WorldWideScience

Sample records for protein crbp-i knockout

  1. Taq I RFLP in the human cellular retinol-binding protein (CRBP) gene

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, A [Istituto di Ricovero e Cura a Carattere Scientifico SANATRIX, Vena (Italy); Garofalo, S; Cocozza, S; Monticelli, A; Varrone, S [CNR Universita degli Studi di Napoli (Italy); Faraonio, R; Colantuoni, V [Universita degli Studi di Napoli (Italy)

    1988-08-11

    The probe was a Pst I - Bam HI fragment of cDNA, about 600 bp long, encoding for the human CRBP gene. The clone was isolated by screening a human liver cDNA library in the expression vector pEX with antibodies against rat CRBP. Taq I digestion of genomic DNA and hybridization with the CRBP probe detects a two allele polymorphism with allelic fragments of 3.0 kb and 2.7 kb. There are two invariant bands at 2.4 and 2.2 kb. Human CRBP gene has been mapped on the long arm of chromosome 3 using somatic cell hybrids. Co-dominant segregation was observed in two caucasian families (10 individuals).

  2. Expression Profiles of Cellular Retinol-binding Protein, Type II (CRBP II in Erlang Mountainous Chickens

    Directory of Open Access Journals (Sweden)

    H. D. Yin

    2014-03-01

    Full Text Available Cellular retinol-binding protein II (CRBP II belongs to the family of cellular retinol-binding proteins and plays a major role in absorption, transport, and metabolism of vitamin A. In addition, because vitamin A is correlated with reproductive performance, we measured CRBP II mRNA abundance in erlang mountainous chickens by real-time PCR using the relative quantification method. The expression of CRBP II showed a tissue-specific pattern and egg production rate-dependent changes. The expression was very high (p<0.05 in jejunum and liver, intermediate in kidney, ovary, and oviduct, and lowest (p<0.05 in heart, hypothalamus, and pituitary. In the hypothalamus, oviduct, ovary, and pituitary, CRBP II mRNA abundance were correlated to egg production rate, which increased from 12 wk to 32 wk, peaked at 32 wk relative to the other time points, and then decreased from 32 wk to 45 wk. In contrast, the expression of CRBP II mRNA in heart, jejunum, kidney, and liver was not different at any of the ages evaluated in this study. These data may help to understand the genetic basis of vitamin A metabolism, and suggest that CRBP II may be a candidate gene to affect egg production traits in chickens.

  3. Chemical Composition, Nutritive and Energetic Value of Plantain (Musa ssp. Hybrids CRBP 14, CRBP 39, FHIA 17, FHIA 21and Orishele Variety

    Directory of Open Access Journals (Sweden)

    Coulibaly, S.

    2007-01-01

    Full Text Available Chemical characteristics as well as contents in main components such as dry matter, sugars, lipids proteins and some minerals were determined in four banana hybrids CRBP 14, CRBP 39, FHIA 17, FHIA 21 and Orishele variety (used as control. Titrable acidity, pH, and calorific energy of these various cultivars of banana (Musa ssp. were also determined. The results indicated that Orishele variety had the highest content of dry matter, total carbohydrate and potassium. On the other hand, CRBP 39 hybrid which had the highest total acidity was the richest in total sugars and was the most energetic. Concerning FHIA 17, it contained the highest amount of proteins, lipids, magnesium, calcium and iron.

  4. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    Science.gov (United States)

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Retinoides (RARβ y CRBP1 en carcinoma de pulmón a células no pequeñas Retinoid expression (RARβ and CRBP1 in non-small-cell lung carcinoma

    Directory of Open Access Journals (Sweden)

    Laura V. Mauro

    2008-06-01

    involved in cell growth and differentiation and may antagonize cancer progression. Their effects are mediated through nuclear receptors called Retinoic Acid Receptor (RAR and regulated by molecules such as Cellular Retinol-Binding Protein 1 (CRBP1 that function in retinol storage. The aim of this work was to analyze by immunohistochemistry the expression patterns of RARβ and CRBP1, involved in retinoid-mediated signaling, in the tumoral tissue of a cohort of stage I/II NSCLC patients (n=49 who underwent a successful surgical resection. Prognostic evaluation was performed with the multivariate Cox proportional hazard model: 44.9% of tumors were positive for RARβ staining at cytoplasmic level, while 34.7% showed nuclear staining. CRBP1 staining was observed in 61.2% of the lung tumors. No relationship was found between the number of cells expressing the studied molecules and clinical pathological features, including sex, T and N (stage, histopathology and p53 expression. Univariate analysis showed a significant association between positive cytoplasmatic expression of RARβ with shorter overall survival (Log-rank test 4.17, p=0.0412. Multivariate studies indicated that RARβ expression was not influenced by other clinical pathological parameters. In conclusion, in this cohort of stage I and II NSCLC, only the expression of RARβ at cytoplasmatic level is a significant independent unfavorable prognostic factor.

  6. Comparison of the ligand binding properties of two homologous rat apocellular retinol-binding proteins expressed in Escherichia coli.

    Science.gov (United States)

    Levin, M S; Locke, B; Yang, N C; Li, E; Gordon, J I

    1988-11-25

    Cellular retinol-binding protein (CRBP) and cellular retinol-binding protein II (CRBP II) are 132-residue cytosolic proteins which have 56% amino acid sequence identity and bind all-trans-retinol as their endogenous ligand. They belong to a family of cytoplasmic proteins which have evolved to bind distinct hydrophobic ligands. Their patterns of tissue-specific and developmental regulation are distinct. We have compared the ligand binding properties of rat apo-CRBP and apo-CRBP II that have been expressed in Escherichia coli. Several observations indicate that the E. coli-derived apoproteins are structurally similar to the native rat proteins: they co-migrate on isoelectric focusing gels; and when complexed with all-trans-retinol, their absorption and excitation/emission spectra are nearly identical to those of the authentic rat holoproteins. Comparative lifetime and acrylamide quenching studies suggest that there are differences in the conformations of apo-CRBP and apo-CRBP II. The interaction of E. coli-derived apo-CRBP and apo-CRBP II with a variety of retinoids was analyzed using spectroscopic techniques. Both apoproteins formed high affinity complexes with all-trans-retinol (K'd approximately 10 nM). In direct binding assays, all-trans-retinal bound to both apoproteins (K'd approximately 50 nM for CRBP; K'd approximately 90 nM for CRBP II). However, all-trans-retinal could displace all-trans-retinol bound to CRBP II but not to CRBP. These observations suggests that there is a specific yet distinct interaction between these two proteins and all-trans-retinal. Apo-CRBP and apo-CRBP II did not demonstrate significant binding to either retinoic acid or methyl retinoate, an uncharged derivative of all-trans-retinoic acid. This indicates that the carboxymethyl group of methyl retinoate cannot be sterically accommodated in their binding pockets and that failure to bind retinoic acid probably is not simply due to the negative charge of its C-15 carboxylate group

  7. Vitamin A, Cancer Treatment and Prevention: The New Role of Cellular Retinol Binding Proteins

    Directory of Open Access Journals (Sweden)

    Elena Doldo

    2015-01-01

    Full Text Available Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs. CRBP-1, the most diffuse CRBP isoform, is a small 15 KDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients’ screening for a more personalized and efficacy retinoid therapy.

  8. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development.

    Science.gov (United States)

    Matt, Nicolas; Schmidt, Carsten K; Dupé, Valérie; Dennefeld, Christine; Nau, Heinz; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2005-05-01

    Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency. Copyright 2005 Wiley-Liss, Inc.

  9. Structures of holo wild-type human cellular retinol-binding protein II (hCRBPII) bound to retinol and retinal.

    Science.gov (United States)

    Nossoni, Zahra; Assar, Zahra; Yapici, Ipek; Nosrati, Meisam; Wang, Wenjing; Berbasova, Tetyana; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James

    2014-12-01

    Cellular retinol-binding proteins (CRBPs) I and II, which are members of the intracellular lipid-binding protein (iLBP) family, are retinoid chaperones that are responsible for the intracellular transport and delivery of both retinol and retinal. Although structures of retinol-bound CRBPI and CRBPII are known, no structure of a retinal-bound CRBP has been reported. In addition, the retinol-bound human CRBPII (hCRBPII) structure shows partial occupancy of a noncanonical conformation of retinol in the binding pocket. Here, the structure of retinal-bound hCRBPII and the structure of retinol-bound hCRBPII with retinol fully occupying the binding pocket are reported. It is further shown that the retinoid derivative seen in both the zebrafish CRBP and the hCRBPII structures is likely to be the product of flux-dependent and wavelength-dependent X-ray damage during data collection. The structures of retinoid-bound CRBPs are compared and contrasted, and rationales for the differences in binding affinities for retinal and retinol are provided.

  10. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A.

    Science.gov (United States)

    Harrison, E H; Hussain, M M

    2001-05-01

    Dietary retinyl esters are hydrolyzed in the intestine by the pancreatic enzyme, pancreatic triglyceride lipase (PTL), and intestinal brush border enzyme, phospholipase B. Recent work on the carboxylester lipase (CEL) knockout mouse suggests that CEL may not be involved in dietary retinyl ester digestion. The possible roles of the pancreatic lipase-related proteins (PLRP) 1 and 2 and other enzymes require further investigation. Unesterified retinol is taken up by the enterocytes, perhaps involving both diffusion and protein-mediated facilitated transport. Once in the cell, retinol is complexed with cellular retinol-binding protein type 2 (CRBP2) and the complex serves as a substrate for reesterification of the retinol by the enzyme lecithin:retinol acyltransferase (LRAT). Retinol not bound to CRBP2 is esterified by acyl-CoA acyltransferase (ARAT). The retinyl esters are incorporated into chylomicrons, intestinal lipoproteins that transport other dietary lipids such as triglycerides, phospholipids, and cholesterol. Chylomicrons containing newly absorbed retinyl esters are then secreted into the lymph.

  11. Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Science.gov (United States)

    Venit, Tomáš; Dzijak, Rastislav; Kalendová, Alžběta; Kahle, Michal; Rohožková, Jana; Schmidt, Volker; Rülicke, Thomas; Rathkolb, Birgit; Hans, Wolfgang; Bohla, Alexander; Eickelberg, Oliver; Stoeger, Tobias; Wolf, Eckhard; Yildirim, Ali Önder; Gailus-Durner, Valérie; Fuchs, Helmut; de Angelis, Martin Hrabě; Hozák, Pavel

    2013-01-01

    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes.

  12. Retinoid Signaling in Pancreatic Cancer, Injury and Regeneration

    Science.gov (United States)

    Colvin, Emily K.; Susanto, Johana M.; Kench, James G.; Ong, Vivienna N.; Mawson, Amanda; Pinese, Mark; Chang, David K.; Rooman, Ilse; O'Toole, Sandra A.; Segara, Davendra; Musgrove, Elizabeth A.; Sutherland, Robert L.; Apte, Minoti V.; Scarlett, Christopher J.; Biankin, Andrew V.

    2011-01-01

    Background Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC). These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. Methodology/Principal Findings We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1), a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A). However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. Conclusions/Significance In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1. PMID:22220202

  13. Retinoid signaling in pancreatic cancer, injury and regeneration.

    Directory of Open Access Journals (Sweden)

    Emily K Colvin

    Full Text Available BACKGROUND: Activation of embryonic signaling pathways quiescent in the adult pancreas is a feature of pancreatic cancer (PC. These discoveries have led to the development of novel inhibitors of pathways such as Notch and Hedgehog signaling that are currently in early phase clinical trials in the treatment of several cancer types. Retinoid signaling is also essential for pancreatic development, and retinoid therapy is used successfully in other malignancies such as leukemia, but little is known concerning retinoid signaling in PC. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of retinoid signaling in vitro and in vivo in normal pancreas, pancreatic injury, regeneration and cancer. Retinoid signaling is active in occasional cells in the adult pancreas but is markedly augmented throughout the parenchyma during injury and regeneration. Both chemically induced and genetically engineered mouse models of PC exhibit a lack of retinoid signaling activity compared to normal pancreas. As a consequence, we investigated Cellular Retinoid Binding Protein 1 (CRBP1, a key regulator of retinoid signaling known to play a role in breast cancer development, as a potential therapeutic target. Loss, or significant downregulation of CRBP1 was present in 70% of human PC, and was evident in the very earliest precursor lesions (PanIN-1A. However, in vitro gain and loss of function studies and CRBP1 knockout mice suggested that loss of CRBP1 expression alone was not sufficient to induce carcinogenesis or to alter PC sensitivity to retinoid based therapies. CONCLUSIONS/SIGNIFICANCE: In conclusion, retinoid signalling appears to play a role in pancreatic regeneration and carcinogenesis, but unlike breast cancer, it is not mediated directly by CRBP1.

  14. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  15. A knockout mutation of a constitutive GPCR in Tetrahymena decreases both G-protein activity and chemoattraction.

    Directory of Open Access Journals (Sweden)

    Thomas J Lampert

    Full Text Available Although G-protein coupled receptors (GPCRs are a common element in many chemosensory transduction pathways in eukaryotic cells, no GPCR or regulated G-protein activity has yet been shown in any ciliate. To study the possible role for a GPCR in the chemoresponses of the ciliate Tetrahymena, we have generated a number of macronuclear gene knockouts of putative GPCRs found in the Tetrahymena Genome database. One of these knockout mutants, called G6, is a complete knockout of a gene that we call GPCR6 (TTHERM_00925490. Based on sequence comparisons, the Gpcr6p protein belongs to the Rhodopsin Family of GPCRs. Notably, Gpcr6p shares highest amino acid sequence homologies to GPCRs from Paramecium and several plants. One of the phenotypes of the G6 mutant is a decreased responsiveness to the depolarizing ions Ba²⁺ and K⁺, suggesting a decrease in basal excitability (decrease in Ca²⁺ channel activity. The other major phenotype of G6 is a loss of chemoattraction to lysophosphatidic acid (LPA and proteose peptone (PP, two known chemoattractants in Tetrahymena. Using microsomal [³⁵S]GTPγS binding assays, we found that wild-type (CU427 have a prominent basal G-protein activity. This activity is decreased to the same level by pertussis toxin (a G-protein inhibitor, addition of chemoattractants, or the G6 mutant. Since the basal G-protein activity is decreased by the GPCR6 knockout, it is likely that this gene codes for a constitutively active GPCR in Tetrahymena. We propose that chemoattractants like LPA and PP cause attraction in Tetrahymena by decreasing the basal G-protein stimulating activity of Gpcr6p. This leads to decreased excitability in wild-type and longer runs of smooth forward swimming (less interrupted by direction changes towards the attractant. Therefore, these attractants may work as inverse agonists through the constitutively active Gpcr6p coupled to a pertussis-sensitive G-protein.

  16. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    International Nuclear Information System (INIS)

    Bai Ni; Kido, Takashi; Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E.; Breemen, Cornelis van; Eeden, Stephan F. van

    2011-01-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 μg/m 3 of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-κB (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-κB (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by ∼ 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-κB was significantly augmented after DE exposure. NF-κB activity was enhanced 2-fold after DE inhalation, and the augmented NF-κB activity was positively correlated with iNOS expression (R 2 = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-κB-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: → Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. → Examine iNOS expression and activity in the blood vessels and heart. → DE exposure

  17. Lymphocyte signaling: beyond knockouts.

    Science.gov (United States)

    Saveliev, Alexander; Tybulewicz, Victor L J

    2009-04-01

    The analysis of lymphocyte signaling was greatly enhanced by the advent of gene targeting, which allows the selective inactivation of a single gene. Although this gene 'knockout' approach is often informative, in many cases, the phenotype resulting from gene ablation might not provide a complete picture of the function of the corresponding protein. If a protein has multiple functions within a single or several signaling pathways, or stabilizes other proteins in a complex, the phenotypic consequences of a gene knockout may manifest as a combination of several different perturbations. In these cases, gene targeting to 'knock in' subtle point mutations might provide more accurate insight into protein function. However, to be informative, such mutations must be carefully based on structural and biophysical data.

  18. Identification of differentially expressed proteins in spontaneous thymic lymphomas from knockout mice with deletion of p53

    DEFF Research Database (Denmark)

    Honoré, Bent; Buus, Søren; Claësson, Mogens H

    2008-01-01

    ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two-dimensiona......ABSTRACT: BACKGROUND: Knockout mice with a deletion of p53 spontaneously develop thymic lymphomas. Two cell lines (SM5 and SM7), established from two independent tumours, exhibited about fifty to seventy two-fold differentially expressed proteins compared to wild type thymocytes by two...... alpha type 3, transforming acidic coiled-coil containing protein 3, mitochondrial ornithine aminotransferase and epidermal fatty acid binding protein and down-regulation of adenylosuccinate synthetase, tubulin beta-3 chain, a 25 kDa actin fragment, proteasome subunit beta type 9, cofilin-1 and glia...

  19. Proteomic analysis of tissue from α1,3-galactosyltransferase knockout mice reveals that a wide variety of proteins and protein fragments change expression level.

    Directory of Open Access Journals (Sweden)

    Louise Thorlacius-Ussing

    Full Text Available A barrier in a pig-to-man xenotransplantation is that the Galα1-3Galβ1-4GlcNAc-R carbohydrate (α-Gal epitope expressed on pig endothelial cells reacts with naturally occurring antibodies in the recipient's blood leading to rejection. Deletion of the α1,3-galactosyltransferase gene prevents the synthesis of the α-Gal epitope. Therefore, knockout models of the α1,3-galactosyltransferase gene are widely used to study xenotransplantation. We have performed proteomic studies on liver and pancreas tissues from wild type and α1,3-galactosyltransferase gene knockout mice. The tissues were analyzed by two-dimensional polyacrylamide gel electrophoresis and liquid chromatography-tandem mass spectrometry. The analyses revealed that a wide variety of proteins and protein fragments are differentially expressed suggesting that knockout of the α1,3-galactosyltransferase gene affects the expression of several other genes.

  20. Protein phosphatase 2ACα gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells.

    Science.gov (United States)

    Liu, Bo; Sun, Li-Hua; Huang, Yan-Fei; Guo, Li-Jun; Luo, Li-Shu

    2018-02-01

    Protein phosphatase 2ACα (PP2ACα), a vital member of the protein phosphatase family, has been studied primarily as a regulator for the development, growth and protein synthesis of a lot of cell types. Dysfunction of PP2ACα protein results in neurodegenerative disease; however, this finding has not been directly confirmed in the mouse model with PP2ACα gene knock-out. Therefore, in this study presented here, we generated the PP2ACα gene knock-out mouse model by the Cre-loxP targeting gene system, with the purpose to directly observe the regulatory role of PP2ACα gene in the development of mouse's cerebral cortex. We observe that knocking-out PP2ACα gene in the central nervous system (CNS) results in cortical neuronal shrinkage, synaptic plasticity impairments, and learning/memory deficits. Further study reveals that PP2ACα gene knock-out initiates Hippo cascade in cortical neuroprogenitor cells (NPCs), which blocks YAP translocation into the nuclei of NPCs. Notably, p73, directly targeted by Hippo cascade, can bind to the promoter of glutaminase2 (GLS2) that plays a dominant role in the enzymatic regulation of glutamate/glutamine cycle. Finally, we find that PP2ACα gene knock-out inhibits the glutamine synthesis through up-regulating the activity of phosphorylated-p73 in cortical NPCs. Taken together, it concludes that PP2ACα critically supports cortical neuronal growth and cognitive function via regulating the signaling transduction of Hippo-p73 cascade. And PP2ACα indirectly modulates the glutamine synthesis of cortical NPCs through targeting p73 that plays a direct transcriptional regulatory role in the gene expression of GLS2. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP

    OpenAIRE

    Sakudo, Akikazu; Onodera, Takashi

    2015-01-01

    Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp ?/?) mice. So far, six types of Prnp ?/? mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not ...

  2. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP

    Science.gov (United States)

    Sakudo, Akikazu; Onodera, Takashi

    2015-01-01

    Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp−/−) mice. So far, six types of Prnp−/− mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp−/− cell lines established from Prnp−/− mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp−/− cell lines and summarize currently available Prnp−/− cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives. PMID:25642423

  3. An extremely high dietary iodide supply forestalls severe hypothyroidism in Na+/I- symporter (NIS) knockout mice.

    Science.gov (United States)

    Ferrandino, Giuseppe; Kaspari, Rachel R; Reyna-Neyra, Andrea; Boutagy, Nabil E; Sinusas, Albert J; Carrasco, Nancy

    2017-07-13

    The sodium/iodide symporter (NIS) mediates active iodide (I - ) accumulation in the thyroid, the first step in thyroid hormone (TH) biosynthesis. Mutations in the SLC5A5 gene encoding NIS that result in a non-functional protein lead to congenital hypothyroidism due to I - transport defect (ITD). ITD is a rare autosomal disorder that, if not treated promptly in infancy, can cause mental retardation, as the TH decrease results in improper development of the nervous system. However, in some patients, hypothyroidism has been ameliorated by unusually large amounts of dietary I - . Here we report the first NIS knockout (KO) mouse model, obtained by targeting exons 6 and 7 of the Slc5a5 gene. In NIS KO mice, in the thyroid, stomach, and salivary gland, NIS is absent, and hence there is no active accumulation of the NIS substrate pertechnetate ( 99m TcO 4 - ). NIS KO mice showed undetectable serum T 4 and very low serum T 3 levels when fed a diet supplying the minimum I - requirement for rodents. These hypothyroid mice displayed oxidative stress in the thyroid, but not in the brown adipose tissue or liver. Feeding the mice a high-I - diet partially rescued TH biosynthesis, demonstrating that, at high I - concentrations, I - enters the thyroid through routes other than NIS.

  4. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells.

    Science.gov (United States)

    Tsagaratou, Ageliki; González-Avalos, Edahí; Rautio, Sini; Scott-Browne, James P; Togher, Susan; Pastor, William A; Rothenberg, Ellen V; Chavez, Lukas; Lähdesmäki, Harri; Rao, Anjana

    2017-01-01

    TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4 + CD8 + double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).

  5. Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication

    Czech Academy of Sciences Publication Activity Database

    Chung, A. G.; Belone, P. M.; Vošlajerová Bímová, Barbora; Karn, R. C.; Laukaitis, C. M.

    2017-01-01

    Roč. 205, č. 4 (2017), s. 1517-1527 ISSN 0016-6731 R&D Projects: GA ČR GA15-13265S Institutional support: RVO:67985904 Keywords : androgen-binding protein * knockout mouse * preference testing Subject RIV: EA - Cell Biology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 4.556, year: 2016

  6. Studies of an Androgen-Binding Protein Knockout Corroborate a Role for Salivary ABP in Mouse Communication.

    Science.gov (United States)

    Chung, Amanda G; Belone, Phillip M; Bímová, Barbora Vošlajerová; Karn, Robert C; Laukaitis, Christina M

    2017-04-01

    The house mouse Androgen-binding protein ( Abp ) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg , encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27 , by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP. Copyright © 2017 by the Genetics Society of America.

  7. Characteristics of retinol accumulation from serum retinol-binding protein by cultured sertoli cells

    International Nuclear Information System (INIS)

    Shingleton, J.L.; Skinner, M.K.; Ong, D.E.

    1989-01-01

    The uptake of retinol was examined in cultured Sertoli cells when retinol was provided as a complex with the transport protein retinol-binding protein (RBP). Sertoil cells accumulated [ 3 H]retinol in a time- and temperature-dependent manner. The change in rate of retinol accumulation occurred when the cells had accumulated approximately 0.53 pmol of retinol/μg of cellular DNA. Extraction and HPLC analysis of the cell-associated radioactivity yielded retinol and retinyl esters, indicating that a significant proportion of the accumulated retinol was esterified. Excess unlabeled retinol-RBP competed with [ 3 H]retinol-RBP for [ 3 H]retinol delivery to the cells, indicating that RBP delivery of retinol was a saturable and competable process. However, free [ 3 H]retinol associated with Sertoli cells in a noncompetable manner. The transport constant for specific retinol accumulation from RBP was 3.0 μM. Neither iodinated nor reductively methylated RBP was accumulated by or tightly bound to Sertoli cells. Competition studies indicated, however, that protein recognition is important in the retinol uptake process. RBP, CRBP, and CRBP(II) competed with [ 3 H]retinol-RBP for [ 3 H]retinol accumulation, but free retinol, retinol-bovine serum albumin, and retinol-β-lactoglobulin did not. These studies indicated that Sertoli cell uptake of retinol involved recognition of the retinol-RBP complex at the cell surface with subsequent internalization of retinol, but not RBP

  8. Dopamine transporter and vesicular monoamine transporter knockout mice : implications for Parkinson's disease.

    Science.gov (United States)

    Miller, G W; Wang, Y M; Gainetdinov, R R; Caron, M G

    2001-01-01

    One of the most valuable methods for understanding the function of a particular protein is the generation of animals that have had the gene encoding for the protein of interest disrupted, commonly known as a "quo;knockout"quo; or null mutant. By incorporating a sequence of DNA (typically encoding antibiotic resistance to aid in the selection of the mutant gene) into embryonic stem cells by homologous recombination, the normal transcription of the gene is effectively blocked (Fig. 1). Since a particular protein is encoded by two copies of a gene, it is necessary to have the gene on both alleles "quo;knocked out."quo; This is performed by cross-breeding animals with one affected allele (heterozygote) to generate offspring that have inherited two mutant alleles (homozygote). This procedure has been used to generate animals lacking either the plasma membrane dopamine transporter (DAT; Fig. 2) or the vesicular monoamine transporter (VMAT2; Fig. 3). Both DAT and VMAT2 are essential for dopamine homeostasis and are thought to participate in the pathogenesis of Parkinson's disease (1-5). Fig. 1. Maps of the targeting vector and the mock construct. The mouse genomic fragment (clone 11) was isolated from a Stratagene 129 SvJ library by standard colony hybridization using a PCR probe from the 5' end of rat cDNA. The restriction site abbreviations are as follows: H, HindIII; N, NotI; Sc, SacI; Sn, SnaI; X, XbaI; and Xh, XhoI. The region between HindIII and SnaI on clone 11 containing the coding sequence from transmembrane domains 3 and 4 of VMAT2 was deleted and replaced with PGK-neo. The 3' fragment of clone 11 was reserved as an external probe for Southern analysis. To facilitate PCR screening of embryonic stem cell clones, a mock construct containing the SnaI/XbaI fragment and part of the Neo cassette was generated as a positive control. pPNT and pGEM4Z were used to construct knockout and mock vectors, respectively. (Reproduced with permission from ref. 1). Fig. 2. DAT and

  9. Comparative proteomics analysis of apoptotic Spodoptera frugiperda cells during p35 knockout Autographa californica multiple nucleopolyhedrovirus infection.

    Science.gov (United States)

    Yu, Qian; Xiong, Youhua; Liu, Jianliang; Wang, Qin; Qiu, Yuanxin; Wen, Dongling

    2016-06-01

    Infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV) mutants lacking a functional p35 gene can induce host cell apoptosis, which provides the possibility to use the potential of these viruses in the biological control of pest insects. Nonetheless, the proteomics or the protein changes of Spodoptera frugiperda (Sf9) cells infected with p35 knockout AcMNPV have not yet been studied. To further improve the use of AcMNPV, we set out to analyze the protein composition and protein changes of Sf9 cells of different infection stages by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 sf9 proteins were identified by iTRAQ. After comparation of the significantly expressed 483 proteins from p35koAcMNPV-infected Sf9 cells and the significantly expressed 413 proteins from wtAcMNPV-infected Sf9 cells, we found that 226 proteins were specific to p35koAcMNPV-infected Sf9 cells. The 226 proteins were categorized according to GO classification for insects and were categorized into: biological processes, molecular functions and cellular components. Of interest, the most up-regulated proteins related to Epstein-Barr virus infection, RNA transport, Calcium signaling pathway, cGMP-PKG signaling pathway, oxidative phosphorylation and N-Glycan biosynthesis. Determination of the protein changes in p35 knockout AcMNPV-infected Sf9 cells would facilitate the better use of this virus-host cell interaction in pest insect control and other related fields. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. ERManI (Endoplasmic Reticulum Class I α-Mannosidase) Is Required for HIV-1 Envelope Glycoprotein Degradation via Endoplasmic Reticulum-associated Protein Degradation Pathway.

    Science.gov (United States)

    Zhou, Tao; Frabutt, Dylan A; Moremen, Kelley W; Zheng, Yong-Hui

    2015-09-04

    Previously, we reported that the mitochondrial translocator protein (TSPO) induces HIV-1 envelope (Env) degradation via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway, but the mechanism was not clear. Here we investigated how the four ER-associated glycoside hydrolase family 47 (GH47) α-mannosidases, ERManI, and ER-degradation enhancing α-mannosidase-like (EDEM) proteins 1, 2, and 3, are involved in the Env degradation process. Ectopic expression of these four α-mannosidases uncovers that only ERManI inhibits HIV-1 Env expression in a dose-dependent manner. In addition, genetic knock-out of the ERManI gene MAN1B1 using CRISPR/Cas9 technology disrupts the TSPO-mediated Env degradation. Biochemical studies show that HIV-1 Env interacts with ERManI, and between the ERManI cytoplasmic, transmembrane, lumenal stem, and lumenal catalytic domains, the catalytic domain plays a critical role in the Env-ERManI interaction. In addition, functional studies show that inactivation of the catalytic sites by site-directed mutagenesis disrupts the ERManI activity. These studies identify ERManI as a critical GH47 α-mannosidase in the ER-associated protein degradation pathway that initiates the Env degradation and suggests that its catalytic domain and enzymatic activity play an important role in this process. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Markerless gene knockout and integration to express heterologous biosynthetic gene clusters in <i>Pseudomonas putidai>

    DEFF Research Database (Denmark)

    Choi, Kyeong Rok; Cho, Jae Sung; Cho, In Jin

    2018-01-01

    Pseudomonas putida has gained much interest among metabolic engineers as a workhorse for producing valuable natural products. While a few gene knockout tools for P. putida have been reported, integration of heterologous genes into the chromosome of P. putida, an essential strategy to develop stable...... plasmid curing systems, generating final strains free of antibiotic markers and plasmids. This markerless recombineering system for efficient gene knockout and integration will expedite metabolic engineering of P. putida, a bacterial host strain of increasing academic and industrial interest....

  12. Proteome analysis of a hepatocyte-specific BIRC5 (survivin)-knockout mouse model during liver regeneration.

    Science.gov (United States)

    Bracht, Thilo; Hagemann, Sascha; Loscha, Marius; Megger, Dominik A; Padden, Juliet; Eisenacher, Martin; Kuhlmann, Katja; Meyer, Helmut E; Baba, Hideo A; Sitek, Barbara

    2014-06-06

    The Baculoviral IAP repeat-containing protein 5 (BIRC5), also known as inhibitor of apoptosis protein survivin, is a member of the chromosomal passenger complex and a key player in mitosis. To investigate the function of BIRC5 in liver regeneration, we analyzed a hepatocyte-specific BIRC5-knockout mouse model using a quantitative label-free proteomics approach. Here, we present the analyses of the proteome changes in hepatocyte-specific BIRC5-knockout mice compared to wildtype mice, as well as proteome changes during liver regeneration induced by partial hepatectomy in wildtype mice and mice lacking hepatic BIRC5, respectively. The BIRC5-knockout mice showed an extensive overexpression of proteins related to cellular maintenance, organization and protein synthesis. Key regulators of cell growth, transcription and translation MTOR and STAT1/STAT2 were found to be overexpressed. During liver regeneration proteome changes representing a response to the mitotic stimulus were detected in wildtype mice. Mainly proteins corresponding to proliferation, cell cycle and cytokinesis were up-regulated. The hepatocyte-specific BIRC5-knockout mice showed impaired liver regeneration, which had severe consequences on the proteome level. However, several proteins with function in mitosis were found to be up-regulated upon the proliferative stimulus. Our results show that the E3 ubiquitin-protein ligase UHRF1 is strongly up-regulated during liver regeneration independently of BIRC5.

  13. RNaseT2 knockout rats exhibit hippocampal neuropathology and deficits in memory.

    Science.gov (United States)

    Sinkevicius, Kerstin W; Morrison, Thomas R; Kulkarni, Praveen; Cagliostro, Martha K Caffrey; Iriah, Sade; Malmberg, Samantha; Sabrick, Julia; Honeycutt, Jennifer A; Askew, Kim L; Trivedi, Malav; Ferris, Craig F

    2018-05-10

    RNASET2 deficiency in humans is associated with infant cystic leukoencephalopathy, which causes psychomotor impairment, spasticity, and epilepsy. A zebrafish mutant model suggests that loss of RNASET2 function leads to neurodegeneration due to the accumulation of non-degraded RNA in the lysosomes. The goal of this study was to characterize the first rodent model of RNASET2 deficiency. The brains of 3- and 12-month-old RNaseT2 knockout rats were studied using multiple magnetic resonance imaging modalities and behavioral tests. While T1 and T2 weighted images of RNaseT2 knockout rats exhibited no evidence of cystic lesions, the prefrontal cortex and hippocampal complex were enlarged in knockout animals. Diffusion weighted imaging showed altered anisotropy and putative gray matter changes in the hippocampal complex of the RNaseT2 knockout rats. Immunohistochemistry for glial fibrillary acidic protein (GFAP) showed the presence of hippocampal neuroinflammation. Decreased levels of lysosome-associated membrane protein 2 (LAMP2) and elevated acid phosphatase and β-N-Acetylglucosaminidase (NAG) activities indicated that the RNASET2 knockout rats likely had altered lysosomal function and potential defects in autophagy. Object recognition tests confirmed the RNaseT2 knockout rats exhibited memory deficits. However, the Barnes maze, and balance beam and rotarod tests, indicated there were no differences in spatial memory or motor impairments, respectively. Overall, patients with RNASET2 deficiency exhibited a more severe neurodegeneration phenotype than was observed in the RNaseT2 knockout rats. However, the vulnerability of the knockout rat hippocampus as evidenced by neuroinflammation, altered lysosomal function, and cognitive defects indicates this is still a useful in vivo model to study RNASET2 function. © 2018. Published by The Company of Biologists Ltd.

  14. Quantitative changes of main components of erythrocyte membranes which define architectonics of cells under pttg gene knockout

    Directory of Open Access Journals (Sweden)

    О. P. Kanyuka

    2014-04-01

    Full Text Available A pttg gene knockout affects the functional state of erythron in mice which could be associated with structural changes in the structure of erythrocyte membranes. The pttg gene knockout causes a significant modification of fatty acids composition of erythrocyte membrane lipids by reducing the content of palmitic acid and increasing of polyunsaturated fatty acids amount by 18%. Analyzing the erythrocyte surface architectonics of mice under pttg gene knockout, it was found that on the background of reduction of the functionally complete biconcave discs population one could observe an increase of the number of transformed cells at different degeneration stages. Researches have shown that in mice with a pttg gene knockout compared with a control group of animals cytoskeletal protein – β-spectrin was reduced by 17.03%. However, there is a reduction of membrane protein band 3 by 33.04%, simultaneously the content of anion transport protein band 4.5 increases by 35.2% and protein band 4.2 by 32.1%. The lectin blot analysis has helped to reveal changes in the structure of the carbohydrate determinants of ery­throcyte membrane glycoproteins under conditions of directed pttg gene inactivation, accompanied by changes in the type of communication, which joins the terminal residue in carbohydrate determinant of glycoproteins. Thus, a significant redistribution of protein and fatty acids contents in erythrocyte membranes that manifested in the increase of the deformed shape of red blood cells is observed under pttg gene knockout.

  15. Remodeling of repolarization and arrhythmia susceptibility in a myosin-binding protein C knockout mouse model.

    Science.gov (United States)

    Toib, Amir; Zhang, Chen; Borghetti, Giulia; Zhang, Xiaoxiao; Wallner, Markus; Yang, Yijun; Troupes, Constantine D; Kubo, Hajime; Sharp, Thomas E; Feldsott, Eric; Berretta, Remus M; Zalavadia, Neil; Trappanese, Danielle M; Harper, Shavonn; Gross, Polina; Chen, Xiongwen; Mohsin, Sadia; Houser, Steven R

    2017-09-01

    Hypertrophic cardiomyopathy (HCM) is one of the most common genetic cardiac diseases and among the leading causes of sudden cardiac death (SCD) in the young. The cellular mechanisms leading to SCD in HCM are not well known. Prolongation of the action potential (AP) duration (APD) is a common feature predisposing hypertrophied hearts to SCD. Previous studies have explored the roles of inward Na + and Ca 2+ in the development of HCM, but the role of repolarizing K + currents has not been defined. The objective of this study was to characterize the arrhythmogenic phenotype and cellular electrophysiological properties of mice with HCM, induced by myosin-binding protein C (MyBPC) knockout (KO), and to test the hypothesis that remodeling of repolarizing K + currents causes APD prolongation in MyBPC KO myocytes. We demonstrated that MyBPC KO mice developed severe hypertrophy and cardiac dysfunction compared with wild-type (WT) control mice. Telemetric electrocardiographic recordings of awake mice revealed prolongation of the corrected QT interval in the KO compared with WT control mice, with overt ventricular arrhythmias. Whole cell current- and voltage-clamp experiments comparing KO with WT mice demonstrated ventricular myocyte hypertrophy, AP prolongation, and decreased repolarizing K + currents. Quantitative RT-PCR analysis revealed decreased mRNA levels of several key K + channel subunits. In conclusion, decrease in repolarizing K + currents in MyBPC KO ventricular myocytes contributes to AP and corrected QT interval prolongation and could account for the arrhythmia susceptibility. NEW & NOTEWORTHY Ventricular myocytes isolated from the myosin-binding protein C knockout hypertrophic cardiomyopathy mouse model demonstrate decreased repolarizing K + currents and action potential and QT interval prolongation, linking cellular repolarization abnormalities with arrhythmia susceptibility and the risk for sudden cardiac death in hypertrophic cardiomyopathy. Copyright © 2017

  16. Fetal growth retardation and lack of hypotaurine in ezrin knockout mice.

    Directory of Open Access Journals (Sweden)

    Tomohiro Nishimura

    Full Text Available Ezrin is a membrane-associated cytoplasmic protein that serves to link cell-membrane proteins with the actin-based cytoskeleton, and also plays a role in regulation of the functional activities of some transmembrane proteins. It is expressed in placental trophoblasts. We hypothesized that placental ezrin is involved in the supply of nutrients from mother to fetus, thereby influencing fetal growth. The aim of this study was firstly to clarify the effect of ezrin on fetal growth and secondly to determine whether knockout of ezrin is associated with decreased concentrations of serum and placental nutrients. Ezrin knockout mice (Ez(-/- were confirmed to exhibit fetal growth retardation. Metabolome analysis of fetal serum and placental extract of ezrin knockout mice by means of capillary electrophoresis-time-of-flight mass spectrometry revealed a markedly decreased concentration of hypotaurine, a precursor of taurine. However, placental levels of cysteine and cysteine sulfinic acid (precursors of hypotaurine and taurine were not affected. Lack of hypotaurine in Ez(-/- mice was confirmed by liquid chromatography with tandem mass spectrometry. Administration of hypotaurine to heterogenous dams significantly decreased the placenta-to-maternal plasma ratio of hypotaurine in wild-type fetuses but only slightly decreased it in ezrin knockout fetuses, indicating that the uptake of hypotaurine from mother to placenta is saturable and that disruption of ezrin impairs the uptake of hypotaurine by placental trophoblasts. These results indicate that ezrin is required for uptake of hypotaurine from maternal serum by placental trophoblasts, and plays an important role in fetal growth.

  17. Skeletal Muscle Fibre-Specific Knockout of p53 Does Not Reduce Mitochondrial Content or Enzyme Activity

    Directory of Open Access Journals (Sweden)

    Ben Stocks

    2017-12-01

    Full Text Available Tumour protein 53 (p53 has been implicated in the regulation of mitochondrial biogenesis in skeletal muscle, with whole-body p53 knockout mice displaying impairments in basal mitochondrial content, respiratory capacity, and enzyme activity. This study aimed to determine the effect of skeletal muscle-specific loss of p53 on mitochondrial content and enzyme activity. Mitochondrial protein content, enzyme activity and mRNA profiles were assessed in skeletal muscle of 8-week-old male muscle fibre-specific p53 knockout mice (p53 mKO and floxed littermate controls (WT under basal conditions. p53 mKO and WT mice displayed similar content of electron transport chain proteins I-V and citrate synthase enzyme activity in skeletal muscle. In addition, the content of proteins regulating mitochondrial morphology (MFN2, mitofillin, OPA1, DRP1, FIS1, fatty acid metabolism (β-HAD, ACADM, ACADL, ACADVL, carbohydrate metabolism (HKII, PDH, energy sensing (AMPKα2, AMPKβ2, and gene transcription (NRF1, PGC-1α, and TFAM were comparable in p53 mKO and WT mice (p > 0.05. Furthermore, p53 mKO mice exhibited normal mRNA profiles of targeted mitochondrial, metabolic and transcriptional proteins (p > 0.05. Thus, it appears that p53 expression in skeletal muscle fibres is not required to develop or maintain mitochondrial protein content or enzyme function in skeletal muscle under basal conditions.

  18. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    International Nuclear Information System (INIS)

    Chen, Yanyan; Xu, Yuanyuan; Zheng, Hongzhi; Fu, Jingqi; Hou, Yongyong; Wang, Huihui; Zhang, Qiang; Yamamoto, Masayuki; Pi, Jingbo

    2016-01-01

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.

  19. The role of nuclear factor E2-Related factor 2 and uncoupling protein 2 in glutathione metabolism: Evidence from an in vivo gene knockout study

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanyan [The First Affiliated Hospital, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States); Xu, Yuanyuan, E-mail: yyxu@cmu.edu.cn [School of Public Health, China Medical University, Shenyang, Liaoning (China); Zheng, Hongzhi [The First Affiliated Hospital, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States); Fu, Jingqi; Hou, Yongyong; Wang, Huihui [School of Public Health, China Medical University, Shenyang, Liaoning (China); Zhang, Qiang [Rollins School of Public Health, Emory University, Atlanta, GA (United States); Yamamoto, Masayuki [Graduate School of Medicine, Tohoku University, Sendai (Japan); Pi, Jingbo, E-mail: jbpi@cmu.edu.cn [School of Public Health, China Medical University, Shenyang, Liaoning (China); The Hamner Institutes for Health Sciences, Research Triangle Park, NC (United States)

    2016-09-09

    Nuclear factor E2-related factor 2 (NRF2) and uncoupling protein 2 (UCP2) are indicated to protect from oxidative stress. They also play roles in the homeostasis of glutathione. However, the detailed mechanisms are not well understood. In the present study, we found Nrf2-knockout (Nrf2-KO) mice exhibited altered glutathione homeostasis and reduced expression of various genes involved in GSH biosynthesis, regeneration, utilization and transport in the liver. Ucp2-knockout (Ucp2-KO) mice exhibited altered glutathione homeostasis in the liver, spleen and blood, as well as increased transcript of cystic fibrosis transmembrane conductance regulator in the liver, a protein capable of mediating glutathione efflux. Nrf2-Ucp2-double knockout (DKO) mice showed characteristics of both Nrf2-KO and Ucp2-KO mice. But no significant difference was observed in DKO mice when compared with Nrf2-KO or Ucp2-KO mice, except in blood glutathione levels. These data suggest that ablation of Nrf2 and Ucp2 leads to disrupted GSH balance, which could result from altered expression of genes involved in GSH metabolism. DKO may not evoke more severe oxidative stress than the single gene knockout. - Highlights: • Nrf2/Ucp2 deficiency leads to alteration of glutathione homeostasis. • Nrf2 regulates expression of genes in glutathione generation and utilization. • Ucp2 affects glutathione metabolism by regulating hepatic efflux of glutathione. • Nrf2 deficiency may not aggravate oxidative stress in Ucp2-deficient mice.

  20. Global gene expression profiling in PAI-1 knockout murine heart and kidney: molecular basis of cardiac-selective fibrosis.

    Directory of Open Access Journals (Sweden)

    Asish K Ghosh

    Full Text Available Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1 (PAI-1 knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication

  1. Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration

    DEFF Research Database (Denmark)

    Nunes, Ana Filipa; Montero, Maria; Franquinho, Filipa

    2009-01-01

    Transthyretin (TTR) has been regarded as a neuroprotective protein given that TTR knockout (KO) mice display increased susceptibility for amyloid beta deposition and memory deficits during aging. In parallel, TTR KO mice have increased levels of neuropeptide Y (NPY), which promotes neuroprotectio...

  2. Survey of quasi-free cluster knockout

    International Nuclear Information System (INIS)

    Roos, P.G.; Chant, N.S.

    1975-01-01

    The investigation of quasi-free knockout reactions has been proceeding for many years now, since the first experiments studying (p,2p) reactions on light nuclei. These experiments clearly showed the dominance of quasi-free proton knockout, and have provided information on the proton holes states in nuclei. From very early in the game people extended these studies to the knock-out of clusters, in an attempt to obtain nuclear structure information about clustering in nuclei. These cluster knockout reactions, excluding the nucleon knockout work, are examined. 20 figures, 16 references

  3. Liver protein profiles in insulin receptor-knockout mice reveal novel molecules involved in the diabetes pathophysiology.

    Science.gov (United States)

    Capuani, Barbara; Della-Morte, David; Donadel, Giulia; Caratelli, Sara; Bova, Luca; Pastore, Donatella; De Canio, Michele; D'Aguanno, Simona; Coppola, Andrea; Pacifici, Francesca; Arriga, Roberto; Bellia, Alfonso; Ferrelli, Francesca; Tesauro, Manfredi; Federici, Massimo; Neri, Anna; Bernardini, Sergio; Sbraccia, Paolo; Di Daniele, Nicola; Sconocchia, Giuseppe; Orlandi, Augusto; Urbani, Andrea; Lauro, Davide

    2015-05-01

    Liver has a principal role in glucose regulation and lipids homeostasis. It is under a complex control by substrates such as hormones, nutrients, and neuronal impulses. Insulin promotes glycogen synthesis, lipogenesis, and lipoprotein synthesis and inhibits gluconeogenesis, glycogenolysis, and VLDL secretion by modifying the expression and enzymatic activity of specific molecules. To understand the pathophysiological mechanisms leading to metabolic liver disease, we analyzed liver protein patterns expressed in a mouse model of diabetes by proteomic approaches. We used insulin receptor-knockout (IR(-/-)) and heterozygous (IR(+/-)) mice as a murine model of liver metabolic dysfunction associated with diabetic ketoacidosis and insulin resistance. We evaluated liver fatty acid levels by microscopic examination and protein expression profiles by orthogonal experimental strategies using protein 2-DE MALDI-TOF/TOF and peptic nLC-MS/MS shotgun profiling. Identified proteins were then loaded into Ingenuity Pathways Analysis to find possible molecular networks. Twenty-eight proteins identified by 2-DE analysis and 24 identified by nLC-MS/MS shotgun were differentially expressed among the three genotypes. Bioinformatic analysis revealed a central role of high-mobility group box 1/2 and huntigtin never reported before in association with metabolic and related liver disease. A different modulation of these proteins in both blood and hepatic tissue further suggests their role in these processes. These results provide new insight into pathophysiology of insulin resistance and hepatic steatosis and could be useful in identifying novel biomarkers to predict risk for diabetes and its complications. Copyright © 2015 the American Physiological Society.

