated with meat quality. MicroRNAs (miRNAs), a class of endogenous single-stranded non-coding RNA molecules, participate in the regulation of adipocyte differentiation and adipogenesis through regulating the transcription or translation of target mRNAs. MiR-378 plays an important role in a number of biological processes, including cell growth, cell differentiation, tumor cell survival and angiogenesis. In the present study, bioinformatics analysis and dual-luciferase reporter assay were used to identify and validate the target genes of miR-378. In vitro cell transfection, quantitative reverse transcription polymerase chain reaction (RT-qPCR), western blot analysis, Oil Red O staining, and triglyceride content measurement were conducted to analyze the effects of miR-378 on bovine preadipocyte differentiation. MiR-378 was induced during adipocyte differentiation. In the differentiated adipocytes overexpressing miR- 378, the volume of lipid droplets was enlarged, and the triglyceride content was increased. Moreover, the mRNA expression levels of the adipocyte differentiation marker genes, peroxisome proliferator-activated receptor gamma (PPARγ) and sterol regulatory element-binding protein (SREBP), were significantly elevated in the differentiated, mature adipocytes. In contrast, the mRNA expression level of preadipocyte factor 1 (Pref-1) was markedly reduced. E2F transcription factor 2 (E2F2) and Ras-related nuclear (RAN)-binding protein 10 (RANBP10) were the two target genes of miR-378. The mRNA expression levels of E2F2 and RANBP10 did not significantly change in bovine preadipocytes overexpressing miR-378. However, the

  9. MiR-378 Plays an Important Role in the Differentiation of Bovine Preadipocytes

    Directory of Open Access Journals (Sweden)

    Si-Yuan Liu

    2015-07-01

    Full Text Available Background: Adipocyte, the main cellular component of white adipose tissue, plays a vital role in energy balance in higher eukaryotes. In recent years, adipocytes have also been identified as a major endocrine organ involved in immunological responses, vascular diseases, and appetite regulation. In farm animals, fat content and categories are closely correlated with meat quality. MicroRNAs (miRNAs, a class of endogenous single-stranded non-coding RNA molecules, participate in the regulation of adipocyte differentiation and adipogenesis through regulating the transcription or translation of target mRNAs. MiR-378 plays an important role in a number of biological processes, including cell growth, cell differentiation, tumor cell survival and angiogenesis. Methods: In the present study, bioinformatics analysis and dual-luciferase reporter assay were used to identify and validate the target genes of miR-378. In vitro cell transfection, quantitative reverse transcription polymerase chain reaction (RT-qPCR, western blot analysis, Oil Red O staining, and triglyceride content measurement were conducted to analyze the effects of miR-378 on bovine preadipocyte differentiation. Results: MiR-378 was induced during adipocyte differentiation. In the differentiated adipocytes overexpressing miR-378, the volume of lipid droplets was enlarged, and the triglyceride content was increased. Moreover, the mRNA expression levels of the adipocyte differentiation marker genes, peroxisome proliferator-activated receptor gamma (PPARγ and sterol regulatory element-binding protein (SREBP, were significantly elevated in the differentiated, mature adipocytes. In contrast, the mRNA expression level of preadipocyte factor 1 (Pref-1 was markedly reduced. E2F transcription factor 2 (E2F2 and Ras-related nuclear (RAN-binding protein 10 (RANBP10 were the two target genes of miR-378. The mRNA expression levels of E2F2 and RANBP10 did not significantly change in bovine preadipocytes

  10. Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker

    DEFF Research Database (Denmark)

    Harkness, Linda; Taipaleenmaki, Hanna; Mahmood, Amer

    2009-01-01

    of dlk1/FA1 as a novel surface marker for chondroprogenitor cells during hESC differentiation. We found that, Dlk1/FA1 is expressed specifically in cells undergoing transition from proliferating to prehypertrophic chondrocytes during endochondral ossification of the mouse limb. In hESC cells, dlk1/FA1...... was not expressed by undifferentiated hESC, but expressed during in vitro embryoid bodies (hEBs) formation upon down-regulation of undifferentiated markers e.g. Oct 3/4. Similarly, dlk1/FA1 was expressed in chondrocytic cells during in vivo teratoma formation. Interestingly, treatment of hEBs with Activin B......, a member of TGF-ss family, markedly increased Dlk1 expression in association with up-regulation of the mesoderm-specific markers (e.g. FOXF1, KDR and VE-cadherin) and SOX9. dlk1/FA1(+) cells isolated by fluorescence activated cell sorting (FACS) were capable of differentiating into chondrocytic cells when...

  11. Adipose tissue macrophages impair preadipocyte differentiation in humans.

    Directory of Open Access Journals (Sweden)

    Li Fen Liu

    Full Text Available The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation.Abdominal subcutaneous(SAT and visceral(VAT adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified.Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001. With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance.The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.

  12. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes

    DEFF Research Database (Denmark)

    Kratchmarova, Irina; Kalume, Dario E; Blagoev, Blagoy

    2002-01-01

    molecules that have not been shown previously to be expressed differentially during the process of adipogenesis. Pigment epithelium-derived factor, a soluble molecule with potent antiangiogenic properties, was found to be highly secreted by preadipocytes but not adipocytes. Conversely, we found hippocampal...... cholinergic neurostimulating peptide, neutrophil gelatinase-associated lipocalin, and haptoglobin to be expressed highly by mature adipocytes. We also used liquid chromatography-based separation followed by automated tandem mass spectrometry to identify proteins secreted by mature adipocytes. Several...

  13. RKIP phosphorylation–dependent ERK1 activation stimulates adipogenic lipid accumulation in 3T3-L1 preadipocytes overexpressing LC3

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Jong Ryeal [Department of Internal Medicine, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Ahmed, Mahmoud [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Kim, Deok Ryong, E-mail: drkim@gnu.ac.kr [Department of Biochemistry and Convergence Medical Science, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of); Institute of Health Sciences, Gyeongsang National University School of Medicine, JinJu, 527-27 (Korea, Republic of)

    2016-09-09

    3T3-L1 preadipocytes undergo adipogenesis in response to treatment with dexamethaxone, 1-methyl-3-isobutylxanthine, and insulin (DMI) through activation of several adipogenic transcription factors. Many autophagy-related proteins are also highly activated in the earlier stages of adipogenesis, and the LC3 conjugation system is required for formation of lipid droplets. Here, we investigated the effect of overexpression of green fluorescent protein (GFP)-LC3 fusion protein on adipogenesis. Overexpression of GFP-LC3 in 3T3-L1 preadipocytes using poly-L-lysine-assisted adenoviral GFP-LC3 transduction was sufficient to produce intracellular lipid droplets. Indeed, GFP-LC3 overexpression stimulated expression of some adipogenic transcription factors (e.g., C/EBPα or β, PPARγ, SREBP2). In particular, SREBP2 was highly activated in preadipocytes transfected with adenoviral GFP-LC3. Also, phosphorylation of Raf kinase inhibitory protein (RKIP) at serine 153, consequently stimulating extracellular-signal regulated kinase (ERK)1 activity, was significantly increased during adipogenesis induced by either poly-L-lysine-assisted adenoviral GFP-LC3 transduction or culture in the presence of dexamethasone, 1-methyl-3-isobutylxanthine, and insulin. Furthermore, RKIP knockdown promoted ERK1 and PPARγ activation, and significantly increased the intracellular accumulation of triacylglycerides in DMI-induced adipogenesis. In conclusion, GFP-LC3 overexpression in 3T3-L1 preadipocytes stimulates adipocyte differentiation via direct modulation of RKIP-dependent ERK1 activity. - Highlights: • Overexpression of GFP-LC3 in 3T3-L1 cells produces intracellular lipid droplets. • SREBP2 is highly activated in preadipocytes transfected with adenoviral GFP-LC3. • RKIP phosphorylation at serine 153 is significantly increased during adipogenesis. • RKIP knockdown promotes ERK1 and PPARγ activation during adipogenesis. • RKIP-dependent ERK1 activation increases triacylglycerides in

  14. Delta-like 1/fetal antigen-1 (Dlk1/FA1) is a novel regulator of chondrogenic cell differentiation via inhibition of the Akt kinase-dependent pathway

    DEFF Research Database (Denmark)

    Chen, Li; Qanie, Diyako; Jafari, Abbas

    2011-01-01

    Delta-like 1 (Dlk1, also known as fetal antigen-1, FA1) is a member of Notch/Delta family that inhibits adipocyte and osteoblast differentiation; however, its role in chondrogenesis is still not clear. Thus, we overexpressed Dlk1/FA1 in mouse embryonic ATDC5 cells and tested its effects...... on chondrogenic differentiation. Dlk1/FA1 inhibited insulin-induced chondrogenic differentiation as evidenced by reduction of cartilage nodule formation and gene expression of aggrecan, collagen Type II and X. Similar effects were obtained either by using Dlk1/FA1-conditioned medium or by addition of a purified......, secreted, form of Dlk1 (FA1) directly to the induction medium. The inhibitory effects of Dlk1/FA1 were dose-dependent and occurred irrespective of the chondrogenic differentiation stage: proliferation, differentiation, maturation, or hypertrophic conversion. Overexpression or addition of the Dlk1/FA1...

  15. Progesterone dose-dependently modulates hepatocyte growth factor production in 3T3-L1 mouse preadipocytes.

    Science.gov (United States)

    Ito, Tomoki; Yamaji, Daisuke; Kamikawa, Akihiro; Abd Eldaim, Mabrouk Attia; Okamatsu-Ogura, Yuko; Terao, Akira; Saito, Masayuki; Kimura, Kazuhiro

    2017-08-30

    It is well documented that estrogen is predominant inducer of hepatocyte growth factor (HGF) in a variety of cell types. However, the effect of progesterone (P) remains to be elusive. Thus, in the present study, we examined the effect of P and combined effect of P and 17β-estradiol (E2) on HGF expression and production in 3T3-L1 fibroblastic preadipocytes and mature adipocytes, as a model of stromal cells. Northern blot analysis showed that hgf mRNA expressed in preadipocytes was notably higher than that of mature adipocytes, and increased by treatment of preadipocytes with E2 or 10 nM P, but not with 1,000 nM P. The E2-induced hgf mRNA expression was enhanced by 10 nM P, but suppressed by 1,000 nM P. Western blot analysis revealed that biological active forms of HGF protein was found in the preadipocyte culture medium, while the lesser amount of HGF precursor protein was detected in the mature adipocyte culture medium. The amounts of HGF were changed dependently on the hgf mRNA expression levels. These results indicate that HGF production is intricately regulated by E2 and P at the transcriptional levels in 3T3-L1 cells, and may explain the changes in the HGF production during the mammary gland development, especially decrease in HGF expression during pregnancy when P concentration is high.

  16. Human Monocytes Accelerate Proliferation and Blunt Differentiation of Preadipocytes in Association With Suppression of C/Ebpα mRNA

    Science.gov (United States)

    Couturier, Jacob; Patel, Sanjeet G.; Iyer, Dinakar; Balasubramanyam, Ashok; Lewis, Dorothy E.

    2015-01-01

    Obesity, type 2 diabetes, and HIV-associated lipodystrophy are associated with abnormalities in adipocyte growth and differentiation. In persons with these conditions, adipose depots contain increased numbers of macrophages, but the origins of these cells and their specific effects are uncertain. Peripheral blood mononuclear cells (PBMC)-derived monocytes, but not T cells, cocultured via transwells with primary subcutaneous preadipocytes, increased proliferation (approximately twofold) and reduced differentiation (~50%) of preadipocytes. Gene expression analyses in proliferating preadipocytes (i.e., prior to hormonal induction of terminal differentiation) revealed that monocytes down-regulated mRNA levels of CCAAT/enhancer binding protein, alpha (C/EBPα) and up-regulated mRNA levels of G0/G1 switch 2 (G0S2) message, genes important for the regulation of adipogenesis and the cell cycle. These data indicate that circulating peripheral blood monocytes can disrupt adipogenesis by interfering with a critical step in C/EBPα and G0S2 transcription required for preadipocytes to make the transition from proliferation to differentiation. Interactions between preadipocytes and monocytes also increased the inflammatory cytokines IL-6 and IL-8, as well as a novel chemotactic cytokine, CXCL1. Additionally, the levels of both IL-6 and CXCL1 were highest when preadipocytes and monocytes were cultured together, compared to each cell in culture alone. Such cross-talk amplifies the production of mediators of tissue inflammation. PMID:21869759

  17. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Laborda, Jorge; Baladron, Victoriano

    2013-01-01

    skeletal muscle regeneration by substantial enhancement of the myogenic program and muscle function, possibly by means of an increased number of available myogenic precursor cells. By contrast, Dlk1 fails to alter the adipogenic commitment of muscle-derived progenitors in vitro, as well as intramuscular......Muscle development and regeneration is tightly orchestrated by a specific set of myogenic transcription factors. However, factors that regulate these essential myogenic inducers remain poorly described. Here, we show that delta-like 1 homolog (Dlk1), an imprinted gene best known for its ability...... fat deposition during in vivo regeneration. Collectively, our results suggest a novel and surprising dual biological function of DLK1 as an enhancer of muscle development, but as an inhibitor of adult muscle regeneration....

  18. Preadipocyte 11beta-hydroxysteroid dehydrogenase type 1 is a keto-reductase and contributes to diet-induced visceral obesity in vivo.

    Science.gov (United States)

    De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M

    2008-04-01

    Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.

  19. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity

    DEFF Research Database (Denmark)

    Permana, Paska A; Nair, Saraswathy; Lee, Yong-Ho

    2004-01-01

    obesity and the level of in vitro preadipocyte differentiation in Pima Indians. Subcutaneous abdominal stromal vascular fractions containing preadipocytes were cultured from 58 nondiabetic subjects [31 M/27 F, 30 +/- 6 yr, body fat 34 +/- 8% by dual-energy X-ray absorptiometry (means +/- SD)]. The average......Expansion of adipose tissue mass results from increased number and size of adipocyte cells. We hypothesized that subcutaneous abdominal preadipocytes in obese individuals might have an intrinsically higher propensity to differentiate into adipocytes. Thus we investigated the relationship between...... percentage of preadipocyte differentiation (PDIFF; cell count by microscopy) was 11 +/- 11% (range 0.2-51%). PDIFF correlated negatively with percent body fat (r = -0.35, P = 0.006) and waist circumference (r = -0.45, P = 0.0004). Multiple regression analysis indicated that waist circumference (P = 0...

  20. New factors controlling the balance between osteoblastogenesis and adipogenesis.

    Science.gov (United States)

    Abdallah, Basem M; Kassem, Moustapha

    2012-02-01

    The majority of conditions associated with bone loss, including aging, are accompanied by increased marrow adiposity possibly due to shifting of the balance between osteoblast and adipocyte differentiation in bone marrow stromal (skeletal) stem cells (MSC). In order to study the relationship between osteoblastogenesis and adipogenesis in bone marrow, we have characterized cellular models of multipotent MSC as well as pre-osteoblastic and pre-adipocytic cell populations. Using these models, we identified two secreted factors in the bone marrow microenviroment: secreted frizzled-related protein 1 (sFRP-1) and delta-like1 (preadipocyte factor 1) (Dlk1/Pref-1). Both exert regulatory effects on osteoblastogenesis and adipogenesis. Our studies suggest a model for lineage fate determination of MSC that is regulated through secreted factors in the bone marrow microenvironment that mediate a cross-talk between lineage committed cell populations in addition to controlling differentiation choices of multipotent MSC. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Characterization of the inhibitory effect of growth hormone on primary preadipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, L. H.; Madsen, B; Teisner, Børge

    1998-01-01

    GH exerts adipogenic activity in several preadipocyte cell lines, whereas in primary rat preadipocytes, GH has an antiadipogenic activity. To better understand the molecular mechanism involved in adipocyte differentiation, the expression of adipocyte-specific genes was analyzed in differentiating...

  2. Gene dosage effects of the imprinted delta-like homologue 1 (dlk1/pref1 in development: implications for the evolution of imprinting.

    Directory of Open Access Journals (Sweden)

    Simao Teixeira da Rocha

    2009-02-01

    Full Text Available Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus.

  3. Effects of proposed adipogenic factors in fetal swine sera upon preadipocyte development

    International Nuclear Information System (INIS)

    Ramsay, T.G.; Hausman, G.J.; Martin, R.J.

    1986-01-01

    Genetic obesity has been detected in fetal pigs which suggests primary factors that cause the obesity develop prenatally. Growth hormone and thyroid hormones have been implicated as regulatory factors in fetal serum for preadipocyte differentiation. This experiment examined effects of growth hormone (GH) and thyroxine (T4) addition upon preadipocyte proliferation and differentiation when supplemented to deficient fetal pig sea. Hormones were added to decapitated fetal pig (Decap) sera to concentrations present in intact littermate (Reference) sera. Primary stromal-vascular cell cultures were prepared from rat inguinal adipose tissue. Cells were incubated with 5% decap or reference sera and hormones in media 199 during: days 1 to 5 for a 3 H-thymidine incorporation assay; days 1 to 15 for assay of α-glycerol phosphate dehydrogenase; days 5 to 14 for a complete differentiation assay. Decap sera promoted less proliferation and enzyme differentiation than reference sera with no effect of GH addition. GH reduced detection of lipid accumulating cells on percol density gradients by 81%. T4 addition stimulated preadipocyte multiplication and produced a 30% increase in completely differentiated preadipocytes. These results indicate thyroid hormones are important components of fetal sera for regulation of preadipocyte development, whereas GH may only affect cellular metabolism

  4. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Weiwei; Wei, Wei; Yu, Shigang; Han, Haiyin; Shi, Xiaoli [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Sun, Wenxing [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); College of Public Health, Nantong University, Nantong 226019 (China); Gao, Ying [College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 (China); Zhang, Lifan [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Chen, Jie, E-mail: jiechen@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-03-25

    Obesity is a well-established risk factor to health for its relationship with insulin resistance, diabetes and metabolic syndrome. Myocyte-adipocyte crosstalk model plays a significant role in studying the interaction of muscle and adipose development. Previous related studies mainly focus on the effects of adipocytes on the myocytes activity, however, the influence of myotubes on the preadipocytes development remains unclear. The present study was carried out to settle this issue. Firstly, the co-culture experiment showed that the proliferation, cell cycle, and differentiation of 3T3-L1 preadipocytes were arrested, and the apoptosis was induced, by differentiated C2C12 myotubes. Next, the sensitivity of 3T3-L1 preadipocytes to glucocorticoids (GCs), which was well known as cell proliferation, differentiation, apoptosis factor, was decreased after co-cultured with C2C12 myotubes. What's more, our results showed that C2C12 myotubes suppressed the mRNA and protein expression of glucocorticoid receptor (GR) in 3T3-L1 preadipocytes, indicating the potential mechanism of GCs sensitivity reduction. Taken together, we conclude that C2C12 myotubes inhibited 3T3-L1 preadipocytes proliferation and differentiation by reducing the expression of GR. These data suggest that decreasing GR by administration of myokines may be a promising therapy for treating patients with obesity or diabetes. - Highlights: • C2C12 myotubes inhibited proliferation and differentiation of 3T3-L1 preadipocytes. • C2C12 myotubes arrested cell cycle of 3T3-L1 preadipocytes. • C2C12 myotubes induced apoptosis of 3T3-L1 preadipocytes. • C2C12 inhibit 3T3-L1 cells by reducing the expression of glucocorticoid receptor gene.

  5. [Effects of triterpenoid from Psidium guajava leaves ursolic acid on proliferation, differentiation of 3T3-L1 preadipocyte and insulin resistance].

    Science.gov (United States)

    Lin, Juan-Na; Kuang, Qiao-Ting; Ye, Kai-He; Ye, Chun-Ling; Huang, Yi; Zhang, Xiao-Qi; Ye, Wen-Cai

    2013-08-01

    To investigate the influences of triterpenoid from Psidium guajava Leaves (ursolic acid) on the proliferation, differentiation of 3T3-L1 preadipocyte, and its possible mechanism treat for insulin resistance. 3T3-L1 preadipocyte was cultured in vitro. After adding ursolic acid to the culture medium for 48h, the cell viability was tested by MTT assay. Induced for 6 days, the lipid accumulation of adipocyte was measured by Oil Red O staining. The insulin resistant cell model was established with Dexamethasone. Cellular glucose uptake was determined with GOD-POD assays and FFA concentration was determined at the time of 48h. Secreted adiponectin were measured by ELISA. The protein levels of PPARgamma and PTP1B in insulin resistant adipocyte were measured by Western Blotting. Compared with medium control group, 30, 100 micromol/L ursolic acid could increase its proliferation and differentiation significantly (P 0.05). Ursolic acid can improve the proliferation and differentiation of 3T3-L1 preadipocyte, enhance cellular glucose uptake, inhibit the production of FFA, promote the secretion of adiponectin insulin resistant adipocyte, its mechanism may be related to upregulating the expression of PPARgamma protein.

  6. Palmitate Antagonizes Wnt/Beta-catenin Signaling in 3T3-L1 Pre-adipocytes

    Science.gov (United States)

    Long chain saturated free fatty acids such as palmitate (PA) produce insulin resistance, endoplasmic reticulum stress, and apoptosis in mature adipocytes and pre-adipocytes. In pre-adipocytes, saturated free fatty acids also promote adipogenic induction in the presence of adipogenic hormones. Wnt/be...

  7. The evolution of the DLK1-DIO3 imprinted domain in mammals.

    Directory of Open Access Journals (Sweden)

    Carol A Edwards

    2008-06-01

    Full Text Available A comprehensive, domain-wide comparative analysis of genomic imprinting between mammals that imprint and those that do not can provide valuable information about how and why imprinting evolved. The imprinting status, DNA methylation, and genomic landscape of the Dlk1-Dio3 cluster were determined in eutherian, metatherian, and prototherian mammals including tammar wallaby and platypus. Imprinting across the whole domain evolved after the divergence of eutherian from marsupial mammals and in eutherians is under strong purifying selection. The marsupial locus at 1.6 megabases, is double that of eutherians due to the accumulation of LINE repeats. Comparative sequence analysis of the domain in seven vertebrates determined evolutionary conserved regions common to particular sub-groups and to all vertebrates. The emergence of Dlk1-Dio3 imprinting in eutherians has occurred on the maternally inherited chromosome and is associated with region-specific resistance to expansion by repetitive elements and the local introduction of noncoding transcripts including microRNAs and C/D small nucleolar RNAs. A recent mammal-specific retrotransposition event led to the formation of a completely new gene only in the eutherian domain, which may have driven imprinting at the cluster.

  8. Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property.

    Science.gov (United States)

    Kim, Choon Young; Bordenave, Nicolas; Ferruzzi, Mario G; Safavy, Ahmad; Kim, Kee-Hong

    2011-02-09

    Conjugation of curcumin (CCM) by polyethylene glycol (PEG) has been previously developed to improve water solubility of the natural form of CCM and its antiproliferative role in some human cancer cell lines. This study examined the cellular uptake kinetics of the natural form of CCM and CCM-PEG. Their cytotoxic effect in proliferating preadipocytes and antiadipogenic property in differentiating preadipocytes had also been investigated. CCM and CCM-PEG were found to be differently absorbed in 3T3-L1 preadipocytes and adipocytes with a limited amount of CCM-PEG absorption in the cell. The improved water solubility of CCM-PEG was correlated with increased cellular retention of CCM in 3T3-L1 cells, particularly in preadipocytes. Consequently, CCM-PEG treatment sensitized proliferating preadipocytes to CCM-induced cell toxicity. Furthermore, incubation of differentiating 3T3-L1 cells with CCM-PEG resulted in improvement of the inhibitory role of CCM in adipocyte differentiation with no toxic effect. These results suggest that pegylation-improved water solubility and cellular retention of CCM may be uniquely useful for improving the delivery of CCM in preadipocytes and its antiadipogenic ability.

  9. Physiological oxygen prevents frequent silencing of the DLK1-DIO3 cluster during human embryonic stem cells culture.

    Science.gov (United States)

    Xie, Pingyuan; Sun, Yi; Ouyang, Qi; Hu, Liang; Tan, Yueqiu; Zhou, Xiaoying; Xiong, Bo; Zhang, Qianjun; Yuan, Ding; Pan, Yi; Liu, Tiancheng; Liang, Ping; Lu, Guangxiu; Lin, Ge

    2014-02-01

    Genetic and epigenetic alterations are observed in long-term culture (>30 passages) of human embryonic stem cells (hESCs); however, little information is available in early cultures. Through a large-scale gene expression analysis between initial-passage hESCs (ihESCs, cell derivatives, possibly through attenuation of the expression and phosphorylation of p53. Furthermore, we demonstrated that 5% oxygen, instead of the commonly used 20% oxygen, is required for preserving the expression of the DLK1-DIO3 cluster. Overall, the data suggest that active expression of the DLK1-DIO3 cluster represents a new biomarker for epigenetic stability of hESCs and indicates the importance of using a proper physiological oxygen level during the derivation and culture of hESCs. © AlphaMed Press.

  10. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  11. Non-transactivational, dual pathways for LPA-induced Erk1/2 activation in primary cultures of brown pre-adipocytes

    International Nuclear Information System (INIS)

    Holmstroem, Therese E.; Mattsson, Charlotte L.; Wang, Yanling; Iakovleva, Irina; Petrovic, Natasa; Nedergaard, Jan

    2010-01-01

    In many cell types, G-protein-coupled receptor (GPCR)-induced Erk1/2 MAP kinase activation is mediated via receptor tyrosine kinase (RTK) transactivation, in particular via the epidermal growth factor (EGF) receptor. Lysophosphatidic acid (LPA), acting via GPCRs, is a mitogen and MAP kinase activator in many systems, and LPA can regulate adipocyte proliferation. The mechanism by which LPA activates the Erk1/2 MAP kinase is generally accepted to be via EGF receptor transactivation. In primary cultures of brown pre-adipocytes, EGF can induce Erk1/2 activation, which is obligatory and determinant for EGF-induced proliferation of these cells. Therefore, we have here examined whether LPA, via EGF transactivation, can activate Erk1/2 in brown pre-adipocytes. We found that LPA could induce Erk1/2 activation. However, the LPA-induced Erk1/2 activation was independent of transactivation of EGF receptors (or PDGF receptors) in these cells (whereas in transformed HIB-1B brown adipocytes, the LPA-induced Erk1/2 activation indeed proceeded via EGF receptor transactivation). In the brown pre-adipocytes, LPA instead induced Erk1/2 activation via two distinct non-transactivational pathways, one G i -protein dependent, involving PKC and Src activation, the other, a PTX-insensitive pathway, involving PI3K (but not Akt) activation. Earlier studies showing LPA-induced Erk1/2 activation being fully dependent on RTK transactivation have all been performed in cell lines and transfected cells. The present study implies that in non-transformed systems, RTK transactivation may not be involved in the mediation of GPCR-induced Erk1/2 MAP kinase activation.

  12. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT alone or in combination with chicken telomerase RNA (chTR. Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types.

  13. Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR

    Science.gov (United States)

    Wang, Wei; Zhang, Tianmu; Wu, Chunyan; Wang, Shanshan; Wang, Yuxiang; Wang, Ning

    2017-01-01

    The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT) alone or in combination with chicken telomerase RNA (chTR). Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types. PMID:28486516

  14. Nuclear phosphoproteome analysis of 3T3-L1 preadipocyte differentiation reveals system-wide phosphorylation of transcriptional regulators

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone

    2017-01-01

    HIGHLIGHTS: Mass spectrometry (MS) based quantitative proteomics and phosphoproteomics applied to monitor the alteration of nuclear proteins during the early stages (4 hours) of preadipocyte differentiation. A total of 4072 proteins including 2434 phosphorylated proteins identified, a majority....... New insights into phosphorylation-dependent signaling networks that impact on nuclear proteins and controls adipocyte differentiation and cell fate. Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency......), in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied mass spectrometry (MS) based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early...

  15. The establishment of the cell culture of preadipocytes of common carp (Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Ljubojević Dragana B.

    2014-01-01

    Full Text Available Common carp is the most important freshwater fish in aquaculture in Republic of Serbia. Excess fat deposition in the meat and abdominal cavity of farmed carp can affect carp flesh quality, dressing percentage and consequently restrict the further development of aquaculture production. The reasons for lipid deposition in carp flesh and around visceral organs are not well known, and it is important to develop method which would enable us to understand process which occurs in common carp lipid cells. The aim of this study was to establish a new model of common carp preadipocytes and evaluate proliferation and differentiation capacity of carp preadipocytes in vitro. The establishment of the cell culture of preadipocytes of common carp could serve as a valuable tool for studying fat metabolism in this fish species.

  16. Impaired leptin gene expression and release in cultured preadipocytes isolated from individuals born with low birth weight

    DEFF Research Database (Denmark)

    Schultz, Ninna S; Broholm, Christa; Gillberg, Linn

    2014-01-01

    controls born with normal birth weight (NBW). Biopsies were obtained from subcutaneous abdominal fat depots and preadipocytes were isolated and cultured. Gene expression of leptin and selected differentiation markers were analyzed during preadipocyte differentiation and cell culture media was collected......Low birth weight (LBW) is associated with increased risk of developing type 2 diabetes (T2D). The appetite-regulating hormone leptin is released from mature adipocytes and its production may be decreased in immature preadipocytes from LBW individuals. We recruited 14 men born with LBW and 13...

  17. β-Catenin Mediates Anti-adipogenic and Anticancer Effects of Arctigenin in Preadipocytes and Breast Cancer Cells.

    Science.gov (United States)

    Lee, Jihye; Imm, Jee-Young; Lee, Seong-Ho

    2017-03-29

    Arctigenin is a lignan abundant in Asteraceae plants and has anti-inflammatory, antiobesity, and anticancer activities. Obesity is one of the leading causes of several types of cancers including breast cancer. The current study was performed to investigate if arctigenin suppresses differentiation of preadipocytes and proliferation of breast cancer cells and to explore potential molecular mechanisms. Treatment of arctigenin reduced lipid accumulation in differentiated 3T3-L1 adipocytes in a dose- and time-dependent manner without toxicity. Arctigenin suppressed the expression of peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein-alpha (C/EBPα), perilipin, and fatty acid binding protein 4 (FABP4) in a dose-dependent manner in differentiated 3T3-L1 cells. Both total and unphosphorylated (active) β-catenin were increased in whole cell lysates and the nuclear fraction of differentiated 3T3-L1 cells treated with 25 μM arctigenin. On the other hand, arctigenin decreased proliferation of two human breast cancer cells (MCF-7 and MDA-MB-231). Arctigenin induced apoptosis and decreased expression of total and unphosphorylated (active) β-catenin and cyclin D1 in MCF-7, but not in MDA-MB-231. These data indicate that arctigenin suppressed adipogenesis in preadipocytes and activated apoptosis in estrogen receptor (ER) positive breast cancer cells through modulating expression of β-catenin.

  18. Mast cell deficiency results in the accumulation of preadipocytes in adipose tissue in both obese and non-obese mice

    Directory of Open Access Journals (Sweden)

    Yasushi Ishijima

    2014-01-01

    Full Text Available Mast cells have been suggested to play key roles in adipogenesis. We herein show that the expression of preadipocyte, but not adipocyte, marker genes increases in the white adipose tissue of mast cell-deficient (KitW-sh/W-sh mice under both obese and non-obese conditions. In vitro culturing with adipogenic factors revealed increased adipocytes differentiated from the KitW-sh/W-sh stromal vascular fraction, suggesting the accumulation of preadipocytes. Moreover, the increased expression of preadipocyte genes was restored by mast cell reconstitution in the KitW-sh/W-sh mice. These results suggest positive effects of mast cells on the preadipocyte to adipocyte transition under both physiological and pathological conditions.

  19. Cell Volume Regulation and Signaling in 3T3-L1 Pre-adipocytes and Adipocytes

    DEFF Research Database (Denmark)

    Eduardsen, Kathrine; Larsen, Susanne; Novak, Ivana

    2011-01-01

    Caveolae have been implicated in sensing of cell volume perturbations, yet evidence is still limited and findings contradictory. Here, we investigated the possible role of caveolae in cell volume regulation and volume sensitive signaling in an adipocyte system with high (3T3-L1 adipocytes......); intermediate (3T3-L1 pre-adipocytes); and low (cholesterol-depleted 3T3-L1 pre-adipocytes) caveolae levels. Using large-angle light scattering, we show that compared to pre-adipocytes, differentiated adipocytes exhibit several-fold increased rates of volume restoration following osmotic cell swelling (RVD......) and osmotic cell shrinkage (RVI), accompanied by increased swelling-activated taurine efflux. However, caveolin-1 distribution was not detectably altered after osmotic swelling or shrinkage, and caveolae integrity, as studied by cholesterol depletion or expression of dominant negative Cav-1, was not required...

  20. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  1. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    Directory of Open Access Journals (Sweden)

    Min-Ki Kim

    2007-12-01

    Full Text Available Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Venom and Sweet Bee Venom according to the dosage dependent variation are investigated the histologic changes after injection of these Pharmacopuncture. Result : Following results were obtained from the preadipocyte proliferation and lipolysis of adipocyte and histologic investigation of fat tissue. 1. Bee Venom and Sweet Bee Venom showed the effect of decreased preadipocyte proliferation depend on concentration. 2. Bee Venom and Sweet Bee Venom showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH significantly. 3. Bee Venom was not showed the effect of lipolysis, but Sweet Bee Venom was increased in low dosage and decreased in high dosage. 4. Investigated the histologic changes in porcine fat tissue after treated Bee Venom and Sweet Bee Venom, we knew that these Pharmacopuncture was activated nonspecific lysis of cell membranes depend on concentration. Conclusion : These results suggest that Bee Venom and Sweet Bee Venom efficiently induces decreased proliferation of preadipocyte and lipolysis in adipose tissue

  2. Does Fetal antigen 1 (FA1) identify cells with regenerative, endocrine and neuroendocrine potentials?

    DEFF Research Database (Denmark)

    Jensen, Charlotte Floridon; Jensen, Charlotte Harken; Thorsen, Poul

    2000-01-01

    Fetal antigen 1 (FA1) is a circulating EGF multidomain glycoprotein. FA1 and its membrane-associated precursor is defined by the mRNAs referred to as delta-like (dlk), preadipocyte factor 1 (pref-1) or zona glomerulosa-specific factor (ZOG). Using a polyclonal antibody recognising both forms......, the localisation of FA1/dlk was analysed in embryonic and fetal tissues between week 5 to 25 of gestation and related to germinal origin and development. FA1 was observed in endodermally derived hepatocytes, glandular cells of the pancreas anlage, and in respiratory epithelial cells. FA1 was also present...... in mesodermally derived cells of the renal proximal tubules, adrenal cortex, Leydig and Hilus cells of the testes and ovaries, fetal chondroblasts, and skeletal myotubes. Ectodermally derived neuro- and adenohypophysial cells, cells in the floor of the 3rd ventricle and plexus choroideus were also FA1 positive...

  3. Evidence of non-canonical NOTCH signaling

    DEFF Research Database (Denmark)

    Traustadóttir, Gunnhildur Ásta; Jensen, Charlotte H; Thomassen, Mads

    2016-01-01

    Dlk1(+/+) and Dlk1(-/-) mouse tissues at E16.5, we demonstrated that several NOTCH signaling pathways indeed are affected by DLK1 during tissue development, and this was supported by a lower activation of NOTCH1 protein in Dlk1(+/+) embryos. Likewise, but using a distinct Dlk1-manipulated (si...

  4. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes.

    Directory of Open Access Journals (Sweden)

    Jonathan G Boucher

    Full Text Available Bisphenol S (BPS is increasingly used as a replacement plasticizer for bisphenol A (BPA but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs. Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR/retinoid X receptor (RXR activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes.

  5. The effect of delta-like 1 homologue on the proliferation and odontoblastic differentiation in human dental pulp stem cells.

    Science.gov (United States)

    Qi, Shengcai; Yan, Yanhong; Wen, Yue; Li, Jialiang; Wang, Jing; Chen, Fubo; Tang, Xiaoshan; Shang, Guangwei; Xu, Yuanzhi; Wang, Raorao

    2017-06-01

    This study aimed to investigate the functions of delta-like homologue 1 (DLK1) in the proliferation and differentiation of human dental pulp stem cells (hDPSCs). Immunohistochemical analysis was used to determine the expression of alkaline phosphatase (ALP), dentin sialophosphoprotein (DSPP), DLK1, NOTCH1 and p-ERK1/2 in the mouse first maxillary molar. Recombinant lentivirus was constructed to overexpress DLK1 stably in hDPSCs. The cell viability and proliferation of hDPSCs were examined by CCK8 and EdU incorporation assay respectively. The odontoblastic differentiation of hDPSCs was determined by detection of ALPase activity assay, ALP and alizarin red staining and the expression of mineralization-related genes including ALP, DSPP and dental matrix protein. The mRNA and protein levels of DLK1 and p-ERK1/2 protein expression were detected. ERK inhibitor was used to test the differentiation effect of DLK1 on hDPSCs. Delta-like homologue 1 was highly expressed on the odontoblasts and dental pulp cells on the first maxillary molar; the expression of p-ERK1/2 is similar with the DLK1 in the same process. The expression level of DLK1 increased significantly after the odontoblastic induction of hDPSCs. DLK1 overexpression increased the proliferation ability of hDPSCs and inhibited odontoblastic differentiation of hDPSCs. The protein level of p-ERK1/2 significantly increased in hDPSCs/dlk1-oe group. ERK signalling pathway inhibitor reversed the odontoblastic differentiation effects of DLK1 on hDPSCs. The proliferation of hDPSCs was promoted after DLK1 overexpression. DLK1 inhibited the odontoblastic differentiation of hDPSCs, which maybe through ERK signalling pathway. © 2017 John Wiley & Sons Ltd.

  6. Small RNA Sequencing Reveals Dlk1-Dio3 Locus-Embedded MicroRNAs as Major Drivers of Ground-State Pluripotency.

    Science.gov (United States)

    Moradi, Sharif; Sharifi-Zarchi, Ali; Ahmadi, Amirhossein; Mollamohammadi, Sepideh; Stubenvoll, Alexander; Günther, Stefan; Salekdeh, Ghasem Hosseini; Asgari, Sassan; Braun, Thomas; Baharvand, Hossein

    2017-12-12

    Ground-state pluripotency is a cell state in which pluripotency is established and maintained through efficient repression of endogenous differentiation pathways. Self-renewal and pluripotency of embryonic stem cells (ESCs) are influenced by ESC-associated microRNAs (miRNAs). Here, we provide a comprehensive assessment of the "miRNome" of ESCs cultured under conditions favoring ground-state pluripotency. We found that ground-state ESCs express a distinct set of miRNAs compared with ESCs grown in serum. Interestingly, most "ground-state miRNAs" are encoded by an imprinted region on chromosome 12 within the Dlk1-Dio3 locus. Functional analysis revealed that ground-state miRNAs embedded in the Dlk1-Dio3 locus (miR-541-5p, miR-410-3p, and miR-381-3p) promoted pluripotency via inhibition of multi-lineage differentiation and stimulation of self-renewal. Overall, our results demonstrate that ground-state pluripotency is associated with a unique miRNA signature, which supports ground-state self-renewal by suppressing differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Proteomic analysis of cAMP-mediated signaling during differentiation of 3 T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Borkowski, Kamil; Wrzesinski, Krzysztow; Rogowska-Wrzesinska, Adelina

    2014-01-01

    Initiation of adipocyte differentiation is promoted by the synergistic action of insulin/insulin-like growth factor, glucocorticoids, and agents activating cAMP-dependent signaling. The action of cAMP is mediated via PKA and Epac, where at least part of the PKA function relates to strong repression...... a comprehensive evaluation of Epac-mediated processes and their interplay with PKA during the initiation of 3 T3-L1 preadipocyte differentiation using a combination of proteomics, molecular approaches, and bioinformatics. Proteomic analyses revealed 7 proteins specifically regulated in response to Epac activation......-dependent signaling thereby adding a novel facet to our understanding of cAMP-mediated potentiation of adipocyte differentiation....

  8. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons

    DEFF Research Database (Denmark)

    Bauer, Matthias; Szulc, Jolanta; Meyer, Morten

    2008-01-01

    function of Dlk1 in VM neuron development, we investigated the effect of soluble Dlk1 protein as well as the intrinsic Dlk1 function in the course of VM progenitor expansion and dopaminergic (DA) neuron differentiation in vitro. Dlk1 treatment during expansion increased DA progenitor proliferation...

  9. Preadipocyte factor-1 is associated with metabolic profile in severe obesity.

    LENUS (Irish Health Repository)

    O'Connell, J

    2011-04-01

    Dysfunctional adipose tissue has been proposed as a key pathological process linking obesity and metabolic disease. Preadipocyte factor-1 (Pref-1) has been shown to inhibit differentiation in adipocyte precursor cells and could thereby play a role in determining adipocyte size, adipose tissue functioning, and metabolic profile in obese individuals.

  10. Obese gene expression at in vivo levels by fat pads derived from s.c. implanted 3T3-F442A preadipocytes

    DEFF Research Database (Denmark)

    Mandrup, S; Loftus, T M; MacDougald, O A

    1997-01-01

    3T3-F442A preadipocytes implanted s.c. into athymic mice develop into fat pads that are indistinguishable from normal adipose tissue. Implanted preadipocytes harboring a beta-galactosidase transgene gave rise to fat pads in which almost all adipocytes expressed beta-galactosidase. This finding pr...

  11. Curcumin Suppresses In Vitro Proliferation and Invasion of Human Prostate Cancer Stem Cells by Modulating DLK1-DIO3 Imprinted Gene Cluster MicroRNAs.

    Science.gov (United States)

    Zhang, Hu; Zheng, Jiajia; Shen, Hongliang; Huang, Yongyi; Liu, Te; Xi, Hao; Chen, Chuan

    2018-01-01

    Curcumin can suppress human prostate cancer (HuPCa) cell proliferation and invasion. However, it is not known whether curcumin can inhibit HuPCa stem cell (HuPCaSC) proliferation and invasion. We used methyl thiazolyl tetrazolium and Transwell assays to examine the proliferation and invasion of the HuPCaSC lines DU145 and 22Rv1 following curcumin or dimethyl sulfoxide (control) treatment. The microRNA (miRNA) expression levels in the DLK1-DIO3 imprinted genomic region in the cells and in tumor tissues from patients with PCa were examined using microarray and quantitative PCR. The median inhibitory concentration of curcumin for HuPCa cells significantly inhibited HuPCaSC proliferation and invasion in vitro. The miR-770-5p and miR-1247 expression levels in the DLK1-DIO3 imprinted gene cluster were significantly different between the curcumin-treated and control HuPCaSCs. Overexpression of these positive miRNAs significantly increased the inhibition rates of miR-770-5p- and miR-1247-transfected HuPCaSCs compared to the control miR-Mut-transfected HuPCaSCs. Lastly, low-tumor grade PCa tissues had higher miR-770-5p and miR-1247 expression levels than high-grade tumor tissues. Curcumin can suppress HuPCaSC proliferation and invasion in vitro by modulating specific miRNAs in the DLK1-DIO3 imprinted gene cluster.

  12. Adenovirus type 9 enhances differentiation and decreases cytokine release from preadipocytes.

    Science.gov (United States)

    Bil-Lula, Iwona; Sochocka, Marta; Zatońska, Katarzyna; Szuba, Andrzej; Sawicki, Grzegorz; Woźniak, Mieczysław

    2015-02-01

    The hypothesis was that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to AdV9 infection. To test this hypothesis, the metabolic and molecular mechanisms responsible for AdV9-induced adipogenesis were examined. An association between anti-AdV9 antibodies and human obesity was also identified. 3T3L1 cells were used as a surrogate model to analyze the preadipocyte proliferation, differentiation, and maturation. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP and fatty acid synthase gene, intracellular lipid accumulation and cytokine release were assessed. The presence of anti-AdV antibodies, serum lipids, plasma leptin, and CRP was evaluated in 204 obese and non-obese patients. AdV9-infected cells accumulated more intracellular lipids in comparison to uninfected controls. AdV9 enhanced an expression of C/EBP-β and PPAR-γ leading to an increased differentiation of preadipocytes. Overexpression of aP2 and fatty acid synthase, and decreased expression of leptin confirmed an increased accumulation of intracellular lipids due to AdV infection. Secretion of TNF-α and IL-6 from AdV9-inoculated cells was decreased strongly. About 24.5% of prevalence of anti-AdV9 antibodies was reported in the study group. AdV9-infected subjects presented higher body weights, BMIs, WHR, and central obesity. The presence of anti-AdV9 antibodies was associated with changes in serum lipids level but neither elevated CRP nor decreased leptin levels were related to obesity due to AdV infection. Data obtained from this study provide the evidences that AdV9 is a second adenovirus, which has an influence on differentiation and lipid accumulation of 3T3L1 cells. © 2014 Wiley Periodicals, Inc.

  13. The use of small interfering RNAs to inhibit adipocyte differentiation in human preadipocytes and fetal-femur-derived mesenchymal cells

    International Nuclear Information System (INIS)

    Xu, Y.; Mirmalek-Sani, S.-H.; Yang, X.; Zhang, J.; Oreffo, R.O.C.

    2006-01-01

    RNA interference (RNAi) has been used in functional genomics and offers innovative approaches in the development of novel therapeutics. Human mesenchymal stem cells offer a unique cell source for tissue engineering/regeneration strategies. The current study examined the potential of small interfering RNAs (siRNA) against human peroxisome proliferator activated receptor gamma (PPARγ) to suppress adipocyte differentiation (adipogenesis) in human preadipocytes and fetal-femur-derived mesenchymal cells. Adipogenesis was investigated using cellular and biochemical analysis. Transient transfection with PPARγ-siRNA using a liposomal-based strategy resulted in a significant inhibition of adipogenesis in human preadipocytes and fetal-femur-derived mesenchymal cells, compared to controls (cell, liposomal and negative siRNA). The inhibitory effect of PPARγ-siRNA was supported by testing human PPARγ mRNA and adipogenic associated genes using reverse transcription polymerase chain reaction (RT-PCR) to adiponectin receptor 1 and 2 as well as examination of fatty acid binding protein 3 (FABP 3 ) expression, an adipocyte-specific marker. The current studies indicate that PPARγ-siRNA is a useful tool to study adipogenesis in human cells, with potential applications both therapeutic and in the elucidation of mesenchymal cell differentiation in the modulation of cell differentiation in human mesenchymal cells

  14. The adaptor protein alpha-syntrophin regulates adipocyte lipid droplet growth

    Energy Technology Data Exchange (ETDEWEB)

    Eisinger, Kristina; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M.; Krautbauer, Sabrina; Buechler, Christa, E-mail: christa.buechler@klinik.uni-regensburg.de

    2016-07-01

    The scaffold protein alpha-syntrophin (SNTA) regulates lipolysis indicating a role in lipid homeostasis. Adipocytes are the main lipid storage cells in the body, and here, the function of SNTA has been analyzed in 3T3-L1 cells. SNTA is expressed in preadipocytes and is induced early during adipogenesis. Knock-down of SNTA in preadipocytes increases their proliferation. Proteins which are induced during adipogenesis like adiponectin and caveolin-1, and the inflammatory cytokine IL-6 are at normal levels in the mature cells differentiated from preadipocytes with low SNTA. This suggests that SNTA does neither affect differentiation nor inflammation. Expression of proteins with a role in cholesterol and triglyceride homeostasis is unchanged. Consequently, basal and epinephrine induced lipolysis as well as insulin stimulated phosphorylation of Akt and ERK1/2 are normal. Importantly, adipocytes with low SNTA form smaller lipid droplets and store less triglycerides. Stearoyl-CoA reductase and MnSOD are reduced upon SNTA knock-down but do not contribute to lower lipid levels. Oleate uptake is even increased in cells with SNTA knock-down. In summary, current data show that SNTA is involved in the expansion of lipid droplets independent of adipogenesis. Enhanced preadipocyte proliferation and capacity to store surplus fatty acids may protect adipocytes with low SNTA from lipotoxicity in obesity. - Highlights: • Alpha-syntrophin (SNTA) is expressed in 3T3-L1adipocytes. • SNTA knock-down in preadipocytes has no effect on adipogenesis. • Mature 3T3-L1 differentiated from cells with low SNTA form small lipid droplets. • SCD1 and MnSOD are reduced in adipocytes with low SNTA. • SCD1 knock-down does not alter triglyceride levels.

  15. Fetal hyperglycemia changes human preadipocyte function in adult life

    DEFF Research Database (Denmark)

    Hansen, Ninna Schiøler; Strasko, Klaudia Stanislawa; Hjort, Line

    2017-01-01

    Context: Offspring of women with gestational diabetes (O-GDM) or type 1 diabetes mellitus (O-T1DM) have been exposed to hyperglycemia in utero and have an increased risk of developing metabolic disease in adulthood. Design: In total, we recruited 206 adult offspring comprising the two fetal...... acid supply. Conclusions: Taken together, these findings show that intrinsic epigenetic and functional changes exist in preadipocyte cultures from individuals exposed to fetal hyperglycemia who are at increased risk of developing metabolic disease....

  16. Sirt1 attenuates camptothecin-induced apoptosis through caspase-3 pathway in porcine preadipocytes

    Science.gov (United States)

    Adipose tissue is an important energy reservoir, and its over-development results in obesity in humans or body fat over-deposition in livestock. Loss of preadipocytes through apoptosis has been proposed as an alternative way to reduce adipose tissue mass. At present, the effect and regulatory mechan...

  17. Isoniazid suppresses antioxidant response element activities and impairs adipogenesis in mouse and human preadipocytes

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xue, Peng; Hou, Yongyong; Zhang, Hao; Zheng, Hongzhi; Zhou, Tong; Qu, Weidong; Teng, Weiping; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2013-01-01

    Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis

  18. MAT2B promotes adipogenesis by modulating SAMe levels and activating AKT/ERK pathway during porcine intramuscular preadipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cunzhen; Chen, Xiaochang; Wu, Wenjing; Wang, Wusu; Pang, Weijun; Yang, Gongshe, E-mail: gsyang999@hotmail.com

    2016-05-15

    Intramuscular fat (IMF) has been demonstrated as one of the crucial factors of livestock meat quality. The MAT2B protein with MAT2α catalyzes the formation of methyl donor S- adenosylmethionine (SAMe) to mediate cell metabolism including proliferation and apoptosis. However, the regulatory effect of MAT2B on IMF deposition is still unclear. In this study, the effect of MAT2B on adipogenesis and its potential mechanism during porcine intramuscular preadipocyte differentiation was studied. The results showed that overexpression of MAT2B promoted adipogenesis and significantly up-regulated the mRNA and protein levels of adipogenic marker genes including FASN, PPARγ and aP2, consistently, knockdown of MAT2B inhibited lipid accumulation and down-regulated the mRNA and protein levels of the above genes. Furthermore, flow cytometry and EdU-labeling assay indicated that MAT2B regulate adipogenesis was partly due to influence intracellular SAMe levels and further affect cell clonal expansion. Also, increased expression of MAT2B activated the phosphorylations of AKT and ERK1/2, whereas knockdown of MAT2B blocked AKT signaling and repressed the phosphorylation of ERK1/2. Moreover, the inhibitory effect of LY294002 (a specific PI3K inhibitor) on the activities of AKT and ERK1/2 was partially recovered by overexpression of MAT2B in porcine intramuscular adipocytes. Finally, Co-IP experiments showed that MAT2B can directly interact with AKT. Taken together, our findings suggested that MAT2B acted as a positive regulator through modifying SAMe levels as well as activating AKT/ERK signaling pathway to promote porcine intramuscular adipocyte differentiation. - Highlights: • MAT2B up-regulates the expression of adipogenic marker genes and promotes porcine intramuscular preadipocyte differentiation. • MAT2B influences intracellular SAMe levels and further affects cell clonal expansion. • MAT2B interacts with AKT and activates AKT/ERK signaling pathway.

  19. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    International Nuclear Information System (INIS)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R.

    1990-01-01

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with [ 3 H]glycerol or [ 3 H]choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in [ 3 H]ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 [ 3 H])phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein

  20. Diacylglycerol production induced by growth hormone in Ob1771 preadipocytes arises from phosphatidylcholine breakdown

    Energy Technology Data Exchange (ETDEWEB)

    Catalioto, R.M.; Ailhaud, G.; Negrel, R. (Universite de Nice-Sophia Antipolis (France))

    1990-12-31

    Growth Hormone has recently been shown to stimulate the formation of diacylglycerol in Ob1771 mouse preadipocyte cells without increasing inositol lipid turnover. Addition of growth hormone to Ob1771 cells prelabelled with ({sup 3}H)glycerol or ({sup 3}H)choline led to a rapid, transient and stoechiometric formation of labelled diacylglycerol and phosphocholine, respectively. In contrast, no change was observed in the level of choline and phosphatidic acid whereas the release of water-soluble metabolites in ({sup 3}H)ethanolamine prelabelled cells exposed to growth hormone was hardly detectable. Stimulation by growth hormone of cells prelabelled with (2-palmitoyl 9, 10 ({sup 3}H))phosphatidylcholine also induced the production of labelled diacyglycerol. Pertussis toxin abolished both diacylglycerol and phosphocholine formation induced by growth hormone. It is concluded that growth hormone mediates diacylglycerol production in Ob1771 cells by means of phosphatidylcholine breakdown involving a phospholipase C which is likely coupled to the growth hormone receptor via a pertussis toxin-sensitive G-protein.

  1. Growth hormone (GH) differentially regulates NF-kB activity in preadipocytes and macrophages: implications for GH's role in adipose tissue homeostasis in obesity.

    Science.gov (United States)

    Kumar, P Anil; Chitra, P Swathi; Lu, Chunxia; Sobhanaditya, J; Menon, Ram

    2014-06-01

    Adipose tissue remodeling in obesity involves macrophage infiltration and chronic inflammation. NF-kB-mediated chronic inflammation of the adipose tissue is directly implicated in obesity-associated insulin resistance. We have investigated the effect of growth hormone (GH) on NF-kB activity in preadipocytes (3T3-F442A) and macrophages (J774A.1). Our studies indicate that whereas GH increases NF-kB activity in preadipocytes, it decreases NF-kB activity in macrophages. This differential response of NF-kB activity to GH correlates with the GH-dependent expression of a cadre of NF-kB-activated cytokines in these two cell types. Activation of NF-kB by GH in preadipocytes heightens inflammatory response by stimulating production of multiple cytokines including TNF-α, IL-6, and MCP-1, the mediators of both local and systemic insulin resistance and chemokines that recruit macrophages. Our studies also suggest differential regulation of miR132 and SIRT1 expression as a mechanism underlying the observed variance in GH-dependent NF-kB activity and altered cytokine profile in preadipocytes and macrophages. These findings further our understanding of the complex actions of GH on adipocytes and insulin sensitivity.