  4. Rescue of Learning and Memory Deficits in the Human Nonsyndromic Intellectual Disability Cereblon Knock-Out Mouse Model by Targeting the AMP-Activated Protein Kinase-mTORC1 Translational Pathway.

    Science.gov (United States)

    Bavley, Charlotte C; Rice, Richard C; Fischer, Delaney K; Fakira, Amanda K; Byrne, Maureen; Kosovsky, Maria; Rizzo, Bryant K; Del Prete, Dolores; Alaedini, Armin; Morón, Jose A; Higgins, Joseph J; D'Adamio, Luciano; Rajadhyaksha, Anjali M

    2018-03-14

    A homozygous nonsense mutation in the cereblon ( CRBN ) gene results in autosomal recessive, nonsyndromic intellectual disability that is devoid of other phenotypic features, suggesting a critical role of CRBN in mediating learning and memory. In this study, we demonstrate that adult male Crbn knock-out ( Crbn KO ) mice exhibit deficits in hippocampal-dependent learning and memory tasks that are recapitulated by focal knock-out of Crbn in the adult dorsal hippocampus, with no changes in social or repetitive behavior. Cellular studies identify deficits in long-term potentiation at Schaffer collateral CA1 synapses. We further show that Crbn is robustly expressed in the mouse hippocampus and Crbn KO mice exhibit hyperphosphorylated levels of AMPKα (Thr172). Examination of processes downstream of AMP-activated protein kinase (AMPK) finds that Crbn KO mice have a selective impairment in mediators of the mTORC1 translation initiation pathway in parallel with lower protein levels of postsynaptic density glutamatergic proteins and higher levels of excitatory presynaptic markers in the hippocampus with no change in markers of the unfolded protein response or autophagy pathways. Acute pharmacological inhibition of AMPK activity in adult Crbn KO mice rescues learning and memory deficits and normalizes hippocampal mTORC1 activity and postsynaptic glutamatergic proteins without altering excitatory presynaptic markers. Thus, this study identifies that loss of Crbn results in learning, memory, and synaptic defects as a consequence of exaggerated AMPK activity, inhibition of mTORC1 signaling, and decreased glutamatergic synaptic proteins. Thus, Crbn KO mice serve as an ideal model of intellectual disability to further explore molecular mechanisms of learning and memory. SIGNIFICANCE STATEMENT Intellectual disability (ID) is one of the most common neurodevelopmental disorders. The cereblon ( CRBN ) gene has been linked to autosomal recessive, nonsyndromic ID, characterized by an

  5. Effect of cra gene knockout together with edd and iclR genes knockout on the metabolism in Escherichia coli.

    Science.gov (United States)

    Sarkar, Dayanidhi; Siddiquee, Khandaker Al Zaid; Araúzo-Bravo, Marcos J; Oba, Takahiro; Shimizu, Kazuyuki

    2008-11-01

    To elucidate the physiological adaptation of Escherichia coli due to cra gene knockout, a total of 3,911 gene expressions were investigated by DNA microarray for continuous culture. About 50 genes were differentially regulated for the cra mutant. TCA cycle and glyoxylate shunt were down-regulated, while pentose phosphate (PP) pathway and Entner Doudoroff (ED) pathway were up-regulated in the cra mutant. The glucose uptake rate and the acetate production rate were increased with less acetate consumption for the cra mutant. To identify the genes controlled by Cra protein, the Cra recognition weight matrix from foot-printing data was developed and used to scan the whole genome. Several new Cra-binding sites were found, and some of the result was consistent with the DNA microarray data. The ED pathway was active in the cra mutant; we constructed cra.edd double genes knockout mutant to block this pathway, where the acetate overflowed due to the down-regulation of aceA,B and icd gene expressions. Then we further constructed cra.edd.iclR triple genes knockout mutant to direct the carbon flow through the glyoxylate pathway. The cra.edd.iclR mutant showed the least acetate production, resulting in the highest cell yield together with the activation of the glycolysis pathway, but the glucose consumption rate could not be improved.

  6. Knock-out reactions

    International Nuclear Information System (INIS)

    de Forest, T. Jr.

    1977-01-01

    It is pointed out that the primary motivation for performing high energy single nucleon knock-out reactions is based on the concept of quasi-elastic scattering. The validity of and corrections to the partial wave impulse approximation and kinematical invariance of knock-out reactions and tests of the reaction mechanism are treated. The effect of distortions on the momentum distribution in the effective momentum approximation for given parameters are plotted. 12 references

  7. Effects of SIRT1 gene knock-out via activation of SREBP2 protein-mediated PI3K/AKT signaling on osteoarthritis in mice.

    Science.gov (United States)

    Yu, Fei; Zeng, Hui; Lei, Ming; Xiao, De-Ming; Li, Wei; Yuan, Hao; Lin, Jian-Jing

    2016-10-01

    This study investigated the effects of SIRT1 gene knock-out on osteoarthritis in mice, and the possible roles of SREBP2 protein and the PI3K/AKT signaling pathway in the effects. Mice were randomly divided into a normal group and a SIRT1 gene knock-out group (6 mice in each group). In these groups, one side of the knee anterior cruciate ligament was traversed, and the ipsilateral medial meniscus was cut to establish an osteoarthritis model of knee joint. The countralateral synovial bursa was cut out, serving as controls. The knee joint specimens were then divided into four groups: SIRT1 +/+ control group (group A, n=6); SIRT1 +/+ osteoarthritis group (group B, n=6); SIRT1 -/- control group (group C, n=6); SIRT1 -/- osteoarthritis group (group D, n=6). HE staining, Masson staining, Safranin O-Fast Green staining and Van Gieson staining were used to observe the morphological changes in the articular cartilage of the knee. Immunohistochemical staining was employed to detect the expression of SIRT1, SREBP2, VEGF, AKT, HMGCR and type II collagen proteins. SA-β-gal staining was utilized to evaluate chondrocyte aging. The results showed clear knee joint cartilage destruction and degeneration in the SIRT1 -/- osteoarthritis group. The tidal line was twisted and displaced anteriorly. Type II collagen was destroyed and distributed unevenly. Compared with the SIRT1 +/+ osteoarthritis group and SIRT1 -/- control group, SIRT1 protein expression was not obviously changed in the SIRT1 -/- osteoarthritis group (P>0.05), while the expression levels of the SREBP2, VEGF and HMGCR proteins were significantly increased (Pknock-out may aggravate cartilage degeneration in osteoarthritis by activating the SREBP2 protein-mediated PI3K/AKT signalling pathway, suggesting that SIRT1 gene may play a protective role against osteoarthritis.

  8. STAT2 Knockout Syrian Hamsters Support Enhanced Replication and Pathogenicity of Human Adenovirus, Revealing an Important Role of Type I Interferon Response in Viral Control.

    Directory of Open Access Journals (Sweden)

    Karoly Toth

    2015-08-01

    Full Text Available Human adenoviruses have been studied extensively in cell culture and have been a model for studies in molecular, cellular, and medical biology. However, much less is known about adenovirus replication and pathogenesis in vivo in a permissive host because of the lack of an adequate animal model. Presently, the most frequently used permissive immunocompetent animal model for human adenovirus infection is the Syrian hamster. Species C human adenoviruses replicate in these animals and cause pathology that is similar to that seen with humans. Here, we report findings with a new Syrian hamster strain in which the STAT2 gene was functionally knocked out by site-specific gene targeting. Adenovirus-infected STAT2 knockout hamsters demonstrated an accentuated pathology compared to the wild-type control animals, and the virus load in the organs of STAT2 knockout animals was 100- to 1000-fold higher than that in wild-type hamsters. Notably, the adaptive immune response to adenovirus is not adversely affected in STAT2 knockout hamsters, and surviving hamsters cleared the infection by 7 to 10 days post challenge. We show that the Type I interferon pathway is disrupted in these hamsters, revealing the critical role of interferon-stimulated genes in controlling adenovirus infection. This is the first study to report findings with a genetically modified Syrian hamster infected with a virus. Further, this is the first study to show that the Type I interferon pathway plays a role in inhibiting human adenovirus replication in a permissive animal model. Besides providing an insight into adenovirus infection in humans, our results are also interesting from the perspective of the animal model: STAT2 knockout Syrian hamster may also be an important animal model for studying other viral infections, including Ebola-, hanta-, and dengue viruses, where Type I interferon-mediated innate immunity prevents wild type hamsters from being effectively infected to be used as

  9. Knockout mouse model for Fxr2: a model for mental retardation

    NARCIS (Netherlands)

    C.J.M. Bontekoe (Carola); L. Kirkpatrick; C.E. Bakker (Cathy); A.T. Hoogeveen (Andre); R. McAninch; M. Merriweather; B.A. Oostra (Ben); N.C. Cheng (Ngan Ching); K.L. McIlwain; I.M. Nieuwenhuizen (Ingeborg); L.A. Yuva-Paylor; R. Paylor; A. Nellis; R. Willemsen (Rob); Z. Fang; D. Nelson

    2002-01-01

    textabstractFragile X syndrome is a common form of mental retardation caused by the absence of the FMR1 protein, FMRP. Fmr1 knockout mice exhibit a phenotype with some similarities to humans, such as macro-orchidism and behavioral abnormalities. Two homologs of FMRP have been

  10. Motor and memory testing of long-lived pregnancy-associated plasma protein--a knock-out mice.

    Science.gov (United States)

    Mason, Emily J; Grell, Jacquelyn A; West, Sally A; Conover, Cheryl A

    2014-12-01

    Mice deficient in pregnancy-associated plasma protein-A (PAPP-A), an IGF binding protein protease, have been shown to be resistant to experimentally induced atherosclerosis and diabetic nephropathy, and, in the laboratory environment, live 30-40% longer than wild-type littermates in association with delayed incidence and occurrence of age-related neoplasms and degenerative diseases. PAPP-A is highly expressed in the cerebellum and hippocampus of the mouse brain. Therefore, the studies presented here were aimed at determining motor behavior, learning and retention in PAPP-A knock-out (KO) mice compared to wild-type (WT) littermates with age. Balance and coordination were assessed using an accelerating rotarod; learning and memory were assessed in a Stone T-maze. Time on the rotarod decreased with age but there was no significant difference between PAPP-A KO and WT mice at any of the testing ages. Latency to reach the goal box and number of errors committed in the Stone T-maze did not change with age and there were no significant differences between PAPP-A KO and WT mice. Lack of PAPP-A in mice did not impact central regulation of coordination, learning or memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Purification and characterization of a novel cytosolic NADP(H)-dependent retinol oxidoreductase from rabbit liver.

    Science.gov (United States)

    Huang, D Y; Ichikawa, Y

    1997-03-07

    Rabbit liver cytosol exhibits very high retinol dehydrogenase activity. At least two retinol dehydrogenases were demonstrated to exist in rabbit liver cytosol, and the major one, a cytosolic NADP(H)-dependent retinol dehydrogenase (systematic name: retinol oxidoreductase) was purified about 1795-fold to electrophoretic and column chromatographic homogeneity by a procedure involving column chromatography on AF-Red Toyopearl twice and then hydroxyapatite. Its molecular mass was estimated to be 34 kDa by SDS-PAGE, and 144 kDa by HPLC gel filtration, suggesting that it is a homo-tetramer. The enzyme uses free retinol and retinal, and their complexes with CRBP as substrates in vitro. The optimum pH values for retinol oxidation of free retinol and CRBP-retinol were 8.8-9.2 and 8.0-9.0, respectively, and those for retinal reduction of free retinal and retinal-CRBP were the same, 7.0-7.6. Km for free retinol and Vmax for retinal formation were 2.8 microM and 2893 nmol/min per mg protein at 37 degrees C (pH 9.0) and the corresponding values with retinol-CRBP as a substrate were 2.5 microM and 2428 nmol/min per mg protein at 37 degrees C (pH 8.6); Km for free retinal and Vmax for retinol formation were 6.5 microM and 4108 nmol/min per mg protein, and the corresponding values with retinal-CRBP as a substrate were 5.1 microM and 3067 nmol/min per mg protein at 37 degrees C, pH 7.4. NAD(H) was not effective as a cofactor. 4-Methylpyrazole was a weak inhibitor (IC50 = 28 mM) of the enzyme, and ethanol was neither a substrate nor an inhibitor of the enzyme. This enzyme exhibits relatively broad aldehyde reductase activity and some ketone reductase activity, the activity for aromatic substitutive aldehydes being especially high and effective. Whereas, except in the case of retinol, oxidative activity toward the corresponding alcohols was not detected. This novel cytosolic enzyme may play an important role in vivo in maintaining the homeostasis of retinal, the substrate of retinoic

  12. Post-irradiation studies on knock-out and pseudo-recoil releases of fission products from fissioning UO2

    International Nuclear Information System (INIS)

    Yamagishi, S.; Tanifuji, T.

    1976-01-01

    By using post-irradiation techniques, in-pile releases of 133 Xe, sup(85m)Kr, 88 Kr, 87 Kr and 138 Xe from UO 2 fissioning at low temperatures below about 200 0 C are studied: these are analyzed into a time-dependent knock-out and time-independent pseudo-recoil releases. For the latter, a 'self knock-out' mechanism is proposed: when a fission fragment loses thoroughly its energy near the UO 2 surface and stops there, it will knock out the surface substances and accordingly the fragment (i.e. the fission product) will be released. The effective thickness of the layer where the self knock-out occurs is found to be approximately 7A. As for the knock-out release, the following is estimated from its dependence on various factors: the knock-out release of fission products occurs from the surface layer with the effective thickness of approximately 20A: the shape of UO 2 matrix knocked out by one fission fragment passing through the surface is equivalent to a cylinder approximately 32A diameter by approximately 27A thick, (i.e. the knock-out coefficient for UO 2 is approximately 660 uranium atoms per knock-out event). On the basis of the above estimations, the conclusions derived from the past in-pile studies of fission gas releases are evaluated. (Auth.)

  13. Insulin and insulin-like growth factor-I (IGF-I) receptor phosphorylation in µ-calpain knockout mice

    Science.gov (United States)

    Numerous cellular processes are controlled by insulin and IGF-I signaling pathways. Due to previous work in our laboratories, we hypothesized that insulin (IR) and type 1 IGF-I (IGF-IR) receptor signaling is decreased due to increased protein tyrosine phosphatase 1B (PTP1B) activity. C57BL/6J mice...

  14. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    Energy Technology Data Exchange (ETDEWEB)

    Levova, Katerina; Moserova, Michaela [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic); Nebert, Daniel W. [Department of Environmental Health, University of Cincinnati Medical Center, Cincinnati (United States); Phillips, David H. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Frei, Eva [Division of Preventive Oncology, National Center for Tumor Diseases, German Cancer Research Center (DKFZ), Heidelberg (Germany); Schmeiser, Heinz H. [Research Group Genetic Alterations in Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg (Germany); Arlt, Volker M. [Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment and Health, King' s College London, London (United Kingdom); Stiborova, Marie, E-mail: stiborov@natur.cuni.cz [Department of Biochemistry, Faculty of Science, Charles University, Prague (Czech Republic)

    2012-12-15

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  15. NAD(P)H:quinone oxidoreductase expression in Cyp1a-knockout and CYP1A-humanized mouse lines and its effect on bioactivation of the carcinogen aristolochic acid I

    International Nuclear Information System (INIS)

    Levova, Katerina; Moserova, Michaela; Nebert, Daniel W.; Phillips, David H.; Frei, Eva; Schmeiser, Heinz H.; Arlt, Volker M.; Stiborova, Marie

    2012-01-01

    Aristolochic acid causes a specific nephropathy (AAN), Balkan endemic nephropathy, and urothelial malignancies. Using Western blotting suitable to determine protein expression, we investigated in several transgenic mouse lines expression of NAD(P)H:quinone oxidoreductase (NQO1)—the most efficient cytosolic enzyme that reductively activates aristolochic acid I (AAI). The mouse tissues used were from previous studies [Arlt et al., Chem. Res. Toxicol. 24 (2011) 1710; Stiborova et al., Toxicol. Sci. 125 (2012) 345], in which the role of microsomal cytochrome P450 (CYP) enzymes in AAI metabolism in vivo had been determined. We found that NQO1 levels in liver, kidney and lung of Cyp1a1(−/−), Cyp1a2(−/−) and Cyp1a1/1a2(−/−) knockout mouse lines, as well as in two CYP1A-humanized mouse lines harboring functional human CYP1A1 and CYP1A2 and lacking the mouse Cyp1a1/1a2 orthologs, differed from NQO1 levels in wild-type mice. NQO1 protein and enzymic activity were induced in hepatic and renal cytosolic fractions isolated from AAI-pretreated mice, compared with those in untreated mice. Furthermore, this increase in hepatic NQO1 enzyme activity was associated with bioactivation of AAI and elevated AAI-DNA adduct levels in ex vivo incubations of cytosolic fractions with DNA and AAI. In conclusion, AAI appears to increase its own metabolic activation by inducing NQO1, thereby enhancing its own genotoxic potential. Highlights: ► NAD(P)H:quinone oxidoreductase expression in Cyp1a knockout and humanized CYP1A mice ► Reductive activation of the nephrotoxic and carcinogenic aristolochic acid I (AAI) ► NAD(P)H:quinone oxidoreductase is induced in mice treated with AAI. ► Induced hepatic enzyme activity resulted in elevated AAI-DNA adduct levels.

  16. ATP Synthase β-Chain Overexpression in SR-BI Knockout Mice Increases HDL Uptake and Reduces Plasma HDL Level

    Directory of Open Access Journals (Sweden)

    Kexiu Song

    2014-01-01

    Full Text Available HDL cholesterol is known to be inversely correlated with cardiovascular disease due to its diverse antiatherogenic functions. SR-BI mediates the selective uptake of HDL-C. SR-BI knockout diminishes but does not completely block the transport of HDL; other receptors may be involved. Ectopic ATP synthase β-chain in hepatocytes has been previously characterized as an apoA-I receptor, triggering HDL internalization. This study was undertaken to identify the overexpression of ectopic ATP synthase β-chain on DIL-HDL uptake in primary hepatocytes in vitro and on plasma HDL levels in SR-BI knockout mice. Human ATP synthase β-chain cDNA was delivered to the mouse liver by adenovirus and GFP adenovirus as control. The adenovirus-mediated overexpression of β-chain was identified at both mRNA and protein levels on mice liver and validated by its increasing of DiL-HDL uptake in primary hepatocytes. In response to hepatic overexpression of β-chain, plasma HDL-C levels and cholesterol were reduced in SR-BI knockout mice, compared with the control. The present data suggest that ATP synthase β-chain can serve as the endocytic receptor of HDL, and its overexpression can reduce plasma HDL-C.

  17. Effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells in vitro using a novel zinc-finger nuclease-targeted gene knockout approach.

    Science.gov (United States)

    Li, Hong-Wei; Yang, Xiang-Min; Tang, Juan; Wang, Shi-Jie; Chen, Zhi-Nan; Jiang, Jian-Li

    2015-03-01

    HAb18G/CD147 belongs to the immunoglobulin superfamily and predominantly functions as an inducer of matrix metalloproteinase secretion for tumor invasion and metastasis. This study was designed to investigate the effects of HAb18G/CD147 knockout on hepatocellular carcinoma cells using zinc-finger nuclease (ZFNs)-targeted gene knockout approach. The HCC cell line SMMC-7721 was used for ZFNs-targeted cleavage of the HAb18G/CD147 gene. RT-PCR and Western blot assays were used to detect HAb18G/CD147 expression. HAb18G phenotypic changes following HAb18G/CD147 knockout in SMMC-K7721 cells were assessed using tumor cell adhesion, invasion, migration and colony formation and flow cytometric assays. These data demonstrated that tumor cell adhesion, invasion, migration, and colony formation capabilities of SMMC-K7721 were significantly reduced compared to parental cells or SMMC-7721 with re-expression of HAb18G/CD147 protein transfected with HAb18G/CD147 cDNA. Moreover, knockout of HAb18G/CD147 expression also induced SMMC-K7721 cells to undergo apoptosis compared to SMMC-7721 and SMMC-R7721 (P CD147 reduced p53 levels in SMMC-R7721 cells, possibly through inhibition of the PI3K-Akt-MDM2 signaling pathway. The findings provide a novel insight into the mechanisms underlying HAb18G/CD147-induced progression of HCC cells.

  18. Characterisation of iunH gene knockout strain from Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Anne Drumond Villela

    Full Text Available BACKGROUND Tuberculosis (TB is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis. The better understanding of important metabolic pathways from M. tuberculosis can contribute to the development of novel therapeutic and prophylactic strategies to combat TB. Nucleoside hydrolase (MtIAGU-NH, encoded by iunH gene (Rv3393, is an enzyme from purine salvage pathway in M. tuberculosis. MtIAGU-NH accepts inosine, adenosine, guanosine, and uridine as substrates, which may point to a pivotal metabolic role. OBJECTIVES Our aim was to construct a M. tuberculosis knockout strain for iunH gene, to evaluate in vitro growth and the effect of iunH deletion in M. tuberculosis in non-activated and activated macrophages models of infection. METHODS A M. tuberculosis knockout strain for iunH gene was obtained by allelic replacement, using pPR27xylE plasmid. The complemented strain was constructed by the transformation of the knockout strain with pNIP40::iunH. MtIAGU-NH expression was analysed by Western blot and LC-MS/MS. In vitro growth was evaluated in Sauton’s medium. Bacterial load of non-activated and interferon-γ activated RAW 264.7 cells infected with knockout strain was compared with wild-type and complemented strains. FINDINGS Western blot and LC-MS/MS validated iunH deletion at protein level. The iunH knockout led to a delay in M. tuberculosis growth kinetics in Sauton’s medium during log phase, but did not affect bases and nucleosides pool in vitro. No significant difference in bacterial load of knockout strain was observed when compared with both wild-type and complemented strains after infection of non-activated and interferon-γ activated RAW 264.7 cells. MAIN CONCLUSION The disruption of iunH gene does not influence M. tuberculosis growth in both non-activated and activated RAW 264.7 cells, which show that iunH gene is not important for macrophage invasion and virulence. Our results indicated that MtIAGU-NH is not a

  19. Enhanced brain disposition and effects of Δ9-tetrahydrocannabinol in P-glycoprotein and breast cancer resistance protein knockout mice.

    Directory of Open Access Journals (Sweden)

    Adena S Spiro

    Full Text Available The ABC transporters P-glycoprotein (P-gp, Abcb1 and breast cancer resistance protein (Bcrp, Abcg2 regulate the CNS disposition of many drugs. The main psychoactive constituent of cannabis Δ(9-tetrahydrocannabinol (THC has affinity for P-gp and Bcrp, however it is unknown whether these transporters modulate the brain accumulation of THC and its functional effects on the CNS. Here we aim to show that mice devoid of Abcb1 and Abcg2 retain higher brain THC levels and are more sensitive to cannabinoid-induced hypothermia than wild-type (WT mice. Abcb1a/b (-/-, Abcg2 (-/- and wild-type (WT mice were injected with THC before brain and blood were collected and THC concentrations determined. Another cohort of mice was examined for THC-induced hypothermia by measuring rectal body temperature. Brain THC concentrations were higher in both Abcb1a/b (-/- and Abcg2 (-/- mice than WT mice. ABC transporter knockout mice exhibited delayed elimination of THC from the brain with the effect being more prominent in Abcg2 (-/- mice. ABC transporter knockout mice were more sensitive to THC-induced hypothermia compared to WT mice. These results show P-gp and Bcrp prolong the brain disposition and hypothermic effects of THC and offer a novel mechanism for both genetic vulnerability to the psychoactive effects of cannabis and drug interactions between CNS therapies and cannabis.

  20. Quasi-free knockout reactions with the proton-dripline nucleus {sup 17}Ne

    Energy Technology Data Exchange (ETDEWEB)

    Wamers, Felix; Aumann, Thomas [Institut fuer Kernphysik, TU, Darmstadt (Germany); Heil, Michael [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Marganiec, Justyna [ExtreMe Matter Institute EMMI, GSI, Darmstadt (Germany); Plag, Ralf [Kernreaktionen und Nukleare Astrophysik, GSI, Darmstadt (Germany); Goethe Universitaet, Frankfurt a.M. (Germany); Collaboration: R3B-Collaboration

    2011-07-01

    {sup 17}Ne is a proton-dripline nucleus that has raised special interest in nuclear-structure physics in recent years. As a ({sup 15}O+2p) Borromean 3-body system, it is often considered to be a 2-proton-halo nucleus, yet lacking concluding experimental evidence about its structure. We have studied breakup reactions of 500 AMeV {sup 17}Ne secondary beams using the R{sup 3}B-LAND setup at GSI. One focus was on the quasi-free one-proton knockout in a proton-rich paraffin (CH{sub 2}) target in inverse kinematics, i.e., {sup 17}Ne(p,2p){sup 16}F{yields}{sup 15}O+p, in comparison to the one-proton knockout with a carbon target. Recoil protons have been detected with Si-Strip detectors and the surrounding 4{pi} NaI spectrometer ''Crystal Ball'', thus providing a clean signature for quasi-free knockout. First results on two-proton removal cross sections with CH{sub 2} and C targets will be presented, as well as transverse momentum distributions of the {sup 15}O core in {sup 17}Ne. Projectile-like forward protons after one-proton knockout from {sup 17}Ne have been measured in coincidence with the {sup 15}O residual core, leading to the relative-energy spectrum of the unbound {sup 16}F. Possible interpretations and implications regarding the structure of {sup 17}Ne are discussed.

  1. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice

    Science.gov (United States)

    Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo

    2015-01-01

    Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions. PMID:26136667

  2. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus.

    Science.gov (United States)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte; Ostachowicz, Beata; Nowak, Gabriel

    2014-10-31

    Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail suspension test, and light/dark test. We also investigated whether lack of GPR39 would change levels of cAMP response element-binding protein (CREB),brain-derived neurotrophic factor (BDNF) and tropomyosin related kinase B (TrkB) protein in the hippocampus and frontal cortex of GPR39 knockout mice subjected to the forced swim test, as measured by Western-blot analysis. In this study, GPR39 knockout mice showed an increased immobility time in both the forced swim test and tail suspension test, indicating depressive-like behavior and displayed anxiety-like phenotype. GPR39 knockout mice had lower CREB and BDNF levels in the hippocampus, but not in the frontal cortex, which indicates region specificity for the impaired CREB/BDNF pathway (which is important in antidepressant response) in the absence of GPR39. There were no changes in TrkB protein in either structure. In the present study, we also investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. There were no changes in the GPR39 knockout mice in comparison with the wild-type control mice, which does not support a role of GPR39 in hypothalamus-pituitary-adrenal axis regulation. The results of this study indicate the involvement of the GPR39 Zn(2+)-sensing receptor in the pathophysiology of depression with component of anxiety. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  3. Dopamine D2 receptor function is compromised in the brain of the methionine sulfoxide reductase A knockout mouse

    OpenAIRE

    Oien, Derek B.; Ortiz, Andrea N.; Rittel, Alexander G.; Dobrowsky, Rick T.; Johnson, Michael A.; Levant, Beth; Fowler, Stephen C.; Moskovitz, Jackob

    2010-01-01

    Previous research suggests that brain oxidative stress and altered rodent locomotor behavior are linked. We observed bio-behavioral changes in methionine sulfoxide reductase A knockout mice associated with abnormal dopamine signaling. Compromised ability of these knockout mice to reduce methionine sulfoxide enhances accumulation of sulfoxides in proteins. We examined the dopamine D2-receptor function and expression, which has an atypical arrangement and quantity of methionine residues. Indeed...

  4. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9.

    Directory of Open Access Journals (Sweden)

    Wenjun Zhou

    Full Text Available Goat's milk, considered a substitute for cow's milk, has a high nutritional value. However, goat's milk contains various allergens, predominantly β-lactoglobulin (BLG. In this study, we employed the CRISPR/Cas9 system to target the BLG locus in goat fibroblasts for sgRNA optimization and generate BLG knock-out goats through co-injection of Cas9 mRNA and small guide RNAs (sgRNAs into goat embryos at the one-cell stage. We firstly tested sgRNA editing efficiencies in goat fibroblast cells, and approximately 8.00%-9.09% of the cells were modified in single sgRNA-guided targeting experiment. Among the kids, the genome-targeting efficiencies of single sgRNA were 12.5% (10 ng/μL sg1 and 0% (10 ng/μL sg2 and efficiencies of dual sgRNAs were 25.0% (25 ng/μL sg2+sg3 group and 28.6% (50 ng/μL sg2+sg3 group. Relative expression of BLG in BLG knock-out goat mammary glands significantly (p < 0.01 decreased as well as other milk protein coding genes, such as CSN1S1, CSN1S2, CSN2, CSN3 and LALBA (p < 0.05. As expected, BLG protein had been abolished in the milk of the BLG knock-out goat. In addition, most of the targeted kids were chimeric (3/4, and their various body tissues were edited simultaneously. Our study thus provides a basis for optimizing the quality of goat milk, which can be applied to biomedical and agricultural research.

  5. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  6. Knockout reactions: experimental aspects

    Energy Technology Data Exchange (ETDEWEB)

    Cortina Gil, D. [Santiago de Compostela Univ. (Spain)

    2007-07-01

    The availability of radioactive beams has given rise to intense activity in the field of direct reactions. The removal of one(two)-nucleon (referred to as nucleon knockout in this text) from a fast exotic projectile has been extensively investigated. This lecture provides a general overview of the experimental results achieved using this technique. The sensitivity of the method to different experimental aspects is illustrated with a few examples. Special attention is given to the application of nucleon-knockout reactions as a general purpose spectroscopic tool. (author)

  7. Knockout reactions: experimental aspects

    International Nuclear Information System (INIS)

    Cortina Gil, D.

    2007-01-01

    The availability of radioactive beams has given rise to intense activity in the field of direct reactions. The removal of one(two)-nucleon (referred to as nucleon knockout in this text) from a fast exotic projectile has been extensively investigated. This lecture provides a general overview of the experimental results achieved using this technique. The sensitivity of the method to different experimental aspects is illustrated with a few examples. Special attention is given to the application of nucleon-knockout reactions as a general purpose spectroscopic tool. (author)

  8. Methamphetamine-induced changes in the striatal dopamine pathway in μ-opioid receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Park Sang Won

    2011-11-01

    Full Text Available Abstract Background Repeated exposure to methamphetamine (METH can cause not only neurotoxicity but also addiction. Behavioral sensitization is widely used as an animal model for the study of drug addiction. We previously reported that the μ-opioid receptor knockout mice were resistant to METH-induced behavioral sensitization but the mechanism is unknown. Methods The present study determined whether resistance of the μ-opioid receptor (μ-OR knockout mice to behavioral sensitization is due to differential expression of the stimulatory G protein α subunit (Gαs or regulators of G-protein signaling (RGS coupled to the dopamine D1 receptor. Mice received daily intraperitoneal injections of saline or METH (10 mg/kg for 7 consecutive days to induce sensitization. On day 11(following 4 abstinent days, mice were either given a test dose of METH (10 mg/kg for behavioral testing or sacrificed for neurochemical assays without additional METH treatment. Results METH challenge-induced stereotyped behaviors were significantly reduced in the μ-opioid receptor knockout mice when compared with those in wild-type mice. Neurochemical assays indicated that there is a decrease in dopamine D1 receptor ligand binding and an increase in the expression of RGS4 mRNA in the striatum of METH-treated μ-opioid receptor knockout mice but not of METH-treated wild-type mice. METH treatment had no effect on the expression of Gαs and RGS2 mRNA in the striatum of either strain of mice. Conclusions These results indicate that down-regulation of the expression of the dopamine D1 receptor and up-regulation of RGS4 mRNA expression in the striatum may contribute to the reduced response to METH-induced stereotypy behavior in μ-opioid receptor knockout mice. Our results highlight the interactions of the μ-opioid receptor system to METH-induced behavioral responses by influencing the expression of RGS of dopamine D1 receptors.

  9. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma.

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Bayley

    Full Text Available BACKGROUND: Mitochondrial succinate dehydrogenase (SDH is a component of both the tricarboxylic acid cycle and the electron transport chain. Mutations of SDHD, the first protein of intermediary metabolism shown to be involved in tumorigenesis, lead to the human tumors paraganglioma (PGL and pheochromocytoma (PC. SDHD is remarkable in showing an 'imprinted' tumor suppressor phenotype. Mutations of SDHD show a very high penetrance in man and we postulated that knockout of Sdhd would lead to the development of PGL/PC, probably in aged mice. METHODOLOGY/PRINCIPAL FINDINGS: We generated a conventional knockout of Sdhd in the mouse, removing the entire third exon. We also crossed this mouse with a knockout of H19, a postulated imprinted modifier gene of Sdhd tumorigenesis, to evaluate if loss of these genes together would lead to the initiation or enhancement of tumor development. Homozygous knockout of Sdhd results in embryonic lethality. No paraganglioma or other tumor development was seen in Sdhd KO mice followed for their entire lifespan, in sharp contrast to the highly penetrant phenotype in humans. Heterozygous Sdhd KO mice did not show hyperplasia of paraganglioma-related tissues such as the carotid body or of the adrenal medulla, or any genotype-related pathology, with similar body and organ weights to wildtype mice. A cohort of Sdhd/H19 KO mice developed several cases of profound cardiac hypertrophy, but showed no evidence of PGL/PC. CONCLUSIONS: Knockout of Sdhd in the mouse does not result in a disease phenotype. H19 may not be an initiator of PGL/PC tumorigenesis.

  10. Chmp 1A is a mediator of the anti-proliferative effects of All-trans Retinoic Acid in human pancreatic cancer cells

    Directory of Open Access Journals (Sweden)

    Nguyen Hanh

    2009-02-01

    Full Text Available Abstract Background We recently have shown that Charged multivesicular protein/Chromatin modifying protein1A (Chmp1A functions as a tumor suppressor in human pancreatic tumor cells. Pancreatic cancer has the worst prognosis of all cancers with a dismal 5-year survival rate. Preclinical studies using ATRA for treating human pancreatic cancer suggest this compound might be useful for treatment of pancreatic cancer patients. However, the molecular mechanism by which ATRA inhibits growth of pancreatic cancer cells is not clear. The objective of our study was to investigate whether Chmp1A is involved in ATRA-mediated growth inhibition of human pancreatic tumor cells. Results We performed microarray studies using HEK 293T cells and discovered that Chmp1A positively regulated Cellular retinol-binding protein 1 (CRBP-1. CRBP-1 is a key regulator of All-trans retinoic acid (ATRA through ATRA metabolism and nuclear localization. Since our microarray data indicates a potential involvement of Chmp1A in ATRA signaling, we tested this hypothesis by treating pancreatic tumor cells with ATRA in vitro. In the ATRA-responsive cell lines, ATRA significantly increased the protein expression of Chmp1A, CRBP-1, P53 and phospho-P53 at serine 15 and 37 position. We found that knockdown of Chmp1A via shRNA abolished the ATRA-mediated growth inhibition of PanC-1 cells. Also, Chmp1A silencing diminished the increase of Chmp1A, P53 and phospho-P53 protein expression induced by ATRA. In the ATRA non-responsive cells, ATRA did not have any effect on the protein level of Chmp1A and P53. Chmp1A over-expression, however, induced growth inhibition of ATRA non-responsive cells, which was accompanied by an increase of Chmp1A, P53 and phospho-P53. Interestingly, in ATRA responsive cells Chmp1A is localized to the nucleus, which became robust upon ATRA treatment. In the ATRA-non-responsive cells, Chmp1A was mainly translocated to the plasma membrane upon ATRA treatment. Conclusion

  11. Unimpaired dendritic cell functions in MVP/LRP knockout mice.

    Science.gov (United States)

    Mossink, Marieke H; de Groot, Jan; van Zon, Arend; Fränzel-Luiten, Erna; Schoester, Martijn; Scheffer, George L; Sonneveld, Pieter; Scheper, Rik J; Wiemer, Erik A C

    2003-09-01

    Dendritic cells (DCs) act as mobile sentinels of the immune system. By stimulating T lymphocytes, DCs are pivotal for the initiation of both T- and B-cell-mediated immune responses. Recently, ribonucleoprotein particles (vaults) were found to be involved in the development and/or function of human DCs. To further investigate the role of vaults in DCs, we examined the effects of disruption of the major vault protein (MVP/LRP) on the development and antigen-presenting capacity of DCs, using our MVP/LRP knockout mouse model. Mononuclear bone marrow cells were isolated from wild-type and knockout mice and stimulated to differentiate to DCs. Like human DCs, the wild-type murine DC cultures strongly expressed MVP/LRP. Nevertheless, the MVP/LRP-deficient DCs developed normally and showed similar expression levels of several DC surface markers. No differences were observed in in vitro studies on the antigen uptake and presenting capacities of the wild-type and MVP/LRP knockout DCs. Moreover, immunization of the MVP/LRP-deficient mice with several T-cell antigens led to responses similar to those observed in the wild-type mice, indicating that the in vivo DC migration and antigen-presentation capacities are intact. Moreover, no differences were observed in the induction of the T cell-dependent humoral responses and orally induced peripheral T-cell tolerance. In conclusion, vaults are not required for primary DC functions. Their abundance in DCs may, however, still reflect basic roles in myeloid cell proliferation and DC development.

  12. The importance of immunohistochemical analyses in evaluating the phenotype of Kv channel knockout mice.

    Science.gov (United States)

    Menegola, Milena; Clark, Eliana; Trimmer, James S

    2012-06-01

    To gain insights into the phenotype of voltage-gated potassium (Kv)1.1 and Kv4.2 knockout mice, we used immunohistochemistry to analyze the expression of component principal or α subunits and auxiliary subunits of neuronal Kv channels in knockout mouse brains. Genetic ablation of the Kv1.1 α subunit did not result in compensatory changes in the expression levels or subcellular distribution of related ion channel subunits in hippocampal medial perforant path and mossy fiber nerve terminals, where high levels of Kv1.1 are normally expressed. Genetic ablation of the Kv4.2 α subunit did not result in altered neuronal cytoarchitecture of the hippocampus. Although Kv4.2 knockout mice did not exhibit compensatory changes in the expression levels or subcellular distribution of the related Kv4.3 α subunit, we found dramatic decreases in the cellular and subcellular expression of specific Kv channel interacting proteins (KChIPs) that reflected their degree of association and colocalization with Kv4.2 in wild-type mouse and rat brains. These studies highlight the insights that can be gained by performing detailed immunohistochemical analyses of Kv channel knockout mouse brains. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.

  13. Myostatin gene knockout mediated by Cas9-D10A nickase in chicken DF1 cells without off-target effect

    Directory of Open Access Journals (Sweden)

    Jeong Hyo Lee

    2017-05-01

    Full Text Available Objective Based on rapid advancement of genetic modification techniques, genomic editing is expected to become the most efficient tool for improvement of economic traits in livestock as well as poultry. In this study, we examined and verified the nickase of mutated CRISPR-associated protein 9 (Cas9 to modulate the specific target gene in chicken DF1 cells. Methods Chicken myostatin which inhibits muscle cell growth and differentiation during myogenesis was targeted to be deleted and mutated by the Cas9-D10A nickase. After co-transfection of the nickase expression vector with green fluorescent gene (GFP gene and targeted multiplex guide RNAs (gRNAs, the GFP-positive cells were sorted out by fluorescence-activated cell sorting procedure. Results Through the genotyping analysis of the knockout cells, the mutant induction efficiency was 100% in the targeted site. Number of the deleted nucleotides ranged from 2 to 39 nucleotide deletion. There was no phenotypic difference between regular cells and knockout cells. However, myostatin protein was not apparently detected in the knockout cells by Western blotting. Additionally, six off-target sites were predicted and analyzed but any non-specific mutation in the off-target sites was not observed. Conclusion The knockout technical platform with the nickase and multiplex gRNAs can be efficiently and stablely applied to functional genomics study in poultry and finally adapted to generate the knockout poultry for agribio industry.

  14. Knockout of MIMP protein in lactobacillus plantarum lost its regulation of intestinal permeability on NCM460 epithelial cells through the zonulin pathway.

    Science.gov (United States)

    Liu, Zhihua; Kang, Liang; Li, Chao; Tong, Chao; Huang, Meijin; Zhang, Xingwei; Huang, Nanqi; Moyer, Mary Pat; Qin, Huanlong; Wang, Jianping

    2014-10-03

    Previous studies indicated that the micro integral membrane protein located within the media place of the integral membrane protein of Lactobacillus plantarum CGMCC 1258 had protective effects against the intestinal epithelial injury. In our study, we mean to establish micro integral membrane protein -knockout Lactobacillus plantarum (LPKM) to investigate the change of its protective effects and verify the role of micro integral membrane protein on protection of normal intestinal barrier function. Binding assay and intestinal permeability were performed to verify the protective effects of micro integral membrane protein on intestinal permeability in vitro and in vivo. Molecular mechanism was also determined as the zonulin pathway. Clinical data were also collected for further verification of relationship between zonulin level and postoperative septicemia. LPKM got decreased inhibition of EPEC adhesion to NCM460 cells. LPKM had lower ability to alleviate the decrease of intestinal permeability induced by enteropathogenic-e.coli, and prevent enteropathogenic-e.coli -induced increase of zonulin expression. Overexpression of zonulin lowered the intestinal permeability regulated by Lactobacillus plantarum. There was a positive correlation between zonulin level and postoperative septicemia. Therefore, micro integral membrane protein could be necessary for the protective effects of Lactobacillus plantarum on intestinal barrier. MIMP might be a positive factor for Lactobacillus plantarum to protect the intestinal epithelial cells from injury, which could be related to the zonulin pathway.

  15. Impairment of Hepcidin Upregulation by Lipopolysaccharide in the Interleukin-6 Knockout Mouse Brain

    Directory of Open Access Journals (Sweden)

    Fa-Li Zhang

    2017-11-01

    Full Text Available To find out whether the Interleukin-6 (IL-6/signal transducer and activator of transcription 3 (STAT3 signaling pathway is involved in the expression of hepcidin in the mouse brain in vivo, we investigated the phosphorylation of STAT3, as well as the expression of hepcidin mRNA, ferroportin 1 (Fpn1 and ferritin light chain (Ft-L proteins in the cortex and hippocampus of LPS-treated wild type (IL-6+/+ and IL-6 knockout (IL-6-/- mice. We demonstrated that IL-6 knockout could significantly reduce the response of hepcidin mRNA, phospho-STAT3, Fpn1 and Ft-L protein expression to LPS treatment, in both the cortex and hippocampus of mice. Also, Stattic, an inhibitor of STAT3, significantly reduced the expression of phospho-STAT3 and hepcidin mRNA in the cortex and hippocampus of the LPS-treated wild type mice. These findings provide in vivo evidence for the involvement of the IL-6/STAT3 signaling pathway in the expression of hepcidin.

  16. Senescence marker protein-30/superoxide dismutase 1 double knockout mice exhibit increased oxidative stress and hepatic steatosis

    Directory of Open Access Journals (Sweden)

    Yoshitaka Kondo

    2014-01-01

    Full Text Available Superoxide dismutase 1 (SOD1 is an antioxidant enzyme that converts superoxide anion radicals into hydrogen peroxide and molecular oxygen. The senescence marker protein-30 (SMP30 is a gluconolactonase that functions as an antioxidant protein in mammals due to its involvement in ascorbic acid (AA biosynthesis. SMP30 also participates in Ca2+ efflux by activating the calmodulin-dependent Ca2+-pump. To reveal the role of oxidative stress in lipid metabolism defects occurring in non-alcoholic fatty liver disease pathogenesis, we generated SMP30/SOD1-double knockout (SMP30/SOD1-DKO mice and investigated their survival curves, plasma and hepatic lipid profiles, amounts of hepatic oxidative stress, and hepatic protein levels expressed by genes related to lipid metabolism. While SMP30/SOD1-DKO pups had no growth retardation by 14 days of age, they did have low plasma and hepatic AA levels. Thereafter, 39% and 53% of male and female pups died by 15–24 and 89 days of age, respectively. Compared to wild type, SMP30-KO and SOD1-KO mice, by 14 days SMP30/SOD1-DKO mice exhibited: (1 higher plasma levels of triglyceride and aspartate aminotransferase; (2 severe accumulation of hepatic triglyceride and total cholesterol; (3 higher levels of superoxide anion radicals and thiobarbituric acid reactive substances in livers; and (4 decreased mRNA and protein levels of Apolipoprotein B (ApoB in livers – ApoB is an essential component of VLDL secretion. These results suggest that high levels of oxidative stress due to concomitant deficiency of SMP30 and/or AA, and SOD1 cause abnormal plasma lipid metabolism, hepatic lipid accumulation and premature death resulting from impaired VLDL secretion.

  17. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Wojtaszewski, Jørgen; Viollet, Benoit

    2005-01-01

    We tested the hypothesis that 5'AMP-activated protein kinase (AMPK) plays an important role in regulating the acute, exercise-induced activation of metabolic genes in skeletal muscle, which were dissected from whole-body a2- and a1-AMPK knockout (KO) and wild-type (WT) mice at rest, after treadmi...