  2. The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.).

    Science.gov (United States)

    Wang, Xinxia; Huang, Ming; Wang, Yizhen

    2012-01-01

    Fish final product can be affected by excessive lipid accumulation. Therefore, it is important to develop strategies to control obesity in cultivated fish to strengthen the sustainability of the aquaculture industry. As in mammals, the development of adiposity in fish depends on hormonal, cytokine and dietary factors. In this study, we investigated the proliferation and differentiation of preadipocytes isolated from the large yellow croaker and examined the effects of critical factors such as insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of adipocytes. Preadipocytes were isolated by collagenase digestion, after which their proliferation was evaluated. The differentiation process was optimized by assaying glycerol-3-phosphate dehydrogenase (GPDH) activity. Oil red O staining and electron microscopy were performed to visualize the accumulated triacylglycerol. Gene transcript levels were measured using SYBR green quantitative real-time PCR. Insulin promoted preadipocytes proliferation, stimulated cell differentiation and decreased lipolysis of mature adipocytes. TNFα and DHA inhibited cell proliferation and differentiation. While TNFα stimulated mature adipocyte lipolysis, DHA showed no lipolytic effect on adipocytes. The expressions of adipose triglyceride lipase (ATGL), fatty acid synthase (FAS), lipoprotein lipase (LPL) and peroxisome proliferator-activated receptor α, γ (PPARα, PPARγ) were quantified during preadipocytes differentiation and adipocytes lipolysis to partly explain the regulation mechanisms. In summary, the results of this study indicated that although preadipocytes proliferation and the differentiation process in large yellow croaker are similar to these processes in mammals, the effects of critical factors such as insulin, TNFα and DHA on fish adipocytes development are not exactly the same. Our findings fill in the gaps in the basic data regarding the effects of critical factors on adiposity development in fish

  3. Effects of Chowiseungcheng-tang Extracts on the Preadipocytes Proliferation in 3T3-L1 cell line, Lipolysis of Adipocytes in rat, and Localized Fat Accumulation by extraction methods

    Directory of Open Access Journals (Sweden)

    Jae-eun, Lee

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation in 3T3-L1 cell line, lipolysis of adipocytes in rat’s epididymal adipocytes and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish preadipocytes proliferation and promote lipolysis of adipocytes do primary role to reduce obesity. So, we used 3T3-L1 mouse embryo fibroblasts(preadipocytes and rat epididymal adipocytes from Sprague-Dawley rats to investigate the effects of Chowiseungcheng-tang extracts on the preadipocytes proliferation, lipolysis of adipocytes. They were treated with 0.01, 0.1, 1.0㎎/㎖ Chowiseungcheng-tang alcohol and water extracts. And for the purpose of investigating the effects of Chowiseungcheng-tang alcohol and water extracts on the localized fat accumulation, we injected 0.1, 1.0, 10.0㎎/㎖ Chowiseungcheng-tang extracts to porcine fat tissues and observed histological changes of them. Results : Following results were obtained from the preadipocytes proliferation and lipolysis of adipocytes and histological investigation of fat tissues. 1. Chowiseungcheng-tang extracts suppressed preadipocytes proliferation on the high dosage(especially 1.0㎎/㎖, and especially alcohol extracts had better effects. 2. The alcohol extracts of Chowiseungcheng-tang decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the concentrations of 0.1, 1.0㎎/㎖. Alcohol extracts had better effects than water extracts. 3. Chowiseungcheng-tang extracts increased lipolysis of adipocytes on the concentrations of 0.1, 1.0㎎/㎖, and especially on the concentration of 1.0㎎/㎖ alcohol extract of Chowiseungcheng-tang had better effect. 4. The water extract of Chowiseungcheng-tang had significant activity to the destruction of porcine fat cell membranes only on the concentration of 10.0㎎/㎖, but alcohol extracts of Chowiseungcheng-tang had it on all

  4. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    International Nuclear Information System (INIS)

    Jang, Byeong-Churl

    2016-01-01

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

  5. Tetrandrine has anti-adipogenic effect on 3T3-L1 preadipocytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    2016-08-05

    Tetrandrine is a bisbenzylisoquinoline alkaloid isolated from the roots of Stephania tetrandra S. Moore and has been shown to possess anti-inflammatory and anti-cancerous activities. In this study, the effect of tetrandrine on adipogenesis in 3T3-L1 preadipocytes was investigated. Tetrandrine at 10 μM concentration strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes. On mechanistic levels, tetrandrine reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during 3T3-L1 adipocyte differentiation. Tetrandrine also reduced the mRNA expression of leptin, but not adiponectin, during 3T3-L1 adipocyte differentiation. Collectively, these findings show that tetrandrine has strong anti-adipogenic effect on 3T3-L1 preadipocytes and the effect is largely attributable to the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. - Highlights: • Tetrandrine, a bisbenzylisoquinoline alkaloid, inhibits adipogenesis. • Tetrandrine inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. • Tetrandrine reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. • Tetrandrine may thus have therapeutic potential against obesity.

  6. Artesunate inhibits adipogeneis in 3T3-L1 preadipocytes by reducing the expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Byeong-Churl, E-mail: jangbc123@gw.kmu.ac.kr

    2016-05-20

    Differentiation of preadipocyte, also called adipogenesis, leads to the phenotype of mature adipocyte. However, excessive adipogenesis is closely linked to the development of obesity. Artesunate, one of artemisinin-type sesquiterpene lactones from Artemisia annua L., is known for anti-malarial and anti-cancerous activities. In this study, we investigated the effect of artesunate on adipogenesis in 3T3-L1 preadipocytes. Artesunate strongly inhibited lipid accumulation and triglyceride (TG) synthesis during the differentiation of 3T3-L1 preadipocytes into adipocytes at 5 μM concentration. Artesunate at 5 μM also reduced not only the expressions of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during adipocyte differentiation. Moreover, artesunate at 5 μM reduced leptin, but not adiponectin, mRNA expression during adipocyte differentiation. Taken together, these findings demonstrate that artesunate inhibits adipogenesis in 3T3-L1 preadipoytes through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3. -- Highlights: •Artesunate, an artemisinin derivative, inhibits adipogenesis. •Artesunate inhibits C/EBP-α, PPAR-γ, FAS, perilipin A, and STAT-3 in 3T3-L1 adipocytes. •Artesunate reduces leptin, but not adiponectin, expression in 3T3-L1 adipocytes. •Artesunate thus may have therapeutic potential against obesity.

  7. Polyphenolic extract from Hibiscus sabdariffa reduces body fat by inhibiting hepatic lipogenesis and preadipocyte adipogenesis.

    Science.gov (United States)

    Kao, Erl-Shyh; Yang, Mon-Yuan; Hung, Chia-Hung; Huang, Chien-Ning; Wang, Chau-Jong

    2016-01-01

    Diets high in fat lead to excess lipid accumulation in adipose tissue, which is a crucial factor in the development of obesity, hepatitis, and hyperlipidemia. In this study, we investigated the anti-obesity effect of Hibiscus sabdariffa extract (HSE) in vivo. Hamsters fed a high-fat diet (HFD) develop symptoms of obesity, which were determined based on body weight changes and changes in plasma and serum triglycerides, free fatty acid concentrations, total cholesterol levels, LDL-C levels, HDL-C levels, and adipocyte tissue weight. HFD-fed hamsters were used to investigate the effects of HSE on symptoms of obesity such as adipogenesis and fatty liver, loss of blood glucose regulation, and serum ion imbalance. Interestingly, HSE treatment effectively reduced the effects of the HFD in hamsters in a dose-dependent manner. Further, after inducing maturation of preadipocytes, Hibiscus sabdariffa polyphenolic extract (HPE) was shown to suppress the adipogenesis of adipocytes. However, HPE does not affect the viability of preadipocytes. Therefore, both HSE and HPE are effective and viable treatment strategies for preventing the development and treating the symptoms of obesity.

  8. Activation of liver X receptors prevents statin-induced death of 3T3-L1 preadipocytes

    DEFF Research Database (Denmark)

    Madsen, Lise; Petersen, Rasmus K; Steffensen, Knut R

    2008-01-01

    The biological functions of liver X receptors (LXRs) alpha and beta have primarily been linked to pathways involved in fatty acid and cholesterol homeostasis. Here we report a novel role of LXR activation in protecting cells from statin-induced death. When 3T3-L1 preadipocytes were induced...

  9. The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women

    Directory of Open Access Journals (Sweden)

    N V Mazurina

    2013-03-01

    Full Text Available Реферат по материалам статьи The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women. Park HТ, Lee ES, Cheon EP, Lee DR, Yang K-S, Kim YT, Hur JY, Kim SH, Lee KW, Kim T. Clinical Endocrinology 2012; 76, 59-66.

  10. Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function

    DEFF Research Database (Denmark)

    Andersen, Emil; Ingerslev, Lars Roed; Fabre, Odile

    2018-01-01

    in culture, preadipocytes from Obese T2D showed impaired insulin signalling and a further transcriptomic shift towards altered adipocyte function. Cultures with a lower expression magnitude of adipogenic genes throughout differentiation (PLIN1, CIDEC, FABP4, ADIPOQ, LPL, PDK4, APOE, LIPE, FABP3, LEP, RBP4...

  11. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    Science.gov (United States)

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells. © 2015 Wiley Periodicals, Inc.

  12. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation.

    Science.gov (United States)

    Abdallah, Basem M; Jafari, Abbas; Zaher, Walid; Qiu, Weimin; Kassem, Moustapha

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Inhibition of fatty acid synthase prevents preadipocyte differentiation

    International Nuclear Information System (INIS)

    Schmid, Bernhard; Rippmann, Joerg F.; Tadayyon, Moh; Hamilton, Bradford S.

    2005-01-01

    Inhibition of fatty acid synthase (FAS) reduces food intake in rodents. As adipose tissue expresses FAS, we sought to investigate the effect of reduced FAS activity on adipocyte differentiation. FAS activity was suppressed either pharmacologically or by siRNA during differentiation of 3T3-L1 cells. Cerulenin (10 μM), triclosan (50 μM), and C75 (50 μM) reduced dramatically visible lipid droplet accumulation, while incorporation of [1- 14 C]acetate into lipids was reduced by 75%, 70%, and 90%, respectively. Additionally, the substances reduced FAS, CEBPα, and PPARγ mRNA by up to 85% compared to that of control differentiated cells. Transient transfection with FAS siRNA suppressed FAS mRNA and FAS activity, and this was accompanied by reduction of CEBPα and PPARγ mRNA levels, and complete prevention of lipid accumulation. CD36, a late marker of differentiation, was also reduced. Together, these results suggest that FAS generated signals may be essential to support preadipocyte differentiation

  14. Dose-related effects of sericin on preadipocyte behavior within collagen/sericin hybrid scaffolds

    Directory of Open Access Journals (Sweden)

    Valentina Mitran

    2015-04-01

    Full Text Available This paper aims at demonstrating the biocompatibility of recently developed 3D hydrogel scaffolds containing the same amount of collagen (COLL and variable concentrations of sericin (SS in order to find the most suitable formula for adipose tissue engineering (ATE applications. These scaffolds were obtained by COLL crosslinking with glutaraldehyde followed by freeze-drying and, subsequently, seeded with 3T3-L1 preadipocytes. Scanning electron microscopy studies revealed the scaffolds׳ architecture and cellular colonization. Also, in vitro biocompatibility of the developed scaffolds was evaluated by LDH and MTT assays and Live/Dead analysis of 3T3-L1 preadipocyte populating these 3D matrices. The best results in terms of cell survival and proliferation status were obtained in the case of the hybrid COLL scaffold containing 40% SS (COLL–SS4. Furthermore, the biological performance of the analyzed COLL-based hydrogels at 5- and 8- days post-seeding was found to decrease as follows: COLL–SS4>COLL–SS2>COLL>COLL–SS6. Consequently, our study highlights that hybrid scaffolds obtained by the addition of variable concentrations of SS to a constant COLL composition positively influences the behavior of 3T3-L1 cells with the exception of the COLL–SS6 matrix (60% SS. Altogether, the data obtained recommend SS as a component of COLL-based hydrogels providing them with features that may be useful in ATE applications.

  15. Deregulated MAPK activity prevents adipocyte differentiation of fibroblasts lacking the retinoblastoma protein

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Petersen, Rasmus K; Jørgensen, Claus

    2002-01-01

    A functional retinoblastoma protein (pRB) is required for adipose conversion of preadipocyte cell lines and primary mouse embryo fibroblasts (MEFs) in response to treatment with standard adipogenic inducers. Interestingly, lack of functional pRB in MEFs was recently linked to elevated Ras activity...

  16. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    International Nuclear Information System (INIS)

    Chang, Young-Chae; Cho, Hyun-Ji

    2012-01-01

    Highlights: ► Ascofuranone increases expression of adiponectin and PPARγ. ► Inhibitors for MEK and JNK increased the expression of adiponectin and PPARγ. ► Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPARγ, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPARγ agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPARγ, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPARγ through the modulation of MAP kinase family members.

  17. Peroxisome proliferator-activated receptor delta (PPARdelta )-mediated regulation of preadipocyte proliferation and gene expression is dependent on cAMP signaling

    DEFF Research Database (Denmark)

    Hansen, Jacob B.; Zhang, H; Rasmussen, T H

    2001-01-01

    of a PPARdelta ligand and methylisobutylxanthine (MIX) or other cAMP elevating agents. We further show that ligands and MIX synergistically stimulated PPARdelta-mediated transactivation. In 3T3-L1 preadipocytes, simultaneous administration of a PPARdelta-selective ligand and MIX significantly enhanced the early...

  18. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    International Nuclear Information System (INIS)

    Goupille, Olivier; Penglong, Tipparat; Kadri, Zahra; Granger-Locatelli, Marine; Fucharoen, Suthat; Maouche-Chrétien, Leila; Prost, Stéphane; Leboulch, Philippe; Chrétien, Stany

    2016-01-01

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B"c"a expression did not restore adipogenesis.

  19. Inhibition of the acetyl lysine-binding pocket of bromodomain and extraterminal domain proteins interferes with adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Goupille, Olivier [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Penglong, Tipparat [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Kadri, Zahra; Granger-Locatelli, Marine [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Fucharoen, Suthat [Thalassemia Research Center, Mahidol University (Thailand); Maouche-Chrétien, Leila [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France); Prost, Stéphane [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Leboulch, Philippe [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); Thalassemia Research Center, Mahidol University (Thailand); Chrétien, Stany, E-mail: stany.chretien@cea.fr [CEA, Institute of Emerging Diseases and Innovative Therapies (IMETI), Fontenay-aux-Roses and Université Paris-Saclay, UMR-E 007 (France); INSERM, Paris (France)

    2016-04-15

    The bromodomain and extraterminal (BET) domain family proteins are epigenetic modulators involved in the reading of acetylated lysine residues. The first BET protein inhibitor to be identified, (+)-JQ1, a thienotriazolo-1, 4-diazapine, binds selectively to the acetyl lysine-binding pocket of BET proteins. We evaluated the impact on adipogenesis of this druggable targeting of chromatin epigenetic readers, by investigating the physiological consequences of epigenetic modifications through targeting proteins binding to chromatin. JQ1 significantly inhibited the differentiation of 3T3-L1 preadipocytes into white and brown adipocytes by down-regulating the expression of genes involved in adipogenesis, particularly those encoding the peroxisome proliferator-activated receptor (PPAR-γ), the CCAAT/enhancer-binding protein (C/EBPα) and, STAT5A and B. The expression of a constitutively activated STAT5B mutant did not prevent inhibition by JQ1. Thus, the association of BET/STAT5 is required for adipogenesis but STAT5 transcription activity is not the only target of JQ1. Treatment with JQ1 did not lead to the conversion of white adipose tissue into brown adipose tissue (BAT). BET protein inhibition thus interferes with generation of adipose tissue from progenitors, confirming the importance of the connections between epigenetic mechanisms and specific adipogenic transcription factors. - Highlights: • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into white adipocytes. • JQ1 affected clonal cell expansion and abolished lipid accumulation. • JQ1 prevented the differentiation of 3T3-L1 preadipocytes into brown adipocytes. • JQ1 treatment did not lead to the conversion of white adipose tissue into brown adipose tissue. • JQ1 decreased STAT5 expression, but STAT5B{sup ca} expression did not restore adipogenesis.

  20. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N

    2012-01-01

    and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  1. Ascofuranone stimulates expression of adiponectin and peroxisome proliferator activated receptor through the modulation of mitogen activated protein kinase family members in 3T3-L1, murine pre-adipocyte cell line

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Young-Chae, E-mail: ycchang@cu.ac.kr [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of); Cho, Hyun-Ji, E-mail: hjcho.dr@gmail.com [Research Institute of Biomedical Engineering and Department of Medicine, Catholic University of Daegu School of Medicine, Daegu 705-718 (Korea, Republic of)

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer Ascofuranone increases expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Inhibitors for MEK and JNK increased the expression of adiponectin and PPAR{gamma}. Black-Right-Pointing-Pointer Ascofuranone significantly suppressed phosho-ERK, while increasing phospho-p38. -- Abstract: Ascofuranone, an isoprenoid antibiotic, was originally isolated as a hypolipidemic substance from a culture broth of the phytopathogenic fungus, Ascochyta visiae. Adiponectin is mainly synthesized by adipocytes. It relieves insulin resistance by decreasing the plasma triglycerides and improving glucose uptake, and has anti-atherogenic properties. Here, we found that ascofuranone increases expression of adiponectin and PPAR{gamma}, a major transcription factor for adiponectin, in 3T3-L1, murine pre-adipocytes cell line, without promoting accumulation of lipid droplets. Ascofuranone induced expression of adiponectin, and increases the promoter activity of adiponectin and PPRE, PPAR response element, as comparably as a PPAR{gamma} agonist, rosiglitazone, that stimulates lipid accumulation in the preadipocyte cell line. Moreover, inhibitors for MEK and JNK, like ascofuranone, considerably increased the expression of adiponectin and PPAR{gamma}, while a p38 inhibitor significantly suppressed. Ascofuranone significantly suppressed ERK phosphorylation, while increasing p38 phosphorylation, during adipocyte differentiation program. These results suggest that ascofuranone regulates the expression of adiponectin and PPAR{gamma} through the modulation of MAP kinase family members.

  2. Egg white hydrolysate shows insulin mimetic and sensitizing effects in 3T3-F442A pre-adipocytes.

    Directory of Open Access Journals (Sweden)

    Forough Jahandideh

    Full Text Available Insulin resistance and inflammation in adipose tissue is a key mechanism underlying metabolic syndrome, a growing health problem characterized by diabetes, obesity and hypertension. Previous work from our research group has demonstrated the potential of egg white ovotransferrin derived bioactive peptides against hypertension, oxidative stress and inflammation in vitro and in vivo. Egg white hydrolysate (EWH has also shown anti-hypertensive effects in spontaneously hypertensive rats. Given the interplay among hypertension, inflammation, oxidative stress and metabolic syndrome, the objective of the study was to test the EWH on differentiation, insulin signaling and inflammatory responses in 3T3-F442A pre-adipocytes. Our study suggested that EWH could promote adipocyte differentiation as shown by increased lipid accumulation, increased release of adiponectin and upregulation of peroxisome proliferator associated receptor gamma (PPARγ and CCAAT/ enhancer binding protein alpha (C/EBP-α. In addition to enhanced insulin effects on the upregulation of protein kinase B/Akt phosphorylation, EWH treatment increased extracellular signal regulated kinase 1/2 (ERK1/2 phosphorylation to a level similar to that of insulin, indicating insulin sensitizing and mimetic properties of the EWH. EWH further attenuated cytokine induced inflammatory marker; cyclooxygenase -2 (COX-2 by 48.78%, possibly through the AP-1 pathway by down regulating c-Jun phosphorylation in adipocytes. Given the critical role of adipose in the pathogenesis of insulin resistance and metabolic syndrome, EWH may have potential applications in the prevention and management of metabolic syndrome and its complications.

  3. AcEST: BP921473 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 0DLK3|B0DLK3_LACBS Predicted protein OS=Laccaria bicolor (st... 36 1.1 tr|A6GPV3|A6GPV3_9BURK Glutamate--tRNA ligase OS=Limnobacter...ry: 185 SHKNLAETGM*GSIS 229 SH +L +T G I+ Sbjct: 340 SHTSLPDTFFQGRIT 354 >tr|A6GPV3|A6GPV3_9BURK Glutamate--tRNA ligase OS=Limnobacte

  4. Expression patterns of DLK1 and INSL3 identify stages of Leydig cell differentiation during normal development and in testicular pathologies, including testicular cancer and Klinefelter syndrome

    DEFF Research Database (Denmark)

    Lottrup, G; Nielsen, J E; Maroun, L L

    2014-01-01

    , and in the majority of LCs, it was mutually exclusive of DLK1. LIMITATIONS, REASONS FOR CAUTION: The number of samples was relatively small and no true normal adult controls were available. True stereology was not used for LC counting, instead LCs were counted in three fields of 0.5 µm(2) surface for each sample...... in adult men with testicular pathologies including testis cancer and Klinefelter syndrome. STUDY FUNDING/COMPETING INTERESTS: This work was funded by Rigshospitalet's research funds, the Danish Cancer Society and Kirsten and Freddy Johansen's foundation. The authors have no conflicts of interest....

  5. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  6. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; Jørgensen, Claus; Petersen, Rasmus K

    2004-01-01

    Adipocyte precursor cells give raise to two major cell populations with different physiological roles: white and brown adipocytes. Here we demonstrate that the retinoblastoma protein (pRB) regulates white vs. brown adipocyte differentiation. Functional inactivation of pRB in wild-type mouse embryo...... fibroblasts (MEFs) and white preadipocytes by expression of simian virus 40 large T antigen results in the expression of the brown fat-specific uncoupling protein 1 (UCP-1) in the adipose state. Retinoblastoma gene-deficient (Rb-/-) MEFs and stem cells, but not the corresponding wild-type cells, differentiate...

  7. The Effect of Pericellular Oxygen Levels on Proteomic Profile and Lipogenesis in 3T3-L1 Differentiated Preadipocytes Cultured on Gas-Permeable Cultureware.

    Directory of Open Access Journals (Sweden)

    Martin Weiszenstein

    Full Text Available Pericellular oxygen concentration represents an important factor in the regulation of cell functions, including cell differentiation, growth and mitochondrial energy metabolism. Hypoxia in adipose tissue has been associated with altered adipokine secretion profile and suggested as a possible factor in the development of type 2 diabetes. In vitro experiments provide an indispensable tool in metabolic research, however, physical laws of gas diffusion make prolonged exposure of adherent cells to desired pericellular O2 concentrations questionable. The aim of this study was to investigate the direct effect of various O2 levels (1%, 4% and 20% O2 on the proteomic profile and triglyceride accumulation in 3T3-L1 differentiated preadipocytes using gas-permeable cultureware. Following differentiation of cells under desired pericellular O2 concentrations, cell lysates were subjected to two-dimensional gel electrophoresis and protein visualization using Coomassie blue staining. Spots showing differential expression under hypoxia were analyzed using matrix-assisted laser desorption/ionization mass spectrometry. All identified proteins were subjected to pathway analysis. We observed that protein expression of 26 spots was reproducibly affected by 4% and 1% O2 (17 upregulated and 9 downregulated. Pathway analysis showed that mitochondrial energy metabolism and triglyceride synthesis were significantly upregulated by hypoxia. In conclusion, this study demonstrated the direct effects of pericellular O2 levels on adipocyte energy metabolism and triglyceride synthesis, probably mediated through the reversed tricarboxylic acid cycle flux.

  8. Methylation status of imprinted genes DLK1-GTL2, MEST (PEG1), ZAC (PLAGL1), and LINE-1 elements in spermatozoa of normozoospermic men, unlike H19 imprinting control regions, is not associated with idiopathic recurrent spontaneous miscarriages.

    Science.gov (United States)

    Ankolkar, Mandar; Salvi, Vinita; Warke, Himangi; Vundinti, Babu Rao; Balasinor, N H

    2013-05-01

    To study methylation aberrations in spermatozoa at developmentally important imprinted regions to ascertain their role in early embryo loss in idiopathic recurrent spontaneous miscarriages (RSM). Case-control study. Academic research setting at National Institute for Research in Reproductive Health, Parel, Mumbai. Male partners of couples with a history of RSM and male partners of couples with proven fertility (control group). None. DNA methylation levels at imprinting control regions of DLK1-GTL2, MEST (PEG1), and ZAC (PLAGL1) by Epityper Massarray and global methylation levels as measured by LINE-1 methylation and anti-5-methyl cytosine antibody in spermatozoa of 23 men in control group and 23 men in RSM group. We did not observe any aberration in the total methylation levels in any of the imprinted genes or global methylation analyzed. Our results indicate that paternal methylation aberrations at imprinting control regions of DLK1-GTL2, MEST (PEG1), and ZAC (PLAGL1) and global methylation levels are not associated with idiopathic RSM and may not be good epigenetic markers (unlike the H-19 imprinting control region) for diagnosis of idiopathic RSM. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Osteodifferentiation of Human Preadipocytes Induced by Strontium Released from Hydrogels

    Directory of Open Access Journals (Sweden)

    Valeria Nardone

    2012-01-01

    Full Text Available In recent years, there has been an increasing interest in interactive application principles of biology and engineering for the development of valid biological systems for tissue regeneration, such as for the treatment of bone fractures or skeletal defects. The application of stem cells together with biomaterials releasing bioactive factors promotes the formation of bone tissue by inducing proliferation and/or cell differentiation. In this study, we used a clonal cell line from human adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes, named PA2-E12, to evaluate the effects of strontium (Sr2+ released in the culture medium from an amidated carboxymethylcellulose (CMCA hydrogel enriched with different Sr2+ concentrations on osteodifferentiation. The osteoinductive effect was evaluated through both the expression of alkaline phophatase (ALP activity and the hydroxyapatite (HA production during 42 days of induction. Present data have shown that Sr2+ released from CMCA promotes the osteodifferentiation induced by an osteogenic medium as shown by the increase of ALP activity at 7 and 14 days and of HA production at 14 days. In conclusion, the use of biomaterials able to release in situ osteoinductive agents, like Sr2+, could represent a new strategy for future applications in bone tissue engineering.

  10. Use of green fluorescent fusion protein to track activation of the transcription factor osterix during early osteoblast differentiation

    International Nuclear Information System (INIS)

    Tai Guangping; Christodoulou, Ioannis; Bishop, Anne E.; Polak, Julia M.

    2005-01-01

    Osterix (Osx) is a transcription factor required for the differentiation of preosteoblasts into fully functioning osteoblasts. However, the pattern of Osx activation during preosteoblast differentiation and maturation has not been clearly defined. Our aim was to study Osx activation during these processes in osteoblasts differentiating from murine and human embryonic stem cells (ESC). To do this, we constructed an Osx-GFP fusion protein reporter system to track Osx translocation within the cells. The distribution of Osx-GFP at representative stages of differentiation was also investigated by screening primary osteoblasts, mesenchymal stem cells, synoviocytes, and pre-adipocytes. Our experiments revealed that Osx-GFP protein was detectable in the cytoplasm of cultured, differentiated ESC 4 days after plating of enzymatically dispersed embryoid bodies. Osterix-GFP protein became translocated into the nucleus on day 7 following transfer of differentiated ESC to osteogenic medium. After 14 days of differentiation, cells showing nuclear translocation of Osx-GFP formed rudimentary bone nodules that continued to increase in number over the following weeks (through day 21). We also found that Osx translocated into the nuclei of mesenchymal stem cells (C3H10T1/2) and pre-osteoblasts (MC3T3-E1) and showed partial activation in pre-adipocytes (MC3T3-L1). These data suggest that Osx activation occurs at a very early point in the differentiation of the mesenchymal-osteoblastic lineage

  11. FA1 Induces Pro-Inflammatory and Anti-Adipogenic Pathways/Markers in Human Myotubes Established from Lean, Obese, and Type 2 Diabetic Subjects but Not Insulin Resistance

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Beck-Nielsen, Henning; Gaster, Michael

    2013-01-01

    Aims: Delta like 1/fetal antigen 1 (Dlk1/FA1) is a protein secreted by hormone producing cells in adult human and mice that is known to inhibit adipogenesis. Recent studies demonstrated the role of Dlk1/FA1 in inducing insulin resistance in mice. To investigate the involvement of circulating Dlk1....../FA1 in insulin resistance and type 2 diabetes in human subjects, we studied the effects of chronic FA1 on the intermediary metabolism in myotubes established from lean, obese, and type 2 diabetic (T2D) subjects. Methods: Myotube cultures were established from lean and obese control subjects......, and obese T2D subjects and treated with soluble FA1 for 4 days supplemented with/without palmitate (PA). Lipid- and glucose metabolism were studied with labeled precursors while quantitative expression of genes was analyzed using real-time PCR. Results: Diabetic myotubes express significantly reduced...

  12. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all Pmyostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all Pmyostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. © 2015 Society for Endocrinology.

  13. Dlk1/FA1 Is a Novel Endocrine Regulator of Bone and Fat Mass and Its Serum Level Is Modulated By Growth Hormone

    DEFF Research Database (Denmark)

    Abdallah, B.M.; Ding, M.; Jensen, C.H.

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. FA1 (fetal antigen 1) is the soluble form of dlk1 (delta like 1), which is a member of the Notch-Delta family. We have previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1-mice) using the hydrodynamic-based gene transfer procedure (HGTP). We found that increased serum FA1 levels led to a significant reduction in total body weight......, fat mass and bone mass in a dose-dependent manner. Reduced bone mass in FA1-mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58% and 72% respectively. Since FA1 is co-localized with growth hormone (GH) in the pituitary gland, we explored the possible...

  14. Dlk1/FA1 is a novel endocrine regulator of bone and fat mass and its serum level is modulated by growth hormone

    DEFF Research Database (Denmark)

    Abdallah, Basem; Ding, Ming; Jensen, Charlotte H

    2007-01-01

    Fat and bone metabolism are two linked processes regulated by several hormonal factors. Fetal antigen 1 (FA1) is the soluble form of dlk1 (delta-like 1), which is a member of the Notch-Delta family. We previously identified FA1 as a negative regulator of bone marrow mesenchymal stem cell...... differentiation. Here, we studied the effects of circulating FA1 on fat and bone mass in vivo by generating mice expressing high serum levels of FA1 (FA1 mice) using the hydrodynamic-based gene transfer procedure. We found that increased serum FA1 levels led to a significant reduction in total body weight, fat...... mass, and bone mass in a dose-dependent manner. Reduced bone mass in FA1 mice was associated with the inhibition of mineral apposition rate and bone formation rates by 58 and 72%, respectively. Because FA1 is colocalized with GH in the pituitary gland, we explored the possible modulation of serum FA1...

  15. Diffuse lamellar keratitis after laser in situ keratomileusis with the Moria LSK-One and Carriazo-Barraquer microkeratomes.

    Science.gov (United States)

    Thammano, Pavika; Rana, Azhar N; Talamo, Jonathan H

    2003-10-01

    To assess risk factors for and incidence of diffuse lamellar keratitis (DLK) and to investigate whether microkeratome design is associated with the incidence of DLK. The Laser Eye Consultants of Boston, Boston and Waltham, Massachusetts, USA. In a retrospective nonrandomized comparative study, 1122 consecutive primary laser in situ keratomileusis (LASIK) treatments (584 patients) were analyzed to determine the incidence of DLK using 2 different microkeratome designs (Moria LSK-One [LSK] and Moria Carriazo-Barraquer [C-B]). The incidence of DLK was as determined by clinical signs. The overall incidence of DLK was 2.23%. The incidence in the LSK and C-B groups was 1.09% and 4.38%, respectively, with a statistically significant difference in incidence between the 2 groups (P<.01). Epithelial irregularities increased the risk for DLK. There was no significant statistical difference in sex, age, operating room location, type of laser, or time of day the surgery was performed between the 2 groups or between eyes that had DLK and eyes without DLK. The incidence of DLK using the C-B microkeratome fell significantly after May 2000, when new cleaning methods for this device were introduced. Different microkeratomes and how they are maintained may influence the incidence of DLK. Diffuse lamellar keratitis is more common after LASIK in a setting of epithelial irregularities, whether or not an actual epithelial defect is created.

  16. Novel function of the retinoblastoma protein in fat: regulation of white versus brown adipocyte differentiation

    DEFF Research Database (Denmark)

    Hansen, Jacob B; te Riele, Hein; Kristiansen, Karsten

    2004-01-01

    the major energy store and brown adipocytes being potent energy-dissipaters through thermogenesis. Yet, little is known about factors differentially regulating the formation of white and brown fat cells. Members of the retinoblastoma protein family (pRB, p107, p130) have been implicated in the regulation...... of adipocyte differentiation, and expression and phosphorylation of the three retinoblastoma family proteins oscillate in a characteristic manner during differentiation of the white preadipocyte cell line 3T3-L1. We have recently demonstrated a surprising function of the retinoblastoma protein...... in the regulation of white versus brown adipocyte differentiation in vitro and possibly in vivo. Here we summarize the current knowledge on the retinoblastoma protein in fat cells, with particular emphasis on its potential role in adipocyte lineage commitment and differentiation....

  17. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety.

  18. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    Science.gov (United States)

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  19. In Vitro Effects of Strontium on Proliferation and Osteoinduction of Human Preadipocytes

    Directory of Open Access Journals (Sweden)

    V. Nardone

    2015-01-01

    Full Text Available Development of tools to be used for in vivo bone tissue regeneration focuses on cellular models and differentiation processes. In searching for all the optimal sources, adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes are able to differentiate into osteoblasts with analogous characteristics to bone marrow mesenchymal stem cells, producing alkaline phosphatase (ALP, collagen, osteocalcin, and calcified nodules, mainly composed of hydroxyapatite (HA. The possibility to influence bone differentiation of stem cells encompasses local and systemic methods, including the use of drugs administered systemically. Among the latter, strontium ranelate (SR represents an interesting compound, acting as an uncoupling factor that stimulates bone formation and inhibits bone resorption. The aim of our study was to evaluate the in vitro effects of a wide range of strontium (Sr2+ concentrations on proliferation, ALP activity, and mineralization of a novel finite clonal hADSCs cell line, named PA20-h5. Sr2+ promoted PA20-h5 cell proliferation while inducing the increase of ALP activity and gene expression as well as HA production during in vitro osteoinduction. These findings indicate a role for Sr2+ in supporting bone regeneration during the process of skeletal repair in general, and, more specifically, when cell therapies are applied.

  20. A new diarylheptanoid from Alpinia officinarum promotes the differentiation of 3T3-L1 preadipocytes.

    Science.gov (United States)

    Zhang, Xuguang; Zhang, Xiaopo; Wang, Yong; Chen, Feng; Li, Youbin; Li, Yonghui; Tan, Yinfeng; Gong, Jingwen; Zhong, Xia; Li, Hailong; Zhang, Junqing

    2018-03-01

    A new diarylheptanoid, namely trans-(4R,5S)-epoxy-1,7-diphenyl-3-heptanone (1), and a new natural product, 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-hepta-4E,6E-dien-3-one (2), were obtained from the aqueous extract of Alpinia officinarum Hance, together with three other diarylheptanoids, 5-hydroxy-1,7-diphenyl-3-heptanone (3), 1,7-diphenyl-4E-en-3-heptanone (4) and 5-methoxy-1,7-diphenyl-3-heptanone (5). The structures were characterised mainly by analysing their physical data including IR, NMR and HRMS. This study highlights that the 4,5-epoxy moiety in 1 is rarely seen in diarylheptanoids. In addition, the five isolates were tested for their differentiation activity of 3T3-L1 preadipocytes. The results showed that these compounds could dose-dependently promote adipocyte differentiation without cytotoxicity (IC 50  > 100 μM).

  1. PINK1-Parkin alleviates metabolic stress induced by obesity in adipose tissue and in 3T3-L1 preadipocytes.

    Science.gov (United States)

    Cui, Chen; Chen, Shihong; Qiao, Jingting; Qing, Li; Wang, Lingshu; He, Tianyi; Wang, Chuan; Liu, Fuqiang; Gong, Lei; Chen, Li; Hou, Xinguo

    2018-04-06

    Mitochondria play an important role in cellular metabolism and are closely related with metabolic stress. Recently, several studies have shown that mitophagy mediated by PTEN-induced putative kinase 1 (PINK1) and Parkin may play a critical role in clearing the damaged mitochondria and maintaining the overall balance of intracellular mitochondria in quality and quantity. A previous study showed that PINK1 and Parkin were overexpressed in adipose tissue in obese subjects. However, it is still unclear whether a direct relationship exists between obesity and mitophagy. In this study, we created a high-fat-diet (HFD)-induced obese mouse model and examined the expression of PINK1 and Parkin in adipose tissue using western blot and real-time quantitative PCR. After we confirmed that there is an interesting difference between regular-chow-fed mice and HFD-induced obese mice in the expression of PINK1 and Parkin in vivo, we further tested the expression of PINK1 and Parkin in 3T3-L1 preadipocytes in vitro by treating cells with palmitic acid (PA) to induce metabolic stress. To better understand the role of PINK1 and Parkin in metabolic stress, 3T3-L1 preadipocytes were transfected with small interfering RNA (siRNA) of PINK1 and Parkin followed by PA treatment. Our results showed that under lower concentrations of PA, PINK1 and Parkin can be activated and play a protective role in resisting the harmful effects of PA, including protecting the mitochondrial function and resisting cellular death, while under higher concentrations of PA, the expression of PINK1 and Parkin can be inhibited. These results suggest that PINK1-Parkin can protect mitochondrial function against metabolic stress induced by obesity or PA to a certain degree. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    International Nuclear Information System (INIS)

    Calvo, J.C.; Rodbard, D.; Katki, A.; Chernick, S.; Yanagishita, M.

    1991-01-01

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with [35S]sulfate and [3H] glucosamine for 24 h and then extracted and analyzed. There was a 1.68 ± 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of ∼ 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of ∼ 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 ± 0.2-fold in media and 3.2 ± 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation

  3. Transcriptional activation of the mouse obese (ob) gene by CCAAT/enhancer binding protein alpha

    DEFF Research Database (Denmark)

    Hwang, C S; Mandrup, S; MacDougald, O A

    1996-01-01

    Like other adipocyte genes that are transcriptionally activated by CCAAT/enhancer binding protein alpha (C/EBP alpha) during preadipocyte differentiation, expression of the mouse obese (ob) gene is immediately preceded by the expression of C/EBP alpha. While the 5' flanking region of the mouse ob...... gene contains several consensus C/EBP binding sites, only one of these sites appears to be functional. DNase I cleavage inhibition patterns (footprinting) of the ob gene promoter revealed that recombinant C/EBP alpha, as well as a nuclear factor present in fully differentiated 3T3-L1 adipocytes...... to a consensus C/EBP binding site at nucleotides -55 to -47 generated a specific protein-oligonucleotide complex that was supershifted by antibody against C/EBP alpha. Probes corresponding to two upstream consensus C/EBP binding sites failed to generate protein-oligonucleotide complexes. Cotransfection of a C...

  4. , , , , , and Gene Expression in Single- and Co-cultured Bovine Satellite Cells and Intramuscular Preadipocytes Treated with Palmitic, Stearic, Oleic, and Linoleic Acid

    Directory of Open Access Journals (Sweden)

    S. H. Choi

    2015-03-01

    Full Text Available We previously demonstrated that bovine subcutaneous preadipocytes promote adipogenic gene expression in muscle satellite cells in a co-culture system. Herein we hypothesize that saturated fatty acids would promote adipogenic/lipogenic gene expression, whereas mono- and polyunsaturated fatty acids would have the opposite effect. Bovine semimembranosus satellite cells (BSC and intramuscular preadipocytes (IPA were isolated from crossbred steers and cultured with 10% fetal bovine serum (FBS/Dulbecco’s Modified Eagle Medium (DMEM and 1% antibiotics during the 3-d proliferation period. After proliferation, cells were treated for 3 d with 3% horse serum/DMEM (BSC or 5% FBS/DMEM (IPA with antibiotics. Media also contained 10 μg/mL insulin and 10 μg/mL pioglitazone. Subsequently, differentiating BSC and IPA were cultured in their respective media with 40 μM palmitic, stearic, oleic, or linoleic acid for 4 d. Finally, BSC and IPA were single- or co-cultured for an additional 2 h. All fatty acid treatments increased (p = 0.001 carnitine palmitoyltransferase-1 beta (CPT1β gene expression, but the increase in CPT1β gene expression was especially pronounced in IPA incubated with palmitic and stearic acid (6- to 17- fold increases. Oleic and linoleic acid decreased (p = 0.001 stearoyl-CoA desaturase (SCD gene expression over 80% in both BSC and IPA. Conversely, palmitic and stearic acid increased SCD gene expression three fold in co-cultured in IPA, and stearic acid increased AMPKα gene expression in single- and co-cultured BSC and IPA. Consistent with our hypothesis, saturated fatty acids, especially stearic acid, promoted adipogenic and lipogenic gene expression, whereas unsaturated fatty acids decreased expression of those genes associated with fatty acid metabolism.

  5. Enhanced migration of murine fibroblast-like 3T3-L1 preadipocytes on type I collagen-coated dish is reversed by silibinin treatment.

    Science.gov (United States)

    Liu, Xiaoling; Xu, Qian; Liu, Weiwei; Yao, Guodong; Zhao, Yeli; Xu, Fanxing; Hayashi, Toshihiko; Fujisaki, Hitomi; Hattori, Shunji; Tashiro, Shin-Ichi; Onodera, Satoshi; Yamato, Masayuki; Ikejima, Takashi

    2018-04-01

    Migration of fibroblast-like preadipocytes is important for the development of adipose tissue, whereas excessive migration is often responsible for impaired adipose tissue related with obesity and fibrotic diseases. Type I collagen (collagen I) is the most abundant component of extracellular matrix and has been shown to regulate fibroblast migration in vitro, but its role in adipose tissue is not known. Silibinin is a bioactive natural flavonoid with antioxidant and antimetastasis activities. In this study, we found that type I collagen coating promoted the proliferation and migration of murine 3T3-L1 preadipocytes in a dose-dependent manner, implying that collagen I could be an extracellular signal. Regarding the mechanisms of collagen I-stimulated 3T3-L1 migration, we found that NF-κB p65 is activated, including the increased nuclear translocation of NF-κB p65 as well as the upregulation of NF-κB p65 phosphorylation and acetylation, accompanied by the increased expressions of proinflammatory factors and the generation of reactive oxygen species (ROS). Reduction of collagen I-enhanced migration of cells by treatment with silibinin was associated with suppression of NF-κB p65 activity and ROS generation, and negatively correlated with the increasing sirt1 expression. Taken together, the enhanced migration of 3T3-L1 cells induced on collagen I-coated dish is mediated by the activation of NF-κB p65 function and ROS generation that can be alleviated with silibinin by upregulation of sirt1, leading to the repression of NF-κB p65 function and ROS generation.

  6. Characterization of actions of octanoate on porcine preadipocytes and adipocytes differentiated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Shunichi, E-mail: shunsuzu@affrc.go.jp [Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901 (Japan); Suzuki, Misae; Sembon, Shoichiro; Fuchimoto, Daiichiro; Onishi, Akira [Transgenic Pig Research Unit, National Institute of Agrobiological Sciences, 2 Ikenodai, Tsukuba, Ibaraki 305-0901 (Japan)

    2013-03-01

    Highlights: ► Octanoate regulated gene expressions in a way distinct from rosiglitasone. ► Octanoate upregulatedPPRE and LXRE reporter activities. ► Octanoate may act on some PPARγ-target genes competitively with other ligands. - Abstract: Octanoate is used to induce adipogenic differentiation and/or lipid accumulation in preadipocytes of domestic animals. However, information on detailed actions of octanoate and the characteristics of octanoate-induced adipocytes is limited. The aim of this study was to examine these issues by comparing the outcomes of the effects of octanoate with those of rosiglitazone, which is a well-defined activator of peroxisome proliferator-activated receptor (PPAR)-γ. The adipocytes that were differentiated with 5 mM of octanoate had dispersed and diversely sized lipid droplets compared to those that were differentiated with 1 μM of rosiglitazone. The gene expression levels of adiponectin, glycerol-3-phosphate dehydrogenase, perilipin 1, and perilipin 4 were much higher in the adipocytes that were differentiated with rosiglitazone than in those differentiated with octanoate, while the gene expression levels of lipoprotein lipase and perilipin 2 were decreased in rosiglitazone-differentiated adipocytes compared to octanoate-differentiated adipocytes. However, the expressions of aP2 and CD36 genes were comparably induced. Luciferase reporter assays revealed that PPAR and liver-X-receptor activities were upregulated by octanoate more effectively than by rosiglitazone. Overall, these results suggested that the action of octanoate was complicated and may be dependent on the targeted genes and cellular status.

  7. Clinical study of the clusters of diffuse lamellar keratitis after laser corneal refractive surgery

    Directory of Open Access Journals (Sweden)

    Qing-Hong Lin

    2017-06-01

    Full Text Available AIM: To investigate the potential causes and management of the clusters of diffuse lamellar keratitis(DLKafter laser corneal refractive surgery. METHODS: The study enrolled 98 eyes(53 patientscomplicated with DLK after receiving laser in situ keratomileusis(LASIK, FS-LASIK or small-incision lenticule extraction(SMILEin our center from February 10th,2016 to February 22th,2016. They were given clinical classification treatments according to corneal layer inflammatory extent and then followed up after 1, 3, 5, 7, 10d and 1mo. RESULTS: The clusters of DLK occurred 5 times in the study period. The incidence and degree of DLK significantly decreased after changed the sterilization, surgical equipments, temperature and humidity of the operating room. There were 80 eyes(82%had stage 1 DLK, 11 eyes(11%had stage 2, 4 eyes(4%had stage 3 and 3 eyes(3%had stage 4. The incidence of DLK after FS-LASIK was 40%(79 eyes in 42 patients, that after LASIK assistant by Hastome keratome was 45%(10 eyes in 5 patients, that after SMILE was 20%(9 eyes in 6 patients. After intensive treatment, as glucocorticoid treatment and flap lifting flushing, all cases recovered within 1mo. CONCLUSION: The outbreak of DLK may be associated with the disposable item, flushing liquor, temperature and humidity of the operating room. Early diagnosis, prevention and treatment are the key of decreasing the incidence of DLK.

  8. Comparison the post operative refractive errors in same size corneal transplantation through deep lamellar keratoplasty and penetrating keratoplasty methods after sutures removing in keratoconus patients

    Directory of Open Access Journals (Sweden)

    Hasan Razmjoo

    2016-01-01

    Full Text Available Background: Corneal transplantation is a surgery in which cornea is replaced by a donated one and can be completely penetrating keratoplasty (PK or included a part of cornea deep lamellar keratoplasty (DLK. Although the functional results are limited by some complications, it is considered as one of the most successful surgeries. This study aimed to compare the refractive errors after same size corneal transplantation through DLK and PK methods in keratoconus patients over 20 years. Materials and Methods: This descriptive, analytical study was conducted in Feiz Hospital, Sadra and Persian Clinics of Isfahan in 2013–2014. In this study, 35 patients underwent corneal transplantation by PK and 35 patients by DLK, after removing the sutures, the patients were compared in terms of best corrected visual acuity (BCVA and refractive errors. Data were analyzed using Chi-square and t Student tests by SPSS software. Results: The BCVA mean in DLK and PK groups was 6/10 ± 2/10 and 5/10 ± 2/10, respectively, with no significant difference (P = 0.4. The results showed 9 cases of DLK and 6 cases of PK had normal (8/10 ≤ BCVA visual acuity (25.7% vs. 17.1%, 24 cases of DLK and 27 cases of PK had mild vision impairment (68.6% vs. 77.1% and 2 cases of the DLK group and 2 cases of PK had moderate vision impairment, (5.7% vs. 5.7%, there was no significant difference in “BCVA” (P = 0.83. Conclusions: Both methods were acceptably effective in improving BCVA, but according to previous articles (5,9,10 the DLK method due to fewer complications and less risk of rejection was superior to another method and in the absence of any prohibition this method is recommended.

  9. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    Science.gov (United States)

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  10. Bilateral diffuse lamellar keratitis triggered by permanent eyeliner tattoo treatment: A case report.

    Science.gov (United States)

    Lu, Cheng-Wei; Liu, Xiu-Fen; Zhou, Dan-Dan; Kong, Yu-Jiao; Qi, Xiao-Feng; Liu, Tao-Tao; Qu, Ting; Pan, Xiao-Tao; Liu, Cong; Hao, Ji-Long

    2017-07-01

    Diffuse lamellar keratitis (DLK) is a sterile inflammation of the cornea, which may occur after laser-assisted in situ keratomileusis (LASIK) surgery. Little is known about the association of DLK with permanent eyeliner tattoo. The present case report describes the case of a 37-year-old Chinese woman who developed severe foreign body sensation in both eyes 1 week after receiving bilateral permanent eyeliner tattoo treatment. The patient had received bilateral LASIK surgery 10 years previously. Slit-lamp biomicroscopy revealed diffused granular infiltrates precipitated around the edge of the corneal flaps in both eyes. After topical treatment, DLK persisted. Therefore, the patient underwent surgery to remove the corneal epithelium around the DLK lesion. There was no recurrence of the disease during the 3-month observation period. To our knowledge, this is the first case report describing a case of late-onset of DLK that was triggered by permanent eyeliner tattoo. Doctors should be aware of the diagnosis and treatment of this complication associated with the application of permanent eyeliner tattoo as the popularity of this cosmetic procedure increases.

  11. Serum preadipocyte factor-1 concentrations in females with obesity and type 2 diabetes mellitus: the influence of very low calorie diet, acute hyperinsulinemia, and fenofibrate treatment.

    Science.gov (United States)

    Kavalkova, P; Touskova, V; Roubicek, T; Trachta, P; Urbanova, M; Drapalova, J; Haluzikova, D; Mraz, M; Novak, D; Matoulek, M; Lacinova, Z; Haluzik, M

    2013-10-01

    Appropriate differentiation capacity of adipose tissue significantly affects its ability to store lipids and to protect nonadipose tissues against lipid spillover and development of insulin resistance. Preadipocyte factor-1 (Pref-1) is an important negative regulator of preadipocyte differentiation. The aim of our study was to explore the changes in circulating Pref-1 concentrations in female subjects with obesity (OB) (n=19), females with obesity and type 2 diabetes mellitus (T2DM) (n=22), and sex- and age-matched healthy control subjects (C) (n=22), and to study its modulation by very low calorie diet (VLCD), acute hyperinsulinemia during isoglycemic-hyperinsulinemic clamp, and 3 months' treatment with PPAR-α agonist fenofibrate. At baseline, serum Pref-1 concentrations were significantly higher in patients with T2DM compared to control group, while only nonsignificant trend towards higher levels was observed in OB group. 3 weeks of VLCD decreased Pref-1 levels in both OB and T2DM group, whereas 3 months of fenofibrate treatment had no significant effect. Hyperinsulinemia during the clamp significantly suppressed Pref-1 levels in both C and T2DM subjects and this suppression was unaffected by fenofibrate treatment. In a combined population of all groups, circulating Pref-1 levels correlated positively with insulin, leptin and glucose levels and HOMA (homeostasis model assessment) index. We conclude that elevated Pref-1 concentrations in T2DM subjects may contribute to impaired adipose tissue differentiation capacity associated with insulin resistance in obese patients with T2DM. The decrease of Pref-1 levels after VLCD may be involved in the improvement of metabolic status and the amelioration of insulin resistance in T2DM patients. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Nicotinic Acid Increases Adiponectin Secretion from Differentiated Bovine Preadipocytes through G-Protein Coupled Receptor Signaling

    Directory of Open Access Journals (Sweden)

    Christina Kopp

    2014-11-01

    Full Text Available The transition period in dairy cows (3 weeks prepartum until 3 weeks postpartum is associated with substantial mobilization of energy stores, which is often associated with metabolic diseases. Nicotinic acid (NA is an antilipolytic and lipid-lowering compound used to treat dyslipidaemia in humans, and it also reduces non-esterified fatty acids in cattle. In mice the G-protein coupled receptor 109A (GPR109A ligand NA positively affects the secretion of adiponectin, an important modulator of glucose and fat metabolism. In cattle, the corresponding data linking NA to adiponectin are missing. Our objective was to examine the effects of NA on adiponectin and AMPK protein abundance and the expression of mRNAs of related genes such as chemerin, an adipokine that enhances adiponectin secretion in vitro. Differentiated bovine adipocytes were incubated with pertussis toxin (PTX to verify the involvement of GPR signaling, and treated with 10 or 15 µM NA for 12 or 24 h. NA increased adiponectin concentrations (p ≤ 0.001 and the mRNA abundances of GPR109A (p ≤ 0.05 and chemerin (p ≤ 0.01. Pre-incubation with PTX reduced the adiponectin response to NA (p ≤ 0.001. The NA-stimulated secretion of adiponectin and the mRNA expression of chemerin in the bovine adipocytes were suggestive of GPR signaling-dependent improved insulin sensitivity and/or adipocyte metabolism in dairy cows.

  13. IL-11, IL-1α, IL-6, and TNF-α are induced by solar radiation in vitro and may be involved in facial subcutaneous fat loss in vivo.

    Science.gov (United States)

    Li, Wen-Hwa; Pappas, Apostolos; Zhang, Li; Ruvolo, Eduardo; Cavender, Druie

    2013-07-01

    The loss of subcutaneous (sc) fat is associated with aging. Inflammatory cytokines, such as interleukin-1 α (IL-1α), interleukin-11 (IL-11) and tumor necrosis factor-α (TNF-α), are known to inhibit the differentiation of preadipocytes. This study investigated the potential role of inflammatory cytokines in solar-radiation-induced facial fat loss. Cultured fibroblasts, keratinocytes, and skin equivalents were exposed to various doses of radiation from a solar simulator. Inflammatory cytokines' mRNA production and protein secretion were examined by qRT-PCR and ELISA, respectively. In some experiments, epidermal-dermal equivalents were pretreated topically with a broad-spectrum sunscreen prior to solar simulated radiation (SSR). Human facial preadipocytes treated with recombinant IL-11 or with conditioned media from solar-irradiated equivalents were evaluated for the level of adipocyte differentiation by image analyses, Oil red O staining, and the expression of adipocyte differentiation markers. IL-11, IL-1α, IL-6, and TNF-α protein secretion were induced from epidermal-dermal equivalents by exposure to SSR. A sunscreen prevented SSR-induced inflammatory cytokines production from such equivalents. Exposure of facial preadipocytes to conditioned medium from solar-irradiated epidermal-dermal equivalents inhibited their differentiation into mature adipocytes. Consequently, conditioned medium from sunscreen-pretreated, solar-irradiated equivalents did not inhibit differentiation of preadipocytes. A cocktail of neutralizing antibodies to IL-11, IL-1α, IL-6 and TNF-α significantly reduced the SSR-induced inhibition of preadipocyte differentiation. These results support the hypothesis that SSR-induced inflammatory cytokine may be involved in the photoaging-induced loss of facial subcutaneous fat. Inhibition of this process, e.g. by sunscreens, might slow or prevent photoaging-induced changes in facial contouring. Copyright © 2013 Japanese Society for Investigative

  14. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data

    Directory of Open Access Journals (Sweden)

    Katharina Stoecker

    2017-03-01

    Full Text Available The process of adipogenesis is controlled in a highly orchestrated manner, including transcriptional and post-transcriptional events. In developing 3T3-L1 pre-adipocytes, this program can be interrupted by all-trans retinoic acid (ATRA. To examine this inhibiting impact by ATRA, we generated large-scale transcriptomic data on the microRNA and mRNA level. Non-coding RNAs such as microRNAs represent a field in RNA turnover, which is very important for understanding the regulation of mRNA gene expression. High throughput mRNA and microRNA expression profiling was performed using mRNA hybridisation microarray technology and multiplexed expression assay for microRNA quantification. After quantitative measurements we merged expression data sets, integrated the results and analysed the molecular regulation of in vitro adipogenesis. For this purpose, we applied local enrichment analysis on the integrative microRNA-mRNA network determined by a linear regression approach. This approach includes the target predictions of TargetScan Mouse 5.2 and 23 pre-selected, significantly regulated microRNAs as well as Affymetrix microarray mRNA data. We found that the cellular lipid metabolism is negatively affected by ATRA. Furthermore, we were able to show that microRNA 27a and/or microRNA 96 are important regulators of gap junction signalling, the rearrangement of the actin cytoskeleton as well as the citric acid cycle, which represent the most affected pathways with regard to inhibitory effects of ATRA in 3T3-L1 preadipocytes. In conclusion, the experimental workflow and the integrative microRNA–mRNA data analysis shown in this study represent a possibility for illustrating interactions in highly orchestrated biological processes. Further the applied global microRNA–mRNA interaction network may also be used for the pre-selection of potential new biomarkers with regard to obesity or for the identification of new pharmaceutical targets.

  15. Stable expression of lipocalin-type prostaglandin D synthase in cultured preadipocytes impairs adipogenesis program independently of endogenous prostanoids

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, Mohammad Salim; Chowdhury, Abu Asad; Rahman, Mohammad Sharifur [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Nishimura, Kohji [Department of Molecular and Functional Genomics, Center for Integrated Research in Science, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Jisaka, Mitsuo; Nagaya, Tsutomu [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan); Shono, Fumiaki [Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Yamashiro-cho, Tokushima-shi, Tokushima 770-8514 (Japan); Yokota, Kazushige, E-mail: yokotaka@life.shimane-u.ac.jp [Department of Life Science and Biotechnology, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane 690-8504 (Japan)

    2012-02-15

    Lipocalin-type prostaglandin D synthase (L-PGDS) expressed preferentially in adipocytes is responsible for the synthesis of PGD{sub 2} and its non-enzymatic dehydration products, PGJ{sub 2} series, serving as pro-adipogenic factors. However, the role of L-PGDS in the regulation of adipogenesis is complex because of the occurrence of several derivatives from PGD{sub 2} and their distinct receptor subtypes as well as other functions such as a transporter of lipophilic molecules. To manipulate the expression levels of L-PGDS in cultured adipocytes, cultured preadipogenic 3T3-L1 cells were transfected stably with a mammalian expression vector having cDNA encoding murine L-PGDS oriented in the sense direction. The isolated cloned stable transfectants with L-PGDS expressed higher levels of the transcript and protein levels of L-PGDS, and synthesized PGD{sub 2} from exogenous arachidonic acid at significantly higher levels. By contrast, the synthesis of PGE{sub 2} remained unchanged, indicating no influence on the reactions of cyclooxygenase (COX) and PGE synthase. Furthermore, the ability of those transfectants to synthesize {Delta}{sup 12}-PGJ{sub 2} increased more greatly during the maturation phase. The sustained expression of L-PGDS in cultured stable transfectants hampered the storage of fats during the maturation phase of adipocytes, which was accompanied by the reduced gene expression of adipocyte-specific markers reflecting the down-regulation of the adipogenesis program. The suppressed adipogenesis was not rescued by either exogenous aspirin or peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists including troglitazone and {Delta}{sup 12}-PGJ{sub 2}. Taken together, the results indicate the negative regulation of the adipogenesis program by the enhanced expression of L-PGDS through a cellular mechanism involving the interference of the PPAR{gamma} signaling pathway without the contribution of endogenous pro-adipogenic prostanoids

  16. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    Science.gov (United States)

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  17. Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-10-03

    Highlights: • GDF5 expression is up-regulated by IL-1β, TNF-α and palmitate in brown pre-adipocytes. • NF-κB stimulates promoter activity and expression of GDF5 in brown pre-adipocytes. • Recruitment of NF-κB to the GDF5 promoter is facilitated in BAT from ob/ob mice. • An NF-κB inhibitor prevents upregulation of GDF5 expression in brown pre-adipocytes. - Abstract: We have previously demonstrated that genetic and acquired obesity similarly led to drastic upregulation in brown adipose tissue (BAT), rather than white adipose tissue, of expression of both mRNA and corresponding protein for the bone morphogenic protein/growth differentiation factor (GDF) member GDF5 capable of promoting brown adipogenesis. In this study, we evaluated expression profiles of GDF5 in cultured murine brown pre-adipocytes exposed to pro-inflammatory cytokines and free fatty acids (FFAs), which are all shown to play a role in the pathogenesis of obesity. Both interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were effective in up-regulating GDF5 expression in a concentration-dependent manner, while similar upregulation was seen in cells exposed to the saturated FFA palmitate, but not to the unsaturated FFA oleate. In silico analysis revealed existence of the putative nuclear factor-κB (NF-κB) binding site in the 5′-flanking region of mouse GDF5, whereas introduction of NF-κB subunits drastically facilitated both promoter activity and expression of GDF5 in brown pre-adipocytes. Chromatin immunoprecipitation analysis confirmed significant facilitation of the recruitment of NF-κB to the GDF5 promoter in lysed extracts of BAT from leptin-deficient ob/ob obese mice. Upregulation o GDF5 expression was invariably inhibited by an NF-κB inhibitor in cultured brown pre-adipocytes exposed to IL-1β, TNF-α and palmitate. These results suggest that obesity leads to upregulation of GDF5 expression responsible for the promotion of brown adipogenesis through a mechanism

  18. Novel polymorphisms within the Dlk1-Dio3 imprinted locus in rat: a putative genetic basis for strain-specific allelic gene expression

    Directory of Open Access Journals (Sweden)

    Laura J Sittig

    2012-12-01

    Full Text Available The imprinted iodothyronine deiodinase-III (Dio3 thyroid hormone metabolizing gene exhibits paternal expression in most fetal tissues, yet exhibits aberrant, maternal expression in the hippocampus in F1 offspring of Sprague Dawley (SD x Brown Norway (BN rats. The maternal hippocampal expression is associated with lower Dio3 mRNA levels specifically in the hippocampus. Here, we tested the hypothesis that genetic polymorphisms between the SD and BN parent strains cause this aberrant allelic Dio3 expression and contribute to behavioral sequelae of higher thyroid hormone levels locally in the hippocampus, including anxiety-related behavior. We mapped and sequenced the Dio3 gene and several previously unmapped regions in the Dlk1-Dio3 locus that could regulate imprinting of the Dio3 gene. In the Dio3 promoter we identified four novel polymorphisms between the BN and SD strains. Next we took advantage of the fact that the Long Evans (LE strain exhibits identical polymorphisms as the SD strain in the region 5’ and including the Dio3 gene. By reciprocally crossing LE and BN strains we tested the relationship among Dio3 promoter region polymorphisms and Dio3 mRNA expression in the hippocampus. Aberrant strain-specific hippocampal Dio3 allelic expression replicated in the LE-BN reciprocal crosses, suggesting that hippocampal-specific imprinting of the Dio3 gene is not the result of a unique genetic or epigenetic characteristic of the SD rat strain, or a unique epistatic interaction between SD and BN. To our knowledge no other studies have reported a genetic x epigenetic interaction of genetic origin in the brain.

  19. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation

    DEFF Research Database (Denmark)

    Christophersen, Nicolai S.; Gronborg, Mette; Petersen, Thomas Nordahl

    2007-01-01

    upregulation with increased positive staining of cell bodies in the SNc and fibers in the striatum. Analysis of the developmental regulation of Dlk1 in the murine ventral midbrain showed that the upregulation of Dlk1 mRNA correlated with the generation of tyrosine hydroxylase (TH)-positive neurons. Furthermore...

  20. BMT decreases HFD-induced weight gain associated with decreased preadipocyte number and insulin secretion.

    Directory of Open Access Journals (Sweden)

    Saeed Katiraei

    Full Text Available Experimental bone marrow transplantation (BMT in mice is commonly used to assess the role of immune cell-specific genes in various pathophysiological settings. The application of BMT in obesity research is hampered by the significant reduction in high-fat diet (HFD-induced obesity. We set out to characterize metabolic tissues that may be affected by the BMT procedure and impair the HFD-induced response. Male C57BL/6 mice underwent syngeneic BMT using lethal irradiation. After a recovery period of 8 weeks they were fed a low-fat diet (LFD or HFD for 16 weeks. HFD-induced obesity was reduced in mice after BMT as compared to HFD-fed control mice, characterized by both a reduced fat (-33%; p<0.01 and lean (-11%; p<0.01 mass, while food intake and energy expenditure were unaffected. As compared to control mice, BMT-treated mice had a reduced mature adipocyte volume (approx. -45%; p<0.05 and reduced numbers of preadipocytes (-38%; p<0.05 and macrophages (-62%; p<0.05 in subcutaneous, gonadal and visceral white adipose tissue. In BMT-treated mice, pancreas weight (-46%; p<0.01 was disproportionally decreased. This was associated with reduced plasma insulin (-68%; p<0.05 and C-peptide (-37%; p<0.01 levels and a delayed glucose clearance in BMT-treated mice on HFD as compared to control mice. In conclusion, the reduction in HFD-induced obesity after BMT in mice is at least partly due to alterations in the adipose tissue cell pool composition as well as to a decreased pancreatic secretion of the anabolic hormone insulin. These effects should be considered when interpreting results of experimental BMT in metabolic studies.

  1. An Model to Probe the Regulation of Adipocyte Differentiation under Hyperglycemia

    Directory of Open Access Journals (Sweden)

    Kusampudi Shilpa

    2013-06-01

    Full Text Available BackgroundThe aim of this study was an in vitro investigation of the effect of high glucose concentration on adipogenesis, as prolonged hyperglycemia alters adipocyte differentiation.Methods3T3-L1 preadipocytes differentiated in the presence of varying concentrations of glucose (25, 45, 65, 85, and 105 mM were assessed for adipogenesis using AdipoRed (Lonza assay. Cell viability and proliferation were measured using MTT reduction and [3H] thymidine incorporation assay. The extent of glucose uptake and glycogen synthesis were measured using radiolabelled 2-deoxy-D-[1-3H] glucose and [14C]-UDP-glucose. The gene level expression was evaluated using reverse transcription-polymerase chain reaction and protein expression was studied using Western blot analysis.ResultsGlucose at 105 mM concentration was observed to inhibit adipogenesis through inhibition of CCAAT-enhancer-binding proteins, sterol regulatory element-binding protein, peroxisome proliferator-activated receptor and adiponectin. High concentration of glucose induced stress by increasing levels of toll-like receptor 4, nuclear factor κB and tumor necrosis factor α thereby generating activated preadipocytes. These cells entered the state of hyperplasia through inhibition of p27 and proliferation was found to increase through activation of protein kinase B via phosphoinositide 3 kinase dependent pathway. This condition inhibited insulin signaling through decrease in insulin receptor β. Although the glucose transporter 4 (GLUT4 protein remained unaltered with the glycogen synthesis inhibited, the cells were found to exhibit an increase in glucose uptake via GLUT1.ConclusionAdipogenesis in the presence of 105 mM glucose leads to an uncontrolled proliferation of activated preadipocytes providing an insight towards understanding obesity.

  2. Ursolic acid inhibits adipogenesis in 3T3-L1 adipocytes through LKB1/AMPK pathway.

    Directory of Open Access Journals (Sweden)

    Yonghan He

    Full Text Available BACKGROUND: Ursolic acid (UA is a triterpenoid compound with multiple biological functions. This compound has recently been reported to possess an anti-obesity effect; however, the mechanisms are less understood. OBJECTIVE: As adipogenesis plays a critical role in obesity, the present study was conducted to investigate the effect of UA on adipogenesis and mechanisms of action in 3T3-L1 preadipocytes. METHODS AND RESULTS: The 3T3-L1 preadipocytes were induced to differentiate in the presence or absence of UA for 6 days. The cells were determined for proliferation, differentiation, fat accumulation as well as the protein expressions of molecular targets that regulate or are involved in fatty acid synthesis and oxidation. The results demonstrated that ursolic acid at concentrations ranging from 2.5 µM to 10 µM dose-dependently attenuated adipogenesis, accompanied by reduced protein expression of CCAAT element binding protein β (C/EBPβ, peroxisome proliferator-activated receptor γ (PPARγ, CCAAT element binding protein α (C/EBPα and sterol regulatory element binding protein 1c (SREBP-1c, respectively. Ursolic acid increased the phosphorylation of acetyl-CoA carboxylase (ACC and protein expression of carnitine palmitoyltransferase 1 (CPT1, but decreased protein expression of fatty acid synthase (FAS and fatty acid-binding protein 4 (FABP4. Ursolic acid increased the phosphorylation of AMP-activated protein kinase (AMPK and protein expression of (silent mating type information regulation 2, homolog 1 (Sirt1. Further studies demonstrated that the anti-adipogenic effect of UA was reversed by the AMPK siRNA, but not by the Sirt1 inhibitor nicotinamide. Liver kinase B1 (LKB1, the upstream kinase of AMPK, was upregulated by UA. When LKB1 was silenced with siRNA or the inhibitor radicicol, the effect of UA on AMPK activation was diminished. CONCLUSIONS: Ursolic acid inhibited 3T3-L1 preadipocyte differentiation and adipogenesis through the LKB1/AMPK

  3. Adipogenesis in thyroid eye disease.

    Science.gov (United States)

    Crisp, M; Starkey, K J; Lane, C; Ham, J; Ludgate, M

    2000-10-01

    Adipogenesis contributes to the pathogenesis of thyroid eye disease (TED). Thyrotropin receptor (TSHR) transcripts are present in orbital fat. This study was conducted to determine whether they are expressed as functional protein, and if so, whether this is restricted to TED orbits or to a particular stage in adipocyte differentiation. Samples of fat were obtained from 18 TED-affected orbits and 4 normal orbits, and 9 were obtained from nonorbital locations. Frozen sections were examined by immunocytochemistry using monoclonal antibodies specific for the human TSHR. Samples were disaggregated and the preadipocytes separated from the mature by differential centrifugation and cultured in serum-free or DM and examined for morphologic changes, oil red O and TSHR staining, and TSH-induced cyclic adenosine monophosphate (cAMP) production. Marked immunoreactivity was observed in frozen sections from all three TED samples and faint staining in both normal orbital fat samples. In vitro, 1% to 5% of preadipocytes displayed TSHR immunoreactivity in five of six TED and two of three normal orbital samples and in three of five nonorbital samples. Differentiation, was induced in all 14 orbital samples. Three of four nonorbital samples contained occasional differentiated cells. Fifty percent to 70% of differentiating cells demonstrated receptor immunoreactivity. Two of three TED and four of four nonorbital preadipocytes in DM and/or mature adipocytes displayed a TSH-mediated increase in cAMP. The results indicate that orbital fat TSHR transcripts are expressed as protein, which can be functional. This is not aberrant in TED orbits, although expression may be upregulated. The majority of preadipocytes undergoing differentiation express the receptor, indicating a key role for this population in one mechanism for increasing orbital volume.

  4. Characterization of the Met326Ile variant of phosphatidylinositol 3-kinase p85alpha

    DEFF Research Database (Denmark)

    Almind, Katrine; Delahaye, Laurent; Hansen, Torben

    2002-01-01

    . When the four human p85alpha proteins were expressed in yeast, a 27% decrease occurred in the level of protein expression of p85alpha(Ile/Asp) (P = 0.03) and a 43% decrease in p85alpha(Ile/Asn) (P = 0.08) as compared with p85alpha(Met/Asp). Both p85alpha(Ile/Asp) and p85alpha(Ile/Asn) also exhibited...... increased binding to phospho-insulin receptor substrate-1 by 41% and 83%, respectively (P substrate-1 slightly increased in brown preadipocytes derived from p85alpha...... knockout mice. Both p85alpha(Met) and p85alpha(Ile) had similar effects on AKT activity and were able to reconstitute differentiation of the preadipocytes, although the triglyceride concentration in fully differentiated adipocytes and insulin-stimulated 2-deoxyglucose uptake were slightly lower than...

  5. 5-Lipoxygenase-Activating Protein as a Modulator of Olanzapine-Induced Lipid Accumulation in Adipocyte

    Directory of Open Access Journals (Sweden)

    Svetlana Dzitoyeva

    2013-01-01

    Full Text Available Experiments were performed in 3T3-L1 preadipocytes differentiated in vitro into adipocytes. Cells were treated with olanzapine and a 5-lipoxygenase (5-LOX activating protein (FLAP inhibitor MK-886. Lipid content was measured using an Oil Red O assay; 5-LOX and FLAP mRNA content was measured using quantitative real-time PCR; the corresponding protein contents were measured using quantitative Western blot assay. Olanzapine did not affect the cell content of 5-LOX mRNA and protein; it decreased FLAP mRNA and protein content at day five but not 24 hours after olanzapine addition. In the absence of MK-886, low concentrations of olanzapine increased lipid content only slightly, whereas a 56% increase was induced by 50 μM olanzapine. A 5-day cotreatment with 10 μM MK-886 potentiated the lipid increasing action of low concentrations of olanzapine. In contrast, in the presence of 50 μM olanzapine nanomolar and low micromolar concentrations of MK-886 reduced lipid content. These data suggest that FLAP system in adipocytes is affected by olanzapine and that it may modify how these cells respond to the second-generation antipsychotic drugs (SGADs. Clinical studies could evaluate whether the FLAP/5-LOX system could play a role in setting a variable individual susceptibility to the metabolic side effects of SGADs.

  6. Effect of Wnt-1 inducible signaling pathway protein-2 (WISP-2/CCN5), a downstream protein of Wnt signaling, on adipocyte differentiation

    International Nuclear Information System (INIS)

    Inadera, Hidekuni; Shimomura, Akiko; Tachibana, Shinjiro

    2009-01-01

    Wnt signaling negatively regulates adipocyte differentiation, and ectopic expression of Wnt-1 in 3T3-L1 cells induces several downstream molecules of Wnt signaling, including Wnt-1 inducible signaling pathway protein (WISP)-2. In this study, we examined the role of WISP-2 in the process of adipocyte differentiation using an in vitro cell culture system. In the differentiation of 3T3-L1 cells, WISP-2 expression was observed in growing cells and declined thereafter. In the mitotic clonal expansion phase of adipocyte differentiation, WISP-2 expression was transiently down-regulated concurrently with up-regulation of CCAAT/enhancer-binding protein δ expression. Treatment of 3T3-L1 cells in the differentiation medium with lithium, an activator of Wnt signaling, inhibited the differentiation process with concomitant induction of WISP-2. Treatment of differentiated cells with lithium induced de-differentiation as evidenced by profound reduction of peroxisome proliferator-activator receptor γ expression and concomitant induction of WISP-2. However, de-differentiation of differentiated cells induced by tumor necrosis factor-α did not induce WISP-2 expression. To directly examine the effect of WISP-2 on adipocyte differentiation, 3T3-L1 cells were infected with a retrovirus carrying WISP-2. Although forced expression of WISP-2 inhibited preadipocyte proliferation, it had no effect on adipocyte differentiation. Thus, although WISP-2 is a downstream protein of Wnt signaling, the role of WISP-2 on adipocyte differentiation may be marginal, at least in this in vitro culture model.

  7. The role of signal transducer and activator of transcription 5 in the inhibitory effects of GH on adipocyte differentiation

    DEFF Research Database (Denmark)

    Richter, H E; Albrektsen, T; Billestrup, Nils

    2003-01-01

    GH inhibits primary rat preadipocyte differentiation and expression of late genes required for terminal differentiation. Here we show that GH-mediated inhibition of fatty acid-binding protein aP2 gene expression correlates with the activation of the Janus kinase-2/signal transducer and activator ...

  8. Dual-specificity phosphatase 10 controls brown adipocyte differentiation by modulating the phosphorylation of p38 mitogen-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Hye-Ryung Choi

    Full Text Available Brown adipocytes play an important role in regulating the balance of energy, and as such, there is a strong correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism underlying white adipocyte differentiation has been well characterized, brown adipocyte differentiation has not been studied extensively. Here, we investigate the potential role of dual-specificity phosphatase 10 (DUSP10 in brown adipocyte differentiation using primary brown preadipocytes.The expression of DUSP10 increased continuously after the brown adipocyte differentiation of mouse primary brown preadipocytes, whereas the phosphorylation of p38 was significantly upregulated at an early stage of differentiation followed by steep downregulation. The overexpression of DUSP10 induced a decrease in the level of p38 phosphorylation, resulting in lower lipid accumulation than that in cells overexpressing the inactive mutant DUSP10. The expression levels of several brown adipocyte markers such as PGC-1α, UCP1, and PRDM16 were also significantly reduced upon the ectopic expression of DUSP10. Furthermore, decreased mitochondrial DNA content was detected in cells expressing DUSP10. The results obtained upon treatment with the p38 inhibitor, SB203580, clearly indicated that the phosphorylation of p38 at an early stage is important in brown adipocyte differentiation. The effect of the p38 inhibitor was partially recovered by DUSP10 knockdown using RNAi.These results suggest that p38 phosphorylation is controlled by DUSP10 expression. Furthermore, p38 phosphorylation at an early stage is critical in brown adipocyte differentiation. Thus, the regulation of DUSP10 activity affects the efficiency of brown adipogenesis. Consequently, DUSP10 can be used as a novel target protein for the regulation of obesity.

  9. Use of the Ishikawa diagram in a case-control analysis to assess the causes of a diffuse lamellar keratitis outbreak

    Directory of Open Access Journals (Sweden)

    Luis Henrique Lira

    Full Text Available ABSTRACT Purpose: To identify the causes of a diffuse lamellar keratitis (DLK outbreak using a systematic search tool in a case-control analysis. Methods: An Ishikawa diagram was used to guide physicians to determine the potential risk factors involved in this outbreak. Coherence between the occurrences and each possible cause listed in the diagram was verified, and the total number of eyes at risk was used to calculate the proportion of affected eyes. Multivariate analysis was performed using logistic regression to determine the independent effect of the risk factors, after controlling for confounders and test interactions. Results: All DLK cases were reported in 2007 between June 13 and December 21; during this period, 3,698 procedures were performed. Of the 1,682 flap-related procedures, 204 eyes of 141 individuals presented with DLK. No direct relationship was observed between the occurrence of DLK and the presence of any specific factors; however, flap-lifting enhancements, procedures performed during the morning shift, and non-use of therapeutic contact lenses after the surgery were significantly related to higher occurrence percentages of this condition. Conclusions: The Ishikawa diagram, like most quality tools, is a visualization and knowledge organization tool. This systematization allowed the investigators to thoroughly assess all the possible causes of DLK outbreak. A clear view of the entire surgical logistics permitted even more rigid management of the main factors involved in the process and, as a result, highlighted factors that deserved attention. The case-control analysis on every factor raised by the Ishikawa diagram indicated that the commonly suspected factors such as biofilm contamination of the water reservoir in autoclaves, the air-conditioning filter system, glove powder, microkeratome motor oil, and gentian violet markers were not related to the outbreak.

  10. Use of the Ishikawa diagram in a case-control analysis to assess the causes of a diffuse lamellar keratitis outbreak.

    Science.gov (United States)

    Lira, Luis Henrique; Hirai, Flávio E; Oliveira, Marivaldo; Portellinha, Waldir; Nakano, Eliane Mayumi

    2017-01-01

    To identify the causes of a diffuse lamellar keratitis (DLK) outbreak using a systematic search tool in a case-control analysis. An Ishikawa diagram was used to guide physicians to determine the potential risk factors involved in this outbreak. Coherence between the occurrences and each possible cause listed in the diagram was verified, and the total number of eyes at risk was used to calculate the proportion of affected eyes. Multivariate analysis was performed using logistic regression to determine the independent effect of the risk factors, after controlling for confounders and test interactions. All DLK cases were reported in 2007 between June 13 and December 21; during this period, 3,698 procedures were performed. Of the 1,682 flap-related procedures, 204 eyes of 141 individuals presented with DLK. No direct relationship was observed between the occurrence of DLK and the presence of any specific factors; however, flap-lifting enhancements, procedures performed during the morning shift, and non-use of therapeutic contact lenses after the surgery were significantly related to higher occurrence percentages of this condition. The Ishikawa diagram, like most quality tools, is a visualization and knowledge organization tool. This systematization allowed the investigators to thoroughly assess all the possible causes of DLK outbreak. A clear view of the entire surgical logistics permitted even more rigid management of the main factors involved in the process and, as a result, highlighted factors that deserved attention. The case-control analysis on every factor raised by the Ishikawa diagram indicated that the commonly suspected factors such as biofilm contamination of the water reservoir in autoclaves, the air-conditioning filter system, glove powder, microkeratome motor oil, and gentian violet markers were not related to the outbreak.

  11. Active form Notch4 promotes the proliferation and differentiation of 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Peng-Yeh [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Tsai, Chong-Bin [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China); Department of Ophthalmology, Chiayi Christian Hospital, Chiayi 600, Taiwan, ROC (China); Tseng, Min-Jen, E-mail: biomjt@ccu.edu.tw [Institute of Molecular Biology and Department of Life Science, National Chung Cheng University, Chiayi 621, Taiwan, ROC (China)

    2013-01-18

    Highlights: ► Notch4IC modulates the ERK pathway and cell cycle to promote 3T3-L1 proliferation. ► Notch4IC facilitates 3T3-L1 differentiation by up-regulating proadipogenic genes. ► Notch4IC promotes proliferation during the early stage of 3T3-L1 adipogenesis. ► Notch4IC enhances differentiation during subsequent stages of 3T3-L1 adipogenesis. -- Abstract: Adipose tissue is composed of adipocytes, which differentiate from precursor cells in a process called adipogenesis. Many signal molecules are involved in the transcriptional control of adipogenesis, including the Notch pathway. Previous adipogenic studies of Notch have focused on Notch1 and HES1; however, the role of other Notch receptors in adipogenesis remains unclear. Q-RT-PCR analyses showed that the augmentation of Notch4 expression during the differentiation of 3T3-L1 preadipocytes was comparable to that of Notch1. To elucidate the role of Notch4 in adipogenesis, the human active form Notch4 (N4IC) was transiently transfected into 3T3-L1 cells. The expression of HES1, Hey1, C/EBPδ and PPARγ was up-regulated, and the expression of Pref-1, an adipogenic inhibitor, was down-regulated. To further characterize the effect of N4IC in adipogenesis, stable cells expressing human N4IC were established. The expression of N4IC promoted proliferation and enhanced differentiation of 3T3-L1 cells compared with those of control cells. These data suggest that N4IC promoted proliferation through modulating the ERK pathway and the cell cycle during the early stage of 3T3-L1 adipogenesis and facilitated differentiation through up-regulating adipogenic genes such as C/EBPα, PPARγ, aP2, LPL and HSL during the middle and late stages of 3T3-L1 adipogenesis.

  12. Carbonic anhydrase III regulates peroxisome proliferator-activated receptor-{gamma}2

    Energy Technology Data Exchange (ETDEWEB)

    Mitterberger, Maria C. [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Kim, Geumsoo [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Rostek, Ursula [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria); Levine, Rodney L. [Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012 (United States); Zwerschke, Werner, E-mail: werner.zwerschke@oeaw.ac.at [Cell Metabolism and Differentiation Research Group, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck (Austria)

    2012-05-01

    Carbonic anhydrase III (CAIII) is an isoenzyme of the CA family. Because of its low specific anhydrase activity, physiological functions in addition to hydrating CO{sub 2} have been proposed. CAIII expression is highly induced in adipogenesis and CAIII is the most abundant protein in adipose tissues. The function of CAIII in both preadipocytes and adipocytes is however unknown. In the present study we demonstrate that adipogenesis is greatly increased in mouse embryonic fibroblasts (MEFs) from CAIII knockout (KO) mice, as demonstrated by a greater than 10-fold increase in the induction of fatty acid-binding protein-4 (FABP4) and increased triglyceride formation in CAIII{sup -/-} MEFs compared with CAIII{sup +/+} cells. To address the underlying mechanism, we investigated the expression of the two adipogenic key regulators, peroxisome proliferator-activated receptor-{gamma}2 (PPAR{gamma}2) and CCAAT/enhancer binding protein-{alpha}. We found a considerable (approximately 1000-fold) increase in the PPAR{gamma}2 expression in the CAIII{sup -/-} MEFs. Furthermore, RNAi-mediated knockdown of endogenous CAIII in NIH 3T3-L1 preadipocytes resulted in a significant increase in the induction of PPAR{gamma}2 and FABP4. When both CAIII and PPAR{gamma}2 were knocked down, FABP4 was not induced. We conclude that down-regulation of CAIII in preadipocytes enhances adipogenesis and that CAIII is a regulator of adipogenic differentiation which acts at the level of PPAR{gamma}2 gene expression. -- Highlights: Black-Right-Pointing-Pointer We discover a novel function of Carbonic anhydrase III (CAIII). Black-Right-Pointing-Pointer We show that CAIII is a regulator of adipogenesis. Black-Right-Pointing-Pointer We demonstrate that CAIII acts at the level of PPAR{gamma}2 gene expression. Black-Right-Pointing-Pointer Our data contribute to a better understanding of the role of CAIII in fat tissue.

  13. Identification of a peroxisome proliferator responsive element (PPRE)-like cis-element in mouse plasminogen activator inhibitor-1 gene promoter

    International Nuclear Information System (INIS)

    Chen Jiegen; Li Xi; Huang Haiyan; Liu Honglei; Liu Deguo; Song Tanjing; Ma Chungu; Ma Duan; Song Houyan; Tang Qiqun

    2006-01-01

    PAI-1 is expressed and secreted by adipose tissue which may mediate the pathogenesis of obesity-associated cardiovascular complications. Evidence is presented in this report that PAI-1 is not expressed by preadipocyte, but significantly induced during 3T3-L1 adipocyte differentiation and the PAI-1 expression correlates with the induction of peroxisome proliferator-activated receptor γ (PPARγ). A peroxisome proliferator responsive element (PPRE)-like cis-element (-206TCCCCCATGCCCT-194) is identified in the mouse PAI-1 gene promoter by electrophoretic mobility shift assay (EMSA) combined with transient transfection experiments; the PPRE-like cis-element forms a specific DNA-protein complex only with adipocyte nuclear extracts, not with preadipocyte nuclear extracts; the DNA-protein complex can be totally competed away by non-labeled consensus PPRE, and can be supershifted with PPARγ antibody. Mutation of this PPRE-like cis-element can abolish the transactivation of mouse PAI-1 promoter mediated by PPARγ. Specific PPARγ ligand Pioglitazone can significantly induce the PAI-1 expression, and stimulate the secretion of PAI-1 into medium

  14. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients

    Directory of Open Access Journals (Sweden)

    Morana Jaganjac

    2017-08-01

    Full Text Available Objective: Obesity-associated impaired fat accumulation in the visceral adipose tissue can lead to ectopic fat deposition and increased risk of insulin resistance and type 2 diabetes mellitus (T2DM. This study investigated whether impaired adipogenesis of omental (OM adipose tissues and elevated 4-hydroxynonenal (4-HNE accumulation contribute to this process, and if combined metformin and insulin treatment in T2DM patients could rescue this phenotype. Methods: OM adipose tissues were obtained from forty clinically well characterized obese individuals during weight reduction surgery. Levels of 4-HNE protein adducts, adipocyte size and number of macrophages were determined within these tissues by immunohistochemistry. Adipogenic capacity and gene expression profiles were assessed in preadipocytes derived from these tissues in relation to insulin resistance and in response to 4-HNE, metformin or combined metformin and insulin treatment. Results: Preadipocytes isolated from insulin resistant (IR and T2DM individuals exhibited lower adipogenesis, marked by upregulation of anti-adipogenic genes, compared to preadipocytes derived from insulin sensitive (IS individuals. Impaired adipogenesis was also associated with increased 4-HNE levels, smaller adipocytes and greater macrophage presence in the adipose tissues. Within the T2DM group, preadipocytes from combined metformin and insulin treated subset showed better in vitro adipogenesis compared to metformin alone, which was associated with less presence of macrophages and 4-HNE in the adipose tissues. Treatment of preadipocytes in vitro with 4-HNE reduced their adipogenesis and increased proliferation, even in the presence of metformin, which was partially rescued by the presence of insulin. Conclusion: This study reveals involvement of 4-HNE in the impaired OM adipogenesis-associated with insulin resistance and T2DM and provides a proof of concept that this impairment can be reversed by the synergistic

  15. 18{beta}-Glycyrrhetinic acid inhibits adipogenic differentiation and stimulates lipolysis

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Myung-Hee; Jeong, Jae-Kyo; Lee, You-Jin; Seol, Jae-Won; Ahn, Dong-Choon; Kim, In-Shik [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Sang-Youel, E-mail: sypark@chonbuk.ac.kr [Center for Healthcare Technology Development, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer 18{beta}-GA inhibits adipogenic differentiation in 3T3-L1 preadipocytes and stimulates lipolysis in differentiated adipocytes. Black-Right-Pointing-Pointer Anti-adipogenic effect of 18{beta}-GA is caused by down-regulation of PPAR{gamma} and inactivation of Akt signalling. Black-Right-Pointing-Pointer Lipolytic effect of 18{beta}-GA is mediated by up-regulation of HSL, ATGL and perilipin and activation of HSL. -- Abstract: 18{beta}-Glycyrrhetinic acid (18{beta}-GA) obtained from the herb liquorice has various pharmacological properties including anti-inflammatory and anti-bacterial activities. However, potential biological anti-obesity activities are unclear. In this study, novel biological activities of 18{beta}-GA in the adipogenesis of 3T3-L1 preadipocytes and in lipolysis of differentiated adipocytes were identified. Mouse 3T3-L1 cells were used as an in vitro model of adipogenesis and lipolysis, using a mixture of insulin/dexamethasone/3-isobutyl-1-methylxanthine (IBMX) to induce differentiation. The amount of lipid droplet accumulation was determined by an AdipoRed assay. The expression of several adipogenic transcription factors and enzymes was investigated using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. 18{beta}-GA dose-dependently (1-40 {mu}M) significantly decreased lipid accumulation in maturing preadipocytes. In 3T3-L1 preadipocytes, 10 {mu}M of 18{beta}-GA down-regulated the transcriptional levels of the peroxisome proliferator-activated receptor {gamma}, CCAAT/enhancer-binding protein {alpha} and adiponectin, which are markers of adipogenic differentiation via Akt phosphorylation. Also, in differentiated adipocytes, 18{beta}-GA increased the level of glycerol release and up-regulated the mRNA of hormone-sensitive lipase, adipose TG lipase and perilipin, as well as the phosphorylation of hormone-sensitive lipase at Serine 563. The results indicate that 18{beta

  16. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2018-03-01

    Full Text Available Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl, high-salt (SD; 10% kcal from fat, 4% NaCl, high-fat (HF; 45% kcal from fat, 1% NaCl or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r and renin–angiotensin system (Agtr1a, Agtr1b markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin–angiotensin regulation.

  17. Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways

    DEFF Research Database (Denmark)

    Cypess, Aaron M; Zhang, Hongbin; Schulz, Tim J

    2011-01-01

    is regulated by the phosphoinositide 3 kinase-Akt pathway, increased necdin promoter activity. Based on reporter gene assays using truncations of the necdin promoter and chromatin immunoprecipitation studies, we demonstrated that CREB and FoxO1 are recruited to the necdin promoter, likely interacting......Brown adipose tissue plays an important role in obesity, insulin resistance, and diabetes. We have previously shown that the transition from brown preadipocytes to mature adipocytes is mediated in part by insulin receptor substrate (IRS)-1 and the cell cycle regulator protein necdin. In this study...... with specific consensus sequences in the proximal region. Based on these results, we propose that insulin/IGF-I act through IRS-1 phosphorylation to stimulate differentiation of brown preadipocytes via two complementary pathways: 1) the Ras-ERK1/2 pathway to activate CREB and 2) the phosphoinositide 3 kinase-Akt...

  18. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity

    Directory of Open Access Journals (Sweden)

    Lu Sumei

    2012-01-01

    Full Text Available Abstract Background Obesity is known to be associated with higher risks of cardiovascular disease, metabolic syndrome, and diabetes mellitus. Thyroid-stimulating hormone (TSHR is the receptor for thyroid-stimulating hormone (TSH, or thyrotropin, the key regulator of thyroid functions. The expression of TSHR, once considered to be limited to thyrocytes, has been so far detected in many extrathyroidal tissues including liver and fat. Previous studies have shown that TSHR expression is upregulated when preadipocytes differentiate into mature adipocytes, suggestive of a possible role of TSHR in adipogenesis. However, it remains unclear whether TSHR expression in adipocytes is implicated in the pathogenesis of obesity. Methods In the present study, TSHR expression in adipose tissues from both mice and human was analyzed, and its association with obesity was evaluated. Results We here showed that TSHR expression was increased at both mRNA and protein levels when 3T3-L1 preadipocytes were induced to differentiate. Knockdown of TSHR blocked the adipocyte differentiation of 3T3-L1 preadipocytes as evaluated by Oil-red-O staining for lipid accumulation and by RT-PCR analyses of PPAR-γ and ALBP mRNA expression. We generated obesity mice (C57/BL6 by high-fat diet feeding and found that the TSHR protein expression in visceral adipose tissues from obesity mice was significantly higher in comparison with the non-obesity control mice (P Conclusion Taken together, these results suggested that TSHR is an important regulator of adipocyte differentiation. Dysregulated expression of TSHR in adipose tissues is associated with obesity, which may involve a mechanism of excess adipogenesis.

  19. The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes

    Science.gov (United States)

    Li, Xia; Ycaza, John; Blumberg, Bruce

    2012-01-01

    Obesogens are chemicals that predispose exposed individuals to weight gain and obesity by increasing the number of fat cells, storage of fats into existing cells, altering metabolic rates, or disturbing the regulation of appetite and satiety. Tributyltin exposure causes differentiation of multipotent stromal stem cells (MSCs) into adipocytes; prenatal TBT exposure leads to epigenetic changes in the stem cell compartment that favor the production of adipocytes at the expense of bone, in vivo. While it is known that TBT acts through peroxisome proliferator activated receptor gamma to induce adipogenesis in MSCs, the data in 3T3-L1 preadipocytes are controversial. Here we show that TBT can activate the RXR-PPARγ heterodimer even in the presence of the PPARγ antagonist GW9662. We found that GW9662 has a ten-fold shorter half-life in cell culture than do PPARγ activators such as rosiglitazone (ROSI), accounting for previous observations that GW9662 did not inhibit TBT-mediated adipogenesis. When the culture conditions are adjusted to compensate for the short half-life of GW-9662, we found that TBT induces adipogenesis, triglyceride storage and the expression of adipogenic marker genes in 3T3-L1 cells in a PPARγ-dependent manner. Our results are broadly applicable to the study of obesogen action and indicate that ligand stability is an important consideration in the design and interpretation of adipogenesis assays. PMID:21397693

  20. Corn silk maysin ameliorates obesity in vitro and in vivo via suppression of lipogenesis, differentiation, and function of adipocytes.

    Science.gov (United States)

    Lee, Chang Won; Seo, Jeong Yeon; Kim, Sun-Lim; Lee, Jisun; Choi, Ji Won; Park, Yong Il

    2017-09-01

    Present study was aimed to investigate the potential anti-obesity effects of maysin, a major flavonoid of corn silk, in vitro and in vivo using 3T3-L1 preadipocyte cells and C57BL/6 mice. Maysin decreased the levels of intracellular lipid droplets and triglycerides (TG), and down-regulated the protein expression levels of C/EBP-β, C/EBP-α, PPAR-γ, and aP2 in 3T3-L1 preadipocyte cells, suggesting that maysin inhibits lipid accumulation and adipocyte differentiation. In addition, maysin was shown to induce the apoptotic cell death in 3T3-L1 preadipocyte cells via activation of caspase cascades and mitochondrial dysfunction, which may ultimately lead to reduction of adipose tissue mass. Furthermore, oral administration of maysin (25mg/kg body weight) decreased weight gain and epididymal fat weight in high-fat diet (HFD)-fed C57BL/6 mice. Administration of maysin also reduced serum levels of TG, total-cholesterol, LDL-cholesterol, and glucose. Taken collectively, these results suggest for the first time that the purified maysin exerts an anti-obesity effect in vitro and in vivo. These observations may support the applicability of maysin as a potent functional ingredient in health-beneficial foods or as a therapeutic agent to prevent or treat obesity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Regulation of proliferation and differentiation of adipocyte precursor cells in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Bouraoui, L; Gutiérrez, J; Navarro, I

    2008-09-01

    Here, we describe optimal conditions for the culture of rainbow trout (Oncorhynchus mykiss) pre-adipocytes obtained from adipose tissue and their differentiation into mature adipocytes, in order to study the endocrine control of adipogenesis. Pre-adipocytes were isolated by collagenase digestion and cultured on laminin or 1% gelatin substrate. The expression of proliferating cell nuclear antigen was used as a marker of cell proliferation on various days of culture. Insulin growth factor-I stimulated cell proliferation especially on days 5 and 7 of culture. Tumor necrosis factor alpha (TNFalpha) slightly enhanced cell proliferation only at a low dose. We verified the differentiation of cells grown in specific medium into mature adipocytes by oil red O (ORO) staining. Quantification of ORO showed an increase in triglycerides throughout culture. Immunofluorescence staining of cells at day 11 revealed the expression of CCAAT/enhancer-binding protein and peroxisome proliferator-activator receptor gamma, suggesting that these transcriptional factors are involved in adipocyte differentiation in trout. We also examined the effect of TNFalpha on the differentiation of these adipocytes in primary culture. TNFalpha inhibited the differentiation of these cells, as indicated by a decrease in glycerol-3-phosphate dehydrogenase activity, an established marker of adipocyte differentiation. In conclusion, the culture system described here for trout pre-adipocytes is a powerful tool to study the endocrine regulation of adipogenesis in this species.

  2. A Series of microRNA in the Chromosome 14q32.2 Maternally Imprinted Region Related to Progression of Non-Alcoholic Fatty Liver Disease in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Kinya Okamoto

    Full Text Available Simple steatosis (SS and non-alcoholic steatohepatitis (NASH are subtypes of non-alcoholic fatty liver disease (NAFLD, and the pathogenic differences between SS and NASH remain unclear. MicroRNAs (miRNAs are endogenous, non-coding, short RNAs that regulate gene expression. The aim of this study was to use animal models and human samples to examine the relationship between miRNA expression profiles and each type of NAFLD (SS and NASH.DD Shionogi, Fatty Liver Shionogi (FLS and FLS ob/ob mice were used as models for normal control, SS and NASH, respectively. Microarray analysis and real-time PCR were used to identify candidate NAFLD-related miRNAs. Human serum samples were used to examine the expression profiles of these candidate miRNAs in control subjects and patients with SS or NASH.Fourteen miRNAs showed clear expression differences among liver tissues from SS, NASH, and control mice with good reproducibility. Among these NAFLD candidate miRNAs, seven showed similar expression patterns and were upregulated in both SS and NASH tissues; these seven candidate miRNAs mapped to an miRNA cluster in the 14q32.2 maternally imprinted region delineated by delta-like homolog 1 and type III iodothyronine deiodinase (Dlk1-Dio3 mat. Software-based predictions indicated that the transforming growth factor-β pathway, insulin like growth factor-1 and 5' adenosine monophosphate activated protein kinase were potential targets of theses Dlk1-Dio3 mat NAFLD candidate miRNAs. In addition, serum samples from patients with SS or NASH differed markedly with regard to expression of the putative Dlk1-Dio3 mat miRNAs, and these differences accurately corresponded with NAFLD diagnosis.The expression profiles of seven miRNAs in 14q32.2 mat have high potential as biomarkers for NAFLD and for improving future research on the pathogenesis and treatment of NASH.

  3. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation

    International Nuclear Information System (INIS)

    Kim, Sang-pil; Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung; Chung, Sung Woon; Hong, Ki Whan; Kim, Chi Dae; Bae, Sun Sik

    2010-01-01

    Research highlights: → Elevated cAMP activates both PKA and Epac. → PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. → Akt modulates PPAR-γ transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-γ (PPAR-γ) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-γ is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-γ. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-γ was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-γ transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-γ transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-γ, suggesting post-translational activation of PPAR-γ might be critical step for adipogenic gene expression.

  4. Mosaicism of Solid Gold supports the causality of a noncoding A-to-G transition in the determinism of the callipyge phenotype.

    Science.gov (United States)

    Smit, Maria; Segers, Karin; Carrascosa, Laura Garcia; Shay, Tracy; Baraldi, Francesca; Gyapay, Gabor; Snowder, Gary; Georges, Michel; Cockett, Noelle; Charlier, Carole

    2003-01-01

    To identify the callipyge mutation, we have resequenced 184 kb spanning the DLK1-, GTL2-, PEG11-, and MEG8-imprinted domain and have identified an A-to-G transition in a highly conserved dodecamer motif between DLK1 and GTL2. This was the only difference found between the callipyge (CLPG) allele and a phylogenetically closely related wild-type allele. We report that this SNP is in perfect association with the callipyge genotype. The demonstration that Solid Gold-the alleged founder ram of the callipyge flock-is mosaic for this SNP virtually proves the causality of this SNP in the determinism of the callipyge phenotype. PMID:12586730

  5. Effects of Leucine Supplementation and Serum Withdrawal on Branched-Chain Amino Acid Pathway Gene and Protein Expression in Mouse Adipocytes

    Science.gov (United States)

    Vivar, Juan C.; Knight, Megan S.; Pointer, Mildred A.; Gwathmey, Judith K.; Ghosh, Sujoy

    2014-01-01

    The essential branched-chain amino acids (BCAA), leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2) and branched-chain alpha keto acid dehydrogenase (Bckdha) was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4) compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our understanding of

  6. Effects of leucine supplementation and serum withdrawal on branched-chain amino acid pathway gene and protein expression in mouse adipocytes.

    Directory of Open Access Journals (Sweden)

    Abderrazak Kitsy

    Full Text Available The essential branched-chain amino acids (BCAA, leucine, valine and isoleucine, are traditionally associated with skeletal muscle growth and maintenance, energy production, and generation of neurotransmitter and gluconeogenic precursors. Recent evidence from human and animal model studies has established an additional link between BCAA levels and obesity. However, details of the mechanism of regulation of BCAA metabolism during adipogenesis are largely unknown. We interrogated whether the expression of genes and proteins involved in BCAA metabolism are sensitive to the adipocyte differentiation process, and responsive to nutrient stress from starvation or BCAA excess. Murine 3T3-L1 preadipocytes were differentiated to adipocytes under control conditions and under conditions of L-leucine supplementation or serum withdrawal. RNA and proteins were isolated at days 0, 4 and 10 of differentiation to represent pre-differentiation, early differentiation and late differentiation stages. Expression of 16 BCAA metabolism genes was quantified by quantitative real-time PCR. Expression of the protein levels of branched-chain amino acid transaminase 2 (Bcat2 and branched-chain alpha keto acid dehydrogenase (Bckdha was quantified by immunoblotting. Under control conditions, all genes displayed induction of gene expression during early adipogenesis (Day 4 compared to Day 0. Leucine supplementation resulted in an induction of Bcat2 and Bckdha genes during early and late differentiation. Western blot analysis demonstrated condition-specific concordance between gene and protein expression. Serum withdrawal resulted in undetectable Bcat2 and Bckdha protein levels at all timepoints. These results demonstrate that the expression of genes related to BCAA metabolism are regulated during adipocyte differentiation and influenced by nutrient levels. These results provide additional insights on how BCAA metabolism is associated with adipose tissue function and extends our

  7. 4E-BP1 regulates the differentiation of white adipose tissue.

    Science.gov (United States)

    Tsukiyama-Kohara, Kyoko; Katsume, Asao; Kimura, Kazuhiro; Saito, Masayuki; Kohara, Michinori

    2013-07-01

    4E Binding protein 1 (4E-BP1) suppresses translation initiation. The absence of 4E-BP1 drastically reduces the amount of adipose tissue in mice. To address the role of 4E-BP1 in adipocyte differentiation, we characterized 4E-BP1(-/-) mice in this study. The lack of 4E-BP1 decreased the amount of white adipose tissue and increased the amount of brown adipose tissue. In 4E-BP1(-/-) MEF cells, PPARγ coactivator 1 alpha (PGC-1α) expression increased and exogenous 4E-BP1 expression suppressed PGC-1α expression. The level of 4E-BP1 expression was higher in white adipocytes than in brown adipocytes and showed significantly greater up-regulation in white adipocytes than in brown adipocytes during preadipocyte differentiation into mature adipocytes. The amount of PGC-1α was consistently higher in HB cells (a brown preadipocyte cell line) than in HW cells (a white preadipocyte cell line) during differentiation. Moreover, the ectopic over-expression of 4E-BP1 suppressed PGC-1α expression in white adipocytes, but not in brown adipocytes. Thus, the results of our study indicate that 4E-BP1 may suppress brown adipocyte differentiation and PGC-1α expression in white adipose tissues. © 2013 The Authors Genes to Cells © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  8. Coculture with BJ fibroblast cells inhibits the adipogenesis and lipogenesis in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Jeong, Hyun Jeong; Park, Sahng Wook; Kim, Hojeong; Park, Sang-Kyu; Yoon, Dojun

    2010-01-01

    Mouse or human fibroblasts are commonly used as feeder cells to prevent differentiation in stem or primary cell culture. In the present study, we addressed whether fibroblasts can affect the differentiation of adipocytes. We found that the differentiation of 3T3-L1 preadipocytes was strongly suppressed when the cells were cocultured with human fibroblast (BJ) cells. BrdU incorporation analysis indicated that mitotic clonal expansion, an early event required for 3T3-L1 cell adipogenesis, was not affected by BJ cells. The 3T3-L1 cell expression levels of peroxisome proliferator-activated receptor γ2, CCAAT/enhancer-binding protein alpha (C/EBPα), sterol regulatory element binding protein-1c, and Krueppel-like factor 15, but not those of C/EBPβ or C/EBPδ, were decreased by coculture with BJ cells. When mature 3T3-L1 adipocytes were cocultured with BJ cells, their lipid contents were significantly reduced, with decreased fatty acid synthase expression and increased phosphorylated form of acetyl-CoA carboxylase 1. Our data indicate that coculture with BJ fibroblast cells inhibits the adipogenesis of 3T3-L1 preadipocytes and decreases the lipogenesis of mature 3T3-L1 adipocytes.

  9. A Modified ELISA Accurately Measures Secretion of High Molecular Weight Hyaluronan (HA) by Graves' Disease Orbital Cells

    Science.gov (United States)

    Krieger, Christine C.

    2014-01-01

    Excess production of hyaluronan (hyaluronic acid [HA]) in the retro-orbital space is a major component of Graves' ophthalmopathy, and regulation of HA production by orbital cells is a major research area. In most previous studies, HA was measured by ELISAs that used HA-binding proteins for detection and rooster comb HA as standards. We show that the binding efficiency of HA-binding protein in the ELISA is a function of HA polymer size. Using gel electrophoresis, we show that HA secreted from orbital cells is primarily comprised of polymers more than 500 000. We modified a commercially available ELISA by using 1 million molecular weight HA as standard to accurately measure HA of this size. We demonstrated that IL-1β-stimulated HA secretion is at least 2-fold greater than previously reported, and activation of the TSH receptor by an activating antibody M22 from a patient with Graves' disease led to more than 3-fold increase in HA production in both fibroblasts/preadipocytes and adipocytes. These effects were not consistently detected with the commercial ELISA using rooster comb HA as standard and suggest that fibroblasts/preadipocytes may play a more prominent role in HA remodeling in Graves' ophthalmopathy than previously appreciated. PMID:24302624

  10. The lipid fraction of human milk initiates adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Fujisawa, Yasuko; Yamaguchi, Rie; Nagata, Eiko; Satake, Eiichiro; Sano, Shinichiro; Matsushita, Rie; Kitsuta, Kazunobu; Nakashima, Shinichi; Nakanishi, Toshiki; Nakagawa, Yuichi; Ogata, Tsutomu

    2013-09-01

    The prevalence of childhood obesity has increased worldwide over the past decade. Despite evidence that human milk lowers the risk of childhood obesity, the mechanism is not fully understood. We investigated the direct effect of human milk on differentiation of 3T3-L1 preadipocytes. 3T3-L1 preadipocytes were treated with donated human milk only or the combination of the standard hormone mixture; insulin, dexamethasone (DEX), and 3-isobututyl-1-methylxanthine (IBMX). Furthermore, the induction of preadipocyte differentiation by extracted lipids from human milk was tested in comparison to the cells treated with lipid extracts from infant formula. Adipocyte differentiation, specific genes as well as formation of lipid droplets were examined. We clearly show that lipids present in human milk initiate 3T3-L1 preadipocyte differentiation. In contrast, this effect was not observed in response to lipids present in infant formula. The initiation of preadipocyte differentiation by human milk was enhanced by adding the adipogenic hormone, DEX or insulin. The expression of late adipocyte markers in Day 7 adipocytes that have been induced into differentiation with human milk lipid extracts was comparable to those in control cells initiated by a standard adipogenic hormone cocktail. These results demonstrate that human milk contains bioactive lipids that can initiate preadipocyte differentiation in the absence of the standard adipogenic compounds via a unique pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Transplantation and differentiation of donor cells in the cloned pigs

    International Nuclear Information System (INIS)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  12. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2017-01-01

    Full Text Available Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.

  13. Adipogenesis: forces that tip the scales

    DEFF Research Database (Denmark)

    MacDougald, Ormond A; Mandrup, Susanne

    2001-01-01

    The balance of contradictory signals experienced by preadipocytes influences whether these cells undergo adipogenesis. In addition to the endocrine system, these signals originate from the preadipocytes themselves or operate as part of a feedback loop involving mature adipocytes. The factors...

  14. The Gustatory Signaling Pathway and Bitter Taste Receptors Affect the Development of Obesity and Adipocyte Metabolism in Mice.