  18. Polyomic profiling reveals significant hepatic metabolic alterations in glucagon-receptor (GCGR knockout mice: implications on anti-glucagon therapies for diabetes

    Directory of Open Access Journals (Sweden)

    Molloy Mark P

    2011-06-01

    Full Text Available Abstract Background Glucagon is an important hormone in the regulation of glucose homeostasis, particularly in the maintenance of euglycemia and prevention of hypoglycemia. In type 2 Diabetes Mellitus (T2DM, glucagon levels are elevated in both the fasted and postprandial states, which contributes to inappropriate hyperglycemia through excessive hepatic glucose production. Efforts to discover and evaluate glucagon receptor antagonists for the treatment of T2DM have been ongoing for approximately two decades, with the challenge being to identify an agent with appropriate pharmaceutical properties and efficacy relative to potential side effects. We sought to determine the hepatic & systemic consequence of full glucagon receptor antagonism through the study of the glucagon receptor knock-out mouse (Gcgr-/- compared to wild-type littermates. Results Liver transcriptomics was performed using Affymetric expression array profiling, and liver proteomics was performed by iTRAQ global protein analysis. To complement the transcriptomic and proteomic analyses, we also conducted metabolite profiling (~200 analytes using mass spectrometry in plasma. Overall, there was excellent concordance (R = 0.88 for changes associated with receptor knock-out between the transcript and protein analysis. Pathway analysis tools were used to map the metabolic processes in liver altered by glucagon receptor ablation, the most notable being significant down-regulation of gluconeogenesis, amino acid catabolism, and fatty acid oxidation processes, with significant up-regulation of glycolysis, fatty acid synthesis, and cholesterol biosynthetic processes. These changes at the level of the liver were manifested through an altered plasma metabolite profile in the receptor knock-out mice, e.g. decreased glucose and glucose-derived metabolites, and increased amino acids, cholesterol, and bile acid levels. Conclusions In sum, the results of this study suggest that the complete ablation

  19. A New Mouse Model of Limb-Girdle Muscular Dystrophy Type 2I Homozygous for the Common L276I Mutation Mimicking the Mild Phenotype in Humans

    DEFF Research Database (Denmark)

    Krag, Thomas O; Vissing, John

    2015-01-01

    Limb-girdle muscular dystrophy type 2I (LGMD2I) is caused by mutations in the Fukutin-related protein (FKRP) gene, leading to inadequate glycosylation of α-dystroglycan, an important protein linking the extracellular matrix to the cytoskeleton. We created a mouse model of the common FKRP L276I...... mutation and a hemizygous FKRP L276I knockout model. We studied histopathology and protein expression in the models at different ages and found that homozygous FKRP L276I mice developed a mild progressive myopathy with increased muscle regeneration and fibrosis starting from 1 year of age. This was likely...... in maintaining proper glycosylation of α-dystroglycan. The mild progression in the homozygous FKRP L276I model resembles that in patients with LGMD2I who are homozygous for the L276I mutation. This animal model could, therefore, be relevant for understanding the pathophysiology of and developing a treatment...

  20. Nicotine reward and affective nicotine withdrawal signs are attenuated in calcium/calmodulin-dependent protein kinase IV knockout mice.

    Directory of Open Access Journals (Sweden)

    Kia J Jackson

    Full Text Available The influx of Ca(2+ through calcium-permeable nicotinic acetylcholine receptors (nAChRs leads to activation of various downstream processes that may be relevant to nicotine-mediated behaviors. The calcium activated protein, calcium/calmodulin-dependent protein kinase IV (CaMKIV phosphorylates the downstream transcription factor cyclic AMP response element binding protein (CREB, which mediates nicotine responses; however the role of CaMKIV in nicotine dependence is unknown. Given the proposed role of CaMKIV in CREB activation, we hypothesized that CaMKIV might be a crucial molecular component in the development of nicotine dependence. Using male CaMKIV genetically modified mice, we found that nicotine reward is attenuated in CaMKIV knockout (-/- mice, but cocaine reward is enhanced in these mice. CaMKIV protein levels were also increased in the nucleus accumbens of C57Bl/6 mice after nicotine reward. In a nicotine withdrawal assessment, anxiety-related behavior, but not somatic signs or the hyperalgesia response are attenuated in CaMKIV -/- mice. To complement our animal studies, we also conducted a human genetic association analysis and found that variants in the CaMKIV gene are associated with a protective effect against nicotine dependence. Taken together, our results support an important role for CaMKIV in nicotine reward, and suggest that CaMKIV has opposing roles in nicotine and cocaine reward. Further, CaMKIV mediates affective, but not physical nicotine withdrawal signs, and has a protective effect against nicotine dependence in human genetic association studies. These findings further indicate the importance of calcium-dependent mechanisms in mediating behaviors associated with drugs of abuse.

  1. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    Directory of Open Access Journals (Sweden)

    Karin eTein

    2015-08-01

    Full Text Available BackgroundMutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness (DIDMOAD. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 knockout mice. ResultsWe identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P<0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2. Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 knockout mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9±2.3%, p<0.0001, n=8 than in wild-type mice (100.0±7.0%, n=8. However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels.ConclusionsProcessing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 knockout mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.

  2. Altered Morphology and Function of the Lacrimal Functional Unit in Protein Kinase Cα Knockout Mice

    Science.gov (United States)

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J.

    2010-01-01

    Purpose. Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout (−/−) mice have impaired ocular surface–lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα−/− mice. Methods. In PKCα+/+ control mice and PKCα−/− mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Results. Compared with the PKCα+/+ mice, the PKCα−/− mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα−/− mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα+/+ mice. Conclusions. The PKCα−/− mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα−/− mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration. PMID:20505191

  3. The testosterone-dependent and independent transcriptional networks in the hypothalamus of Gpr54 and Kiss1 knockout male mice are not fully equivalent

    Directory of Open Access Journals (Sweden)

    Sutcliffe Margaret

    2011-04-01

    Full Text Available Abstract Background Humans and mice with loss of function mutations in GPR54 (KISS1R or kisspeptin do not progress through puberty, caused by a failure to release GnRH. The transcriptional networks regulated by these proteins in the hypothalamus have yet to be explored by genome-wide methods. Results We show here, using 1 million exon mouse arrays (Exon 1.0 Affymetrix and quantitative polymerase chain reaction (QPCR validation to analyse microdissected hypothalamic tissue from Gpr54 and Kiss1 knockout mice, the extent of transcriptional regulation in the hypothalamus. The sensitivity to detect important transcript differences in microdissected RNA was confirmed by the observation of counter-regulation of Kiss1 expression in Gpr54 knockouts and confirmed by immunohistochemistry (IHC. Since Gpr54 and Kiss1 knockout animals are effectively pre-pubertal with low testosterone (T levels, we also determined which of the validated transcripts were T-responsive and which varied according to genotype alone. We observed four types of transcriptional regulation (i genotype only dependent regulation, (ii T only dependent regulation, (iii genotype and T-dependent regulation with interaction between these variables, (iv genotype and T-dependent regulation with no interaction between these variables. The results implicate for the first time several transcription factors (e.g. Npas4, Esr2, proteases (Klk1b22, and the orphan 10-transmembrane transporter TMEM144 in the biology of GPR54/kisspeptin function in the hypothalamus. We show for the neuronal activity regulated transcription factor NPAS4, that distinct protein over-expression is seen in the hypothalamus and hippocampus in Gpr54 knockout mice. This links for the first time the hypothalamic-gonadal axis with this important regulator of inhibitory synapse formation. Similarly we confirm TMEM144 up-regulation in the hypothalamus by RNA in situ hybridization and western blot. Conclusions Taken together, global

  4. Random phenotypic variation of yeast (Saccharomyces cerevisiae) single-gene knockouts fits a double pareto-lognormal distribution.

    Science.gov (United States)

    Graham, John H; Robb, Daniel T; Poe, Amy R

    2012-01-01

    Distributed robustness is thought to influence the buffering of random phenotypic variation through the scale-free topology of gene regulatory, metabolic, and protein-protein interaction networks. If this hypothesis is true, then the phenotypic response to the perturbation of particular nodes in such a network should be proportional to the number of links those nodes make with neighboring nodes. This suggests a probability distribution approximating an inverse power-law of random phenotypic variation. Zero phenotypic variation, however, is impossible, because random molecular and cellular processes are essential to normal development. Consequently, a more realistic distribution should have a y-intercept close to zero in the lower tail, a mode greater than zero, and a long (fat) upper tail. The double Pareto-lognormal (DPLN) distribution is an ideal candidate distribution. It consists of a mixture of a lognormal body and upper and lower power-law tails. If our assumptions are true, the DPLN distribution should provide a better fit to random phenotypic variation in a large series of single-gene knockout lines than other skewed or symmetrical distributions. We fit a large published data set of single-gene knockout lines in Saccharomyces cerevisiae to seven different probability distributions: DPLN, right Pareto-lognormal (RPLN), left Pareto-lognormal (LPLN), normal, lognormal, exponential, and Pareto. The best model was judged by the Akaike Information Criterion (AIC). Phenotypic variation among gene knockouts in S. cerevisiae fits a double Pareto-lognormal (DPLN) distribution better than any of the alternative distributions, including the right Pareto-lognormal and lognormal distributions. A DPLN distribution is consistent with the hypothesis that developmental stability is mediated, in part, by distributed robustness, the resilience of gene regulatory, metabolic, and protein-protein interaction networks. Alternatively, multiplicative cell growth, and the mixing of

  5. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    Science.gov (United States)

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  6. Peptidomic analysis of the neurolysin-knockout mouse brain.

    Science.gov (United States)

    Castro, Leandro M; Cavalcanti, Diogo M L P; Araujo, Christiane B; Rioli, Vanessa; Icimoto, Marcelo Y; Gozzo, Fábio C; Juliano, Maria; Juliano, Luiz; Oliveira, Vitor; Ferro, Emer S

    2014-12-05

    A large number of intracellular peptides are constantly produced following protein degradation by the proteasome. A few of these peptides function in cell signaling and regulate protein-protein interactions. Neurolysin (Nln) is a structurally defined and biochemically well-characterized endooligopeptidase, and its subcellular distribution and biological activity in the vertebrate brain have been previously investigated. However, the contribution of Nln to peptide metabolism in vivo is poorly understood. In this study, we used quantitative mass spectrometry to investigate the brain peptidome of Nln-knockout mice. An additional in vitro digestion assay with recombinant Nln was also performed to confirm the identification of the substrates and/or products of Nln. Altogether, the data presented suggest that Nln is a key enzyme in the in vivo degradation of only a few peptides derived from proenkephalin, such as Met-enkephalin and octapeptide. Nln was found to have only a minor contribution to the intracellular peptide metabolism in the entire mouse brain. However, further studies appear necessary to investigate the contribution of Nln to the peptide metabolism in specific areas of the murine brain. Neurolysin was first identified in the synaptic membranes of the rat brain in the middle 80's by Frederic Checler and colleagues. Neurolysin was well characterized biochemically, and its brain distribution has been confirmed by immunohistochemical methods. The neurolysin contribution to the central and peripheral neurotensin-mediated functions in vivo has been delineated through inhibitor-based pharmacological approaches, but its genuine contribution to the physiological inactivation of neuropeptides remains to be firmly established. As a result, the main significance of this work is the first characterization of the brain peptidome of the neurolysin-knockout mouse. This article is part of a Special Issue entitled: Proteomics, mass spectrometry and peptidomics, Cancun 2013

  7. The serotonin transporter knockout rat : A review

    NARCIS (Netherlands)

    Olivier, Jocelien; Cools, Alexander; Ellenbroek, Bart A.; Cuppen, E.; Homberg, Judith; Kalueff, Allan V.; LaPorte, Justin L.

    2010-01-01

    This chapter dicusses the most recent data on the serotonin transporter knock-out rat, a unique rat model that has been generated by target-selected N-ethyl-N-nitrosourea (ENU) driven mutagenesis. The knock-out rat is the result of a premature stopcodon in the serotonin transporter gene, and the

  8. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice.

    Science.gov (United States)

    Chen, Zhuo; Li, Zhijie; Basti, Surendra; Farley, William J; Pflugfelder, Stephen C

    2010-11-01

    Protein kinase C (PKC) α plays a major role in the parasympathetic neural stimulation of lacrimal gland (LG) secretion. It also has been reported to have antiapoptotic properties and to promote cell survival. Therefore, the hypothesis for the present study was that PKCα knockout ((-/-)) mice have impaired ocular surface-lacrimal gland signaling, rendering them susceptible to desiccating stress and impaired corneal epithelial wound healing. In this study, the lacrimal function unit (LFU) and the stressed wound-healing response were examined in PKCα(-/-) mice. In PKCα(+/+) control mice and PKCα(-/-) mice, tear production, osmolarity, and clearance rate were evaluated before and after experimental desiccating stress. Histology and immunofluorescent staining of PKC and epidermal growth factor were performed in tissues of the LFU. Cornified envelope (CE) precursor protein expression and cell proliferation were evaluated. The time course of healing and degree of neutrophil infiltration was evaluated after corneal epithelial wounding. Compared with the PKCα(+/+) mice, the PKCα(-/-) mice were noted to have significantly increased lacrimal gland weight, with enlarged, carbohydrate-rich, PAS-positive acinar cells; increased corneal epithelia permeability, with reduced CE expression; and larger conjunctival epithelial goblet cells. The PKCα(-/-) mice showed more rapid corneal epithelial healing, with less neutrophil infiltration and fewer proliferating cells than did the PKCα(+/+) mice. The PKCα(-/-) mice showed lower tear production, which appeared to be caused by impaired secretion by the LG and conjunctival goblet cells. Despite their altered tear dynamics, the PKCα(-/-) mice demonstrated more rapid corneal epithelial wound healing, perhaps due to decreased neutrophil infiltration.

  9. Cytoplasmic vitamin A binding proteins in chick embryo dermis and epidermis

    International Nuclear Information System (INIS)

    Gates, R.E.; King, L.E. Jr.

    1985-01-01

    Excess vitamin A has striking morphologic and developmental effects on chick embryo skin. While cytoplasmic retinoic acid-binding protein (CRABP) was known to be abundant in chick embryo skin, neither quantitative values nor the distribution between dermis and epidermis have been established. The authors determined CRABP levels in collagenase-separated dermis and epidermis from 8-day-old embryos using specific binding of all-trans-[11- 3 H]retinoic acid in cytosols prepared from gram quantities of these tissues. The level of CRABP in dermis was twice the level in epidermis whether calculated on the basis of wet weight, cytosol protein, or DNA. When averaged over many preparations, 3 times as much dermis as epidermis was recovered from a single piece of skin. Therefore, the dermis contained 85% of the extremely high CRABP levels found in collagenase-treated skin, while epidermis contributed only 15%. Cytoplasmic retinol binding protein (CRBP) was also detected in chick embryo skin, but the binding was low and the levels in epidermis and dermis were not significantly different. The amount of CRABP in chick embryo skin (1600 pmol/g wet weight or 100 pmol/mg cytosol protein) is the highest level reported in any tissue and suggests an important role for vitamin A in the normal development and maturation of skin

  10. Altered expression and modulation of activity-regulated cytoskeletal associated protein (Arc) in serotonin transporter knockout rats.

    NARCIS (Netherlands)

    Molteni, R.; Calabrese, F.; Maj, P.F.; Olivier, J.D.A.; Racagni, G.; Ellenbroek, A.A.; Riva, M.A.

    2009-01-01

    A gene variant in the human serotonin transporter (SERT) can increase the vulnerability to mood disorders. SERT knockout animals show similarities to the human condition and represent an important tool to investigate the mechanisms underlying the pathologic condition in humans. Along this line of

  11. Properties of the {sup 7}He ground state from {sup 8}He neutron knockout

    Energy Technology Data Exchange (ETDEWEB)

    Aksyutina, Yu. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Johansson, H.T. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Aumann, T.; Boretzky, K. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Borge, M.J.G. [Instituto Estructura de la Materia, CSIC, E-28006 Madrid (Spain); Chatillon, A. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Chulkov, L.V. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Kurchatov Institute, RU-123182 Moscow (Russian Federation); Cortina-Gil, D. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); University of Santiago de Compostela, 15706 Santiago de Compostela (Spain); Pramanik, U. Datta [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Emling, H. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Forssen, C. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); Fynbo, H.O.U. [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark); Geissel, H.; Ickert, G. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Jonson, B. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden)], E-mail: bjn@fy.chalmers.se; Kulessa, R. [Instytut Fizyki, Universytet Jagiellonski, PL-30-059 Krakow (Poland); Langer, C. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lantz, M. [Fundamental Fysik, Chalmers Tekniska Hoegskola, S-412 96 Goeteborg (Sweden); LeBleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Lindahl, A.O. [Institutionen foer Fysik, University of Gothenburg, S-412 96 Goeteborg (Sweden)] (and others)

    2009-08-24

    The unbound nucleus {sup 7}He, produced in neutron-knockout reactions with a 240 MeV/u {sup 8}He beam in a liquid-hydrogen target, has been studied in an experiment at the ALADIN-LAND setup at GSI. From an R-matrix analysis the resonance parameters for {sup 7}He as well as the spectroscopic factor for the {sup 6}He(0{sup +}) + n configuration in its ground-state have been obtained. The spectroscopic factor is 0.61 confirming that {sup 7}He is not a pure single-particle state. An analysis of {sup 5}He data from neutron-knockout reactions of {sup 6}He in a carbon target reveals the presence of an s-wave component at low energies in the {alpha}+n relative energy spectrum. A possible low-lying exited state in {sup 7}He observed in neutron knockout data from {sup 8}He in a carbon target and tentatively interpreted as a I{sup {pi}}=1/2{sup -} state, could not be observed in the present experiment. Possible explanations of the shape difference between the {sup 7}He resonance obtained in the two knockout reactions are discussed in terms of target-dependence or different reaction mechanisms at relativistic energies.

  12. KnockoutJS blueprints

    CERN Document Server

    Russo, Carlo

    2015-01-01

    If you are a JavaScript developer and already know the basics of KnockoutJS and you want to get the most out of it, then this book is for you. This book will help in your transition from a small site to a large web application that is easily maintainable.

  13. Mamu-A*01/Kb transgenic and MHC Class I knockout mice as a tool for HIV vaccine development

    International Nuclear Information System (INIS)

    Li Jinliang; Srivastava, Tumul; Rawal, Ravindra; Manuel, Edwin; Isbell, Donna; Tsark, Walter; La Rosa, Corinna; Wang Zhongde; Li Zhongqi; Barry, Peter A.; Hagen, Katharine D.; Longmate, Jeffrey; Diamond, Don J.

    2009-01-01

    We have developed a murine model expressing the rhesus macaque (RM) Mamu-A*01 MHC allele to characterize immune responses and vaccines based on antigens of importance to human disease processes. Towards that goal, transgenic (Tg) mice expressing chimeric RM (α1 and α2 Mamu-A*01 domains) and murine (α3, transmembrane, and cytoplasmic H-2K b domains) MHC Class I molecules were derived by transgenesis of the H-2K b D b double MHC Class I knockout strain. After immunization of Mamu-A*01/K b Tg mice with rVV-SIVGag-Pol, the mice generated CD8 + T-cell IFN-γ responses to several known Mamu-A*01 restricted epitopes from the SIV Gag and Pol antigen sequence. Fusion peptides of highly recognized CTL epitopes from SIV Pol and Gag and a strong T-help epitope were shown to be immunogenic and capable of limiting an rVV-SIVGag-Pol challenge. Mamu-A*01/K b Tg mice provide a model system to study the Mamu-A*01 restricted T-cell response for various infectious diseases which are applicable to a study in RM.

  14. Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells.

    Science.gov (United States)

    Fan, Lianchun; Kadura, Ibrahim; Krebs, Lara E; Hatfield, Christopher C; Shaw, Margaret M; Frye, Christopher C

    2012-04-01

    Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high-producing clones among a large population of low- and non-productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)-based methotrexate (MTX) selection and glutamine synthetase (GS)-based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS-CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L-MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS-knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (∼2%) of bi-allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine-dependent growth of all GS-knockout cell lines. Full evaluation of the GS-knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two- to three-fold through the use of GS-knockout cells as parent cells. The selection stringency was

  15. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  16. Distinct Mechanism Evolved for Mycobacterial RNA Polymerase and Topoisomerase I Protein-Protein Interaction.

    Science.gov (United States)

    Banda, Srikanth; Cao, Nan; Tse-Dinh, Yuk-Ching

    2017-09-15

    We report here a distinct mechanism of interaction between topoisomerase I and RNA polymerase in Mycobacterium tuberculosis and Mycobacterium smegmatis that has evolved independently from the previously characterized interaction between bacterial topoisomerase I and RNA polymerase. Bacterial DNA topoisomerase I is responsible for preventing the hyper-negative supercoiling of genomic DNA. The association of topoisomerase I with RNA polymerase during transcription elongation could efficiently relieve transcription-driven negative supercoiling. Our results demonstrate a direct physical interaction between the C-terminal domains of topoisomerase I (TopoI-CTDs) and the β' subunit of RNA polymerase of M. smegmatis in the absence of DNA. The TopoI-CTDs in mycobacteria are evolutionarily unrelated in amino acid sequence and three-dimensional structure to the TopoI-CTD found in the majority of bacterial species outside Actinobacteria, including Escherichia coli. The functional interaction between topoisomerase I and RNA polymerase has evolved independently in mycobacteria and E. coli, with distinctively different structural elements of TopoI-CTD utilized for this protein-protein interaction. Zinc ribbon motifs in E. coli TopoI-CTD are involved in the interaction with RNA polymerase. For M. smegmatis TopoI-CTD, a 27-amino-acid tail that is rich in basic residues at the C-terminal end is responsible for the interaction with RNA polymerase. Overexpression of recombinant TopoI-CTD in M. smegmatis competed with the endogenous topoisomerase I for protein-protein interactions with RNA polymerase. The TopoI-CTD overexpression resulted in decreased survival following treatment with antibiotics and hydrogen peroxide, supporting the importance of the protein-protein interaction between topoisomerase I and RNA polymerase during stress response of mycobacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. NifI inhibits nitrogenase by competing with Fe protein for binding to the MoFe protein

    International Nuclear Information System (INIS)

    Dodsworth, Jeremy A.; Leigh, John A.

    2007-01-01

    Reduction of substrate by nitrogenase requires direct electron transfer from the Fe protein to the MoFe protein. Inhibition of nitrogenase activity in Methanococcus maripaludis occurs when the regulatory protein NifI 1,2 binds the MoFe protein. This inhibition is relieved by 2-oxoglutarate. Here we present evidence that NifI 1,2 binding prevents association of the two nitrogenase components. Increasing amounts of Fe protein competed with NifI 1,2 , decreasing its inhibitory effect. NifI 1,2 prevented the co-purification of MoFe protein with a mutant form of the Fe protein that forms a stable complex with the MoFe protein, and NifI 1,2 was unable to bind to an AlF 4 - -stabilized Fe protein:MoFe protein complex. NifI 1,2 inhibited ATP- and MoFe protein-dependent oxidation of the Fe protein, and 2OG relieved this inhibition. These results support a model where NifI 1,2 competes with the Fe protein for binding to MoFe protein and prevents electron transfer

  18. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino aci...... knock-out mutants, where the DLGR-2 gene is interrupted by a P element insertion, die around the time of hatching. This finding, together with the expression data, strongly suggests that DLGR-2 is exclusively involved in development....

  19. Carbapenem-resistant bacteria in a secondary wastewater treatment ...

    African Journals Online (AJOL)

    /mL, with its prevalence among total heterotrophic bacteria at 47% and 26%, respectively. Correlation of CRBP with physico-chemical and other bacteriological parameters of wastewater was estimated. Higher numbers of CRBP in influent and ...

  20. KnockoutJS web development

    CERN Document Server

    Farrar, John

    2015-01-01

    This book is for web developers and designers who work with HTML and JavaScript to help them manage data and interactivity with data using KnockoutJS. Knowledge about jQuery will be useful but is not necessary.

  1. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  2. Analysis of knockout mice suggests a role for VGF in the control of fat storage and energy expenditure

    Directory of Open Access Journals (Sweden)

    Chakraborty Tandra

    2009-10-01

    Full Text Available Abstract Background Previous studies of mixed background mice have demonstrated that targeted deletion of Vgf produces a lean, hypermetabolic mouse that is resistant to diet-, lesion-, and genetically-induced obesity. To investigate potential mechanism(s and site(s of action of VGF, a neuronal and endocrine secreted protein and neuropeptide precursor, we further analyzed the metabolic phenotypes of two independent VGF knockout lines on C57Bl6 backgrounds. Results Unlike hyperactive VGF knockout mice on a mixed C57Bl6-129/SvJ background, homozygous mutant mice on a C57Bl6 background were hypermetabolic with similar locomotor activity levels to Vgf+/Vgf+ mice, during day and night cycles, indicating that mechanism(s other than hyperactivity were responsible for their increased energy expenditure. In Vgf-/Vgf- knockout mice, morphological analysis of brown and white adipose tissues (BAT and WAT indicated decreased fat storage in both tissues, and decreased adipocyte perimeter and area in WAT. Changes in gene expression measured by real-time RT-PCR were consistent with increased fatty acid oxidation and uptake in BAT, and increased lipolysis, decreased lipogenesis, and brown adipocyte differentiation in WAT, suggesting that increased sympathetic nervous system activity in Vgf-/Vgf- mice may be associated with or responsible for alterations in energy expenditure and fat storage. In addition, uncoupling protein 1 (UCP1 and UCP2 protein levels, mitochondrial number, and mitochondrial cristae density were upregulated in Vgf-/Vgf- BAT. Using immunohistochemical and histochemical techniques, we detected VGF in nerve fibers innervating BAT and Vgf promoter-driven reporter expression in cervical and thoracic spinal ganglia that project to and innervate the chest wall and tissues including BAT. Moreover, VGF peptide levels were quantified by radioimmunoassay in BAT, and were found to be down-regulated by a high fat diet. Lastly, despite being hypermetabolic

  3. Efficient CRISPR/Cas9-based gene knockout in watermelon.

    Science.gov (United States)

    Tian, Shouwei; Jiang, Linjian; Gao, Qiang; Zhang, Jie; Zong, Mei; Zhang, Haiying; Ren, Yi; Guo, Shaogui; Gong, Guoyi; Liu, Fan; Xu, Yong

    2017-03-01

    CRISPR/Cas9 system can precisely edit genomic sequence and effectively create knockout mutations in T0 generation watermelon plants. Genome editing offers great advantage to reveal gene function and generate agronomically important mutations to crops. Recently, RNA-guided genome editing system using the type II clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) has been applied to several plant species, achieving successful targeted mutagenesis. Here, we report the genome of watermelon, an important fruit crop, can also be precisely edited by CRISPR/Cas9 system. ClPDS, phytoene desaturase in watermelon, was selected as the target gene because its mutant bears evident albino phenotype. CRISPR/Cas9 system performed genome editing, such as insertions or deletions at the expected position, in transfected watermelon protoplast cells. More importantly, all transgenic watermelon plants harbored ClPDS mutations and showed clear or mosaic albino phenotype, indicating that CRISPR/Cas9 system has technically 100% of genome editing efficiency in transgenic watermelon lines. Furthermore, there were very likely no off-target mutations, indicated by examining regions that were highly homologous to sgRNA sequences. Our results show that CRISPR/Cas9 system is a powerful tool to effectively create knockout mutations in watermelon.

  4. Theoretical analysis of knock-out release of fission products from nuclear fuels

    International Nuclear Information System (INIS)

    Yamagishi, S.

    1975-01-01

    The knock-out release of fission products is studied theoretically. The general equations of knock-out release are derived, assuming that a fission fragment passing through the surface of nuclear fuels knocks out a local region of the surface with an effective thickness and an effective cross-sectional area. Using these equations, the knock-out release of fission gases is calculated for various cases. The conditions under which the knock-out coefficients (the average number of uranium atoms knocked out by one fission fragment) is obtainable are clarified by experiments on the knock-out release of fission gases. A method of determining the effective thickness and the effective cross-sectional area of a knock-out region is proposed. (Auth.)

  5. One-neutron knockout from Ne24-28 isotopes

    CERN Document Server

    Rodriguez-Tajes, C; Caamano, M; Faestermann, T; Cortina-Gil, D; Zhukov, M; Simon, H; Nilsson, T; Borge, M J G; Alvarez-Pol, H; Winkler, M; Prochazka, A; Nociforo, C; Weick, H; Kanungo, R; Perez-Loureiro, D; Kurtukian, T; Suemmerer, K; Eppinger, K; Perea, A; Chatillon, A; Maierbeck, P; Benlliure, J; Pascual-Izarra, C; Gernhaeuser, R; Geissel, H; Aumann, T; Kruecken, R; Larsson, K; Tengblad, O; Benjamim, E; Jonson, B; Casarejos, E

    2010-01-01

    One-neutron knockout reactions of Ne24-28 in a beryllium target have been studied in the Fragment Separator (FRS), at GSI. The results include inclusive one-neutron knockout cross-sections as well as longitudinal-momentum distributions of the knockout fragments. The ground-state structure of the neutron-rich neon isotopes was obtained from an analysis of the measured momentum distributions. The results indicate that the two heaviest isotopes, Ne-27 and Ne-28, are dominated by a configuration in which a s(1/2) neutron is coupled to an excited state of the Ne-26 and Ne-27 core, respectively. (C) 2010 Elsevier B.V. All rights reserved.

  6. Proton knock-out in Hall A

    International Nuclear Information System (INIS)

    Jager, K. de

    2003-01-01

    Proton knock-out is studied in a broad program in Hall A at Jefferson Lab. The first experiment performed in Hall A studied the 16 O(e,e'p) reaction. Since then proton knock-out experiments have studied a variety of aspects of that reaction, from single-nucleon properties to its mechanism, such as final-state interactions and two-body currents, in nuclei from 2 H to 16 O. In this review the accomplishments of this program will be summarized and an outlook given of expected future results. (orig.)

  7. Piper betle induces phase I & II genes through Nrf2/ARE signaling pathway in mouse embryonic fibroblasts derived from wild type and Nrf2 knockout cells.

    Science.gov (United States)

    Wan Hasan, Wan Nuraini; Kwak, Mi-Kyoung; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2014-02-23

    Nuclear factor-erythroid 2 p45 related factor 2 (Nrf2) is a primary transcription factor, protecting cells from oxidative stress by regulating a number of antioxidants and phase II detoxifying enzymes. Dietary components such as sulforaphane in broccoli and quercetin in onions have been shown to be inducers of Nrf2. Piper betle (PB) grows well in tropical climate and the leaves are used in a number of traditional remedies for the treatment of stomach ailments and infections among Asians. The aim of this study was to elucidate the effect of Piper betle (PB) leaves extract in Nrf2 signaling pathway by using 2 types of cells; mouse embryonic fibroblasts (MEFs) derived from wild-type (WT) and Nrf2 knockout (N0) mice. WT and N0 cells were treated with 5 and 10 μg/ml of PB for 10 and 12-h for the determination of nuclear translocation of Nrf2 protein. Luciferase reporter gene activity was performed to evaluate the antioxidant response element (ARE)-induction by PB. Real-time PCR and Western blot were conducted on both WT and N0 cells after PB treatment for the determination of antioxidant enzymes [superoxide dismutase (SOD1) and heme-oxygenase (HO-1)], phase I oxidoreductase enzymes [ quinone oxidoreductase (NQO1)] and phase II detoxifying enzyme [glutathione S-transferase (GST)]. Nuclear translocation of Nrf2 by PB in WT cells was better after 10 h incubation compared to 12 h. Real time PCR and Western blot analysis showed increased expressions of Nrf2, NQO1 and GSTA1 genes with corresponding increases in glutathione, NQO1 and HO-1 proteins in WT cells. Reporter gene ARE was stimulated by PB as shown by ARE/luciferase assay. Interestingly, PB induced SOD1 gene and protein expressions in N0 cells but not in WT cells. The results of this study confirmed that PB activated Nrf2-ARE signaling pathway which subsequently induced some phase I oxidoreductase, phase II detoxifying and antioxidant genes expression via ARE reporter gene involved in the Nrf2 pathway with the

  8. KnockoutJS essentials

    CERN Document Server

    Ferrando, Jorge

    2015-01-01

    If you are a JavaScript developer who has been using DOM manipulation libraries such as Mootools or Scriptaculous, and you want go further in modern JavaScript development with a simple and well-documented library, then this book is for you. Learning how to use Knockout will be perfect as your next step towards building JavaScript applications that respond to user interaction.

  9. ANTXR2 Knock-Out Does Not Result in the Development of Hypertension in Rats.

    Science.gov (United States)

    Liu, Xiaoyan; Yuan, Wen; Li, Jing; Yang, Lei; Cai, Jun

    2017-02-01

    Our recent genetic study as well as robust evidences reported by previous genome-wide association studies (GWASs) have indicated that the single nucleotide polymorphism rs16998073, located near gene anthrax toxin receptor 2 (ANTXR2), was significantly associated with hypertension in Asians and Europeans. The aim of the present study was to determine whether ANTXR2 is the causal gene of hypertension at the 4q21 locus using an ANTXR2 knock-out model. Relative expression of ANTXR2 in Wistar-Kyoto rats (WKYs) and spontaneously hypertensive rats (SHRs) were determined by real-time quantitative polymerase chain reaction and western blot analysis. ANTXR2 knock-out rats were created using CRISPR/Cas9-mediated genome editing and blood pressure values were measured in ANTXR2 -/- and wild type (WT) rats by tail-cuff method and carotid arterial catheterization method. Neither the mRNA nor protein levels of ANTXR2 were significantly different between tissues from SHRs and WKYs. To create ANTXR2 -/- rats, 67 base pairs were deleted in exon 1 of ANTXR2 using CRISPR/Cas9-mediated genome editing. ANTXR2 protein decreased significantly in aortas of ANTXR2 -/- rats, suggesting sufficient efficiency of ANTXR2 knock-out in this model. However, ANTXR2 -/- rats exhibited nearly the same blood pressure as WT rats at baseline conditions as well as during Angiotensin II (400ng/kg/min) infusion or high-salt diet treatment. These findings suggest that ANTXR2 might not be associated with hypertension and thus further functional analysis is warranted to identify the causal gene at this locus. © American Journal of Hypertension, Ltd 2016. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Bcl-xL knockout attenuates mitochondrial respiration and causes oxidative stress that is compensated by pentose phosphate pathway activity

    NARCIS (Netherlands)

    Pfeiffer, Annika; Schneider, Julia; Bueno, Diones; Dolga, Amalia; Voss, Timo-Daniel; Lewerenz, Jan; Wüllner, Verena; Methner, Axel

    2017-01-01

    Bcl-xL is an anti-apoptotic protein that localizes to the outer mitochondrial membrane and influences mitochondrial bioenergetics by controlling Ca2+ influx into mitochondria. Here, we analyzed the effect of mitochondrial Bcl-xL on mitochondrial shape and function in knockout (KO), wild type and

  11. Comparative proteomics analysis of proteins expressed in the I-1 and I-2 internodes of strawberry stolons

    Directory of Open Access Journals (Sweden)

    Lai Wenguo

    2011-05-01

    Full Text Available Abstract Background Strawberries (Fragaria ananassa reproduce asexually through stolons, which have strong tendencies to form adventitious roots at their second node. Understanding how the development of the proximal (I-1 and distal (I-2 internodes of stolons differ should facilitate nursery cultivation of strawberries. Results Herein, we compared the proteomic profiles of the strawberry stolon I-1 and I-2 internodes. Proteins extracted from the internodes were separated by two-dimensional gel electrophoresis, and 164 I-1 protein spots and 200 I-2 protein spots were examined further. Using mass spectrometry and database searches, 38 I-1 and 52 I-2 proteins were identified and categorized (8 and 10 groups, respectively according to their cellular compartmentalization and functionality. Many of the identified proteins are enzymes necessary for carbohydrate metabolism and photosynthesis. Furthermore, identification of proteins that interact revealed that many of the I-2 proteins form a dynamic network during development. Finally, given our results, we present a mechanistic scheme for adventitious root formation of new clonal plants at the second node. Conclusions Comparative proteomic analysis of I-1 and I-2 proteins revealed that the ubiquitin-proteasome pathway and sugar-hormone pathways might be important during adventitious root formation at the second node of new clonal plants.

  12. Systematic screening for skin, hair, and nail abnormalities in a large-scale knockout mouse program.

    Directory of Open Access Journals (Sweden)

    John P Sundberg

    Full Text Available The International Knockout Mouse Consortium was formed in 2007 to inactivate ("knockout" all protein-coding genes in the mouse genome in embryonic stem cells. Production and characterization of these mice, now underway, has generated and phenotyped 3,100 strains with knockout alleles. Skin and adnexa diseases are best defined at the gross clinical level and by histopathology. Representative retired breeders had skin collected from the back, abdomen, eyelids, muzzle, ears, tail, and lower limbs including the nails. To date, 169 novel mutant lines were reviewed and of these, only one was found to have a relatively minor sebaceous gland abnormality associated with follicular dystrophy. The B6N(Cg-Far2tm2b(KOMPWtsi/2J strain, had lesions affecting sebaceous glands with what appeared to be a secondary follicular dystrophy. A second line, B6N(Cg-Ppp1r9btm1.1(KOMPVlcg/J, had follicular dystrophy limited to many but not all mystacial vibrissae in heterozygous but not homozygous mutant mice, suggesting that this was a nonspecific background lesion. We discuss potential reasons for the low frequency of skin and adnexal phenotypes in mice from this project in comparison to those seen in human Mendelian diseases, and suggest alternative approaches to identification of human disease-relevant models.

  13. One-neutron knockout from {sup 24-28}Ne isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Tajes, C., E-mail: carme.rodriguez@usc.e [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Cortina-Gil, D.; Alvarez-Pol, H. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Aumann, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Benjamim, E.; Benlliure, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Borge, M.J.G. [Instituto de Estructura de la Materia, CSIC, 28006 Madrid (Spain); Caamano, M.; Casarejos, E. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Chatillon, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Eppinger, K.; Faestermann, T. [Physik Department E12, Technische Universitaet Muenchen, 85748 Garching (Germany); Gascon, M. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Geissel, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, 64291 Darmstadt (Germany); Gernhaeuser, R. [Physik Department E12, Technische Universitaet Muenchen, 85748 Garching (Germany); Jonson, B. [Fundamental Fysik, Chalmers Tekniska Hoegskola, 412 96 Goeteborg (Sweden); PH Department, CERN, 1211 Geneve 23 (Switzerland); Kanungo, R. [Astronomy and Physics Department, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada); Kruecken, R. [Physik Department E12, Technische Universitaet Muenchen, 85748 Garching (Germany); Kurtukian, T. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain); Larsson, K. [Fundamental Fysik, Chalmers Tekniska Hoegskola, 412 96 Goeteborg (Sweden)

    2010-04-05

    One-neutron knockout reactions of {sup 24-28}Ne in a beryllium target have been studied in the Fragment Separator (FRS), at GSI. The results include inclusive one-neutron knockout cross-sections as well as longitudinal-momentum distributions of the knockout fragments. The ground-state structure of the neutron-rich neon isotopes was obtained from an analysis of the measured momentum distributions. The results indicate that the two heaviest isotopes, {sup 27}Ne and {sup 28}Ne, are dominated by a configuration in which a s{sub 1/2} neutron is coupled to an excited state of the {sup 26}Ne and {sup 27}Ne core, respectively.

  14. Acute multi-sgRNA knockdown of KEOPS complex genes reproduces the microcephaly phenotype of the stable knockout zebrafish model.

    Directory of Open Access Journals (Sweden)

    Tilman Jobst-Schwan

    Full Text Available Until recently, morpholino oligonucleotides have been widely employed in zebrafish as an acute and efficient loss-of-function assay. However, off-target effects and reproducibility issues when compared to stable knockout lines have compromised their further use. Here we employed an acute CRISPR/Cas approach using multiple single guide RNAs targeting simultaneously different positions in two exemplar genes (osgep or tprkb to increase the likelihood of generating mutations on both alleles in the injected F0 generation and to achieve a similar effect as morpholinos but with the reproducibility of stable lines. This multi single guide RNA approach resulted in median likelihoods for at least one mutation on each allele of >99% and sgRNA specific insertion/deletion profiles as revealed by deep-sequencing. Immunoblot showed a significant reduction for Osgep and Tprkb proteins. For both genes, the acute multi-sgRNA knockout recapitulated the microcephaly phenotype and reduction in survival that we observed previously in stable knockout lines, though milder in the acute multi-sgRNA knockout. Finally, we quantify the degree of mutagenesis by deep sequencing, and provide a mathematical model to quantitate the chance for a biallelic loss-of-function mutation. Our findings can be generalized to acute and stable CRISPR/Cas targeting for any zebrafish gene of interest.

  15. Eliminating graphs by means of parallel knock-out schemes

    NARCIS (Netherlands)

    Broersma, H.J.; Fomin, F.V.; Královic, R.; Woeginger, G.J.

    2007-01-01

    In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which

  16. Eliminating graphs by means of parallel knock-out schemes

    NARCIS (Netherlands)

    Broersma, Haitze J.; Fomin, F.V.; Královič, R.; Woeginger, Gerhard

    In 1997 Lampert and Slater introduced parallel knock-out schemes, an iterative process on graphs that goes through several rounds. In each round of this process, every vertex eliminates exactly one of its neighbors. The parallel knock-out number of a graph is the minimum number of rounds after which

  17. Functional characterization of the vaccinia virus I5 protein

    Directory of Open Access Journals (Sweden)

    Stanitsa Eleni S

    2008-12-01

    Full Text Available The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5, we show here that the I5 protein is expressed as a post-replicative gene and that the ~9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vΔindI5V5, or one in which the I5 locus has been deleted (vΔI5, we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.

  18. Characterization of the first knock-out aldh7a1 zebrafish model for pyridoxine-dependent epilepsy using CRISPR-Cas9 technology.

    Science.gov (United States)

    Zabinyakov, Nikita; Bullivant, Garrett; Cao, Feng; Fernandez Ojeda, Matilde; Jia, Zheng Ping; Wen, Xiao-Yan; Dowling, James J; Salomons, Gajja S; Mercimek-Andrews, Saadet

    2017-01-01

    Pyridoxine dependent epilepsy (PDE) is caused by likely pathogenic variants in ALDH7A1 (PDE-ALDH7A1) and inherited autosomal recessively. Neurotoxic alpha-amino adipic semialdehyde (alpha-AASA), piperideine 6-carboxylate and pipecolic acid accumulate in body fluids. Neonatal or infantile onset seizures refractory to anti-epileptic medications are clinical features. Treatment with pyridoxine, arginine and lysine-restricted diet does not normalize neurodevelopmental outcome or accumulation of neurotoxic metabolites. There is no animal model for high throughput drug screening. For this reason, we developed and characterized the first knock-out aldh7a1 zebrafish model using CRISPR-Cas9 technology. Zebrafish aldh7a1 mutants were generated by using a vector free method of CRISPR-Cas9 mutagenesis. Genotype analysis of aldh7a1 knock-out zebrafish was performed by high resolution melt analysis, direct sequencing and QIAxcel system. Electroencephalogram was performed. Alpha-AASA, piperideine 6-carboxylate and pipecolic acid, were measured by liquid chromatography-tandem mass spectrometry. Our knock-out aldh7a1 zebrafish has homozygous 5 base pair (bp) mutation in ALDH7A1. Knock-out aldh7a1 embryos have spontaneous rapid increase in locomotion and a rapid circling swim behavior earliest 8-day post fertilization (dpf). Electroencephalogram revealed large amplitude spike discharges compared to wild type. Knock-out aldh7a1 embryos have elevated alpha-AASA, piperideine 6-carboxylate and pipecolic acid compared to wild type embryos at 3 dpf. Knock-out aldh7a1 embryos showed no aldh7a1 protein by western blot compared to wild type. Our knock-out aldh7a1 zebrafish is a well characterized model for large-scale drug screening using behavioral and biochemical features and accurately recapitulates the human PDE-ALDH7A1 disease.

  19. Brain Region-Specific Effects of cGMP-Dependent Kinase II Knockout on AMPA Receptor Trafficking and Animal Behavior

    Science.gov (United States)

    Kim, Seonil; Pick, Joseph E.; Abera, Sinedu; Khatri, Latika; Ferreira, Danielle D. P.; Sathler, Matheus F.; Morison, Sage L.; Hofmann, Franz; Ziff, Edward B.

    2016-01-01

    Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO…

  20. Methyl-accepting protein associated with bacterial sensory phodopsin I

    International Nuclear Information System (INIS)

    Spudich, E.N.; Hasselbacher, C.A.; Spudich, J.L.

    1988-01-01

    In vivo radiolabeling of Halaobacterium halobium phototaxis mutants and revertants with L-[methyl- 3 H] methionine implicated seven methyl-accepting protein bands with apparent molecular masses from 65 to 150 kilodaltons (kDa) in adaptation of the organism to chemo and photo stimuli, and one of these (94 kDa) was specifically implicated in photoaxis. The lability of the radiolabeled bands to mild base treatment indicated the the methyl linkages are carboxylmethylesters, as is the case in the eubacterial chemotaxis receptor-transducers. The 94-kDa protein was present in increased amounts in an overproducer of the apoprotein of sensory rhodopsin I, one of two retinal-containing photoaxis receptors in H. halobium. It was absent in a strain the contained sensory rhodopsin II and that lacked sensory rhodopsin I and was also absent in a mutant that lacked both photoreceptors. Based in the role of methyl-accepting proteins in chemotaxis in other bacteria, we suggest that the 94-kDa protein is the signal transducer for sensory rhodopsin I. By [ 3 H]retinal labeling studies, we previously identified a 25-kDa retinal-binding polypeptide that was derived from photochemically reactive sensory rhodopsin I. When H. halobium membranes containing sensory rhodopsin I were treated by a procedure that stably reduced [ 3 H] retinal onto the 25-kDa apoprotein, a 94-kDa protein was also found to be radiolabeled. Protease digestion confirmed that the 94-kDa retinal-labeled protein was the same as the methyl-accepting protein that was suggested above to be the siginal transducer for sensory rhodopsin I. Possible models are that the 25- and 94-kDa proteins are tightly interacting components of the photosensory signaling machinery or that both are forms of sensory rhodopsin I

  1. Impaired social behavior in 5-HT3A receptor knockout mice

    Directory of Open Access Journals (Sweden)

    Laura A Smit-Rigter

    2010-11-01

    Full Text Available The 5-HT3 receptor is a ligand-gated ion channel expressed on interneurons throughout the brain. So far, analysis of the 5-HT3A knockout mouse revealed changes in nociceptive processing and a reduction in anxiety related behavior. Recently, it was shown that the 5-HT3 receptor is also expressed on Cajal-Retzius cells which play a key role in cortical development and that knockout mice lacking this receptor showed aberrant growth of the dendritic tree of cortical layer II/III pyramidal neurons. Other mouse models in which serotonergic signaling was disrupted during development showed similar morphological changes in the cortex, and in addition, also deficits in social behavior. Here, we subjected male and female 5-HT3A knockout mice and their non-transgenic littermates to several tests of social behavior. We found that 5-HT3A knockout mice display impaired social communication in the social transmission of food preference task. Interestingly, we showed that in the social interaction test only female 5-HT3A knockout mice spent less time in reciprocal social interaction starting after 5 minutes of testing. Moreover, we observed differences in preference for social novelty for male and female 5-HT3A knockout mice during the social approach test. However, no changes in olfaction, exploratory activity and anxiety were detected. These results indicate that the 5-HT3A knockout mouse displays impaired social behavior with specific changes in males and females, reminiscent to other mouse models in which serotonergic signaling is disturbed in the developing brain.