    Directory of Open Access Journals (Sweden)

    Bert Avau

    Full Text Available Intestinal chemosensory signaling pathways involving the gustatory G-protein, gustducin, and bitter taste receptors (TAS2R have been implicated in gut hormone release. Alterations in gut hormone profiles may contribute to the success of bariatric surgery. This study investigated the involvement of the gustatory signaling pathway in the development of diet-induced obesity and the therapeutic potential of targeting TAS2Rs to induce body weight loss. α-gustducin-deficient (α-gust-/- mice became less obese than wild type (WT mice when fed a high-fat diet (HFD. White adipose tissue (WAT mass was lower in α-gust-/- mice due to increased heat production as a result of increases in brown adipose tissue (BAT thermogenic activity, involving increased protein expression of uncoupling protein 1. Intra-gastric treatment of obese WT and α-gust-/- mice with the bitter agonists denatonium benzoate (DB or quinine (Q during 4 weeks resulted in an α-gustducin-dependent decrease in body weight gain associated with a decrease in food intake (DB, but not involving major changes in gut peptide release. Both WAT and 3T3-F442A pre-adipocytes express TAS2Rs. Treatment of pre-adipocytes with DB or Q decreased differentiation into mature adipocytes. In conclusion, interfering with the gustatory signaling pathway protects against the development of HFD-induced obesity presumably through promoting BAT activity. Intra-gastric bitter treatment inhibits weight gain, possibly by directly affecting adipocyte metabolism.

  15. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Mairal, Aline [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); Mališová, Lucia; Štich, Vladimír [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic); Langin, Dominique [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Inserm, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, 31432 Toulouse, Cedex 4 (France); University of Toulouse, UMR1048, Paul Sabatier University, 31432 Toulouse, Cedex 4 (France); Toulouse University Hospitals, Department of Clinical Biochemistry, 31059 Toulouse, Cedex 9 (France); Rossmeislová, Lenka, E-mail: Lenka.Rossmeislova@lf3.cuni.cz [Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague (Czech Republic); Department of Sport Medicine, Third Faculty of Medicine, Charles University in Prague, CZ-100 00 (Czech Republic)

    2015-05-08

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  16. Stress of endoplasmic reticulum modulates differentiation and lipogenesis of human adipocytes

    International Nuclear Information System (INIS)

    Koc, Michal; Mayerová, Veronika; Kračmerová, Jana; Mairal, Aline; Mališová, Lucia; Štich, Vladimír; Langin, Dominique; Rossmeislová, Lenka

    2015-01-01

    Background: Adipocytes are cells specialized for storage of neutral lipids. This storage capacity is dependent on lipogenesis and is diminished in obesity. The reason for the decline in lipogenic activity of adipocytes in obesity remains unknown. Recent data show that lipogenesis in liver is regulated by pathways initiated by endoplasmic reticulum stress (ERS). Thus, we aimed at investigating the effect of ERS on lipogenesis in adipose cells. Methods: Preadipocytes were isolated from subcutaneous abdominal adipose tissue from obese volunteers and in vitro differentiated into adipocytes. ERS was induced pharmacologically by thapsigargin (TG) or tunicamycin (TM). Activation of Unfolded Protein Response pathway (UPR) was monitored on the level of eIF2α phosphorylation and mRNA expression of downstream targets of UPR sensors. Adipogenic and lipogenic capacity was evaluated by Oil Red O staining, measurement of incorporation of radio-labelled glucose or acetic acid into lipids and mRNA analysis of adipogenic/lipogenic markers. Results: Exposition of adipocytes to high doses of TG (100 nM) and TM (1 μg/ml) for 1–24 h enhanced expression of several UPR markers (HSPA5, EDEM1, ATF4, XBP1s) and phosphorylation of eIF2α. This acute ERS substantially inhibited expression of lipogenic genes (DGAT2, FASN, SCD1) and glucose incorporation into lipids. Moreover, chronic exposure of preadipocytes to low dose of TG (2.5 nM) during the early phases of adipogenic conversion of preadipocytes impaired both, lipogenesis and adipogenesis. On the other hand, chronic low ERS had no apparent effect on lipogenesis in mature adipocytes. Conclusions: Acute ERS weakened a capacity of mature adipocytes to store lipids and chronic ERS diminished adipogenic potential of preadipocytes. - Highlights: • High intensity ERS inhibits lipogenic capacity of adipocytes. • ERS impairs adipogenesis when present in early stages of adipogenesis. • Lipogenesis in mature adipocytes is not

  17. PFOS induces adipogenesis and glucose uptake in association with activation of Nrf2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jialin [Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110819 (China); Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Shimpi, Prajakta; Armstrong, Laura; Salter, Deanna [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States); Slitt, Angela L., E-mail: aslitt@uri.edu [Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881 (United States)

    2016-01-01

    PFOS is a chemical of nearly ubiquitous exposure in humans. Recent studies have associated PFOS exposure to adipose tissue-related effects. The present study was to determine whether PFOS alters the process of adipogenesis and regulates insulin-stimulated glucose uptake in mouse and human preadipocytes. In murine-derived 3T3-L1 preadipocytes, PFOS enhanced hormone-induced differentiation to adipocytes and adipogenic gene expression, increased insulin-stimulated glucose uptake at concentrations ranging from 10 to 100 μM, and enhanced Glucose transporter type 4 and Insulin receptor substrate-1 expression. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), NAD(P)H dehydrogenase, quinone 1 and Glutamate-cysteine ligase, catalytic subunit were significantly induced in 3T3-L1 cells treated with PFOS, along with a robust induction of Antioxidant Response Element (ARE) reporter in mouse embryonic fibroblasts isolated from ARE-hPAP transgenic mice by PFOS treatment. Chromatin immunoprecipitation assays further illustrated that PFOS increased Nrf2 binding to ARE sites in mouse Nqo1 promoter, suggesting that PFOS activated Nrf2 signaling in murine-derived preadipocytes. Additionally, PFOS administration in mice (100 μg/kg/day) induced adipogenic gene expression and activated Nrf2 signaling in epididymal white adipose tissue. Moreover, the treatment on human visceral preadipocytes illustrated that PFOS (5 and 50 μM) promoted adipogenesis and increased cellular lipid accumulation. It was observed that PFOS increased Nrf2 binding to ARE sites in association with Nrf2 signaling activation, induction of Peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α expression, and increased adipogenesis. This study points to a potential role of PFOS in dysregulation of adipose tissue expandability, and warrants further investigations on the adverse effects of persistent pollutants on human health. - Highlights: • PFOS induces adipogenesis in association

  18. MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Min, E-mail: min_jin@zju.edu.cn [Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009 (China); Wu, Yutao; Wang, Jing [School of Medicine, Zhejiang University, 288# Yuhangtang Rd, Hangzhou, Zhejiang, 310003 (China); Chen, Jian; Huang, Yiting; Rao, Jinpeng; Feng, Chun [Division of Reproductive Medicine & Infertility, The Second Affiliated Hospital, School of Medicine, Zhejiang University, 88#, Jiefang Rd., Hangzhou, Zhejiang, 310009 (China)

    2016-05-20

    Over the past years, MicroRNAs (miRNAs) act as a vital role in harmony with gene regulation and maintaining cellular homeostasis. It is well testified that miRNAshave been involved in numerous physiological and pathological processes, including embryogenesis, cell fate decision, and cellular differentiation. Adipogenesis is an organized process of cellular differentiation by which pre-adipocytes differentiate towards mature adipocytes, and it is tightly modulated by a series of transcription factors such as peroxisome proliferator-activated receptor γ (PPAR-γ) and sterol regulatory-element binding proteins 1 (SREBP1). However, the molecular mechanisms underlying the connection between miRNAs and adipogenesis-related transcription factors remain obscure. In this study, we unveiled that miR- 24 was remarkably upregulated during 3T3-L1 adipogenesis. Overexpression of miR-24 significantly promoted 3T3-L1 adipogenesis, as evidenced by its ability to increase the expression of PPAR-γ and SREBP1, lipid droplet formation and triglyceride (TG) accumulation. Furthermore, we found that neither ectopic expression of miR-24nor miR-24 inhibitor affect cell proliferation and cell cycle progression. Finally, we demonstrated that miR-24 plays the modulational role by directly repressing MAPK7, a key number in the MAPK signaling pathway. These data indicate that miR-24 is a novel positive regulator of adipocyte differentiation by targeting MAPK7, which provides new insights into the molecular mechanism of miRNA-mediated cellular differentiation. -- Highlights: •We firstly found miR-24 was upregulated in 3T3-L1 pre-adipocytes differentiation. •miR-24 promoted 3T3-L1 pre-adipocytes differentiation while silencing the expression of miR-24 had an opposite function. •miR-24 regulated 3T3-L1 differentiation by directly targeting MAPK7 signaling pathway. •miR-24did not affect 3T3-L1 pre-adipocytes cellular proliferation.

  19. Momordica charantia (bitter melon inhibits primary human adipocyte differentiation by modulating adipogenic genes

    Directory of Open Access Journals (Sweden)

    Nerurkar Vivek R

    2010-06-01

    Full Text Available Abstract Background Escalating trends of obesity and associated type 2 diabetes (T2D has prompted an increase in the use of alternative and complementary functional foods. Momordica charantia or bitter melon (BM that is traditionally used to treat diabetes and complications has been demonstrated to alleviate hyperglycemia as well as reduce adiposity in rodents. However, its effects on human adipocytes remain unknown. The objective of our study was to investigate the effects of BM juice (BMJ on lipid accumulation and adipocyte differentiation transcription factors in primary human differentiating preadipocytes and adipocytes. Methods Commercially available cryopreserved primary human preadipocytes were treated with and without BMJ during and after differentiation. Cytotoxicity, lipid accumulation, and adipogenic genes mRNA expression was measured by commercial enzymatic assay kits and semi-quantitative RT-PCR (RT-PCR. Results Preadipocytes treated with varying concentrations of BMJ during differentiation demonstrated significant reduction in lipid content with a concomitant reduction in mRNA expression of adipocyte transcription factors such as, peroxisome proliferator-associated receptor γ (PPARγ and sterol regulatory element-binding protein 1c (SREBP-1c and adipocytokine, resistin. Similarly, adipocytes treated with BMJ for 48 h demonstrated reduced lipid content, perilipin mRNA expression, and increased lipolysis as measured by the release of glycerol. Conclusion Our data suggests that BMJ is a potent inhibitor of lipogenesis and stimulator of lipolysis activity in human adipocytes. BMJ may therefore prove to be an effective complementary or alternative therapy to reduce adipogenesis in humans.

  20. Dietary stearic acid leads to a reduction of visceral adipose tissue in athymic nude mice.

    Directory of Open Access Journals (Sweden)

    Ming-Che Shen

    Full Text Available Stearic acid (C18:0 is a long chain dietary saturated fatty acid that has been shown to reduce metastatic tumor burden. Based on preliminary observations and the growing evidence that visceral fat is related to metastasis and decreased survival, we hypothesized that dietary stearic acid may reduce visceral fat. Athymic nude mice, which are used in models of human breast cancer metastasis, were fed a stearic acid, linoleic acid (safflower oil, or oleic acid (corn oil enriched diet or a low fat diet ad libitum. Total body weight did not differ significantly between dietary groups over the course of the experiment. However visceral fat was reduced by ∼70% in the stearic acid fed group compared to other diets. In contrast total body fat was only slightly reduced in the stearic acid diet fed mice when measured by dual-energy x-ray absorptiometry and quantitative magnetic resonance. Lean body mass was increased in the stearic acid fed group compared to all other groups by dual-energy x-ray absorptiometry. Dietary stearic acid significantly reduced serum glucose compared to all other diets and increased monocyte chemotactic protein-1 (MCP-1 compared to the low fat control. The low fat control diet had increased serum leptin compared to all other diets. To investigate possible mechanisms whereby stearic acid reduced visceral fat we used 3T3L1 fibroblasts/preadipocytes. Stearic acid had no direct effects on the process of differentiation or on the viability of mature adipocytes. However, unlike oleic acid and linoleic acid, stearic acid caused increased apoptosis (programmed cell death and cytotoxicity in preadipocytes. The apoptosis was, at least in part, due to increased caspase-3 activity and was associated with decreased cellular inhibitor of apoptosis protein-2 (cIAP2 and increased Bax gene expression. In conclusion, dietary stearic acid leads to dramatically reduced visceral fat likely by causing the apoptosis of preadipocytes.

  1. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action.

    Science.gov (United States)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob; Kahn, C Ronald; Emanuelli, Brice

    2018-07-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type, IRS-1 -/- and IRS-2 -/- mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1. These regulated sites included previously reported substrates of the insulin/IGF-1 signalling pathway, as well as novel substrates including Nuclear Factor I X and Semaphorin-4B. In silico prediction suggests the protein kinase B (PKB), protein kinase C (PKC), and cyclin-dependent kinase (CDK) as the main mediators of these phosphorylation events. Importantly, we found preferential phosphorylation patterns depending on the presence of either IRS-1 or IRS-2, which was associated with specific sets of kinases involved in signal transduction downstream of these substrates such as PDHK1, MAPK3, and PKD1 for IRS-1, and PIN1 and PKC beta for IRS-2. Overall, by generating a comprehensive phosphoproteomic profile from brown preadipocyte cells in response to IGF-1 stimulation, we reveal both common and distinct insulin/IGF-1 signalling events mediated by specific IRS proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Muscular response to the first three months of deflazacort treatment in boys with Duchenne muscular dystrophy

    DEFF Research Database (Denmark)

    Jensen, L; Petersson, S J; Illum, N O

    2017-01-01

    OBJECTIVE: Duchenne muscular dystrophy (DMD) patients are often treated with glucocorticoids; yet their precise molecular action remains unknown. METHODS: We investigated muscle biopsies from nine boys with DMD (aged: 7,6±2,8 yrs.) collected before and after three months of deflazacort treatment...... approaching normal values (p⟨0.05) following treatment (towards an increase; CDH15, C-MET, DLK1, FGF2, IGF1R, MYF5, MYF6, MYOD, PAX7; towards a decrease: CD68, MYH8, TNFα). Treatment reduced CK levels (p⟨0.05), but we observed no effect on muscle protein expression. CONCLUSIONS: This study provides insight...... and compared them to eight healthy boys (aged: 5,3±2,4 yrs.). mRNA transcripts involved in activation of satellite cells, myogenesis, regeneration, adipogenesis, muscle growth and tissue inflammation were assessed. Serum creatine kinase (CK) levels and muscle protein expression by immunohistochemistry...

  3. Mycobacterium canettii Infection of Adipose Tissues.

    Science.gov (United States)

    Bouzid, Fériel; Brégeon, Fabienne; Poncin, Isabelle; Weber, Pascal; Drancourt, Michel; Canaan, Stéphane

    2017-01-01

    Adipose tissues were shown to host Mycobacterium tuberculosis which is persisting inside mature adipocytes. It remains unknown whether this holds true for Mycobacterium canettii , a rare representative of the M. tuberculosis complex responsible for lymphatic and pulmonary tuberculosis. Here, we infected primary murine white and brown pre-adipocytes and murine 3T3-L1 pre-adipocytes and mature adipocytes with M. canettii and M. tuberculosis as a positive control. Both mycobacteria were able to infect 18-22% of challenged primary murine pre-adipocytes; and to replicate within these cells during a 7-day experiment with the intracellular inoculums being significantly higher in brown than in white pre-adipocytes for M. canettii ( p = 0.02) and M. tuberculosis ( p = 0.03). Further in-vitro infection of 3T3-L1 mature adipocytes yielded 9% of infected cells by M. canettii and 17% of infected cells by M. tuberculosis ( p = 0.001). Interestingly, M. canettii replicated and accumulated intra-cytosolic lipid inclusions within mature adipocytes over a 12-day experiment; while M. tuberculosis stopped replicating at day 3 post-infection. These results indicate that brown pre-adipocytes could be one of the potential targets for M. tuberculosis complex mycobacteria; and illustrate differential outcome of M. tuberculosis complex mycobacteria into adipose tissues. While white adipose tissue is an unlikely sanctuary for M. canettii , it is still an open question whether M. canettii and M. tuberculosis could persist in brown adipose tissues.

  4. Organotypic culture of human bone marrow adipose tissue.

    Science.gov (United States)

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Shigematsu, Masamori; Kamochi, Noriyuki; Sonoda, Emiko; Soejima, Hidenobu; Fukudome, Kenji; Sugihara, Hajime; Hotokebuchi, Takao; Toda, Shuji

    2010-04-01

    The precise role of bone marrow adipose tissue (BMAT) in the marrow remains unknown. The purpose of the present study was therefore to describe a novel method for studying BMAT using 3-D collagen gel culture of BMAT fragments, immunohistochemistry, ELISA and real-time reverse transcription-polymerase chain reaction. Mature adipocytes and CD45+ leukocytes were retained for >3 weeks. Bone marrow stromal cells (BMSC) including a small number of lipid-laden preadipocytes and CD44+/CD105+ mesenchymal stem cell (MSC)-like cells, developed from BMAT. Dexamethasone (10 micromol/L), but not insulin (20 mU/mL), significantly increased the number of preadipocytes. Dexamethasone and insulin also promoted leptin production and gene expression in BMAT. Adiponectin production by BMAT was BMAT, in which adiponectin protein secretion is normally very low, and that BMAT may exhibit a different phenotype from that of the visceral and subcutaneous adipose tissues. BMAT-osteoblast interactions were also examined, and it was found that osteoblasts inhibited the development of BMSC and reduced leptin production, while BMAT inhibited the growth and differentiation of osteoblasts. The present novel method proved to be useful for the study of BMAT biology.

  5. Regulation of brown fat adipogenesis by protein tyrosine phosphatase 1B.

    Directory of Open Access Journals (Sweden)

    Kosuke Matsuo

    2011-01-01

    Full Text Available Protein-tyrosine phosphatase 1B (PTP1B is a physiological regulator of insulin signaling and energy balance, but its role in brown fat adipogenesis requires additional investigation.To precisely determine the role of PTP1B in adipogenesis, we established preadipocyte cell lines from wild type and PTP1B knockout (KO mice. In addition, we reconstituted KO cells with wild type, substrate-trapping (D/A and sumoylation-resistant (K/R PTP1B mutants, then characterized differentiation and signaling in these cells. KO, D/A- and WT-reconstituted cells fully differentiated into mature adipocytes with KO and D/A cells exhibiting a trend for enhanced differentiation. In contrast, K/R cells exhibited marked attenuation in differentiation and lipid accumulation compared with WT cells. Expression of adipogenic markers PPARγ, C/EBPα, C/EBPδ, and PGC1α mirrored the differentiation pattern. In addition, the differentiation deficit in K/R cells could be reversed completely by the PPARγ activator troglitazone. PTP1B deficiency enhanced insulin receptor (IR and insulin receptor substrate 1 (IRS1 tyrosyl phosphorylation, while K/R cells exhibited attenuated insulin-induced IR and IRS1 phosphorylation and glucose uptake compared with WT cells. In addition, substrate-trapping studies revealed that IRS1 is a substrate for PTP1B in brown adipocytes. Moreover, KO, D/A and K/R cells exhibited elevated AMPK and ACC phosphorylation compared with WT cells.These data indicate that PTP1B is a modulator of brown fat adipogenesis and suggest that adipocyte differentiation requires regulated expression of PTP1B.

  6. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Yang; Shen, Wanjing; Ma, Lili; Zhao, Ming; Zheng, Jiachen [Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211 (China); Bu, Shizhong, E-mail: bushizhong@nbu.edu.cn [Diabetes Center, and Zhejiang Provincial Key Laboratory of Pathophysiology, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo 315211 (China); Hino, Shinjiro [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 (Japan); Nakao, Mitsuyoshi, E-mail: mnakao@gpo.kumamoto-u.ac.jp [Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811 (Japan); Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development, Tokyo (Japan)

    2016-04-15

    Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2 transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.

  7. HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ

    International Nuclear Information System (INIS)

    Xi, Yang; Shen, Wanjing; Ma, Lili; Zhao, Ming; Zheng, Jiachen; Bu, Shizhong; Hino, Shinjiro; Nakao, Mitsuyoshi

    2016-01-01

    Adipogenesis is orchestrated by a highly ordered network of transcription factors including peroxisome-proliferator activated receptor-gamma (PPARγ) and CCAAT-enhancer binding protein (C/EBP) family proteins. High mobility group protein AT-hook 2 (HMGA2), an architectural transcription factor, has been reported to play an essential role in preadipocyte proliferation, and its overexpression has been implicated in obesity in mice and humans. However, the direct role of HMGA2 in regulating the gene expression program during adipogenesis is not known. Here, we demonstrate that HMGA2 is required for C/EBPβ-mediated expression of PPARγ, and thus promotes adipogenic differentiation. We observed a transient but marked increase of Hmga2 transcript at an early phase of differentiation of mouse 3T3-L1 preadipocytes. Importantly, Hmga2 knockdown greatly impaired adipocyte formation, while its overexpression promoted the formation of mature adipocytes. We found that HMGA2 colocalized with C/EBPβ in the nucleus and was required for the recruitment of C/EBPβ to its binding element at the Pparγ2 promoter. Accordingly, HMGA2 and C/EBPβ cooperatively enhanced the Pparγ2 promoter activity. Our results indicate that HMGA2 is an essential constituent of the adipogenic transcription factor network, and thus its function may be affected during the course of obesity. - Highlights: • Overexpression of HMGA2 has been implicated in obesity in mice and humans. • HMGA2 is required for adipocyte formation. • HMGA2 colocalizes with C/EBPβ and is required for C/EBPβ recruitment to Pparγ2 promoter. • HMGA2 and C/EBPβ cooperatively enhance the Pparγ2 promoter activity.

  8. Theobromine suppresses adipogenesis through enhancement of CCAAT-enhancer-binding protein β degradation by adenosine receptor A1.

    Science.gov (United States)

    Mitani, Takakazu; Watanabe, Shun; Yoshioka, Yasukiyo; Katayama, Shigeru; Nakamura, Soichiro; Ashida, Hitoshi

    2017-12-01

    Theobromine, a methylxanthine derived from cacao beans, reportedly has various health-promoting properties but molecular mechanism by which effects of theobromine on adipocyte differentiation and adipogenesis remains unclear. In this study, we aimed to clarify the molecular mechanisms of the anti-adipogenic effect of theobromine in vitro and in vivo. ICR mice (4week-old) were administered with theobromine (0.1g/kg) for 7days. Theobromine administration attenuated gains in body and epididymal adipose tissue weights in mice and suppressed expression of adipogenic-associated genes in mouse adipose tissue. In 3T3-L1 preadipocytes, theobromine caused degradation of C/EBPβ protein by the ubiquitin-proteasome pathway. Pull down assay showed that theobromine selectively interacts with adenosine receptor A1 (AR1), and AR1 knockdown inhibited theobromine-induced C/EBPβ degradation. Theobromine increased sumoylation of C/EBPβ at Lys133. Expression of the small ubiquitin-like modifier (SUMO)-specific protease 2 (SENP2) gene, coding for a desumoylation enzyme, was suppressed by theobromine. In vivo knockdown studies showed that AR1 knockdown in mice attenuated the anti-adipogenic effects of theobromine in younger mice. Theobromine suppresses adipocyte differentiation and induced C/EBPβ degradation by increasing its sumoylation. Furthermore, the inhibition of AR1 signaling is important for theobromine-induced C/EBPβ degradation. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Study of oleanolic acid on the estrodiol production and the fat production of mouse preadipocyte 3T3-L1 in vitro.

    Science.gov (United States)

    Wan, Qian; Lu, Hua; Liu, Xia; Yie, Shangmian; Xiang, Junbei; Yao, Zouying

    2015-01-01

    The women during the menopause period have an increased tendency for the obesity, which represents the more fat production than during the premenopausal period. Although this is not beneficial overall, it could provide a compensatory source for the estrogen production for the menopausal women. So it would be meaningful to find an agent that could inhibit the fat production while does not disturb the total estrogen production by fat tissues. In the present study, the effect of oleanolic acid (OA) on the fat production and the total estrogen production of the differentiating mouse preadipocyte 3T3-L1 as well as the mechanisms behind those effects were preliminarily investigated. The cell line 3T3-L1 was chosen as the model cell because it is usually used for the research about the obesity. During the induced differentiation of 3T3-L1 cells, cells were intervened continuously with OA. The fat production was determined with the oil red staining assay and the total estrogen production was measured with the ELISA assay. Finally, the expression patterns for important genes of the fat production and the estrogen production were studied, respectively with the real-time fluorescence quantitative PCR (qPCR). The results showed that for the differentiating 3T3-L1 cells, OA could significantly inhibit the fat production and did not disturb the total estrogen production significantly. In the mechanism studies, OA was found to significantly down-regulate ACC, the key gene for fat synthesis, which could explain the inhibitory effect of OA on the fat production; OA was also found to significantly up-regulate CYP11A1, CYP17, CYP19, the key genes for the estrogen synthesis and significantly down-regulate CYP1A1, the key gene for the estrogen decomposition, which preliminarily explained the lack of the effect of OA on the total estrogen production. In conclusion, OA was found able to inhibit the fat production while maintaining the total estrogen level and the mechanisms for the above

  10. Rasal2 deficiency reduces adipogenesis and occurrence of obesity-related disorders

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Zhu

    2017-06-01

    Full Text Available Objective: Identification of additional regulatory factors involved in the onset of obesity is important to understand the mechanisms underlying this prevailing disease and its associated metabolic disorders and to develop therapeutic strategies. Through isolation and analysis of a mutant, we aimed to uncover the function of a Ras-GAP gene, Rasal2 (Ras protein activator like 2, in the development of obesity and related metabolic disorders and to obtain valuable insights regarding the mechanism underlying the function. Methods: An obesity-based genetic screen was performed to identify an insertional mutation that disrupts the expression of Rasal2 (Rasal2PB/PB mice. Important metabolic parameters, such as fat mass and glucose tolerance, were measured in Rasal2PB/PB mice. The impact of Rasal2 on adipogenesis was evaluated in the mutant mice and in 3T3-L1 preadipocytes treated with Rasal2 siRNA. Ras and ERK activities were then evaluated in Rasal2-deficient preadipocytes or mice, and their functional relationships with Rasal2 on adipogenesis were investigated by employing Ras and MEK inhibitors. Results: Rasal2PB/PB mice showed drastic decrease in Rasal2 expression and a lean phenotype. The mutant mice displayed decreased adiposity and resistance to high-fat diet induced metabolic disorders. Further analysis indicated that Rasal2 deficiency leads to impaired adipogenesis in vivo and in vitro. Moreover, while Rasal2 deficiency resulted in increased activity of both Ras and ERK in preadipocytes, reducing Ras, but not ERK, suppressed the impaired adipogenesis. Conclusions: Rasal2 promotes adipogenesis, which may critically contribute to its role in the development of obesity and related metabolic disorders and may do so by repressing Ras activity in an ERK-independent manner. Keywords: Ras, ERK, Ras-GAP, Glucose tolerance, High-fat diet, Diabetes

  11. Development and molecular composition of the hepatic progenitor cell niche.

    Science.gov (United States)

    Vestentoft, Peter Siig

    2013-05-01

    matrix molecules collagen 1a1, laminin, nidogen-1 and agrin embraced the biliary cells and sharply defined the hepatic progenitor cell niche, which was encircled by desmin positive support cells. In all injury models biliary cells expressed the cell surface proteins matriptase and HAI-1. However, in the so-called 2-AAF/PHx model of progenitor cell activation, a subpopulation of hepatic progenitor cells was positive for Dlk1. 3D reconstructions clarified that the Dlk1-subpopulation was entirely located in the portal area periphery, and connected to the bile ducts via HAI-1 positive biliary cells. The heterogeneous expression patterns of matriptase, HAI-1 and Dlk1 in this particular injury model indicate the presence of a cellular hierarchy containing possibly less differentiated Dlk1-positive hepatic progenitor cells. In conclusion, our studies characterized the hepatic progenitor cell niche in humans and rodents. We successfully developed protocols for digitally visualizing, not only hepatic, but virtually any tissue through two fundamentally distinct approaches. The identification of an asymmetric form of tubulogenesis in humans added new knowledge to the development of the intrahepatic biliary tree, and thereby the formation of the progenitor cell niche. The identification of heterogeneously expressed cell surface proteins and extracellular matrix components provided knowledge of the constituents defining the niche. These pieces of information are important for future isolation and characterization studies of biliary subpopulations and their differentiation abilities in vitro.

  12. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    International Nuclear Information System (INIS)

    Hirose, Yoshikazu; Itoh, Tohru; Miyajima, Atsushi

    2009-01-01

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk + hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk + hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk + hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  13. Protein structure of fetal antigen 1 (FA1). A novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2

    DEFF Research Database (Denmark)

    Jensen, Charlotte Harken; Krogh, Thomas N; Højrup, Peter

    1994-01-01

    The present paper describes the primary structure, glycosylation and tissue localization of fetal antigen 1 (FA1) isolated from second-trimester human amniotic fluid. FA1 is a single-chained, heterogeneous glycoprotein of 225-262 amino acid residues. FA1 has six well conserved epidermal...... extends with minor corrections to the human adrenal-specific mRNA, pG2 as well. Immunohistochemical analysis demonstrated the presence of FA1 in 10 out of 14 lung tumors containing neuroendocrine elements, and in the placental villi where FA1 was exclusively seen in stromal cells in close contact...... to the vascular structure. In the pancreas, FA1 co-localized with insulin in the insulin secretory granules of the beta cells within the islets of Langerhans. Our findings suggest that FA1 is synthesized as a membrane anchored protein and released into the circulation after enzymic cleavage, and that circulating...

  14. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation.

    Science.gov (United States)

    Granata, Riccarda; Gallo, Davide; Luque, Raul M; Baragli, Alessandra; Scarlatti, Francesca; Grande, Cristina; Gesmundo, Iacopo; Córdoba-Chacón, Jose; Bergandi, Loredana; Settanni, Fabio; Togliatto, Gabriele; Volante, Marco; Garetto, Stefano; Annunziata, Marta; Chanclón, Belén; Gargantini, Eleonora; Rocchietto, Stefano; Matera, Lina; Datta, Giacomo; Morino, Mario; Brizzi, Maria Felice; Ong, Huy; Camussi, Giovanni; Castaño, Justo P; Papotti, Mauro; Ghigo, Ezio

    2012-08-01

    The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.

  15. The human lipodystrophy gene product Berardinelli-Seip congenital lipodystrophy 2/seipin plays a key role in adipocyte differentiation.

    Science.gov (United States)

    Chen, Weiqin; Yechoor, Vijay K; Chang, Benny Hung-Junn; Li, Ming V; March, Keith L; Chan, Lawrence

    2009-10-01

    Mutations in the Berardinelli-Seip congenital lipodystrophy 2 gene (BSCL2) are the underlying defect in patients with congenital generalized lipodystrophy type 2. BSCL2 encodes a protein called seipin, whose function is largely unknown. In this study, we investigated the role of Bscl2 in the regulation of adipocyte differentiation. Bscl2 mRNA is highly up-regulated during standard hormone-induced adipogenesis in 3T3-L1 cells in vitro. However, this up-regulation does not occur during mesenchymal stem cell (C3H10T1/2 cells) commitment to the preadipocyte lineage. Knockdown of Bscl2 by short hairpin RNA in C3H10T1/2 cells has no effect on bone morphogenetic protein-4-induced preadipocyte commitment. However, knockdown in 3T3-L1 cells prevents adipogenesis induced by a standard hormone cocktail, but adipogenesis can be rescued by the addition of peroxisome proliferator-activated receptor-gamma agonist pioglitazone at an early stage of differentiation. Interestingly, pioglitazone-induced differentiation in the absence of standard hormone is not associated with up-regulated Bscl2 expression. On the other hand, short hairpin RNA-knockdown of Bscl2 largely blocks pioglitazone-induced adipose differentiation. These experiments suggest that Bscl2 may be essential for normal adipogenesis; it works upstream or at the level of peroxisome proliferator-activated receptor-gamma, enabling the latter to exert its full activity during adipogenesis. Loss of Bscl2 function thus interferes with the normal transcriptional cascade of adipogenesis during fat cell differentiation, resulting in near total loss of fat or lipodystrophy.

  16. Fucoxanthin exerts differing effects on 3T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes

    International Nuclear Information System (INIS)

    Kang, Seong-Il; Ko, Hee-Chul; Shin, Hye-Sun; Kim, Hyo-Min; Hong, Youn-Suk; Lee, Nam-Ho; Kim, Se-Jae

    2011-01-01

    Highlights: → Fucoxanthin enhances 3T3-L1 adipocyte differentiation at an early stage. → Fucoxanthin inhibits 3T3-L1 adipocyte differentiation at intermediate and late stages. → Fucoxanthin attenuates glucose uptake by inhibiting the phosphorylation of IRS in mature 3T3-L1 adipocytes. → Fucoxanthin exerts its anti-obesity effect by inhibiting the differentiation of adipocytes at both intermediate and late stages, as well as glucose uptake in mature adipocytes. -- Abstract: Progression of 3T3-L1 preadipocyte differentiation is divided into early (days 0-2, D0-D2), intermediate (days 2-4, D2-D4), and late stages (day 4 onwards, D4-). In this study, we investigated the effects of fucoxanthin, isolated from the edible brown seaweed Petalonia binghamiae, on adipogenesis during the three differentiation stages of 3T3-L1 preadipocytes. When fucoxanthin was applied during the early stage of differentiation (D0-D2), it promoted 3T3-L1 adipocyte differentiation, as evidenced by increased triglyceride accumulation. At the molecular level, fucoxanthin increased protein expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), sterol regulatory element-binding protein 1c (SREBP1c), and aP2, and adiponectin mRNA expression, in a dose-dependent manner. However, it reduced the expression of PPARγ, C/EBPα, and SREBP1c during the intermediate (D2-D4) and late stages (D4-D7) of differentiation. It also inhibited the uptake of glucose in mature 3T3-L1 adipocytes by reducing the phosphorylation of insulin receptor substrate 1 (IRS-1). These results suggest that fucoxanthin exerts differing effects on 3T3-L1 cells of different differentiation stages and inhibits glucose uptake in mature adipocytes.

  17. PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway

    Energy Technology Data Exchange (ETDEWEB)

    Hinoi, Eiichi; Iezaki, Takashi; Fujita, Hiroyuki; Watanabe, Takumi; Odaka, Yoshiaki; Ozaki, Kakeru; Yoneda, Yukio, E-mail: yyoneda@p.kanazawa-u.ac.jp

    2014-07-18

    Highlights: • Akt is preferentially phosphorylated in BAT and sWAT of aP2-GDF5 mice. • PI3K/Akt signaling is involved in GDF5-induced brown adipogenesis. • PI3K/Akt signaling regulates GDF5-induced Smad5 phosphorylation. - Abstract: We have previously demonstrated promotion by growth differentiation factor-5 (GDF5) of brown adipogenesis for systemic energy expenditure through a mechanism relevant to activating the bone morphological protein (BMP) receptor/mothers against decapentaplegic homolog (Smad)/peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α) pathway. Here, we show the involvement of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway in brown adipogenesis mediated by GDF5. Overexpression of GDF5 in cells expressing adipocyte protein-2 markedly accelerated the phosphorylation of Smad1/5/8 and Akt in white and brown adipose tissues. In brown adipose tissue from heterozygous GDF5{sup Rgsc451} mutant mice expressing a dominant-negative (DN) GDF5 under obesogenic conditions, the basal phosphorylation of Smad1/5/8 and Akt was significantly attenuated. Exposure to GDF5 not only promoted the phosphorylation of both Smad1/5/8 and Akt in cultured brown pre-adipocytes, but also up-regulated Pgc1a and uncoupling protein-1 expression in a manner sensitive to the PI3K/Akt inhibitor Ly294002 as well as retroviral infection with DN-Akt. GDF5 drastically promoted BMP-responsive luciferase reporter activity in a Ly294002-sensitive fashion. Both Ly294002 and DN-Akt markedly inhibited phosphorylation of Smad5 in the nuclei of brown pre-adipocytes. These results suggest that PI3K/Akt signals play a role in the GDF5-mediated brown adipogenesis through a mechanism related to activation of the Smad pathway.

  18. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    International Nuclear Information System (INIS)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A.; Yap, Sook Fan; Ngeow, Yun Fong; Chin, Khew-Voon

    2012-01-01

    Highlights: ► Salinomycin inhibits preadipocyte differentiation into adipocytes. ► Salinomycin inhibits transcriptional regulation of adipogenesis. ► Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor γ. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  19. Preadipocyte factor-1 levels are higher in women with hypothalamic amenorrhea and are associated with bone mineral content and bone mineral density through a mechanism independent of leptin.

    Science.gov (United States)

    Aronis, Konstantinos N; Kilim, Holly; Chamberland, John P; Breggia, Anne; Rosen, Clifford; Mantzoros, Christos S

    2011-10-01

    Preadipocyte factor 1 (pref-1) is increased in anorexia nervosa and is associated negatively with bone mineral density (BMD). No previous studies exist on pref-1 in women with exercise-induced hypothalamic amenorrhea (HA), which similar to anorexia nervosa, is an energy-deficiency state associated with hypoleptinemia. Our objective was to evaluate whether pref-1 levels are also elevated and associated with low BMD and to assess whether leptin regulates pref-1 levels in women with HA. Study 1 was a double-blinded, placebo-controlled randomized clinical trial of metreleptin administration in women with HA. Study 2 was an open-label study of metreleptin administration in low physiological, supraphysiological, and pharmacological doses in healthy women volunteers. At Beth Israel Deaconess Medical Center, 20 women with HA and leptin levels higher than 5 ng/ml and nine healthy control women participated in study 1, and five healthy women participated in study 2. For study 1, 20 HA subjects were randomized to receive either 0.08 mg/kg metreleptin (n = 11) or placebo (n = 9). For study 2, five healthy subjects received 0.01, 0.1, and 0.3 mg/kg metreleptin in both fed and fasting conditions for 1 and 3 d, respectively. Circulating pref-1 and leptin levels were measured. Pref-1 was significantly higher in HA subjects vs. controls (P = 0.035) and negatively associated with BMD (ρ = -0.38; P < 0.01) and bone mineral content (ρ = -0.32; P < 0.05). Metreleptin administration did not alter pref-1 levels in any study reported herein. Pref-1 is higher in HA subjects than controls. Metreleptin administration at low physiological, supraphysiological, and pharmacological doses does not affect pref-1 levels, suggesting that hypoleptinemia is not responsible for higher pref-1 levels and that leptin does not regulate pref-1.

  20. Long time diffusion in suspensions of interacting charged colloids

    NARCIS (Netherlands)

    Schepper, I.M. de; Cohen, E.G.D.; Pusey, P.N.; Lekkerkerker, H.N.W.

    1989-01-01

    A new expression is given for the long time diffusion coefficient DL(k) of charged interacting colloidal spheres in suspension, as a function of the wavenumber k, near k = km, where the static structure factor has a maximum. The expression is based on a physical analogy between a mode description

  1. A New Approach to Study Properties of Isolated Predipocytes Following In Vivo Exposure to Hypoxia

    Science.gov (United States)

    Chowdhury, Helena H.; Velebit Markovic, Jelena; Radic, Natasa; Francic, Vito; Mekjavic, Igor B.; Eiken, Ola; Zorec, Robert

    2013-02-01

    In the present study we developed a novel approach to study the properties of isolated human preadipocytes from subjects exposed to conditions of hypoxia equivalent to an altitude of 4000 m. By using confocal microscopy we studied the expression of dipeptidyl peptidase 4 (DPP4) in preadipocytes from adult normal-weight males. DPP4 is a transmembrane glycoprotein with enzymatic activity that cleaves N-terminal dipeptides from a diverse range of substrates. The activity of DPP4 is implicated in immune response as well as in glucose homeostasis. To gain insights into the pathophysiological role of DPP4 in insulin resistance we here explored DPP4 expression during prolonged exposure to hypoxia, an experimental model of obesity onset. We used here a rapid method to isolate cells from biopsies and immunolabelled them with antibodies. Then cells were prepared for the analysis with confocal microscopy. The results show that a prolonged exposure to hypoxic environment appears to increases the expression of DPP4 on preadipocytes.

  2. Citrus aurantium L. dry extracts promote C/ebpβ expression and improve adipocyte differentiation in 3T3-L1 cells.

    Science.gov (United States)

    Raciti, Gregory Alexander; Fiory, Francesca; Campitelli, Michele; Desiderio, Antonella; Spinelli, Rosa; Longo, Michele; Nigro, Cecilia; Pepe, Giacomo; Sommella, Eduardo; Campiglia, Pietro; Formisano, Pietro; Beguinot, Francesco; Miele, Claudia

    2018-01-01

    Metabolic and/or endocrine dysfunction of the white adipose tissue (WAT) contribute to the development of metabolic disorders, such as Type 2 Diabetes (T2D). Therefore, the identification of products able to improve adipose tissue function represents a valuable strategy for the prevention and/or treatment of T2D. In the current study, we investigated the potential effects of dry extracts obtained from Citrus aurantium L. fruit juice (CAde) on the regulation of 3T3-L1 cells adipocyte differentiation and function in vitro. We found that CAde enhances terminal adipocyte differentiation of 3T3-L1 cells raising the expression of CCAAT/enhancer binding protein beta (C/Ebpβ), peroxisome proliferator activated receptor gamma (Pparγ), glucose transporter type 4 (Glut4) and fatty acid binding protein 4 (Fabp4). CAde improves insulin-induced glucose uptake of 3T3-L1 adipocytes, as well. A focused analysis of the phases occurring in the pre-adipocytes differentiation to mature adipocytes furthermore revealed that CAde promotes the early differentiation stage by up-regulating C/ebpβ expression at 2, 4 and 8 h post the adipogenic induction and anticipating the 3T3-L1 cell cycle entry and progression during mitotic clonal expansion (MCE). These findings provide evidence that the exposure to CAde enhances in vitro fat cell differentiation of pre-adipocytes and functional capacity of mature adipocytes, and pave the way to the development of products derived from Citrus aurantium L. fruit juice, which may improve WAT functional capacity and may be effective for the prevention and/or treatment of T2D.

  3. Phenyllactic Acid from Lactobacillus plantarum PromotesAdipogenic Activity in 3T3-L1 Adipocyte via Up-Regulationof PPAR-γ2

    Directory of Open Access Journals (Sweden)

    Soundharrajan Ilavenil

    2015-08-01

    Full Text Available Synthetic drugs are commonly used to cure various human ailments at present. However, the uses of synthetic drugs are strictly regulated because of their adverse effects. Thus, naturally occurring molecules may be more suitable for curing disease without unfavorable effects. Therefore, we investigated phenyllactic acid (PLA from Lactobacillus plantarum with respect to its effects on adipogenic genes and their protein expression in 3T3-L1 pre-adipocytes by qPCR and western blot techniques. PLA enhanced differentiation and lipid accumulation in 3T3-L1 cells at the concentrations of 25, 50, and 100 μM. Maximum differentiation and lipid accumulation were observed at a concentration of 100 μM of PLA, as compared with control adipocytes (p < 0.05. The mRNA and protein expression of PPAR-γ2, C/EBP‑α, adiponectin, fatty acid synthase (FAS, and SREBP-1 were increased by PLA treatment as compared with control adipocytes (p < 0.05. PLA stimulates PPAR-γ mRNA expression in a concentration dependent manner, but this expression was lesser than agonist (2.83 ± 0.014 fold of PPAR-γ2. Moreover, PLA supplementation enhances glucose uptake in 3T3-L1 pre-adipocytes (11.81 ± 0.17 mM compared to control adipocytes, but this glucose uptake was lesser than that induced by troglitazone (13.75 ± 0.95 mM and insulin treatment (15.49 ± 0.20 mM. Hence, we conclude that PLA treatment enhances adipocyte differentiation and glucose uptake via activation of PPAR-γ2, and PLA may thus be the potential candidate for preventing Type 2 Diabetes Mellitus (T2DM.

  4. Ablation of NG2 proteoglycan leads to deficits in brown fat function and to adult onset obesity.

    Directory of Open Access Journals (Sweden)

    Yunchao Chang

    Full Text Available Obesity is a major health problem worldwide. We are studying the causes and effects of obesity in C57Bl/6 mice following genetic ablation of NG2, a chondroitin sulfate proteoglycan widely expressed in progenitor cells and also in adipocytes. Although global NG2 ablation delays early postnatal adipogenesis in mouse skin, adult NG2 null mice are paradoxically heavier than wild-type mice, exhibiting larger white fat deposits. This adult onset obesity is not due to NG2-dependent effects on CNS function, since specific ablation of NG2 in oligodendrocyte progenitors yields the opposite phenotype; i.e. abnormally lean mice. Metabolic analysis reveals that, while activity and food intake are unchanged in global NG2 null mice, O(2 consumption and CO(2 production are decreased, suggesting a decrease in energy expenditure. Since brown fat plays important roles in regulating energy expenditure, we have investigated brown fat function via cold challenge and high fat diet feeding, both of which induce the adaptive thermogenesis that normally occurs in brown fat. In both tests, body temperatures in NG2 null mice are reduced compared to wild-type mice, indicating a deficit in brown fat function in the absence of NG2. In addition, adipogenesis in NG2 null brown pre-adipocytes is dramatically impaired compared to wild-type counterparts. Moreover, mRNA levels for PR domain containing 16 (PRDM16 and peroxisome proliferator-activated receptor γ coactivator (PGC1-α, proteins important for brown adipocyte differentiation, are decreased in NG2 null brown fat deposits in vivo and NG2 null brown pre-adipocytes in vitro. Altogether, these results indicate that brown fat dysfunction in NG2 null mice results from deficits in the recruitment and/or development of brown pre-adipocytes. As a consequence, obesity in NG2 null mice may occur due to disruptions in brown fat-dependent energy homeostasis, with resulting effects on lipid storage in white adipocytes.

  5. Effects of abhydrolase domain containing 5 gene (ABHD5) expression and variations on chicken fat metabolism.

    Science.gov (United States)

    Ouyang, Hongjia; Liu, Qing; Xu, Jiguo; Zeng, Fang; Pang, Xiaolin; Jebessa, Endashaw; Liang, Shaodong; Nie, Qinghua; Zhang, Xiquan

    2016-01-01

    Abhydrolase domain containing 5 gene (ABHD5), also known as comparative gene identification 58 (CGI-58), is a member of the α/β-hydrolase family as a protein cofactor of ATGL stimulating its triacylglycerol hydrolase activity. In this study, we aim to characterize the expression and variations of ABHD5 and to study their functions in chicken fat metabolism. We compared the ABHD5 expression level in various tissues and under different nutrition conditions, identified the variations of ABHD5, and associated them with production traits in an F2 resource population of chickens. Overexpression analysis with two different genotypes and siRNA interfering analysis of ABHD5 were performed in chicken preadipocytes. Chicken ABDH5 was expressed widely and most predominantly in adipose tissue. Five SNPs of the ABHD5 gene were identified and genotyped in the F2 resource population. The c.490C > T SNP was associated with subcutaneous fat thickness (P  C SNP was also associated with chicken body weight (P chicken preadipocytes, overexpression of wild type ABDH5 did not affect the mRNA level of ATGL (adipose triglyceride lipase) but markedly decreased (P chickens with a high fat diet. These results suggest that expression and variations of ABHD5 may affect fat metabolism through regulating the activity of ATGL in chickens. © 2015 Poultry Science Association Inc.

  6. Salinomycin, a polyether ionophoric antibiotic, inhibits adipogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Szkudlarek-Mikho, Maria; Saunders, Rudel A. [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States); Yap, Sook Fan [Faculty of Medicine and Health Sciences, Department of Pre-Clinical Sciences, University of Tunku Abdul Rahman (Malaysia); Ngeow, Yun Fong [Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chin, Khew-Voon, E-mail: khew-voon.chin@utoledo.edu [Department of Medicine, Biochemistry and Cancer Biology, Center for Diabetes and Endocrine Research, College of Medicine, University of Toledo, Toledo, OH 43614 (United States)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer Salinomycin inhibits preadipocyte differentiation into adipocytes. Black-Right-Pointing-Pointer Salinomycin inhibits transcriptional regulation of adipogenesis. Black-Right-Pointing-Pointer Pharmacological effects of salinomycin suggest toxicity in cancer therapy. -- Abstract: The polyether ionophoric antibiotics including monensin, salinomycin, and narasin, are widely used in veterinary medicine and as food additives and growth promoters in animal husbandry including poultry farming. Their effects on human health, however, are not fully understood. Recent studies showed that salinomycin is a cancer stem cell inhibitor. Since poultry consumption has risen sharply in the last three decades, we asked whether the consumption of meat tainted with growth promoting antibiotics might have effects on adipose cells. We showed in this report that the ionophoric antibiotics inhibit the differentiation of preadipocytes into adipocytes. The block of differentiation is not due to the induction of apoptosis nor the inhibition of cell proliferation. In addition, salinomycin also suppresses the transcriptional activity of the CCAAT/enhancer binding proteins and the peroxisome proliferator-activated receptor {gamma}. These results suggest that the ionophoric antibiotics can be exploited as novel anti-obesity therapeutics and as pharmacological probes for the study of adipose biology. Further, the pharmacological effects of salinomycin could be a harbinger of its toxicity on the adipose tissue and other susceptible target cells in cancer therapy.

  7. The Effect of Bangpungtongsung-san Extracts on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Sang Min, Lee

    2008-03-01

    Full Text Available Objective : The purpose of this study is to investigate the effects of Bangpungtongsung-san extracts on the preadipocytes proliferation, of 3T3-L1 cell line. lipolysis of adipocytes in rat's epididymis and localized fat accumulation of porcine by extraction methods(alcohol and water. Methods : Diminish 3T3-L1 proliferation and lipogenesis do primary role to reduce obesity. So, 3T3-L1 preadipocyte and adipocytes were performed on cell cultures, and using Sprague-Dawley rats for the lipogenesis, and treated with 0.01-1 ㎎/㎖ Bangpungtongsung-san Extracts depend on concentrations. Porcine skin including fat tissue after treated Bangpungtongsung-san Extracts by means of the dosage dependent variation are investigated the histologic changes after injection of these extracts. Results : Following results were obtained from the 3T3-L1 preadipocyte proliferation and lipolysis of adipocyte in rats and histologic investigation of fat tissue. 1. Bangpungtongsung-san extracts were showed the effect of decreased preadipocyte proliferation on the high dosage(1.0㎎/㎖. 2. Bangpungtongsung-san extracts were showed the effect of decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH on the high dosage(1.0㎎/㎖ and Specially, alcohol extract of Bangpungtongsung -san was clear as time goes by high concentration. 3. Bangpungtongsung-san extracts were showed tries to compare the effect of lipolysis, alcohol extract of Bangpungtongsung-san on the high dosage(1.0㎎/㎖ was observed the effect is higher than water extract. 4. Investigated the histological changes in porcine fat tissue after treated Bangpungtongsung-san extracts, we knew that water extract of Bangpungtongsung-san was showed the effect of lipolysis on the high dosage(10.0㎎/㎖ and alcohol extract of Bangpungtongsung-san was showed significant activity to the lysis of cell membranes in all concentration. Conclusion : These results suggest that Bangpungtongsung-san extracts efficiently

  8. Transcriptional regulatory program in wild-type and retinoblastoma gene-deficient mouse embryonic fibroblasts during adipocyte differentiation

    DEFF Research Database (Denmark)

    Hakim-Weber, Robab; Krogsdam, Anne-M; Jørgensen, Claus

    2011-01-01

    Although many molecular regulators of adipogenesis have been identified a comprehensive catalogue of components is still missing. Recent studies showed that the retinoblastoma protein (pRb) was expressed in the cell cycle and late cellular differentiation phase during adipogenesis. To investigate...... this dual role of pRb in the early and late stages of adipogenesis we used microarrays to perform a comprehensive systems-level analysis of the common transcriptional program of the classic 3T3-L1 preadipocyte cell line, wild-type mouse embryonic fibroblasts (MEFs), and retinoblastoma gene-deficient MEFs...... of experimental data and computational analyses pinpointed a feedback-loop between Pparg and Foxo1.To analyze the effects of the retinoblastoma protein at the transcriptional level we chose a perturbated system (Rb-/- MEFs) for comparison to the transcriptional program of wild-type MEFs. Gene ontology analysis...

  9. Distinct signalling properties of insulin receptor substrate (IRS)-1 and IRS-2 in mediating insulin/IGF-1 action

    DEFF Research Database (Denmark)

    Rabiee, Atefeh; Krüger, Marcus; Ardenkjær-Larsen, Jacob

    2018-01-01

    Insulin/IGF-1 action is driven by a complex and highly integrated signalling network. Loss-of-function studies indicate that the major insulin/IGF-1 receptor substrate (IRS) proteins, IRS-1 and IRS-2, mediate different biological functions in vitro and in vivo, suggesting specific signalling...... properties despite their high degree of homology. To identify mechanisms contributing to the differential signalling properties of IRS-1 and IRS-2 in the mediation of insulin/IGF-1 action, we performed comprehensive mass spectrometry (MS)-based phosphoproteomic profiling of brown preadipocytes from wild type......, IRS-1-/-and IRS-2-/-mice in the basal and IGF-1-stimulated states. We applied stable isotope labeling by amino acids in cell culture (SILAC) for the accurate quantitation of changes in protein phosphorylation. We found ~10% of the 6262 unique phosphorylation sites detected to be regulated by IGF-1...

  10. MCT1 and MCT4 expression and lactate flux activity increase during white and brown adipogenesis and impact adipocyte metabolism

    DEFF Research Database (Denmark)

    Petersen, Charlotte; Nielsen, Mette D.; Andersen, Elise S.

    2017-01-01

    RNA and protein levels of the lactate-H+ transporter MCT1 and the Na+,HCO3 - cotransporter NBCe1 were upregulated in mouse interscapular brown and inguinal white adipose tissue upon cold induction of thermogenesis and browning. MCT1, MCT4, and NBCe1 were furthermore strongly upregulated at the mRNA and protein...... level upon differentiation of cultured pre-adipocytes. Adipocyte differentiation was accompanied by increased plasma membrane lactate flux capacity, which was reduced by MCT inhibition and by MCT1 knockdown. Finally, in differentiated brown adipocytes, glycolysis (assessed as ECAR), and after...... noradrenergic stimulation also oxidative metabolism (OCR), was decreased by MCT inhibition. We suggest that upregulation of MCT1- and MCT4-mediated lactate flux capacity and NBCe1-mediated HCO3 -/pH homeostasis are important for the physiological function of mature adipocytes....

  11. Preadipocyte Factor-1 Levels Are Higher in Women with Hypothalamic Amenorrhea and Are Associated with Bone Mineral Content and Bone Mineral Density through a Mechanism Independent of Leptin

    Science.gov (United States)

    Aronis, Konstantinos N.; Kilim, Holly; Chamberland, John P.; Breggia, Anne; Rosen, Clifford

    2011-01-01

    Context: Preadipocyte factor 1 (pref-1) is increased in anorexia nervosa and is associated negatively with bone mineral density (BMD). No previous studies exist on pref-1 in women with exercise-induced hypothalamic amenorrhea (HA), which similar to anorexia nervosa, is an energy-deficiency state associated with hypoleptinemia. Objective: Our objective was to evaluate whether pref-1 levels are also elevated and associated with low BMD and to assess whether leptin regulates pref-1 levels in women with HA. Design: Study 1 was a double-blinded, placebo-controlled randomized clinical trial of metreleptin administration in women with HA. Study 2 was an open-label study of metreleptin administration in low physiological, supraphysiological, and pharmacological doses in healthy women volunteers. Setting and Patients: At Beth Israel Deaconess Medical Center, 20 women with HA and leptin levels higher than 5 ng/ml and nine healthy control women participated in study 1, and five healthy women participated in study 2. Intervention: For study 1, 20 HA subjects were randomized to receive either 0.08 mg/kg metreleptin (n = 11) or placebo (n = 9). For study 2, five healthy subjects received 0.01, 0.1, and 0.3 mg/kg metreleptin in both fed and fasting conditions for 1 and 3 d, respectively. Main Outcome Measures: Circulating pref-1 and leptin levels were measured. Results: Pref-1 was significantly higher in HA subjects vs. controls (P = 0.035) and negatively associated with BMD (ρ = −0.38; P < 0.01) and bone mineral content (ρ = −0.32; P < 0.05). Metreleptin administration did not alter pref-1 levels in any study reported herein. Conclusions: Pref-1 is higher in HA subjects than controls. Metreleptin administration at low physiological, supraphysiological, and pharmacological doses does not affect pref-1 levels, suggesting that hypoleptinemia is not responsible for higher pref-1 levels and that leptin does not regulate pref-1. PMID:21795455

  12. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.).

    Science.gov (United States)

    Choi, Ji Won; Synytsya, Andriy; Capek, Peter; Bleha, Roman; Pohl, Radek; Park, Yong Il

    2016-08-01

    A water-soluble polysaccharide JS-MP-1 was isolated from Korean mulberry fruits Oddi (Morus alba L.). Sugar linkage analysis and NMR data confirmed that it is a rhamnogalacturonan type I (RG I) polymer carrying arabinan and arabinogalactan (AG II) side chains. JS-MP-1 reduced dose-dependently the viability of 3T3-L1 pre-adipocyte cells, significantly stimulated the cleavage of caspases 9 and 3 and poly (ADP-ribose) polymerase (PARP) and decreased the ratio of Bcl-2 to Bax expression level that led to mitochondrial dysfunction and apoptosis in pre-adipocyte cells. The apoptotic death was mediated by stimulation of MAPKs (ERK and p38) signalling pathway. These results suggest that JS-MP-1 is able to reduce the number of fat cells and the mass of adipose tissue via inhibition of pre-adipocyte proliferation and thus JS-MP-1 itself or a crude aqueous Oddi extract containing this polysaccharide can be used as functional ingredient of health-beneficial food supplements for the treatment or prevention of obesity disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Kim, Soon-hee; Park, Hee-Sook; Lee, Myoung-su; Cho, Yong-Jin; Kim, Young-Sup; Hwang, Jin-Taek; Sung, Mi Jeong; Kim, Myung Sunny; Kwon, Dae Young

    2008-01-01

    Inhibition of adipocyte differentiation is one approach among the anti-obesity strategies. This study demonstrates that vitisin A, a resveratrol tetramer, inhibits adipocyte differentiation most effectively of 18 stilbenes tested. Fat accumulation and PPARγ expression were decreased by vitisin A in a dose-dependent manner. Vitisin A significantly inhibited preadipocyte proliferation and consequent differentiation within the first 2 days of treatment, indicating that the anti-adipogenic effect of vitisin A was derived from anti-proliferation. Based on cell cycle analysis, vitisin A blocked the cell cycle at the G1-S phase transition, causing cells to remain in the preadipocyte state. Vitisin A increased p21 expression, while the Rb phosphorylation level was reduced. Therefore, vitisin A seems to induce G1 arrest through p21- and consequent Rb-dependent suppression of transcription. On the other hand, ERK and Akt signaling pathways were not involved in the anti-mitotic regulation by vitisin A. Taken together, these results suggest that vitisin A inhibits adipocyte differentiation through preadipocyte cell cycle arrest

  14. The Anti-Adipogenic Potential of COUP-TFII Is Mediated by Downregulation of the Notch Target Gene Hey1.

    Directory of Open Access Journals (Sweden)

    Ilse Scroyen

    Full Text Available Chicken ovalbumin upstream promoter transcription factor II (COUP-TFII belongs to the steroid/thyroid hormone receptor superfamily and may contribute to the pathogenesis of obesity. It has not conclusively been established, however, whether its role is pro- or anti-adipogenic.Gene silencing of Coup-tfII in 3T3-F442A preadipocytes resulted in enhanced differentiation into mature adipocytes. This was associated with upregulation of the Notch signaling target gene Hey1. A functional role of Hey1 was confirmed by gene silencing in 3T3-F442A preadipocytes, resulting in impaired differentiation. In vivo, de novo fat pad formation in NUDE mice was significantly stimulated following injection of preadipocytes with Coup-tfII gene silencing, but impaired with Hey1 gene silencing. Moreover, expression of Coup-tfII was lower and that of Hey1 higher in isolated adipocytes of obese as compared to lean adipose tissue.These in vitro and in vivo data support an anti-adipogenic role of COUP-TFII via downregulating the Notch signaling target gene Hey1.

  15. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    International Nuclear Information System (INIS)

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-01-01

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies

  16. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    Energy Technology Data Exchange (ETDEWEB)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  17. Induction of epithelial to mesenchymal transition (EMT) and inhibition on adipogenesis: Two different sides of the same coin? Feasible roles and mechanisms of transforming growth factor β1 (TGF-β1) in age-related thymic involution.

    Science.gov (United States)

    Tan, Jianxin; Wang, Yajun; Zhang, Nannan; Zhu, Xike

    2016-08-01

    Age-related thymic involution is characterized by a loss of thymic epithelial cells (TECs) and a concomitant increase in adipocytes, but the mechanisms involved in thymic adipogenesis are still not clear. Transforming growth factor β1 (TGF-β1) is a pleiotropic cytokine that has been reported to be up-regulated with age in thymic stromal cells in both human and mouse. However, the exact role of TGF-β1 in age-related thymic involution remains to be further elucidated. On the basis of previous findings, we propose a novel hypothesis that TGF-β1 functions a dual role in age-related thymic involution. On one hand, up-regulation of TGF-β1 promotes epithelial to mesenchymal transition (EMT) process in TECs via activating forkhead box protein C2 (FoxC2). On the other hand, TGF-β1 inhibits the transdifferentiation of EMT-derived mesenchymal cells to adipocytes in the thymus. If confirmed, our hypothesis will not only provide further evidence supporting that the transdifferentiation of TECs into pre-adipocytes represents a source of thymic adiposity during age-related thymic involution, but also uncover a unique role of TGF-β1 in the transdifferentiation of TECs into pre-adipocytes. Collectively, the inhibition of TGF-β1 may serve as a strategy to hinder age-related thymic involution or even to restore thymic function in the elderly. © 2016 International Federation for Cell Biology.

  18. Conjugated linoleic acid prevents age-induced bone loss in mice by regulating both osteoblastogenesis and adipogenesis.

    Science.gov (United States)

    Lin, Guanlin; Wang, Huan; Dai, Jun; Li, Xiao; Guan, Ming; Gao, Shutao; Ding, Qing; Wang, Huaixi; Fang, Huang

    2017-08-26

    Osteoporosis (OP) can increase the risk of bone fracture and other complications, which is a major clinical problem. Previous researches have revealed that conjugated linoleic acid (CLA) can promote the bone formation. But the mechanisms are not clear. Thus, we tested the hypothesis that CLA acts on bone formation might be via mTOR Complex1 (mTORC 1) pathway by in vitro and vivo assays. We studied the effect of CLA mix on MC3T3-E1 pre-osteoblasts differentiation into osteoblasts, and bone formation under osteoporotic conditions. At the same time, 3T3-L1 pre-adipocyte with the same CLA mix concentration gradient for 8 days with adipogenic differentiation medium. We found that Alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN) expressions of pre-osteoblasts were up-regulated. Moreover in presence of CLA, peroxisome proliferators-activated receptor γ(PPARγ) and CCAAT/enhancer-binding protein (C/EBPα) were down-regulated. Osteoporosis mice bone parameters in the distal femoral meraphysis were significantly increased compared with placebo mice. Furthermore, the phosphor-S6 (P-S6) was suppressed and phosphor-AKT (P-AKT) was up-regulated. Consistently, CLA can stimulate differentiation of osteoblasts and inhibited pre-adipocytes differentiated into adipocytes via AKT/mTORC1 signal pathway. Overall CLA thus be a suitable candidate for the treatment of patients with postmenopausal osteoporosis and obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Interleukin-6 induces impairment in human subcutaneous adipogenesis in obesity-associated insulin resistance.

    Science.gov (United States)

    Almuraikhy, Shamma; Kafienah, Wael; Bashah, Moataz; Diboun, Ilhame; Jaganjac, Morana; Al-Khelaifi, Fatima; Abdesselem, Houari; Mazloum, Nayef A; Alsayrafi, Mohammed; Mohamed-Ali, Vidya; Elrayess, Mohamed A

    2016-11-01

    A subset of obese individuals remains insulin sensitive by mechanisms as yet unclear. The hypothesis that maintenance of normal subcutaneous (SC) adipogenesis accounts, at least partially, for this protective phenotype and whether it can be abrogated by chronic exposure to IL-6 was investigated. Adipose tissue biopsies were collected from insulin-sensitive (IS) and insulin-resistant (IR) individuals undergoing weight-reduction surgery. Adipocyte size, pre-adipocyte proportion of stromal vascular fraction (SVF)-derived cells, adipogenic capacity and gene expression profiles of isolated pre-adipocytes were determined, along with local in vitro IL-6 secretion. Adipogenic capacity was further assessed in response to exogenous IL-6 application. Despite being equally obese, IR individuals had significantly lower plasma leptin and adiponectin levels and higher IL-6 levels compared with age-matched IS counterparts. Elevated systemic IL-6 in IR individuals was associated with hyperplasia of adipose tissue-derived SVF cells, despite higher frequency of hypertrophied adipocytes. SC pre-adipocytes from these tissues exhibited lower adipogenic capacity accompanied by downregulation of PPARγ (also known as PPARG) and CEBPα (also known as CEBPA) and upregulation of GATA3 expression. Impaired adipogenesis in IR individuals was further associated with increased adipose secretion of IL-6. Treatment of IS-derived SC pre-adipocytes with IL-6 reduced their adipogenic capacity to levels of the IR group. Obesity-associated insulin resistance is marked by impaired SC adipogenesis, mediated, at least in a subset of individuals, by elevated local levels of IL-6. Understanding the molecular mechanisms underlying reduced adipogenic capacity in IR individuals could help target appropriate therapeutic strategies aimed at those at greatest risk of insulin resistance and type 2 diabetes mellitus.

  20. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Directory of Open Access Journals (Sweden)

    Emily J Dhurandhar

    Full Text Available Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR, are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K, and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1 protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes

  1. E4orf1: a novel ligand that improves glucose disposal in cell culture.

    Science.gov (United States)

    Dhurandhar, Emily J; Dubuisson, Olga; Mashtalir, Nazar; Krishnapuram, Rashmi; Hegde, Vijay; Dhurandhar, Nikhil V

    2011-01-01

    Reducing dietary fat intake and excess adiposity, the cornerstones of behavioral treatment of insulin resistance (IR), are marginally successful over the long term. Ad36, a human adenovirus, offers a template to improve IR, independent of dietary fat intake or adiposity. Ad36 increases cellular glucose uptake via a Ras-mediated activation of phosphatidyl inositol 3-kinase(PI3K), and improves hyperglycemia in mice, despite a high-fat diet and without reducing adiposity. Ex-vivo studies suggest that Ad36 improves hyperglycemia in mice by increasing glucose uptake by adipose tissue and skeletal muscle, and by reducing hepatic glucose output. It is impractical to use Ad36 for therapeutic action. Instead, we investigated if the E4orf1 protein of Ad36, mediates its anti-hyperglycemic action. Such a candidate protein may offer an attractive template for therapeutic development. Experiment-1 determined that Ad36 'requires' E4orf1 protein to up-regulate cellular glucose uptake. Ad36 significantly increased glucose uptake in 3T3-L1 preadipocytes, which was abrogated by knocking down E4orf1 with siRNA. Experiment-2 identified E4orf1 as 'sufficient' to up-regulate glucose uptake. 3T3-L1 cells that inducibly express E4orf1, increased glucose uptake in an induction-dependent manner, compared to null vector control cells. E4orf1 up-regulated PI3K pathway and increased abundance of Ras--the obligatory molecule in Ad36-induced glucose uptake. Experiment-3: Signaling studies of cells transiently transfected with E4orf1 or a null vector, revealed that E4orf1 may activate Ras/PI3K pathway by binding to Drosophila discs-large (Dlg1) protein. E4orf1 activated total Ras and, particularly the H-Ras isoform. By mutating the PDZ domain binding motif (PBM) of E4orf1, Experiment-4 showed that E4orf1 requires its PBM to increase Ras activation or glucose uptake. Experiment-5: In-vitro, a transient transfection by E4orf1 significantly increased glucose uptake in preadipocytes, adipocytes, or

  2. In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum in 3T3-L1 cells and mice.

    Directory of Open Access Journals (Sweden)

    Mariadhas Valan Arasu

    Full Text Available Adipogenesis is very much important in improving the quality of meat in animals. The aim of the present study was to investigate the in vitro and in vivo adipogenesis regulation properties of Lolium multiflorum on 3T3-L1 pre-adipocytes and mice. Chemical composition of petroleum ether extract of L. multiflorum (PET-LM confirmed the presence of fatty acids, such as α-linolenic acid, docosahexaenoic acid, oleic acid, docosatetraenoic acid, and caprylic acid, as the major compounds. PET-LM treatment increased viability, lipid accumulation, lipolysis, cell cycle progression, and DNA synthesis in the cells. PET-LM treatment also augmented peroxysome proliferator activated receptor (PPAR-γ2, CCAAT/enhancer binding protein-α, adiponectin, adipocyte binding protein, glucose transporter-4, fatty acid synthase, and sterol regulatory element binding protein-1 expression at mRNA and protein levels in differentiated adipocytes. In addition, mice administered with 200 mg/kg body weight PET-LM for 8 weeks showed greater body weight than control mice. These findings suggest that PET-LM facilitates adipogenesis by stimulating PPARγ-mediated signaling cascades in adipocytes which could be useful for quality meat development in animals.

  3. SREBP-1c/MicroRNA 33b Genomic Loci Control Adipocyte Differentiation

    Science.gov (United States)

    Price, Nathan L.; Holtrup, Brandon; Kwei, Stephanie L.; Wabitsch, Martin; Rodeheffer, Matthew; Bianchini, Laurence; Suárez, Yajaira

    2016-01-01

    White adipose tissue (WAT) is essential for maintaining metabolic function, especially during obesity. The intronic microRNAs miR-33a and miR-33b, located within the genes encoding sterol regulatory element-binding protein 2 (SREBP-2) and SREBP-1, respectively, are transcribed in concert with their host genes and function alongside them to regulate cholesterol, fatty acid, and glucose metabolism. SREBP-1 is highly expressed in mature WAT and plays a critical role in promoting in vitro adipocyte differentiation. It is unknown whether miR-33b is induced during or involved in adipogenesis. This is in part due to loss of miR-33b in rodents, precluding in vivo assessment of the impact of miR-33b using standard mouse models. This work demonstrates that miR-33b is highly induced upon differentiation of human preadipocytes, along with SREBP-1. We further report that miR-33b is an important regulator of adipogenesis, as inhibition of miR-33b enhanced lipid droplet accumulation. Conversely, overexpression of miR-33b impaired preadipocyte proliferation and reduced lipid droplet formation and the induction of peroxisome proliferator-activated receptor γ (PPARγ) target genes during differentiation. These effects may be mediated by targeting of HMGA2, cyclin-dependent kinase 6 (CDK6), and other predicted miR-33b targets. Together, these findings demonstrate a novel role of miR-33b in the regulation of adipocyte differentiation, with important implications for the development of obesity and metabolic disease. PMID:26830228

  4. Adipogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice - including relationship of sex differences

    International Nuclear Information System (INIS)

    Ogawa, Rei; Mizuno, Hiroshi; Watanabe, Atsushi; Migita, Makoto; Hyakusoku, Hiko; Shimada, Takashi

    2004-01-01

    We have previously demonstrated that adipose-derived stromal cells (ASCs) as well as bone marrow-derived stromal cells (BSCs) differentiate into a variety of cell lineages both in vitro and in vivo. Both types are considered to include mesenchymal stem cells. Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have also previously reported the plasticity of BSCs and ASCs. In this study, we focused on adipogenic differentiation in vitro by ASCs harvested from GFP transgenic mice. Moreover, preadipocytes and mature adipocytes were harvested at the same time, and the cells were cultured to compare them with ASCs. Inguinal fat pads from GFP transgenic mice were used for the isolation of ASCs, preadipocytes, and mature adipocytes. After expansion to three passages of ASCs, the cells were incubated in an adipogenic medium for two weeks. Adipogenic differentiation of ASCs was assessed by Oil Red O staining and the expression of the adipocyte specific peroxisome proliferative activated receptor γ2 (PPAR-γ2) gene. These ASCs stained positively, and expression of PPAR-γ2 was detected. Moreover, we also tried to characterize the influence of sex differences on the adipogenic differentiation of ASCs harvested from both male and female mice. This was assessed by the expression levels of the PPAR-γ2 gene using real-time PCR. The results showed that the expression levels of ASCs harvested from female mice were a maximum of 2.89 times greater than those harvested from male mice. This suggests that the adipogenic differentiation of ASCs is closely related to sex differences

  5. Differential expression of fatty acid uptake in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Waggoner, D.; Bernlohr, D.A.

    1987-01-01

    Cultured 3T3-L1 cells have been used as a model system to investigate the mechanism of fatty acid uptake by adipose tissue. Using a 1:1 molar ratio of 14 C-oleate and defatted bovine serum albumin (BSA), fatty acid (FA) uptake was quantitated at 4 0 and 37 0 as cell associated radioactivity. The profile of FA uptake in preadipocytes and adipocytes was biphasic; an initial rapid phase (1-20s) followed by a second slower phase (60-480s). At 37 0 the initial rate of FA accumulation in preadipocytes was identical to that in adipocytes, whereas the rate of accumulation during the second phase increased 7-fold (100 μM total FA) as a consequence of adipose conversion. When uptake measurements were made at 4 0 in adipocytes, the initial rate was identical to that at 37 0 , however the rate of second phase decreased 5-fold. Incubation of 14 C-BSA and nonradiolabeled FA with adipocyte monolayers (100 μM total FA) resulted in the rapid association (t/sub 1/2/ = 20s) of the BSA-FA complex with the cell surface. Incubation of 100, 10, and 1 μM total FA with adipocytes resulted in a 50-fold change in FA accumulation during the second phase. These results suggest that (1) FA uptake is significantly increased after differentiation, suggesting the participation of specialized proteins, (2) the temperature-insensitive initial FA accumulation can be attributed to rapid association of the BSA-FA complex to the cell surface, (3) the second phase of FA accumulation represents uptake

  6. Superficial corneal crosslinking during laser in situ keratomileusis.

    Science.gov (United States)

    Seiler, Theo G; Fischinger, Isaak; Koller, Tobias; Derhartunian, Viktor; Seiler, Theo

    2015-10-01

    To determine the safety of superficial corneal crosslinking after laser in situ keratomileusis (LASIK). Institut für Refraktive und Ophthalmo-Chirurgie, Zurich, Switzerland. Prospective study. Eyes with an ectasia risk score of 2 or higher were treated with standard LASIK (90 μm flap) for myopia correction, after which a rapid corneal crosslinking was performed in the interface (riboflavin 0.5% for 2 minutes, 9 mW/cm(2) for 5 minutes) (Group 1). The follow-up was up to 1 year. The prevalence of complications was statistically compared with that in a group of eyes matched regarding age, sex, and attempted refractive correction that were treated with standard LASIK only (Group 2). One month postoperatively, 5 eyes in Group 1 lost 1 line of corrected distance visual acuity (CDVA) compared with 1 eye in Group 2 (P rate of less than 5%. The refractive success was identical in both groups. Early postoperative complications such as erosions (16%), diffuse lamellar keratitis (DLK) stage 1 (38%), and DLK stage 2 (5%) were statistically significantly more frequent after superficial corneal crosslinking, leading to a statistically significantly reduced uncorrected distance visual acuity at 1 month (P interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. Adaptor protein SH2-B linking receptor-tyrosine kinase and Akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels.

    Science.gov (United States)

    Yoshiga, Daigo; Sato, Naoichi; Torisu, Takehiro; Mori, Hiroyuki; Yoshida, Ryoko; Nakamura, Seiji; Takaesu, Giichi; Kobayashi, Takashi; Yoshimura, Akihiko

    2007-05-01

    Adipocyte differentiation is regulated by insulin and IGF-I, which transmit signals by activating their receptor tyrosine kinase. SH2-B is an adaptor protein containing pleckstrin homology and Src homology 2 (SH2) domains that have been implicated in insulin and IGF-I receptor signaling. In this study, we found a strong link between SH2-B levels and adipogenesis. The fat mass and expression of adipogenic genes including peroxisome proliferator-activated receptor gamma (PPARgamma) were reduced in white adipose tissue of SH2-B-/- mice. Reduced adipocyte differentiation of SH2-B-deficient mouse embryonic fibroblasts (MEFs) was observed in response to insulin and dexamethasone, whereas retroviral SH2-B overexpression enhanced differentiation of 3T3-L1 preadipocytes to adipocytes. SH2-B overexpression enhanced mRNA level of PPARgamma in 3T3-L1 cells, whereas PPARgamma levels were reduced in SH2-B-deficient MEFs in response to insulin. SH2-B-mediated up-regulation of PPARgamma mRNA was blocked by a phosphatidylinositol 3-kinase inhibitor, but not by a MAPK kinase inhibitor. Insulin-induced Akt activation and the phosphorylation of forkhead transcription factor (FKHR/Foxo1), a negative regulator of PPARgamma transcription, were up-regulated by SH2-B overexpression, but reduced in SH2-B-deficient MEFs. These data indicate that SH2-B is a key regulator of adipogenesis both in vivo and in vitro by regulating the insulin/IGF-I receptor-Akt-Foxo1-PPARgamma pathway.

  8. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  9. Raldh1 promotes adiposity during adolescence independently of retinal signaling.

    Directory of Open Access Journals (Sweden)

    Di Yang

    Full Text Available All-trans-retinoic acid (RA inhibits adipogenesis in established preadipocyte cell lines. Dosing pharmacological amounts of RA reduces weight gain in mice fed a high-fat diet, i.e. counteracts diet-induced obesity (DIO. The aldehyde dehydrogenase Raldh1 (Aldh1a1 functions as one of three enzymes that converts the retinol metabolite retinal into RA, and one of many proteins that contribute to RA homeostasis. Female Raldh1-ablated mice resist DIO. This phenotype contrasts with ablations of other enzymes and binding-proteins that maintain RA homeostasis, which gain adiposity. The phenotype observed prompted the conclusion that loss of Raldh1 causes an increase in adipose tissue retinal, and therefore, retinal functions independently of RA to prevent DIO. A second deduction proposed that low nM concentrations of RA stimulate adipogenesis, in contrast to higher concentrations. Using peer-reviewed LC/MS/MS assays developed and validated for quantifying tissue RA and retinal, we show that endogenous retinal and RA concentrations in adipose tissues from Raldh1-null mice do not correlate with the phenotype. Moreover, male Raldh1-null mice resist weight gain regardless of dietary fat content. Resistance to weight gain occurs during adolescence in both sexes. We show that RA concentrations as low as 1 nM, i.e. in the sub-physiological range, impair adipogenesis of embryonic fibroblasts from wild-type mice. Embryonic fibroblasts from Raldh1-null mice resist differentiating into adipocytes, but retain ability to generate RA. These fibroblasts remain sensitive to an RA receptor pan-agonist, and are not affected by an RA receptor pan-antagonist. Thus, the data do not support the hypothesis that retinal itself represses weight gain and adipogenesis independently of RA. Instead, the data indicate that Raldh1 functions as a retinal and atRA-independent promoter of adiposity during adolescence, and enhances adiposity through pre-adipocyte cell autonomous actions.

  10. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  11. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  12. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  13. PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice.

    Science.gov (United States)

    Su, Jing; Wu, Wei; Huang, Shan; Xue, Ruidan; Wang, Yi; Wan, Yun; Zhang, Lv; Qin, Lang; Zhang, Qiongyue; Zhu, Xiaoming; Zhang, Zhaoyun; Ye, Hongying; Wu, Xiaohui; Li, Yiming

    2017-03-01

    Obesity has become the most common metabolic disorder worldwide. Promoting brown adipose tissue (BAT) and beige adipose tissue formation, and therefore, a functional increase in energy expenditure, may counteract obesity. Mice lacking type IIβ regulatory subunit of adenosine 3',5' cyclic monophosphate (cAMP)-dependent protein kinase A (PKA-RIIB) display reduced adiposity and resistance to diet-induced obesity. PKA-RIIB, encoded by the Prkar2b gene, is most abundant in BAT and white adipose tissue (WAT) and in the brain. In this study, we show that mice lacking PKA-RIIB have increased energy expenditure, limited weight gain, and improved glucose metabolism. PKA-RIIB deficiency induces brownlike adipocyte in inguinal WAT (iWAT). PKA-RIIB deficiency also increases the expression of uncoupling protein 1 and other thermogenic genes in iWAT and primary preadipocytes from iWAT through a mechanism involving increased PKA activity, which is represented by increased phosphorylation of PKA substrate, cAMP response element binding protein, and P38 mitogen-activated protein kinase. Our study provides evidence for the role of PKA-RIIB deficiency in regulating thermogenesis in WAT, which may potentially have therapeutic implications for the treatment of obesity and related metabolic disorders. Copyright © 2017 by the Endocrine Society.

  14. The effect of humidity and temperature on visual outcomes after myopic corneal laser refractive surgery

    Directory of Open Access Journals (Sweden)

    Hood CT

    2016-11-01

    Full Text Available Christopher T Hood,1 Roni M Shtein,1 Daniel Veldheer,1,2 Munira Hussain,1 Leslie M Niziol,1 David C Musch,1,3 Shahzad I Mian1 1Department of Ophthalmology and Visual Sciences, University of Michigan W.K. Kellogg Eye Center, Ann Arbor, MI, 2Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 3Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA Objective: To determine whether procedure room environmental conditions are associated with outcomes after myopic laser in situ keratomileusis (LASIK or laser-assisted keratomileusis (LASEK. Design: Retrospective chart review. Participants: Eight hundred sixty-three eyes of 458 consecutive patients at a university-based academic practice. Methods: We reviewed the medical records of consecutive patients who underwent LASIK or LASEK over a 3-year period. Linear mixed regression models were used to investigate the association of laser room temperature and humidity with the outcomes of visual acuity and postoperative manifest spherical equivalent refraction. Repeated measures logistic regression models were used for the outcomes of diffuse lamellar keratitis (DLK and need for enhancement surgery. Results: Subjects were on an average 38.6 years old at the time of surgery (standard deviation [SD] =10.3 and the average spherical equivalent refraction of eyes was 3.8 diopters (SD =2.03. Regression models did not reveal a significant association between temperature and uncorrected distance visual acuity (UDVA or corrected distance visual acuity (CDVA, or between humidity and UDVA (P>0.05 for all. However, increased humidity was associated with a small but statistically significant improvement in CDVA after LASIK at 1 day, 1 month, 3 months, and 1 year postoperatively (P<0.05 for all. There was no significant association between temperature and humidity and the need for enhancement, the incidence of DLK, or postoperative manifest refraction. Conclusion: While increased laser

  15. A biomimetic hydrogel functionalized with adipose ECM components as a microenvironment for the 3D culture of human and murine adipocytes.

    Science.gov (United States)

    Louis, Fiona; Pannetier, Pauline; Souguir, Zied; Le Cerf, Didier; Valet, Philippe; Vannier, Jean-Pierre; Vidal, Guillaume; Demange, Elise

    2017-08-01

    The lack of relevant in vitro models for adipose tissue makes necessary the development of a more physiological environment providing spatial and chemical cues for the effective maturation of adipocytes. We developed a biofunctionalized hydrogel with components of adipose extracellular matrix: collagen I, collagen VI, and the cell binding domain of fibronectin and we compared it to usual 2D cultures on plastic plates. This scaffold allowed 3D culture of mature adipocytes from the preadipocytes cell lines 3T3-L1 and 3T3-F442A, as well as primary Human White Preadipocytes (HWP), acquiring in vivo-like organization, with spheroid shaped adipocytes forming multicellular aggregates. The size of these aggregates increased with time up to 120 μm in diameter after 4 weeks of maturation, with good viability. Significantly higher lipogenic activity (up to 20-fold at day 28 for HWP cultures) and differentiation rates were also observed compared to 2D. Gene expression analyses highlighted earlier differentiation and complete maturation of 3D HWP compared to 2D, reinforced by the expression of Perilipin protein after 21 days of nutrition. This increase in adipocytes phenotypic and genotypic markers made this scaffold-driven culture as a robust adipose 3D model. Retinoic acid inhibition of lipogenesis in HWP or isoprenalin and caffeine induction of lipolysis performed on mouse 3T3-F442A cells, showed higher doses of molecules than typically used in 2D, underlying the physiologic relevance of this 3D culture system. Biotechnol. Bioeng. 2017;114: 1813-1824. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. An Analysis of Muscle Activities of Healthy Women during Pilates Exercises in a Prone Position.

    Science.gov (United States)

    Kim, Bo-In; Jung, Ju-Hyeon; Shim, Jemyung; Kwon, Hae-Yeon; Kim, Haroo

    2014-01-01

    [Purpose] This study analyzed the activities of the back and hip muscles during Pilates exercises conducted in a prone position. [Subjects] The subjects were 18 healthy women volunteers who had practiced at a Pilates center for more than three months. [Methods] The subjects performed three Pilates exercises. To examine muscle activity during the exercises, 8-channel surface electromyography (Noraxon USA, Inc., Scottsdale, AZ) was used. The surface electrodes were attached to the bilateral latissimus dorsi muscle, multifidus muscle, gluteus maximus, and semitendinous muscle. Three Pilates back exercises were compared: (1) double leg kick (DLK), (2) swimming (SW), and (3) leg beat (LB). Electrical muscle activation was normalized to maximal voluntary isometric contraction. Repeated measures analysis of variance was performed to assess the differences in activation levels among the exercises. [Results] The activity of the multifidus muscle was significantly high for the SW (52.3±11.0, 50.9±9.8) and LB exercises(51.8±12.8, 48.3±13.9) and the activity of the semitendinosus muscle was higher for the LB exercise (49.2±8.7, 52.9±9.3) than for the DLK and SW exercises. [Conclusion] These results may provide basic material for when Pilates exercises are performed in a prone position and may be useful information on clinical Pilates for rehabilitation programs.

  17. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  18. Structural analysis and anti-obesity effect of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.)

    Czech Academy of Sciences Publication Activity Database

    Choi, J. W.; Synytsya, A.; Capek, P.; Bleha, R.; Pohl, Radek; Park, Y. I.

    2016-01-01

    Roč. 146, Aug 1 (2016), s. 187-196 ISSN 0144-8617 Institutional support: RVO:61388963 Keywords : mulberry fruit * pectic polysaccharide * structure * pre-adipocytes * apoptosis Subject RIV: CC - Organic Chemistry Impact factor: 4.811, year: 2016

  19. Protein nanoparticles for therapeutic protein delivery.

    Science.gov (United States)

    Herrera Estrada, L P; Champion, J A

    2015-06-01

    Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery. This review describes protein nanoparticles made by self-assembly, including protein cages, protein polymers, and charged or amphipathic peptides, and by desolvation. It presents particle fabrication and delivery characterization for a variety of therapeutic and model proteins, as well as comparison of the features of different protein nanoparticles.

  20. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    Science.gov (United States)

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  1. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials

    NARCIS (Netherlands)

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; Duinkerken, Van Gert; Yu, Peiqiang

    2015-01-01

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more

  2. Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Akio, E-mail: watanabea@jfrl.or.jp [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan); Kato, Tsuyoshi; Ito, Yusuke; Yoshida, Izumi; Harada, Teppei; Mishima, Takashi; Fujita, Kazuhiro; Watai, Masatoshi [Japan Food Research Laboratories, Osaka 567-0085 (Japan); Nakagawa, Kiyotaka; Miyazawa, Teruo [Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Miyagi 981-8555 (Japan)

    2014-10-31

    Highlights: • Aculeatin promoted adipocyte differentiation. • Aculeatin improved glucose uptake. • Aculeatin enhanced adipocyte lipolysis. - Abstract: Toddalia asiatica (L.) Lam. (T. asiatica) has been utilized traditionally for medicinal purposes such as the treatment of diabetes. Currently, the extract is considered to be a good source of anti-diabetic agents, but the active compounds have yet to be identified. In this study, we investigated the effects of fractionated T. asiatica extracts on the differentiation of 3T3-L1 preadipocytes and identified aculeatin as a potential active agent. When 3T3-L1 preadipocytes were treated with aculeatin isolated from T. asiatica in the presence of insulin, aculeatin increased cellular triglyceride levels and glycerol-3-phosphate dehydrogenase activity. This indicated that aculeatin could enhance the differentiation of preadipocytes into adipocytes. Further analyses using a DNA microarray and real-time quantitative reverse-transcription PCR showed an increase in the expression of peroxisome proliferator-activated receptor-γ target genes (Pparg, Ap2, Cd36, Glut4 and Adipoq) by aculeatin, suggesting that aculeatin enhances the differentiation of 3T3-L1 cells by modulating the expression of genes critical for adipogenesis. Interestingly, after treatment of differentiated adipocytes with aculeatin, glucose uptake and lipolysis were enhanced. Overall, our results suggested that aculeatin is an active compound in T. asiatica for enhancing both differentiation and lipolysis of adipocytes, which are useful for the treatment of lipid abnormalities as well as diabetes.

  3. Site-specific differences of insulin action in adipose tissue derived from normal prepubertal children

    International Nuclear Information System (INIS)

    Grohmann, Malcolm; Stewart, Claire; Welsh, Gavin; Hunt, Linda; Tavare, Jeremy; Holly, Jeff; Shield, Julian; Sabin, Matt; Crowne, Elizabeth

    2005-01-01

    Body fat distribution determines obesity-related morbidity in adults but little is known of the aetiology or pathophysiology in children. This study investigates differences in insulin-mediated metabolism in primary cell cultures of subcutaneous and visceral preadipocytes derived from prepubertal children. The impact of differentiation and responses to TNFα exposure was also investigated. Proliferation rates were greater in subcutaneous versus visceral preadipocytes (41 h(3) versus 69 h(4); P = 0.008). Insulin caused a dose-dependent increase in GSK-3 phosphorylation and an increase in MAPK phosphorylation over time, with increased sensitivity in subcutaneous preadipocytes. Post-differentiation, dose-dependent increases in GSK-3 phosphorylation were maintained, while MAPK phosphorylation was identical in both subtypes. No changes were observed in insulin receptor abundance pre-/post-differentiation. GLUT4 abundance was significantly increased in visceral versus subcutaneous adipocytes by 76(4)%; P = 0.03), coincidental with increased insulin-stimulated 2-deoxy-glucose transport (+150(26)% versus +79(10)%; P = 0.014) and further elevated by acute exposure to TNFα (+230(52)%; P = 0.019 versus +123(24)%; P = 0.025, respectively). TNFα also significantly increased basal glucose transport rates (+44(14)%; P = 0.006 versus +34(11)%; P = 0.007) and GLUT1 localisation to the plasma membrane. These data establish site-specific differences in subcutaneous and visceral fat cells from children. Responses to insulin varied with differentiation and TNFα exposure in the two depots, consistent with parallel changes in GLUT1/4 abundance and localisation

  4. Lipid accumulation and alkaline phosphatase activity in human ...

    African Journals Online (AJOL)

    2012-10-03

    Oct 3, 2012 ... can be influenced by fat depot origin in in vitro models. For example, preadipocytes ... University of Pretoria and Waterfall City Hospital, Johannesburg4 ..... system, the identities of which are currently unknown. The ability of ...

  5. Adipogenic human adenovirus Ad-36 induces commitment, differentiation, and lipid accumulation in human adipose-derived stem cells

    DEFF Research Database (Denmark)

    Pasarica, Magdalena; Mashtalir, Nazar; McAllister, Emily J

    2008-01-01

    Human adenovirus Ad-36 is causatively and correlatively linked with animal and human obesity, respectively. Ad-36 enhances differentiation of rodent preadipocytes, but its effect on adipogenesis in humans is unknown. To indirectly assess the role of Ad-36-induced adipogenesis in human obesity......, the effect of the virus on commitment, differentiation, and lipid accumulation was investigated in vitro in primary human adipose-derived stem/stromal cells (hASC). Ad-36 infected hASC in a time- and dose-dependent manner. Even in the presence of osteogenic media, Ad-36-infected hASC showed significantly...... greater lipid accumulation, suggestive of their commitment to the adipocyte lineage. Even in the absence of adipogenic inducers, Ad-36 significantly increased hASC differentiation, as indicated by a time-dependent expression of genes within the adipogenic cascade-CCAAT/Enhancer binding protein...

  6. Epidermis-type lipoxygenase 3 regulates adipocyte differentiation and peroxisome proliferator-activated receptor gamma activity

    DEFF Research Database (Denmark)

    Hallenborg, Philip; Jørgensen, Claus; Petersen, Rasmus K

    2010-01-01

    preadipocytes. Here, we show that forced expression of eLOX3 or addition of eLOX3 products stimulated adipogenesis under conditions that normally require an exogenous PPAR gamma ligand for differentiation. Hepoxilins, a group of oxidized arachidonic acid derivatives produced by eLOX3, bound to and activated...... PPAR gamma. Production of hepoxilins was increased transiently during the initial stages of adipogenesis. Furthermore, small interfering RNA-mediated or retroviral short hairpin RNA-mediated knockdown of eLOX3 expression abolished differentiation of 3T3-L1 preadipocytes. Finally, we demonstrate...... differentiation has remained enigmatic. Previously, we showed that lipoxygenase (LOX) activity is involved in activation of PPAR gamma during the early stages of adipocyte differentiation. Of the seven known murine LOXs, only the unconventional LOX epidermis-type lipoxygenase 3 (eLOX3) is expressed in 3T3-L1...

  7. Therapeutic effects of the allosteric protein tyrosine phosphatase 1B inhibitor KY-226 on experimental diabetes and obesity via enhancements in insulin and leptin signaling in mice

    Directory of Open Access Journals (Sweden)

    Yuma Ito

    2018-05-01

    Full Text Available The anti-diabetic and anti-obesity effects of the allosteric protein tyrosine phosphatase 1B (PTP1B inhibitor 4-(biphenyl-4-ylmethylsulfanylmethyl-N-(hexane-1-sulfonylbenzoylamide (KY-226 were pharmacologically evaluated. KY-226 inhibited human PTP1B activity (IC50 = 0.28 μM, but did not exhibit peroxisome proliferator-activated receptor γ (PPARγ agonist activity. In rodent preadipocytes (3T3-L1, KY-226 up to 10 μM had no effects on adipocyte differentiation, whereas pioglitazone, a PPARγ agonist, markedly promoted it. In human hepatoma-derived cells (HepG2, KY-226 (0.3–10 μM increased the phosphorylated insulin receptor (pIR produced by insulin. In db/db mice, the oral administration of KY-226 (10 and 30 mg/kg/day, 4 weeks significantly reduced plasma glucose and triglyceride levels as well as hemoglobin A1c values without increasing body weight gain, while pioglitazone exerted similar effects with increases in body weight gain. KY-226 attenuated plasma glucose elevations in the oral glucose tolerance test. KY-226 also increased pIR and phosphorylated Akt in the liver and femoral muscle. In high-fat diet-induced obese mice, the oral administration of KY-226 (30 and 60 mg/kg/day, 4 weeks decreased body weight gain, food consumption, and fat volume gain with increases in phosphorylated STAT3 in the hypothalamus. In conclusion, KY-226 exerted anti-diabetic and anti-obesity effects by enhancing insulin and leptin signaling, respectively. Keywords: PTP1B inhibitor, Diabetes, Obesity, Allosteric inhibitor, db/db mouse

  8. Composition of Overlapping Protein-Protein and Protein-Ligand Interfaces.

    Directory of Open Access Journals (Sweden)

    Ruzianisra Mohamed

    Full Text Available Protein-protein interactions (PPIs play a major role in many biological processes and they represent an important class of targets for therapeutic intervention. However, targeting PPIs is challenging because often no convenient natural substrates are available as starting point for small-molecule design. Here, we explored the characteristics of protein interfaces in five non-redundant datasets of 174 protein-protein (PP complexes, and 161 protein-ligand (PL complexes from the ABC database, 436 PP complexes, and 196 PL complexes from the PIBASE database and a dataset of 89 PL complexes from the Timbal database. In all cases, the small molecule ligands must bind at the respective PP interface. We observed similar amino acid frequencies in all three datasets. Remarkably, also the characteristics of PP contacts and overlapping PL contacts are highly similar.

  9. Par-4-mediated recruitment of Amida to the actin cytoskeleton leads to the induction of apoptosis

    International Nuclear Information System (INIS)

    Boosen, Meike; Vetterkind, Susanne; Koplin, Ansgar; Illenberger, Susanne; Preuss, Ute

    2005-01-01

    Par-4 (prostate apoptosis response-4) sensitizes cells to apoptotic stimuli, but the exact mechanisms are still poorly understood. Using Par-4 as bait in a yeast two-hybrid screen, we identified Amida as a novel interaction partner, a ubiquitously expressed protein which has been suggested to be involved in apoptotic processes. Complex formation of Par-4 and Amida occurs in vitro and in vivo and is mediated via the C-termini of both proteins, involving the leucine zipper of Par-4. Amida resides mainly in the nucleus but displays nucleo-cytoplasmic shuttling in heterokaryons. Upon coexpression with Par-4 in REF52.2 cells, Amida translocates to the cytoplasm and is recruited to actin filaments by Par-4, resulting in enhanced induction of apoptosis. The synergistic effect of Amida/Par-4 complexes on the induction of apoptosis is abrogated when either Amida/Par-4 complex formation or association of these complexes with the actin cytoskeleton is impaired, indicating that the Par-4-mediated relocation of Amida to the actin cytoskeleton is crucial for the pro-apoptotic function of Par-4/Amida complexes in REF52.2 cells. The latter results in enhanced phosphorylation of the regulatory light chain of myosin II (MLC) as has previously been shown for Par-4-mediated recruitment of DAP-like kinase (Dlk), suggesting that the recruitment of nuclear proteins involved in the regulation of apoptotic processes to the actin filament system by Par-4 represents a potent mechanism how Par-4 can trigger apoptosis

  10. Protein- protein interaction detection system using fluorescent protein microdomains

    Science.gov (United States)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2010-02-23

    The invention provides a protein labeling and interaction detection system based on engineered fragments of fluorescent and chromophoric proteins that require fused interacting polypeptides to drive the association of the fragments, and further are soluble and stable, and do not change the solubility of polypeptides to which they are fused. In one embodiment, a test protein X is fused to a sixteen amino acid fragment of GFP (.beta.-strand 10, amino acids 198-214), engineered to not perturb fusion protein solubility. A second test protein Y is fused to a sixteen amino acid fragment of GFP (.beta.-strand 11, amino acids 215-230), engineered to not perturb fusion protein solubility. When X and Y interact, they bring the GFP strands into proximity, and are detected by complementation with a third GFP fragment consisting of GFP amino acids 1-198 (strands 1-9). When GFP strands 10 and 11 are held together by interaction of protein X and Y, they spontaneous association with GFP strands 1-9, resulting in structural complementation, folding, and concomitant GFP fluorescence.

  11. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  12. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  13. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  14. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Park, Jinbong; Kim, Hye-Lin; Jeong, Mi-Young; Kim, Dae-Seung; Jeon, Yong-Deok; Jung, Yunu; Youn, Dong-Hyun; Kang, JongWook; So, Hong-Seob; Park, Raekil; Lee, Jong-Hyun; Shin, Soyoung; Kim, Su-Jin; Um, Jae-Young; Hong, Seung-Heon

    2016-09-01

    Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Evolution of protein-protein interactions

    Indian Academy of Sciences (India)

    Evolution of protein-protein interactions · Our interests in protein-protein interactions · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20.

  16. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  18. Specificity and affinity quantification of protein-protein interactions.

    Science.gov (United States)

    Yan, Zhiqiang; Guo, Liyong; Hu, Liang; Wang, Jin

    2013-05-01

    Most biological processes are mediated by the protein-protein interactions. Determination of the protein-protein structures and insight into their interactions are vital to understand the mechanisms of protein functions. Currently, compared with the isolated protein structures, only a small fraction of protein-protein structures are experimentally solved. Therefore, the computational docking methods play an increasing role in predicting the structures and interactions of protein-protein complexes. The scoring function of protein-protein interactions is the key responsible for the accuracy of the computational docking. Previous scoring functions were mostly developed by optimizing the binding affinity which determines the stability of the protein-protein complex, but they are often lack of the consideration of specificity which determines the discrimination of native protein-protein complex against competitive ones. We developed a scoring function (named as SPA-PP, specificity and affinity of the protein-protein interactions) by incorporating both the specificity and affinity into the optimization strategy. The testing results and comparisons with other scoring functions show that SPA-PP performs remarkably on both predictions of binding pose and binding affinity. Thus, SPA-PP is a promising quantification of protein-protein interactions, which can be implemented into the protein docking tools and applied for the predictions of protein-protein structure and affinity. The algorithm is implemented in C language, and the code can be downloaded from http://dl.dropbox.com/u/1865642/Optimization.cpp.

  19. Detection of protein complex from protein-protein interaction network using Markov clustering

    International Nuclear Information System (INIS)

    Ochieng, P J; Kusuma, W A; Haryanto, T

    2017-01-01

    Detection of complexes, or groups of functionally related proteins, is an important challenge while analysing biological networks. However, existing algorithms to identify protein complexes are insufficient when applied to dense networks of experimentally derived interaction data. Therefore, we introduced a graph clustering method based on Markov clustering algorithm to identify protein complex within highly interconnected protein-protein interaction networks. Protein-protein interaction network was first constructed to develop geometrical network, the network was then partitioned using Markov clustering to detect protein complexes. The interest of the proposed method was illustrated by its application to Human Proteins associated to type II diabetes mellitus. Flow simulation of MCL algorithm was initially performed and topological properties of the resultant network were analysed for detection of the protein complex. The results indicated the proposed method successfully detect an overall of 34 complexes with 11 complexes consisting of overlapping modules and 20 non-overlapping modules. The major complex consisted of 102 proteins and 521 interactions with cluster modularity and density of 0.745 and 0.101 respectively. The comparison analysis revealed MCL out perform AP, MCODE and SCPS algorithms with high clustering coefficient (0.751) network density and modularity index (0.630). This demonstrated MCL was the most reliable and efficient graph clustering algorithm for detection of protein complexes from PPI networks. (paper)

  20. Secoisolariciresinol diglucoside inhibits adipogenesis through the AMPK pathway.

    Science.gov (United States)

    Kang, JongWook; Park, Jinbong; Kim, Hye-Lin; Jung, Yunu; Youn, Dong-Hyun; Lim, Seona; Song, Gahee; Park, Hyewon; Jin, Jong Sik; Kwak, Hyun Jeong; Um, Jae-Young

    2018-02-05

    Flaxseeds are used to treat metabolic diseases such as type 2 diabetes, fatty liver, hyperlipidemia and obesity. Secoisolariciresinol diglucoside (SDG) is a main substance of lignan which belongs to the phytoestrogen family and exists abundantly in flaxseeds. In this study, SDG reduced the body weight and size of adipose tissue, and decreased protein expressions of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer-binding protein α (C/EBPα) in the high fat diet-fed-induced obese mice model. In the vitro study, we examined the anti-adipogenic effect of SDG during differentiation of 3T3-L1 cells into adipocytes. 3T3-L1 preadipocytes were differentiated and treated with various concentrations of SDG. Oil Red O staining was done to measure the quantity of lipid contents. As a result, SDG reduced lipid accumulation and decreased the expressions of adipogenic-related genes such as adipocyte fatty-acid-binding protein 2, adiponectin, and resistin. SDG also decreased the mRNA and protein levels of PPARγ and C/EBPα. Furthermore, phosphorylation levels of AMP-activated protein kinase α (AMPK α) and its upstream activator, liver kinase B1, were significantly increased by SDG in 3T3-L1 cells. These results suggest that SDG inhibits adipogenesis by activating AMPKα, suggesting it could be an attractive therapeutic candidate for the treatment of obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Coarse-grain modelling of protein-protein interactions

    NARCIS (Netherlands)

    Baaden, Marc; Marrink, Siewert J.

    2013-01-01

    Here, we review recent advances towards the modelling of protein-protein interactions (PPI) at the coarse-grained (CG) level, a technique that is now widely used to understand protein affinity, aggregation and self-assembly behaviour. PPI models of soluble proteins and membrane proteins are

  2. Functional polymorphism of IL-1 alpha and its potential role in obesity in humans and mice.

    Directory of Open Access Journals (Sweden)

    Jae-Young Um

    Full Text Available Proinflammatory cytokines secreted from adipose tissue contribute to the morbidity associated with obesity. IL-1α is one of the proinflammatory cytokines; however, it has not been clarified whether IL-1α may also cause obesity. In this study, we investigated whether polymorphisms in IL-1α contribute to human obesity. A total of 260 obese subjects were genotyped for IL-1α C-889T (rs1800587 and IL-1α G+4845T (rs17561. Analyses of genotype distributions revealed that both IL-1α polymorphisms C-889T (rs1800587 and G+4845T (rs17561 were associated with an increase in body mass index in obese healthy women. In addition, the effect of rs1800587 on the transcriptional activity of IL-1α was explored in pre-adipocyte 3T3-L1 cells. Significant difference was found between the rs1800587 polymorphism in the regulatory region of the IL-1α gene and transcriptional activity. We extended these observations in vivo to a high-fat diet-induced obese mouse model and in vitro to pre-adipocyte 3T3-L1 cells. IL-1α levels were dramatically augmented in obese mice, and triglyceride was increased 12 hours after IL-1α injection. Taken together, IL-1α treatment regulated the differentiation of preadipocytes. IL-1α C-889T (rs1800587 is a functional polymorphism of IL-1α associated with obesity. IL-1α may have a critical function in the development of obesity.

  3. Detection of protein-protein interactions by ribosome display and protein in situ immobilisation.

    Science.gov (United States)

    He, Mingyue; Liu, Hong; Turner, Martin; Taussig, Michael J

    2009-12-31

    We describe a method for identification of protein-protein interactions by combining two cell-free protein technologies, namely ribosome display and protein in situ immobilisation. The method requires only PCR fragments as the starting material, the target proteins being made through cell-free protein synthesis, either associated with their encoding mRNA as ribosome complexes or immobilised on a solid surface. The use of ribosome complexes allows identification of interacting protein partners from their attached coding mRNA. To demonstrate the procedures, we have employed the lymphocyte signalling proteins Vav1 and Grb2 and confirmed the interaction between Grb2 and the N-terminal SH3 domain of Vav1. The method has promise for library screening of pairwise protein interactions, down to the analytical level of individual domain or motif mapping.

  4. Coevolution study of mitochondria respiratory chain proteins: toward the understanding of protein--protein interaction.

    Science.gov (United States)

    Yang, Ming; Ge, Yan; Wu, Jiayan; Xiao, Jingfa; Yu, Jun

    2011-05-20

    Coevolution can be seen as the interdependency between evolutionary histories. In the context of protein evolution, functional correlation proteins are ever-present coordinated evolutionary characters without disruption of organismal integrity. As to complex system, there are two forms of protein--protein interactions in vivo, which refer to inter-complex interaction and intra-complex interaction. In this paper, we studied the difference of coevolution characters between inter-complex interaction and intra-complex interaction using "Mirror tree" method on the respiratory chain (RC) proteins. We divided the correlation coefficients of every pairwise RC proteins into two groups corresponding to the binary protein--protein interaction in intra-complex and the binary protein--protein interaction in inter-complex, respectively. A dramatical discrepancy is detected between the coevolution characters of the two sets of protein interactions (Wilcoxon test, p-value = 4.4 × 10(-6)). Our finding reveals some critical information on coevolutionary study and assists the mechanical investigation of protein--protein interaction. Furthermore, the results also provide some unique clue for supramolecular organization of protein complexes in the mitochondrial inner membrane. More detailed binding sites map and genome information of nuclear encoded RC proteins will be extraordinary valuable for the further mitochondria dynamics study. Copyright © 2011. Published by Elsevier Ltd.

  5. A Novel Approach for Protein-Named Entity Recognition and Protein-Protein Interaction Extraction

    Directory of Open Access Journals (Sweden)

    Meijing Li

    2015-01-01

    Full Text Available Many researchers focus on developing protein-named entity recognition (Protein-NER or PPI extraction systems. However, the studies about these two topics cannot be merged well; then existing PPI extraction systems’ Protein-NER still needs to improve. In this paper, we developed the protein-protein interaction extraction system named PPIMiner based on Support Vector Machine (SVM and parsing tree. PPIMiner consists of three main models: natural language processing (NLP model, Protein-NER model, and PPI discovery model. The Protein-NER model, which is named ProNER, identifies the protein names based on two methods: dictionary-based method and machine learning-based method. ProNER is capable of identifying more proteins than dictionary-based Protein-NER model in other existing systems. The final discovered PPIs extracted via PPI discovery model are represented in detail because we showed the protein interaction types and the occurrence frequency through two different methods. In the experiments, the result shows that the performances achieved by our ProNER and PPI discovery model are better than other existing tools. PPIMiner applied this protein-named entity recognition approach and parsing tree based PPI extraction method to improve the performance of PPI extraction. We also provide an easy-to-use interface to access PPIs database and an online system for PPIs extraction and Protein-NER.

  6. Human adenovirus Ad36 and its E4orf1 gene enhance cellular glucose uptake even in the presence of inflammatory cytokines.