  2. Interrater agreement of an observational tool to code knockouts and technical knockouts in mixed martial arts.

    Science.gov (United States)

    Lawrence, David W; Hutchison, Michael G; Cusimano, Michael D; Singh, Tanveer; Li, Luke

    2014-09-01

    Interrater agreement evaluation of a tool to document and code the situational factors and mechanisms of knockouts (KOs) and technical knockouts (TKOs) in mixed martial arts (MMA). Retrospective case series. Professional MMA matches from the Ultimate Fighting Championship-2006-2012. Two nonmedically trained independent raters. The MMA Knockout Tool (MMA-KT) consists of 20 factors and captures and codes information on match characteristics, situational context preceding KOs and TKOs, as well as describing competitor states during these outcomes. The MMA-KT also evaluates the mechanism of action and subsequent events surrounding a KO. The 2 raters coded 125 unique events for a total of 250 events. The 8 factors of Part A had an average κ of 0.87 (SD = 0.10; range = 0.65-0.98); 7 were considered "substantial" agreement and 1 "moderate." Part B consists of 12 factors with an average κ of 0.84 (SD = 0.16; range = 0.59-1.0); 7 classified as "substantial" agreement, 4 "moderate," and 1 "fair." The majority of the factors in the MMA-KT demonstrated substantial interrater agreement, with an average κ of 0.86 (SD = 0.13; range = 0.59-1.0). The MMA-KT is a reliable tool to extract and code relevant information to investigate the situational factors and mechanism of KOs and TKOs in MMA competitions.

  3. iQuantitator: A tool for protein expression inference using iTRAQ

    Directory of Open Access Journals (Sweden)

    Comte-Walters Susana

    2009-10-01

    Full Text Available Abstract Background Isobaric Tags for Relative and Absolute Quantitation (iTRAQ™ [Applied Biosystems] have seen increased application in differential protein expression analysis. To facilitate the growing need to analyze iTRAQ data, especially for cases involving multiple iTRAQ experiments, we have developed a modeling approach, statistical methods, and tools for estimating the relative changes in protein expression under various treatments and experimental conditions. Results This modeling approach provides a unified analysis of data from multiple iTRAQ experiments and links the observed quantity (reporter ion peak area to the experiment design and the calculated quantity of interest (treatment-dependent protein and peptide fold change through an additive model under log transformation. Others have demonstrated, through a case study, this modeling approach and noted the computational challenges of parameter inference in the unbalanced data set typical of multiple iTRAQ experiments. Here we present the development of an inference approach, based on hierarchical regression with batching of regression coefficients and Markov Chain Monte Carlo (MCMC methods that overcomes some of these challenges. In addition to our discussion of the underlying method, we also present our implementation of the software, simulation results, experimental results, and sample output from the resulting analysis report. Conclusion iQuantitator's process-based modeling approach overcomes limitations in current methods and allows for application in a variety of experimental designs. Additionally, hypertext-linked documents produced by the tool aid in the interpretation and exploration of results.

  4. Characterization of a Bacillus subtilis surfactin synthetase knockout and antimicrobial activity analysis.

    Science.gov (United States)

    Liu, Hongxia; Qu, Xiaoxu; Gao, Ling; Zhao, Shengming; Lu, Zhaoxin; Zhang, Chong; Bie, Xiaomei

    2016-11-10

    Gene knockout is an important approach to improve the production of antimicrobial compounds. B. subtilis PB2-LS10, derived from B. subtilis PB2-L by a surfactin synthetase (srf) genes knockout, exhibits stronger inhibitory action than its parental strain against all tested pathogenic bacteria and fungi. The antimicrobial extracts produced by B. subtilis PB2-L and B. subtilis PB2-LS10 respectively were characterized by the high-resolution LC-ESI-MS. To provide further insight into the distinct antimicrobial activities, we investigated the impact of the srf genes deletion on the growth and gene transcriptional profile of the strains. The mutant strain grew quickly and reached stationary phase 2h earlier than the wild-type. Prominent expression changes in the modified strain involved genes that were essential to metabolic pathways and processes. Genes related to amino acid transport, ATP-binding cassette (ABC) transporters and protein export were up-regulated in strain PB2-LS10. However, amino acid metabolism, carbohydrate metabolism and fatty acid metabolism were repressed. Because of its excellent antimicrobial activity, strain PB2-LS10 has potential for use in food preservation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Augmented hepatic injury followed by impaired regeneration in metallothionein-I/II knockout mice after treatment with thioacetamide

    International Nuclear Information System (INIS)

    Oliver, Jordan R.; Jiang, Sean; Cherian, M. George

    2006-01-01

    A previous study (Oliver, J.R., Mara, T.W., Cherian, M.G. 2005. Impaired hepatic regeneration in metallothionein-I/II knockout mice after partial hepatectomy. Exp. Biol. Med. 230, 61-67) has shown an impairment of liver regeneration following partial hepatectomy (PH) in metallothionein (MT)-I and MT-II gene knockout (MT-null) mice, thus suggesting a requirement for MT in cellular growth. The present study was undertaken to investigate whether MT may play a similar role in hepatic injury and regeneration after acute treatment with thioacetamide (TAA). Hepatotoxicity of TAA is caused by the generation of oxidative stress. TAA was injected ip to both wild-type (WT) and MT-null mice. Mice were killed at 6, 12, 24, 48, 60, and 72 h after injection of TAA (125 mg/kg) or 48 h after injection of saline (vehicle control), and different parameters of hepatic injury were measured. The levels of hepatic lipid peroxidation were increased at 12 h in both types of mice; however, lipid peroxidation was significantly less in WT mice than MT-null mice at 48 h after injection of TAA. Analysis of hepatic glutathione (GSH) levels after TAA injection showed depletion of GSH at 12 h in WT mice and at 6 h in MT-null mice; however, significantly more GSH was depleted early (6-24 h) in MT-null mice than WT mice. An increase in hepatic iron (Fe) levels was observed in both types of mice after injection of TAA, but Fe levels were significantly higher in MT-null mice than WT mice at 6-60 h. The levels of hepatic copper (Cu) and zinc (Zn) were significantly higher in WT mice than MT-null mice at 6-60 h for Cu, and at 24 h and 60 h for Zn, respectively. Histopathological examination showed hemorrhagic necrosis in the liver of both types of mice at 12-72 h, with hepatic injury being more prominent in MT-null mice than WT mice. The hepatic MT levels were increased in WT mice after injection of TAA, and were highest at 24-72 h. Immunohistochemical staining for MT in WT mice indicated the presence

  6. Inactivation of the Autolysis-Related Genes lrgB and yycI in Staphylococcus aureus Increases Cell Lysis-Dependent eDNA Release and Enhances Biofilm Development In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Cristiana Ossaille Beltrame

    Full Text Available Staphylococcus aureus ica-independent biofilms are multifactorial in nature, and various bacterial proteins have been associated with biofilm development, including fibronectin-binding proteins A and B, protein A, surface protein SasG, proteases, and some autolysins. The role of extracellular DNA (eDNA has also been demonstrated in some S. aureus biofilms. Here, we constructed a Tn551 library, and the screening identified two genes that affected biofilm formation, lrgB and yycI. The repressive effect of both genes on the development of biofilm was also confirmed in knockout strains constructed by allelic recombination. In contrast, the superexpression of either lrgB or yycI by a cadmium-inducible promoter led to a decrease in biofilm accumulation. Indeed, a significant increase in the cell-lysis dependent eDNA release was detected when lrgB or yycI were inactivated, explaining the enhanced biofilm formed by these mutants. In fact, lrgB and yycI genes belong to distinct operons that repress bacterial autolysis through very different mechanisms. LrgB is associated with the synthesis of phage holin/anti-holin analogues, while YycI participates in the activation/repression of the two-component system YycGF (WalKR. Our in vivo data suggest that autolysins activation lead to increased bacterial virulence in the foreign body animal model since a higher number of attached cells was recovered from the implanted catheters inoculated with lrgB or yycI knockout mutants.

  7. Claudin-2 knockout by TALEN-mediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells.

    Directory of Open Access Journals (Sweden)

    Shinsaku Tokuda

    Full Text Available Tight junctions (TJs regulate the movements of substances through the paracellular pathway, and claudins are major determinants of TJ permeability. Claudin-2 forms high conductive cation pores in TJs. The suppression of claudin-2 expression by RNA interference in Madin-Darby canine kidney (MDCK II cells (a low-resistance strain of MDCK cells was shown to induce a three-fold increase in transepithelial electrical resistance (TER, which, however, was still lower than in high-resistance strains of MDCK cells. Because RNA interference-mediated knockdown is not complete and only reduces gene function, we considered the possibility that the remaining claudin-2 expression in the knockdown study caused the lower TER in claudin-2 knockdown cells. Therefore, we investigated the effects of claudin-2 knockout in MDCK II cells by establishing claudin-2 knockout clones using transcription activator-like effector nucleases (TALENs, a recently developed genome editing method for gene knockout. Surprisingly, claudin-2 knockout increased TER by more than 50-fold in MDCK II cells, and TER values in these cells (3000-4000 Ω·cm2 were comparable to those in the high-resistance strains of MDCK cells. Claudin-2 re-expression restored the TER of claudin-2 knockout cells dependent upon claudin-2 protein levels. In addition, we investigated the localization of claudin-1, -2, -3, -4, and -7 at TJs between control MDCK cells and their respective knockout cells using their TALENs. Claudin-2 and -7 were less efficiently localized at TJs between control and their knockout cells. Our results indicate that claudin-2 independently determines the 'leaky' property of TJs in MDCK II cells and suggest the importance of knockout analysis in cultured cells.

  8. Nonsense-mediated mRNA decay and loss-of-function of the protein underlie the X-linked epilepsy associated with the W356× mutation in synapsin I.

    Directory of Open Access Journals (Sweden)

    Maila Giannandrea

    Full Text Available Synapsins are a family of neuronal phosphoproteins associated with the cytosolic surface of synaptic vesicles. Experimental evidence suggests a role for synapsins in synaptic vesicle clustering and recycling at the presynaptic terminal, as well as in neuronal development and synaptogenesis. Synapsin knock-out (Syn1(-/- mice display an epileptic phenotype and mutations in the SYN1 gene have been identified in individuals affected by epilepsy and/or autism spectrum disorder. We investigated the impact of the c.1067G>A nonsense transition, the first mutation described in a family affected by X-linked syndromic epilepsy, on the expression and functional properties of the synapsin I protein. We found that the presence of a premature termination codon in the human SYN1 transcript renders it susceptible to nonsense-mediated mRNA decay (NMD. Given that the NMD efficiency is highly variable among individuals and cell types, we investigated also the effects of expression of the mutant protein and found that it is expressed at lower levels compared to wild-type synapsin I, forms perinuclear aggregates and is unable to reach presynaptic terminals in mature hippocampal neurons grown in culture. Taken together, these data indicate that in patients carrying the W356× mutation the function of synapsin I is markedly impaired, due to both the strongly decreased translation and the altered function of the NMD-escaped protein, and support the value of Syn1(-/- mice as an experimental model mimicking the human pathology.

  9. Mitochondrial genome-knockout cells demonstrate a dual mechanism of action for the electron transport complex I inhibitor mycothiazole.

    Science.gov (United States)

    Meyer, Kirsten J; Singh, A Jonathan; Cameron, Alanna; Tan, An S; Leahy, Dora C; O'Sullivan, David; Joshi, Praneta; La Flamme, Anne C; Northcote, Peter T; Berridge, Michael V; Miller, John H

    2012-04-01

    Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 μM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.

  10. CRISPR/Cas9-based knockouts reveal that CpRLP1 is a negative regulator of the sex pheromone PR-IP in the Closterium peracerosum-strigosum-littorale complex.

    Science.gov (United States)

    Kanda, Naho; Ichikawa, Machiko; Ono, Ayaka; Toyoda, Atsushi; Fujiyama, Asao; Abe, Jun; Tsuchikane, Yuki; Nishiyama, Tomoaki; Sekimoto, Hiroyuki

    2017-12-19

    Heterothallic strains of the Closterium peracerosum-strigosum-littorale (C. psl.) complex have two sexes, mating-type plus (mt + ) and mating-type minus (mt - ). Conjugation between these two sexes is regulated by two sex pheromones, protoplast-release-inducing protein (PR-IP) and PR-IP Inducer, which are produced by mt + and mt - cells, respectively. PR-IP mediates the release of protoplasts from mt - cells during mating. In this study, we examined the mechanism of action of CpRLP1 (receptor-like protein 1), which was previously identified in a cDNA microarray analysis as one of the PR-IP-inducible genes. Using CRISPR/Cas9 technology, we generated CpRLP1 knockout mutants in mt - cells of the C. psl. complex. When the knockout mt - cells were mixed with wild-type mt + cells, conjugation was severely reduced. Many cells released protoplasts without pairing, suggesting a loss of synchronization between the two mating partners. Furthermore, the knockout mutants were hypersensitive to PR-IP. We conclude that CpRLP1 is a negative regulator of PR-IP that regulates the timing of protoplast release in conjugating C. psl. cells. As the first report of successful gene knockout in the class Charophyceae, this study provides a basis for research aimed at understanding the ancestral roles of genes that are indispensable for the development of land plants.

  11. Studies of UCP2 transgenic and knockout mice reveal that liver UCP2 is not essential for the antiobesity effects of fish oil.

    Science.gov (United States)

    Tsuboyama-Kasaoka, Nobuyo; Sano, Kayo; Shozawa, Chikako; Osaka, Toshimasa; Ezaki, Osamu

    2008-03-01

    Uncoupling protein 2 (UCP2) is a possible target molecule for energy dissipation. Many dietary fats, including safflower oil and lard, induce obesity in C57BL/6 mice, whereas fish oil does not. Fish oil increases UCP2 expression in hepatocytes and may enhance UCP2 activity by activating the UCP2 molecule or altering the lipid bilayer environment. To examine the role of liver UCP2 in obesity, we created transgenic mice that overexpressed human UCP2 in hepatocytes and examined whether UCP2 transgenic mice showed less obesity when fed a high-fat diet (safflower oil or lard). In addition, we examined whether fish oil had antiobesity effects in UCP2 knockout mice. UCP2 transgenic and wild-type mice fed a high-fat diet (safflower oil or lard) developed obesity to a similar degree. UCP2 knockout and wild-type mice fed fish oil had lower rates of obesity than mice fed safflower oil. Remarkably, safflower oil did not induce obesity in female UCP2 knockout mice, an unexpected phenotype for which we presently have no explanation. However, this unexpected effect was not observed in male UCP2 knockout mice or in UCP2 knockout mice fed a high-lard diet. These data indicate that liver UCP2 is not essential for fish oil-induced decreases in body fat.

  12. One-neutron knockout from {sup 51-55}Sc

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, S.; Maierbeck, P.; Gernhaeuser, R.; Bildstein, V.; Boehmer, M.; Eppinger, K.; Faestermann, T.; Friese, J.; Fabbietti, L.; Maier, L.; Winkler, S. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Kruecken, R. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); TRIUMF, Vancouver (Canada); University of British Columbia, Department of Physics and Astronomy, Vancouver (Canada); Kroell, T. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Alvarez-Pol, H.; Benjamim, E.A.; Benlliure, J.; Caamano, M.; Cortina-Gil, D.; Gascon, M.; Kurtukian, T.; Perez, D.; Rodriguez-Tajes, C. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas, Santiago de Compostela (Spain); Aksouh, F.; Aumann, T.; Behr, K.; Boretzky, K.; Bruenle, A.; Chatillon, A.; Chulkov, L.V.; Geissel, H.; Gerl, J.; Gorska, M.; Kojouharov, I.; Klimkiewicz, A.; Kurz, N.; Nociforo, C.; Schaffner, H.; Simon, H.; Stanoiu, M.; Suemmerer, K.; Weick, H. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Borge, M.J.G.; Pascual-Izarra, C.; Perea, A.; Tengblad, O. [CSIC, Instituto de Estructura de la Materia, Madrid (Spain); Buerger, A. [University of Oslo, SAFE/OCL, Oslo (Norway); CEA, Gif-sur-Yvette (France); Casarejos, E.; Brown, B.A. [University of Vigo, Vigo (Spain); Enders, J.; Schrieder, G. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Hansen, P.G. [Michigan State University, NSCL, East Lansing, Michigan (United States); Jonson, B.; Nyman, G. [Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Kanungo, R. [TRIUMF, Vancouver (Canada); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Saint Mary' s University, Halifax (Canada); Kiselev, O. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johannes Gutenberg Universitaet, Mainz (Germany); Paul Scherrer Institut, Villigen (Switzerland); Larsson, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Le Bleis, T. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); IN2P3-CNRS/Universite Louis Pasteur, Institut Pluridisciplinaire Hubert Curien, Strasbourg Cedex 2 (France); Mahata, K. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Paul Scherrer Institut, Villigen (Switzerland); Nilsson, T. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Chalmers Tekniska Hoegskola och Goeteborgs Universitet, Experimentell Fysik, Goeteborg (Sweden); Prochazka, A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia); Rossi, D. [Johannes Gutenberg Universitaet, Mainz (Germany); Sitar, B. [Comenius University, Faculty of Mathematics and Physics, Bratislava (Slovakia); Otsuka, T. [University of Tokyo, Hongo, Bunkyo-ku, Department of Physics, Tokyo (Japan); Tostevin, J.A. [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom); Rae, W.D.M. [Garsington, Oxfordshire (United Kingdom)

    2012-12-15

    Results are presented from a one-neutron knockout experiment at relativistic energies of {approx} 420 A MeV on {sup 51-55}Sc using the GSI Fragment Separator as a two-stage magnetic spectrometer and the MINIBALL array for gamma-ray detection. Inclusive longitudinal momentum distributions and cross-sections were measured enabling the determination of the contributions corresponding to knockout from the {nu}p{sub 1/2}, {nu}p{sub 3/2}, (L = 1) and {nu}f{sub 7/2}, {nu}f{sub 5/2} (L = 3) neutron orbitals. The observed L = 1 and L = 3 contributions are compared with theoretical cross-sections using eikonal knockout theory and spectroscopic factors from shell model calculations using the GXPF1A interaction. The measured inclusive knockout cross-sections generally follow the trends expected theoretically and given by the spectroscopic strength predicted from the shell model calculations. However, the deduced L = 1 cross-sections are generally 30-40% higher while the L = 3 contributions are about a factor of two smaller than predicted. This points to a promotion of neutrons from the {nu}f{sub 7/2} to the {nu}p{sub 3/2} orbital indicating a weakening of the N = 28 shell gap in these nuclei. While this is not predicted for the phenomenological GXPF1A interaction such a weakening is predicted by recent calculations using realistic low-momentum interactions V{sub low} {sub k} obtained by evolving a chiral N3LO nucleon-nucleon potential. (orig.)

  13. Bone phenotypes of P2 receptor knockout mice

    DEFF Research Database (Denmark)

    Orriss, Isabel; Syberg, Susanne; Wang, Ning

    2011-01-01

    The action of extracellular nucleotides is mediated by ionotropic P2X receptors and G-protein coupled P2Y receptors. The human genome contains 7 P2X and 8 P2Y receptor genes. Knockout mice strains are available for most of them. As their phenotypic analysis is progressing, bone abnormalities have...... been observed in an impressive number of these mice: distinct abnormalities in P2X7-/- mice, depending on the gene targeting construct and the genetic background, decreased bone mass in P2Y1-/- mice, increased bone mass in P2Y2-/- mice, decreased bone resorption in P2Y6-/- mice, decreased bone...... formation and bone resorption in P2Y13-/- mice. These findings demonstrate the unexpected importance of extracellular nucleotide signalling in the regulation of bone metabolism via multiple P2 receptors and distinct mechanisms involving both osteoblasts and osteoclasts....

  14. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Directory of Open Access Journals (Sweden)

    Susan Richter

    Full Text Available Zinc finger nucleases (ZFN are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK, in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116. All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002 and 4.3±0.8% (p = 0.001 for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  15. Zinc finger nuclease mediated knockout of ADP-dependent glucokinase in cancer cell lines: effects on cell survival and mitochondrial oxidative metabolism.

    Science.gov (United States)

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G; Ronimus, Ron S; McGee, Sean L; Wilson, William R

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines.

  16. Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice.

    Science.gov (United States)

    Gruss, Michael; Braun, Katharina

    2004-07-01

    The Fragile X syndrome, a common form of mental retardation in humans, originates from the loss of expression of the Fragile X mental retardation gene leading to the absence of the encoded Fragile X mental retardation protein 1 (FMRP). A broad pattern of morphological and behavioral abnormalities is well described for affected humans as well as Fmr1 knock-out mice, a transgenic animal model for the human Fragile X syndrome. In the present study, we examined neurochemical differences between female Fmr1 knock-out and wildtype mice with particular focus on neurotransmission. Significant age- and region-specific differences of basal tissue neurotransmitter and metabolite levels measured by high performance liquid chromatography were found. Those differences were more numerous in juvenile animals (postnatal day (PND) 28-31) compared to adults (postnatal day 209-221). In juvenile female knock-out mice, especially aspartate and taurine were increased in cortical regions, striatum, cerebellum, and brainstem. Furthermore, compared to the wildtype animals, the juvenile knock-out mice displayed an increased level of neuronal inhibition in the hippocampus and brainstem reflected by decreased ratios of (aspartate + glutamate)/(taurine + GABA), as well as an increased dopamine (DA) turnover in cortical regions, striatum, and hippocampus. These results provide the first evidence that the lack of FMRP expression in female Fmr1 knock-out mice is accompanied by age-dependent, region-specific alterations in brain amino acids, and monoamine turnover, which might be related to the reported synaptical and behavioural alterations in these animals.

  17. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    Science.gov (United States)

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in

  18. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors

    Science.gov (United States)

    2012-01-01

    Mutations in the LRRK2 gene are the most common cause of genetic Parkinson’s disease. Although the mechanisms behind the pathogenic effects of LRRK2 mutations are still not clear, data emerging from in vitro and in vivo models suggests roles in regulating neuronal polarity, neurotransmission, membrane and cytoskeletal dynamics and protein degradation. We created mice lacking exon 41 that encodes the activation hinge of the kinase domain of LRRK2. We have performed a comprehensive analysis of these mice up to 20 months of age, including evaluation of dopamine storage, release, uptake and synthesis, behavioral testing, dendritic spine and proliferation/neurogenesis analysis. Our results show that the dopaminergic system was not functionally comprised in LRRK2 knockout mice. However, LRRK2 knockout mice displayed abnormal exploratory activity in the open-field test. Moreover, LRRK2 knockout mice stayed longer than their wild type littermates on the accelerated rod during rotarod testing. Finally, we confirm that loss of LRRK2 caused degeneration in the kidney, accompanied by a progressive enhancement of autophagic activity and accumulation of autofluorescent material, but without evidence of biphasic changes. PMID:22647713

  19. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors.

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-06-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors.

  20. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    T. Baardman (Taco); M.V. Zwier (Mathijs V.); L.J. Wisse (Lambertus); A.C. Gittenberger-De Groot (Adriana); W.S. Kerstjens-Frederikse (Wilhelmina); R.M.W. Hofstra (Robert); A. Jurdzinski (Angelika); B.P. Hierck (Beerend); M.R.M. Jongbloed (Monique); R.M.F. Berger (Rolf); T. Plösch (Torsten); M.C. DeRuiter (Marco)

    2016-01-01

    textabstractLipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  1. Common arterial trunk and ventricular non-compaction in Lrp2 knockout mice indicate a crucial role of LRP2 in cardiac development

    NARCIS (Netherlands)

    Baardman, Maria E.; Zwier, Mathijs V.; Wisse, Lambertus J.; Gittenberger-de Groot, Adriana C.; Kerstjens-Frederikse, Wilhelmina S.; Hofstra, Robert M. W.; Jurdzinski, Angelika; Hierck, Beerend P.; Jongbloed, Monique R. M.; Berger, Rolf M. F.; Plosch, Torsten; DeRuiter, Marco C.

    2016-01-01

    Lipoprotein-related receptor protein 2 (LRP2) is important for development of the embryonic neural crest and brain in both mice and humans. Although a role in cardiovascular development can be expected, the hearts of Lrp2 knockout (KO) mice have not yet been investigated. We studied the

  2. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    Science.gov (United States)

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Nucleon knockout: off-shell effects

    International Nuclear Information System (INIS)

    Stephenson, G.J. Jr.

    1977-01-01

    The effect of the off-energy-shell extrapolation of the proton-proton scattering amplitude on the analysis of (p,2p) reactions is discussed. In particular, the range of expected variations in this extrapolation is explored and the possibility of using knock-out reactions to limit models of the p-p amplitude is studied

  4. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  5. A Knockout Experiment: Disciplinary Divides and Experimental Skill in Animal Behaviour Genetics.

    Science.gov (United States)

    Nelson, Nicole C

    2015-07-01

    In the early 1990s, a set of new techniques for manipulating mouse DNA allowed researchers to 'knock out' specific genes and observe the effects of removing them on a live mouse. In animal behaviour genetics, questions about how to deploy these techniques to study the molecular basis of behaviour became quite controversial, with a number of key methodological issues dissecting the interdisciplinary research field along disciplinary lines. This paper examines debates that took place during the 1990s between a predominately North American group of molecular biologists and animal behaviourists around how to design, conduct, and interpret behavioural knockout experiments. Drawing from and extending Harry Collins's work on how research communities negotiate what counts as a 'well-done experiment,' I argue that the positions practitioners took on questions of experimental skill reflected not only the experimental traditions they were trained in but also their differing ontological and epistemological commitments. Different assumptions about the nature of gene action, eg., were tied to different positions in the knockout mouse debates on how to implement experimental controls. I conclude by showing that examining representations of skill in the context of a community's knowledge commitments sheds light on some of the contradictory ways in which contemporary animal behaviour geneticists talk about their own laboratory work as a highly skilled endeavour that also could be mechanised, as easy to perform and yet difficult to perform well.

  6. Expression and characterization of insulin growth factor-I-enhanced green fluorescent protein fused protein as a tracer for immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shi Ruina [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Huang Yong [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Wang Dan [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Zhao Meiping [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Li Yuanzong [College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)]. E-mail: yzli@pku.edu.cn

    2006-09-25

    The insulin-like growth factor-I (IGF-I) is an important polypeptide hormone under investigation for body metabolism study and for doping detection. Here, we describe for the first time the expression of a recombinant fusion protein of IGF-I and the enhanced green fluorescent protein (EGFP). The genetic fusion approach enables preparation of conjugates with 1:1 stoichiometry and homogeneous structure. The fused protein (EGFP-IGF-I) was expressed as a soluble protein in cytoplasm of Escherichia coli and its fluorescence and immunoreaction properties were thoroughly characterized. Finally, we demonstrated the utility of the EGFP-IGF-I fusion protein for the fluorescence immunoassay of IGF-1. The linear range of the assay is 1.6 x 10{sup -8} to 2.0 x 10{sup -6} M with a detection limit of 1.6 x 10{sup -8} M. To our knowledge, this is the first time that EGFP has been used as a quantitative label in a fusion protein to develop a quantitative assay for IGF-I. Furthermore, the use of genetically engineered fusion proteins, which combine peptide hormones with fluorescent protein, can lead to a new labeling approach to a number of bioanalytical applications.

  7. Expression and characterization of insulin growth factor-I-enhanced green fluorescent protein fused protein as a tracer for immunoassay

    International Nuclear Information System (INIS)

    Shi Ruina; Huang Yong; Wang Dan; Zhao Meiping; Li Yuanzong

    2006-01-01

    The insulin-like growth factor-I (IGF-I) is an important polypeptide hormone under investigation for body metabolism study and for doping detection. Here, we describe for the first time the expression of a recombinant fusion protein of IGF-I and the enhanced green fluorescent protein (EGFP). The genetic fusion approach enables preparation of conjugates with 1:1 stoichiometry and homogeneous structure. The fused protein (EGFP-IGF-I) was expressed as a soluble protein in cytoplasm of Escherichia coli and its fluorescence and immunoreaction properties were thoroughly characterized. Finally, we demonstrated the utility of the EGFP-IGF-I fusion protein for the fluorescence immunoassay of IGF-1. The linear range of the assay is 1.6 x 10 -8 to 2.0 x 10 -6 M with a detection limit of 1.6 x 10 -8 M. To our knowledge, this is the first time that EGFP has been used as a quantitative label in a fusion protein to develop a quantitative assay for IGF-I. Furthermore, the use of genetically engineered fusion proteins, which combine peptide hormones with fluorescent protein, can lead to a new labeling approach to a number of bioanalytical applications

  8. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. | Office of Cancer Genomics

    Science.gov (United States)

    Understanding the direction of information flow is essential for characterizing how genetic networks affect phenotypes. However, methods to find genetic interactions largely fail to reveal directional dependencies. We combine two orthogonal Cas9 proteins from Streptococcus pyogenes and Staphylococcus aureus to carry out a dual screen in which one gene is activated while a second gene is deleted in the same cell. We analyze the quantitative effects of activation and knockout to calculate genetic interaction and directionality scores for each gene pair.

  9. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

    Science.gov (United States)

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2015-06-16

    L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.

  10. Phytosterol Feeding Causes Toxicity in ABCG5/G8 Knockout Mice

    Science.gov (United States)

    McDaniel, Allison L.; Alger, Heather M.; Sawyer, Janet K.; Kelley, Kathryn L.; Kock, Nancy D.; Brown, J. Mark; Temel, Ryan E.; Rudel, Lawrence L.

    2014-01-01

    Plant sterols, or phytosterols, are very similar in structure to cholesterol and are abundant in typical diets. The reason for poor absorption of plant sterols by the body is still unknown. Mutations in the ABC transporters G5 and G8 are known to cause an accumulation of plant sterols in blood and tissues (sitosterolemia). To determine the significance of phytosterol exclusion from the body, we fed wild-type and ABCG5/G8 knockout mice a diet enriched with plant sterols. The high-phytosterol diet was extremely toxic to the ABCG5/G8 knockout mice but had no adverse effects on wild-type mice. ABCG5/G8 knockout mice died prematurely and developed a phenotype that included high levels of plant sterols in many tissues, liver abnormalities, and severe cardiac lesions. This study is the first to report such toxic effects of phytosterol accumulation in ABCG5/G8 knockout mice. We believe these new data support the conclusion that plant sterols are excluded from the body because they are toxic when present at high levels. PMID:23380580

  11. Toscana virus NSs protein inhibits the induction of type I interferon by interacting with RIG-I.

    Science.gov (United States)

    Gori-Savellini, Gianni; Valentini, Melissa; Cusi, Maria Grazia

    2013-06-01

    Toscana virus (TOSV) is a phlebovirus, of the Bunyaviridae family, that is responsible for central nervous system (CNS) injury in humans. Previous data have shown that the TOSV NSs protein is a gamma interferon (IFN-β) antagonist when transiently overexpressed in mammalian cells, inhibiting IRF-3 induction (G. Gori Savellini, F. Weber, C. Terrosi, M. Habjan, B. Martorelli, and M. G. Cusi, J. Gen. Virol. 92:71-79, 2011). In this study, we investigated whether an upstream sensor, which has a role in the signaling cascade leading to the production of type I IFN, was involved. We found a significant decrease in RIG-I protein levels in cells overexpressing TOSV NSs, suggesting that the nonstructural protein interacts with RIG-I and targets it for proteasomal degradation. In fact, the MG-132 proteasome inhibitor was able to restore IFN-β promoter activation in cells expressing NSs, demonstrating the existence of an evasion mechanism based on inhibition of the RIG-I sensor. Furthermore, a C-terminal truncated NSs protein (ΔNSs), although able to interact with RIG-I, did not affect the RIG-I-mediated IFN-β promoter activation, suggesting that the NSs domains responsible for RIG-I-mediated signaling and interaction with RIG-I are mapped on different regions. These results contribute to identify a novel mechanism for bunyaviruses by which TOSV NSs counteracts the early IFN response.

  12. Paired immunoglobulin-like receptor B knockout does not enhance axonal regeneration or locomotor recovery after spinal cord injury.

    Science.gov (United States)

    Nakamura, Yuka; Fujita, Yuki; Ueno, Masaki; Takai, Toshiyuki; Yamashita, Toshihide

    2011-01-21

    Myelin components that inhibit axonal regeneration are believed to contribute significantly to the lack of axonal regeneration noted in the adult central nervous system. Three proteins found in myelin, Nogo, myelin-associated glycoprotein, and oligodendrocyte-myelin glycoprotein, inhibit neurite outgrowth in vitro. All of these proteins interact with the same receptors, namely, the Nogo receptor (NgR) and paired immunoglobulin-like receptor B (PIR-B). As per previous reports, corticospinal tract (CST) regeneration is not enhanced in NgR-knock-out mice after spinal cord injury. Therefore, we assessed CST regeneration in PIR-B-knock-out mice. We found that hindlimb motor function, as assessed using the Basso mouse scale, footprint test, inclined plane test, and beam walking test, did not differ between the PIR-B-knock-out and wild-type mice after dorsal hemisection of the spinal cord. Further, tracing of the CST fibers after injury did not reveal enhanced axonal regeneration or sprouting in the CST of the PIR-B-knock-out mice. Systemic administration of NEP1-40, a NgR antagonist, to PIR-B knock-out mice did not enhance the regenerative response. These results indicate that PIR-B knock-out is not sufficient to induce extensive axonal regeneration after spinal cord injury.

  13. Deletion of the Vaccinia Virus I2 Protein Interrupts Virion Morphogenesis, Leading to Retention of the Scaffold Protein and Mislocalization of Membrane-Associated Entry Proteins.

    Science.gov (United States)

    Hyun, Seong-In; Weisberg, Andrea; Moss, Bernard

    2017-08-01

    The I2L open reading frame of vaccinia virus (VACV) encodes a conserved 72-amino-acid protein with a putative C-terminal transmembrane domain. Previous studies with a tetracycline-inducible mutant demonstrated that I2-deficient virions are defective in cell entry. The purpose of the present study was to determine the step of replication or entry that is affected by loss of the I2 protein. Fluorescence microscopy experiments showed that I2 colocalized with a major membrane protein of immature and mature virions. We generated a cell line that constitutively expressed I2 and allowed construction of the VACV I2L deletion mutant vΔI2. As anticipated, vΔI2 was unable to replicate in cells that did not express I2. Unexpectedly, morphogenesis was interrupted at a stage after immature virion formation, resulting in the accumulation of dense spherical particles instead of brick-shaped mature virions with well-defined core structures. The abnormal particles retained the D13 scaffold protein of immature virions, were severely deficient in the transmembrane proteins that comprise the entry fusion complex (EFC), and had increased amounts of unprocessed membrane and core proteins. Total lysates of cells infected with vΔI2 also had diminished EFC proteins due to instability attributed to their hydrophobicity and failure to be inserted into viral membranes. A similar instability of EFC proteins had previously been found with unrelated mutants blocked earlier in morphogenesis that also accumulated viral membranes retaining the D13 scaffold. We concluded that I2 is required for virion morphogenesis, release of the D13 scaffold, and the association of EFC proteins with viral membranes. IMPORTANCE Poxviruses comprise a large family that infect vertebrates and invertebrates, cause disease in both in humans and in wild and domesticated animals, and are being engineered as vectors for vaccines and cancer therapy. In addition, investigations of poxviruses have provided insights into

  14. Gene Knockout Identification Using an Extension of Bees Hill Flux Balance Analysis

    Directory of Open Access Journals (Sweden)

    Yee Wen Choon

    2015-01-01

    Full Text Available Microbial strain optimisation for the overproduction of a desired phenotype has been a popular topic in recent years. Gene knockout is a genetic engineering technique that can modify the metabolism of microbial cells to obtain desirable phenotypes. Optimisation algorithms have been developed to identify the effects of gene knockout. However, the complexities of metabolic networks have made the process of identifying the effects of genetic modification on desirable phenotypes challenging. Furthermore, a vast number of reactions in cellular metabolism often lead to a combinatorial problem in obtaining optimal gene knockout. The computational time increases exponentially as the size of the problem increases. This work reports an extension of Bees Hill Flux Balance Analysis (BHFBA to identify optimal gene knockouts to maximise the production yield of desired phenotypes while sustaining the growth rate. This proposed method functions by integrating OptKnock into BHFBA for validating the results automatically. The results show that the extension of BHFBA is suitable, reliable, and applicable in predicting gene knockout. Through several experiments conducted on Escherichia coli, Bacillus subtilis, and Clostridium thermocellum as model organisms, extension of BHFBA has shown better performance in terms of computational time, stability, growth rate, and production yield of desired phenotypes.

  15. Knockouts of high-ranking males have limited impact on baboon social networks.

    Science.gov (United States)

    Franz, Mathias; Altmann, Jeanne; Alberts, Susan C

    Social network structures can crucially impact complex social processes such as collective behaviour or the transmission of information and diseases. However, currently it is poorly understood how social networks change over time. Previous studies on primates suggest that `knockouts' (due to death or dispersal) of high-ranking individuals might be important drivers for structural changes in animal social networks. Here we test this hypothesis using long-term data on a natural population of baboons, examining the effects of 29 natural knockouts of alpha or beta males on adult female social networks. We investigated whether and how knockouts affected (1) changes in grooming and association rates among adult females, and (2) changes in mean degree and global clustering coefficient in these networks. The only significant effect that we found was a decrease in mean degree in grooming networks in the first month after knockouts, but this decrease was rather small, and grooming networks rebounded to baseline levels by the second month after knockouts. Taken together our results indicate that the removal of high-ranking males has only limited or no lasting effects on social networks of adult female baboons. This finding calls into question the hypothesis that the removal of high-ranking individuals has a destabilizing effect on social network structures in social animals.

  16. TAM receptor knockout mice are susceptible to retinal autoimmune induction.

    Science.gov (United States)

    Ye, Fei; Li, Qiutang; Ke, Yan; Lu, Qingjun; Han, Lixia; Kaplan, Henry J; Shao, Hui; Lu, Qingxian

    2011-06-16

    TAM receptors are expressed mainly by dendritic cells and macrophages in the immune system, and mice lacking TAM receptors develop systemic autoimmune diseases because of inefficient negative control of the cytokine signaling in those cells. This study aims to test the susceptibility of the TAM triple knockout (tko) mice to the retina-specific autoantigen to develop experimental autoimmune uveoretinitis (EAU). TAM tko mice that were or were not immunized with interphotoreceptor retinoid-binding protein (IRBP) peptides were evaluated for retinal infiltration of the macrophages and CD3(+) T cells by immunohistochemistry, spontaneous activation of CD4(+) T cells, and memory T cells by flow cytometry and proliferation of IRBP-specific CD4(+) T cells by [(3)H]thymidine incorporation assay. Ocular inflammation induced by IRBP peptide immunization and specific T cell transfer were observed clinically by funduscopy and confirmed by histology. Tko mice were found to have less naive, but more activated, memory T cells, among which were exhibited high sensitivity to ocular IRBP autoantigens. Immunization with a low dose of IRBP and adoptive transfer of small numbers of IRBP-specific T cells from immunized tko mice caused the infiltration of lymphocytes, including CD3(+) T cells, into the tko retina. Mice without TAM receptor spontaneously develop IRBP-specific CD4(+) T cells and are more susceptible to retinal autoantigen immunization. This TAM knockout mouse line provides an animal model with which to study the role of antigen-presenting cells in the development of T cell-mediated uveitis.

  17. Analyse Sensorielle Comparee De Deux Produits De Fritures A L ...

    African Journals Online (AJOL)

    Les bananes hybrides CRBP 14, CRBP 39, FHIA 17 et FHIA 21, tolérantes à la cercosporiose et la variété Orishele ont fait l\\'objet d\\'évaluations sensorielles. Ces nouveaux hybrides et la variété de banane plantain Orishele du même degré de mûrissement, ont été comparés sous 2 formes de préparations culinaires.

  18. I-TASSER server for protein 3D structure prediction

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2008-01-01

    Full Text Available Abstract Background Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions. Results An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1] of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 Å for RMSD. Conclusion The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available

  19. Structural and Functional Analysis of VQ Motif-Containing Proteins in Arabidopsis as Interacting Proteins of WRKY Transcription Factors1[W][OA

    Science.gov (United States)

    Cheng, Yuan; Zhou, Yuan; Yang, Yan; Chi, Ying-Jun; Zhou, Jie; Chen, Jian-Ye; Wang, Fei; Fan, Baofang; Shi, Kai; Zhou, Yan-Hong; Yu, Jing-Quan; Chen, Zhixiang

    2012-01-01

    WRKY transcription factors are encoded by a large gene superfamily with a broad range of roles in plants. Recently, several groups have reported that proteins containing a short VQ (FxxxVQxLTG) motif interact with WRKY proteins. We have recently discovered that two VQ proteins from Arabidopsis (Arabidopsis thaliana), SIGMA FACTOR-INTERACTING PROTEIN1 and SIGMA FACTOR-INTERACTING PROTEIN2, act as coactivators of WRKY33 in plant defense by specifically recognizing the C-terminal WRKY domain and stimulating the DNA-binding activity of WRKY33. In this study, we have analyzed the entire family of 34 structurally divergent VQ proteins from Arabidopsis. Yeast (Saccharomyces cerevisiae) two-hybrid assays showed that Arabidopsis VQ proteins interacted specifically with the C-terminal WRKY domains of group I and the sole WRKY domains of group IIc WRKY proteins. Using site-directed mutagenesis, we identified structural features of these two closely related groups of WRKY domains that are critical for interaction with VQ proteins. Quantitative reverse transcription polymerase chain reaction revealed that expression of a majority of Arabidopsis VQ genes was responsive to pathogen infection and salicylic acid treatment. Functional analysis using both knockout mutants and overexpression lines revealed strong phenotypes in growth, development, and susceptibility to pathogen infection. Altered phenotypes were substantially enhanced through cooverexpression of genes encoding interacting VQ and WRKY proteins. These findings indicate that VQ proteins play an important role in plant growth, development, and response to environmental conditions, most likely by acting as cofactors of group I and IIc WRKY transcription factors. PMID:22535423

  20. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Directory of Open Access Journals (Sweden)

    Xingsheng Hou

    Full Text Available FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7 and a flcA deletion mutant (Sp7-flcAΔ revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot. The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase, nitrogen metabolism (Glutamine synthetase and nitric oxide synthase, stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit and morphological transformation (transducer coupling protein. The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  1. Cellular responses during morphological transformation in Azospirillum brasilense and Its flcA knockout mutant.

    Science.gov (United States)

    Hou, Xingsheng; McMillan, Mary; Coumans, Joëlle V F; Poljak, Anne; Raftery, Mark J; Pereg, Lily

    2014-01-01

    FlcA is a response regulator controlling flocculation and the morphological transformation of Azospirillum cells from vegetative to cyst-like forms. To understand the cellular responses of Azospirillum to conditions that cause morphological transformation, proteins differentially expressed under flocculation conditions in A. brasilense Sp7 and its flcA knockout mutant were investigated. Comparison of 2-DE protein profiles of wild-type (Sp7) and a flcA deletion mutant (Sp7-flcAΔ) revealed a total of 33 differentially expressed 2-DE gel spots, with 22 of these spots confidently separated to allow protein identification. Analysis of these spots by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and MASCOT database searching identified 48 proteins (≥10% emPAI in each spot). The functional characteristics of these proteins included carbon metabolism (beta-ketothiolase and citrate synthase), nitrogen metabolism (Glutamine synthetase and nitric oxide synthase), stress tolerance (superoxide dismutase, Alkyl hydroperoxidase and ATP-dependent Clp protease proteolytic subunit) and morphological transformation (transducer coupling protein). The observed differences between Sp7 wild-type and flcA- strains enhance our understanding of the morphological transformation process and help to explain previous phenotypical observations. This work is a step forward in connecting the Azospirillum phenome and genome.

  2. Efficient production of infectious viruses requires enzymatic activity of Epstein-Barr virus protein kinase.

    Science.gov (United States)

    Murata, Takayuki; Isomura, Hiroki; Yamashita, Yoriko; Toyama, Shigenori; Sato, Yoshitaka; Nakayama, Sanae; Kudoh, Ayumi; Iwahori, Satoko; Kanda, Teru; Tsurumi, Tatsuya

    2009-06-20

    The Epstein-Barr virus (EBV) BGLF4 gene product is the only protein kinase encoded by the virus genome. In order to elucidate its physiological roles in viral productive replication, we here established a BGLF4-knockout mutant and a revertant virus. While the levels of viral DNA replication of the deficient mutant were equivalent to those of the wild-type and the revertant, virus production was significantly impaired. Expression of the BGLF4 protein in trans fully complemented the low yield of the mutant virus, while expression of a kinase-dead (K102I) form of the protein failed to restore the virus titer. These results demonstrate that BGLF4 plays a significant role in production of infectious viruses and that the kinase activity is crucial.