    Science.gov (United States)

    Na, Ha-Na; Dubuisson, Olga; Hegde, Vijay; Nam, Jae-Hwan; Dhurandhar, Nikhil V

    2016-05-01

    Aging and obesity are associated with elevated pro-inflammatory cytokines such as monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)α, which are linked to insulin resistance. Anti-inflammatory agents have marginal effect in improving insulin resistance. Hence, agents are needed to improve glycemic control despite the inflammation. Ad36, a human adenovirus, increases TNFα and MCP1 mRNA in adipose tissue, yet improves glycemic control in mice. Ad36 via its E4orf1 gene, up-regulates AKT/glucose transporter (Glut)-4 signaling to enhance cellular glucose uptake. Directly test a role of Ad36, or E4orf1 in enhancing cellular glucose uptake in presence of inflammatory cytokines. Experiment 1: 3T3-L1 preadipocytes were treated with 0, 10 or 100 ng/mL lipopolysaccharides (LPS), and infected with 0 or 5 plaque forming units (PFU) of Ad36/cell. 3T3-L1 cells that stably and inducibly express E4orf1 or a null vector (pTRE-E4orf1 or pTRE-null cells), were similarly treated with LPS and then with doxycycline, to induce E4orf1. Experiment 2: 3T3L1 preadipocytes were treated with 25 nM MCP1 or 20 nM TNFα for 16 h, followed by infection with 0 or 5 PFU of Ad36/cell. Experiment 3: pTRE-E4orf1 or -null cells were similarly treated with MCP1 or TNFα followed by doxycycline to induce E4orf1. Cellular glucose uptake and cellular signaling were determined 72 h post-Ad36 infection or E4orf1-induction, in continued presence of MCP1 or TNFα. In 3T3-L1 preadipocytes, Ad36, but not E4orf1, increased MCP1 and TNFα mRNA, in presence of LPS stimulation. Ad36 or E4orf1 up-regulated AKT-phosphorylation and Glut4 and increased glucose uptake (P E4orf1 does not appear to stimulate inflammatory response. Ad36 and E4orf1 both enhance cellular glucose uptake even in presence of inflammation. Further research is needed to harness this novel and beneficial property of E4orf1 to improve hyperglycemia despite chronic inflammation that is commonly present in aging and

  7. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  8. Protein surface shielding agents in protein crystallization

    International Nuclear Information System (INIS)

    Hašek, J.

    2011-01-01

    The crystallization process can be controlled by protein surface shielding agents blocking undesirable competitive adhesion modes during non-equilibrium processes of deposition of protein molecules on the surface of growing crystalline blocks. The hypothesis is based on a number of experimental proofs from diffraction experiments and also retrieved from the Protein Data Bank. The molecules adhering temporarily on the surface of protein molecules change the propensity of protein molecules to deposit on the crystal surface in a definite position and orientation. The concepts of competitive adhesion modes and protein surface shielding agents acting on the surface of molecules in a non-equilibrium process of protein crystallization provide a useful platform for the control of crystallization. The desirable goal, i.e. a transient preference of a single dominating adhesion mode between protein molecules during crystallization, leads to uniform deposition of proteins in a crystal. This condition is the most important factor for diffraction quality and thus also for the accuracy of protein structure determination. The presented hypothesis is a generalization of the experimentally well proven behaviour of hydrophilic polymers on the surface of protein molecules of other compounds

  9. The Development of Protein Microarrays and Their Applications in DNA-Protein and Protein-Protein Interaction Analyses of Arabidopsis Transcription Factors

    Science.gov (United States)

    Gong, Wei; He, Kun; Covington, Mike; Dinesh-Kumar, S. P.; Snyder, Michael; Harmer, Stacey L.; Zhu, Yu-Xian; Deng, Xing Wang

    2009-01-01

    We used our collection of Arabidopsis transcription factor (TF) ORFeome clones to construct protein microarrays containing as many as 802 TF proteins. These protein microarrays were used for both protein-DNA and protein-protein interaction analyses. For protein-DNA interaction studies, we examined AP2/ERF family TFs and their cognate cis-elements. By careful comparison of the DNA-binding specificity of 13 TFs on the protein microarray with previous non-microarray data, we showed that protein microarrays provide an efficient and high throughput tool for genome-wide analysis of TF-DNA interactions. This microarray protein-DNA interaction analysis allowed us to derive a comprehensive view of DNA-binding profiles of AP2/ERF family proteins in Arabidopsis. It also revealed four TFs that bound the EE (evening element) and had the expected phased gene expression under clock-regulation, thus providing a basis for further functional analysis of their roles in clock regulation of gene expression. We also developed procedures for detecting protein interactions using this TF protein microarray and discovered four novel partners that interact with HY5, which can be validated by yeast two-hybrid assays. Thus, plant TF protein microarrays offer an attractive high-throughput alternative to traditional techniques for TF functional characterization on a global scale. PMID:19802365

  10. HuR binds to a single site on the C/EBPβ mRNA of 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Jones, Heath; Carver, Melinda; Pekala, Phillip H.

    2007-01-01

    HuR is a ligand for nuclear mRNAs containing adenylate-uridylate rich elements in the 3'-untranslated region. Once bound to the mRNA, HuR is recognized by adapter proteins which then facilitate nuclear export of the complex. In the cytosol HuR is thought to function to control stability and translation of its ligand message. In the 3T3-L1 cells HuR is constitutively expressed and localized predominantly to the nucleus in the preadipocytes. However within 30 min of exposure to the differentiation stimulus, the HuR content in the cytosol increases consistent with HuR regulating the availability of relevant mRNAs for translation. Using in vitro RNA gel shifts, we have demonstrated that the C/EBPβ message is a ligand for HuR and that the single binding site is an adenylate-uridylate rich element in the 3'-untranslated region

  11. Acute Lung Injury: Making the Injured Lung Perform Better and Rebuilding Healthy Lungs

    Science.gov (United States)

    2014-04-01

    of all genes was the imprinted  maternally  expressed gene Gtl2  (P value  interaction  of time and cell type = 3.59 × 10–5). By qRT- PCR analysis, we...exhibit aberrant  imprinting of the Dlk1-Dio3 gene cluster in an exclusively  paternal   pattern, with resultant silencing of  maternally  expressed genes... maternally  inherited  Gtl2 genes were only evident postnatally, and in mice with unipa- rental  paternal  disomy of distal chromosome 12, lethality was

  12. Protein sequence comparison and protein evolution

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, W.R. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Biochemistry

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. This tutorial examines how the information conserved during the evolution of a protein molecule can be used to infer reliably homology, and thus a shared proteinfold and possibly a shared active site or function. The authors start by reviewing a geological/evolutionary time scale. Next they look at the evolution of several protein families. During the tutorial, these families will be used to demonstrate that homologous protein ancestry can be inferred with confidence. They also examine different modes of protein evolution and consider some hypotheses that have been presented to explain the very earliest events in protein evolution. The next part of the tutorial will examine the technical aspects of protein sequence comparison. Both optimal and heuristic algorithms and their associated parameters that are used to characterize protein sequence similarities are discussed. Perhaps more importantly, they survey the statistics of local similarity scores, and how these statistics can both be used to improve the selectivity of a search and to evaluate the significance of a match. They them examine distantly related members of three protein families, the serine proteases, the glutathione transferases, and the G-protein-coupled receptors (GCRs). Finally, the discuss how sequence similarity can be used to examine internal repeated or mosaic structures in proteins.

  13. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  14. Proteins interacting with cloning scars: a source of false positive protein-protein interactions.

    Science.gov (United States)

    Banks, Charles A S; Boanca, Gina; Lee, Zachary T; Florens, Laurence; Washburn, Michael P

    2015-02-23

    A common approach for exploring the interactome, the network of protein-protein interactions in cells, uses a commercially available ORF library to express affinity tagged bait proteins; these can be expressed in cells and endogenous cellular proteins that copurify with the bait can be identified as putative interacting proteins using mass spectrometry. Control experiments can be used to limit false-positive results, but in many cases, there are still a surprising number of prey proteins that appear to copurify specifically with the bait. Here, we have identified one source of false-positive interactions in such studies. We have found that a combination of: 1) the variable sequence of the C-terminus of the bait with 2) a C-terminal valine "cloning scar" present in a commercially available ORF library, can in some cases create a peptide motif that results in the aberrant co-purification of endogenous cellular proteins. Control experiments may not identify false positives resulting from such artificial motifs, as aberrant binding depends on sequences that vary from one bait to another. It is possible that such cryptic protein binding might occur in other systems using affinity tagged proteins; this study highlights the importance of conducting careful follow-up studies where novel protein-protein interactions are suspected.

  15. The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration

    NARCIS (Netherlands)

    Huisman, I.H.; Prádanos, P.; Hernández, A.

    2000-01-01

    It was studied how protein-protein and protein-membrane interactions influence the filtration performance during the ultrafiltration of protein solutions over polymeric membranes. This was done by measuring flux, streaming potential, and protein transmission during filtration of bovine serum albumin

  16. Fluorogen-activating proteins: beyond classical fluorescent proteins

    Directory of Open Access Journals (Sweden)

    Shengnan Xu

    2018-05-01

    Full Text Available Fluorescence imaging is a powerful technique for the real-time noninvasive monitoring of protein dynamics. Recently, fluorogen activating proteins (FAPs/fluorogen probes for protein imaging were developed. Unlike the traditional fluorescent proteins (FPs, FAPs do not fluoresce unless bound to their specific small-molecule fluorogens. When using FAPs/fluorogen probes, a washing step is not required for the removal of free probes from the cells, thus allowing rapid and specific detection of proteins in living cells with high signal-to-noise ratio. Furthermore, with different fluorogens, living cell multi-color proteins labeling system was developed. In this review, we describe about the discovery of FAPs, the design strategy of FAP fluorogens, the application of the FAP technology and the advances of FAP technology in protein labeling systems. KEY WORDS: Fluorogen activating proteins, Fluorogens, Genetically encoded sensors, Fluorescence imaging, Molecular imaging

  17. Park7 expression influences myotube size and myosin expression in muscle.

    Directory of Open Access Journals (Sweden)

    Hui Yu

    Full Text Available Callipyge sheep exhibit postnatal muscle hypertrophy due to the up-regulation of DLK1 and/or RTL1. The up-regulation of PARK7 was identified in hypertrophied muscles by microarray analysis and further validated by quantitative PCR. The expression of PARK7 in hypertrophied muscle of callipyge lambs was confirmed to be up-regulated at the protein level. PARK7 was previously identified to positively regulate PI3K/AKT pathway by suppressing the phosphatase activity of PTEN in mouse fibroblasts. The purpose of this study was to investigate the effects of PARK7 in muscle growth and protein accretion in response to IGF1. Primary myoblasts isolated from Park7 (+/+ and Park7 (-/- mice were used to examine the effect of differential expression of Park7. The Park7 (+/+ myotubes had significantly larger diameters and more total sarcomeric myosin expression than Park7 (-/- myotubes. IGF1 treatment increased the mRNA abundance of Myh4, Myh7 and Myh8 between 20-40% in Park7 (+/+ myotubes relative to Park7 (-/-. The level of AKT phosphorylation was increased in Park7 (+/+ myotubes at all levels of IGF1 supplementation. After removal of IGF1, the Park7 (+/+ myotubes maintained higher AKT phosphorylation through 3 hours. PARK7 positively regulates the PI3K/AKT pathway by inhibition of PTEN phosphatase activity in skeletal muscle. The increased PARK7 expression can increase protein synthesis and result in myotube hypertrophy. These results support the hypothesis that elevated expression of PARK7 in callipyge muscle would increase levels of AKT activity to cause hypertrophy in response to the normal IGF1 signaling in rapidly growing lambs. Increasing expression of PARK7 could be a novel mechanism to increase protein accretion and muscle growth in livestock or help improve muscle mass with disease or aging.

  18. Protein immobilization strategies for protein biochips

    NARCIS (Netherlands)

    Rusmini, F.; Rusmini, Federica; Zhong, Zhiyuan; Feijen, Jan

    2007-01-01

    In the past few years, protein biochips have emerged as promising proteomic and diagnostic tools for obtaining information about protein functions and interactions. Important technological innovations have been made. However, considerable development is still required, especially regarding protein

  19. Adipogenesis stimulates the nuclear localization of EWS with an increase in its O-GlcNAc glycosylation in 3T3-L1 cells

    International Nuclear Information System (INIS)

    Li, Qiang; Kamemura, Kazuo

    2014-01-01

    Highlights: • The majority of EWS localizes stably in the cytosol in 3T3-L1 preadipocytes. • Adipogenic stimuli induce the nuclear localization of EWS. • Adipogenesis promotes O-GlcNAcylation of EWS. • O-GlcNAcylation stimulates the recruitment of EWS to the nuclear periphery. - Abstract: Although the Ewing sarcoma (EWS) proto-oncoprotein is found in the nucleus and cytosol and is associated with the cell membrane, the regulatory mechanisms of its subcellular localization are still unclear. Here we found that adipogenic stimuli induce the nuclear localization of EWS in 3T3-L1 cells. Tyrosine phosphorylation in the C-terminal PY-nuclear localization signal of EWS was negative throughout adipogenesis. Instead, an adipogenesis-dependent increase in O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation of EWS was observed. Pharmacological inactivation of O-GlcNAcase in preadipocytes promoted perinuclear localization of EWS. Our findings suggest that the nuclear localization of EWS is partly regulated by the glycosylation

  20. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    International Nuclear Information System (INIS)

    Yu, P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behavior and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.

  1. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  2. Mapping Protein-Protein Interactions by Quantitative Proteomics

    DEFF Research Database (Denmark)

    Dengjel, Joern; Kratchmarova, Irina; Blagoev, Blagoy

    2010-01-01

    spectrometry (MS)-based proteomics in combination with affinity purification protocols has become the method of choice to map and track the dynamic changes in protein-protein interactions, including the ones occurring during cellular signaling events. Different quantitative MS strategies have been used...... to characterize protein interaction networks. In this chapter we describe in detail the use of stable isotope labeling by amino acids in cell culture (SILAC) for the quantitative analysis of stimulus-dependent dynamic protein interactions.......Proteins exert their function inside a cell generally in multiprotein complexes. These complexes are highly dynamic structures changing their composition over time and cell state. The same protein may thereby fulfill different functions depending on its binding partners. Quantitative mass...

  3. ProDis-ContSHC: learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval.

    Science.gov (United States)

    Wang, Jingyan; Gao, Xin; Wang, Quanquan; Li, Yongping

    2012-05-08

    The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database. In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N(i) and N(j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N(i) and N(j).Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update the Protein Hierarchial

  4. Genome-wide profiling of transcription factor binding and epigenetic marks in adipocytes by ChIP-seq

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Mandrup, Susanne

    2014-01-01

    of the most widely used of these technologies. Using these methods, association of transcription factors, cofactors, and epigenetic marks can be mapped to DNA in a genome-wide manner. Here, we provide a detailed protocol for performing ChIP-seq analyses in preadipocytes and adipocytes. We have focused mainly...

  5. Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation

    DEFF Research Database (Denmark)

    Siersbæk, Rasmus; Madsen, Jesper Grud Skat; Javierre, Biola Maria

    2017-01-01

    -C to demonstrate a rapid reorganization of promoter-anchored chromatin loops within 4 hr after inducing differentiation of 3T3-L1 preadipocytes. The establishment of new promoter-enhancer loops is tightly coupled to activation of poised (histone H3 lysine 4 mono- and dimethylated) enhancers, as evidenced...

  6. Biophysics of protein evolution and evolutionary protein biophysics

    Science.gov (United States)

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  7. High quality protein microarray using in situ protein purification

    Directory of Open Access Journals (Sweden)

    Fleischmann Robert D

    2009-08-01

    Full Text Available Abstract Background In the postgenomic era, high throughput protein expression and protein microarray technologies have progressed markedly permitting screening of therapeutic reagents and discovery of novel protein functions. Hexa-histidine is one of the most commonly used fusion tags for protein expression due to its small size and convenient purification via immobilized metal ion affinity chromatography (IMAC. This purification process has been adapted to the protein microarray format, but the quality of in situ His-tagged protein purification on slides has not been systematically evaluated. We established methods to determine the level of purification of such proteins on metal chelate-modified slide surfaces. Optimized in situ purification of His-tagged recombinant proteins has the potential to become the new gold standard for cost-effective generation of high-quality and high-density protein microarrays. Results Two slide surfaces were examined, chelated Cu2+ slides suspended on a polyethylene glycol (PEG coating and chelated Ni2+ slides immobilized on a support without PEG coating. Using PEG-coated chelated Cu2+ slides, consistently higher purities of recombinant proteins were measured. An optimized wash buffer (PBST composed of 10 mM phosphate buffer, 2.7 mM KCl, 140 mM NaCl and 0.05% Tween 20, pH 7.4, further improved protein purity levels. Using Escherichia coli cell lysates expressing 90 recombinant Streptococcus pneumoniae proteins, 73 proteins were successfully immobilized, and 66 proteins were in situ purified with greater than 90% purity. We identified several antigens among the in situ-purified proteins via assays with anti-S. pneumoniae rabbit antibodies and a human patient antiserum, as a demonstration project of large scale microarray-based immunoproteomics profiling. The methodology is compatible with higher throughput formats of in vivo protein expression, eliminates the need for resin-based purification and circumvents

  8. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    International Nuclear Information System (INIS)

    An, Lei; Pang, Yun-Wei; Gao, Hong-Mei; Tao, Li; Miao, Kai; Wu, Zhong-Hong

    2012-01-01

    Highlights: ► Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. ► fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. ► fat-1 reduces lipid deposition in 3T3-L1 adipocytes. ► The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  9. Can infrared spectroscopy provide information on protein-protein interactions?

    Science.gov (United States)

    Haris, Parvez I

    2010-08-01

    For most biophysical techniques, characterization of protein-protein interactions is challenging; this is especially true with methods that rely on a physical phenomenon that is common to both of the interacting proteins. Thus, for example, in IR spectroscopy, the carbonyl vibration (1600-1700 cm(-1)) associated with the amide bonds from both of the interacting proteins will overlap extensively, making the interpretation of spectral changes very complicated. Isotope-edited infrared spectroscopy, where one of the interacting proteins is uniformly labelled with (13)C or (13)C,(15)N has been introduced as a solution to this problem, enabling the study of protein-protein interactions using IR spectroscopy. The large shift of the amide I band (approx. 45 cm(-1) towards lower frequency) upon (13)C labelling of one of the proteins reveals the amide I band of the unlabelled protein, enabling it to be used as a probe for monitoring conformational changes. With site-specific isotopic labelling, structural resolution at the level of individual amino acid residues can be achieved. Furthermore, the ability to record IR spectra of proteins in diverse environments means that isotope-edited IR spectroscopy can be used to structurally characterize difficult systems such as protein-protein complexes bound to membranes or large insoluble peptide/protein aggregates. In the present article, examples of application of isotope-edited IR spectroscopy for studying protein-protein interactions are provided.

  10. Protein and protein hydrolysates in sports nutrition.

    Science.gov (United States)

    van Loon, Luc J C; Kies, Arie K; Saris, Wim H M

    2007-08-01

    With the increasing knowledge about the role of nutrition in increasing exercise performance, it has become clear over the last 2 decades that amino acids, protein, and protein hydrolysates can play an important role. Most of the attention has been focused on their effects at a muscular level. As these nutrients are ingested, however, it also means that gastrointestinal digestibility and absorption can modulate their efficacy significantly. Therefore, discussing the role of amino acids, protein, and protein hydrolysates in sports nutrition entails holding a discussion on all levels of the metabolic route. On May 28-29, 2007, a small group of researchers active in the field of exercise science and protein metabolism presented an overview of the different aspects of the application of protein and protein hydrolysates in sports nutrition. In addition, they were asked to share their opinions on the future progress in their fields of research. In this overview, an introduction to the workshop and a short summary of its outcome is provided.

  11. ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-05-08

    Background: The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity/similarity measure for comparing a pair of proteins. This kind of pairwise measures suffer from the limitation of neglecting the distribution of other proteins and thus cannot satisfy the need for high accuracy of the retrieval systems. Recent work in the machine learning community has shown that exploiting the global structure of the database and learning the contextual dissimilarity/similarity measures can improve the retrieval performance significantly. However, most existing contextual dissimilarity/similarity learning algorithms work in an unsupervised manner, which does not utilize the information of the known class labels of proteins in the database.Results: In this paper, we propose a novel protein-protein dissimilarity learning algorithm, ProDis-ContSHC. ProDis-ContSHC regularizes an existing dissimilarity measure dij by considering the contextual information of the proteins. The context of a protein is defined by its neighboring proteins. The basic idea is, for a pair of proteins (i, j), if their context N (i) and N (j) is similar to each other, the two proteins should also have a high similarity. We implement this idea by regularizing dij by a factor learned from the context N (i) and N (j). Moreover, we divide the context to hierarchial sub-context and get the contextual dissimilarity vector for each protein pair. Using the class label information of the proteins, we select the relevant (a pair of proteins that has the same class labels) and irrelevant (with different labels) protein pairs, and train an SVM model to distinguish between their contextual dissimilarity vectors. The SVM model is further used to learn a supervised regularizing factor. Finally, with the new Supervised learned Dissimilarity measure, we update

  12. Targeting protein-protein interaction between MLL1 and reciprocal proteins for leukemia therapy.

    Science.gov (United States)

    Wang, Zhi-Hui; Li, Dong-Dong; Chen, Wei-Lin; You, Qi-Dong; Guo, Xiao-Ke

    2018-01-15

    The mixed lineage leukemia protein-1 (MLL1), as a lysine methyltransferase, predominantly regulates the methylation of histone H3 lysine 4 (H3K4) and functions in hematopoietic stem cell (HSC) self-renewal. MLL1 gene fuses with partner genes that results in the generation of MLL1 fusion proteins (MLL1-FPs), which are frequently detected in acute leukemia. In the progress of leukemogenesis, a great deal of proteins cooperate with MLL1 to form multiprotein complexes serving for the dysregulation of H3K4 methylation, the overexpression of homeobox (HOX) cluster genes, and the consequent generation of leukemia. Hence, disrupting the interactions between MLL1 and the reciprocal proteins has been considered to be a new treatment strategy for leukemia. Here, we reviewed potential protein-protein interactions (PPIs) between MLL1 and its reciprocal proteins, and summarized the inhibitors to target MLL1 PPIs. The druggability of MLL1 PPIs for leukemia were also discussed. Copyright © 2017. Published by Elsevier Ltd.

  13. Protein kinase substrate identification on functional protein arrays

    Directory of Open Access Journals (Sweden)

    Zhou Fang

    2008-02-01

    Full Text Available Abstract Background Over the last decade, kinases have emerged as attractive therapeutic targets for a number of different diseases, and numerous high throughput screening efforts in the pharmaceutical community are directed towards discovery of compounds that regulate kinase function. The emerging utility of systems biology approaches has necessitated the development of multiplex tools suitable for proteomic-scale experiments to replace lower throughput technologies such as mass spectroscopy for the study of protein phosphorylation. Recently, a new approach for identifying substrates of protein kinases has applied the miniaturized format of functional protein arrays to characterize phosphorylation for thousands of candidate protein substrates in a single experiment. This method involves the addition of protein kinases in solution to arrays of immobilized proteins to identify substrates using highly sensitive radioactive detection and hit identification algorithms. Results To date, the factors required for optimal performance of protein array-based kinase substrate identification have not been described. In the current study, we have carried out a detailed characterization of the protein array-based method for kinase substrate identification, including an examination of the effects of time, buffer compositions, and protein concentration on the results. The protein array approach was compared to standard solution-based assays for assessing substrate phosphorylation, and a correlation of greater than 80% was observed. The results presented here demonstrate how novel substrates for protein kinases can be quickly identified from arrays containing thousands of human proteins to provide new clues to protein kinase function. In addition, a pooling-deconvolution strategy was developed and applied that enhances characterization of specific kinase-substrate relationships and decreases reagent consumption. Conclusion Functional protein microarrays are an

  14. Protein kinesis: The dynamics of protein trafficking and stability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The purpose of this conference is to provide a multidisciplinary forum for exchange of state-of-the-art information on protein kinesis. This volume contains abstracts of papers in the following areas: protein folding and modification in the endoplasmic reticulum; protein trafficking; protein translocation and folding; protein degradation; polarity; nuclear trafficking; membrane dynamics; and protein import into organelles.

  15. Surgical intervention in central toxic keratopathy.

    Science.gov (United States)

    Tu, Kyaw L; Aslanides, Ioannis M

    2012-05-03

    Purpose. To report management and outcome of 3 cases of bilateral central toxic keratopathy (CTK). Methods. A retrospective chart review on 3 laser-assisted in situ keratomileusis patients who developed CTK within a short time of one another. Results. Patient A had flap lifts and irrigation (FL+I) twice in the right eye (OD) on postoperative day 1 at diffuse lamellar keratitis (DLK) stage 3 and once each on days 1 (at DLK stage 3) and 5 (at CTK) for the left eye (OS). She attained 20/20 unaided visual acuity (UVA) OD at 1 month. Her UVA OS remained at 20/32 but best-corrected visual acuity (BCVA) gradually improved to 20/25 at 8 months. Patient B had right FL+I on day 3 and left FL+I on day 5 (both for CTK). His OS achieved full visual potential (20/25 UVA) by 1 month but UVA OD was reduced to 20/25 (preoperative BCVA 20/20) at 8 months. Patient C had medical management only. Her preoperative BCVA OD of 20/33 fell to 20/50 postoperative UCVA/BCVA; OS regained full visual potential of 20/40 between 2 and 8 months. Patient A's OD did not develop a full-blown CTK; instead an arrested CTK resulted. All except that one eye had initial hyperopic/astigmatic errors that gradually lessened. Artemis II imaging confirmed early stromal loss posterior to the flap with stroma regaining some thickness over the following months. Conclusions. Surgical intervention in cases of CTK may improve clinical outcomes.

  16. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  17. Lactacystin inhibits 3T3-L1 adipocyte differentiation through induction of CHOP-10 expression

    International Nuclear Information System (INIS)

    Li Xi; Huang Haiyan; Chen Jiegen; Jiang Lin; Liu Honglei; Liu Deguo; Song Tanjing; He Qun; Ma Chungu; Ma Duan; Song Houyan; Tang Qiqun

    2006-01-01

    Hormonal induction triggers a cascade leading to the expression of CCAAT/enhancer-binding protein(C/EBP)α and peroxisome proliferator-activated receptor (PPAR) γ, C/EBPα, and PPARγ turns on series of adipocyte genes that give rise to the adipocyte phenotype. Previous findings indicate that C/EBPβ, a transcriptional activator of the C/EBPα and PPARγ genes, is rapidly expressed after induction, but lacks DNA-binding activity and therefore cannot activate transcription of the C/EBPα and PPARγ genes early in the differentiation program. Acquisition of DNA-binding activity of C/EBPβ occurs when CHOP-10, a dominant-negative form of C/EBP family members, is down-regulated and becomes hyperphosphorylated as preadipocytes traverse the G 1 -S checkpoint of mitotic clonal expansion. Evidences are presented in this report that lactacystin, a proteasome inhibitor, up-regulated the CHOP-10 expression, blocked the DNA-binding activity of C/EBPβ, and subsequently inhibited MCE as well as adipocyte differentiation

  18. Insulin like growth factor-1/insulin bypasses Pref-1/FA1-mediated inhibition of adipocyte differentiation

    DEFF Research Database (Denmark)

    Zhang, Hongbin; Nøhr, Jane; Jensen, Charlotte Harken

    2003-01-01

    that forced expression of the soluble form, FA1, or full-length Pref-1 did not inhibit adipocyte differentiation of 3T3-L1 cells when differentiation was induced by standard treatment with methylisobutylxanthine, dexamethasone, and high concentrations of insulin. However, forced expression of either form...... of Pref-1/FA1 in 3T3-L1 or 3T3-F442A cells inhibited adipocyte differentiation when insulin or insulin-like growth factor-1 (IGF-1) was omitted from the differentiation mixture. We demonstrate that the level of the mature form of the IGF-1 receptor is reduced and that IGF-1-dependent activation of p42/p44...... mitogen-activated protein kinases (MAPKs) is compromised in preadipocytes with forced expression of Pref-1. This is accompanied by suppression of clonal expansion and terminal differentiation. Accordingly, supplementation with insulin or IGF-1 rescued p42/p44 MAPK activation, clonal expansion...

  19. Molecular tweezers modulate 14-3-3 protein-protein interactions

    Science.gov (United States)

    Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klärner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian

    2013-03-01

    Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins—a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)—in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

  20. Changes in protein composition and protein phosphorylation during ...

    African Journals Online (AJOL)

    Changes in protein profiles and protein phosphorylation were studied in various stages of germinating somatic and zygotic embryos. Many proteins, which were expressed in cotyledonary stage somatic embryos, were also present in the zygotic embryos obtained from mature dry seed. The intensity of 22 kDa protein was ...

  1. An ontology-based search engine for protein-protein interactions.

    Science.gov (United States)

    Park, Byungkyu; Han, Kyungsook

    2010-01-18

    Keyword matching or ID matching is the most common searching method in a large database of protein-protein interactions. They are purely syntactic methods, and retrieve the records in the database that contain a keyword or ID specified in a query. Such syntactic search methods often retrieve too few search results or no results despite many potential matches present in the database. We have developed a new method for representing protein-protein interactions and the Gene Ontology (GO) using modified Gödel numbers. This representation is hidden from users but enables a search engine using the representation to efficiently search protein-protein interactions in a biologically meaningful way. Given a query protein with optional search conditions expressed in one or more GO terms, the search engine finds all the interaction partners of the query protein by unique prime factorization of the modified Gödel numbers representing the query protein and the search conditions. Representing the biological relations of proteins and their GO annotations by modified Gödel numbers makes a search engine efficiently find all protein-protein interactions by prime factorization of the numbers. Keyword matching or ID matching search methods often miss the interactions involving a protein that has no explicit annotations matching the search condition, but our search engine retrieves such interactions as well if they satisfy the search condition with a more specific term in the ontology.

  2. Water-Protein Interactions: The Secret of Protein Dynamics

    Directory of Open Access Journals (Sweden)

    Silvia Martini

    2013-01-01

    Full Text Available Water-protein interactions help to maintain flexible conformation conditions which are required for multifunctional protein recognition processes. The intimate relationship between the protein surface and hydration water can be analyzed by studying experimental water properties measured in protein systems in solution. In particular, proteins in solution modify the structure and the dynamics of the bulk water at the solute-solvent interface. The ordering effects of proteins on hydration water are extended for several angstroms. In this paper we propose a method for analyzing the dynamical properties of the water molecules present in the hydration shells of proteins. The approach is based on the analysis of the effects of protein-solvent interactions on water protons NMR relaxation parameters. NMR relaxation parameters, especially the nonselective (R1NS and selective (R1SE spin-lattice relaxation rates of water protons, are useful for investigating the solvent dynamics at the macromolecule-solvent interfaces as well as the perturbation effects caused by the water-macromolecule interactions on the solvent dynamical properties. In this paper we demonstrate that Nuclear Magnetic Resonance Spectroscopy can be used to determine the dynamical contributions of proteins to the water molecules belonging to their hydration shells.

  3. Two Chimeric Regulators of G-protein Signaling (RGS) Proteins Differentially Modulate Soybean Heterotrimeric G-protein Cycle*

    Science.gov (United States)

    Roy Choudhury, Swarup; Westfall, Corey S.; Laborde, John P.; Bisht, Naveen C.; Jez, Joseph M.; Pandey, Sona

    2012-01-01

    Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1–4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1–4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks. PMID:22474294

  4. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  5. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  7. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  8. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  9. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  10. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  11. Hot-spot analysis for drug discovery targeting protein-protein interactions.

    Science.gov (United States)

    Rosell, Mireia; Fernández-Recio, Juan

    2018-04-01

    Protein-protein interactions are important for biological processes and pathological situations, and are attractive targets for drug discovery. However, rational drug design targeting protein-protein interactions is still highly challenging. Hot-spot residues are seen as the best option to target such interactions, but their identification requires detailed structural and energetic characterization, which is only available for a tiny fraction of protein interactions. Areas covered: In this review, the authors cover a variety of computational methods that have been reported for the energetic analysis of protein-protein interfaces in search of hot-spots, and the structural modeling of protein-protein complexes by docking. This can help to rationalize the discovery of small-molecule inhibitors of protein-protein interfaces of therapeutic interest. Computational analysis and docking can help to locate the interface, molecular dynamics can be used to find suitable cavities, and hot-spot predictions can focus the search for inhibitors of protein-protein interactions. Expert opinion: A major difficulty for applying rational drug design methods to protein-protein interactions is that in the majority of cases the complex structure is not available. Fortunately, computational docking can complement experimental data. An interesting aspect to explore in the future is the integration of these strategies for targeting PPIs with large-scale mutational analysis.

  12. Interaction between plate make and protein in protein crystallisation screening.

    Directory of Open Access Journals (Sweden)

    Gordon J King

    Full Text Available BACKGROUND: Protein crystallisation screening involves the parallel testing of large numbers of candidate conditions with the aim of identifying conditions suitable as a starting point for the production of diffraction quality crystals. Generally, condition screening is performed in 96-well plates. While previous studies have examined the effects of protein construct, protein purity, or crystallisation condition ingredients on protein crystallisation, few have examined the effect of the crystallisation plate. METHODOLOGY/PRINCIPAL FINDINGS: We performed a statistically rigorous examination of protein crystallisation, and evaluated interactions between crystallisation success and plate row/column, different plates of same make, different plate makes and different proteins. From our analysis of protein crystallisation, we found a significant interaction between plate make and the specific protein being crystallised. CONCLUSIONS/SIGNIFICANCE: Protein crystal structure determination is the principal method for determining protein structure but is limited by the need to produce crystals of the protein under study. Many important proteins are difficult to crystallize, so that identification of factors that assist crystallisation could open up the structure determination of these more challenging targets. Our findings suggest that protein crystallisation success may be improved by matching a protein with its optimal plate make.

  13. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    Science.gov (United States)

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  14. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  15. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  16. Mapping monomeric threading to protein-protein structure prediction.

    Science.gov (United States)

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  17. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    Science.gov (United States)

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be

  18. Fibroblast growth factor 21 is elevated in metabolically unhealthy obesity and affects lipid deposition, adipogenesis, and adipokine secretion of human abdominal subcutaneous adipocytes

    Directory of Open Access Journals (Sweden)

    Lucia Berti

    2015-07-01

    Conclusions: The hepatokine FGF21 exerts weak lipogenic and anti-adipogenic actions and marked adiponectin-suppressive and leptin and interleukin-6 release-promoting effects in human differentiating preadipocytes. Together with the higher serum concentrations in MUHO subjects, our findings reveal FGF21 as a circulating factor promoting the development of metabolically unhealthy adipocytes.

  19. Association between Interleukin-15 and Obesity: Interleukin-15 as a Potential Regulator of Fat Mass

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Hojman, Pernille; Erikstrup, Christian

    2008-01-01

    Objective: IL-15 decreases lipid deposition in preadipocytes and decreases the mass of white adipose tissue in rats, indicating that IL-15 may take part in regulating this tissue. IL-15 is expressed in human skeletal muscle and skeletal muscle may be a source of plasma IL-15 and in this way...

  20. A credit-card library approach for disrupting protein-protein interactions.

    Science.gov (United States)

    Xu, Yang; Shi, Jin; Yamamoto, Noboru; Moss, Jason A; Vogt, Peter K; Janda, Kim D

    2006-04-15

    Protein-protein interfaces are prominent in many therapeutically important targets. Using small organic molecules to disrupt protein-protein interactions is a current challenge in chemical biology. An important example of protein-protein interactions is provided by the Myc protein, which is frequently deregulated in human cancers. Myc belongs to the family of basic helix-loop-helix leucine zipper (bHLH-ZIP) transcription factors. It is biologically active only as heterodimer with the bHLH-ZIP protein Max. Herein, we report a new strategy for the disruption of protein-protein interactions that has been corroborated through the design and synthesis of a small parallel library composed of 'credit-card' compounds. These compounds are derived from a planar, aromatic scaffold and functionalized with four points of diversity. From a 285 membered library, several hits were obtained that disrupted the c-Myc-Max interaction and cellular functions of c-Myc. The IC50 values determined for this small focused library for the disruption of Myc-Max dimerization are quite potent, especially since small molecule antagonists of protein-protein interactions are notoriously difficult to find. Furthermore, several of the compounds were active at the cellular level as shown by their biological effects on Myc action in chicken embryo fibroblast assays. In light of our findings, this approach is considered a valuable addition to the armamentarium of new molecules being developed to interact with protein-protein interfaces. Finally, this strategy for disrupting protein-protein interactions should prove applicable to other families of proteins.

  1. Protein Correlation Profiles Identify Lipid Droplet Proteins with High Confidence*

    Science.gov (United States)

    Krahmer, Natalie; Hilger, Maximiliane; Kory, Nora; Wilfling, Florian; Stoehr, Gabriele; Mann, Matthias; Farese, Robert V.; Walther, Tobias C.

    2013-01-01

    Lipid droplets (LDs) are important organelles in energy metabolism and lipid storage. Their cores are composed of neutral lipids that form a hydrophobic phase and are surrounded by a phospholipid monolayer that harbors specific proteins. Most well-established LD proteins perform important functions, particularly in cellular lipid metabolism. Morphological studies show LDs in close proximity to and interacting with membrane-bound cellular organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and endosomes. Because of these close associations, it is difficult to purify LDs to homogeneity. Consequently, the confident identification of bona fide LD proteins via proteomics has been challenging. Here, we report a methodology for LD protein identification based on mass spectrometry and protein correlation profiles. Using LD purification and quantitative, high-resolution mass spectrometry, we identified LD proteins by correlating their purification profiles to those of known LD proteins. Application of the protein correlation profile strategy to LDs isolated from Drosophila S2 cells led to the identification of 111 LD proteins in a cellular LD fraction in which 1481 proteins were detected. LD localization was confirmed in a subset of identified proteins via microscopy of the expressed proteins, thereby validating the approach. Among the identified LD proteins were both well-characterized LD proteins and proteins not previously known to be localized to LDs. Our method provides a high-confidence LD proteome of Drosophila cells and a novel approach that can be applied to identify LD proteins of other cell types and tissues. PMID:23319140

  2. Bee Venom Suppresses the Differentiation of Preadipocytes and High Fat Diet-Induced Obesity by Inhibiting Adipogenesis.

    Science.gov (United States)

    Cheon, Se-Yun; Chung, Kyung-Sook; Roh, Seong-Soo; Cha, Yun-Yeop; An, Hyo-Jin

    2017-12-24

    Bee venom (BV) has been widely used in the treatment of certain immune-related diseases. It has been used for pain relief and in the treatment of chronic inflammatory diseases. Despite its extensive use, there is little documented evidence to demonstrate its medicinal utility against obesity. In this study, we demonstrated the inhibitory effects of BV on adipocyte differentiation in 3T3-L1 cells and on a high fat diet (HFD)-induced obesity mouse model through the inhibition of adipogenesis. BV inhibited lipid accumulation, visualized by Oil Red O staining, without cytotoxicity in the 3T3-L1 cells. Male C57BL/6 mice were fed either a HFD or a control diet for 8 weeks, and BV (0.1 mg/kg or 1 mg/kg) or saline was injected during the last 4 weeks. BV-treated mice showed a reduced body weight gain. BV was shown to inhibit adipogenesis by downregulating the expression of the transcription factors CCAAT/enhancer-binding proteins (C/EBPs) and the peroxisome proliferator-activated receptor gamma (PPARγ), using RT-qPCR and Western blotting. BV induced the phosphorylation of AMP-activated kinase (AMPK) and acetyl-CoA carboxylase (ACC) in the cell line and in obese mice. These findings demonstrate that BV mediates anti-obesity/differentiation effects by suppressing obesity-related transcription factors.

  3. ProteinShop: A tool for interactive protein manipulation and steering

    Energy Technology Data Exchange (ETDEWEB)

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  4. Prioritizing disease candidate proteins in cardiomyopathy-specific protein-protein interaction networks based on "guilt by association" analysis.

    Directory of Open Access Journals (Sweden)

    Wan Li

    Full Text Available The cardiomyopathies are a group of heart muscle diseases which can be inherited (familial. Identifying potential disease-related proteins is important to understand mechanisms of cardiomyopathies. Experimental identification of cardiomyophthies is costly and labour-intensive. In contrast, bioinformatics approach has a competitive advantage over experimental method. Based on "guilt by association" analysis, we prioritized candidate proteins involving in human cardiomyopathies. We first built weighted human cardiomyopathy-specific protein-protein interaction networks for three subtypes of cardiomyopathies using the known disease proteins from Online Mendelian Inheritance in Man as seeds. We then developed a method in prioritizing disease candidate proteins to rank candidate proteins in the network based on "guilt by association" analysis. It was found that most candidate proteins with high scores shared disease-related pathways with disease seed proteins. These top ranked candidate proteins were related with the corresponding disease subtypes, and were potential disease-related proteins. Cross-validation and comparison with other methods indicated that our approach could be used for the identification of potentially novel disease proteins, which may provide insights into cardiomyopathy-related mechanisms in a more comprehensive and integrated way.

  5. Modular protein switches derived from antibody mimetic proteins.

    Science.gov (United States)

    Nicholes, N; Date, A; Beaujean, P; Hauk, P; Kanwar, M; Ostermeier, M

    2016-02-01

    Protein switches have potential applications as biosensors and selective protein therapeutics. Protein switches built by fusion of proteins with the prerequisite input and output functions are currently developed using an ad hoc process. A modular switch platform in which existing switches could be readily adapted to respond to any ligand would be advantageous. We investigated the feasibility of a modular protein switch platform based on fusions of the enzyme TEM-1 β-lactamase (BLA) with two different antibody mimetic proteins: designed ankyrin repeat proteins (DARPins) and monobodies. We created libraries of random insertions of the gene encoding BLA into genes encoding a DARPin or a monobody designed to bind maltose-binding protein (MBP). From these libraries, we used a genetic selection system for β-lactamase activity to identify genes that conferred MBP-dependent ampicillin resistance to Escherichia coli. Some of these selected genes encoded switch proteins whose enzymatic activity increased up to 14-fold in the presence of MBP. We next introduced mutations into the antibody mimetic domain of these switches that were known to cause binding to different ligands. To different degrees, introduction of the mutations resulted in switches with the desired specificity, illustrating the potential modularity of these platforms. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Protein-protein interactions and cancer: targeting the central dogma.

    Science.gov (United States)

    Garner, Amanda L; Janda, Kim D

    2011-01-01

    Between 40,000 and 200,000 protein-protein interactions have been predicted to exist within the human interactome. As these interactions are of a critical nature in many important cellular functions and their dysregulation is causal of disease, the modulation of these binding events has emerged as a leading, yet difficult therapeutic arena. In particular, the targeting of protein-protein interactions relevant to cancer is of fundamental importance as the tumor-promoting function of several aberrantly expressed proteins in the cancerous state is directly resultant of its ability to interact with a protein-binding partner. Of significance, these protein complexes play a crucial role in each of the steps of the central dogma of molecular biology, the fundamental processes of genetic transmission. With the many important discoveries being made regarding the mechanisms of these genetic process, the identification of new chemical probes are needed to better understand and validate the druggability of protein-protein interactions related to the central dogma. In this review, we provide an overview of current small molecule-based protein-protein interaction inhibitors for each stage of the central dogma: transcription, mRNA splicing and translation. Importantly, through our analysis we have uncovered a lack of necessary probes targeting mRNA splicing and translation, thus, opening up the possibility for expansion of these fields.

  7. Targeting protein-protein interactions for parasite control.

    Directory of Open Access Journals (Sweden)

    Christina M Taylor

    2011-04-01

    Full Text Available Finding new drug targets for pathogenic infections would be of great utility for humanity, as there is a large need to develop new drugs to fight infections due to the developing resistance and side effects of current treatments. Current drug targets for pathogen infections involve only a single protein. However, proteins rarely act in isolation, and the majority of biological processes occur via interactions with other proteins, so protein-protein interactions (PPIs offer a realm of unexplored potential drug targets and are thought to be the next-generation of drug targets. Parasitic worms were chosen for this study because they have deleterious effects on human health, livestock, and plants, costing society billions of dollars annually and many sequenced genomes are available. In this study, we present a computational approach that utilizes whole genomes of 6 parasitic and 1 free-living worm species and 2 hosts. The species were placed in orthologous groups, then binned in species-specific orthologous groups. Proteins that are essential and conserved among species that span a phyla are of greatest value, as they provide foundations for developing broad-control strategies. Two PPI databases were used to find PPIs within the species specific bins. PPIs with unique helminth proteins and helminth proteins with unique features relative to the host, such as indels, were prioritized as drug targets. The PPIs were scored based on RNAi phenotype and homology to the PDB (Protein DataBank. EST data for the various life stages, GO annotation, and druggability were also taken into consideration. Several PPIs emerged from this study as potential drug targets. A few interactions were supported by co-localization of expression in M. incognita (plant parasite and B. malayi (H. sapiens parasite, which have extremely different modes of parasitism. As more genomes of pathogens are sequenced and PPI databases expanded, this methodology will become increasingly

  8. ProteinHistorian: tools for the comparative analysis of eukaryote protein origin.

    Directory of Open Access Journals (Sweden)

    John A Capra

    Full Text Available The evolutionary history of a protein reflects the functional history of its ancestors. Recent phylogenetic studies identified distinct evolutionary signatures that characterize proteins involved in cancer, Mendelian disease, and different ontogenic stages. Despite the potential to yield insight into the cellular functions and interactions of proteins, such comparative phylogenetic analyses are rarely performed, because they require custom algorithms. We developed ProteinHistorian to make tools for performing analyses of protein origins widely available. Given a list of proteins of interest, ProteinHistorian estimates the phylogenetic age of each protein, quantifies enrichment for proteins of specific ages, and compares variation in protein age with other protein attributes. ProteinHistorian allows flexibility in the definition of protein age by including several algorithms for estimating ages from different databases of evolutionary relationships. We illustrate the use of ProteinHistorian with three example analyses. First, we demonstrate that proteins with high expression in human, compared to chimpanzee and rhesus macaque, are significantly younger than those with human-specific low expression. Next, we show that human proteins with annotated regulatory functions are significantly younger than proteins with catalytic functions. Finally, we compare protein length and age in many eukaryotic species and, as expected from previous studies, find a positive, though often weak, correlation between protein age and length. ProteinHistorian is available through a web server with an intuitive interface and as a set of command line tools; this allows biologists and bioinformaticians alike to integrate these approaches into their analysis pipelines. ProteinHistorian's modular, extensible design facilitates the integration of new datasets and algorithms. The ProteinHistorian web server, source code, and pre-computed ages for 32 eukaryotic genomes are

  9. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  10. Annotating the protein-RNA interaction sites in proteins using evolutionary information and protein backbone structure.

    Science.gov (United States)

    Li, Tao; Li, Qian-Zhong

    2012-11-07

    RNA-protein interactions play important roles in various biological processes. The precise detection of RNA-protein interaction sites is very important for understanding essential biological processes and annotating the function of the proteins. In this study, based on various features from amino acid sequence and structure, including evolutionary information, solvent accessible surface area and torsion angles (φ, ψ) in the backbone structure of the polypeptide chain, a computational method for predicting RNA-binding sites in proteins is proposed. When the method is applied to predict RNA-binding sites in three datasets: RBP86 containing 86 protein chains, RBP107 containing 107 proteins chains and RBP109 containing 109 proteins chains, better sensitivities and specificities are obtained compared to previously published methods in five-fold cross-validation tests. In order to make further examination for the efficiency of our method, the RBP107 dataset is used as training set, RBP86 and RBP109 datasets are used as the independent test sets. In addition, as examples of our prediction, RNA-binding sites in a few proteins are presented. The annotated results are consistent with the PDB annotation. These results show that our method is useful for annotating RNA binding sites of novel proteins.

  11. Evolutionary diversification of protein-protein interactions by interface add-ons.

    Science.gov (United States)

    Plach, Maximilian G; Semmelmann, Florian; Busch, Florian; Busch, Markus; Heizinger, Leonhard; Wysocki, Vicki H; Merkl, Rainer; Sterner, Reinhard

    2017-10-03

    Cells contain a multitude of protein complexes whose subunits interact with high specificity. However, the number of different protein folds and interface geometries found in nature is limited. This raises the question of how protein-protein interaction specificity is achieved on the structural level and how the formation of nonphysiological complexes is avoided. Here, we describe structural elements called interface add-ons that fulfill this function and elucidate their role for the diversification of protein-protein interactions during evolution. We identified interface add-ons in 10% of a representative set of bacterial, heteromeric protein complexes. The importance of interface add-ons for protein-protein interaction specificity is demonstrated by an exemplary experimental characterization of over 30 cognate and hybrid glutamine amidotransferase complexes in combination with comprehensive genetic profiling and protein design. Moreover, growth experiments showed that the lack of interface add-ons can lead to physiologically harmful cross-talk between essential biosynthetic pathways. In sum, our complementary in silico, in vitro, and in vivo analysis argues that interface add-ons are a practical and widespread evolutionary strategy to prevent the formation of nonphysiological complexes by specializing protein-protein interactions.

  12. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  13. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis.

    Science.gov (United States)

    Kent, Stephen Bh

    2018-04-04

    A racemic protein mixture can be used to form centrosymmetric crystals for structure determination by X-ray diffraction. Both the unnatural d-protein and the corresponding natural l-protein are made by total chemical synthesis based on native chemical ligation-chemoselective condensation of unprotected synthetic peptide segments. Racemic protein crystallography is important for structure determination of the many natural protein molecules that are refractory to crystallization. Racemic mixtures facilitate the crystallization of recalcitrant proteins, and give diffraction-quality crystals. Quasi-racemic crystallization, using a single d-protein molecule, can facilitate the determination of the structures of a series of l-protein analog molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. General protein-protein cross-linking.

    Science.gov (United States)

    Alegria-Schaffer, Alice

    2014-01-01

    This protocol describes a general protein-to-protein cross-linking procedure using the water-soluble amine-reactive homobifunctional BS(3) (bis[sulfosuccinimidyl] suberate); however, the protocol can be easily adapted using other cross-linkers of similar properties. BS(3) is composed of two sulfo-NHS ester groups and an 11.4 Å linker. Sulfo-NHS ester groups react with primary amines in slightly alkaline conditions (pH 7.2-8.5) and yield stable amide bonds. The reaction releases N-hydroxysuccinimide (see an application of NHS esters on Labeling a protein with fluorophores using NHS ester derivitization). © 2014 Elsevier Inc. All rights reserved.

  15. Quality control methodology for high-throughput protein-protein interaction screening.

    Science.gov (United States)

    Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha

    2011-01-01

    Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.

  16. [In Vitro and In Vivo Biocompatibility of a Novel, 3-Dimensional Cellulose Matrix Structure].

    Science.gov (United States)

    Dunda, S E; Ranker, M; Pallua, N; Machens, H-G; Ravichandran, A; Schantz, J-T

    2015-12-01

    Biological and physical characteristics of matrices are one essential factor in creating bioartificial tissue. In this study, a new 3-dimensional cellulose matrix (Xellulin(®)) was tested in terms of biocompatibility and applicability for tissue engineering in vitro and in vivo. The tested matrix Xellulin(®) is a natural hydrological gel-matrix containing bacterial cellulose and water. To evaluate the cell biocompatibilty, cell adherence and proliferation characteristics in vitro, the matrix was cultured with human fibroblasts. Further in vivo studies were carried out by transplanting preadipocytes of 4- to 6-week-old Wistar rats with 3 different conditions: a) Xellulin(®) including 500 000 preadipocytes subcutaneous, b) Xellulin(®) including 500 000 preadipocytes within an in vivo bioreactor chamber, c) Xellulin(®) without cells subcutaneous as control. After explantation on day 14 histomorphological and immunohistochemical evaluations were performed. In vitro study revealed an excellent biocompatibility with good cell adherence of the fibroblasts on the matrix and evidence of cell proliferation and creation of a 3-dimensional cell network. In vivo neocapillarisation could be shown in all groups with evidence of erythrocytes (H/E staining) and endothelial vascular cells (RECA-1-staining). A significantly higher vascular density was shown in vascularised bioreactor group (18.4 vessels/100 000 µm(2) (group b) vs. 8.1 (group a), pmatrix was noticed. The promising in vitro results concerning cell adherence and proliferation on the tested matrix could be confirmed in vivo with an evidence of 3-dimensional neocapillarisation. Cell survival was higher in the vascularised group, but without significance. Long-term tests (28-42 days) need to be carried out to evaluate long-term cell survival and the matrix stability. Furthermore, studies concerning the implementation of the matrix within anatomic structures as well as long-term biocompatibility are needed.

  17. Phenolic compounds apigenin, hesperidin and kaempferol reduce in vitro lipid accumulation in human adipocytes.

    Science.gov (United States)

    Gómez-Zorita, Saioa; Lasa, Arrate; Abendaño, Naiara; Fernández-Quintela, Alfredo; Mosqueda-Solís, Andrea; Garcia-Sobreviela, Maria Pilar; Arbonés-Mainar, Jose M; Portillo, Maria P

    2017-11-21

    Adipocytes derived from human mesenchymal stem cells (MSCs) are widely used to investigate adipogenesis. Taking into account both the novelty of these MSCs and the scarcity of studies focused on the effects of phenolic compounds, the aim of the present study was to analyze the effect of apigenin, hesperidin and kaempferol on pre-adipocyte and mature adipocytes derived from this type of cells. In addition, the expression of genes involved in TG accumulation was also measured. Pre-adipocytes were cultured from day 0 to day 8 and mature adipocytes for 48 h with the polyphenols at doses of 1, 10 and 25 µM. Apigenin did not show an anti-adipogenic action. Pre-adipocytes treated with hesperidin and kaempferol showed reduced TG content at the three experimental doses. Apigenin did not modify the expression of the main adipogenic genes (c/ebpβ, c/ebpα, pparγ and srebp1c), hesperidin inhibited genes involved in the three phases of adipogenesis (c/ebpβ, srebp1c and perilipin) and kaempferol reduced c/ebpβ. In mature adipocytes, the three polyphenols reduced TG accumulation at the dose of 25 µM, but not at lower doses. All compounds increased mRNA levels of atgl. Apigenin and hesperidin decreased fasn expression. The present study shows the anti-adipogenic effect and delipidating effects of apigenin, hesperidin and kaempferol in human adipocytes derived from hMSCs. While hesperidin blocks all the stages of adipogenesis, kaempferol only inhibits the early stage. Regarding mature adipocytes, the three compounds reduce TG accumulation by activating, at least in part, lipolysis, and in the case of hesperidin and apigenin, also by reducing lipogenesis. The present study shows for the first time the anti-adipogenic effect and delipidating effect of apigenin, hesperidin and kaempferol in human adipocytes derived from MSCs for the first time.