  3. A Deg-protease family protein in marine Synechococcus is involved in outer membrane protein organization

    Directory of Open Access Journals (Sweden)

    Rhona Kayra Stuart

    2014-06-01

    Full Text Available Deg-family proteases are a periplasm-associated group of proteins that are known to be involved in envelope stress responses and are found in most microorganisms. Orthologous genes SYNW2176 (in strain WH8102 and sync_2523 (strain CC9311 are predicted members of the Deg-protease family and are among the few genes induced by copper stress in both open ocean and coastal marine Synechococcus strains. In contrast to the lack of a phenotype in a similar knockout in Synechocystis PCC6803, a SYNW2176 knockout mutant in strain WH8102 was much more resistant to copper than the wild-type. The mutant also exhibited a significantly altered outer membrane protein composition which may contribute to copper resistance, longer lag phase after transfer, low-level consistent alkaline phosphatase activity, and an inability to induce high alkaline phosphatase activity in response to phosphate stress. This phenotype suggests a protein-quality-control role for SYNW2176, the absence of which leads to a constitutively activated stress response. Deg-protease family proteins in this ecologically important cyanobacterial group thus help to determine outer membrane responses to both nutrients and toxins.

  4. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  5. Parallel knock-out schemes in networks

    NARCIS (Netherlands)

    Broersma, H.J.; Fomin, F.V.; Woeginger, G.J.

    2004-01-01

    We consider parallel knock-out schemes, a procedure on graphs introduced by Lampert and Slater in 1997 in which each vertex eliminates exactly one of its neighbors in each round. We are considering cases in which after a finite number of rounds, where the minimimum number is called the parallel

  6. Requirement of NMDA receptor reactivation for consolidation and storage of nondeclarative taste memory revealed by inducible NR1 knockout.

    Science.gov (United States)

    Cui, Zhenzhong; Lindl, Kathryn A; Mei, Bing; Zhang, Shuqing; Tsien, Joe Z

    2005-08-01

    We employed an inducible, reversible and region-specific gene knockout technique to investigate the requirements for cortical NMDA receptors (NMDAR) during the various stages (acquisition, consolidation and storage, and retrieval) of nondeclarative, hippocampal-independent memory in mice using a conditioned taste aversion memory paradigm. Here we show that temporary knockout of the cortical NMDAR during either the learning or postlearning consolidation stage, but not during the retrieval stage, causes severe performance deficits in the 1-month taste memory retention tests. More importantly, we found that the consolidation and storage of the long-term nondeclarative taste memories requires cortical NMDAR reactivation. Thus, the dynamic engagement of the NMDAR during the postlearning stage leads us to postulate that NMDAR reactivation-mediated synaptic re-entry reinforcement is crucial for overcoming the destabilizing effects intrinsic to synaptic protein turnover and for achieving consolidation and storage of nondeclarative memories in the brain.

  7. Protease activity of legumain is inhibited by an increase of cystatin E/M in the DJ-1-knockout mouse spleen, cerebrum and heart

    Directory of Open Access Journals (Sweden)

    Takuya Yamane

    2017-03-01

    Full Text Available Legumain (EC 3.4.22.34 is an asparaginyl endopeptidase. Legumain activity has been detected in various mouse tissues including the kidney, spleen and epididymis. Legumain is overexpressed in the majority of human solid tumors and transcription of the legumain gene is regulated by the p53 tumor suppressor in HCT116 cells. The legumain activity is also increased under acid conditions in Alzheimer's disease brains. DJ-1/PARK7, a cancer- and Parkinson's disease-associated protein, works as a coactivator to various transcription factors, including the androgen receptor, p53, PSF, Nrf2, SREBP and RREB1. Recently, we found that legumain expression, activation and cleavage of annexin A2 are regulated by DJ-1 through p53. In this study, we found that the expression levels of legumain mRNA were increased in the cerebrum, kidney, spleen, heart, lung, epididymis, stomach, small intestine and pancreas from DJ-1-knockout mice, although legumain activity levels were decreased in the cerebrum, spleen and heart from DJ-1-knockout mice. Furthermore, we found that cystatin E/M expression was increased in the spleen, cerebrum and heart from DJ-1-knockout mice. These results suggest that reduction of legumain activity is caused by an increase of cystatin E/M expression in the spleen, cerebrum and heart from DJ-1-knockout mice.

  8. Histone deacetylase 6 inhibition reduces cysts by decreasing cAMP and Ca2+ in knock-out mouse models of polycystic kidney disease.

    Science.gov (United States)

    Yanda, Murali K; Liu, Qiangni; Cebotaru, Valeriu; Guggino, William B; Cebotaru, Liudmila

    2017-10-27

    Autosomal dominant polycystic kidney disease (ADPKD) is associated with progressive enlargement of multiple renal cysts, often leading to renal failure that cannot be prevented by a current treatment. Two proteins encoded by two genes are associated with ADPKD: PC1 ( pkd1 ), primarily a signaling molecule, and PC2 ( pkd2 ), a Ca 2+ channel. Dysregulation of cAMP signaling is central to ADPKD, but the molecular mechanism is unresolved. Here, we studied the role of histone deacetylase 6 (HDAC6) in regulating cyst growth to test the possibility that inhibiting HDAC6 might help manage ADPKD. Chemical inhibition of HDAC6 reduced cyst growth in PC1-knock-out mice. In proximal tubule-derived, PC1-knock-out cells, adenylyl cyclase 6 and 3 (AC6 and -3) are both expressed. AC6 protein expression was higher in cells lacking PC1, compared with control cells containing PC1. Intracellular Ca 2+ was higher in PC1-knock-out cells than in control cells. HDAC inhibition caused a drop in intracellular Ca 2+ and increased ATP-simulated Ca 2+ release. HDAC6 inhibition reduced the release of Ca 2+ from the endoplasmic reticulum induced by thapsigargin, an inhibitor of endoplasmic reticulum Ca 2+ -ATPase. HDAC6 inhibition and treatment of cells with the intracellular Ca 2+ chelator 1,2-bis(2-aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid tetrakis(acetoxymethyl ester) reduced cAMP levels in PC1-knock-out cells. Finally, the calmodulin inhibitors W-7 and W-13 reduced cAMP levels, and W-7 reduced cyst growth, suggesting that AC3 is involved in cyst growth regulated by HDAC6. We conclude that HDAC6 inhibition reduces cell growth primarily by reducing intracellular cAMP and Ca 2+ levels. Our results provide potential therapeutic targets that may be useful as treatments for ADPKD. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Protein-protein interactions as a proxy to monitor conformational changes and activation states of the tomato resistance protein I-2

    NARCIS (Netherlands)

    Lukasik-Shreepaathy, E.; Vossen, J.H.; Tameling, W.I.L.; de Vroomen, M.J.; Cornelissen, B.J.C.; Takken, F.L.W.

    2012-01-01

    Plant resistance proteins (R) are involved in pathogen recognition and subsequent initiation of defence responses. Their activity is regulated by inter- and intramolecular interactions. In a yeast two-hybrid screen two clones (I2I-1 and I2I-2) specifically interacting with I-2, a Fusarium oxysporum

  10. Roles of neuro-exocytotic proteins at the neuromuscular junction

    NARCIS (Netherlands)

    Sons-Michel, Michèle S.

    2011-01-01

    The aim of the studies described in the thesis was to elucidate the roles of several neuro-exocytotic proteins at the motor nerve terminal in neuromuscular synaptic transmission, making use of genetic knockout (KO) mice, each missing one (or more) neuro-exocytotic proteins. In addition, it was

  11. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  12. Effects of long- and short-term darbepoetin-α treatment on oxidative stress, inflammation and endothelial injury in ApoE knockout mice.

    Science.gov (United States)

    Özdemir, Evrim Dursun; Hanikoglu, Aysegul; Cort, Aysegul; Ozben, Beste; Suleymanlar, Gultekin; Ozben, Tomris

    2017-07-01

    Atherosclerosis and atherosclerosis-related complications are the main cause of death in the world. Vascular injury in response to inflammation and enhanced oxidant stress promotes endothelial dysfunction and leads to atherosclerotic lesions. Low-dose treatment with darbepoetin-α may be a potential therapeutic tool for endothelial injury and atherosclerosis. In order to study the effect of darbepoetin-α on endothelial injury and atherosclerosis, we used ApoE-/- mice as the atherosclerotic mice model. We monitored atherosclerosis and plaque formation histochemically in ApoE knockout mice at early and late stages of atherosclerosis. Darbepoetin-α was injected intraperitoneally at a dose of 0.1 μg/kg to ApoE-/- mice. The results of 2 ApoE-/- mice groups injected with darbepoetin-α (early and late stages of atherosclerosis) were compared to the results of the corresponding saline injected ApoE-/- mice groups and the control (C57BL/6) mice. Lipid profile (total cholesterol, triglyceride), inflammation (CRP, IL-6, histamine), endothelial injury (ICAM-1, selectin) and oxidative stress markers (lipid peroxidation, protein oxidation) were significantly increased in 4 atherosclerotic groups compared to the control group. Short-term darbepoetin-α had no marked effects on indicators of inflammation and endothelial injury in the ApoE knockout mice groups compared to the ApoE knockout mice not treated with darbepoetin-α, however, darbepoetin-α significantly decreased 8-isoprostane and protein carbonyl content. Long term darbepoetin-α treatment reduced oxidative stress in ApoE-/- mice. This study contributes to understanding and elucidating the biochemical changes occurring during early and late stages of atherosclerosis development regarding lipid profile, inflammation, endothelial injury and oxidative stress markers.

  13. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content.

    Science.gov (United States)

    Bellahcene, Mohamed; O'Dowd, Jacqueline F; Wargent, Ed T; Zaibi, Mohamed S; Hislop, David C; Ngala, Robert A; Smith, David M; Cawthorne, Michael A; Stocker, Claire J; Arch, Jonathan R S

    2013-05-28

    SCFA are produced in the gut by bacterial fermentation of undigested carbohydrates. Activation of the Gαi-protein-coupled receptor GPR41 by SCFA in β-cells and sympathetic ganglia inhibits insulin secretion and increases sympathetic outflow, respectively. A possible role in stimulating leptin secretion by adipocytes is disputed. In the present study, we investigated energy balance and glucose homoeostasis in GPR41 knockout mice fed on a standard low-fat or a high-fat diet. When fed on the low-fat diet, body fat mass was raised and glucose tolerance was impaired in male but not female knockout mice compared to wild-type mice. Soleus muscle and heart weights were reduced in the male mice, but total body lean mass was unchanged. When fed on the high-fat diet, body fat mass was raised in male but not female GPR41 knockout mice, but by no more in the males than when they were fed on the low-fat diet. Body lean mass and energy expenditure were reduced in male mice but not in female knockout mice. These results suggest that the absence of GPR41 increases body fat content in male mice. Gut-derived SCFA may raise energy expenditure and help to protect against obesity by activating GPR41.

  14. The structure of a contact-dependent growth-inhibition (CDI) immunity protein from <i>Neisseria meningitidisi> MC58

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Kemin; Johnson, Parker M.; Stols, Lucy; Boubion, Bryan; Eschenfeldt, William; Babnigg, Gyorgy; Hayes, Christopher S.; Joachimiak, Andrezj; Goulding, Celia W.

    2015-05-20

    Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI+bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein fromNeisseria meningitidisMC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homology suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease fromXenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.

  15. Increased anxiety-related behaviour in Hint1 knockout mice.

    Science.gov (United States)

    Varadarajulu, Jeeva; Lebar, Maria; Krishnamoorthy, Gurumoorthy; Habelt, Sonja; Lu, Jia; Bernard Weinstein, I; Li, Haiyang; Holsboer, Florian; Turck, Christoph W; Touma, Chadi

    2011-07-07

    Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A homozygous Keap1-knockout human embryonic stem cell line generated using CRISPR/Cas9 mediates gene targeting

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Kelch-like ECH-associated protein 1 (keap1 is a cysteine-rich protein that interacts with transcription factor Nrf2 in a redox-sensitive manner, leading to the degradation of Nrf2 (Kim et al., 2014a. Disruption of Keap1 results in the induction of Nrf2-related signaling pathways involving the expression of a set of anti-oxidant and anti-inflammatory genes. We generated biallelic mutants of the Keap1 gene using a CRISPR-Cas9 genome editing method in the H9 human embryonic stem cell (hESC. The Keap1 homozygous-knockout H9 cell line retained normal morphology, gene expression, and in vivo differentiation potential.

  17. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice.

    Science.gov (United States)

    Chen, Tian; Jia, Guang; Wei, Yongjie; Li, Jiucun

    2013-11-25

    higher than the FA group in terms of serum total cholesterol, low-density lipoprotein, tumor necrosis factor-alpha (TNF-alpha) and C-reactive protein as well as TNF-alpha and interleukin-6 in BAL. Also the total antioxidant capacity and oxidized low-density lipoprotein were significantly different between the two groups. In addition, pathological analysis of aortic arch reveals that the plaques area in the PM group increased significantly compared to the FA group. Our results demonstrated that ambient PM exposure could induce considerable oxidative stress and systemic inflammation in ApoE knockout mice and contribute to the progression of atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Comparative sensitivity of 125I-protein A and enzyme-conjugated antibodies for detection of immunoblotted proteins

    International Nuclear Information System (INIS)

    Bernstein, J.M.; Stokes, C.E.; Fernie, B.

    1987-01-01

    Immunoblotting is a powerful technique for the detection of small amounts of immunologically interesting proteins in unpurified preparations. Iodinated protein A (PA) has been widely used as a second antibody for detection of proteins; however, it does not bind equally well to immunoglobulins from different species nor does it bind to all subclasses of immunoglobulin G (IgG). We compared the sensitivity of [ 125 I]PA with those of both horseradish peroxidase-conjugated second antibodies (HRP) and glucose oxidase-anti-glucose oxidase (GAG) soluble complexes for visualizing bovine serum albumin, human IgG, or human C3 which was either dot blotted or electroblotted to nitrocellulose. [ 125 I]PA was uniformly 10- to 100-fold less sensitive than either HRP or GAG. GAG was more sensitive than HRP except for C3 (electroblotting) and bovine serum albumin and IgG (dot blotting), in which they were equivalent. In general, dot blotting was 10- to 1000-fold more sensitive than electroblotting. Although relative sensitivities varied depending on the proteins analyzed and the antisera used, GAG appeared to be superior to [ 125 I]PA and HRP for detection of immunoblotted proteins

  19. Hyperactivity of newborn Pten knock-out neurons results from increased excitatory synaptic drive.

    Science.gov (United States)

    Williams, Michael R; DeSpenza, Tyrone; Li, Meijie; Gulledge, Allan T; Luikart, Bryan W

    2015-01-21

    Developing neurons must regulate morphology, intrinsic excitability, and synaptogenesis to form neural circuits. When these processes go awry, disorders, including autism spectrum disorder (ASD) or epilepsy, may result. The phosphatase Pten is mutated in some patients having ASD and seizures, suggesting that its mutation disrupts neurological function in part through increasing neuronal activity. Supporting this idea, neuronal knock-out of Pten in mice can cause macrocephaly, behavioral changes similar to ASD, and seizures. However, the mechanisms through which excitability is enhanced following Pten depletion are unclear. Previous studies have separately shown that Pten-depleted neurons can drive seizures, receive elevated excitatory synaptic input, and have abnormal dendrites. We therefore tested the hypothesis that developing Pten-depleted neurons are hyperactive due to increased excitatory synaptogenesis using electrophysiology, calcium imaging, morphological analyses, and modeling. This was accomplished by coinjecting retroviruses to either "birthdate" or birthdate and knock-out Pten in granule neurons of the murine neonatal dentate gyrus. We found that Pten knock-out neurons, despite a rapid onset of hypertrophy, were more active in vivo. Pten knock-out neurons fired at more hyperpolarized membrane potentials, displayed greater peak spike rates, and were more sensitive to depolarizing synaptic input. The increased sensitivity of Pten knock-out neurons was due, in part, to a higher density of synapses located more proximal to the soma. We determined that increased synaptic drive was sufficient to drive hypertrophic Pten knock-out neurons beyond their altered action potential threshold. Thus, our work contributes a developmental mechanism for the increased activity of Pten-depleted neurons. Copyright © 2015 the authors 0270-6474/15/350943-17$15.00/0.

  20. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  1. Highly segmented CVD diamond detectors and high-resolution momentum measurements in knockout reactions; Hochsegmentierte CVD Diamant Detektoren und hochaufloesende Impulsmessungen in Knockout Reaktionen

    Energy Technology Data Exchange (ETDEWEB)

    Schwertel, Sabine

    2009-11-26

    In recent years knockout reactions have proven to be important tools for investigations of the structure of light exotic nuclei. In spring 2006 an experiment was performed with the fragment separator at GSI in Darmstadt to extend this method to medium-mass nuclei with energies of about 400 AMeV. An experiment with a stable and well-known {sup 48}Ca primary beam was performed as a reference. The FRS was set for the reaction {sup 56}Ti{yields}{sup 55}Ti. Because of the high acceptance of the FRS, mother and daughter nuclei of one-neutron knockout reactions in the Sc isotopes {sup 51,52,53,54,55}Sc were also transported with high efficiency. These are investigated in the first part of this thesis. Inclusive cross sections of 77(10) mbarn for one-neutron knockout from {sup 48}Ca and 78(12) mbarn, 99(15) mbarn, 101(15) mbarn, 113(17) mbarn and 72(14) mbarn for knockout from {sup 51,52,53,54,55}Sc, respectively, were measured for the first time. For the Sc isotopes the reduction factors are close to 1. For the one-neutron knockout reactions in {sup 48}Ca and the Sc isotopes, respectively, the momentum distributions could be measured with a relative resolution of 0.17-0.27 %. From the momentum distributions spectroscopic factors of the involved orbitals could be extracted. In the future, further knockout experiments should be performed using the R{sup 3}B setup at FAIR. The available beam intensity will be up to four orders of magnitude higher. As the beam has to be tracked from the dispersive plane of the Super-FRS up to the R{sup 3}B target, radiation hard detectors are needed. In the framework of this thesis extensive measurements were performed at the tandem accelerator in Munich with numerous small (10 x 10 mm{sup 2}) test detectors. Samples using new manufacturing methods were characterized. A dose of some 10{sup 11} ions/mm{sup 2} was determined as a limit for the exposure of the material with heavy ions of high ionisation density. It could be shown that even

  2. Test of distorted wave kinematic coupling approximation calculations for knockout reactions

    International Nuclear Information System (INIS)

    Jain, A.K.

    1990-01-01

    A test has been devised to check the validity of conventional distorted-wave impulse approximation (DWIA) treatment of knockout reactions. The conventional DWIA formalism separates the three-body final state Schroedinger equation for a knockout reaction into two two-body Schroedinger equations by assuming an asymptotic constant value for the three-body coupling term commonly known as the kinematic coupling approximation (KCA). In the test case, which consists of an extreme asymmetric situation where one of the distorting optical potentials is assumed to vanish, the three-body final state Schroedinger equation can be solved exactly as a product of two two-body solutions using one particular set of relative coordinates. Large influence of the three-body coupling term is seen in the comparison of the exact and KCA results for (α,2α) and (p,pα) knockout reactions when the distorting optical potentials are weakly absorbing

  3. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice.

    Science.gov (United States)

    Wiśniewska, Anna; Olszanecki, Rafał; Totoń-Żurańska, Justyna; Kuś, Katarzyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-08-04

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.

  4. Autism-related behavioral abnormalities in synapsin knockout mice.

    Science.gov (United States)

    Greco, Barbara; Managò, Francesca; Tucci, Valter; Kao, Hung-Teh; Valtorta, Flavia; Benfenati, Fabio

    2013-08-15

    Several synaptic genes predisposing to autism-spectrum disorder (ASD) have been identified. Nonsense and missense mutations in the SYN1 gene encoding for Synapsin I have been identified in families segregating for idiopathic epilepsy and ASD and genetic mapping analyses have identified variations in the SYN2 gene as significantly contributing to epilepsy predisposition. Synapsins (Syn I/II/III) are a multigene family of synaptic vesicle-associated phosphoproteins playing multiple roles in synaptic development, transmission and plasticity. Lack of SynI and/or SynII triggers a strong epileptic phenotype in mice associated with mild cognitive impairments that are also present in the non-epileptic SynIII(-/-) mice. SynII(-/-) and SynIII(-/-) mice also display schizophrenia-like traits, suggesting that Syns could be involved in the regulation of social behavior. Here, we studied social interaction and novelty, social recognition and social dominance, social transmission of food preference and social memory in groups of male SynI(-/-), SynII(-/-) and SynIII(-/-) mice before and after the appearance of the epileptic phenotype and compared their performances with control mice. We found that deletion of Syn isoforms widely impairs social behaviors and repetitive behaviors, resulting in ASD-related phenotypes. SynI or SynIII deletion altered social behavior, whereas SynII deletion extensively impaired various aspects of social behavior and memory, altered exploration of a novel environment and increased self-grooming. Social impairments of SynI(-/-) and SynII(-/-) mice were evident also before the onset of seizures. The results demonstrate an involvement of Syns in generation of the behavioral traits of ASD and identify Syn knockout mice as a useful experimental model of ASD and epilepsy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua.

    Science.gov (United States)

    Zuo, Y-Y; Huang, J-L; Wang, J; Feng, Y; Han, T-T; Wu, Y-D; Yang, Y-H

    2018-02-01

    P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua. © 2017 The Royal Entomological Society.

  6. Enoyl-Acyl Carrier Protein Reductase I (FabI) Is Essential for the Intracellular Growth of Listeria monocytogenes

    Science.gov (United States)

    Ericson, Megan E.; Frank, Matthew W.

    2016-01-01

    Enoyl-acyl carrier protein reductase catalyzes the last step in each elongation cycle of type II bacterial fatty acid synthesis and is a key regulatory protein in bacterial fatty acid synthesis. Genes of the facultative intracellular pathogen Listeria monocytogenes encode two functional enoyl-acyl carrier protein isoforms based on their ability to complement the temperature-sensitive growth phenotype of Escherichia coli strain JP1111 [fabI(Ts)]. The FabI isoform was inactivated by the FabI selective inhibitor AFN-1252, but the FabK isoform was not affected by the drug, as expected. Inhibition of FabI by AFN-1252 decreased endogenous fatty acid synthesis by 80% and lowered the growth rate of L. monocytogenes in laboratory medium. Robust exogenous fatty acid incorporation was not detected in L. monocytogenes unless the pathway was partially inactivated by AFN-1252 treatment. However, supplementation with exogenous fatty acids did not restore normal growth in the presence of AFN-1252. FabI inactivation prevented the intracellular growth of L. monocytogenes, showing that neither FabK nor the incorporation of host cellular fatty acids was sufficient to support the intracellular growth of L. monocytogenes. Our results show that FabI is the primary enoyl-acyl carrier protein reductase of type II bacterial fatty acid synthesis and is essential for the intracellular growth of L. monocytogenes. PMID:27736774

  7. Hepatic changes in metabolic gene expression in old ghrelin and ghrelin receptor knockout mice

    Science.gov (United States)

    Ghrelin knockout (GKO) and ghrelin receptor (growth hormone secretagogue receptor) knockout (GHSRKO) mice exhibit enhanced insulin sensitivity, but the mechanism is unclear. Insulin sensitivity declines with age and is inversely associated with accumulation of lipid in liver, a key glucoregulatory ...

  8. Genetic rescue of glycosylation-deficient Fgf23 in the Galnt3 knockout mouse.

    Science.gov (United States)

    Ichikawa, Shoji; Gray, Amie K; Padgett, Leah R; Allen, Matthew R; Clinkenbeard, Erica L; Sarpa, Nicole M; White, Kenneth E; Econs, Michael J

    2014-10-01

    Fibroblast growth factor 23 (FGF23) is a hormone that inhibits renal phosphate reabsorption and 1,25-dihydroxyvitamin D biosynthesis. The FGF23 subtilisin-like proprotein convertase recognition sequence ((176)RHTR(179)↓) is protected by O-glycosylation through ppGalNAc-T3 (GALNT3) activity. Thus, inactivating GALNT3 mutations render FGF23 susceptible to proteolysis, thereby reducing circulating intact hormone levels and leading to hyperphosphatemic familial tumoral calcinosis. To further delineate the role of glycosylation in the Fgf23 function, we generated an inducible FGF23 transgenic mouse expressing human mutant FGF23 (R176Q and R179Q) found in patients with autosomal dominant hypophosphatemic rickets (ADHR) and bred this animal to Galnt3 knockout mice, a model of familial tumoral calcinosis. Due to the low intact Fgf23 level, Galnt3 knockout mice with wild-type Fgf23 alleles were hyperphosphatemic. In contrast, carriers of the mutant FGF23 transgene, regardless of Galnt3 mutation status, had significantly higher serum intact FGF23, resulting in severe hypophosphatemia. Importantly, serum phosphorus and FGF23 were comparable between transgenic mice with or without normal Galnt3 alleles. To determine whether the presence of the ADHR mutation could improve biochemical and skeletal abnormalities in Galnt3-null mice, these mice were also mated to Fgf23 knock-in mice, carrying heterozygous or homozygous R176Q ADHR Fgf23 mutations. The knock-in mice with functional Galnt3 had normal Fgf23 but were slightly hypophosphatemic. The stabilized Fgf23 ADHR allele reversed the Galnt3-null phenotype and normalized total Fgf23, serum phosphorus, and bone Fgf23 mRNA. However, the skeletal phenotype was unaffected. In summary, these data demonstrate that O-glycosylation by ppGaINAc-T3 is only necessary for proper secretion of intact Fgf23 and, once secreted, does not affect Fgf23 function. Furthermore, the more stable Fgf23 ADHR mutant protein could normalize serum phosphorus

  9. Deconstructing mammalian reproduction: using knockouts to define fertility pathways.

    Science.gov (United States)

    Roy, Angshumoy; Matzuk, Martin M

    2006-02-01

    Reproduction is the sine qua non for the propagation of species and continuation of life. It is a complex biological process that is regulated by multiple factors during the reproductive life of an organism. Over the past decade, the molecular mechanisms regulating reproduction in mammals have been rapidly unraveled by the study of a vast number of mouse gene knockouts with impaired fertility. The use of reverse genetics to generate null mutants in mice through targeted disruption of specific genes has enabled researchers to identify essential regulators of spermatogenesis and oogenesis in vivo and model human disorders affecting reproduction. This review focuses on the merits, utility, and the variations of the knockout technology in studies of reproduction in mammals.

  10. G protein-independent effects of the Angiotensin II type I receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund

    2010-01-01

    Angiotensin II type 1 receptoren (AT1R) er en syv transmembranreceptor (7TMR) og et vigtigt terapeutisk target indenfor kardiovaskulær medicin. AT1R er gennem de seneste år blevet en model for det concept, at 7TMRer kan signalere via andre og mindre velbeskrevne signalveje end de G protein...... afhængige. Skæve agonister, som blokerer G protein signaleringen mens de samtidig aktiverer de G protein uafhængige signaleringsveje er blevet brugt til at beskrive de to hovedgrene i AT1R signaleringen i cellemodelsystemer. Vi påviser at denne farmakologiske differentiering af de to signalveje er relevant...... i primære kardiomyocytter og hele hjerter og endvidere at skæve agonister kan adskille skadelig hypertrofisk vækst fra ønskelig fornyelse af hjertemuskelceller. Deruover har fokus i denne PhD afhandling været på at beskrive de G protein uafhængige effekter af AT1R aktivering vha. den skæve agonist...

  11. Knockout of endothelial cell-derived endothelin-1 attenuates skin fibrosis but accelerates cutaneous wound healing.

    Directory of Open Access Journals (Sweden)

    Katsunari Makino

    Full Text Available Endothelin (ET-1 is known for the most potent vasoconstrictive peptide that is released mainly from endothelial cells. Several studies have reported ET-1 signaling is involved in the process of wound healing or fibrosis as well as vasodilation. However, little is known about the role of ET-1 in these processes. To clarify its mechanism, we compared skin fibrogenesis and wound repair between vascular endothelial cell-specific ET-1 knockout mice and their wild-type littermates. Bleomycin-injected fibrotic skin of the knockout mice showed significantly decreased skin thickness and collagen content compared to that of wild-type mice, indicating that bleomycin-induced skin fibrosis is attenuated in the knockout mice. The mRNA levels of transforming growth factor (TGF-β were decreased in the bleomycin-treated skin of ET-1 knockout mice. On the other hand, skin wound healing was accelerated in ET-1 knockout mice, which was indicated by earlier granulation tissue reduction and re-epithelialization in these mice. The mRNA levels of TGF-β, tumor necrosis factor (TNF-α and connective tissue growth factor (CTGF were reduced in the wound of ET-1 knockout mice. In endothelial ET-1 knockout mouse, the expression of TNF-α, CTGF and TGF-β was down-regulated. Bosentan, an antagonist of dual ET receptors, is known to attenuate skin fibrosis and accelerate wound healing in systemic sclerosis, and such contradictory effect may be mediated by above molecules. The endothelial cell-derived ET-1 is the potent therapeutic target in fibrosis or wound healing, and investigations of the overall regulatory mechanisms of these pathological conditions by ET-1 may lead to a new therapeutic approach.

  12. TAILS N-Terminomics and Proteomics Show Protein Degradation Dominates over Proteolytic Processing by Cathepsins in Pancreatic Tumors

    Directory of Open Access Journals (Sweden)

    Anna Prudova

    2016-08-01

    Full Text Available Deregulated cathepsin proteolysis occurs across numerous cancers, but in vivo substrates mediating tumorigenesis remain ill-defined. Applying 8-plex iTRAQ terminal amine isotopic labeling of substrates (TAILS, a systems-level N-terminome degradomics approach, we identified cathepsin B, H, L, S, and Z in vivo substrates and cleavage sites with the use of six different cathepsin knockout genotypes in the Rip1-Tag2 mouse model of pancreatic neuroendocrine tumorigenesis. Among 1,935 proteins and 1,114 N termini identified by TAILS, stable proteolytic products were identified in wild-type tumors compared with one or more different cathepsin knockouts (17%–44% of 139 cleavages. This suggests a lack of compensation at the substrate level by other cathepsins. The majority of neo-N termini (56%–83% for all cathepsins was consistent with protein degradation. We validated substrates, including the glycolytic enzyme pyruvate kinase M2 associated with the Warburg effect, the ER chaperone GRP78, and the oncoprotein prothymosin-alpha. Thus, the identification of cathepsin substrates in tumorigenesis improves the understanding of cathepsin functions in normal physiology and cancer.

  13. I-DIRT, a general method for distinguishing between specific and nonspecific protein interactions.

    Science.gov (United States)

    Tackett, Alan J; DeGrasse, Jeffrey A; Sekedat, Matthew D; Oeffinger, Marlene; Rout, Michael P; Chait, Brian T

    2005-01-01

    Isolation of protein complexes via affinity-tagged proteins provides a powerful tool for studying biological systems, but the technique is often compromised by co-enrichment of nonspecifically interacting proteins. We describe a new technique (I-DIRT) that distinguishes contaminants from bona fide interactors in immunopurifications, overcoming this most challenging problem in defining protein complexes. I-DIRT will be of broad value for studying protein complexes in biological systems that can be metabolically labeled.

  14. Akt2/LDLr double knockout mice display impaired glucose tolerance and develop more complex atherosclerotic plaques than LDLr knockout mice

    NARCIS (Netherlands)

    Rensing, Katrijn L.; de Jager, Saskia C. A.; Stroes, Erik S.; Vos, Mariska; Twickler, Marcel Th B.; Dallinga-Thie, Geesje M.; de Vries, Carlie J. M.; Kuiper, Johan; Bot, Ilze; von der Thüsen, Jan H.

    2014-01-01

    To characterize the phenotype of Akt2/low-density-lipoprotein receptor double knockout (dKO) (Akt2/LDLr dKO) mice with respect to insulin resistance and features of atherosclerotic plaque progression. Metabolic profile and atherosclerotic plaque progression were compared between LDLr KO mice and

  15. FMR1 Knockout mice: A model to study fragile X mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Oostra, B.A.; Bakker, C.E.; Reyniers, E. [Erasmus Univ., Rotterdam (Netherlands)] [and others

    1994-09-01

    The fragile X syndrome is the most frequent form of inherited mental retardation in humans with an incidence of 1 in 1250 males and 1 in 2500 females. The clinical syndrome includes moderate to severe mental retardation, autistic behavior, macroorchidism, and facial features, such as long face with mandibular prognathism and large, everted ears. The molecular basis for this disease is a large expansion of a triplet repeat (CGG){sub n} in the 5{prime} untranslated region of the FMR1 gene. Due to this large expansion of the CGG repeat, the promoter region becomes methylated and the FMR1 gene is subsequently silenced. Hardly anything is known about the physiologic function of FMR1 and the pathologic mechanisms leading to these symptoms. Since the FMR1 gene is highly conserved in the mouse, we used the mouse to design a knockout model for the fragile X syndrome. These knockout mice lacking Fmrp have normal litter size suggesting that FMR1 is not essential in human gametogenesis and embryonic development. The knockout mice show the abnormalities also seen in the affected organs of human patients. Mutant mice show a gradual development through time of macroorchidism. In the knockout mice we observed cognitive defects in the form of deficits in learning (as shown by the hidden platform Morris water maze task) and behavioral abnormalities such as increased exploratory behavior and hyperactivity. Therefore this knockout mouse may serve as a valuable tool in studying the role of FMR1 in the fragile X syndrome and may serve as a model to elucidate the mechanisms involved in macroorchidism, abnormal behavior, and mental retardation.

  16. Morphological and genetic characterization of group I Clostridium botulinum type B strain 111 and the transcriptional regulator spoIIID gene knockout mutant in sporulation.

    Science.gov (United States)

    Hosomi, Koji; Kuwana, Ritsuko; Takamatsu, Hiromu; Kohda, Tomoko; Kozaki, Shunji; Mukamoto, Masafumi

    2015-06-01

    Clostridium botulinum is a heat-resistant spore-forming bacterium that causes the serious paralytic illness botulism. Heat-resistant spores may cause food sanitation hazards and sporulation plays a central role in the survival of C. botulinum. We observed morphological changes and investigated the role of the transcriptional regulator SpoIIID in the sporulation of C. botulinum type B strain 111 in order to elucidate the molecular mechanism in C. botulinum. C. botulinum type B formed heat-resistant spores through successive morphological changes corresponding to those of Bacillus subtilis, a spore-forming model organism. An analysis of the spoIIID gene knockout mutant revealed that the transcriptional regulator SpoIIID contributed to heat-resistant spore formation by C. botulinum type B and activated the transcription of the sigK gene later during sporulation. Transcription of the spoIIID gene, which differed from that in B. subtilis and Clostridium difficile, was observed in the sigE gene knockout mutant of C. botulinum type B. An analysis of the sigF gene knockout mutant showed that the sporulation-specific sigma factor SigF was essential for transcription of the spoIIID gene in C. botulinum type B. These results suggest that the regulation of sporulation in C. botulinum is not similar to that in B. subtilis and other clostridia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  18. Pauli blocking and medium effects in nucleon knockout reactions

    International Nuclear Information System (INIS)

    Bertulani, C. A.; De Conti, C.

    2010-01-01

    We study medium modifications of the nucleon-nucleon (NN) cross sections and their influence on the nucleon knockout reactions. Using the eikonal approximation, we compare the results obtained with free NN cross sections with those obtained with a purely geometrical treatment of Pauli blocking and with NN obtained with more elaborated Dirac-Bruecker methods. The medium effects are parametrized in terms of the baryon density. We focus on symmetric nuclear matter, although the geometrical Pauli blocking also allows for the treatment of asymmetric nuclear matter. It is shown that medium effects can change the nucleon knockout cross sections and momentum distributions up to 10% in the energy range E lab =50-300 MeV/nucleon. The effect is more evident in reactions involving halo nuclei.

  19. Identification, expression, and immuno-reactivity of Sol i 2 & Sol i 4 venom proteins of queen red imported fire ants, Solenopsis invicta Buren (Hymenoptera: Formicidae).

    Science.gov (United States)

    Lockwood, Stephanie A; Haghipour-Peasley, Jilla; Hoffman, Donald R; Deslippe, Richard J

    2012-10-01

    We report on two low-molecular weight proteins that are stored in the venom of queen red imported fire ants (Solenopsis invicta). Translated amino acid sequences identified one protein to have 74.8% identity with the Sol i 2w worker allergen, and the other protein was found to have 96/97% identity with Sol i 4.01w/4.02w worker allergens. Both Sol i 2 and Sol i 4 queen and worker proteins were expressed using pEXP1-DEST vector in SHuffle™ T7 Express lysY Escherichia coli. Proteins were expressed at significant concentrations, as opposed to the μg/ml amounts by our previous expression methods, enabling further study of these proteins. Sol i 2q protein bound weakly to human IgE, sera pooled from allergic patients, whereas Sol i 2w, Sol i 4.01w, and Sol i 4q proteins bound strongly. Despite Sol i 2w and Sol i 2q proteins having 74.8% identity, the queen protein is less immuno-reactive than the worker allergen. This finding is consistent with allergic individuals being less sensitive to queen than worker venom. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Tang, Yiting; Liu, Lan; Sheng, Ming; Xiong, Kai; Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin; Liu, Honglin; Mu, Yulian; Li, Kui

    2015-01-01

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1 −/− MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1 −/− MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1 −/− MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1 −/− MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1 increases the migratory

  1. Wip1 knockout inhibits the proliferation and enhances the migration of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yiting [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Lan [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Sheng, Ming [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Xiong, Kai [Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Grønnegårdsvej 7, 1870 Frederiksberg C (Denmark); Huang, Lei; Gao, Qian; Wei, Jingliang; Wu, Tianwen; Yang, Shulin [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Liu, Honglin, E-mail: liuhonglinnjau@163.com [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Mu, Yulian, E-mail: muyulian76@iascaas.net.cn [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China); Li, Kui [State Key Laboratory of Animal Nutrition and Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193 (China)

    2015-06-10

    Mesenchymal stem cells (MSCs), a unique population of multipotent adult progenitor cells originally found in bone marrow (BM), are extremely useful for multifunctional therapeutic approaches. However, the growth arrest and premature senescence of MSCs in vitro prevent the in-depth characterization of these cells. In addition, the regulatory factors involved in MSCs migration remain largely unknown. Given that protein phosphorylation is associated with the processes of MSCs proliferation and migration, we focused on wild-type p53-inducible phosphatase-1 (Wip1), a well-studied modulator of phosphorylation, in this study. Our results showed that Wip1 knockout significantly inhibited MSCs proliferation and induced G2-phase cell-cycle arrest by reducing cyclinB1 expression. Compared with WT-MSCs, Wip1{sup −/−} MSCs displayed premature growth arrest after six passages in culture. Transwell and scratch assays revealed that Wip1{sup −/−} MSCs migrate more effectively than WT-MSCs. Moreover, the enhanced migratory response of Wip1{sup −/−} MSCs may be attributed to increases in the induction of Rac1-GTP activity, the pAKT/AKT ratio, the rearrangement of filamentous-actin (f-actin), and filopodia formation. Based on these results, we then examined the effect of treatment with a PI3K/AKT and Rac1 inhibitor, both of which impaired the migratory activity of MSCs. Therefore, we propose that the PI3K/AKT/Rac1 signaling axis mediates the Wip1 knockout-induced migration of MSCs. Our findings indicate that the principal function of Wip1 in MSCs transformation is the maintenance of proliferative capacity. Nevertheless, knocking out Wip1 increases the migratory capacity of MSCs. This dual effect of Wip1 provides the potential for purposeful routing of MSCs. - Highlights: • Wip1 knockout inhibited MSCs proliferation through reducing cyclinB1 expression. • Wip1{sup −/−} MSCs displayed premature growth arrest in vitro after six passages. • Knocking out Wip1

  2. Study of 19C by One-Neutron Knockout

    Directory of Open Access Journals (Sweden)

    Hwang Jongwon

    2016-01-01

    Full Text Available The spectroscopic structure of 19C, a prominent one-neutron halo nucleus, has been studied with a 20C secondary beam at 290 MeV/nucleon and a carbon target. Neutron-unbound states populated by the one-neutron knockout reaction were investigated by means of the invariant mass method. The preliminary relative energy spectrum and parallel momentum distribution of the knockout residue, 19C*, were reconstructed from the measured four momenta of the 18C fragment, neutron, and beam. Three resonances were observed in the spectrum, which correspond to the states at Ex = 0.62(9, 1.42(10, and 2.89(10 MeV. The parallel momentum distributions for the 0.62-MeV and 2.89-MeV states suggest spin-parity assignments of 5/2+ and 1/2−, respectively. The 1.42-MeV state is in line with the reported 5/22+ state.

  3. High-temperature expansion and knock-out properties of moulding sands with water glass

    Directory of Open Access Journals (Sweden)

    Major-Gabryś K.

    2007-01-01

    Full Text Available The article focuses on the topic of improving the knock-out properties of moulding sand with water glass and ester hardener. It is settled that the cause of worse knock-out properties of moulding sand can be brought by their thermal expansion in increased temperatures. There is a presentation of the influence of different additives, containing Al2O3, on moulding sands’ expansion in increased temperatures. Within the frames of research, there was an elaboration of the influence of authors own additive- Glassex, on the expansion phenomenon of moulding sands with water glass and ester hardener. It is concluded, that the new additive stops the expansion of moulding sands and as well it improves their knock-out properties.

  4. Describing the role of Drosophila melanogaster ABC transporters in insecticide biology using CRISPR-Cas9 knockouts.

    Science.gov (United States)

    Denecke, Shane; Fusetto, Roberto; Batterham, Philip

    2017-12-01

    ABC transporters have a well-established role in drug resistance, effluxing xenobiotics from cells and tissues within the organism. More recently, research has been dedicated to understanding the role insect ABC transporters play in insecticide toxicity, but progress in understanding the contribution of specific transporters has been hampered by the lack of functional genetic tools. Here, we report knockouts of three Drosophila melanogaster ABC transporter genes, Mdr49, Mdr50, and Mdr65, that are homologous to the well-studied mammalian ABCB1 (P-glycoprotein). Each knockout mutant was created in the same wild type background and tested against a panel of insecticides representing different chemical classes. Mdr65 knockouts were more susceptible to all neuroactive insecticides tested, but Mdr49 and Mdr50 knockouts showed increased susceptibility or resistance depending on the insecticide used. Mdr65 was chosen for further analysis. Calculation of LC 50 values for the Mdr65 knockout allowed the substrate specificity of this transporter to be examined. No obvious distinguishing structural features were shared among MDR65 substrates. A role for Mdr65 in insecticide transport was confirmed by testing the capacity of the knockout to synergize with the ABC inhibitor verapamil and by measuring the levels of insecticide retained in the body of knockout flies. These data unambiguously establish the influence of ABC transporters on the capacity of wild type D. melanogaster to tolerate insecticide exposure and suggest that both tissue and substrate specificity underpin this capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    Energy Technology Data Exchange (ETDEWEB)

    Mena, Natalia P. [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Bulteau, Anne Laure [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Salazar, Julio [Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile); Hirsch, Etienne C. [UPMC Univ Paris 06, UMRS 975 - UMR 7725, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); Inserm, U 975, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); CNRS, UMR 7225, Centre de Recherche en Neurosciences, ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, F-75005 Paris (France); ICM, Therapeutique Experimentale de la Neurodegenerescence, Hopital de la Salpetriere, Paris 75013 (France); Nunez, Marco T., E-mail: mnunez@uchile.cl [Department of Biology, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, Santiago (Chile); Millennium Institute of Cell Dynamics and Biotechnology, Santiago (Chile)

    2011-06-03

    Highlights: {yields} Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. {yields} Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. {yields} Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. {yields} Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that

  6. Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity

    International Nuclear Information System (INIS)

    Mena, Natalia P.; Bulteau, Anne Laure; Salazar, Julio; Hirsch, Etienne C.; Nunez, Marco T.

    2011-01-01

    Highlights: → Mitochondrial complex I inhibition resulted in decreased activity of Fe-S containing enzymes mitochondrial aconitase and cytoplasmic aconitase and xanthine oxidase. → Complex I inhibition resulted in the loss of Fe-S clusters in cytoplasmic aconitase and of glutamine phosphoribosyl pyrophosphate amidotransferase. → Consistent with loss of cytoplasmic aconitase activity, an increase in iron regulatory protein 1 activity was found. → Complex I inhibition resulted in an increase in the labile cytoplasmic iron pool. -- Abstract: Iron-sulfur (Fe-S) clusters are small inorganic cofactors formed by tetrahedral coordination of iron atoms with sulfur groups. Present in numerous proteins, these clusters are involved in key biological processes such as electron transfer, metabolic and regulatory processes, DNA synthesis and repair and protein structure stabilization. Fe-S clusters are synthesized mainly in the mitochondrion, where they are directly incorporated into mitochondrial Fe-S cluster-containing proteins or exported for cytoplasmic and nuclear cluster-protein assembly. In this study, we tested the hypothesis that inhibition of mitochondrial complex I by rotenone decreases Fe-S cluster synthesis and cluster content and activity of Fe-S cluster-containing enzymes. Inhibition of complex I resulted in decreased activity of three Fe-S cluster-containing enzymes: mitochondrial and cytosolic aconitases and xanthine oxidase. In addition, the Fe-S cluster content of glutamine phosphoribosyl pyrophosphate amidotransferase and mitochondrial aconitase was dramatically decreased. The reduction in cytosolic aconitase activity was associated with an increase in iron regulatory protein (IRP) mRNA binding activity and with an increase in the cytoplasmic labile iron pool. Since IRP activity post-transcriptionally regulates the expression of iron import proteins, Fe-S cluster inhibition may result in a false iron deficiency signal. Given that inhibition of complex

  7. G-Protein α-Subunit Gsα Is Required for Craniofacial Morphogenesis.

    Directory of Open Access Journals (Sweden)

    Run Lei

    Full Text Available The heterotrimeric G protein subunit Gsα couples receptors to activate adenylyl cyclase and is required for the intracellular cAMP response and protein kinase A (PKA activation. Gsα is ubiquitously expressed in many cell types; however, the role of Gsα in neural crest cells (NCCs remains unclear. Here we report that NCCs-specific Gsα knockout mice die within hours after birth and exhibit dramatic craniofacial malformations, including hypoplastic maxilla and mandible, cleft palate and craniofacial skeleton defects. Histological and anatomical analysis reveal that the cleft palate in Gsα knockout mice is a secondary defect resulting from craniofacial skeleton deficiencies. In Gsα knockout mice, the morphologies of NCCs-derived cranial nerves are normal, but the development of dorsal root and sympathetic ganglia are impaired. Furthermore, loss of Gsα in NCCs does not affect cranial NCCs migration or cell proliferation, but significantly accelerate osteochondrogenic differentiation. Taken together, our study suggests that Gsα is required for neural crest cells-derived craniofacial development.

  8. Cloning and expression of the recombinant NP24I protein from ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... protein from tomato fruit and study of its antimicrobial ... the recombinant NP24, as well as to prove the activity of native protein on the bacterial as well as fungal .... The antifungal effect of the recombinant NP24I protein was.

  9. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology

    Directory of Open Access Journals (Sweden)

    Qisheng Zuo

    2016-06-01

    Full Text Available The present study established an efficient genome editing approach for the construction of stable transgenic cell lines of the domestic chicken (Gallus gallus domesticus. Our objectives were to facilitate the breeding of high-yield, high-quality chicken strains, and to investigate gene function in chicken stem cells. Three guide RNA (gRNAs were designed to knockout the C2EIP gene, and knockout efficiency was evaluated in DF-1 chicken fibroblasts and chicken ESCs using the luciferase single-strand annealing (SSA recombination assay, T7 endonuclease I (T7EI assay, and TA clone sequencing. In addition, the polyethylenimine-encapsulated Cas9/gRNA plasmid was injected into fresh fertilized eggs. At 4.5 d later, frozen sections of the embryos were prepared, and knockout efficiency was evaluated by the T7EI assay. SSA assay results showed that luciferase activity of the vector expressing gRNA-3 was double that of the control. Results of the T7EI assay and TA clone sequencing indicated that Cas9/gRNA vector-mediated gene knockdown efficiency was approximately 27% in both DF-1 cells and ESCs. The CRISPR/Cas9 vector was also expressed in chicken embryos, resulting in gene knockdown in three of the 20 embryos (gene knockdown efficiency 15%. Taken together, our results indicate that the CRISPR/Cas9 system can mediate stable gene knockdown at the cell and embryo levels in domestic chickens.

  10. Skeletal muscle interleukin-6 regulates metabolic factors in iWAT during HFD and exercise training

    DEFF Research Database (Denmark)

    Knudsen, Jakob Grunnet; Bertholdt, Lærke; Joensen, Ella

    2015-01-01

    in combination with exercise training (HFD ExTr) for 16 weeks. RESULTS: Total fat mass increased (P mass than HFD Floxed mice. Accordingly, iWAT glucose transporter 4 (GLUT4) protein content, 5'AMP......OBJECTIVE: To investigate the role of skeletal muscle (SkM) interleukin (IL)-6 in the regulation of adipose tissue metabolism. METHODS: Muscle-specific IL-6 knockout (IL-6 MKO) and IL-6(loxP/loxP) (Floxed) mice were subjected to standard rodent diet (Chow), high-fat diet (HFD), or HFD.......05) in HFD IL-6 MKO than HFD Floxed mice, and pyruvate dehydrogenase E1α (PDH-E1α) protein content was higher (P mass through regulation of glucose uptake capacity as well as lipogenic...

  11. CRISPR/Cas9 mediated chicken Stra8 gene knockout and inhibition of male germ cell differentiation.

    Directory of Open Access Journals (Sweden)

    Yani Zhang

    Full Text Available An efficient genome editing approach had been established to construct the stable transgenic cell lines in the domestic chicken (Gallus gallus domesticus at present. Our objectives were to investigate gene function in the differentiation process of chicken embryonic stem cells (ESCs into spermatogonial stem cells(SSCs. Three guides RNA (gRNAs were designed to knockout the Stra8 gene, and knockout efficiency was evaluated in domestic chicken cells using cleavage activity of in vitro transcription of gRNA, Luciferase-SSA assay, T7 endonuclease I assay(T7E1 and TA clone sequence. In addition, the Cas9/gRNA plasmid was transfected into ESCs to confirm the function of Stra8. SSA assay results showed that luciferase activity of the vector expressing gRNA-1 and gRNA- 2 was higher than that of gRNA-3. TA clone sequencing showed that the knockdown efficiency was 25% (10/40 in DF-1 cells, the knockdown efficiency was 23% (9/40 in chicken ESCs. T7E1 assay indicated that there were cleavage activity for three individuals, and the knockdown efficiency was 12% (3/25. Cell morphology, qRT-PCR, immunostaining and FCS indicated that Cas9/gRNA not only resulted in the knockout of Stra8 gene, but also suggested that the generation of SSCs was blocked by the Stra8 gene knockdown in vitro. Taken together, our results indicate that the CRISPR/Cas9 system could mediate stable Stra8 gene knockdown in domestic chicken's cells and inhibit ECSs differentiation into SSCs.

  12. p21WAF1/Cip1/Sdi1 knockout mice respond to doxorubicin with reduced cardiotoxicity

    International Nuclear Information System (INIS)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho; Williams, Stuart; Chen, Qin M.

    2011-01-01

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21 WAF1/Cip1/Sdi1 (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFNγ and TNFα in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: ► Doxorubicin induces p21 elevation in the myocardium. ► Doxorubicin causes dilated cardiomyopathy in wild type mice. ► p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. ► Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  13. Characterization of tumour virus proteins. I. radioimmunoassay of the P27 protein of avian viruses

    International Nuclear Information System (INIS)

    Higuchi, T.

    1977-01-01

    The major structural protein of avian oncornaviruses, a core component of about 27000 daltons, has been measured by radioimmunoassay. The purified protein was labelled with 125 Iodine by chloramine-T method. The immune serum titer was defined as the highest serum dilution able to precipitate 50% of the labelled antigon present in the system. Standard competition curve was constructed in order to determine the equivalents of protein, in a system with limiting antibody concentration. In the experimental conditions used, 0.14 ng of AMV-P27 inhibited 50% of 125 I-AMV-P27 (1.0 ng) precipitation. The 125 I-AMV-P27 vs anti-AMV-P27 system was used to study the competition of normal cells, purified virus suspension, productive cells and supernatant fluids. Most of the chicken ombryo fibroblast showed expression of this viral component. The phenomena of cell transformation, the increase in total protein, and the expression of P27 were studied in rapid transformation of CEF by RSV-SR sub(A) [pt

  14. Conditional RARα Knockout Mice Reveal Acute Requirement for Retinoic Acid and RARα in Homeostatic Plasticity

    Directory of Open Access Journals (Sweden)

    Federica eSarti

    2012-02-01

    Full Text Available All-trans retinoic acid (RA plays important roles in brain development through regulating gene transcription. Recently, a novel postdevelopmental role of RA in mature brain was proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent of transcriptional regulation. RA synthesis was induced when excitatory synaptic transmission was chronically blocked, and RA then activated dendritic protein synthesis and synaptic insertion of homomeric GluA1 AMPA receptors, thereby compensating for the loss of neuronal activity in a homeostatic fashion. This action of RA was suggested to be mediated by its canonical receptor RARα but no genetic evidence was available. Thus, we here tested the fundamental requirement of RARα in homeostatic plasticity using conditional RARα knockout mice, and additionally performed a structure-function analysis of RARα. We show that acutely deleting RARα in neurons eliminated RA’s effect on excitatory synaptic transmission, and inhibited activity blockade-induced homeostatic synaptic plasticity. By expressing various RARα rescue constructs in RARα knockout neurons, we found that the DNA-binding domain of RARα was dispensable for its role in regulating synaptic strength, further supporting the notion that RA and RARα act in a non-transcriptional manner in this context. By contrast, the ligand-binding domain (LBD and the mRNA-binding domain (F-domain are both necessary and sufficient for the function of RARα in homeostatic plasticity. Furthermore, we found that homeostatic regulation performed by the LBD/F domains leads to insertion of calcium-permeable AMPA receptors. Our results confirm with unequivocal genetic approaches that RA and RARα perform essential non-transcriptional functions in regulating synaptic strength, and establish a functional link between the various domains of RARα and their involvement in regulating protein synthesis and excitatory synaptic transmission during

  15. Development of the Multiple Gene Knockout System with One-Step PCR in Thermoacidophilic Crenarchaeon Sulfolobus acidocaldarius

    Directory of Open Access Journals (Sweden)

    Shoji Suzuki

    2017-01-01

    Full Text Available Multiple gene knockout systems developed in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius are powerful genetic tools. However, plasmid construction typically requires several steps. Alternatively, PCR tailing for high-throughput gene disruption was also developed in S. acidocaldarius, but repeated gene knockout based on PCR tailing has been limited due to lack of a genetic marker system. In this study, we demonstrated efficient homologous recombination frequency (2.8 × 104 ± 6.9 × 103 colonies/μg DNA by optimizing the transformation conditions. This optimized protocol allowed to develop reliable gene knockout via double crossover using short homologous arms and to establish the multiple gene knockout system with one-step PCR (MONSTER. In the MONSTER, a multiple gene knockout cassette was simply and rapidly constructed by one-step PCR without plasmid construction, and the PCR product can be immediately used for target gene deletion. As an example of the applications of this strategy, we successfully made a DNA photolyase- (phr- and arginine decarboxylase- (argD- deficient strain of S. acidocaldarius. In addition, an agmatine selection system consisting of an agmatine-auxotrophic strain and argD marker was also established. The MONSTER provides an alternative strategy that enables the very simple construction of multiple gene knockout cassettes for genetic studies in S. acidocaldarius.

  16. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    Science.gov (United States)

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  17. Maribavir Inhibits Epstein-Barr Virus Transcription through the EBV Protein Kinase

    Science.gov (United States)

    Whitehurst, Christopher B.; Sanders, Marcia K.; Law, Mankit; Wang, Fu-Zhang; Xiong, Jie; Dittmer, Dirk P.

    2013-01-01

    Maribavir (MBV) inhibits Epstein-Barr virus (EBV) replication and the enzymatic activity of the viral protein kinase BGLF4. MBV also inhibits expression of multiple EBV transcripts during EBV lytic infection. Here we demonstrate, with the use of a BGLF4 knockout virus, that effects of MBV on transcription take place primarily through inhibition of BGLF4. MBV inhibits viral genome copy numbers and infectivity to levels similar to and exceeding levels produced by BGLF4 knockout virus. PMID:23449792

  18. The Insulin-like Growth Factor (IGF)-I E-Peptides Modulate Cell Entry of the Mature IGF-I Protein

    OpenAIRE

    Pfeffer, Lindsay A.; Brisson, Becky K.; Lei, Hanqin; Barton, Elisabeth R.

    2009-01-01

    Insulin-like growth factor (IGF)-I is a critical protein for cell development and growth. Alternative splicing of the igf1 gene gives rise to multiple isoforms. In rodents, proIGF-IA and proIGF-IB have different carboxy-terminal extensions called the E-peptides (EA and EB) and upon further posttranslational processing, produce the identical mature IGF-I protein. Rodent EB has been reported to have mitogenic and motogenic effects independent of IGF-I. However, effects of EA or EB on mature IGF...

  19. IKKε knockout prevents high fat diet induced arterial atherosclerosis and NF-κB signaling in mice.

    Directory of Open Access Journals (Sweden)

    Changchun Cao

    Full Text Available AIMS: Atherosclerosis is a public health concern affecting many worldwide, but its pathogenesis remains unclear. In this study we investigated the role of IKKε during the formation of atherosclerosis and its molecular mechanism in the mouse aortic vessel wall. METHODS AND RESULTS: C57BL/6 wild-type or IKKε knockout mice bred into the ApoE knockout genetic background were divided into 4 groups: (1 wild-type (WT, (2 ApoE knockout (AK, (3 IKKε knockout (IK, (4 or both ApoE and IKKε knockout (DK. Each group of mice were fed with a high fat diet (HFD for 12 weeks from 8 weeks of age. Immunohistochemistry and Western blotting analysis demonstrated obvious increases in the expression of IKKε in the AK group compared with the WT group, especially in the intima. Serum lipid levels were significantly higher in the AK and DK groups than in the other two groups. Staining with hematoxylin-eosin and Oil Red, as well as scanning electron microscopy revealed less severe atherosclerotic lesions in the DK group than in the AK group. Immunofluorescence and Western blot analysis demonstrated obvious increases in the expression of NF-κB pathway components and downstream factors in the AK group, especially in the intima, while these increases were blocked in the DK group. CONCLUSION: The knockout of IKKε prevented significant atherosclerosis lesions in the mouse aorta from in both wild-type and ApoE knockout mice fed a HFD, suggesting that IKKε may play a vital role in HFD-induced atherosclerosis and would be an important target for the treatment of atherosclerosis.

  20. A duck hepatitis B virus strain with a knockout mutation in the putative X ORF shows similar infectivity and in vivo growth characteristics to wild-type virus

    International Nuclear Information System (INIS)

    Meier, P.; Scougall, C.A.; Will, H.; Burrell, C.J.; Jilbert, A.R.

    2003-01-01

    Hepadnaviruses including human hepatitis B virus (HBV) and duck hepatitis B virus (DHBV) express X proteins, HBx and DHBx, respectively. Both HBx and DHBx are transcriptional activators and modulate cellular signaling in in vitro assays. To test whether the DHBx protein plays a role in virus infection, we compared the in vivo infectivity and growth characteristics of a DHBV3 strain with a stop codon in the X-like ORF (DHBV3-X-K.O.) to those of the wild-type DHBV3 strain. Here we report that the two strains showed no significant difference in (i) their ability to induce infection that resulted in stable viraemia measured by serum surface antigen (DHBsAg) and DHBV DNA, and detection of viral proteins and replicative DNA intermediates in the liver; (ii) the rate of spread of infection in liver and extrahepatic sites after low-dose virus inoculation; and (iii) the ability to produce transient or persistent infection under balanced age/dose conditions designed to detect small differences between the strains. Thus, none of the infection parameters assayed were detectably affected by the X-ORF knockout mutation, raising the question whether DHBx expression plays a physiological role during in vivo infection with wild-type DHBV

  1. A Convenient Cas9-based Conditional Knockout Strategy for Simultaneously Targeting Multiple Genes in Mouse.

    Science.gov (United States)

    Chen, Jiang; Du, Yinan; He, Xueyan; Huang, Xingxu; Shi, Yun S

    2017-03-31

    The most powerful way to probe protein function is to characterize the consequence of its deletion. Compared to conventional gene knockout (KO), conditional knockout (cKO) provides an advanced gene targeting strategy with which gene deletion can be performed in a spatially and temporally restricted manner. However, for most species that are amphiploid, the widely used Cre-flox conditional KO (cKO) system would need targeting loci in both alleles to be loxP flanked, which in practice, requires time and labor consuming breeding. This is considerably significant when one is dealing with multiple genes. CRISPR/Cas9 genome modulation system is advantaged in its capability in targeting multiple sites simultaneously. Here we propose a strategy that could achieve conditional KO of multiple genes in mouse with Cre recombinase dependent Cas9 expression. By transgenic construction of loxP-stop-loxP (LSL) controlled Cas9 (LSL-Cas9) together with sgRNAs targeting EGFP, we showed that the fluorescence molecule could be eliminated in a Cre-dependent manner. We further verified the efficacy of this novel strategy to target multiple sites by deleting c-Maf and MafB simultaneously in macrophages specifically. Compared to the traditional Cre-flox cKO strategy, this sgRNAs-LSL-Cas9 cKO system is simpler and faster, and would make conditional manipulation of multiple genes feasible.

  2. In Vivo Knockout of the Vegfa Gene by Lentiviral Delivery of CRISPR/Cas9 in Mouse Retinal Pigment Epithelium Cells

    Directory of Open Access Journals (Sweden)

    Andreas Holmgaard

    2017-12-01

    Full Text Available Virus-based gene therapy by CRISPR/Cas9-mediated genome editing and knockout may provide a new option for treatment of inherited and acquired ocular diseases of the retina. In support of this notion, we show that Streptococcus pyogenes (Sp Cas9, delivered by lentiviral vectors (LVs, can be used in vivo to selectively ablate the vascular endothelial growth factor A (Vegfa gene in mice. By generating LVs encoding SpCas9 targeted to Vegfa, and in parallel the fluorescent eGFP marker protein, we demonstrate robust knockout of Vegfa that leads to a significant reduction of VEGFA protein in transduced cells. Three of the designed single-guide RNAs (sgRNAs induce in vitro indel formation at high frequencies (44%–93%. A single unilateral subretinal injection facilitates RPE-specific localization of the vector and disruption of Vegfa in isolated eGFP+ RPE cells obtained from mice five weeks after LV administration. Notably, sgRNA delivery results in the disruption of Vegfa with an in vivo indel formation efficacy of up to 84%. Sequencing of Vegfa-specific amplicons reveals formation of indels, including 4-bp deletions and 2-bp insertions. Taken together, our data demonstrate the capacity of lentivirus-delivered SpCas9 and sgRNAs as a developing therapeutic path in the treatment of ocular diseases, including age-related macular degeneration.

  3. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  4. Phenotypic assessment of THC discriminative stimulus properties in fatty acid amide hydrolase knockout and wildtype mice.

    Science.gov (United States)

    Walentiny, D Matthew; Vann, Robert E; Wiley, Jenny L

    2015-06-01

    A number of studies have examined the ability of the endogenous cannabinoid anandamide to elicit Δ(9)-tetrahydrocannabinol (THC)-like subjective effects, as modeled through the THC discrimination paradigm. In the present study, we compared transgenic mice lacking fatty acid amide hydrolase (FAAH), the enzyme primarily responsible for anandamide catabolism, to wildtype counterparts in a THC discrimination procedure. THC (5.6 mg/kg) served as a discriminative stimulus in both genotypes, with similar THC dose-response curves between groups. Anandamide fully substituted for THC in FAAH knockout, but not wildtype, mice. Conversely, the metabolically stable anandamide analog O-1812 fully substituted in both groups, but was more potent in knockouts. The CB1 receptor antagonist rimonabant dose-dependently attenuated THC generalization in both groups and anandamide substitution in FAAH knockouts. Pharmacological inhibition of monoacylglycerol lipase (MAGL), the primary catabolic enzyme for the endocannabinoid 2-arachidonoylglycerol (2-AG), with JZL184 resulted in full substitution for THC in FAAH knockout mice and nearly full substitution in wildtypes. Quantification of brain endocannabinoid levels revealed expected elevations in anandamide in FAAH knockout mice compared to wildtypes and equipotent dose-dependent elevations in 2-AG following JZL184 administration. Dual inhibition of FAAH and MAGL with JZL195 resulted in roughly equipotent increases in THC-appropriate responding in both groups. While the notable similarity in THC's discriminative stimulus effects across genotype suggests that the increased baseline brain anandamide levels (as seen in FAAH knockout mice) do not alter THC's subjective effects, FAAH knockout mice are more sensitive to the THC-like effects of pharmacologically induced increases in anandamide and MAGL inhibition (e.g., JZL184). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. iPfam: a database of protein family and domain interactions found in the Protein Data Bank.

    Science.gov (United States)

    Finn, Robert D; Miller, Benjamin L; Clements, Jody; Bateman, Alex

    2014-01-01

    The database iPfam, available at http://ipfam.org, catalogues Pfam domain interactions based on known 3D structures that are found in the Protein Data Bank, providing interaction data at the molecular level. Previously, the iPfam domain-domain interaction data was integrated within the Pfam database and website, but it has now been migrated to a separate database. This allows for independent development, improving data access and giving clearer separation between the protein family and interactions datasets. In addition to domain-domain interactions, iPfam has been expanded to include interaction data for domain bound small molecule ligands. Functional annotations are provided from source databases, supplemented by the incorporation of Wikipedia articles where available. iPfam (version 1.0) contains >9500 domain-domain and 15 500 domain-ligand interactions. The new website provides access to this data in a variety of ways, including interactive visualizations of the interaction data.

  6. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  7. cGMP-dependent protein kinase type II knockout mice exhibit working memory impairments, decreased repetitive behavior, and increased anxiety-like traits.

    Science.gov (United States)

    Wincott, Charlotte M; Abera, Sinedu; Vunck, Sarah A; Tirko, Natasha; Choi, Yoon; Titcombe, Roseann F; Antoine, Shannon O; Tukey, David S; DeVito, Loren M; Hofmann, Franz; Hoeffer, Charles A; Ziff, Edward B

    2014-10-01

    Neuronal activity regulates AMPA receptor trafficking, a process that mediates changes in synaptic strength, a key component of learning and memory. This form of plasticity may be induced by stimulation of the NMDA receptor which, among its activities, increases cyclic guanosine monophosphate (cGMP) through the nitric oxide synthase pathway. cGMP-dependent protein kinase type II (cGKII) is ultimately activated via this mechanism and AMPA receptor subunit GluA1 is phosphorylated at serine 845. This phosphorylation contributes to the delivery of GluA1 to the synapse, a step that increases synaptic strength. Previous studies have shown that cGKII-deficient mice display striking spatial learning deficits in the Morris Water Maze compared to wild-type littermates as well as lowered GluA1 phosphorylation in the postsynaptic density of the prefrontal cortex (Serulle et al., 2007; Wincott et al., 2013). In the current study, we show that cGKII knockout mice exhibit impaired working memory as determined using the prefrontal cortex-dependent Radial Arm Maze (RAM). Additionally, we report reduced repetitive behavior in the Marble Burying task (MB), and heightened anxiety-like traits in the Novelty Suppressed Feeding Test (NSFT). These data suggest that cGKII may play a role in the integration of information that conveys both anxiety-provoking stimuli as well as the spatial and environmental cues that facilitate functional memory processes and appropriate behavioral response. Published by Elsevier Inc.

  8. Negative regulation of RIG-I-mediated antiviral signaling by TRK-fused gene (TFG) protein

    International Nuclear Information System (INIS)

    Lee, Na-Rae; Shin, Han-Bo; Kim, Hye-In; Choi, Myung-Soo; Inn, Kyung-Soo

    2013-01-01

    Highlights: •TRK-fused gene product (TFG) interacts with TRIM25 upon viral infection. •TFG negatively regulates RIG-I mediated antiviral signaling. •TFG depletion leads to enhanced viral replication. •TFG act downstream of MAVS. -- Abstract: RIG-I (retinoic acid inducible gene I)-mediated antiviral signaling serves as the first line of defense against viral infection. Upon detection of viral RNA, RIG-I undergoes TRIM25 (tripartite motif protein 25)-mediated K63-linked ubiquitination, leading to type I interferon (IFN) production. In this study, we demonstrate that TRK-fused gene (TFG) protein, previously identified as a TRIM25-interacting protein, binds TRIM25 upon virus infection and negatively regulates RIG-I-mediated type-I IFN signaling. RIG-I-mediated IFN production and nuclear factor (NF)-κB signaling pathways were upregulated by the suppression of TFG expression. Furthermore, vesicular stomatitis virus (VSV) replication was significantly inhibited by small inhibitory hairpin RNA (shRNA)-mediated knockdown of TFG, supporting the suppressive role of TFG in RIG-I-mediated antiviral signaling. Interestingly, suppression of TFG expression increased not only RIG-I-mediated signaling but also MAVS (mitochondrial antiviral signaling protein)-induced signaling, suggesting that TFG plays a pivotal role in negative regulation of RNA-sensing, RIG-I-like receptor (RLR) family signaling pathways

  9. Generation of knockout rabbits using transcription activator-like effector nucleases.

    Science.gov (United States)

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  10. Postnatal Deletion of Fat Storage-inducing Transmembrane Protein 2 (FIT2/FITM2) Causes Lethal Enteropathy.

    Science.gov (United States)

    Goh, Vera J; Tan, Jolene S Y; Tan, Bryan C; Seow, Colin; Ong, Wei-Yi; Lim, Yen Ching; Sun, Lei; Ghosh, Sujoy; Silver, David L

    2015-10-16

    Lipid droplets (LDs) are phylogenetically conserved cytoplasmic organelles that store neutral lipids within a phospholipid monolayer. LDs compartmentalize lipids and may help to prevent cellular damage caused by their excess or bioactive forms. FIT2 is a ubiquitously expressed transmembrane endoplasmic reticulum (ER) membrane protein that has previously been implicated in LD formation in mammalian cells and tissue. Recent data indicate that FIT2 plays an essential role in fat storage in an in vivo constitutive adipose FIT2 knock-out mouse model, but the physiological effects of postnatal whole body FIT2 depletion have never been studied. Here, we show that tamoxifen-induced FIT2 deletion using a whole body ROSA26CreER(T2)-driven FIT2 knock-out (iF2KO) mouse model leads to lethal intestinal pathology, including villus blunting and death of intestinal crypts, and loss of lipid absorption. iF2KO mice lose weight and die within 2 weeks after the first tamoxifen dose. At the cellular level, LDs failed to form in iF2KO enterocytes after acute oil challenge and instead accumulated within the ER. Intestinal bile acid transporters were transcriptionally dysregulated in iF2KO mice, leading to the buildup of bile acids within enterocytes. These data support the conclusion that FIT2 plays an essential role in regulating intestinal health and survival postnatally. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve; Dinh, Thai Nho [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Williams, Stuart [Biomedical Engineering Program, College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States); Chen, Qin M., E-mail: qchen@email.arizona.edu [Department of Pharmacology,College of Medicine, University of Arizona, 1501 N. Campbell Ave, Tucson, AZ 85724 (United States)

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significant changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.

  12. Inflammation in Lafora Disease: Evolution with Disease Progression in Laforin and Malin Knock-out Mouse Models.

    Science.gov (United States)

    López-González, Irene; Viana, Rosa; Sanz, Pascual; Ferrer, Isidre

    2017-07-01

    Lafora progressive myoclonus epilepsy (Lafora disease, LD) is a fatal rare autosomal recessive neurodegenerative disorder characterized by the accumulation of insoluble ubiquitinated polyglucosan inclusions in the cytoplasm of neurons, which is most commonly associated with mutations in two genes: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. The present study analyzes possible inflammatory responses in the mouse lines Epm2a -/- (laforin knock-out) and Epm2b -/- (malin knock-out) with disease progression. Increased numbers of reactive astrocytes (expressing the GFAP marker) and microglia (expressing the Iba1 marker) together with increased expression of genes encoding cytokines and mediators of the inflammatory response occur in both mouse lines although with marked genotype differences. C3ar1 and CxCl10 messenger RNAs (mRNAs) are significantly increased in Epm2a -/- mice aged 12 months when compared with age-matched controls, whereas C3ar1, C4b, Ccl4, CxCl10, Il1b, Il6, Tnfα, and Il10ra mRNAs are significantly upregulated in Epm2b -/- at the same age. This is accompanied by increased protein levels of IL1-β, IL6, TNFα, and Cox2 particularly in Epm2b -/- mice. The severity of inflammatory changes correlates with more severe clinical symptoms previously described in Epm2b -/- mice. These findings show for the first time increased innate inflammatory responses in a neurodegenerative disease with polyglucosan intraneuronal deposits which increase with disease progression, in a way similar to what is seen in neurodegenerative diseases with abnormal protein aggregates. These findings also point to the possibility of using anti-inflammatory agents to mitigate the degenerative process in LD.

  13. Knockout mutations of insulin-like peptide genes enhance sexual receptivity in Drosophila virgin females.

    Science.gov (United States)

    Watanabe, Kazuki; Sakai, Takaomi

    2016-01-01

    In the fruitfly Drosophila melanogaster, females take the initiative to mate successfully because they decide whether to mate or not. However, little is known about the molecular and neuronal mechanisms regulating sexual receptivity in virgin females. Genetic tools available in Drosophila are useful for identifying molecules and neural circuits involved in the regulation of sexual receptivity. We previously demonstrated that insulin-producing cells (IPCs) in the female brain are critical to the regulation of female sexual receptivity. Ablation and inactivation of IPCs enhance female sexual receptivity, suggesting that neurosecretion from IPCs inhibits female sexual receptivity. IPCs produce and release insulin-like peptides (Ilps) that modulate various biological processes such as metabolism, growth, lifespan and behaviors. Here, we report a novel role of the Ilps in sexual behavior in Drosophila virgin females. Compared with wild-type females, females with knockout mutations of Ilps showed a high mating success rate toward wild-type males, whereas wild-type males courted wild-type and Ilp-knockout females to the same extent. Wild-type receptive females retard their movement during male courtship and this reduced female mobility allows males to copulate. Thus, it was anticipated that knockout mutations of Ilps would reduce general locomotion. However, the locomotor activity in Ilp-knockout females was significantly higher than that in wild-type females. Thus, our findings indicate that the high mating success rate in Ilp-knockout females is caused by their enhanced sexual receptivity, but not by improvement of their sex appeal or by general sluggishness.

  14. Robust and sensitive analysis of mouse knockout phenotypes.

    Directory of Open Access Journals (Sweden)

    Natasha A Karp

    Full Text Available A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student's t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene's function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained.

  15. Calcium current homeostasis and synaptic deficits in hippocampal neurons from Kelch-like 1 knockout mice

    Directory of Open Access Journals (Sweden)

    Paula Patricia Perissinotti

    2015-01-01

    Full Text Available Kelch-like 1 (KLHL1 is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type and CaV3.2 (α1H T-type calcium channels; KLHL1 knockdown experiments (KD cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al., 2014. Here, we studied the effect of ablation of KLHL1 on calcium channel function and synaptic properties in cultured hippocampal neurons from KLHL1 knockout (KO mice. Western blot data showed the P/Q-type channel α1A subunit was less abundant in KO hippocampus compared to wildtype (WT; and PQ-type calcium currents were smaller in KO neurons than WT during early days in vitro, although this decrease was compensated for at late stages by increases in L-type calcium current. In contrast, T-type currents did not change in culture. However, biophysical properties and western blot analysis revealed a differential contribution of T-type channel isoforms in the KO, with CaV3.2 α1H subunit being down-regulated and CaV3.1 α1G up-regulated. Synapsin I levels were reduced in the KO hippocampus; cultured neurons displayed a concomitant reduction in synapsin I puncta and decreased miniature excitatory postsynaptic current (mEPSC frequency. In summary, genetic ablation of the calcium channel modulator resulted in compensatory mechanisms to maintain calcium current homeostasis in hippocampal KO neurons; however, synaptic alterations resulted in a reduction of excitatory synapse number, causing an imbalance of the excitatory-inhibitory synaptic input ratio favoring inhibition.

  16. Effects of gender on locomotor sensitivity to amphetamine, body weight, and fat mass in regulator of G protein signaling 9 (RGS9) knockout mice.

    Science.gov (United States)

    Walker, Paul D; Jarosz, Patricia A; Bouhamdan, Mohamad; MacKenzie, Robert G

    2015-01-01

    Regulator of G-protein signaling (RGS) protein 9-2 is enriched in the striatum where it modulates dopamine and opioid receptor-mediated signaling. RGS9 knockout (KO) mice show increased psychostimulant-induced behavioral sensitization, as well as exhibit higher body weights and greater fat accumulation compared to wild-type (WT) littermates. In the present study, we found gender influences on each of these phenotypic characteristics. Female RGS9 KO mice exhibited greater locomotor sensitization to amphetamine (1.0mg/kg) treatment as compared to male RGS9 KO mice. Male RGS9 KO mice showed increased body weights as compared to male WT littermates, while no such differences were detected in female mice. Quantitative magnetic resonance showed that male RGS9 KO mice accumulated greater fat mass vs. WT littermates at 5months of age. Such observations could not be explained by increased caloric consumption since male and female RGS9 KO mice demonstrated equivalent daily food intake as compared to their respective WT littermates. Although indirect calorimetry methods found decreased oxygen consumption and carbon dioxide production during the 12-hour dark phase in male RGS9 KO vs. WT mice which are indicative of less energy expenditure, male RGS9 KO mice exhibited lower levels of locomotor activity during this period. Genotype had no effect on metabolic activities when KO and WT groups were compared under fasting vs. feeding treatments. In summary, these results highlight the importance of factoring gender into the experimental design since many studies conducted in RGS9 KO mice utilize locomotor activity as a measured outcome. Copyright © 2014. Published by Elsevier Inc.

  17. p53 Protein interacts specifically with the meiosis-specific mammalian RecA-like protein DMC1 in meiosis.

    Science.gov (United States)

    Habu, Toshiyuki; Wakabayashi, Nobunao; Yoshida, Kayo; Yomogida, Kenntaro; Nishimune, Yoshitake; Morita, Takashi

    2004-06-01

    The tumor suppressor protein p53 is specifically expressed during meiosis in spermatocytes. Subsets of p53 knockout mice exhibit testicular giant cell degenerative syndrome, which suggests p53 may be associated with meiotic cell cycle and/or DNA metabolism. Here, we show that p53 binds to the mouse meiosis-specific RecA-like protein Mus musculus DMC1 (MmDMC1). The C-terminal domain (amino acid 234-340) of MmDMC1 binds to DNA-binding domain of p53 protein. p53 might be involved in homologous recombination and/or checkpoint function by directly binding to DMC1 protein to repress genomic instability in meiotic germ cells.

  18. Enzymatic iodination of salivary proteins by the 125I-lactoperoxidase system

    International Nuclear Information System (INIS)

    Tenovuo, J.; Sarimo, S.S.

    1977-01-01

    Purified milk lactoperoxidase and endogenous human salivary peroxidase were used to label the proteins of whole mouth saliva with [ 125 I]iodide. The proteins were then analyzed by isoelectric focusing or they were subjected to one-dimensional polyacrylamide gel electrophoresis at pH 8.4. The radioactivity of the resolved protein fractions was determined. There were three to four major and four to five minor areas of radioactivity which were carried together with more or less distinctive fractions. Amylase and albumin were shown to be the most effective in binding [ 125 I]iodide. No significant differences were observed in the iodination patterns of salivary proteins iodinated in the presence of endogenous saliva peroxidase and those iodinated in the presence of added milk lactoperoxidase. Hydrogen peroxide was necessary for iodination to take place. The significance of iodoproteins and the role of salivary peroxidases in the nonthyroidal metabolism of iodine are discussed. (author)

  19. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Enzyme-linked immunosorbent assays for insulin-like growth factor-I using six-histidine tag fused proteins

    International Nuclear Information System (INIS)

    Huang Yong; Shi Ruina; Zhong Xuefei; Wang Dan; Zhao Meiping; Li Yuanzong

    2007-01-01

    The fusion proteins of insulin-like growth factor-I (IGF-I) and six-histidine tag (IGF-I-6H, 6H-IGF-I-6H) were cloned, expressed, purified and renatured, with their immunoreaction properties and biological activities intact. The binding kinetics between these fusion proteins and anti-IGF-I antibody or anti-6H antibody were studied using surface plasmon resonance (SPR). Two enzyme-linked immunosorbent assay (ELISA) modes, which proved feasible in the measurement of human serum samples, were used to detect IGF-I with the help of the six-histidine tagged proteins. Furthermore, combining the production technique of the six-histidine tagged fusion protein with the competitive sandwich ELISA mode, using an enzyme labeled anti-6H antibody as a tracer, can be a universal immunochemical method to quantitate other polypeptides or proteins

  1. Generation of knockout rabbits using transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2014-01-01

    Full Text Available Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large animals, such as rabbits and pigs, respectively. This approach is cost effective, relatively quick, and can produce invaluable models for human disease studies, biotechnology or agricultural purposes. Here we describe a protocol for the efficient generation of knockout rabbits using transcription activator-like effector nucleases, and a perspective of the field.

  2. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  3. Knockout and fragmentation reactions using a broad range of tin isotopes

    Science.gov (United States)

    Rodríguez-Sánchez, J. L.; Benlliure, J.; Bertulani, C. A.; Vargas, J.; Ayyad, Y.; Alvarez-Pol, H.; Atkinson, J.; Aumann, T.; Beceiro-Novo, S.; Boretzky, K.; Caamaño, M.; Casarejos, E.; Cortina-Gil, D.; Díaz-Cortes, J.; Fernández, P. Díaz; Estrade, A.; Geissel, H.; Kelić-Heil, A.; Litvinov, Yu. A.; Mostazo, M.; Paradela, C.; Pérez-Loureiro, D.; Pietri, S.; Prochazka, A.; Takechi, M.; Weick, H.; Winfield, J. S.

    2017-09-01

    Production cross sections of residual nuclei obtained by knockout and fragmentation reactions of different tin isotopes accelerated at 1 A GeV have been measured with the fragment separator (FRS) at GSI, Darmstadt. The new measurements are used to investigate the neutron-excess dependence of the neutron- and proton-knockout cross sections. These cross sections are compared to Glauber model calculations coupled to a nuclear de-excitation code in order to investigate the role of the remnant excitations. This bench marking shows an overestimation of the cross sections for the removal of deeply bound nucleons. A phenomenological increase in the excitation energy induced in the remnants produced in these cases allows us to reproduce the measured cross sections.

  4. The cartilage protein melanoma inhibitory activity contributes to inflammatory arthritis

    NARCIS (Netherlands)

    Yeremenko, Nataliya; Härle, Peter; Cantaert, Tineke; van Tok, Melissa; van Duivenvoorde, Leonie M.; Bosserhoff, Anja; Baeten, Dominique

    2014-01-01

    Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in

  5. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  6. Single proton knock-out from 24F

    International Nuclear Information System (INIS)

    Thoennessen, M.; Baumann, T.; Brown, B.A.; Enders, J.; Frank, N.H.; Hansen, P.G.; Heckman, P.; Luther, B.A.; Seitz, J.P.; Stolz, A.; Tryggestad, E.

    2004-01-01

    The measurement of the single proton knock-out reaction from 24 F on a 12 C target at 46.7 MeV/nucleon yielded a 23 O ground state population of (6.6+/-1.0) mb. The data were compared to calculations based on the many-body shell model and the eikonal theory. The results are consistent with a [0d5/26]-bar 1s1/2 configuration of 23 O

  7. Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle.

    Science.gov (United States)

    Daimon, Takaaki; Uchibori, Miwa; Nakao, Hajime; Sezutsu, Hideki; Shinoda, Tetsuro

    2015-08-04

    Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs in Bombyx and that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier gene broad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level of broad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentified broad-inducing factor, i.e., a competence factor.

  8. Impairment in extinction of cued fear memory in syntenin-1 knockout mice.

    Science.gov (United States)

    Talukdar, Gourango; Inoue, Ran; Yoshida, Tomoyuki; Mori, Hisashi

    2018-03-01

    Syntenin-1 is a PDZ domain-containing intracellular scaffold protein involved in exosome production, synapse formation, and synaptic plasticity. We tested whether syntenin-1 can regulate learning and memory through its effects on synaptic plasticity. Specifically, we investigated the role of syntenin-1 in contextual and cued fear conditioning and extinction of conditioned fear using syntenin-1 knockout (KO) mice. Genetic disruption of syntenin-1 had little effect on contextual and cued fear memory. However, syntenin-1 KO mice exhibited selective impairment in cued fear extinction retention. This extinction retention deficit in syntenin-1 KO mice was associated with reduced c-Fos-positive neurons in the basolateral amygdala (BLA) and infralimbic cortex (IL) after extinction training and increased c-Fos-positive neurons in the BLA after an extinction retention test. Our results suggest that syntenin-1 plays an important role in extinction of cued fear memory by modulating neuronal activity in the BLA and IL. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Liver-specific Aquaporin 11 knockout mice show rapid vacuolization of the rough endoplasmic reticulum in periportal hepatocytes after amino acid feeding

    DEFF Research Database (Denmark)

    Rojek, Aleksandra; Füchtbauer, Ernst-Martin; Füchtbauer, Annette C.

    2013-01-01

    -specific Aqp11 KO mice, allowing us to study the role of AQP11 protein in liver of mice with normal kidney function. The unchallenged liver-specific Aqp11 KO mice have normal longevity, their livers appeared normal, and the plasma biochemistries revealed only a minor defect in lipid handling. Fasting......Aquaporin 11 (AQP11) is a protein channel expressed intracellularly in multiple organs, yet its physiological function is unclear. Aqp11 knockout (KO) mice die early due to malfunction of the kidney, a result of hydropic degeneration of proximal tubule cells. Here we report the generation of liver...... protein or larger doses of various amino acids. The fasting/refeeding challenge is associated with increased expression of markers of ER stress Grp78 and GADD153 and decreased glutathione levels, suggesting that ER stress may play role in the development of vacuoles in the AQP11-deficient hepatocytes. NMR...

  10. Defining the range of pathogens susceptible to Ifitm3 restriction using a knockout mouse model.

    Directory of Open Access Journals (Sweden)

    Aaron R Everitt

    Full Text Available The interferon-inducible transmembrane (IFITM family of proteins has been shown to restrict a broad range of viruses in vitro and in vivo by halting progress through the late endosomal pathway. Further, single nucleotide polymorphisms (SNPs in its sequence have been linked with risk of developing severe influenza virus infections in humans. The number of viruses restricted by this host protein has continued to grow since it was first demonstrated as playing an antiviral role; all of which enter cells via the endosomal pathway. We therefore sought to test the limits of antimicrobial restriction by Ifitm3 using a knockout mouse model. We showed that Ifitm3 does not impact on the restriction or pathogenesis of bacterial (Salmonella typhimurium, Citrobacter rodentium, Mycobacterium tuberculosis or protozoan (Plasmodium berghei pathogens, despite in vitro evidence. However, Ifitm3 is capable of restricting respiratory syncytial virus (RSV in vivo either through directly restricting RSV cell infection, or by exerting a previously uncharacterised function controlling disease pathogenesis. This represents the first demonstration of a virus that enters directly through the plasma membrane, without the need for the endosomal pathway, being restricted by the IFITM family; therefore further defining the role of these antiviral proteins.

  11. Knock-out of a mitochondrial sirtuin protects neurons from degeneration in Caenorhabditis elegans.

    Science.gov (United States)

    Sangaletti, Rachele; D'Amico, Massimo; Grant, Jeff; Della-Morte, David; Bianchi, Laura

    2017-08-01

    Sirtuins are NAD⁺-dependent deacetylases, lipoamidases, and ADP-ribosyltransferases that link cellular metabolism to multiple intracellular pathways that influence processes as diverse as cell survival, longevity, and cancer growth. Sirtuins influence the extent of neuronal death in stroke. However, different sirtuins appear to have opposite roles in neuronal protection. In Caenorhabditis elegans, we found that knock-out of mitochondrial sirtuin sir-2.3, homologous to mammalian SIRT4, is protective in both chemical ischemia and hyperactive channel induced necrosis. Furthermore, the protective effect of sir-2.3 knock-out is enhanced by block of glycolysis and eliminated by a null mutation in daf-16/FOXO transcription factor, supporting the involvement of the insulin/IGF pathway. However, data in Caenorhabditis elegans cell culture suggest that the effects of sir-2.3 knock-out act downstream of the DAF-2/IGF-1 receptor. Analysis of ROS in sir-2.3 knock-out reveals that ROS become elevated in this mutant under ischemic conditions in dietary deprivation (DD), but to a lesser extent than in wild type, suggesting more robust activation of a ROS scavenging system in this mutant in the absence of food. This work suggests a deleterious role of SIRT4 during ischemic processes in mammals that must be further investigated and reveals a novel pathway that can be targeted for the design of therapies aimed at protecting neurons from death in ischemic conditions.

  12. Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Matyas Flemr

    2015-07-01

    Full Text Available Induction of double-strand DNA breaks (DSBs by engineered nucleases, such as CRISPR/Cas9 or transcription activator-like effector nucleases (TALENs, stimulates knockin of exogenous DNA fragments via homologous recombination (HR. However, the knockin efficiencies reported so far have not allowed more complex in vitro genome modifications such as, for instance, simultaneous integration of a DNA fragment at two distinct genomic sites. We developed a reporter system to enrich for cells with engineered nuclease-assisted HR events. Using this system in mouse embryonic stem cells (mESCs, we achieve single-step biallelic and seamless integration of two loxP sites for Cre recombinase-mediated inducible gene knockout, as well as biallelic endogenous gene tagging with high efficiency. Our approach reduces the time and resources required for conditional knockout mESC generation dramatically.

  13. Voluntary exercise decreases atherosclerosis in nephrectomised ApoE knockout mice.

    Directory of Open Access Journals (Sweden)

    Cecilia M Shing

    Full Text Available Cardiovascular disease is the main cause of morbidity and mortality in patients with kidney disease. The effectiveness of exercise for cardiovascular disease that is accelerated by the presence of chronic kidney disease remains unknown. The present study utilized apolipoprotein E knockout mice with 5/6 nephrectomy as a model of combined kidney disease and cardiovascular disease to investigate the effect of exercise on aortic plaque formation, vascular function and systemic inflammation. Animals were randomly assigned to nephrectomy or control and then to either voluntary wheel running exercise or sedentary. Following 12-weeks, aortic plaque area was significantly (p0.05. Nephrectomy increased IL-6 and TNF-α concentrations compared with control mice (p0.05. Exercise was an effective non-pharmacologic approach to slow cardiovascular disease in the presence of kidney disease in the apolipoprotein E knockout mouse.

  14. PGC-1{alpha} is required for AICAR induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Leick, Lotte; Fentz, Joachim; Biensø, Rasmus S

    2010-01-01

    We tested the hypothesis that repeated activation of AMPK induces mitochondrial and glucose membrane transporter gene/protein expression via a peroxisome proliferator activated receptor Upsilon co-activator (PGC)-1alpha dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild...... GLUT4, cytochrome c oxidase (COX)I and cytochrome (cyt) c protein expression ~10-40% relative to saline in white muscles of the WT mice, but not of the PGC-1alpha KO mice. In line, GLUT4 and cyt c mRNA content increased 30-60% 4h after a single AICAR injection relative to saline only in WT mice. One...... and PGC-1alpha KO mice. In conclusion, we here provide genetic evidence for a major role of PGC-1alpha in AMPK mediated regulation of mitochondrial and glucose membrane transport protein expression in skeletal muscle....