  18. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    Energy Technology Data Exchange (ETDEWEB)

    An, Lei, E-mail: anleim@yahoo.com.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Pang, Yun-Wei, E-mail: yunweipang@126.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Gao, Hong-Mei, E-mail: Gaohongmei_123@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Research Unit for Animal Life Sciences, Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki-Iwama 319-0206 (Japan); Tao, Li, E-mail: Eunice8023@yahoo.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118 (China); Miao, Kai, E-mail: miaokai7@163.com [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); Wu, Zhong-Hong, E-mail: wuzhh@cau.edu.cn [Ministry of Agriculture Key Laboratory of Animal Genetics, Breeding and Reproduction, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193 (China); and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  19. The Effect of Crataegi Fructus Pharmacopuncture on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Seung Hwan, Won

    2008-06-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of Crataegi Fructus Pharmacopuncture(CFP on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3days in the absence or presence of CFP ranging from 0.01 to 1mg/mL. The effect of CFP on adipogenesis was examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with CFP ranging from 0.01 to 1mg/mL for 3 hrs. The effect of CFP on lipolysis was examined by measuring free glycerol released. Fat tissue from pig skin was injected with CFP ranging from 0.1 to 10mg/mL to examine the effect of CFP on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Crataegi Fructus Pharmacopuncture inhibited adipogenic differentiation at the concentration of 1.0mg/mL 2. Crataegi Fructus Pharmacopuncture decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1mg/mL. 3. Crataegi Fructus Pharmacopuncture ok. lipolysis at the concentration of 0.1mg/ml. 4. Crataegi Fructus Pharmacopuncture ranging 0.1 to 10mg/mL failed to exert lysis of cell membrane in porcine fat tissue. Conclusions : These results suggest that Crataegi Fructus Pharmacopuncture at relatively high concentration inhibited adipogenesis and increased lipolysis of adipocytes. However, Crataegi Fructus Pharmacopuncture didn’t exert any effect on lysis of cell membrane in fat tissue.

  20. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L. [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States); Piroli, Gerardo G.; Frizzell, Norma [Department of Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tseng, Yu-Hua; Goodyear, Laurie J. [Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215 (United States); Koh, Ho-Jin, E-mail: kohh@mailbox.sc.edu [Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208 (United States)

    2016-02-19

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  1. Anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidea and var. angustifolia on 3T3-L1 adipocytes.

    Science.gov (United States)

    Woon, Shiau Mei; Seng, Yew Wei; Ling, Anna Pick Kiong; Chye, Soi Moi; Koh, Rhun Yian

    2014-03-01

    This study examined the anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidia and var. angustifolia, a natural slimming aid, on 3T3-L1 adipocytes. Methanol and water extracts of leaves of the F. deltoidea varieties were analyzed to determine their total flavonoid content (TFC) and total phenolic content (TPC), respectively. The study was initiated by determining the maximum non-toxic dose (MNTD) of the methanol and water extracts for 3T3-L1 preadipocytes. Possible anti-adipogenic effects were then examined by treating 2-d post confluent 3T3-L1 preadipocytes with either methanol extract or water extract at MNTD and half MNTD (½MNTD), after which the preadipocytces were induced to form mature adipocytes. Visualisation and quantification of lipid content in mature adipocytes were carried out through oil red O staining and measurement of optical density (OD) at 520 nm, respectively. The TFCs of the methanol extracts were 1.36 and 1.97 g quercetin equivalents (QE)/100 g dry weight (DW), while the TPCs of the water extracts were 5.61 and 2.73 g gallic acid equivalents (GAE)/100 g DW for var. deltoidea and var. angustilofia, respectively. The MNTDs determined for methanol and water extracts were (300.0 ± 28.3) and (225.0 ± 21.2) µg/ml, respectively, for var. deltoidea, while much lower MNTDs [(60.0 ± 2.0) µg/ml for methanol extracts and (8.0 ± 1.0) µg/ml for water extracts] were recorded for var. angustifolia. Studies revealed that the methanol extracts of both varieties and the water extracts of var. angustifolia at either MNTD or ½MNTD significantly inhibited the maturation of preadipocytes. The inhibition of the formation of mature adipocytes indicated that leaf extracts of F. deltoidea could have potential anti-obesity effects.

  2. Tribbles 3 inhibits brown adipocyte differentiation and function by suppressing insulin signaling

    International Nuclear Information System (INIS)

    Jeong, Ha-Won; Choi, Ran Hee; McClellan, Jamie L.; Piroli, Gerardo G.; Frizzell, Norma; Tseng, Yu-Hua; Goodyear, Laurie J.; Koh, Ho-Jin

    2016-01-01

    Recent studies have demonstrated that adult humans have substantial amounts of functioning brown adipose tissue (BAT). Since BAT has been implicated as an anti-obese and anti-diabetic tissue, it is important to understand the signaling molecules that regulate BAT function. There has been a link between insulin signaling and BAT metabolism as deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function. Tribbles 3 (TRB3) is a pseudo kinase that has been shown to regulate metabolism and insulin signaling in multiple tissues but the role of TRB3 in BAT has not been studied. In this study, we found that TRB3 expression was present in BAT and overexpression of TRB3 in brown preadipocytes impaired differentiation and decreased expression of BAT markers. Furthermore, TRB3 overexpression resulted in significantly lower oxygen consumption rates for basal and proton leakage, indicating decreased BAT activity. Based on previous studies showing that deletion or pharmaceutical inhibition of insulin signaling impairs BAT differentiation and function, we assessed insulin signaling in brown preadipocytes and BAT in vivo. Overexpression of TRB3 in cells impaired insulin-stimulated IRS1 and Akt phosphorylation, whereas TRB3KO mice displayed improved IRS1 and Akt phosphorylation. Finally, deletion of IRS1 abolished the function of TRB3 to regulate BAT differentiation and metabolism. These data demonstrate that TRB3 inhibits insulin signaling in BAT, resulting in impaired differentiation and function. - Highlights: • TRB3 is expressed in brown adipose tissue and its expression is increased during differentiation. • Overexpression of TRB3 inhibits differentiation and its activity. • Overexpression of TRB3 in brown preadipocytes inhibits insulin signaling. • TRB3KO mice displays improved insulin signaling in brown adipose tissue. • Insulin signaling is required for the effects of TRB3 to regulate brown adipose tissue differentiation and

  3. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Vincent Vagenende

    Full Text Available Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  4. Our interests in protein-protein interactions

    Indian Academy of Sciences (India)

    protein interactions. Evolution of P-P partnerships. Evolution of P-P structures. Evolutionary dynamics of P-P interactions. Dynamics of P-P interaction network. Host-pathogen interactions. CryoEM mapping of gigantic protein assemblies.

  5. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions

    Science.gov (United States)

    Hostetler, Jessica B.; Sharma, Sumana; Bartholdson, S. Josefin; Wright, Gavin J.; Fairhurst, Rick M.; Rayner, Julian C.

    2015-01-01

    Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further

  6. [Detection of protein-protein interactions by FRET and BRET methods].

    Science.gov (United States)

    Matoulková, E; Vojtěšek, B

    2014-01-01

    Nowadays, in vivo protein-protein interaction studies have become preferable detecting meth-ods that enable to show or specify (already known) protein interactions and discover their inhibitors. They also facilitate detection of protein conformational changes and discovery or specification of signaling pathways in living cells. One group of in vivo methods enabling these findings is based on fluorescent resonance energy transfer (FRET) and its bio-luminescent modification (BRET). They are based on visualization of protein-protein interactions via light or enzymatic excitation of fluorescent or bio-luminescent proteins. These methods allow not only protein localization within the cell or its organelles (or small animals) but they also allow us to quantify fluorescent signals and to discover weak or strong interaction partners. In this review, we explain the principles of FRET and BRET, their applications in the characterization of protein-protein interactions and we describe several findings using these two methods that clarify molecular and cellular mechanisms and signals related to cancer biology.

  7. Protein degradation and protein synthesis in long-term memory formation

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    2014-06-01

    Full Text Available Long-term memory (LTM formation requires transient changes in the activity of intracellular signaling cascades that are thought to regulate new gene transcription and de novo protein synthesis in the brain. Consistent with this, protein synthesis inhibitors impair LTM for a variety of behavioral tasks when infused into the brain around the time of training or following memory retrieval, suggesting that protein synthesis is a critical step in LTM storage in the brain. However, evidence suggests that protein degradation mediated by the ubiquitin-proteasome system may also be a critical regulator of LTM formation and stability following retrieval. This requirement for increased protein degradation has been shown in the same brain regions in which protein synthesis is required for LTM storage. Additionally, increases in the phosphorylation of proteins involved in translational control parallel increases in protein polyubiquitination and the increased demand for protein degradation is regulated by intracellular signaling molecules thought to regulate protein synthesis during LTM formation. In some cases inhibiting proteasome activity can rescue memory impairments that result from pharmacological blockade of protein synthesis, suggesting that protein degradation may control the requirement for protein synthesis during the memory storage process. Results such as these suggest that protein degradation and synthesis are both critical for LTM formation and may interact to properly consolidate and store memories in the brain. Here, we review the evidence implicating protein synthesis and degradation in LTM storage and highlight the areas of overlap between these two opposing processes. We also discuss evidence suggesting these two processes may interact to properly form and store memories. LTM storage likely requires a coordinated regulation between protein degradation and synthesis at multiple sites in the mammalian brain.

  8. Evolutionary reprograming of protein-protein interaction specificity.

    Science.gov (United States)

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Protein Annotation from Protein Interaction Networks and Gene Ontology

    OpenAIRE

    Nguyen, Cao D.; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2011-01-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precis...

  10. Protein supplementation with sports protein bars in renal patients.

    Science.gov (United States)

    Meade, Anthony

    2007-05-01

    Malnutrition prevalence in patients on dialysis is well established. The protein requirements for both hemodialysis and peritoneal dialysis have been documented elsewhere, including the Kidney Disease Outcomes Quality Initiative Clinical Practice Guidelines for Nutrition in Chronic Renal Failure. The clinical challenge is to assist patients in meeting these targets, especially in those with anorexia. Traditional supplements have included fluid, which is an issue for patients who are fluid restricted. The study objectives were to (1) investigate the range of sports protein supplements that may be suitable for patients on hemodialysis to use and (2) trial nonfluid protein supplements in patients on hemodialysis. Known manufacturers of sports protein bars and other sports supplements available in Australia were contacted for the nutrient breakdown of high-protein products, specifically potassium, protein, and phosphorus contents. As a result, selected high-protein sports bars (Protein FX, Aussie Bodies, Port Melbourne, Victoria, Australia) were used as an alternative to the more commonly used renal-specific fluid supplements (Nepro, Abbott Laboratories, Abbott Park, IL; Novasource Renal, Novartis Nutrition Corporation, Fremont, MI; and Renilon, Nutricia, Wiltshire, UK) in patients with poor nutritional status requiring supplementation. Patient satisfaction and clinical nutrition markers were investigated. The study took place at inpatient, in-center, and satellite hemodialysis settings in Adelaide, South Australia. A total of 32 patients (16 females and 16 males) with an average age of 62.9 years (range 32-86 years) undergoing hemodialysis (acute and maintenance) were included. Subjects were selected by the author as part of routine clinical nutrition care. Patients trialed sports protein bars as a protein supplement alone or in conjunction with other supplementary products. All patients were in favor of the trial, with 22 of 32 patients continuing with the protein

  11. Protein enriched pasta: structure and digestibility of its protein network.

    Science.gov (United States)

    Laleg, Karima; Barron, Cécile; Santé-Lhoutellier, Véronique; Walrand, Stéphane; Micard, Valérie

    2016-02-01

    Wheat (W) pasta was enriched in 6% gluten (G), 35% faba (F) or 5% egg (E) to increase its protein content (13% to 17%). The impact of the enrichment on the multiscale structure of the pasta and on in vitro protein digestibility was studied. Increasing the protein content (W- vs. G-pasta) strengthened pasta structure at molecular and macroscopic scales but reduced its protein digestibility by 3% by forming a higher covalently linked protein network. Greater changes in the macroscopic and molecular structure of the pasta were obtained by varying the nature of protein used for enrichment. Proteins in G- and E-pasta were highly covalently linked (28-32%) resulting in a strong pasta structure. Conversely, F-protein (98% SDS-soluble) altered the pasta structure by diluting gluten and formed a weak protein network (18% covalent link). As a result, protein digestibility in F-pasta was significantly higher (46%) than in E- (44%) and G-pasta (39%). The effect of low (55 °C, LT) vs. very high temperature (90 °C, VHT) drying on the protein network structure and digestibility was shown to cause greater molecular changes than pasta formulation. Whatever the pasta, a general strengthening of its structure, a 33% to 47% increase in covalently linked proteins and a higher β-sheet structure were observed. However, these structural differences were evened out after the pasta was cooked, resulting in identical protein digestibility in LT and VHT pasta. Even after VHT drying, F-pasta had the best amino acid profile with the highest protein digestibility, proof of its nutritional interest.

  12. HIV protein sequence hotspots for crosstalk with host hub proteins.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available HIV proteins target host hub proteins for transient binding interactions. The presence of viral proteins in the infected cell results in out-competition of host proteins in their interaction with hub proteins, drastically affecting cell physiology. Functional genomics and interactome datasets can be used to quantify the sequence hotspots on the HIV proteome mediating interactions with host hub proteins. In this study, we used the HIV and human interactome databases to identify HIV targeted host hub proteins and their host binding partners (H2. We developed a high throughput computational procedure utilizing motif discovery algorithms on sets of protein sequences, including sequences of HIV and H2 proteins. We identified as HIV sequence hotspots those linear motifs that are highly conserved on HIV sequences and at the same time have a statistically enriched presence on the sequences of H2 proteins. The HIV protein motifs discovered in this study are expressed by subsets of H2 host proteins potentially outcompeted by HIV proteins. A large subset of these motifs is involved in cleavage, nuclear localization, phosphorylation, and transcription factor binding events. Many such motifs are clustered on an HIV sequence in the form of hotspots. The sequential positions of these hotspots are consistent with the curated literature on phenotype altering residue mutations, as well as with existing binding site data. The hotspot map produced in this study is the first global portrayal of HIV motifs involved in altering the host protein network at highly connected hub nodes.

  13. Different protein-protein interface patterns predicted by different machine learning methods.

    Science.gov (United States)

    Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi

    2017-11-22

    Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.

  14. Molecular simulations of lipid-mediated protein-protein interactions

    NARCIS (Netherlands)

    de Meyer, F.J.M.; Venturoli, M.; Smit, B.

    2008-01-01

    Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the

  15. Detecting protein-protein interactions in living cells

    DEFF Research Database (Denmark)

    Gottschalk, Marie; Bach, Anders; Hansen, Jakob Lerche

    2009-01-01

    to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein-protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C......-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat......The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared...

  16. Personalizing Protein Nourishment

    Science.gov (United States)

    DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE

    2016-01-01

    Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355

  17. A scored human protein-protein interaction network to catalyze genomic interpretation

    DEFF Research Database (Denmark)

    Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B

    2017-01-01

    Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (InWeb_InBioMap,......Genome-scale human protein-protein interaction networks are critical to understanding cell biology and interpreting genomic data, but challenging to produce experimentally. Through data integration and quality control, we provide a scored human protein-protein interaction network (In...

  18. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C

    International Nuclear Information System (INIS)

    Anholt, R.R.H.; Mumby, S.M.; Stoffers, D.A.; Girard, P.R.; Kuo, J.F.; Snyder, S.H.

    1987-01-01

    The authors have analyzed guanine nucleotide binding proteins (G-proteins) in the olfactory epithelium of Rana catesbeiana using subunit-specific antisera. The olfactory epithelium contained the α subunits of three G-proteins, migrating on polyacrylamide gels in SDS with apparent molecular weights of 45,000, 42,000, and 40,000, corresponding to G/sub s/, G/sub i/, and G/sub o/, respectively. A single β subunit with an apparent molecular weight of 36,000 was detected. An antiserum against the α subunit of retinal transducin failed to detect immunoreactive proteins in olfactory cilia detached from the epithelium. The olfactory cilia appeared to be enriched in immunoreactive G/sub sα/ relative to G/sub ichemical bond/ and G/sub ochemical bond/ when compared to membranes prepared from the olfactory epithelium after detachment of the cilia. Bound antibody was detected by autoradiography after incubation with [ 125 I]protein. Immunohistochemical studies using an antiserum against the β subunit of G-proteins revealed intense staining of the ciliary surface of the olfactory epithelium and of the axon bundles in the lamina propria. In contrast, an antiserum against a common sequence of the α subunits preferentially stained the cell membranes of the olfactory receptor cells and the acinar cells of Bowman's glands and the deep submucosal glands. In addition to G-proteins, they have identified protein kinase C in olfactory cilia via a protein kinase C specific antiserum and via phorbol ester binding. However, in contrast to the G-proteins, protein kinase C occurred also in cilia isolated from respiratory epithelium

  19. Traditional Korean Herbal Formula Samsoeum Attenuates Adipogenesis by Regulating the Phosphorylation of ERK1/2 in 3T3-L1 Cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Adipogenesis is the cell differentiation process from preadipocytes into adipocytes and the critical action in the development of obesity. In the present study, we conducted in vitro analyses to investigate the inhibitory effects of Samsoeum (SSE, a traditional herbal decoction. SSE had no significant cytotoxic effect against either the undifferentiated or differentiated 3T3-L1 cells. Oil Red O staining results showed that SSE significantly inhibited fat accumulation in adipocytes. SSE treatment consistently reduced the intracellular triglyceride content in the cells. SSE significantly inactivated glycerol-3-phosphate dehydrogenase (GPDH, a major link between carbohydrate and lipid metabolisms in 3T3-L1 adipocytes, and markedly inhibited the production of leptin, an important adipokine, in differentiated cells. SSE markedly suppressed the mRNA expression of the adipogenesis-related genes peroxisome proliferator-activated receptor-gamma (PPAR-γ, CCAAT/enhancer binding protein-alpha (C/EBP-α, fatty acid synthase (FAS, lipoprotein lipase (LPL, and fatty acid binding protein 4 (FABP4. Importantly, SSE increased the phosphorylation of ERK1/2, but not p38 MAPK and JNK, in adipose cells. Overall, our results indicate that SSE exerts antiadipogenic activity and modulates expressions of adipogenesis-related genes and ERK1/2 activation in adipocytes.

  20. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  1. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  2. Protein leverage effects of beef protein on energy intake in humans.

    Science.gov (United States)

    Martens, Eveline A; Tan, Sze-Yen; Dunlop, Mandy V; Mattes, Richard D; Westerterp-Plantenga, Margriet S

    2014-06-01

    The protein leverage hypothesis requires specific evidence that protein intake is regulated more strongly than energy intake. The objective was to determine ad libitum energy intake, body weight changes, appetite profile, and nitrogen balance in response to 3 diets with different protein-to-carbohydrate + fat ratios over 12 consecutive days, with beef as a source of protein. A 3-arm, 12-d randomized crossover study was performed in 30 men and 28 women [mean ± SD age: 33 ± 16 y; body mass index (in kg/m²): 24.4 ± 4.0] with the use of diets containing 5%, 15%, and 30% of energy (En%) from protein, predominantly from beef. Energy intake was significantly lower in the 30En%-protein condition (8.73 ± 1.93 MJ/d) than in the 5En%-protein (9.48 ± 1.67 MJ/d) and 15En%-protein (9.30 ± 1.62 MJ/d) conditions (P = 0.001), stemming largely from lower energy intake during meals (P = 0.001). Hunger (P = 0.001) and desire to eat (P = 0.001) ratings were higher and fullness ratings were lower (P = 0.001) in the 5En%-protein condition than in the 15En%-protein and 30En%-protein conditions. Nitrogen excretion was lower in the 5En%-protein condition (4.7 ± 1.5 g/24 h; P = 0.001) and was higher in the 30En%-protein condition (15.3 ± 8.7 g/24 h; P = 0.001) compared with the 15En%-protein condition (10.0 ± 5.2 g/24 h). Nitrogen balance was maintained in the 5En%-protein condition and was positive in the 15En%- and 30En%-protein conditions (P = 0.001). Complete protein leverage did not occur because subjects did not consume to a common protein amount at the expense of energy balance. Individuals did underconsume relative to energy requirements from high-protein diets. The lack of support for protein leverage effects on a low-protein diet may stem from the fact that protein intake was sufficient to maintain nitrogen balance over the 12-d trial. © 2014 American Society for Nutrition.

  3. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  4. PDZ Protein Regulation of G Protein-Coupled Receptor Trafficking and Signaling Pathways.

    Science.gov (United States)

    Dunn, Henry A; Ferguson, Stephen S G

    2015-10-01

    G protein-coupled receptors (GPCRs) contribute to the regulation of every aspect of human physiology and are therapeutic targets for the treatment of numerous diseases. As a consequence, understanding the myriad of mechanisms controlling GPCR signaling and trafficking is essential for the development of new pharmacological strategies for the treatment of human pathologies. Of the many GPCR-interacting proteins, postsynaptic density protein of 95 kilodaltons, disc large, zona occludens-1 (PDZ) domain-containing proteins appear most abundant and have similarly been implicated in disease mechanisms. PDZ proteins play an important role in regulating receptor and channel protein localization within synapses and tight junctions and function to scaffold intracellular signaling protein complexes. In the current study, we review the known functional interactions between PDZ domain-containing proteins and GPCRs and provide insight into the potential mechanisms of action. These PDZ domain-containing proteins include the membrane-associated guanylate-like kinases [postsynaptic density protein of 95 kilodaltons; synapse-associated protein of 97 kilodaltons; postsynaptic density protein of 93 kilodaltons; synapse-associated protein of 102 kilodaltons; discs, large homolog 5; caspase activation and recruitment domain and membrane-associated guanylate-like kinase domain-containing protein 3; membrane protein, palmitoylated 3; calcium/calmodulin-dependent serine protein kinase; membrane-associated guanylate kinase protein (MAGI)-1, MAGI-2, and MAGI-3], Na(+)/H(+) exchanger regulatory factor proteins (NHERFs) (NHERF1, NHERF2, PDZ domain-containing kidney protein 1, and PDZ domain-containing kidney protein 2), Golgi-associated PDZ proteins (Gα-binding protein interacting protein, C-terminus and CFTR-associated ligand), PDZ domain-containing guanine nucleotide exchange factors (GEFs) 1 and 2, regulator of G protein signaling (RGS)-homology-RhoGEFs (PDZ domain-containing RhoGEF and

  5. Measuring protein breakdown rate in individual proteins in vivo

    DEFF Research Database (Denmark)

    Holm, Lars; Kjaer, Michael

    2010-01-01

    To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo.......To outline different approaches of how protein breakdown can be quantified and to present a new approach to determine the fractional breakdown rate of individual slow turnover proteins in vivo....

  6. Novel Technology for Protein-Protein Interaction-based Targeted Drug Discovery

    Directory of Open Access Journals (Sweden)

    Jung Me Hwang

    2011-12-01

    Full Text Available We have developed a simple but highly efficient in-cell protein-protein interaction (PPI discovery system based on the translocation properties of protein kinase C- and its C1a domain in live cells. This system allows the visual detection of trimeric and dimeric protein interactions including cytosolic, nuclear, and/or membrane proteins with their cognate ligands. In addition, this system can be used to identify pharmacological small compounds that inhibit specific PPIs. These properties make this PPI system an attractive tool for screening drug candidates and mapping the protein interactome.

  7. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  8. Identification of adipokine clusters related to parameters of fat mass, insulin sensitivity and inflammation.

    Directory of Open Access Journals (Sweden)

    Gesine Flehmig

    Full Text Available In obesity, elevated fat mass and ectopic fat accumulation are associated with changes in adipokine secretion, which may link obesity to inflammation and the development of insulin resistance. However, relationships among individual adipokines and between adipokines and parameters of obesity, glucose metabolism or inflammation are largely unknown. Serum concentrations of 20 adipokines were measured in 141 Caucasian obese men (n = 67 and women (n = 74 with a wide range of body weight, glycemia and insulin sensitivity. Unbiased, distance-based hierarchical cluster analyses were performed to recognize patterns among adipokines and their relationship with parameters of obesity, glucose metabolism, insulin sensitivity and inflammation. We identified two major adipokine clusters related to either (1 body fat mass and inflammation (leptin, ANGPTL3, DLL1, chemerin, Nampt, resistin or insulin sensitivity/hyperglycemia, and lipid metabolism (vaspin, clusterin, glypican 4, progranulin, ANGPTL6, GPX3, RBP4, DLK1, SFRP5, BMP7, adiponectin, CTRP3 and 5, omentin. In addition, we found distinct adipokine clusters in subgroups of patients with or without type 2 diabetes (T2D. Logistic regression analyses revealed ANGPTL6, DLK1, Nampt and progranulin as strongest adipokine correlates of T2D in obese individuals. The panel of 20 adipokines predicted T2D compared to a combination of HbA1c, HOMA-IR and fasting plasma glucose with lower sensitivity (78% versus 91% and specificity (76% versus 94%. Therefore, adipokine patterns may currently not be clinically useful for the diagnosis of metabolic diseases. Whether adipokine patterns are relevant for the predictive assessment of intervention outcomes needs to be further investigated.

  9. The Proteins API: accessing key integrated protein and genome information.

    Science.gov (United States)

    Nightingale, Andrew; Antunes, Ricardo; Alpi, Emanuele; Bursteinas, Borisas; Gonzales, Leonardo; Liu, Wudong; Luo, Jie; Qi, Guoying; Turner, Edd; Martin, Maria

    2017-07-03

    The Proteins API provides searching and programmatic access to protein and associated genomics data such as curated protein sequence positional annotations from UniProtKB, as well as mapped variation and proteomics data from large scale data sources (LSS). Using the coordinates service, researchers are able to retrieve the genomic sequence coordinates for proteins in UniProtKB. This, the LSS genomics and proteomics data for UniProt proteins is programmatically only available through this service. A Swagger UI has been implemented to provide documentation, an interface for users, with little or no programming experience, to 'talk' to the services to quickly and easily formulate queries with the services and obtain dynamically generated source code for popular programming languages, such as Java, Perl, Python and Ruby. Search results are returned as standard JSON, XML or GFF data objects. The Proteins API is a scalable, reliable, fast, easy to use RESTful services that provides a broad protein information resource for users to ask questions based upon their field of expertise and allowing them to gain an integrated overview of protein annotations available to aid their knowledge gain on proteins in biological processes. The Proteins API is available at (http://www.ebi.ac.uk/proteins/api/doc). © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Multiple protonation equilibria in electrostatics of protein-protein binding.

    Science.gov (United States)

    Piłat, Zofia; Antosiewicz, Jan M

    2008-11-27

    All proteins contain groups capable of exchanging protons with their environment. We present here an approach, based on a rigorous thermodynamic cycle and the partition functions for energy levels characterizing protonation states of the associating proteins and their complex, to compute the electrostatic pH-dependent contribution to the free energy of protein-protein binding. The computed electrostatic binding free energies include the pH of the solution as the variable of state, mutual "polarization" of associating proteins reflected as changes in the distribution of their protonation states upon binding and fluctuations between available protonation states. The only fixed property of both proteins is the conformation; the structure of the monomers is kept in the same conformation as they have in the complex structure. As a reference, we use the electrostatic binding free energies obtained from the traditional Poisson-Boltzmann model, computed for a single macromolecular conformation fixed in a given protonation state, appropriate for given solution conditions. The new approach was tested for 12 protein-protein complexes. It is shown that explicit inclusion of protonation degrees of freedom might lead to a substantially different estimation of the electrostatic contribution to the binding free energy than that based on the traditional Poisson-Boltzmann model. This has important implications for the balancing of different contributions to the energetics of protein-protein binding and other related problems, for example, the choice of protein models for Brownian dynamics simulations of their association. Our procedure can be generalized to include conformational degrees of freedom by combining it with molecular dynamics simulations at constant pH. Unfortunately, in practice, a prohibitive factor is an enormous requirement for computer time and power. However, there may be some hope for solving this problem by combining existing constant pH molecular dynamics

  11. Texturized dairy proteins.

    Science.gov (United States)

    Onwulata, Charles I; Phillips, John G; Tunick, Michael H; Qi, Phoebi X; Cooke, Peter H

    2010-03-01

    Dairy proteins are amenable to structural modifications induced by high temperature, shear, and moisture; in particular, whey proteins can change conformation to new unfolded states. The change in protein state is a basis for creating new foods. The dairy products, nonfat dried milk (NDM), whey protein concentrate (WPC), and whey protein isolate (WPI) were modified using a twin-screw extruder at melt temperatures of 50, 75, and 100 degrees C, and moistures ranging from 20 to 70 wt%. Viscoelasticity and solubility measurements showed that extrusion temperature was a more significant (P extruded dairy protein ranged from rigid (2500 N) to soft (2.7 N). Extruding at or above 75 degrees C resulted in increased peak force for WPC (138 to 2500 N) and WPI (2.7 to 147.1 N). NDM was marginally texturized; the presence of lactose interfered with its texturization. WPI products extruded at 50 degrees C were not texturized; their solubility values ranged from 71.8% to 92.6%. A wide possibility exists for creating new foods with texturized dairy proteins due to the extensive range of states achievable. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, WPI, or WPC, or NDM were modified by extrusion processing. Extrusion temperature conditions were adjusted to 50, 75, or 100 degrees C, sufficient to change the structure of the dairy proteins, but not destroy them. Extrusion modified the structures of these dairy proteins for ease of use in starchy foods to boost nutrient levels. Dairy proteins can be used to boost the protein content in puffed snacks made from corn meal, but unmodified, they bind water and form doughy pastes with starch. To minimize the water binding property of dairy proteins, whey protein isolate, whey protein concentrate, or nonfat dried milk were modified by extrusion processing. Extrusion

  12. Protein annotation from protein interaction networks and Gene Ontology.

    Science.gov (United States)

    Nguyen, Cao D; Gardiner, Katheleen J; Cios, Krzysztof J

    2011-10-01

    We introduce a novel method for annotating protein function that combines Naïve Bayes and association rules, and takes advantage of the underlying topology in protein interaction networks and the structure of graphs in the Gene Ontology. We apply our method to proteins from the Human Protein Reference Database (HPRD) and show that, in comparison with other approaches, it predicts protein functions with significantly higher recall with no loss of precision. Specifically, it achieves 51% precision and 60% recall versus 45% and 26% for Majority and 24% and 61% for χ²-statistics, respectively. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Dietary Protein Intake in Dutch Elderly People: A Focus on Protein Sources

    Directory of Open Access Journals (Sweden)

    Michael Tieland

    2015-11-01

    Full Text Available Introduction: Sufficient high quality dietary protein intake is required to prevent or treat sarcopenia in elderly people. Therefore, the intake of specific protein sources as well as their timing of intake are important to improve dietary protein intake in elderly people. Objectives: to assess the consumption of protein sources as well as the distribution of protein sources over the day in community-dwelling, frail and institutionalized elderly people. Methods: Habitual dietary intake was evaluated using 2- and 3-day food records collected from various studies involving 739 community-dwelling, 321 frail and 219 institutionalized elderly people. Results: Daily protein intake averaged 71 ± 18 g/day in community-dwelling, 71 ± 20 g/day in frail and 58 ± 16 g/day in institutionalized elderly people and accounted for 16% ± 3%, 16% ± 3% and 17% ± 3% of their energy intake, respectively. Dietary protein intake ranged from 10 to 12 g at breakfast, 15 to 23 g at lunch and 24 to 31 g at dinner contributing together over 80% of daily protein intake. The majority of dietary protein consumed originated from animal sources (≥60% with meat and dairy as dominant sources. Thus, 40% of the protein intake in community-dwelling, 37% in frail and 29% in institutionalized elderly originated from plant based protein sources with bread as the principle source. Plant based proteins contributed for >50% of protein intake at breakfast and between 34% and 37% at lunch, with bread as the main source. During dinner, >70% of the protein intake originated from animal protein, with meat as the dominant source. Conclusion: Daily protein intake in these older populations is mainly (>80% provided by the three main meals, with most protein consumed during dinner. More than 60% of daily protein intake consumed is of animal origin, with plant based protein sources representing nearly 40% of total protein consumed. During dinner, >70% of the protein intake originated from

  14. Introduction to current and future protein therapeutics: a protein engineering perspective.

    Science.gov (United States)

    Carter, Paul J

    2011-05-15

    Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  16. BLAST-based structural annotation of protein residues using Protein Data Bank.

    Science.gov (United States)

    Singh, Harinder; Raghava, Gajendra P S

    2016-01-25

    In the era of next-generation sequencing where thousands of genomes have been already sequenced; size of protein databases is growing with exponential rate. Structural annotation of these proteins is one of the biggest challenges for the computational biologist. Although, it is easy to perform BLAST search against Protein Data Bank (PDB) but it is difficult for a biologist to annotate protein residues from BLAST search. A web-server StarPDB has been developed for structural annotation of a protein based on its similarity with known protein structures. It uses standard BLAST software for performing similarity search of a query protein against protein structures in PDB. This server integrates wide range modules for assigning different types of annotation that includes, Secondary-structure, Accessible surface area, Tight-turns, DNA-RNA and Ligand modules. Secondary structure module allows users to predict regular secondary structure states to each residue in a protein. Accessible surface area predict the exposed or buried residues in a protein. Tight-turns module is designed to predict tight turns like beta-turns in a protein. DNA-RNA module developed for predicting DNA and RNA interacting residues in a protein. Similarly, Ligand module of server allows one to predicted ligands, metal and nucleotides ligand interacting residues in a protein. In summary, this manuscript presents a web server for comprehensive annotation of a protein based on similarity search. It integrates number of visualization tools that facilitate users to understand structure and function of protein residues. This web server is available freely for scientific community from URL http://crdd.osdd.net/raghava/starpdb .

  17. Integral UBL domain proteins: a family of proteasome interacting proteins

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    The family of ubiquitin-like (UBL) domain proteins (UDPs) comprises a conserved group of proteins involved in a multitude of different cellular activities. However, recent studies on UBL-domain proteins indicate that these proteins appear to share a common property in their ability to interact...

  18. Modulation of mitogen-activated protein kinase-activated protein kinase 3 by hepatitis C virus core protein

    DEFF Research Database (Denmark)

    Ngo, HT; Pham, Long; Kim, JW

    2013-01-01

    Hepatitis C virus (HCV) is highly dependent on cellular proteins for its own propagation. In order to identify the cellular factors involved in HCV propagation, we performed protein microarray assays using the HCV core protein as a probe. Of ~9,000 host proteins immobilized in a microarray...... inducers. Binding of HCV core to MAPKAPK3 was confirmed by in vitro pulldown assay and further verified by coimmunoprecipitation assay. HCV core protein interacted with MAPKAPK3 through amino acid residues 41 to 75 of core and the N-terminal half of kinase domain of MAPKAPK3. In addition, both RNA...... increased HCV IRES-mediated translation and MAPKAPK3-dependent HCV IRES activity was further increased by core protein. These data suggest that HCV core may modulate MAPKAPK3 to facilitate its own propagation....

  19. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication.

    Directory of Open Access Journals (Sweden)

    Ji'an Pan

    Full Text Available Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12 provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins.

  20. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  1. Topology-function conservation in protein-protein interaction networks.

    Science.gov (United States)

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  2. Protein space: a natural method for realizing the nature of protein universe.

    Science.gov (United States)

    Yu, Chenglong; Deng, Mo; Cheng, Shiu-Yuen; Yau, Shek-Chung; He, Rong L; Yau, Stephen S-T

    2013-02-07

    Current methods cannot tell us what the nature of the protein universe is concretely. They are based on different models of amino acid substitution and multiple sequence alignment which is an NP-hard problem and requires manual intervention. Protein structural analysis also gives a direction for mapping the protein universe. Unfortunately, now only a minuscule fraction of proteins' 3-dimensional structures are known. Furthermore, the phylogenetic tree representations are not unique for any existing tree construction methods. Here we develop a novel method to realize the nature of protein universe. We show the protein universe can be realized as a protein space in 60-dimensional Euclidean space using a distance based on a normalized distribution of amino acids. Every protein is in one-to-one correspondence with a point in protein space, where proteins with similar properties stay close together. Thus the distance between two points in protein space represents the biological distance of the corresponding two proteins. We also propose a natural graphical representation for inferring phylogenies. The representation is natural and unique based on the biological distances of proteins in protein space. This will solve the fundamental question of how proteins are distributed in the protein universe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Protein intake does not increase vastus lateralis muscle protein synthesis during cycling

    DEFF Research Database (Denmark)

    Hulston, CJ; Wolsk, Emil; Grøndahl, Thomas Sahl

    2011-01-01

    PURPOSE: This study aimed to investigate the effect of protein ingestion on leg protein turnover and vastus lateralis muscle protein synthesis during bicycle exercise and recovery. METHODS: Eight healthy males participated in two experiments in which they ingested either a carbohydrate solution...... sampling, and blood flow measurements. Muscle protein synthesis was calculated from the incorporation of l-[ring-C6]phenylalanine into protein. RESULTS: Consuming protein during exercise increased leg protein synthesis and decreased net leg protein breakdown; however, protein ingestion did not increase...... protein synthesis within the highly active vastus lateralis muscle (0.029%·h(-1), ± 0.004%·h(-1), and 0.030%·h(-1), ± 0.003%·h(-1), in CHO and CHO + P, respectively; P = 0.88). In contrast, consuming protein, during exercise and recovery, increased postexercise vastus lateralis muscle protein synthesis...

  4. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    Science.gov (United States)

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  5. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  6. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    Science.gov (United States)

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  7. A Mesoscopic Model for Protein-Protein Interactions in Solution

    OpenAIRE

    Lund, Mikael; Jönsson, Bo

    2003-01-01

    Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...

  8. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Using modified soy protein to enhance foaming of egg white protein.

    Science.gov (United States)

    Wang, Guang; Troendle, Molly; Reitmeier, Cheryll A; Wang, Tong

    2012-08-15

    It is well known that the foaming properties of egg white protein are significantly reduced when a small amount of yolk is mixed in the white. To improve foaming properties of yolk-contaminated egg white protein, soy protein isolate (SPI) and egg proteins were modified to make basic proteins, and effects of these modified proteins on egg white foaming were evaluated in a model and an angel cake system. SPI and egg yolk proteins were modified to have an isoelectric point of 10, and sonication was used to increase protein dispersibility after the ethyl esterification reaction. However, only the addition of sonicated and modified SPI (SMSPI) showed improvement of foaming in the 5% egg protein model system with 0.4% yolk addition. SMSPI was then used in making angel food cake to examine whether the cake performance reduction due to yolk contamination of the white would be restored by such alkaline protein. Cake performance was improved when cream of tartar was used together with SMSPI. Basic soy protein can be made and used to improve egg white foaming properties and cake performance. Copyright © 2012 Society of Chemical Industry.

  10. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  11. Specificity of molecular interactions in transient protein-protein interaction interfaces.

    Science.gov (United States)

    Cho, Kyu-il; Lee, KiYoung; Lee, Kwang H; Kim, Dongsup; Lee, Doheon

    2006-11-15

    In this study, we investigate what types of interactions are specific to their biological function, and what types of interactions are persistent regardless of their functional category in transient protein-protein heterocomplexes. This is the first approach to analyze protein-protein interfaces systematically at the molecular interaction level in the context of protein functions. We perform systematic analysis at the molecular interaction level using classification and feature subset selection technique prevalent in the field of pattern recognition. To represent the physicochemical properties of protein-protein interfaces, we design 18 molecular interaction types using canonical and noncanonical interactions. Then, we construct input vector using the frequency of each interaction type in protein-protein interface. We analyze the 131 interfaces of transient protein-protein heterocomplexes in PDB: 33 protease-inhibitors, 52 antibody-antigens, 46 signaling proteins including 4 cyclin dependent kinase and 26 G-protein. Using kNN classification and feature subset selection technique, we show that there are specific interaction types based on their functional category, and such interaction types are conserved through the common binding mechanism, rather than through the sequence or structure conservation. The extracted interaction types are C(alpha)-- H...O==C interaction, cation...anion interaction, amine...amine interaction, and amine...cation interaction. With these four interaction types, we achieve the classification success rate up to 83.2% with leave-one-out cross-validation at k = 15. Of these four interaction types, C(alpha)--H...O==C shows binding specificity for protease-inhibitor complexes, while cation-anion interaction is predominant in signaling complexes. The amine ... amine and amine...cation interaction give a minor contribution to the classification accuracy. When combined with these two interactions, they increase the accuracy by 3.8%. In the case of

  12. Protein-protein interactions in the regulation of WRKY transcription factors.

    Science.gov (United States)

    Chi, Yingjun; Yang, Yan; Zhou, Yuan; Zhou, Jie; Fan, Baofang; Yu, Jing-Quan; Chen, Zhixiang

    2013-03-01

    It has been almost 20 years since the first report of a WRKY transcription factor, SPF1, from sweet potato. Great progress has been made since then in establishing the diverse biological roles of WRKY transcription factors in plant growth, development, and responses to biotic and abiotic stress. Despite the functional diversity, almost all analyzed WRKY proteins recognize the TTGACC/T W-box sequences and, therefore, mechanisms other than mere recognition of the core W-box promoter elements are necessary to achieve the regulatory specificity of WRKY transcription factors. Research over the past several years has revealed that WRKY transcription factors physically interact with a wide range of proteins with roles in signaling, transcription, and chromatin remodeling. Studies of WRKY-interacting proteins have provided important insights into the regulation and mode of action of members of the important family of transcription factors. It has also emerged that the slightly varied WRKY domains and other protein motifs conserved within each of the seven WRKY subfamilies participate in protein-protein interactions and mediate complex functional interactions between WRKY proteins and between WRKY and other regulatory proteins in the modulation of important biological processes. In this review, we summarize studies of protein-protein interactions for WRKY transcription factors and discuss how the interacting partners contribute, at different levels, to the establishment of the complex regulatory and functional network of WRKY transcription factors.

  13. Expression analyses of the genes harbored by the type 2 diabetes and pediatric BMI associated locus on 10q23

    Directory of Open Access Journals (Sweden)

    Zhao Jianhua

    2012-09-01

    Full Text Available Abstract Background There is evidence that one of the key type 2 diabetes (T2D loci identified by GWAS exerts its influence early on in life through its impact on pediatric BMI. This locus on 10q23 harbors three genes, encoding hematopoietically expressed homeobox (HHEX, insulin-degrading enzyme (IDE and kinesin family member 11 (KIF11, respectively. Methods We analyzed the impact of adipogeneis on the mRNA and protein expression levels of these genes in the human adipocyte Simpson-Golabi-Behmel syndrome (SGBS cell line in order to investigate which could be the culprit gene(s in this region of linkage disequilibrium. Results Following activation of differentiation with a PPARγ ligand, we observed ~20% decrease in IDE, ~40% decrease in HHEX and in excess of 80% decrease in KIF11 mRNA levels when comparing the adipocyte and pre-adipocyte states. We also observed decreases in KIF11 and IDE protein levels, but conversely we observed a dramatic increase in HHEX protein levels. Subsequent time course experiments revealed some marked changes in expression as early as three hours after activation of differentiation. Conclusion Our data suggest that the expression of all three genes at this locus are impacted during SGBS adipogenesis and provides insights in to the possible mechanisms of how the genes at this 10q23 locus could influence both adipocyte differentiation and susceptibility to T2D through insulin resistance.

  14. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    Science.gov (United States)

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  15. Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

    International Nuclear Information System (INIS)

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-01-01

    The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations

  16. Shotgun protein sequencing.

    Energy Technology Data Exchange (ETDEWEB)

    Faulon, Jean-Loup Michel; Heffelfinger, Grant S.

    2009-06-01

    A novel experimental and computational technique based on multiple enzymatic digestion of a protein or protein mixture that reconstructs protein sequences from sequences of overlapping peptides is described in this SAND report. This approach, analogous to shotgun sequencing of DNA, is to be used to sequence alternative spliced proteins, to identify post-translational modifications, and to sequence genetically engineered proteins.

  17. Protein-protein interactions within late pre-40S ribosomes.

    Directory of Open Access Journals (Sweden)

    Melody G Campbell

    2011-01-01

    Full Text Available Ribosome assembly in eukaryotic organisms requires more than 200 assembly factors to facilitate and coordinate rRNA transcription, processing, and folding with the binding of the ribosomal proteins. Many of these assembly factors bind and dissociate at defined times giving rise to discrete assembly intermediates, some of which have been partially characterized with regards to their protein and RNA composition. Here, we have analyzed the protein-protein interactions between the seven assembly factors bound to late cytoplasmic pre-40S ribosomes using recombinant proteins in binding assays. Our data show that these factors form two modules: one comprising Enp1 and the export adaptor Ltv1 near the beak structure, and the second comprising the kinase Rio2, the nuclease Nob1, and a regulatory RNA binding protein Dim2/Pno1 on the front of the head. The GTPase-like Tsr1 and the universally conserved methylase Dim1 are also peripherally connected to this second module. Additionally, in an effort to further define the locations for these essential proteins, we have analyzed the interactions between these assembly factors and six ribosomal proteins: Rps0, Rps3, Rps5, Rps14, Rps15 and Rps29. Together, these results and previous RNA-protein crosslinking data allow us to propose a model for the binding sites of these seven assembly factors. Furthermore, our data show that the essential kinase Rio2 is located at the center of the pre-ribosomal particle and interacts, directly or indirectly, with every other assembly factor, as well as three ribosomal proteins required for cytoplasmic 40S maturation. These data suggest that Rio2 could play a central role in regulating cytoplasmic maturation steps.

  18. 3DProIN: Protein-Protein Interaction Networks and Structure Visualization.

    Science.gov (United States)

    Li, Hui; Liu, Chunmei

    2014-06-14

    3DProIN is a computational tool to visualize protein-protein interaction networks in both two dimensional (2D) and three dimensional (3D) view. It models protein-protein interactions in a graph and explores the biologically relevant features of the tertiary structures of each protein in the network. Properties such as color, shape and name of each node (protein) of the network can be edited in either 2D or 3D views. 3DProIN is implemented using 3D Java and C programming languages. The internet crawl technique is also used to parse dynamically grasped protein interactions from protein data bank (PDB). It is a java applet component that is embedded in the web page and it can be used on different platforms including Linux, Mac and Window using web browsers such as Firefox, Internet Explorer, Chrome and Safari. It also was converted into a mac app and submitted to the App store as a free app. Mac users can also download the app from our website. 3DProIN is available for academic research at http://bicompute.appspot.com.

  19. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  20. Modularity in protein structures: study on all-alpha proteins.

    Science.gov (United States)

    Khan, Taushif; Ghosh, Indira

    2015-01-01

    Modularity is known as one of the most important features of protein's robust and efficient design. The architecture and topology of proteins play a vital role by providing necessary robust scaffolds to support organism's growth and survival in constant evolutionary pressure. These complex biomolecules can be represented by several layers of modular architecture, but it is pivotal to understand and explore the smallest biologically relevant structural component. In the present study, we have developed a component-based method, using protein's secondary structures and their arrangements (i.e. patterns) in order to investigate its structural space. Our result on all-alpha protein shows that the known structural space is highly populated with limited set of structural patterns. We have also noticed that these frequently observed structural patterns are present as modules or "building blocks" in large proteins (i.e. higher secondary structure content). From structural descriptor analysis, observed patterns are found to be within similar deviation; however, frequent patterns are found to be distinctly occurring in diverse functions e.g. in enzymatic classes and reactions. In this study, we are introducing a simple approach to explore protein structural space using combinatorial- and graph-based geometry methods, which can be used to describe modularity in protein structures. Moreover, analysis indicates that protein function seems to be the driving force that shapes the known structure space.

  1. Emergence of modularity and disassortativity in protein-protein interaction networks.

    Science.gov (United States)

    Wan, Xi; Cai, Shuiming; Zhou, Jin; Liu, Zengrong

    2010-12-01

    In this paper, we present a simple evolution model of protein-protein interaction networks by introducing a rule of small-preference duplication of a node, meaning that the probability of a node chosen to duplicate is inversely proportional to its degree, and subsequent divergence plus nonuniform heterodimerization based on some plausible mechanisms in biology. We show that our model cannot only reproduce scale-free connectivity and small-world pattern, but also exhibit hierarchical modularity and disassortativity. After comparing the features of our model with those of real protein-protein interaction networks, we believe that our model can provide relevant insights into the mechanism underlying the evolution of protein-protein interaction networks. © 2010 American Institute of Physics.

  2. HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy.

    Science.gov (United States)

    Yan, Yumeng; Zhang, Di; Zhou, Pei; Li, Botong; Huang, Sheng-You

    2017-07-03

    Protein-protein and protein-DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein-protein and protein-DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10-20 min for a docking run. Tested on the cases with weakly homologous complexes of server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Aquaporin Protein-Protein Interactions

    Directory of Open Access Journals (Sweden)

    Jennifer Virginia Roche

    2017-10-01

    Full Text Available Aquaporins are tetrameric membrane-bound channels that facilitate transport of water and other small solutes across cell membranes. In eukaryotes, they are frequently regulated by gating or trafficking, allowing for the cell to control membrane permeability in a specific manner. Protein–protein interactions play crucial roles in both regulatory processes and also mediate alternative functions such as cell adhesion. In this review, we summarize recent knowledge about aquaporin protein–protein interactions; dividing the interactions into three types: (1 interactions between aquaporin tetramers; (2 interactions between aquaporin monomers within a tetramer (hetero-tetramerization; and (3 transient interactions with regulatory proteins. We particularly focus on the structural aspects of the interactions, discussing the small differences within a conserved overall fold that allow for aquaporins to be differentially regulated in an organism-, tissue- and trigger-specific manner. A deep knowledge about these differences is needed to fully understand aquaporin function and regulation in many physiological processes, and may enable design of compounds targeting specific aquaporins for treatment of human disease.

  4. A method for investigating protein-protein interactions related to Salmonella typhimurium pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Saiful M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shi, Liang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yoon, Hyunjin [Dartmouth College, Hanover, NH (United States); Ansong, Charles [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rommereim, Leah M. [Dartmouth College, Hanover, NH (United States); Norbeck, Angela D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Auberry, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moore, R. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Adkins, Joshua N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Heffron, Fred [Oregon Health and Science Univ., Portland, OR (United States); Smith, Richard D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-02-10

    We successfully modified an existing method to investigate protein-protein interactions in the pathogenic bacterium Salmonella typhimurium (STM). This method includes i) addition of a histidine-biotin-histidine tag to the bait proteins via recombinant DNA techniques; ii) in vivo cross-linking with formaldehyde; iii) tandem affinity purification of bait proteins under fully denaturing conditions; and iv) identification of the proteins cross-linked to the bait proteins by liquid-chromatography in conjunction with tandem mass-spectrometry. In vivo cross-linking stabilized protein interactions permitted the subsequent two-step purification step conducted under denaturing conditions. The two-step purification greatly reduced nonspecific binding of non-cross-linked proteins to bait proteins. Two different negative controls were employed to reduce false-positive identification. In an initial demonstration of this approach, we tagged three selected STM proteins- HimD, PduB and PhoP- with known binding partners that ranged from stable (e.g., HimD) to transient (i.e., PhoP). Distinct sets of interacting proteins were identified with each bait protein, including the known binding partners such as HimA for HimD, as well as anticipated and unexpected binding partners. Our results suggest that novel protein-protein interactions may be critical to pathogenesis by Salmonella typhimurium. .

  5. Exceptional heat stability of high protein content dispersions containing whey protein particles

    NARCIS (Netherlands)

    Saglam, D.; Venema, P.; Vries, de R.J.; Linden, van der E.

    2014-01-01

    Due to aggregation and/or gelation during thermal treatment, the amount of whey proteins that can be used in the formulation of high protein foods e.g. protein drinks, is limited. The aim of this study was to replace whey proteins with whey protein particles to increase the total protein content and

  6. Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes

    Directory of Open Access Journals (Sweden)

    Takehiro Nishikawa

    2012-01-01

    Full Text Available Directed evolution of proteins is a technique used to modify protein functions through “Darwinian selection.” In vitro compartmentalization (IVC is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype and the protein translated from the information (phenotype, which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE system and a fluorescence-activated cell sorter (FACS used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.

  7. Categorizing Biases in High-Confidence High-Throughput Protein-Protein Interaction Data Sets*

    Science.gov (United States)

    Yu, Xueping; Ivanic, Joseph; Memišević, Vesna; Wallqvist, Anders; Reifman, Jaques

    2011-01-01

    We characterized and evaluated the functional attributes of three yeast high-confidence protein-protein interaction data sets derived from affinity purification/mass spectrometry, protein-fragment complementation assay, and yeast two-hybrid experiments. The interacting proteins retrieved from these data sets formed distinct, partially overlapping sets with different protein-protein interaction characteristics. These differences were primarily a function of the deployed experimental technologies used to recover these interactions. This affected the total coverage of interactions and was especially evident in the recovery of interactions among different functional classes of proteins. We found that the interaction data obtained by the yeast two-hybrid method was the least biased toward any particular functional characterization. In contrast, interacting proteins in the affinity purification/mass spectrometry and protein-fragment complementation assay data sets were over- and under-represented among distinct and different functional categories. We delineated how these differences affected protein complex organization in the network of interactions, in particular for strongly interacting complexes (e.g. RNA and protein synthesis) versus weak and transient interacting complexes (e.g. protein transport). We quantified methodological differences in detecting protein interactions from larger protein complexes, in the correlation of protein abundance among interacting proteins, and in their connectivity of essential proteins. In the latter case, we showed that minimizing inherent methodology biases removed many of the ambiguous conclusions about protein essentiality and protein connectivity. We used these findings to rationalize how biological insights obtained by analyzing data sets originating from different sources sometimes do not agree or may even contradict each other. An important corollary of this work was that discrepancies in biological insights did not

  8. With Protein Foods, Variety Is Key: 10 Tips for Choosing Protein

    Science.gov (United States)

    ... Dietary Guidelines Communicator’s Guide 10 Tips: Vary Your Protein Routine You are here Home 10 Tips: Vary ... Protein Routine Print Share 10 Tips: Vary Your Protein Routine Protein foods include both animal (meat, poultry, ...

  9. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  10. Karakteristik Protein dan Nitrogen Non Protein Daging Ikan Cucut Lanyam (Charcharhinus limbatus (Characteristics of Protein and Non Protein Nitrogen in Lanyam Shark Muscle

    Directory of Open Access Journals (Sweden)

    Yuspihana Fitrial

    2017-02-01

    Based on protein solubility of Lanyam muscle at pH 1.5 to 12 obtained two points which is minimum solubility at pH 4.5 and pH 9. Based on the classification Osborn, Lanyam muscle contained albumin (28.64%, globulin (13:44%, prolamin (03.29%, glutelin (33.70%. Observation of non-protein nitrogen levels indicated that the washing process was very effective to reduce non-protein nitrogen levels up to 62.34% and urea levels up to 58% . Differential Scanning Calorimetry Study of Lanyam mince showed two types of protein that has a different stability to heat and after added 2.5% NaCl formed a peak which is a fusion of both these proteins

  11. On the role of electrostatics on protein-protein interactions

    Science.gov (United States)

    Zhang, Zhe; Witham, Shawn; Alexov, Emil

    2011-01-01

    The role of electrostatics on protein-protein interactions and binding is reviewed in this article. A brief outline of the computational modeling, in the framework of continuum electrostatics, is presented and basic electrostatic effects occurring upon the formation of the complex are discussed. The role of the salt concentration and pH of the water phase on protein-protein binding free energy is demonstrated and indicates that the increase of the salt concentration tends to weaken the binding, an observation that is attributed to the optimization of the charge-charge interactions across the interface. It is pointed out that the pH-optimum (pH of optimal binding affinity) varies among the protein-protein complexes, and perhaps is a result of their adaptation to particular subcellular compartment. At the end, the similarities and differences between hetero- and homo-complexes are outlined and discussed with respect to the binding mode and charge complementarity. PMID:21572182

  12. PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack

    2006-07-01

    Full Text Available Abstract Background Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions. Results Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30 and YMR135C (gid8 yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c. The observed interaction was confirmed by tandem affinity purification (TAP tag, verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not

  13. Consumption of Milk Protein or Whey Protein Results in a Similar Increase in Muscle Protein Synthesis in Middle Aged Men.