  15. PrP Knockout Cells Expressing Transmembrane PrP Resist Prion Infection.

    Science.gov (United States)

    Marshall, Karen E; Hughson, Andrew; Vascellari, Sarah; Priola, Suzette A; Sakudo, Akikazu; Onodera, Takashi; Baron, Gerald S

    2017-01-15

    Glycosylphosphatidylinositol (GPI) anchoring of the prion protein (PrP C ) influences PrP C misfolding into the disease-associated isoform, PrP res , as well as prion propagation and infectivity. GPI proteins are found in cholesterol- and sphingolipid-rich membrane regions called rafts. Exchanging the GPI anchor for a nonraft transmembrane sequence redirects PrP C away from rafts. Previous studies showed that nonraft transmembrane PrP C variants resist conversion to PrP res when transfected into scrapie-infected N2a neuroblastoma cells, likely due to segregation of transmembrane PrP C and GPI-anchored PrP res in distinct membrane environments. Thus, it remained unclear whether transmembrane PrP C might convert to PrP res if seeded by an exogenous source of PrP res not associated with host cell rafts and without the potential influence of endogenous expression of GPI-anchored PrP C To further explore these questions, constructs containing either a C-terminal wild-type GPI anchor signal sequence or a nonraft transmembrane sequence containing a flexible linker were expressed in a cell line derived from PrP knockout hippocampal neurons, NpL2. NpL2 cells have physiological similarities to primary neurons, representing a novel and advantageous model for studying transmissible spongiform encephalopathy (TSE) infection. Cells were infected with inocula from multiple prion strains and in different biochemical states (i.e., membrane bound as in brain microsomes from wild-type mice or purified GPI-anchorless amyloid fibrils). Only GPI-anchored PrP C supported persistent PrP res propagation. Our data provide strong evidence that in cell culture GPI anchor-directed membrane association of PrP C is required for persistent PrP res propagation, implicating raft microdomains as a location for conversion. Mechanisms of prion propagation, and what makes them transmissible, are poorly understood. Glycosylphosphatidylinositol (GPI) membrane anchoring of the prion protein (PrP C

  16. A norm knockout method on indirect reciprocity to reveal indispensable norms

    Science.gov (United States)

    Yamamoto, Hitoshi; Okada, Isamu; Uchida, Satoshi; Sasaki, Tatsuya

    2017-03-01

    Although various norms for reciprocity-based cooperation have been suggested that are evolutionarily stable against invasion from free riders, the process of alternation of norms and the role of diversified norms remain unclear in the evolution of cooperation. We clarify the co-evolutionary dynamics of norms and cooperation in indirect reciprocity and also identify the indispensable norms for the evolution of cooperation. Inspired by the gene knockout method, a genetic engineering technique, we developed the norm knockout method and clarified the norms necessary for the establishment of cooperation. The results of numerical investigations revealed that the majority of norms gradually transitioned to tolerant norms after defectors are eliminated by strict norms. Furthermore, no cooperation emerges when specific norms that are intolerant to defectors are knocked out.

  17. Probing short-range correlations in asymmetric nuclei with quasi-free pair knockout reactions

    Science.gov (United States)

    Stevens, Sam; Ryckebusch, Jan; Cosyn, Wim; Waets, Andreas

    2018-02-01

    Short-range correlations (SRC) in asymmetric nuclei with an unusual neutron-to-proton ratio can be studied with quasi-free two-nucleon knockout processes following the collision between accelerated ions and a proton target. We derive an approximate factorized cross section for those SRC-driven p (A ,p‧N1N2) reactions. Our reaction model hinges on the factorization properties of SRC-driven A (e ,e‧N1N2) reactions for which strong indications are found in theory-experiment comparisons. In order to put our model to the test we compare its predictions with results of 12C (p ,p‧ pn) measurements conducted at Brookhaven National Laboratory (BNL) and find a fair agreement. The model can also reproduce characteristic features of SRC-driven two-nucleon knockout reactions, like back-to-back emission of the correlated nucleons. We study the asymmetry dependence of nuclear SRC by providing predictions for the ratio of proton-proton to proton-neutron knockout cross sections for the carbon isotopes 9-15C thereby covering neutron excess values (N - Z) / Z between -0.5 and +0.5.

  18. Trinucleon cluster knockout from 6Li

    International Nuclear Information System (INIS)

    Connelly, J.P.; Berman, B.L.; Briscoe, W.J.; Dhuga, K.S.; Mokhtari, A.; Zubanov, D.; Blok, H.P.; Ent, R.; Mitchell, J.H.; Lapikas, L.

    1998-01-01

    The momentum-transfer dependence of the 3 H and 3 He knockout reactions from 6 Li via exclusive electron scattering has been measured, and the two reactions are compared. In the absence of two-step processes, the ratio of the fivefold cross sections for these mirror reactions should simply scale by the ratio of the 3 H and 3 He electron-scattering cross sections. A significant deviation from this simple expectation is seen at low momentum transfer. Possible explanations for this dramatic difference in cross sections for these mirror reactions are discussed. copyright 1998 The American Physical Society

  19. {sup 125}I Labelling of Protein Using Immobilized Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Rok; Park, Kyung Bae; Awh, Ok Doo [Korea Advanced Energy Research Institute, Daejeon (Korea, Republic of)

    1984-03-15

    For an effective solid-phase labelling of protein with {sup 125}I, studies on the immobilization of lactoperoxidase (LPO) on the inner wall of polystyrene tubes were carried out. Labelling of bovine serum albumin (BSA) and insulin was also practiced using the LPO immobilized tubes. The immobilized enzyme of about 2.5 mu g/tube was sufficient for small scale labelling since the results of radio-paper chromatography of the labelling mixture of insulin indicated that the yields were sufficiently high (80%) even in the reactions conducted at room temperature for 60 sec. The results of the Sephadex column chromatography indicated that the labelled products were not contaminated with LPO-{sup 125}I, and the radiochemical purity of the products was more than 90%. In considering the general trend that the {sup 125}I labelled protein obtained by using LPO maintains its intactness better than those obtained by using chloramine-T, together with the tendency of yield enhancing with increase of reactants-concentration, the LPO immobilized tube method is estimated to be one of the simple methods of labelling. The product might be applicable without further purification.

  20. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse

    International Nuclear Information System (INIS)

    Schechter, Ruben; Beju, Delia; Miller, Kenneth E.

    2005-01-01

    Complications of diabetes mellitus within the nervous system are peripheral and central neuropathy. In peripheral neuropathy, defects in neurofilament and microtubules have been demonstrated. In this study, we examined the effects of insulin deficiency within the brain in insulin knockout mice (I(-/-)). The I(-/-) exhibited hyperphosphorylation of tau, at threonine 231, and neurofilament. In addition, we showed hyperphosphorylation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 β (GSK-3 β) at serine 9. Extracellular signal-regulated kinase 1 (ERK 1) showed decrease in phosphorylation, whereas ERK 2 showed no changes. Ultrastructural examination demonstrated swollen mitochondria, endoplasmic reticulum, and Golgi apparatus, and dispersion of the nuclear chromatin. Microtubules showed decrease in the number of intermicrotubule bridges and neurofilament presented as bunches. Thus, lack of insulin brain stimulation induces JNK hyperphosphorylation followed by hyperphosphorylation of tau and neurofilament, and ultrastructural cellular damage, that over time may induce decrease in cognition and learning disabilities

  1. The effect of insulin deficiency on tau and neurofilament in the insulin knockout mouse

    Energy Technology Data Exchange (ETDEWEB)

    Schechter, Ruben [William K. Warren Medical Research Institute, University of Oklahoma Medical Health Science Center, Tulsa, OK 74107 (United States); Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States); schechter@okstate edu, E-mail: ruben; Beju, Delia [William K. Warren Medical Research Institute, University of Oklahoma Medical Health Science Center, Tulsa, OK 74107 (United States); Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States); Miller, Kenneth E [Department of Anatomy and Cell Biology, Oklahoma State University Center for Health Science, Tulsa, OK 74107 (United States)

    2005-09-09

    Complications of diabetes mellitus within the nervous system are peripheral and central neuropathy. In peripheral neuropathy, defects in neurofilament and microtubules have been demonstrated. In this study, we examined the effects of insulin deficiency within the brain in insulin knockout mice (I(-/-)). The I(-/-) exhibited hyperphosphorylation of tau, at threonine 231, and neurofilament. In addition, we showed hyperphosphorylation of c-Jun N-terminal kinase (JNK) and glycogen synthase kinase 3 {beta} (GSK-3 {beta}) at serine 9. Extracellular signal-regulated kinase 1 (ERK 1) showed decrease in phosphorylation, whereas ERK 2 showed no changes. Ultrastructural examination demonstrated swollen mitochondria, endoplasmic reticulum, and Golgi apparatus, and dispersion of the nuclear chromatin. Microtubules showed decrease in the number of intermicrotubule bridges and neurofilament presented as bunches. Thus, lack of insulin brain stimulation induces JNK hyperphosphorylation followed by hyperphosphorylation of tau and neurofilament, and ultrastructural cellular damage, that over time may induce decrease in cognition and learning disabilities.

  2. Glutamate transporter type 3 knockout leads to decreased heart rate possibly via parasympathetic mechanism

    OpenAIRE

    Deng, Jiao; Li, Jiejie; Li, Liaoliao; Feng, Chenzhuo; Xiong, Lize; Zuo, Zhiyi

    2013-01-01

    Parasympathetic tone is a dominant neural regulator for basal heart rate. Glutamate transporters (EAAT) via their glutamate uptake functions regulate glutamate neurotransmission in the central nervous system. We showed that EAAT type 3 (EAAT3) knockout mice had a slower heart rate than wild-type mice when they were anesthetized. We design this study to determine whether non-anesthetized EAAT3 knockout mice have a slower heart rate and, if so, what may be the mechanism for this effect. Young a...

  3. Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice.

    Science.gov (United States)

    Chalvon-Demersay, Tristan; Even, Patrick C; Chaumontet, Catherine; Piedcoq, Julien; Viollet, Benoit; Gaudichon, Claire; Tomé, Daniel; Foretz, Marc; Azzout-Marniche, Dalila

    2017-09-01

    Background: Hepatic AMP-activated kinase (AMPK) activity is sensitive to the dietary carbohydrate-to-protein ratio. However, the role of AMPK in metabolic adaptations to variations in dietary macronutrients remains poorly understood. Objective: The objective of this study was to determine the role of hepatic AMPK in the adaptation of energy metabolism in response to modulation of the dietary carbohydrate-to-protein ratio. Methods: Male 7-wk-old wild-type (WT) and liver AMPK-deficient (knockout) mice were fed either a normal-protein and normal-carbohydrate diet (NP-NC; 14% protein, 76% carbohydrate on an energy basis), a low-protein and high-carbohydrate diet (LP-HC; 5% protein, 85% carbohydrate), or a high-protein and low-carbohydrate diet (HP-LC; 55% protein, 35% carbohydrate) for 3 wk. During this period, after an overnight fast, metabolic parameters were measured and indirect calorimetry was performed in mice during the first hours after refeeding a 1-g calibrated meal of their own diet in order to investigate lipid and carbohydrate metabolism. Results: Knockout mice fed an LP-HC or HP-LC meal exhibited 24% and 8% lower amplitudes in meal-induced carbohydrate and lipid oxidation changes. By contrast, knockout mice fed an NP-NC meal displayed normal carbohydrate and lipid oxidation profiles. These mice exhibited a transient increase in hepatic triglycerides and a decrease in hepatic glycogen. These changes were associated with a 650% higher secretion of fibroblast growth factor 21 (FGF21) 2 h after refeeding. Conclusions: The consequences of hepatic AMPK deletion depend on the dietary carbohydrate-to-protein ratio. In mice fed the NP-NC diet, deletion of AMPK in the liver led to an adaptation of liver metabolism resulting in increased secretion of FGF21. These changes possibly compensated for the absence of hepatic AMPK, as these mice exhibited normal postprandial changes in carbohydrate and lipid oxidation. By contrast, in mice fed the LP-HC and HP-LC diets, the

  4. Knockout beyond the dripline

    Energy Technology Data Exchange (ETDEWEB)

    Bonaccorso, A. [INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Charity, R. J. [Department of Chemistry, Washington University, St. Louis, Missouri 63130 (United States); Kumar, R. [Department of Physics, Deenbandhu Chhoturam University of Science and Technology, Murthal, Sonepat-131039 Haryana (India); Salvioni, G. [INFN, Sez. di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy and Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa (Italy)

    2015-02-24

    In this contribution, we will describe neutron and proton removal from {sup 9}C and {sup 7}Be which are two particularly interesting nuclei entering the nucleo-synthesis pp-chain [1, 2]. Neutron and proton removal reactions have been used in the past twenty years to probe the single-particle structure of exotic nuclei. The core parallel-momentum distribution can give information on the angular momentum and spin of the nucleon initial state while the total removal cross section is sensitive to the asymptotic part of the initial wave function and also to the reaction mechanism. Because knockout is a peripheral reaction from which the Asymptotic Normalization Constant (ANC) of the single-particle wave function can be extracted, it has been used as an indirect method to obtain the rate of reactions like {sup 8}B(p,γ){sup 9}C or {sup 7}Be(p,γ){sup 8}B. Nucleon removal has recently been applied by the HiRA collaboration [3] to situations in which the remaining “core” is beyond the drip line, such as {sup 8}C and {sup 6}Be, unbound by one or more protons, and whose excitation-energy spectrum can be obtained by the invariant-mass method. By gating on the ground-state peak, “core” parallel-momentum distributions and total knockout cross sections have been obtained similar to previous studies with well-bound “cores”. In addition for each projectile, knock out to final bound states has also been obtained in several cases. We will report on the theoretical description and comparison to this experimental data for a few cases for which advances in the accuracy of the transfer-to-the continuum model [4, 5] have been made [6]. These include the use, when available, of “ab-initio” overlaps for the initial state [7] and in particular their ANC values [8]. Also, the construction of a nucleus-target folding potential for the treatment of the core-target S-matrix [9] using for the cores “ab-initio” densities [10] and state-of-the-art n−{sup 9}Be optical

  5. Elevated progranulin contributes to synaptic and learning deficit due to loss of fragile X mental retardation protein.

    Science.gov (United States)

    Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao

    2017-12-01

    Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Mu-opioid receptor knockout mice show diminished food-anticipatory activity

    NARCIS (Netherlands)

    Kas, Martien J H; van den Bos, Ruud; Baars, Annemarie M; Lubbers, Marianne; Lesscher, Heidi M B; Hillebrand, Jacquelien J G; Schuller, Alwin G; Pintar, John E; Spruijt, Berry M

    We have previously suggested that during or prior to activation of anticipatory behaviour to a coming reward, mu-opioid receptors are activated. To test this hypothesis schedule induced food-anticipatory activity in mu-opioid receptor knockout mice was measured using running wheels. We hypothesized

  7. Pion-induced knock-out reactions

    International Nuclear Information System (INIS)

    Jain, B.K.; Phatak, S.C.

    1977-01-01

    A strong absorption model for pion-induced Knock-out reactions is proposed. The distortion of the in-coming and out-going pions has been included by (1) computing pion wave number in nuclear medium (dispersive effect) and (2) excluding the central region of the nucleus where the real pion-absorption is dominant (absorption effect). In order to study the dependence of the (π + π + p) reaction on the off-shell pion-nucleon t-matrix, different off-shell extrapolations are used. The magnitude of the cross-sections seems to be sensitive to the type of off-shell extrapolation; their shapes, however, are similar. The theoretical results are compared with experimental data. The agreement between the theoretical results for separable off-shell extrapolation and the data is good. (author)

  8. Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-γ-knockout (CM-PGKO mice.

    Directory of Open Access Journals (Sweden)

    Michelangela Barbieri

    Full Text Available Understanding the molecular regulatory mechanisms controlling for myocardial lipid metabolism is of critical importance for the development of new therapeutic strategies for heart diseases. The role of PPARγ and thiazolidinediones in regulation of myocardial lipid metabolism is controversial. The aim of our study was to assess the role of PPARγ on myocardial lipid metabolism and function and differentiate local/from systemic actions of PPARs agonists using cardiomyocyte-specific PPARγ -knockout (CM-PGKO mice. To this aim, the effect of PPARγ, PPARγ/PPARα and PPARα agonists on cardiac function, intra-myocyte lipid accumulation and myocardial expression profile of genes and proteins, affecting lipid oxidation, uptake, synthesis, and storage (CD36, CPT1MIIA, AOX, FAS, SREBP1-c and ADPR was evaluated in cardiomyocyte-specific PPARγ-knockout (CM-PGKO and littermate control mice undergoing standard and high fat diet (HFD. At baseline, protein levels and mRNA expression of genes involved in lipid uptake, oxidation, synthesis, and accumulation of CM-PGKO mice were not significantly different from those of their littermate controls. At baseline, no difference in myocardial lipid content was found between CM-PGKO and littermate controls. In standard condition, pioglitazone and rosiglitazone do not affect myocardial metabolism while, fenofibrate treatment significantly increased CD36 and CPT1MIIA gene expression. In both CM-PGKO and control mice submitted to HFD, six weeks of treatment with rosiglitazone, fenofibrate and pioglitazone lowered myocardial lipid accumulation shifting myocardial substrate utilization towards greater contribution of glucose. In conclusion, at baseline, PPARγ does not play a crucial role in regulating cardiac metabolism in mice, probably due to its low myocardial expression. PPARs agonists, indirectly protect myocardium from lipotoxic damage likely reducing fatty acids delivery to the heart through the actions on adipose

  9. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.

    Science.gov (United States)

    Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui

    2015-09-01

    Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron

  10. Backbone resonance assignments for G protein α(i3) subunit in the GDP-bound state.

    Science.gov (United States)

    Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio

    2014-10-01

    Guanine-nucleotide binding proteins (G proteins) serve as molecular switches in signaling pathways, by coupling the activation of G protein-coupled receptors (GPCRs) at the cell surface to intracellular responses. In the resting state, G protein forms a heterotrimer, consisting of the G protein α subunit with GDP (Gα·GDP) and the G protein βγ subunit (Gβγ). Ligand binding to GPCRs promotes the GDP-GTP exchange on Gα, leading to the dissociation of the GTP-bound form of Gα (Gα·GTP) and Gβγ. Then, Gα·GTP and Gβγ bind to their downstream effector enzymes or ion channels and regulate their activities, leading to a variety of cellular responses. Finally, Gα hydrolyzes the bound GTP to GDP and returns to the resting state by re-associating with Gβγ. The G proteins are classified with four major families based on the amino acid sequences of Gα: i/o, s, q/11, and 12/13. Here, we established the backbone resonance assignments of human Gαi3, a member of the i/o family with a molecular weight of 41 K, in complex with GDP. The chemical shifts were compared with those of Gα(i3) in complex with a GTP-analogue, GTPγS, which we recently reported, indicating that the residues with significant chemical shift differences are mostly consistent with the regions with the structural differences between the GDP- and GTPγS-bound states, as indicated in the crystal structures. The assignments of Gα(i3)·GDP would be useful for the analyses of the dynamics of Gα(i3) and its interactions with various target molecules.

  11. An In Silico Knockout Model for Gastrointestinal Absorption Using a Systems Pharmacology Approach - Development and Application for Ketones.

    Directory of Open Access Journals (Sweden)

    Vittal Shivva

    Full Text Available Gastrointestinal absorption and disposition of ketones is complex. Recent work describing the pharmacokinetics (PK of d-β-hydroxybutyrate (BHB following oral ingestion of a ketone monoester ((R-3-hydroxybutyl (R-3-hydroxybutyrate found multiple input sites, nonlinear disposition and feedback on endogenous production. In the current work, a human systems pharmacology model for gastrointestinal absorption and subsequent disposition of small molecules (monocarboxylic acids with molecular weight < 200 Da was developed with an application to a ketone monoester. The systems model was developed by collating the information from the literature and knowledge gained from empirical population modelling of the clinical data. In silico knockout variants of this systems model were used to explore the mechanism of gastrointestinal absorption of ketones. The knockouts included active absorption across different regions in the gut and also a passive diffusion knockout, giving 10 gut knockouts in total. Exploration of knockout variants has suggested that there are at least three distinct regions in the gut that contribute to absorption of ketones. Passive diffusion predominates in the proximal gut and active processes contribute to the absorption of ketones in the distal gut. Low doses are predominantly absorbed from the proximal gut by passive diffusion whereas high doses are absorbed across all sites in the gut. This work has provided mechanistic insight into the absorption process of ketones, in the form of unique in silico knockouts that have potential for application with other therapeutics. Future studies on absorption process of ketones are suggested to substantiate findings in this study.

  12. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice

    International Nuclear Information System (INIS)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-01-01

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN +/− mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN −/− mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN −/− mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN −/− mice were generated using TALEN technique. • TPRN −/− mice presented progressive hearing loss. • WT and TPRN −/− mice showed no difference in hair cell numbers. • TPRN −/− mice showed progressive degeneration of hair cell stereocilia.

  14. Intradermal Immunization of Leishmania donovani Centrin Knock-Out Parasites in Combination with Salivary Protein LJM19 from Sand Fly Vector Induces a Durable Protective Immune Response in Hamsters.

    Directory of Open Access Journals (Sweden)

    Jacqueline Araújo Fiuza

    2016-01-01

    Full Text Available Visceral leishmaniasis (VL is a neglected tropical disease and is fatal if untreated. There is no vaccine available against leishmaniasis. The majority of patients with cutaneous leishmaniasis (CL or VL develop a long-term protective immunity after cure from infection, which indicates that development of an effective vaccine against leishmaniasis is possible. Such protection may also be achieved by immunization with live attenuated parasites that do not cause disease. We have previously reported a protective response in mice, hamsters and dogs with Leishmania donovani centrin gene knock-out parasites (LdCen-/-, a live attenuated parasite with a cell division specific centrin1 gene deletion. In this study we have explored the effects of salivary protein LJM19 as an adjuvant and intradermal (ID route of immunization on the efficacy of LdCen-/- parasites as a vaccine against virulent L. donovani.To explore the potential of a combination of LdCen-/- parasites and salivary protein LJM19 as vaccine antigens, LdCen-/- ID immunization followed by ID challenge with virulent L. donovani were performed in hamsters in a 9-month follow up study. We determined parasite burden (serial dilution, antibody production (ELISA and cytokine expression (qPCR in these animals. Compared to controls, animals immunized with LdCen-/- + LJM19 induced a strong antibody response, a reduction in spleen and liver parasite burden and a higher expression of pro-inflammatory cytokines after immunization and one month post-challenge. Additionally, a low parasite load in lymph nodes, spleen and liver, and a non-inflamed spleen was observed in immunized animals 9 months after the challenge infection.Our results demonstrate that an ID vaccination using LdCen-/-parasites in combination with sand fly salivary protein LJM19 has the capability to confer long lasting protection against visceral leishmaniasis that is comparable to intravenous or intracardial immunization.

  15. A STAT-1 knockout mouse model for Machupo virus pathogenesis

    Directory of Open Access Journals (Sweden)

    Shurtleff Amy C

    2011-06-01

    Full Text Available Abstract Background Machupo virus (MACV, a member of the Arenaviridae, causes Bolivian hemorrhagic fever, with ~20% lethality in humans. The pathogenesis of MACV infection is poorly understood, and there are no clinically proven treatments for disease. This is due, in part, to a paucity of small animal models for MACV infection in which to discover and explore candidate therapeutics. Methods Mice lacking signal transducer and activator of transcription 1 (STAT-1 were infected with MACV. Lethality, viral replication, metabolic changes, hematology, histopathology, and systemic cytokine expression were analyzed throughout the course of infection. Results We report here that STAT-1 knockout mice succumbed to MACV infection within 7-8 days, and presented some relevant clinical and histopathological manifestations of disease. Furthermore, the model was used to validate the efficacy of ribavirin in protection against infection. Conclusions The STAT-1 knockout mouse model can be a useful small animal model for drug testing and preliminary immunological analysis of lethal MACV infection.

  16. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Science.gov (United States)

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  17. Herpes simplex virus type 1 tegument protein VP22 interacts with TAF-I proteins and inhibits nucleosome assembly but not regulation of histone acetylation by INHAT.

    Science.gov (United States)

    van Leeuwen, Hans; Okuwaki, Mitsuru; Hong, Rui; Chakravarti, Debabrata; Nagata, Kyosuke; O'Hare, Peter

    2003-09-01

    Affinity chromatography was used to identify cellular proteins that interact with the herpes simplex virus (HSV) tegument protein VP22. Among a small set of proteins that bind specifically to VP22, we identified TAF-I (template-activating factor I), a chromatin remodelling protein and close homologue of the histone chaperone protein NAP-1. TAF-I has been shown previously to promote more ordered transfer of histones to naked DNA through a direct interaction with histones. TAF-I, as a subunit of the INHAT (inhibitor of acetyltransferases) protein complex, also binds to histones and masks them from being substrates for the acetyltransferases p300 and PCAF. Using in vitro assays for TAF-I activity in chromatin assembly, we show that VP22 inhibits nucleosome deposition on DNA by binding to TAF-I. We also observed that VP22 binds non-specifically to DNA, an activity that is abolished by TAF-I. However, the presence of VP22 does not affect the property of INHAT in inhibiting the histone acetyltransferase activity of p300 or PCAF in vitro. We speculate that this interaction could be relevant to HSV DNA organization early in infection, for example, by interfering with nucleosomal deposition on the genome. Consistent with this possibility was the observation that overexpression of TAF-I in transfected cells interferes with the progression of HSV-1 infection.

  18. Interactions of rat repetitive sequence MspI8 with nuclear matrix proteins during spermatogenesis

    International Nuclear Information System (INIS)

    Rogolinski, J.; Widlak, P.; Rzeszowska-Wolny, J.

    1996-01-01

    Using the Southwestern blot analysis we have studied the interactions between rat repetitive sequence MspI8 and the nuclear matrix proteins of rats testis cells. Starting from 2 weeks the young to adult animal showed differences in type of testis nuclear matrix proteins recognizing the MspI8 sequence. The same sets of nuclear matrix proteins were detected in some enriched in spermatocytes and spermatids and obtained after fractionation of cells of adult animal by the velocity sedimentation technique. (author). 21 refs, 5 figs

  19. Hippocampal synapsin I, growth-associated protein-43, and microtubule-associated protein-2 immunoreactivity in learned helplessness rats and antidepressant-treated rats.

    Science.gov (United States)

    Iwata, M; Shirayama, Y; Ishida, H; Kawahara, R

    2006-09-01

    Learned helplessness rats are thought to be an animal model of depression. To study the role of synapse plasticity in depression, we examined the effects of learned helplessness and antidepressant treatments on synapsin I (a marker of presynaptic terminals), growth-associated protein-43 (GAP-43; a marker of growth cones), and microtubule-associated protein-2 (MAP-2; a marker of dendrites) in the hippocampus by immunolabeling. (1) Learned helplessness rats showed significant increases in the expression of synapsin I two days after the attainment of learned helplessness, and significant decreases in the protein expression eight days after the achievement of learned helplessness. Subchronic treatment of naïve rats with imipramine or fluvoxamine significantly decreased the expression of synapsin I. (2) Learned helplessness increased the expression of GAP-43 two days and eight days after learned helplessness training. Subchronic treatment of naïve rats with fluvoxamine but not imipramine showed a tendency to decrease the expression of synapsin I. (3) Learned helplessness rats showed increased expression of MAP-2 eight days after the attainment of learned helplessness. Naïve rats subchronically treated with imipramine showed a tendency toward increased expression of MAP-2, but those treated with fluvoxamine did not. These results indicate that the neuroplasticity-related proteins synapsin I, GAP-43, and MAP-2 may play a role in the pathophysiology of depression and the mechanisms of antidepressants.

  20. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    International Nuclear Information System (INIS)

    Paterson, Neil G.; Riboldi-Tunicliffe, Alan; Mitchell, Timothy J.; Isaacs, Neil W.

    2006-01-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γ = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V M = 2.77 Å 3 Da −1 ) and shows a diffraction limit of 3.5 Å

  1. Overexpression, purification and crystallization of a choline-binding protein CbpI from Streptococcus pneumoniae

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Neil G., E-mail: neison@chem.gla.ac.uk; Riboldi-Tunicliffe, Alan [Department of Chemistry and WestCHEM, Glasgow Biomedical Research Centre (GBRC), University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom); Mitchell, Timothy J. [Division of Infection and Immunity (IBLS), Glasgow Biomedical Research Centre (GBRC), University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom); Isaacs, Neil W. [Department of Chemistry and WestCHEM, Glasgow Biomedical Research Centre (GBRC), University of Glasgow, 120 University Place, Glasgow G12 8TA,Scotland (United Kingdom)

    2006-07-01

    The choline-binding protein CbpI from S. pneumoniae has been purified and crystallized and diffraction data have been collected to 3.5 Å resolution. The choline-binding protein CbpI from Streptococcus pneumoniae is a 23.4 kDa protein with no known function. The protein has been successfully purified initially using Ni–NTA chromatography and to homogeneity using Q-Sepharose ion-exchange resin as an affinity column. CbpI was crystallized using PEG 3350 as a precipitant and X-ray crystallographic analysis showed that the crystals belonged to the tetragonal space group P4, with unit-cell parameters a = b = 83.31, c = 80.29 Å, α = β = γ = 90°. The crystal contains two molecules in the asymmetric unit with a solvent content of 55.7% (V{sub M} = 2.77 Å{sup 3} Da{sup −1}) and shows a diffraction limit of 3.5 Å.

  2. Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets.

    Science.gov (United States)

    Reimand, Jüri; Vaquerizas, Juan M; Todd, Annabel E; Vilo, Jaak; Luscombe, Nicholas M

    2010-08-01

    Transcription factor (TF) perturbation experiments give valuable insights into gene regulation. Genome-scale evidence from microarray measurements may be used to identify regulatory interactions between TFs and targets. Recently, Hu and colleagues published a comprehensive study covering 269 TF knockout mutants for the yeast Saccharomyces cerevisiae. However, the information that can be extracted from this valuable dataset is limited by the method employed to process the microarray data. Here, we present a reanalysis of the original data using improved statistical techniques freely available from the BioConductor project. We identify over 100,000 differentially expressed genes-nine times the total reported by Hu et al. We validate the biological significance of these genes by assessing their functions, the occurrence of upstream TF-binding sites, and the prevalence of protein-protein interactions. The reanalysed dataset outperforms the original across all measures, indicating that we have uncovered a vastly expanded list of relevant targets. In summary, this work presents a high-quality reanalysis that maximizes the information contained in the Hu et al. compendium. The dataset is available from ArrayExpress (accession: E-MTAB-109) and it will be invaluable to any scientist interested in the yeast transcriptional regulatory system.

  3. PrPC displays an essential protective role from oxidative stress in an astrocyte cell line derived from PrPC knockout mice

    International Nuclear Information System (INIS)

    Bertuchi, Fernanda R.; Bourgeon, Dominique M.G.; Landemberger, Michele C.; Martins, Vilma R.; Cerchiaro, Giselle

    2012-01-01

    Highlights: ► PrP C in solution acts as a radical scavenger. ► PrP C reduces hydrogen peroxide toxicity in astrocytes. ► Increase in ROS disrupted the cell cycle in the PrP C -knockout astrocytes. ► PrP C prevents the cell death independently of an SOD-like activity. -- Abstract: The PrP C protein, which is especially present in the cellular membrane of nervous system cells, has been extensively studied for its controversial antioxidant activity. In this study, we elucidated the free radical scavenger activity of purified murine PrP C in solution and its participation as a cell protector in astrocytes that were subjected to treatment with an oxidant. In vitro and using an EPR spin-trapping technique, we observed that PrP C decreased the oxidation of the DMPO trap in a Fenton reaction system (Cu 2+ /ascorbate/H 2 O 2 ), which was demonstrated by approximately 70% less DMPO/OH · . In cultured PrP C -knockout astrocytes from mice, the absence of PrP C caused an increase in intracellular ROS (reactive oxygen species) generation during the first 3 h of H 2 O 2 treatment. This rapid increase in ROS disrupted the cell cycle in the PrP C -knockout astrocytes, which increased the population of cells in the sub-G1 phase when compared with cultured wild-type astrocytes. We conclude that PrP C in solution acts as a radical scavenger, and in astrocytes, it is essential for protection from oxidative stress caused by an external chemical agent, which is a likely condition in human neurodegenerative CNS disorders and pathological conditions such as ischemia.

  4. Experimental and clinical studies on simultaneous fat and protein tolerance digestion-absorption test using 131I-triolein and 125I-RISA

    International Nuclear Information System (INIS)

    Tokura, Yasunobu

    1979-01-01

    Simultaneous fat and protein tolerance digestion-absorption test using 131 I-triolein and 125 I-RISA was investigated experimentally in rats and clinically in 148 inpatients with various diseases. The results were as follows: Animal experiments. Fat absorption was markedly impaired in the exclusion of bile from the intestine. Each function of fat and protein absorption was independently detected. These animal experiments gave the clinical evaluation of this test for fat and protein digestion-absorption function. Clinical investigations. The test meal was prepared without using commercial Tween 80 as an emulgent. Either fat or protein absorption was markedly impaired in some patients with various diseases. Inpatients with various diseases investigated were divided into 3 groups by correlation coefficient between fecal excretion ratios of fat and protein. Each function of fat and protein digestion-absorption was able to be detected independently by this test simultaneously. This test can further be used as a labolatory aid in evaluating fat and protein digestion-absorption function in patients with malabsorption syndrome. (author)

  5. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of <i>Sclerotinia sclerotiorumi>

    DEFF Research Database (Denmark)

    Yang, Guogen; Tang, Liguang; Gong, Yingdi

    2018-01-01

    in the apoplast to facilitate infection by S. sclerotiorum. Overexpressing PR1 enhanced resistance to the wild-type strain, but not to the Sscp1 knockout strain of S. sclerotiorum. Sscp1-expressing transgenic plants showed increased concentrations of salicylic acid (SA) and higher levels of resistance to several...

  6. Proton-induced $\\alpha$-cluster knockout from $^{12}$C

    CERN Document Server

    Cowley, A A; Förtsch, S V; Buthelezi, E Z; Neveling, R; Smit, F D; Steyn, G F; van Zyl, J J

    2010-01-01

    Results of a study of the (p, p ) reaction on 12C with polarized incident protons of 100 MeV are reviewed. Experimental cross section and analyzing power distributions are compared with predictions of a distorted wave impulse approximation (DWIA) theory. The theory reproduces the data reasonably well, suggesting that a quasifree knockout mechanism dominates the reaction. Spectroscopic information extracted from the cross section data is in agreement with a shell model prediction.

  7. Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model.

    Science.gov (United States)

    Brunetti, Dario; Dusi, Sabrina; Morbin, Michela; Uggetti, Andrea; Moda, Fabio; D'Amato, Ilaria; Giordano, Carla; d'Amati, Giulia; Cozzi, Anna; Levi, Sonia; Hayflick, Susan; Tiranti, Valeria

    2012-12-15

    Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.

  8. Inulin-125I-tyramine, an improved residualizing label for studies on sites of catabolism of circulating proteins

    International Nuclear Information System (INIS)

    Maxwell, J.L.; Baynes, J.W.; Thorpe, S.R.

    1988-01-01

    Residualizing labels for protein, such as dilactitol-125I-tyramine (125I-DLT) and cellobiitol-125I-tyramine, have been used to identify the tissue and cellular sites of catabolism of long-lived plasma proteins, such as albumin, immunoglobulins, and lipoproteins. The radioactive degradation products formed from labeled proteins are relatively large, hydrophilic, resistant to lysosomal hydrolases, and accumulate in lysosomes in the cells involved in degradation of the carrier protein. However, the gradual loss of the catabolites from cells (t1/2 approximately 2 days) has limited the usefulness of residualizing labels in studies on longer lived proteins. We describe here a higher molecular weight (Mr approximately 5000), more efficient residualizing glycoconjugate label, inulin-125I-tyramine (125I-InTn). Attachment of 125I-InTn had no effect on the plasma half-life or tissue sites of catabolism of asialofetuin, fetuin, or rat serum albumin in the rat. The half-life for hepatic retention of degradation products from 125I-InTn-labeled asialofetuin was 5 days, compared to 2.3 days for 125I-DLT-labeled asialofetuin. The whole body half-lives for radioactivity from 125I-InTn-, 125I-DLT-, and 125I-labeled rat serum albumin were 7.5, 4.3, and 2.2 days, respectively. The tissue distribution of degradation products from 125I-InTn-labeled proteins agreed with results of previous studies using 125I-DLT, except that a greater fraction of total degradation products was recovered in tissues. Kinetic analyses indicated that the average half-life for retention of 125I-InTn degradation products in tissues is approximately 5 days and suggested that in vivo there are both slow and rapid routes for release of degradation products from cells

  9. Structure around the island of inversion with single-neutron knockout reactions at GANIL

    CERN Document Server

    Fernández-Domínguez, B; Patterson, N; Thomas, J S; Orr, N; Chartier, M; Catford, W; Achouri, N L; Angélique, J-C; Ashwood, N I; Banu, A; Bastin,B; Brown, J; Borcea, R; Franchoo, S; Freer, M; Gaudefroy, L; Laurent, B; Labiche, M; Lemmon, R C; Negoita, F; Paschalis, S; Paul, E S; Petri, M; Roussel-Chomaz, P; Staniou, M; Taylor, M J; Trache, L

    2010-01-01

    The nuclear structure of the 31Mg nucleus has been studied with the singleneutron knockout reaction. We report on the preliminary results of an experiment performed with the EXOGAM array coupled, for the first time, to the SPEG spectrometer at GANIL.We present a provisional result for the inclusive single-neutron knockout cross section of σinc= 90(5) mb. Preliminary exclusive cross sections for the measured bound states, including the ground state, are also presented. Finally, preliminary longitudinal momentum distributions for the ground state and first excited state are also shown. These results are compared to Monte Carlo Shell-Model calculations in the sd-pf region.

  10. Two-proton knockout on neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bazin, D.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Enders, J.; Gade, A.; Glasmacher, T.; Hansen, P.G.; Mueller, W.F.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Tostevin, J.A.

    2004-01-01

    Two-proton knockout reactions on neutron-rich nuclei [Phys. Rev. Lett. 91 (2003) 012501] have been studied in inverse kinematics at intermediate energy. Strong evidence that the two-proton removal from a neutron-rich system proceeds as a direct reaction is presented, together with a preliminary theoretical discussion of the partial cross sections based on eikonal reaction theory and the many-body shell model. They show that this reaction can be used to characterize the wave functions of the projectiles and holds great promise for the study of neutron-rich nuclei

  11. The Xanthomonas Ax21 protein is processed by the general secretory system and is secreted in association with outer membrane vesicles

    Directory of Open Access Journals (Sweden)

    Ofir Bahar

    2014-01-01

    Full Text Available Pattern recognition receptors (PRRs play an important role in detecting invading pathogens and mounting a robust defense response to restrict infection. In rice, one of the best characterized PRRs is XA21, a leucine rich repeat receptor-like kinase that confers broad-spectrum resistance to multiple strains of the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo. In 2009 we reported that an Xoo protein, called Ax21, is secreted by a type I-secretion system and that it serves to activate XA21-mediated immunity. This report has recently been retracted. Here we present data that corrects our previous model. We first show that Ax21 secretion does not depend on the predicted type I secretion system and that it is processed by the general secretion (Sec system. We further show that Ax21 is an outer membrane protein, secreted in association with outer membrane vesicles. Finally, we provide data showing that ax21 knockout strains do not overcome XA21-mediated immunity.

  12. Renal, metabolic, and hormonal responses to proteins of different origin in normotensive, nonproteinuric type I diabetic patients.

    Science.gov (United States)

    Kontessis, P A; Bossinakou, I; Sarika, L; Iliopoulou, E; Papantoniou, A; Trevisan, R; Roussi, D; Stipsanelli, K; Grigorakis, S; Souvatzoglou, A

    1995-09-01

    Whether the differences in renal function found in vegetarian compared with omnivorous subjects are related to quantity or quality of the protein is unknown. We have studied the renal function of nine normotensive, nonproteinuric type I diabetic patients who were fed in random order for 4 weeks either an animal protein diet (APD) (protein intake 1.1 g . kg-1 . day-1) or a vegetable protein diet VPD (protein intake 0.95 g . kg-1 . day-1). The two diets were isocaloric. In a crossover study, we measured glomerular filtration rate (GFR) (inulin clearance), renal plasma flow (RPF) (p-aminohippurate clearance), plasma amino acids, growth hormone, glucagon, insulin-like growth factor I-(IGF-I), and microalbuminuria. GFR and RPF were lower with the VPD than with the APD (89.9 +/- 4.1 vs. 105.6 +/- 5.1 ml . min-1 . 1.73 m-2, P protein intake in normotensive type I diabetic patients. This could be explained partly by differences in plasma concentrations of amino acids and IGF-I.

  13. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Raymond, R. E.; Evans, K. M.

    2012-01-01

    CH2M Hill Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material)

  14. Homozygous premature truncation of the HERG protein : the human HERG knockout

    NARCIS (Netherlands)

    Hoorntje, T.; Alders, M.; van Tintelen, P.; van der Lip, K.; Sreeram, N.; van der Wal, A.; Mannens, M.; Wilde, A.

    1999-01-01

    Background-In long-QT syndrome (LQTS), heterozygosity for a mutation in 1 of the K(+) channel genes leads to prolongation of the cardiac action potential, because the aberrant protein exhibits "loss of function." HERG, which is involved in LQT2, is the gene encoding the rapid component of the

  15. Less is More: unveiling the functional core of hematopoietic stem cells through knockout mice

    Science.gov (United States)

    Rossi, Lara; Lin, Kuanyin K.; Boles, Nathan C.; Yang, Liubin; King, Katherine Y.; Jeong, Mira; Mayle, Allison; Goodell, Margaret A.

    2012-01-01

    Summary Hematopoietic stem cells (HSCs) represent one of the first recognized somatic stem cells. As such, nearly 200 genes have been examined for roles in HSC function in knockout mice. In this review, we compile the majority of these reports to provide a broad overview of the functional modules revealed by these genetic analyses and highlight some key regulatory pathways involved, including cell cycle control, TGF-β signaling, Pten/AKT signaling, Wnt signaling, and cytokine signaling. Finally, we propose recommendations for characterization of HSC function in knockout mice to facilitate cross-study comparisons that would generate a more cohesive picture of HSC biology. In the field of design, the minimalist movement stripped down buildings and objects to their most basic features, a sentiment that architect Ludwig Mies van der Rohe summarized in his motto “less is more”. By depleting HSCs of specific genes, knockout studies transpose the minimalist approach into research biology, providing insights into the essential core of genetic features that is indispensable for a well-functioning hematopoietic system. PMID:22958929

  16. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    Science.gov (United States)

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.

  17. Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex.

    Science.gov (United States)

    Ventura, R; Pascucci, T; Catania, M V; Musumeci, S A; Puglisi-Allegra, S

    2004-09-01

    Fragile X syndrome is an X-linked form of mental retardation including, among others, symptoms such as stereotypic behaviour, hyperactivity, hyperarousal, and cognitive deficits. We hypothesized that hyperactivity and/or compromised attentional, cognitive functions may lead to impaired performance in cognitive tasks in Fmr1 knockout mice, the most widely used animal model of fragile X syndrome, and suggested that psychostimulant treatment may improve performance by acting on one or both components. Since hyperactivity and cognitive functions have been suggested to depend on striatal and prefrontal cortex dopaminergic dysfunction, we assessed whether amphetamine produced beneficial, positive effects by acting on dopaminergic corticostriatal systems. Our results show that Fmr1 knockout mice are not able to discriminate between a familiar object and a novel one in the object recognition test, thus showing a clear-cut cognitive impairment that, to date, has been difficult to demonstrate in other cognitive tasks. Amphetamine improved performance of Fmr1 knockout mice, leading to enhanced ability to discriminate novel versus familiar objects, without significantly affecting locomotor activity. In agreement with behavioural data, amphetamine produced a greater increase in dopamine release in the prefrontal cortex of Fmr1 knockout compared with the wild-type mice, while a weak striatal dopaminergic response was observed in Fmr1 knockout mice. Our data support the view that the psychostimulant ameliorates performance in Fmr1 knockout mice by improving merely cognitive functions through its action on prefrontal cortical dopamine, irrespective of its action on motor hyperactivity. These results indicate that prefrontal cortical dopamine plays a major role in cognitive impairments characterizing Fmr1 knockout mice, thus pointing to an important aetiological factor in the fragile X syndrome.

  18. Mechanism of Protein Denaturation: Partial Unfolding of the P22 Coat Protein I-Domain by Urea Binding

    Science.gov (United States)

    Newcomer, Rebecca L.; Fraser, LaTasha C.R.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2015-01-01

    The I-domain is an insertion domain of the bacteriophage P22 coat protein that drives rapid folding and accounts for over half of the stability of the full-length protein. We sought to determine the role of hydrogen bonds (H-bonds) in the unfolding of the I-domain by examining 3JNC’ couplings transmitted through H-bonds, the temperature and urea-concentration dependence of 1HN and 15N chemical shifts, and native-state hydrogen exchange at urea concentrations where the domain is predominantly folded. The native-state hydrogen-exchange data suggest that the six-stranded β-barrel core of the I-domain is more stable against unfolding than a smaller subdomain comprised of a short α-helix and three-stranded β-sheet. H-bonds, separately determined from solvent protection and 3JNC’ H-bond couplings, are identified with an accuracy of 90% by 1HN temperature coefficients. The accuracy is improved to 95% when 15N temperature coefficients are also included. In contrast, the urea dependence of 1HN and 15N chemical shifts is unrelated to H-bonding. The protein segments with the largest chemical-shift changes in the presence of urea show curved or sigmoidal titration curves suggestive of direct urea binding. Nuclear Overhauser effects to urea for these segments are also consistent with specific urea-binding sites in the I-domain. Taken together, the results support a mechanism of urea unfolding in which denaturant binds to distinct sites in the I-domain. Disordered segments bind urea more readily than regions in stable secondary structure. The locations of the putative urea-binding sites correlate with the lower stability of the structure against solvent exchange, suggesting that partial unfolding of the structure is related to urea accessibility. PMID:26682823

  19. Knock-Outs, Stick-Outs, Cut-Outs: Clipping Paths Separate Objects from Background.

    Science.gov (United States)

    Wilson, Bradley

    1998-01-01

    Outlines a six-step process that allows computer operators, using Photoshop software, to create "knock-outs" to precisely define the path that will serve to separate the object from the background. (SR)

  20. Acute secondhand smoke-induced pulmonary inflammation is diminished in RAGE knockout mice.

    Science.gov (United States)

    Wood, Tyler T; Winden, Duane R; Marlor, Derek R; Wright, Alex J; Jones, Cameron M; Chavarria, Michael; Rogers, Geraldine D; Reynolds, Paul R

    2014-11-15

    The receptor for advanced glycation end-products (RAGE) has increasingly been demonstrated to be an important modulator of inflammation in cases of pulmonary disease. Published reports involving tobacco smoke exposure have demonstrated increased expression of RAGE, its participation in proinflammatory signaling, and its role in irreversible pulmonary remodeling. The current research evaluated the in vivo effects of short-term secondhand smoke (SHS) exposure in RAGE knockout and control mice compared with identical animals exposed to room air only. Quantitative PCR, immunoblotting, and immunohistochemistry revealed elevated RAGE expression in controls after 4 wk of SHS exposure and an anticipated absence of RAGE expression in RAGE knockout mice regardless of smoke exposure. Ras activation, NF-κB activity, and cytokine elaboration were assessed to characterize the molecular basis of SHS-induced inflammation in the mouse lung. Furthermore, bronchoalveolar lavage fluid was procured from RAGE knockout and control animals for the assessment of inflammatory cells and molecules. As a general theme, inflammation coincident with leukocyte recruitment was induced by SHS exposure and significantly influenced by the availability of RAGE. These data reveal captivating information suggesting a role for RAGE signaling in lungs exposed to SHS. However, ongoing research is still warranted to fully explain roles for RAGE and other receptors in cells coping with involuntary smoke exposure for prolonged periods of time. Copyright © 2014 the American Physiological Society.