    Science.gov (United States)

    Mitchell, Cameron J; McGregor, Robin A; D'Souza, Randall F; Thorstensen, Eric B; Markworth, James F; Fanning, Aaron C; Poppitt, Sally D; Cameron-Smith, David

    2015-10-21

    The differential ability of various milk protein fractions to stimulate muscle protein synthesis (MPS) has been previously described, with whey protein generally considered to be superior to other fractions. However, the relative ability of a whole milk protein to stimulate MPS has not been compared to whey. Sixteen healthy middle-aged males ingested either 20 g of milk protein (n = 8) or whey protein (n = 8) while undergoing a primed constant infusion of ring (13)C₆ phenylalanine. Muscle biopsies were obtained 120 min prior to consumption of the protein and 90 and 210 min afterwards. Resting myofibrillar fractional synthetic rates (FSR) were 0.019% ± 0.009% and 0.021% ± 0.018% h(-1) in the milk and whey groups respectively. For the first 90 min after protein ingestion the FSR increased (p whey groups respectively with no difference between groups (p = 0.810). FSR returned to baseline in both groups between 90 and 210 min after protein ingestion. Despite evidence of increased rate of digestion and leucine availability following the ingestion of whey protein, there was similar activation of MPS in middle-aged men with either 20 g of milk protein or whey protein.

  14. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes.

    Science.gov (United States)

    Nillegoda, Nadinath B; Stank, Antonia; Malinverni, Duccio; Alberts, Niels; Szlachcic, Anna; Barducci, Alessandro; De Los Rios, Paolo; Wade, Rebecca C; Bukau, Bernd

    2017-05-15

    Hsp70 participates in a broad spectrum of protein folding processes extending from nascent chain folding to protein disaggregation. This versatility in function is achieved through a diverse family of J-protein cochaperones that select substrates for Hsp70. Substrate selection is further tuned by transient complexation between different classes of J-proteins, which expands the range of protein aggregates targeted by metazoan Hsp70 for disaggregation. We assessed the prevalence and evolutionary conservation of J-protein complexation and cooperation in disaggregation. We find the emergence of a eukaryote-specific signature for interclass complexation of canonical J-proteins. Consistently, complexes exist in yeast and human cells, but not in bacteria, and correlate with cooperative action in disaggregation in vitro. Signature alterations exclude some J-proteins from networking, which ensures correct J-protein pairing, functional network integrity and J-protein specialization. This fundamental change in J-protein biology during the prokaryote-to-eukaryote transition allows for increased fine-tuning and broadening of Hsp70 function in eukaryotes.

  15. Globular and disordered-the non-identical twins in protein-protein interactions

    DEFF Research Database (Denmark)

    Teilum, Kaare; Olsen, Johan Gotthardt; Kragelund, Birthe Brandt

    2015-01-01

    as a strong determinant for their function. This has fostered the notion that IDP's bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those...... of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non-identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol(-1)....

  16. Neuromuscular electrical stimulation prior to presleep protein feeding stimulates the use of protein-derived amino acids for overnight muscle protein synthesis.

    Science.gov (United States)

    Dirks, Marlou L; Groen, Bart B L; Franssen, Rinske; van Kranenburg, Janneau; van Loon, Luc J C

    2017-01-01

    Short periods of muscle disuse result in substantial skeletal muscle atrophy. Recently, we showed that both neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. In this study, we test our hypothesis that NMES can augment the use of presleep protein-derived amino acids for overnight muscle protein synthesis in older men. Twenty healthy, older [69 ± 1 (SE) yr] men were subjected to 24 h of bed rest, starting at 8:00 AM. In the evening, volunteers were subjected to 70-min 1-legged NMES, while the other leg served as nonstimulated control (CON). Immediately following NMES, 40 g of intrinsically l-[1- 13 C]-phenylalanine labeled protein was ingested prior to sleep. Blood samples were taken throughout the night, and muscle biopsies were obtained from both legs in the evening and the following morning (8 h after protein ingestion) to assess dietary protein-derived l-[1- 13 C]-phenylalanine enrichments in myofibrillar protein. Plasma phenylalanine concentrations and plasma l-[1- 13 C]-phenylalanine enrichments increased significantly following protein ingestion and remained elevated for up to 6 h after protein ingestion (P protein-bound l-[1- 13 C]-phenylalanine enrichments (MPE) increased to a greater extent in the stimulated compared with the control leg (0.0344 ± 0.0019 vs. 0.0297 ± 0.0016 MPE, respectively; P protein-derived amino acids in the NMES compared with CON leg. In conclusion, application of NMES prior to presleep protein feeding stimulates the use of dietary protein-derived amino acids for overnight muscle protein synthesis in older men. Neuromuscular electrical stimulation (NMES) as well as presleep dietary protein ingestion represent effective strategies to stimulate muscle protein synthesis rates. Here we demonstrate that in older men after a day of bed rest, the application of NMES prior to presleep protein feeding stimulates the use of

  17. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  18. ProDis-ContSHC: Learning protein dissimilarity measures and hierarchical context coherently for protein-protein comparison in protein database retrieval

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin; Wang, Quanquan; Li, Yongping

    2012-01-01

    Background: The need to retrieve or classify protein molecules using structure or sequence-based similarity measures underlies a wide range of biomedical applications. Traditional protein search methods rely on a pairwise dissimilarity

  19. Current strategies for protein production and purification enabling membrane protein structural biology.

    Science.gov (United States)

    Pandey, Aditya; Shin, Kyungsoo; Patterson, Robin E; Liu, Xiang-Qin; Rainey, Jan K

    2016-12-01

    Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).

  20. Fragment-based quantum mechanical calculation of protein-protein binding affinities.

    Science.gov (United States)

    Wang, Yaqian; Liu, Jinfeng; Li, Jinjin; He, Xiao

    2018-04-29

    The electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method has been successfully utilized for efficient linear-scaling quantum mechanical (QM) calculation of protein energies. In this work, we applied the EE-GMFCC method for calculation of binding affinity of Endonuclease colicin-immunity protein complex. The binding free energy changes between the wild-type and mutants of the complex calculated by EE-GMFCC are in good agreement with experimental results. The correlation coefficient (R) between the predicted binding energy changes and experimental values is 0.906 at the B3LYP/6-31G*-D level, based on the snapshot whose binding affinity is closest to the average result from the molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) calculation. The inclusion of the QM effects is important for accurate prediction of protein-protein binding affinities. Moreover, the self-consistent calculation of PB solvation energy is required for accurate calculations of protein-protein binding free energies. This study demonstrates that the EE-GMFCC method is capable of providing reliable prediction of relative binding affinities for protein-protein complexes. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  1. PROTEIN FRACTIONS AND IN VITRO FERMENTATION OF PROTEIN FEEDS FOR RUMINANTS

    Directory of Open Access Journals (Sweden)

    Angel L. Guevara-Mesa

    2011-05-01

    Full Text Available The objective of this study was to evaluate 20 protein feeds grouped in forages, vegetal by- products and animal by-products used for ruminant diets. Protein fractions (PF: A, non-protein nitrogen (NPN; B1, buffer-soluble protein; B2, buffer-insoluble, NDF-soluble protein; B3, NDF-insoluble, ADF-soluble protein; and C, ADF-insoluble protein, were determined for each ingredient.  Protein composition was correlated with total gas production in vitro (GP, gas production rate (S, lag time (L, DM disappearance (DMDIV and residual protein (RPIV. The completely randomised designed was analysed using mixed proc. and Tukey contrasts. Forages contained 18.29, 7.86, 66.00, 2.96, 4.89% of fractions A, B1, B2, B3 and C, respectively. Vegetable by-products contained 22.55, 4.55, 59.51, 8.84, 4.55% of each fraction, in the same order. Animal by-products contained 19.13, 4.52, 70.24, 3.74, 2.37% of each fraction, in the same order. Vetch, wheat bran and poultry litter had the greatest Vmax in each group. Vmax was correlated (P≤0.01 with total protein (r = -0.45, ADF (r = 0.27 and DMDIV (r = 0.61. In conclusion, there were differences in protein composition and kinetics of in vitro gas production among ingredients.

  2. Selection of peptides interfering with protein-protein interaction.

    Science.gov (United States)

    Gaida, Annette; Hagemann, Urs B; Mattay, Dinah; Räuber, Christina; Müller, Kristian M; Arndt, Katja M

    2009-01-01

    Cell physiology depends on a fine-tuned network of protein-protein interactions, and misguided interactions are often associated with various diseases. Consequently, peptides, which are able to specifically interfere with such adventitious interactions, are of high interest for analytical as well as medical purposes. One of the most abundant protein interaction domains is the coiled-coil motif, and thus provides a premier target. Coiled coils, which consist of two or more alpha-helices wrapped around each other, have one of the simplest interaction interfaces, yet they are able to confer highly specific homo- and heterotypic interactions involved in virtually any cellular process. While there are several ways to generate interfering peptides, the combination of library design with a powerful selection system seems to be one of the most effective and promising approaches. This chapter guides through all steps of such a process, starting with library options and cloning, detailing suitable selection techniques and ending with purification for further down-stream characterization. Such generated peptides will function as versatile tools to interfere with the natural function of their targets thereby illuminating their down-stream signaling and, in general, promoting understanding of factors leading to specificity and stability in protein-protein interactions. Furthermore, peptides interfering with medically relevant proteins might become important diagnostics and therapeutics.

  3. Phthalic Acid Chemical Probes Synthesized for Protein-Protein Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Chin-Jen Wu

    2013-06-01

    Full Text Available Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP. According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES was deposited on silicon dioxides (SiO2 particles and phthalate chemical probes were manufactured from phthalic acid and APTES–SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA software showed that these chemical probes were a practical technique for protein-protein interaction analysis.

  4. Protein-protein docking using region-based 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  5. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  6. Escherichia coli cell-free protein synthesis and isotope labeling of mammalian proteins.

    Science.gov (United States)

    Terada, Takaho; Yokoyama, Shigeyuki

    2015-01-01

    This chapter describes the cell-free protein synthesis method, using an Escherichia coli cell extract. This is a cost-effective method for milligram-scale protein production and is particularly useful for the production of mammalian proteins, protein complexes, and membrane proteins that are difficult to synthesize by recombinant expression methods, using E. coli and eukaryotic cells. By adjusting the conditions of the cell-free method, zinc-binding proteins, disulfide-bonded proteins, ligand-bound proteins, etc., may also be produced. Stable isotope labeling of proteins can be accomplished by the cell-free method, simply by using stable isotope-labeled amino acid(s) in the cell-free reaction. Moreover, the cell-free protein synthesis method facilitates the avoidance of stable isotope scrambling and dilution over the recombinant expression methods and is therefore advantageous for amino acid-selective stable isotope labeling. Site-specific stable isotope labeling is also possible with a tRNA molecule specific to the UAG codon. By the cell-free protein synthesis method, coupled transcription-translation is performed from a plasmid vector or a PCR-amplified DNA fragment encoding the protein. A milligram quantity of protein can be produced with a milliliter-scale reaction solution in the dialysis mode. More than a thousand solution structures have been determined by NMR spectroscopy for uniformly labeled samples of human and mouse functional domain proteins, produced by the cell-free method. Here, we describe the practical aspects of mammalian protein production by the cell-free method for NMR spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  7. A selection that reports on protein-protein interactions within a thermophilic bacterium.

    Science.gov (United States)

    Nguyen, Peter Q; Silberg, Jonathan J

    2010-07-01

    Many proteins can be split into fragments that exhibit enhanced function upon fusion to interacting proteins. While this strategy has been widely used to create protein-fragment complementation assays (PCAs) for discovering protein-protein interactions within mesophilic organisms, similar assays have not yet been developed for studying natural and engineered protein complexes at the temperatures where thermophilic microbes grow. We describe the development of a selection for protein-protein interactions within Thermus thermophilus that is based upon growth complementation by fragments of Thermotoga neapolitana adenylate kinase (AK(Tn)). Complementation studies with an engineered thermophile (PQN1) that is not viable above 75 degrees C because its adk gene has been replaced by a Geobacillus stearothermophilus ortholog revealed that growth could be restored at 78 degrees C by a vector that coexpresses polypeptides corresponding to residues 1-79 and 80-220 of AK(Tn). In contrast, PQN1 growth was not complemented by AK(Tn) fragments harboring a C156A mutation within the zinc-binding tetracysteine motif unless these fragments were fused to Thermotoga maritima chemotaxis proteins that heterodimerize (CheA and CheY) or homodimerize (CheX). This enhanced complementation is interpreted as arising from chemotaxis protein-protein interactions, since AK(Tn)-C156A fragments having only one polypeptide fused to a chemotaxis protein did not complement PQN1 to the same extent. This selection increases the maximum temperature where a PCA can be used to engineer thermostable protein complexes and to map protein-protein interactions.

  8. InSilico Proteomics System: Integration and Application of Protein and Protein-Protein Interaction Data using Microsoft .NET

    Directory of Open Access Journals (Sweden)

    Straßer Wolfgang

    2006-12-01

    Full Text Available In the last decades, biological databases became the major knowledge resource for researchers in the field of molecular biology. The distribution of information among these databases is one of the major problems. An overview about the subject area of data access and representation of protein and protein-protein interaction data within public biological databases is described. For a comprehensive and consistent way of searching and analysing integrated protein and protein-protein interaction data, the InSilico Proteomics (ISP project has been initiated. Its three main objectives are (1 to provide an integrated knowledge pool for data investigation and global network analysis functions for a better understanding of a cell’s interactome, (2 employment of public data for plausibility analysis and validation of in-house experimental data and (3 testing the applicability of Microsoft’s .NET architecture for bioinformatics applications. Data integrated into the ISP database can be queried through the Web portal PRIMOS (PRotein Interaction and MOlecule Search which is freely available at http://biomis.fh-hagenberg.at/isp/primos.

  9. Mechanisms of protein misfolding: Novel therapeutic approaches to protein-misfolding diseases

    DEFF Research Database (Denmark)

    Salahuddin, Parveen; Siddiqi, Mohammad Khursheed; Khan, Sanaullah

    2016-01-01

    ’s disease (PD), Alzheimer’s disease (AD), Prion disease and Amylo lateral Sclerosis (ALS). Furthermore, tau protein shows intrinsically disorder conformation; therefore its interaction with microtubule is impaired and this protein undergoes aggregation. This is also underlying cause of Alzheimers and other......In protein misfolding, protein molecule acquires wrong tertiary structure, thereby induces protein misfolding diseases. Protein misfolding can occur through various mechanisms. For instance, changes in environmental conditions, oxidative stress, dominant negative mutations, error in post......-translational modifications, increase in degradation rate and trafficking error. All of these factors cause protein misfolding thereby leading to diseases conditions. Both in vitro and in vivo observations suggest that partially unfolded or misfolded intermediates are particularly prone to aggregation. These partially...

  10. Detecting protein complexes based on a combination of topological and biological properties in protein-protein interaction network

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    2018-06-01

    Full Text Available Protein complexes are known to play a major role in controlling cellular activity in a living being. Identifying complexes from raw protein protein interactions (PPIs is an important area of research. Earlier work has been limited mostly to yeast. Such protein complex identification methods, when applied to large human PPIs often give poor performance. We introduce a novel method called CSC to detect protein complexes. The method is evaluated in terms of positive predictive value, sensitivity and accuracy using the datasets of the model organism, yeast and humans. CSC outperforms several other competing algorithms for both organisms. Further, we present a framework to establish the usefulness of CSC in analyzing the influence of a given disease gene in a complex topologically as well as biologically considering eight major association factors. Keywords: Protein complex, Connectivity, Semantic similarity, Contribution

  11. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  12. Tau protein

    DEFF Research Database (Denmark)

    Frederiksen, Jette Lautrup Battistini; Kristensen, Kim; Bahl, Jmc

    2011-01-01

    Background: Tau protein has been proposed as biomarker of axonal damage leading to irreversible neurological impairment in MS. CSF concentrations may be useful when determining risk of progression from ON to MS. Objective: To investigate the association between tau protein concentration and 14......-3-3 protein in the cerebrospinal fluid (CSF) of patients with monosymptomatic optic neuritis (ON) versus patients with monosymptomatic onset who progressed to multiple sclerosis (MS). To evaluate results against data found in a complete literature review. Methods: A total of 66 patients with MS and/or ON from...... the Department of Neurology of Glostrup Hospital, University of Copenhagen, Denmark, were included. CSF samples were analysed for tau protein and 14-3-3 protein, and clinical and paraclinical information was obtained from medical records. Results: The study shows a significantly increased concentration of tau...

  13. Globular and disordered – the non-identical twins in protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Kaare eTeilum

    2015-07-01

    Full Text Available In biology proteins from different structural classes interact across and within classes in ways that are optimized to achieve balanced functional outputs. The interactions between intrinsically disordered proteins (IDPs and other proteins rely on changes in flexibility and this is seen as a strong determinant for their function. This has fostered the notion that IDP’s bind with low affinity but high specificity. Here we have analyzed available detailed thermodynamic data for protein-protein interactions to put to the test if the thermodynamic profiles of IDP interactions differ from those of other protein-protein interactions. We find that ordered proteins and the disordered ones act as non identical twins operating by similar principles but where the disordered proteins complexes are on average less stable by 2.5 kcal mol-1.

  14. Towards a map of the Populus biomass protein-protein interaction network

    Energy Technology Data Exchange (ETDEWEB)

    Beers, Eric [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brunner, Amy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Helm, Richard [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dickerman, Allan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  15. Imaging protein-protein interactions in living cells

    NARCIS (Netherlands)

    Hink, M.A.; Bisseling, T.; Visser, A.J.W.G.

    2002-01-01

    The complex organization of plant cells makes it likely that the molecular behaviour of proteins in the test tube and the cell is different. For this reason, it is essential though a challenge to study proteins in their natural environment. Several innovative microspectroscopic approaches provide

  16. Protein - Which is Best?

    Science.gov (United States)

    Hoffman, Jay R; Falvo, Michael J

    2004-09-01

    Protein intake that exceeds the recommended daily allowance is widely accepted for both endurance and power athletes. However, considering the variety of proteins that are available much less is known concerning the benefits of consuming one protein versus another. The purpose of this paper is to identify and analyze key factors in order to make responsible recommendations to both the general and athletic populations. Evaluation of a protein is fundamental in determining its appropriateness in the human diet. Proteins that are of inferior content and digestibility are important to recognize and restrict or limit in the diet. Similarly, such knowledge will provide an ability to identify proteins that provide the greatest benefit and should be consumed. The various techniques utilized to rate protein will be discussed. Traditionally, sources of dietary protein are seen as either being of animal or vegetable origin. Animal sources provide a complete source of protein (i.e. containing all essential amino acids), whereas vegetable sources generally lack one or more of the essential amino acids. Animal sources of dietary protein, despite providing a complete protein and numerous vitamins and minerals, have some health professionals concerned about the amount of saturated fat common in these foods compared to vegetable sources. The advent of processing techniques has shifted some of this attention and ignited the sports supplement marketplace with derivative products such as whey, casein and soy. Individually, these products vary in quality and applicability to certain populations. The benefits that these particular proteins possess are discussed. In addition, the impact that elevated protein consumption has on health and safety issues (i.e. bone health, renal function) are also reviewed. Key PointsHigher protein needs are seen in athletic populations.Animal proteins is an important source of protein, however potential health concerns do exist from a diet of protein

  17. Combining random gene fission and rational gene fusion to discover near-infrared fluorescent protein fragments that report on protein-protein interactions.

    Science.gov (United States)

    Pandey, Naresh; Nobles, Christopher L; Zechiedrich, Lynn; Maresso, Anthony W; Silberg, Jonathan J

    2015-05-15

    Gene fission can convert monomeric proteins into two-piece catalysts, reporters, and transcription factors for systems and synthetic biology. However, some proteins can be challenging to fragment without disrupting function, such as near-infrared fluorescent protein (IFP). We describe a directed evolution strategy that can overcome this challenge by randomly fragmenting proteins and concomitantly fusing the protein fragments to pairs of proteins or peptides that associate. We used this method to create libraries that express fragmented IFP as fusions to a pair of associating peptides (IAAL-E3 and IAAL-K3) and proteins (CheA and CheY) and screened for fragmented IFP with detectable near-infrared fluorescence. Thirteen novel fragmented IFPs were identified, all of which arose from backbone fission proximal to the interdomain linker. Either the IAAL-E3 and IAAL-K3 peptides or CheA and CheY proteins could assist with IFP fragment complementation, although the IAAL-E3 and IAAL-K3 peptides consistently yielded higher fluorescence. These results demonstrate how random gene fission can be coupled to rational gene fusion to create libraries enriched in fragmented proteins with AND gate logic that is dependent upon a protein-protein interaction, and they suggest that these near-infrared fluorescent protein fragments will be suitable as reporters for pairs of promoters and protein-protein interactions within whole animals.

  18. Athoropometric measurements and plasma proteins in protein ...

    African Journals Online (AJOL)

    Athoropometric measurements and plasma proteins in protein energy malnutrition. MH Etukudo, EO Agbedana, OO Akinyinka, BOA Osifo. Abstract. No Abstract. Global Journal of Medical Sciences Vol. 5(1) 2006: 7-11. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD ...

  19. Identification of membrane proteins by tandem mass spectrometry of protein ions

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C.; Fearnley, Ian M.; Walker, John E.

    2007-01-01

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence (“tags”) determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning α-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1–4 transmembrane α-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5–18 transmembrane α-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase. PMID:17720804

  20. Architectures and Functional Coverage of Protein-Protein Interfaces

    Science.gov (United States)

    Tuncbag, Nurcan; Gursoy, Attila; Guney, Emre; Nussinov, Ruth; Keskin, Ozlem

    2008-01-01

    The diverse range of cellular functions is performed by a limited number of protein folds existing in nature. One may similarly expect that cellular functional diversity would be covered by a limited number of protein-protein interface architectures. Here, we present 8205 interface clusters, each representing unique interface architecture. This dataset of protein-protein interfaces is analyzed and compared with older datasets. We observe that the number of both biological and crystal interfaces increase significantly compared to the number of PDB entries. Further, we find that the number of distinct interface architectures grows at a much faster rate than the number of folds and is yet to level off. We further analyze the growth trend of the functional coverage by constructing functional interaction networks from interfaces. The functional coverage is also found to steadily increase. Interestingly, we also observe that despite the diversity of interface architectures, some are more favorable and frequently used, and of particular interest, those are the ones which are also preferred in single chains. PMID:18620705

  1. Inferring high-confidence human protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Yu Xueping

    2012-05-01

    Full Text Available Abstract Background As numerous experimental factors drive the acquisition, identification, and interpretation of protein-protein interactions (PPIs, aggregated assemblies of human PPI data invariably contain experiment-dependent noise. Ascertaining the reliability of PPIs collected from these diverse studies and scoring them to infer high-confidence networks is a non-trivial task. Moreover, a large number of PPIs share the same number of reported occurrences, making it impossible to distinguish the reliability of these PPIs and rank-order them. For example, for the data analyzed here, we found that the majority (>83% of currently available human PPIs have been reported only once. Results In this work, we proposed an unsupervised statistical approach to score a set of diverse, experimentally identified PPIs from nine primary databases to create subsets of high-confidence human PPI networks. We evaluated this ranking method by comparing it with other methods and assessing their ability to retrieve protein associations from a number of diverse and independent reference sets. These reference sets contain known biological data that are either directly or indirectly linked to interactions between proteins. We quantified the average effect of using ranked protein interaction data to retrieve this information and showed that, when compared to randomly ranked interaction data sets, the proposed method created a larger enrichment (~134% than either ranking based on the hypergeometric test (~109% or occurrence ranking (~46%. Conclusions From our evaluations, it was clear that ranked interactions were always of value because higher-ranked PPIs had a higher likelihood of retrieving high-confidence experimental data. Reducing the noise inherent in aggregated experimental PPIs via our ranking scheme further increased the accuracy and enrichment of PPIs derived from a number of biologically relevant data sets. These results suggest that using our high

  2. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  3. Protein degradation and protection against misfolded or damaged proteins

    Science.gov (United States)

    Goldberg, Alfred L.

    2003-12-01

    The ultimate mechanism that cells use to ensure the quality of intracellular proteins is the selective destruction of misfolded or damaged polypeptides. In eukaryotic cells, the large ATP-dependent proteolytic machine, the 26S proteasome, prevents the accumulation of non-functional, potentially toxic proteins. This process is of particular importance in protecting cells against harsh conditions (for example, heat shock or oxidative stress) and in a variety of diseases (for example, cystic fibrosis and the major neurodegenerative diseases). A full understanding of the pathogenesis of the protein-folding diseases will require greater knowledge of how misfolded proteins are recognized and selectively degraded.

  4. Drosophila protein interaction map (DPiM): a paradigm for metazoan protein complex interactions.

    Science.gov (United States)

    Guruharsha, K G; Obar, Robert A; Mintseris, Julian; Aishwarya, K; Krishnan, R T; Vijayraghavan, K; Artavanis-Tsakonas, Spyros

    2012-01-01

    Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein-especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex "map" provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.

  5. MicroProteins

    DEFF Research Database (Denmark)

    Eguen, Teinai Ebimienere; Straub, Daniel; Graeff, Moritz

    2015-01-01

    MicroProteins (miPs) are short, usually single-domain proteins that, in analogy to miRNAs, heterodimerize with their targets and exert a dominant-negative effect. Recent bioinformatic attempts to identify miPs have resulted in a list of potential miPs, many of which lack the defining...... characteristics of a miP. In this opinion article, we clearly state the characteristics of a miP as evidenced by known proteins that fit the definition; we explain why modulatory proteins misrepresented as miPs do not qualify as true miPs. We also discuss the evolutionary history of miPs, and how the miP concept...

  6. Non-interacting surface solvation and dynamics in protein-protein interactions

    NARCIS (Netherlands)

    Visscher, Koen M.; Kastritis, Panagiotis L.|info:eu-repo/dai/nl/315886668; Bonvin, Alexandre M J J|info:eu-repo/dai/nl/113691238

    2015-01-01

    Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo

  7. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    Science.gov (United States)

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  8. Kinetic parameters of protein metabolism in rats during protein-free feeding

    International Nuclear Information System (INIS)

    Krawielitzki, K.; Schadereit, R.; Wuensche, J.

    1987-01-01

    16 male rats of 100 g live weight were given 50 mg of a mixture containing 15 N-labelled amino acids as a single dose within a protein-free feeding period. Following this the 15 N excretion in feces and urine as well as the development of the 15 N excess in different organs and tissues were estimated over 3 days by slaughtering the animals within given 7 time intervals. Using a 3 pool model and the computer program for the interpretation of 15 N tracer experiments by Toewe et al. (1984), kinetic parameters such as the rate of protein synthesis, protein breakdown and the rate of reutilization were calculated. Despite a negative N balance (- 41.8 mg N/d) under protein-free conditions the protein metabolism of the rat shows high dynamics characterized by a high flux rate (225 mg N/d) and a high rate of body protein synthesis (181 mg/d). The reutilization was 85 %. Depending on time the 15 N excess in the tested organs and tissues showed significant differences and seems to demonstrate that under these conditions protein synthesis mainly takes place in the most important organs (e.g. intestinal tract, liver). Under protein-free feeding conditions protein synthesis and protein breakdown of the whole body seems to be slightly increased in comparison to N balanced feeding conditions. (author)

  9. The role of electrostatics in protein-protein interactions of a monoclonal antibody.

    Science.gov (United States)

    Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R

    2014-07-07

    Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.

  10. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells

    Science.gov (United States)

    Tung, Emily W. Y.; Boudreau, Adèle; Wade, Michael G.; Atlas, Ella

    2014-01-01

    Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame retardants that were extensively used in commercial products. PBDEs are ubiquitous environmental contaminants that are both lipophilic and bioaccumulative. Effects of PBDEs on adipogenesis were studied in the 3T3-L1 preadipocyte cell model in the presence and absence of a known adipogenic agent, dexamethasone (DEX). A PBDE mixture designed to mimic body burden of North Americans was tested, in addition to the technical mixture DE-71 and the individual congener BDE-47. The mixture, DE-71, and BDE-47 all induced adipocyte differentiation as assessed by markers for terminal differentiation [fatty acid binding protein 4 (aP2) and perilipin] and lipid accumulation. Characterization of the differentiation process in response to PBDEs indicated that adipogenesis induced by a minimally effective dose of DEX was enhanced by these PBDEs. Moreover, C/EBPα, PPARγ, and LXRα were induced late in the differentiation process. Taken together, these data indicate that adipocyte differentiation is induced by PBDEs; they act in the absence of glucocorticoid and enhance glucocorticoid-mediated adipogenesis. PMID:24722056

  11. The H3K27 demethylase, Utx, regulates adipogenesis in a differentiation stage-dependent manner.

    Directory of Open Access Journals (Sweden)

    Kazushige Ota

    Full Text Available Understanding the molecular mechanisms that drive adipogenesis is important in developing new treatments for obesity and diabetes. Epigenetic regulations determine the capacity of adipogenesis. In this study, we examined the role of a histone H3 lysine 27 demethylase, the ubiquitously transcribed tetratricopeptide repeat protein on the X chromosome (Utx, in the differentiation of mouse embryonic stem cells (mESCs to adipocytes. Using gene trapping, we examined Utx-deficient male mESCs to determine whether loss of Utx would enhance or inhibit the differentiation of mESCs to adipocytes. Utx-deficient mESCs showed diminished potential to differentiate to adipocytes compared to that of controls. In contrast, Utx-deficient preadipocytes showed enhanced differentiation to adipocytes. Microarray analyses indicated that the β-catenin/c-Myc signaling pathway was differentially regulated in Utx-deficient cells during adipocyte differentiation. Therefore, our data suggest that Utx governs adipogenesis by regulating c-Myc in a differentiation stage-specific manner and that targeting the Utx signaling pathway could be beneficial for the treatment of obesity, diabetes, and congenital utx-deficiency disorders.

  12. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells.

    Science.gov (United States)

    Park, Young-Kwon; Park, Bongju; Lee, Seongyeol; Choi, Kang; Moon, Yunwon; Park, Hyunsung

    2013-09-06

    Adipocyte hyperplasia and hypertrophy in obesity can lead to many changes in adipose tissue, such as hypoxia, metabolic dysregulation, and enhanced secretion of cytokines. In this study, hypoxia increased the expression of Wnt10b in both human and mouse adipogenic cells, but not in hypoxia-inducible factor (HIF)-2α-deficient adipogenic cells. Chromatin immunoprecipitation analysis revealed that HIF-2α, but not HIF-1α, bound to the Wnt10b enhancer region as well as upstream of the Wnt1 gene, which is encoded by an antisense strand of the Wnt10b gene. Hypoxia-conditioned medium (H-CM) induced phosphorylation of lipoprotein-receptor-related protein 6 as well as β-catenin-dependent gene expression in normoxic cells, which suggests that H-CM contains canonical Wnt signals. Furthermore, adipogenesis of both human mesenchymal stem cells and mouse preadipocytes was inhibited by H-CM even under normoxic conditions. These results suggest that O2 concentration gradients influence the formation of Wnt ligand gradients, which are involved in the regulation of pluripotency, cell proliferation, and cell differentiation.

  13. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Shepherd, Peter R.; Chaussade, Claire

    2009-01-01

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110α and p110δ and that after differentiation, p110δ levels fall while p110α levels rise, together with C/EBPα and PPARγ. When using specific inhibitors during the differentiation process, we observed that neither p110β nor p110δ inhibition, had any significant effect. In contrast PIK-75, a selective p110α inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110α inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  14. Galectin-12 in Cellular Differentiation, Apoptosis and Polarization

    Directory of Open Access Journals (Sweden)

    Lei Wan

    2018-01-01

    Full Text Available Galectin-12 is a member of a family of mammalian lectins characterized by their affinity for β-galactosides and consensus amino acid sequences. The protein structure consists of a single polypeptide chain containing two carbohydrate-recognition domains joined by a linker region. Galectin-12 is predominantly expressed in adipose tissue, but is also detected in macrophages and other leukocytes. Downregulation of galectin-12 in mouse 3T3-L1 cells impairs their differentiation into adipocytes. Conversely, overexpression of galectin-12 in vitro induces cell cycle arrest in G1 and apoptosis. Upregulation of galectin-12 and initiation of G1 cell cycle arrest are associated with driving pre-adipocytes toward terminal differentiation. Galectin-12 deficiency increases insulin sensitivity and glucose tolerance in obese animals. Galectin-12 inhibits macrophage polarization to the M2 population, enhancing inflammation and decreasing insulin sensitivity in adipocytes. Galectin-12 also affects myeloid differentiation, which is associated with chemotherapy resistance. In addition to highlighting the above-mentioned aspects, this review also discusses the potential clinical applications of modulating the function of galectin-12.

  15. Scoring functions for protein-protein interactions.

    Science.gov (United States)

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pierced Lasso Proteins

    Science.gov (United States)

    Jennings, Patricia

    Entanglement and knots are naturally occurring, where, in the microscopic world, knots in DNA and homopolymers are well characterized. The most complex knots are observed in proteins which are harder to investigate, as proteins are heteropolymers composed of a combination of 20 different amino acids with different individual biophysical properties. As new-knotted topologies and new proteins containing knots continue to be discovered and characterized, the investigation of knots in proteins has gained intense interest. Thus far, the principle focus has been on the evolutionary origin of tying a knot, with questions of how a protein chain `self-ties' into a knot, what the mechanism(s) are that contribute to threading, and the biological relevance and functional implication of a knotted topology in vivo gaining the most insight. Efforts to study the fully untied and unfolded chain indicate that the knot is highly stable, remaining intact in the unfolded state orders of magnitude longer than first anticipated. The persistence of ``stable'' knots in the unfolded state, together with the challenge of defining an unfolded and untied chain from an unfolded and knotted chain, complicates the study of fully untied protein in vitro. Our discovery of a new class of knotted proteins, the Pierced Lassos (PL) loop topology, simplifies the knotting approach. While PLs are not easily recognizable by the naked eye, they have now been identified in many proteins in the PDB through the use of computation tools. PL topologies are diverse proteins found in all kingdoms of life, performing a large variety of biological responses such as cell signaling, immune responses, transporters and inhibitors (http://lassoprot.cent.uw.edu.pl/). Many of these PL topologies are secreted proteins, extracellular proteins, as well as, redox sensors, enzymes and metal and co-factor binding proteins; all of which provide a favorable environment for the formation of the disulphide bridge. In the PL

  17. The E5 Proteins

    OpenAIRE

    DiMaio, Daniel; Petti, Lisa

    2013-01-01

    The E5 proteins are short transmembrane proteins encoded by many animal and human papillomaviruses. These proteins display transforming activity in cultured cells and animals, and they presumably also play a role in the productive virus life cycle. The E5 proteins are thought to act by modulating the activity of cellular proteins. Here, we describe the biological activities of the best-studied E5 proteins and discuss the evidence implicating specific protein targets and pathways in mediating ...

  18. High content analysis of differentiation and cell death in human adipocytes.

    Science.gov (United States)

    Doan-Xuan, Quang Minh; Sarvari, Anitta K; Fischer-Posovszky, Pamela; Wabitsch, Martin; Balajthy, Zoltan; Fesus, Laszlo; Bacso, Zsolt

    2013-10-01

    Understanding adipocyte biology and its homeostasis is in the focus of current obesity research. We aimed to introduce a high-content analysis procedure for directly visualizing and quantifying adipogenesis and adipoapoptosis by laser scanning cytometry (LSC) in a large population of cell. Slide-based image cytometry and image processing algorithms were used and optimized for high-throughput analysis of differentiating cells and apoptotic processes in cell culture at high confluence. Both preadipocytes and adipocytes were simultaneously scrutinized for lipid accumulation, texture properties, nuclear condensation, and DNA fragmentation. Adipocyte commitment was found after incubation in adipogenic medium for 3 days identified by lipid droplet formation and increased light absorption, while terminal differentiation of adipocytes occurred throughout day 9-14 with characteristic nuclear shrinkage, eccentric nuclei localization, chromatin condensation, and massive lipid deposition. Preadipocytes were shown to be more prone to tumor necrosis factor alpha (TNFα)-induced apoptosis compared to mature adipocytes. Importantly, spontaneous DNA fragmentation was observed at early stage when adipocyte commitment occurs. This DNA damage was independent from either spontaneous or induced apoptosis and probably was part of the differentiation program. © 2013 International Society for Advancement of Cytometry. Copyright © 2013 International Society for Advancement of Cytometry.

  19. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    International Nuclear Information System (INIS)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng; Li, Chung-Leung

    2009-01-01

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  20. The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake

    Energy Technology Data Exchange (ETDEWEB)

    Vaijayanthimala, Vairakkannu; Tzeng, Yan-Kai; Chang, Huan-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Li, Chung-Leung, E-mail: hcchang@po.sinica.edu.t, E-mail: chungL@gate.sinica.edu.t [Genomics Research Center, Academia Sinica, Taipei 115, Taiwan (China)

    2009-10-21

    The labeling of cells with fluorescent nanoparticles is promising for various biomedical applications. The objective of this study is to evaluate the biocompatibility and the mechanism of the cellular uptake of fluorescent nanodiamonds (FNDs) in cancer cells (HeLa) and pre-adipocytes (3T3-L1). With flow cytometry and the use of a battery of metabolic and cytoskeletal inhibitors, we found that the mechanism of the FND uptake in both cells is by energy-dependent clathrin-mediated endocytosis. In addition, the surface charge of FND influences its cellular uptake, as the uptake of poly-L-lysine-coated FNDs is better than that of oxidative-acid-purified FNDs at the same concentration in regular medium with or without serum. We also confirm that the proliferative potential of FND-treated and untreated cells does not exhibit any significant differences when measured at bulk cultures, and more stringently at clonal cell density. Further biocompatibility studies indicate that the in vitro differentiation of 3T3-L1 pre-adipocytes and 489-2 osteoprogenitors is not affected by the FND treatment. Our results show that FNDs are biocompatible and ideal candidates for potential applications in human stem cell research.

  1. New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463.

    Science.gov (United States)

    Zhu, Yi; Doornebal, Ewald J; Pirtskhalava, Tamar; Giorgadze, Nino; Wentworth, Mark; Fuhrmann-Stroissnigg, Heike; Niedernhofer, Laura J; Robbins, Paul D; Tchkonia, Tamara; Kirkland, James L

    2017-03-08

    Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-X L inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.

  2. Adipocytes enhance murine pancreatic cancer growth via a hepatocyte growth factor (HGF)-mediated mechanism.

    Science.gov (United States)

    Ziegler, Kathryn M; Considine, Robert V; True, Eben; Swartz-Basile, Deborah A; Pitt, Henry A; Zyromski, Nicholas J

    2016-04-01

    Obesity accelerates the development and progression of pancreatic cancer, though the mechanisms underlying this association are unclear. Adipocytes are biologically active, producing factors such as hepatocyte growth factor (HGF) that may influence tumor progression. We therefore sought to test the hypothesis that adipocyte-secreted factors including HGF accelerate pancreatic cancer cell proliferation. Murine pancreatic cancer cells (Pan02 and TGP-47) were grown in a) conditioned medium (CM) from murine F442A preadipocytes, b) HGF-knockdown preadipocyte CM, c) recombinant murine HGF at increasing doses, and d) CM plus HGF-receptor (c-met) inhibitor. Cell proliferation was measured using the MTT assay. ANOVA and t-test were applied; p TGP-47 cell proliferation relative to control (59 ± 12% and 34 ± 12%, p TGP-47 cells remained unchanged. Recombinant HGF dose-dependently increased Pan02, but not TGP-47, proliferation (p TGP-47 cells. These experiments demonstrate that adipocyte-derived factors accelerate murine pancreatic cancer proliferation. In the case of Pan02 cells, HGF is responsible, in part, for this proliferation. Copyright © 2016 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  3. Analysis of the protein-protein interactions between the human acidic ribosomal P-proteins: evaluation by the two hybrid system

    DEFF Research Database (Denmark)

    Tchórzewski, M; Boldyreff, B; Issinger, O

    2000-01-01

    The surface acidic ribosomal proteins (P-proteins), together with ribosomal core protein P0 form a multimeric lateral protuberance on the 60 S ribosomal subunit. This structure, also called stalk, is important for efficient translational activity of the ribosome. In order to shed more light...... forms the 60 S ribosomal stalk: P0-(P1/P2)(2). Additionally, mutual interactions among human and yeast P-proteins were analyzed. Heterodimer formation could be observed between human P2 and yeast P1 proteins....

  4. Protein-protein interface detection using the energy centrality relationship (ECR characteristic of proteins.

    Directory of Open Access Journals (Sweden)

    Sanjana Sudarshan

    Full Text Available Specific protein interactions are responsible for most biological functions. Distinguishing Functionally Linked Interfaces of Proteins (FLIPs, from Functionally uncorrelated Contacts (FunCs, is therefore important to characterizing these interactions. To achieve this goal, we have created a database of protein structures called FLIPdb, containing proteins belonging to various functional sub-categories. Here, we use geometric features coupled with Kortemme and Baker's computational alanine scanning method to calculate the energetic sensitivity of each amino acid at the interface to substitution, identify hotspots, and identify other factors that may contribute towards an interface being FLIP or FunC. Using Principal Component Analysis and K-means clustering on a training set of 160 interfaces, we could distinguish FLIPs from FunCs with an accuracy of 76%. When these methods were applied to two test sets of 18 and 170 interfaces, we achieved similar accuracies of 78% and 80%. We have identified that FLIP interfaces have a stronger central organizing tendency than FunCs, due, we suggest, to greater specificity. We also observe that certain functional sub-categories, such as enzymes, antibody-heavy-light, antibody-antigen, and enzyme-inhibitors form distinct sub-clusters. The antibody-antigen and enzyme-inhibitors interfaces have patterns of physical characteristics similar to those of FunCs, which is in agreement with the fact that the selection pressures of these interfaces is differently evolutionarily driven. As such, our ECR model also successfully describes the impact of evolution and natural selection on protein-protein interfaces. Finally, we indicate how our ECR method may be of use in reducing the false positive rate of docking calculations.

  5. Variation in Protein and Calorie Consumption Following Protein Malnutrition in Rattus norvegicus

    Science.gov (United States)

    Jones, Donna C.; German, Rebecca Z.

    2013-01-01

    Simple Summary Catch-up growth following malnutrition is likely influenced by available protein and calories. We measured calorie and protein consumption following the removal of protein malnutrition after 40, 60 and 90 days, in laboratory rats. Following the transition in diet, animals self-selected fewer calories, implying elevated protein is sufficient to fuel catch-up growth, eventually resulting in body weights and bone lengths greater or equal to those of control animals. Rats rehabilitated at younger ages, had more drastic alterations in consumption. Variable responses in different ages and sex highlight the plasticity of growth and how nutrition affects body form. This work furthers our understanding of how humans and livestock can recover from protein-restriction malnutrition, which seems to employ different biological responses. Abstract Catch-up growth rates, following protein malnutrition, vary with timing and duration of insult, despite unlimited access to calories. Understanding changing patterns of post-insult consumption, relative rehabilitation timing, can provide insight into the mechanisms driving those differences. We hypothesize that higher catch-up growth rates will be correlated with increased protein consumption, while calorie consumption could remain stable. As catch-up growth rates decrease with age/malnutrition duration, we predict a dose effect in protein consumption with rehabilitation timing. We measured total and protein consumption, body mass, and long bone length, following an increase of dietary protein at 40, 60 and 90 days, with two control groups (chronic reduced protein or standard protein) for 150+ days. Immediately following rehabilitation, rats’ food consumption decreased significantly, implying that elevated protein intake is sufficient to fuel catch-up growth rates that eventually result in body weights and long bone lengths greater or equal to final measures of chronically fed standard (CT) animals. The duration of

  6. Protein domain recurrence and order can enhance prediction of protein functions

    KAUST Repository

    Abdel Messih, Mario A.

    2012-09-07

    Motivation: Burgeoning sequencing technologies have generated massive amounts of genomic and proteomic data. Annotating the functions of proteins identified in this data has become a big and crucial problem. Various computational methods have been developed to infer the protein functions based on either the sequences or domains of proteins. The existing methods, however, ignore the recurrence and the order of the protein domains in this function inference. Results: We developed two new methods to infer protein functions based on protein domain recurrence and domain order. Our first method, DRDO, calculates the posterior probability of the Gene Ontology terms based on domain recurrence and domain order information, whereas our second method, DRDO-NB, relies on the nave Bayes methodology using the same domain architecture information. Our large-scale benchmark comparisons show strong improvements in the accuracy of the protein function inference achieved by our new methods, demonstrating that domain recurrence and order can provide important information for inference of protein functions. The Author(s) 2012. Published by Oxford University Press.

  7. Impact of protein uptake and degradation on recombinant protein secretion in yeast

    DEFF Research Database (Denmark)

    Tyo, Keith E. J.; Liu, Zihe; Magnusson, Ylva

    2014-01-01

    Protein titers, a key bioprocessing metric, depend both on the synthesis of protein and the degradation of protein. Secreted recombinant protein production in Saccharomyces cerevisiae is an attractive platform as minimal media can be used for cultivation, thus reducing fermentation costs...... and transcriptomics, we identify metabolic and regulatory markers that are consistent with uptake of whole proteins by endocytosis, followed by intracellular degradation and catabolism of substituent amino acids. Uptake and degradation of recombinant protein products may be common in S. cerevisiae protein secretion...... and simplifying downstream purification, compared to other systems that require complex media. As such, engineering S. cerevisiae to improve titers has been then the subject of significant attention, but the majority of previous efforts have been focused on improving protein synthesis. Here, we characterize...

  8. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  9. Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein.

    Science.gov (United States)

    Rothman, Jessica M; Raubenheimer, David; Chapman, Colin A

    2011-12-23

    It is widely assumed that terrestrial food webs are built on a nitrogen-limited base and consequently herbivores must compensate through selection of high-protein foods and efficient nitrogen retention. Like many folivorous primates, gorillas' diet selection supports this assumption, as they apparently prefer protein-rich foods. Our study of mountain gorillas (Gorilla beringei) in Uganda revealed that, in some periods, carbohydrate-rich fruits displace a large portion of protein-rich leaves in their diet. We show that non-protein energy (NPE) intake was invariant throughout the year, whereas protein intake was substantially higher when leaves were the major portion of the diet. This pattern of macronutrient intake suggests that gorillas prioritize NPE and, to achieve this when leaves are the major dietary item, they over-eat protein. The concentrations of protein consumed in relation to energy when leaves were the major portion of the diet were close to the maximum recommended for humans and similar to high-protein human weight-loss diets. By contrast, the concentrations of protein in relation to energy when gorillas ate fruit-dominated diets were similar to those recommended for humans. Our results question the generality of nitrogen limitation in terrestrial herbivores and provide a fascinating contrast with human macronutrient intake.

  10. Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein

    Science.gov (United States)

    Rothman, Jessica M.; Raubenheimer, David; Chapman, Colin A.

    2011-01-01

    It is widely assumed that terrestrial food webs are built on a nitrogen-limited base and consequently herbivores must compensate through selection of high-protein foods and efficient nitrogen retention. Like many folivorous primates, gorillas' diet selection supports this assumption, as they apparently prefer protein-rich foods. Our study of mountain gorillas (Gorilla beringei) in Uganda revealed that, in some periods, carbohydrate-rich fruits displace a large portion of protein-rich leaves in their diet. We show that non-protein energy (NPE) intake was invariant throughout the year, whereas protein intake was substantially higher when leaves were the major portion of the diet. This pattern of macronutrient intake suggests that gorillas prioritize NPE and, to achieve this when leaves are the major dietary item, they over-eat protein. The concentrations of protein consumed in relation to energy when leaves were the major portion of the diet were close to the maximum recommended for humans and similar to high-protein human weight-loss diets. By contrast, the concentrations of protein in relation to energy when gorillas ate fruit-dominated diets were similar to those recommended for humans. Our results question the generality of nitrogen limitation in terrestrial herbivores and provide a fascinating contrast with human macronutrient intake. PMID:21632622

  11. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633).

    Science.gov (United States)

    Winters, Michael S; Day, R A

    2003-07-01

    The salt bridge, paired group-specific reagent cyanogen (ethanedinitrile; C(2)N(2)) converts naturally occurring pairs of functional groups into covalently linked products. Cyanogen readily permeates cell walls and membranes. When the paired groups are shared between associated proteins, isolation of the covalently linked proteins allows their identity to be assigned. Examination of organisms of known genome sequence permits identification of the linked proteins by mass spectrometric techniques applied to peptides derived from them. The cyanogen-linked proteins were isolated by polyacrylamide gel electrophoresis. Digestion of the isolated proteins with proteases of known specificity afforded sets of peptides that could be analyzed by mass spectrometry. These data were compared with those derived theoretically from the Swiss Protein Database by computer-based comparisons (Protein Prospector; http://prospector.ucsf.edu). Identification of associated proteins in the ribosome of Bacillus subtilis strain ATCC 6633 showed that there is an association homology with the association patterns of the ribosomal proteins of Haloarcula marismortui and Thermus thermophilus. In addition, other proteins involved in protein biosynthesis were shown to be associated with ribosomal proteins.

  12. Hubungan antara konsumsi protein dengan produksi, protein dan laktosa susu kambing Peranakan Ettawa

    Directory of Open Access Journals (Sweden)

    Galuh Estu Prihatiningsih

    2015-09-01

    Full Text Available The study aimed to determine a correlation between crude protein intake, milk production, milk protein and milk lactose. This study used purposive sampling method. The sample used in this study were 35 Etawa crossbred goats with months of lactation 4-5 and lactation periods 2-3. Parameters observed were crude protein intake, milk production, milk protein and milk lactose. Data were analyzed using correlation analysis and simple linear regression. The result showed that crude protein intake, total milk production concentrations of milk protein and lactose were 0.77 kg/day; 0.30 kg/day; 0.196% and 3.32% respectively. There was a medium positive linear correlation between the crude protein intake with total milk production, protein and lactose content of milk. The correlation coefficient (r were 0.258; 0.254 and 0,255 respectively. It could be concluded that the higher crude protein intake would increase the amount of milk production, protein and lactose contents. Keywords: crude protein intake, total milk production, milk protein, milk lactose

  13. Protein-losing enteropathy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007338.htm Protein-losing enteropathy To use the sharing features on this page, please enable JavaScript. Protein-losing enteropathy is an abnormal loss of protein ...

  14. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    Wyrwicz, Lucjan S; Koczyk, Grzegorz; Rychlewski, Leszek; Plewczynski, Dariusz

    2007-01-01

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  15. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma

    International Nuclear Information System (INIS)

    Revet, Ingrid; Huizenga, Gerda; Chan, Alvin; Koster, Jan; Volckmann, Richard; Sluis, Peter van; Ora, Ingrid; Versteeg, Rogier; Geerts, Dirk

    2008-01-01

    Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages

  16. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  17. Function and structure of GFP-like proteins in the protein data bank.

    Science.gov (United States)

    Ong, Wayne J-H; Alvarez, Samuel; Leroux, Ivan E; Shahid, Ramza S; Samma, Alex A; Peshkepija, Paola; Morgan, Alicia L; Mulcahy, Shawn; Zimmer, Marc

    2011-04-01

    The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.

  18. Protein-protein docking with dynamic residue protonation states.

    Directory of Open Access Journals (Sweden)

    Krishna Praneeth Kilambi

    2014-12-01

    Full Text Available Protein-protein interactions depend on a host of environmental factors. Local pH conditions influence the interactions through the protonation states of the ionizable residues that can change upon binding. In this work, we present a pH-sensitive docking approach, pHDock, that can sample side-chain protonation states of five ionizable residues (Asp, Glu, His, Tyr, Lys on-the-fly during the docking simulation. pHDock produces successful local docking funnels in approximately half (79/161 the protein complexes, including 19 cases where standard RosettaDock fails. pHDock also performs better than the two control cases comprising docking at pH 7.0 or using fixed, predetermined protonation states. On average, the top-ranked pHDock structures have lower interface RMSDs and recover more native interface residue-residue contacts and hydrogen bonds compared to RosettaDock. Addition of backbone flexibility using a computationally-generated conformational ensemble further improves native contact and hydrogen bond recovery in the top-ranked structures. Although pHDock is designed to improve docking, it also successfully predicts a large pH-dependent binding affinity change in the Fc-FcRn complex, suggesting that it can be exploited to improve affinity predictions. The approaches in the study contribute to the goal of structural simulations of whole-cell protein-protein interactions including all the environmental factors, and they can be further expanded for pH-sensitive protein design.

  19. Protein scissors: Photocleavage of proteins at specific locations

    Indian Academy of Sciences (India)

    Unknown

    Binding of ligands to globular proteins at hydrophobic cavities while making specific ... ched to a PTI model A1010 monochromator. UV cut-off filter ..... >1:1 stoichiometry (protein to ligand), the binding equilibrium favors the thermo- dynamically ...

  20. Identifying Hierarchical and Overlapping Protein Complexes Based on Essential Protein-Protein Interactions and “Seed-Expanding” Method

    Directory of Open Access Journals (Sweden)

    Jun Ren

    2014-01-01

    Full Text Available Many evidences have demonstrated that protein complexes are overlapping and hierarchically organized in PPI networks. Meanwhile, the large size of PPI network wants complex detection methods have low time complexity. Up to now, few methods can identify overlapping and hierarchical protein complexes in a PPI network quickly. In this paper, a novel method, called MCSE, is proposed based on λ-module and “seed-expanding.” First, it chooses seeds as essential PPIs or edges with high edge clustering values. Then, it identifies protein complexes by expanding each seed to a λ-module. MCSE is suitable for large PPI networks because of its low time complexity. MCSE can identify overlapping protein complexes naturally because a protein can be visited by different seeds. MCSE uses the parameter λ_th to control the range of seed expanding and can detect a hierarchical organization of protein complexes by tuning the value of λ_th. Experimental results of S. cerevisiae show that this hierarchical organization is similar to that of known complexes in MIPS database. The experimental results also show that MCSE outperforms other previous competing algorithms, such as CPM, CMC, Core-Attachment, Dpclus, HC-PIN, MCL, and NFC, in terms of the functional enrichment and matching with known protein complexes.