  1. High-resolution structure of the recombinant sweet-tasting protein thaumatin I

    International Nuclear Information System (INIS)

    Masuda, Tetsuya; Ohta, Keisuke; Mikami, Bunzo; Kitabatake, Naofumi

    2011-01-01

    The structure of a recombinant form of the sweet-tasting protein thaumatin I was determined at 1.1 Å resolution and refined to an R work of 9.1% and an R free of 11.7%. Comparisons with plant thaumatin revealed the electron density of recombinant thaumatin I to be significantly improved, especially around Asn46 and Ser63. Thaumatin, an intensely sweet-tasting plant protein, elicits a sweet taste at a concentration of 50 nM. The crystal structure of a recombinant form of thaumatin I produced in the yeast Pichia pastoris has been determined to a resolution of 1.1 Å. The model was refined with anisotropic B parameters and riding H atoms. A comparison of the diffraction data and refinement statistics for recombinant thaumatin I with those for plant thaumatin I revealed no significant differences in the diffraction data. The R values for recombinant thaumatin I and plant thaumatin I (F o > 4σ) were 9.11% and 9.91%, respectively, indicating the final model to be of good quality. Notably, the electron-density maps around Asn46 and Ser63, which differ between thaumatin variants, were significantly improved. Furthermore, a number of H atoms became visible in an OMIT map and could be assigned. The high-quality structure of recombinant thaumatin with H atoms should provide details about sweetness determinants in thaumatin and provide valuable insights into the mechanism of its interaction with taste receptors

  2. Universal statistics of the knockout tournament

    Science.gov (United States)

    Baek, Seung Ki; Yi, Il Gu; Park, Hye Jin; Kim, Beom Jun

    2013-11-01

    We study statistics of the knockout tournament, where only the winner of a fixture progresses to the next. We assign a real number called competitiveness to each contestant and find that the resulting distribution of prize money follows a power law with an exponent close to unity if the competitiveness is a stable quantity and a decisive factor to win a match. Otherwise, the distribution is found narrow. The existing observation of power law distributions in various kinds of real sports tournaments therefore suggests that the rules of those games are constructed in such a way that it is possible to understand the games in terms of the contestants' inherent characteristics of competitiveness.

  3. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuehai [Cardiovascular Department, Liaocheng People’s Hospital of Shandong University, Liaocheng, Shandong 252000 (China); Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lu, Huixia [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Huang, Ziyang, E-mail: huangziyang666@126.com [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Huili [Cardiovascular Department, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lei, Zhenmin [Department of OB/GYN, University of Louisville School of Medicine, Louisville, KY 40292 (United States); Chen, Xiaoqing [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Tang, Mengxiong; Gao, Fei; Dong, Mei [The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012 (China); Li, Rongda [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China); Lin, Ling, E-mail: qzlinl@163.com [Department of Rheumatism and Immunology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian 362000 (China)

    2014-07-18

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • The spleen weights and glomerular areas were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE{sup −/−} and Fas{sup −/−} mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE{sup −/−} mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE{sup −/−}) mice is a classic model of atherosclerosis. We have found that ApoE{sup −/−} mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE{sup −/−} mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE{sup −/−}, Fas{sup −/−} and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas{sup −/−} mice, a model of systemic lupus erythematosus (SLE), ApoE{sup −/−} mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE{sup −/−} mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE{sup −/−} mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta.

  4. Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

    International Nuclear Information System (INIS)

    Wang, Yuehai; Lu, Huixia; Huang, Ziyang; Lin, Huili; Lei, Zhenmin; Chen, Xiaoqing; Tang, Mengxiong; Gao, Fei; Dong, Mei; Li, Rongda; Lin, Ling

    2014-01-01

    Highlights: • Titers of ANA and anti-dsDNA antibodies were similar in ApoE −/− and Fas −/− mice. • The spleen weights and glomerular areas were similar in ApoE −/− and Fas −/− mice. • Expressions of IgG and C3 in glomeruli were similar in ApoE −/− and Fas −/− mice. • IgG, C3 and macrophage infiltration in aortic plaques were found in ApoE −/− mice. - Abstract: Background: Apolipoprotein E-knockout (ApoE −/− ) mice is a classic model of atherosclerosis. We have found that ApoE −/− mice showed splenomegaly, higher titers of serum anti-nuclear antibody (ANA) and anti-dsDNA antibody compared with C57B6/L (B6) mice. However, whether ApoE −/− mice show autoimmune injury remains unclear. Methods and results: Six females and six males in each group, ApoE −/− , Fas −/− and B6 mice, were used in this study. The titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein were measured by ELISA after 4 months of high-fat diet. The spleen weight and the glomerular area were determined. The expressions of IgG, C3 and macrophage in kidney and atherosclerotic plaque were detected by immunostaining followed by morphometric analysis. Similar to the characteristics of Fas −/− mice, a model of systemic lupus erythematosus (SLE), ApoE −/− mice, especially female, displayed significant increases of spleen weight and glomerular area when compared to B6 mice. Also, elevated titers of serum ANA, anti-dsDNA antibody and creatinine and urine protein. Moreover, the expressions of IgG, C3 and macrophage in glomeruli and aortic plaques were found in ApoE −/− mice. In addition, the IgG and C3 expressions in glomeruli and plaques significantly increased (or a trend of increase) in female ApoE −/− mice compared with males. Conclusions: Apolipoprotein E-knockout mice on high-fat diet show autoimmune injury on kidney and aorta

  5. K Basins floor sludge retrieval system knockout pot basket fuel burn accident

    International Nuclear Information System (INIS)

    HUNT, J.W.

    1998-01-01

    The K Basins Sludge Retrieval System Preliminary Hazard Analysis Report (HNF-2676) identified and categorized a series of potential accidents associated with K Basins Sludge Retrieval System design and operation. The fuel burn accident was of concern with respect to the potential release of contamination resulting from a runaway chemical reaction of the uranium fuel in a knockout pot basket suspended in the air. The unmitigated radiological dose to an offsite receptor from this fuel burn accident is calculated to be much less than the offsite risk evaluation guidelines for anticipated events. However, because of potential radiation exposure to the facility worker, this accident is precluded with a safety significant lifting device that will prevent the monorail hoist from lifting the knockout pot basket out of the K Basin water pool

  6. Analyzing AbrB-Knockout Effects through Genome and Transcriptome Sequencing of Bacillus licheniformis DW2

    Science.gov (United States)

    Shu, Cheng-Cheng; Wang, Dong; Guo, Jing; Song, Jia-Ming; Chen, Shou-Wen; Chen, Ling-Ling; Gao, Jun-Xiang

    2018-01-01

    As an industrial bacterium, Bacillus licheniformis DW2 produces bacitracin which is an important antibiotic for many pathogenic microorganisms. Our previous study showed AbrB-knockout could significantly increase the production of bacitracin. Accordingly, it was meaningful to understand its genome features, expression differences between wild and AbrB-knockout (ΔAbrB) strains, and the regulation of bacitracin biosynthesis. Here, we sequenced, de novo assembled and annotated its genome, and also sequenced the transcriptomes in three growth phases. The genome of DW2 contained a DNA molecule of 4,468,952 bp with 45.93% GC content and 4,717 protein coding genes. The transcriptome reads were mapped to the assembled genome, and obtained 4,102∼4,536 expressed genes from different samples. We investigated transcription changes in B. licheniformis DW2 and showed that ΔAbrB caused hundreds of genes up-regulation and down-regulation in different growth phases. We identified a complete bacitracin synthetase gene cluster, including the location and length of bacABC, bcrABC, and bacT, as well as their arrangement. The gene cluster bcrABC were significantly up-regulated in ΔAbrB strain, which supported the hypothesis in previous study of bcrABC transporting bacitracin out of the cell to avoid self-intoxication, and was consistent with the previous experimental result that ΔAbrB could yield more bacitracin. This study provided a high quality reference genome for B. licheniformis DW2, and the transcriptome data depicted global alterations across two strains and three phases offered an understanding of AbrB regulation and bacitracin biosynthesis through gene expression. PMID:29599755

  7. Strong morphological defects in conditional Arabidopsis abp1 knock-down mutants generated in absence of functional ABP1 protein.

    Science.gov (United States)

    Michalko, Jaroslav; Glanc, Matouš; Perrot-Rechenmann, Catherine; Friml, Jiří

    2016-01-01

    The Auxin Binding Protein 1 (ABP1) is one of the most studied proteins in plants. Since decades ago, it has been the prime receptor candidate for the plant hormone auxin with a plethora of described functions in auxin signaling and development. The developmental importance of ABP1 has recently been questioned by identification of Arabidopsis thaliana abp1 knock-out alleles that show no obvious phenotypes under normal growth conditions. In this study, we examined the contradiction between the normal growth and development of the abp1 knock-outs and the strong morphological defects observed in three different ethanol-inducible abp1 knock-down mutants ( abp1-AS, SS12K, SS12S). By analyzing segregating populations of abp1 knock-out vs. abp1 knock-down crosses we show that the strong morphological defects that were believed to be the result of conditional down-regulation of ABP1 can be reproduced also in the absence of the functional ABP1 protein. This data suggests that the phenotypes in  abp1 knock-down lines are due to the off-target effects and asks for further reflections on the biological function of ABP1 or alternative explanations for the missing phenotypic defects in the abp1 loss-of-function alleles.

  8. Autodegradation of 125I-labeled human epidermal cell surface proteins

    International Nuclear Information System (INIS)

    Hashimoto, K.; Singer, K.H.; Lazarus, G.S.

    1982-01-01

    Triton X-100 extracts of cultured human epidermal cells exhibited proteolytic activity as measured by the hydrolysis of [ 3 H]-casein at neutral pH. The majority of endogenous proteolytic activity was inhibited by parahydroxy mercuribenzoate and by mersalyl acid, indicating the enzyme(s) was a thiol class proteinase(s). Crude Triton X-100 extracts were prepared from epidermal cells following labeling of proteins with 125 I. Autodegradation of labeled proteins at 37 degrees C was detected as early as 1 hr and reached a plateau level by 4 hr. Degradation was inhibited by thiol class proteinase inhibitors. Among the detergent-solubilized radiolabeled proteins a polypeptide chain of Mr 155,000 was particularly sensitive to degradation by endogenous thiol proteinase(s)

  9. Expression of IGF-I, IGF-I receptor and IGF binding proteins-1, -2, -3, -4 and -5 in human atherectomy specimens.

    Science.gov (United States)

    Grant, M B; Wargovich, T J; Ellis, E A; Tarnuzzer, R; Caballero, S; Estes, K; Rossing, M; Spoerri, P E; Pepine, C

    1996-12-17

    The molecular and cellular processes that induce rapid atherosclerotic plaque progression in patients with unstable angina and initiate restenosis following coronary interventional procedures are uncertain. We examined primary (de novo) and restenotic lesions retrieved at the time of directional coronary atherectomy for expression of insulin-like-growth factor-I (IGF-I). IGF-I receptor, and five IGF binding proteins (IGFBPs), IGFBP-1, IGFBP-2, IGFBP-3, IGFBP-4, and IGFBP-5 in smooth muscle cells (SMCs) using colloidal gold immunocytochemistry. IGF-1, its receptor and binding proteins were not detected in SMCs of normal coronary arteries. IGF-I localized primarily in synthetic smooth muscle cells (sSMCs) in both de novo and restenotic plaques. IGF-I receptor localized on sSMCs and their processes and colocalized with IGF-I. Although morphometric analysis of IGF-I and IGF-I receptor immunoreactivity in sSMCs of de novo and restenotic lesions showed comparable levels of IGF-I (3.2 +/- 1.0 and 2.9 +/- 0.9, respectively). IGF-I receptor was significantly higher in de novo lesions as compared to restenotic lesions (10.7 +/- 2.5 and 4.2 +/- 1.3, P system.

  10. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Knockout Screen of ApiAP2 Genes Reveals Networks of Interacting Transcriptional Regulators Controlling the Plasmodium Life Cycle.

    Science.gov (United States)

    Modrzynska, Katarzyna; Pfander, Claudia; Chappell, Lia; Yu, Lu; Suarez, Catherine; Dundas, Kirsten; Gomes, Ana Rita; Goulding, David; Rayner, Julian C; Choudhary, Jyoti; Billker, Oliver

    2017-01-11

    A family of apicomplexa-specific proteins containing AP2 DNA-binding domains (ApiAP2s) was identified in malaria parasites. This family includes sequence-specific transcription factors that are key regulators of development. However, functions for the majority of ApiAP2 genes remain unknown. Here, a systematic knockout screen in Plasmodium berghei identified ten ApiAP2 genes that were essential for mosquito transmission: four were critical for the formation of infectious ookinetes, and three were required for sporogony. We describe non-essential functions for AP2-O and AP2-SP proteins in blood stages, and identify AP2-G2 as a repressor active in both asexual and sexual stages. Comparative transcriptomics across mutants and developmental stages revealed clusters of co-regulated genes with shared cis promoter elements, whose expression can be controlled positively or negatively by different ApiAP2 factors. We propose that stage-specific interactions between ApiAP2 proteins on partly overlapping sets of target genes generate the complex transcriptional network that controls the Plasmodium life cycle. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Investigation on the Metabolic Regulation of pgi gene knockout Escherichia coli by Enzyme Activities and Intracellular Metabolite Concentrations

    Directory of Open Access Journals (Sweden)

    Nor ‘Aini, A. R.

    2006-01-01

    Full Text Available An integrated analysis of the cell growth characteristics, enzyme activities, intracellular metabolite concentrations was made to investigate the metabolic regulation of pgi gene knockout Escherichia coli based on batch culture and continuous culture which was performed at the dilution rate of 0.2h-1. The enzymatic study identified that pathways of pentose phosphate, ED pathway and glyoxylate shunt were all active in pgi mutant. The glycolysis enzymes i.e glyceraldehyde-3-phosphate dehydrogenase, fructose diphosphatase, pyruvate kinase, triose phosphate isomerase were down regulated implying that the inactivation of pgi gene reduced the carbon flux through glycolytic pathway. Meanwhile, the pentose phosphate pathway was active as a major route for intermediary carbohydrate metabolism instead of glycolysis. The pentose phosphate pathway generates most of the major reducing co-factor NADPH as shown by the increased of NADPH/NADP+ ratio in the mutant when compared with the parent strain. The fermentative enzymes such as acetate kinase and lactate dehydrogenase were down regulated in the mutant. Knockout of pgi gene results in the significant increase in the intracellular concentration of glucose-6-phosphate and decrease in the concentration of oxaloacetate. The slow growth rate of the mutant was assumed to be affected by the accumulation of glucose-6-phosphate and imbalance of NADPH reoxidation.

  13. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Highly efficient gene knockout by injection of TALEN mRNAs into oocytes and host transfer in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Keisuke Nakajima

    2015-01-01

    Full Text Available Zinc-finger nucleases, transcription activator-like effector nucleases (TALENs and the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated proteins system are potentially powerful tools for producing tailor-made knockout animals. However, their mutagenic activity is not high enough to induce mutations at all loci of a target gene throughout an entire tadpole. In this study, we present a highly efficient method for introducing gene modifications at almost all target sequences in randomly selected embryos. The gene modification activity of TALEN is enhanced by adopting the host-transfer technique. In our method, the efficiency is further improved by injecting TALEN mRNAs fused to the 3′UTR of the Xenopus DEADSouth gene into oocytes, which are then transferred into a host female frog, where they are ovulated and fertilized. The addition of the 3′UTR of the DEADSouth gene promotes mRNA translation in the oocytes and increases the expression of TALEN proteins to near-maximal levels three hours post fertilization (hpf. In contrast, TALEN mRNAs without this 3′UTR are translated infrequently in oocytes. Our data suggest that genomic DNA is more sensitive to TALEN proteins from fertilization to the midblastula (MBT stage. Our method works by increasing the levels of TALEN proteins during the pre-MBT stages.

  15. A highly conserved glycine within linker I and the extreme C terminus of G protein alpha subunits interact cooperatively in switching G protein-coupled receptor-to-effector specificity

    DEFF Research Database (Denmark)

    Kostenis, Evi; Martini, Lene; Ellis, James

    2004-01-01

    Numerous studies have attested to the importance of the extreme C terminus of G protein alpha subunits in determining their selectivity of receptor recognition. We have previously reported that a highly conserved glycine residue within linker I is important for constraining the fidelity of receptor...... recognition by Galpha(q) proteins. Herein, we explored whether both modules (linker I and extreme C terminus) interact cooperatively in switching G protein-coupled receptor (GPCR)-to-effector specificity and created as models mutant Galpha(q) proteins in which glycine was replaced with various amino acids...... and the C-terminal five Galpha(q) residues with the corresponding Galpha(i) or Galpha(s) sequence. Coupling properties of the mutated Galpha(q) proteins were determined after coexpression with a panel of 13 G(i)-and G(s) -selective receptors and compared with those of Galpha proteins modified in only one...

  16. Selection-independent generation of gene knockout mouse embryonic stem cells using zinc-finger nucleases.

    Directory of Open Access Journals (Sweden)

    Anna Osiak

    Full Text Available Gene knockout in murine embryonic stem cells (ESCs has been an invaluable tool to study gene function in vitro or to generate animal models with altered phenotypes. Gene targeting using standard techniques, however, is rather inefficient and typically does not exceed frequencies of 10(-6. In consequence, the usage of complex positive/negative selection strategies to isolate targeted clones has been necessary. Here, we present a rapid single-step approach to generate a gene knockout in mouse ESCs using engineered zinc-finger nucleases (ZFNs. Upon transient expression of ZFNs, the target gene is cleaved by the designer nucleases and then repaired by non-homologous end-joining, an error-prone DNA repair process that introduces insertions/deletions at the break site and therefore leads to functional null mutations. To explore and quantify the potential of ZFNs to generate a gene knockout in pluripotent stem cells, we generated a mouse ESC line containing an X-chromosomally integrated EGFP marker gene. Applying optimized conditions, the EGFP locus was disrupted in up to 8% of ESCs after transfection of the ZFN expression vectors, thus obviating the need of selection markers to identify targeted cells, which may impede or complicate downstream applications. Both activity and ZFN-associated cytotoxicity was dependent on vector dose and the architecture of the nuclease domain. Importantly, teratoma formation assays of selected ESC clones confirmed that ZFN-treated ESCs maintained pluripotency. In conclusion, the described ZFN-based approach represents a fast strategy for generating gene knockouts in ESCs in a selection-independent fashion that should be easily transferrable to other pluripotent stem cells.

  17. Antibodies directed against monomorphic and evolutionary conserved self epitopes may be generated in 'knock-out' mice. Development of monoclonal antibodies directed against monomorphic MHC class I determinants

    DEFF Research Database (Denmark)

    Claesson, M H; Endel, B; Ulrik, J

    1994-01-01

    Beta-2 microglobulin (beta 2m) gene 'knock-out' mice (C1D) were primed with purified H-2Kb and H-2Db molecules and spleen cells from immunized mice were used to generate monoclonal antibody secreting B-cell hybridomas. Approximately 0.2% of the Ig-secreting primary microcultures contained H-2b...

  18. Hyperactivity of Hypothalamic-Pituitary-Adrenal Axis Due to Dysfunction of the Hypothalamic Glucocorticoid Receptor in Sigma-1 Receptor Knockout Mice

    Directory of Open Access Journals (Sweden)

    Tingting Di

    2017-09-01

    Full Text Available Sigma-1 receptor knockout (σ1R-KO mice exhibit a depressive-like phenotype. Because σ1R is highly expressed in the neuronal cells of hypothalamic paraventricular nuclei (PVN, this study investigated the influence of σ1R deficiency on the regulation of the hypothalamic-pituitary-adrenocortical (HPA axis. Here, we show that the levels of basal serum corticosterone (CORT, adrenocorticotropic hormone (ACTH and corticotrophin releasing factor (CRF as well as the level of CRF mRNA in PVN did not significantly differ between adult male σ1R-KO mice and wild-type (WT mice. Acute mild restraint stress (AMRS induced a higher and more sustainable increase in activity of HPA axis and CRF expression in σ1R-KO mice. Percentage of dexamethasone (Dex-induced reduction in level of CORT was markedly attenuated in σ1R−/− mice. The levels of glucocorticoid receptor (GR and protein kinase C (PKC phosphorylation were reduced in the PVN of σ1R-KO mice and σ1R antagonist NE100-treated WT mice. The exposure to AMRS in σ1R-KO mice induced a stronger phosphorylation of cAMP-response element binding protein (CREB in PVN than that in WT mice. Intracerebroventricular (i.c.v. injection of PKC activator PMA for 3 days in σ1R-KO mice not only recovered the GR phosphorylation and the percentage of Dex-reduced CORT but also corrected the AMRS-induced hyperactivity of HPA axis and enhancement of CRF mRNA and CREB phosphorylation. Furthermore, the injection (i.c.v. of PMA in σ1R-KO mice corrected the prolongation of immobility time in forced swim test (FST and tail suspension test (TST. These results indicate that σ1R deficiency causes down-regulation of GR by reducing PKC phosphorylation, which attenuates GR-mediated feedback inhibition of HPA axis and facilitates the stress response of HPA axis leading to the production of depressive-like behaviors.

  19. High protein diets do not attenuate decrements in testosterone and IGF-I during energy deficit.

    Science.gov (United States)

    Henning, Paul C; Margolis, Lee M; McClung, James P; Young, Andrew J; Pasiakos, Stefan M

    2014-05-01

    Energy deficit (ED) diminishes fat-free mass (FFM) with concomitant reductions in anabolic hormone secretion. A modest increase in protein to recommended dietary allowance (RDA) levels during ED minimally attenuates decrements in insulin-like growth factor-I (IGF-I). The impact of dietary protein above the RDA on circulating anabolic hormones and their relationships with FFM in response to ED are not well described. Thirty-three adults were assigned diets providing protein at 0.8 (RDA), 1.6 (2×-RDA), and 2.4 (3×-RDA) g/kg/d for 31days. Testosterone, sex-hormone binding globulin (SHBG) and IGF-I system components were assessed after a 10-day period of weight-maintenance (WM) and after a 21-day period of ED (40%) achieved by an increase in energy expenditure and decreased energy intake. Associations between the change in FFM and anabolic hormone levels were determined. As compared to WM and regardless of dietary protein intake, total and free testosterone, total IGF-I, and acid-labile subunit decreased (Phormones or IGF-I system components measured. Changes in FFM in response to ED were negatively associated with acid-labile subunit (ALS) (r=-0.62, Phormone concentrations. Published by Elsevier Inc.

  20. A Knowledge-Based System for Display and Prediction of O-Glycosylation Network Behaviour in Response to Enzyme Knockouts.

    Directory of Open Access Journals (Sweden)

    Andrew G McDonald

    2016-04-01

    Full Text Available O-linked glycosylation is an important post-translational modification of mucin-type protein, changes to which are important biomarkers of cancer. For this study of the enzymes of O-glycosylation, we developed a shorthand notation for representing GalNAc-linked oligosaccharides, a method for their graphical interpretation, and a pattern-matching algorithm that generates networks of enzyme-catalysed reactions. Software for generating glycans from the enzyme activities is presented, and is also available online. The degree distributions of the resulting enzyme-reaction networks were found to be Poisson in nature. Simple graph-theoretic measures were used to characterise the resulting reaction networks. From a study of in-silico single-enzyme knockouts of each of 25 enzymes known to be involved in mucin O-glycan biosynthesis, six of them, β-1,4-galactosyltransferase (β4Gal-T4, four glycosyltransferases and one sulfotransferase, play the dominant role in determining O-glycan heterogeneity. In the absence of β4Gal-T4, all Lewis X, sialyl-Lewis X, Lewis Y and Sda/Cad glycoforms were eliminated, in contrast to knockouts of the N-acetylglucosaminyltransferases, which did not affect the relative abundances of O-glycans expressing these epitopes. A set of 244 experimentally determined mucin-type O-glycans obtained from the literature was used to validate the method, which was able to predict up to 98% of the most common structures obtained from human and engineered CHO cell glycoforms.

  1. A tubulin alpha 8 mouse knockout model indicates a likely role in spermatogenesis but not in brain development.

    Directory of Open Access Journals (Sweden)

    Christine P Diggle

    Full Text Available Tubulin alpha 8 (Tuba8 is the most divergent member of the highly conserved alpha tubulin family, and uniquely lacks two key post-translational modification sites. It is abundantly expressed in testis and muscle, with lower levels in the brain. We previously identified homozygous hypomorphic TUBA8 mutations in human subjects with a polymicrogyria (PMG syndrome, suggesting its involvement in development of the cerebral cortex. We have now generated and characterized a Tuba8 knockout mouse model. Homozygous mice were confirmed to lack Tuba8 protein in the testis, but did not display PMG and appeared to be neurologically normal. In response to this finding, we re-analyzed the human PMG subjects using whole exome sequencing. This resulted in identification of an additional homozygous loss-of-function mutation in SNAP29, suggesting that SNAP29 deficiency, rather than TUBA8 deficiency, may underlie most or all of the neurodevelopmental anomalies in these subjects. Nonetheless, in the mouse brain, Tuba8 specifically localised to the cerebellar Purkinje cells, suggesting that the human mutations may affect or modify motor control. In the testis, Tuba8 localisation was cell-type specific. It was restricted to spermiogenesis with a strong acrosomal localization that was gradually replaced by cytoplasmic distribution and was absent from spermatozoa. Although the knockout mice were fertile, the localisation pattern indicated that Tuba8 may have a role in spermatid development during spermatogenesis, rather than as a component of the mature microtubule-rich flagellum itself.

  2. i3Drefine software for protein 3D structure refinement and its assessment in CASP10.

    Science.gov (United States)

    Bhattacharya, Debswapna; Cheng, Jianlin

    2013-01-01

    Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8(th) CASP experiment. During the 9(th) and recently concluded 10(th) CASP experiments, a consistent growth in number of refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as 'MULTICOM-CONSTRUCT') was ranked as the best method in the server section as per the official assessment of CASP10 experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/i3drefine/.

  3. i3Drefine Software for Protein 3D Structure Refinement and Its Assessment in CASP10

    Science.gov (United States)

    Bhattacharya, Debswapna; Cheng, Jianlin

    2013-01-01

    Protein structure refinement refers to the process of improving the qualities of protein structures during structure modeling processes to bring them closer to their native states. Structure refinement has been drawing increasing attention in the community-wide Critical Assessment of techniques for Protein Structure prediction (CASP) experiments since its addition in 8th CASP experiment. During the 9th and recently concluded 10th CASP experiments, a consistent growth in number of refinement targets and participating groups has been witnessed. Yet, protein structure refinement still remains a largely unsolved problem with majority of participating groups in CASP refinement category failed to consistently improve the quality of structures issued for refinement. In order to alleviate this need, we developed a completely automated and computationally efficient protein 3D structure refinement method, i3Drefine, based on an iterative and highly convergent energy minimization algorithm with a powerful all-atom composite physics and knowledge-based force fields and hydrogen bonding (HB) network optimization technique. In the recent community-wide blind experiment, CASP10, i3Drefine (as ‘MULTICOM-CONSTRUCT’) was ranked as the best method in the server section as per the official assessment of CASP10 experiment. Here we provide the community with free access to i3Drefine software and systematically analyse the performance of i3Drefine in strict blind mode on the refinement targets issued in CASP10 refinement category and compare with other state-of-the-art refinement methods participating in CASP10. Our analysis demonstrates that i3Drefine is only fully-automated server participating in CASP10 exhibiting consistent improvement over the initial structures in both global and local structural quality metrics. Executable version of i3Drefine is freely available at http://protein.rnet.missouri.edu/i3drefine/. PMID:23894517

  4. A Novel Apolipoprotein C-II Mimetic Peptide That Activates Lipoprotein Lipase and Decreases Serum Triglycerides in Apolipoprotein E–Knockout Mice

    Science.gov (United States)

    Sakurai, Toshihiro; Sakurai-Ikuta, Akiko; Sviridov, Denis; Freeman, Lita; Ahsan, Lusana; Remaley, Alan T.

    2015-01-01

    Apolipoprotein A-I (apoA-I) mimetic peptides are currently being developed as possible new agents for the treatment of cardiovascular disease based on their ability to promote cholesterol efflux and their other beneficial antiatherogenic properties. Many of these peptides, however, have been reported to cause transient hypertriglyceridemia due to inhibition of lipolysis by lipoprotein lipase (LPL). We describe a novel bihelical amphipathic peptide (C-II-a) that contains an amphipathic helix (18A) for binding to lipoproteins and stimulating cholesterol efflux as well as a motif based on the last helix of apolipoprotein C-II (apoC-II) that activates lipolysis by LPL. The C-II-a peptide promoted cholesterol efflux from ATP-binding cassette transporter ABCA1-transfected BHK cells similar to apoA-I mimetic peptides. Furthermore, it was shown in vitro to be comparable to the full-length apoC-II protein in activating lipolysis by LPL. When added to serum from a patient with apoC-II deficiency, it restored normal levels of LPL-induced lipolysis and also enhanced lipolysis in serum from patients with type IV and V hypertriglyceridemia. Intravenous injection of C-II-a (30 mg/kg) in apolipoprotein E–knockout mice resulted in a significant reduction of plasma cholesterol and triglycerides of 38 ± 6% and 85 ± 7%, respectively, at 4 hours. When coinjected with the 5A peptide (60 mg/kg), the C-II-a (30 mg/kg) peptide was found to completely block the hypertriglyceridemic effect of the 5A peptide in C57Bl/6 mice. In summary, C-II-a is a novel peptide based on apoC-II, which promotes cholesterol efflux and lipolysis and may therefore be useful for the treatment of apoC-II deficiency and other forms of hypertriglyceridemia. PMID:25395590

  5. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies

    Directory of Open Access Journals (Sweden)

    Katia eBefort

    2015-02-01

    Full Text Available The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins and dynorphins. The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids, enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.

  6. Pre-Equilibrium Cluster Emission with Pickup and Knockout

    International Nuclear Information System (INIS)

    Betak, E.

    2005-01-01

    We present a generalization of the Iwamoto-Harada-Bisplinghoff pre-equilibrium model of light cluster formation and emission, which is enhanced by allowing for possible admixtures of knockout for strongly coupled ejectiles, like α's. The model is able to attain the Weisskopf-Ewing formula for compound-nucleus decay at long-time limit; it keeps the philosophy of pre-equilibrium decay during the equilibration stage and it describes the initial phase of a reaction as direct process(es) expressed using the language of the exciton model

  7. Hematopoiesis in 5-Fluorouracil-Treated Adenosine A(3) Receptor Knock-Out Mice

    Czech Academy of Sciences Publication Activity Database

    Hofer, Michal; Pospíšil, Milan; Dušek, L.; Hoferová, Zuzana; Komůrková, Denisa

    2015-01-01

    Roč. 64, č. 2 (2015), s. 255-262 ISSN 0862-8408 Institutional support: RVO:68081707 Keywords : Adenosine A(3) receptor knock-out mice * Hematopoiesis * 5-fluorouracil-induced hematotoxicity Subject RIV: BO - Biophysics Impact factor: 1.643, year: 2015

  8. Sodium homeostasis is preserved in a global 11β-hydroxysteroid dehydrogenase type 1 knockout mouse model

    DEFF Research Database (Denmark)

    Christensen, Thorbjørn H; Bailey, Matthew A; Kenyon, Christopher J

    2015-01-01

    hypothesized that loss of renal 11βHSD1 would result in salt wasting and tested this in a knockout mouse model in which 11βHSD1 was deleted in all body tissues. In balance studies, 11βHSD1 deletion had no effect on water, sodium or potassium metabolism; transition to a low-sodium diet did not reveal...... that global deletion of 11βHSD1 in the mouse would give rise to a salt-wasting renal phenotype. What is the main finding and its importance? We subjected a mouse model of global 11βHSD1 deletion to studies of water and electrolyte balance, renal clearance, urinary steroid excretion, renin-angiotensin system...... a natriuretic phenotype. Renal clearance studies demonstrated identical haemodynamic parameters (arterial blood pressure, renal blood flow and glomerular filtration rate) in knockout and wild-type mice, but revealed an augmented kaliuretic response to thiazides in 11βHSD1 knockout animals. There was no effect...

  9. P-glycoprotein interaction with risperidone and 9-OH-risperidone studied in vitro, in knock-out mice and in drug-drug interaction experiments

    DEFF Research Database (Denmark)

    Ejsing, Thomas B.; Pedersen, Anne D.; Linnet, Kristian

    2005-01-01

    P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice......P-glycoprotein, risperidone, nortriptyline, cyclosporine A, drug-drug interaction, blood-brain barrier, knock-out mice...

  10. Differential gene expression in the EphA4 knockout spinal cord and analysis of the inflammatory response following spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Kathryn M Munro

    Full Text Available Mice lacking the axon guidance molecule EphA4 have been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips™. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wildtype spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage/microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages/activated microglia in injured EphA4 knockout compared to wild-type spinal cords at 2, 4 or 14 days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages/activated microglia was observed in EphA4 knockout spinal cords at 4 days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury.

  11. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.

    Science.gov (United States)

    Kandadi, Machender R; Panzhinskiy, Evgeniy; Roe, Nathan D; Nair, Sreejayan; Hu, Dahai; Sun, Aijun

    2015-02-01

    Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled

  12. Human cDNA clones for an α subunit of G/sub i/ signal-transduction protein

    International Nuclear Information System (INIS)

    Bray, P.; Carter, A.; Guo, V.; Puckett, C.; Kamholz, J.; Spiegel, A.; Nirenberg, M.

    1987-01-01

    Two cDNA clones were obtained from a λgt11 cDNA human brain library that correspond to α/sub i/ subunits of G signal-transduction proteins (where α/sub i/ subunits refer to the α subunits of G proteins that inhibit adenylate cyclase). The nucleotide sequence of human brain α/sub i/ is highly homologous to that of bovine brain α/sub i/ and the predicted amino acid sequences are identical. However, human and bovine brain α/sub i/ cDNAs differ significantly from α/sub i/ cDNAs from human monocytes, rat glioma, and mouse macrophages in amino acid (88% homology) and nucleotide (71-75% homology) sequences. In addition, the nucleotide sequences of the 3' untranslated regions of human and bovine brain α/sub i/ cDNAs differ markedly from the sequences of human monocyte, rat glioma, and mouse macrophage α/sub i/ cDNAs. These results suggest there are at least two classes of α/sub i/ mRNA

  13. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    International Nuclear Information System (INIS)

    Kusano, Shuichi; Yoshimitsu, Makoto; Hachiman, Miho; Ikeda, Masanori

    2015-01-01

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  14. I-mfa domain proteins specifically interact with HTLV-1 Tax and repress its transactivating functions

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Yoshimitsu, Makoto; Hachiman, Miho [Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Ikeda, Masanori [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2015-12-15

    The I-mfa domain proteins HIC (also known as MDFIC) and I-mfa (also known as MDFI) are candidate tumor suppressor genes that are involved in cellular and viral transcriptional regulation. Here, we show that HIC and I-mfa directly interact with human T-cell leukemia virus type-1 (HTLV-1) Tax protein in vitro. In addition, HIC and I-mfa repress Tax-dependent transactivation of an HTLV-1 long terminal repeat (LTR) reporter construct in COS-1, Jurkat and high-Tax-producing HTLV-1-infected T cells. HIC also interacts with Tax through its I-mfa domain in vivo and represses Tax-dependent transactivation of HTLV-1 LTR and NF-κB reporter constructs in an interaction-dependent manner. Furthermore, we show that HIC decreases the nuclear distribution and stimulates the proteasomal degradation of Tax. These data reveal that HIC specifically interacts with HTLV-1 Tax and negatively regulates Tax transactivational activity by altering its subcellular distribution and stability. - Highlights: • I-mfa domain proteins, HIC and I-mfa, specifically interact with HTLV-1 Tax. • HIC and I-mfa repress the Tax-dependent transactivation of HTLV-1 LTR. • HIC represses the Tax-dependent transactivation of NF-κΒ. • HIC decreases the nuclear distribution of Tax. • HIC stimulates the proteasomal degradation of Tax.

  15. Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia

    International Nuclear Information System (INIS)

    Adolfsson, R.; Alafuzoff, I.; Winblad, B.; Perdahl, E.; Albert, K.A.; Nestler, E.J.; Greengard, P.

    1984-01-01

    Synapsin I (Protein I), a neuron-specfic phosphoprotein enriched in presynaptic nerve terminals, has been used as a quantitative marker for the density of nerve terminals in five brain regions (caudate nucleus, cingulate gyrus, hippocampus, mesencephalon and putamen) from patients who had suffered from Alzheimer disease/senile dementia of Alzheimer type (AD/SDAT), from patients with multi-infarct dementia (MID), and from agematched controls. Samples were obtained at autopsy. Lower levels of Synapsin I were observed in the hippocampus of patients with AD/SDAT but not with MID. There were no significant differences in Synapsin I levels between patients and controls in any of the other four brain regions examined. (Author)

  16. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse)

    Science.gov (United States)

    Zhou, Yihua; Xu, Bixiong C.; Maheshwari, Hiralal G.; He, Li; Reed, Michael; Lozykowski, Maria; Okada, Shigeru; Cataldo, Lori; Coschigamo, Karen; Wagner, Thomas E.; Baumann, Gerhard; Kopchick, John J.

    1997-01-01

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans. PMID:9371826

  17. A mammalian model for Laron syndrome produced by targeted disruption of the mouse growth hormone receptor/binding protein gene (the Laron mouse).

    Science.gov (United States)

    Zhou, Y; Xu, B C; Maheshwari, H G; He, L; Reed, M; Lozykowski, M; Okada, S; Cataldo, L; Coschigamo, K; Wagner, T E; Baumann, G; Kopchick, J J

    1997-11-25

    Laron syndrome [growth hormone (GH) insensitivity syndrome] is a hereditary dwarfism resulting from defects in the GH receptor (GHR) gene. GHR deficiency has not been reported in mammals other than humans. Many aspects of GHR dysfunction remain unknown because of ethical and practical limitations in studying humans. To create a mammalian model for this disease, we generated mice bearing a disrupted GHR/binding protein (GHR/BP) gene through a homologous gene targeting approach. Homozygous GHR/BP knockout mice showed severe postnatal growth retardation, proportionate dwarfism, absence of the GHR and GH binding protein, greatly decreased serum insulin-like growth factor I and elevated serum GH concentrations. These characteristics represent the phenotype typical of individuals with Laron syndrome. Animals heterozygous for the GHR/BP defect show only minimal growth impairment but have an intermediate biochemical phenotype, with decreased GHR and GH binding protein expression and slightly diminished insulin-like growth factor I levels. These findings indicate that the GHR/BP-deficient mouse (Laron mouse) is a suitable model for human Laron syndrome that will prove useful for the elucidation of many aspects of GHR/BP function that cannot be obtained in humans.

  18. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα13.

    Science.gov (United States)

    Scherer, Stephanie L; Cain, Matthew D; Kanai, Stanley M; Kaltenbronn, Kevin M; Blumer, Kendall J

    2017-06-16

    The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ 5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of G i/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated G i/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα 13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα 13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα 13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα 13 ·R7-RGS complexes. Because Gα 13 /R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ 5 with or without R7BP. We found that neurite retraction evoked by Gα 12/13 -dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα 12/13 but not Gα i/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα 13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function. © 2017 by

  19. Skeletal muscle-specific HMG-CoA reductase knockout mice exhibit rhabdomyolysis: A model for statin-induced myopathy.

    Science.gov (United States)

    Osaki, Yoshinori; Nakagawa, Yoshimi; Miyahara, Shoko; Iwasaki, Hitoshi; Ishii, Akiko; Matsuzaka, Takashi; Kobayashi, Kazuto; Yatoh, Shigeru; Takahashi, Akimitsu; Yahagi, Naoya; Suzuki, Hiroaki; Sone, Hirohito; Ohashi, Ken; Ishibashi, Shun; Yamada, Nobuhiro; Shimano, Hitoshi

    2015-10-23

    HMG-CoA reductase (HMGCR) catalyzes the conversion of HMG-CoA to mevalonic acid (MVA); this is the rate-limiting enzyme of the mevalonate pathway that synthesizes cholesterol. Statins, HMGCR inhibitors, are widely used as cholesterol-reducing drugs. However, statin-induced myopathy is the most adverse side effect of statins. To eludicate the mechanisms underlying statin the myotoxicity and HMGCR function in the skeletal muscle, we developed the skeletal muscle-specific HMGCR knockout mice. Knockout mice exhibited postnatal myopathy with elevated serum creatine kinase levels and necrosis. Myopathy in knockout mice was completely rescued by the oral administration of MVA. These results suggest that skeletal muscle toxicity caused by statins is dependent on the deficiencies of HMGCR enzyme activity and downstream metabolites of the mevalonate pathway in skeletal muscles rather than the liver or other organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Behavioral characterization of CD36 knockout mice with SHIRPA primary screen.

    Science.gov (United States)

    Zhang, Shuxiao; Wang, Wei; Li, Juan; Cheng, Ke; Zhou, Jingjing; Zhu, Dan; Yang, Deyu; Liang, Zihong; Fang, Liang; Liao, Li; Xie, Peng

    2016-02-15

    CD36 is a member of the class B scavenger receptor family of cell surface proteins, which plays a major role in fatty acid, glucose and lipid metabolism. Besides, CD36 functions as a microglial surface receptor for amyloid beta peptide. Regarding this, we suggest CD36 might also contribute to neuropsychiatric disease. The aim of this study was to achieve a behavioral phenotype of CD36 knockout (CD36(-/-)) mice. We characterized the behavior of CD36(-/-) mice and C57BL/6J mice by subjecting them to a series of tests, which include SHIRPA primary behavioral screen test, 1% sucrose preference test, elevated plus-maze test, open-field test and forced swimming test. The results showed that CD36(-/-) mice traversed more squares, emitted more defecation, exhibited higher tail elevation and had more aggressive behaviors than C57BL/6J mice. The CD36(-/-) mice spent more time and traveled longer distance in periphery zone in the open-field test. Meanwhile, the numbers that CD36(-/-) mice entered in the open arms of elevated plus-maze were reduced. These findings suggest that CD36(-/-) mice present an anxious phenotype and might be involved in neuropsychiatric disorders. Copyright © 2015. Published by Elsevier B.V.

  1. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.

    Science.gov (United States)

    Matsunaga, Taichi; Yamashita, Jun K

    2014-02-07

    Specific gene knockout and rescue experiments are powerful tools in developmental and stem cell biology. Nevertheless, the experiments require multiple steps of molecular manipulation for gene knockout and subsequent rescue procedures. Here we report an efficient and single step strategy to generate gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9 genome editing technology. We inserted a tetracycline-regulated inducible gene promoter (tet-OFF/TRE-CMV) upstream of the endogenous promoter region of vascular endothelial growth factor receptor 2 (VEGFR2/Flk1) gene, an essential gene for endothelial cell (EC) differentiation, in mouse embryonic stem cells (ESCs) with homologous recombination. Both homo- and hetero-inserted clones were efficiently obtained through a simple selection with a drug-resistant gene. The insertion of TRE-CMV promoter disrupted endogenous Flk1 expression, resulting in null mutation in homo-inserted clones. When the inserted TRE-CMV promoter was activated with doxycycline (Dox) depletion, Flk1 expression was sufficiently recovered from the downstream genomic Flk1 gene. Whereas EC differentiation was almost completely perturbed in homo-inserted clones, Flk1 rescue with TRE-CMV promoter activation restored EC appearance, indicating that phenotypic changes in EC differentiation can be successfully reproduced with this knockout-rescue system. Thus, this promoter insertion strategy with CRISPR/Cas9 would be a novel attractive method for knockout-rescue experiments. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.

    Science.gov (United States)

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2013-04-05

    Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins should not be ignored because they usually bear some special function worthy of in-depth studies. By introducing the "multi-label learning" approach, a new predictor, called iLoc-Animal, has been developed that can be used to deal with the systems containing both single- and multi-label animal (metazoan except human) proteins. Meanwhile, to measure the prediction quality of a multi-label system in a rigorous way, five indices were introduced; they are "Absolute-True", "Absolute-False" (or Hamming-Loss"), "Accuracy", "Precision", and "Recall". As a demonstration, the jackknife cross-validation was performed with iLoc-Animal on a benchmark dataset of animal proteins classified into the following 20 location sites: (1) acrosome, (2) cell membrane, (3) centriole, (4) centrosome, (5) cell cortex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) lysosome, (13) mitochondrion, (14) melanosome, (15) microsome, (16) nucleus, (17) peroxisome, (18) plasma membrane, (19) spindle, and (20) synapse, where many proteins belong to two or more locations. For such a complicated system, the outcomes achieved by iLoc-Animal for all the aforementioned five indices were quite encouraging, indicating that the predictor may become a useful tool in this area. It has not escaped our notice that the multi-label approach and the rigorous measurement metrics can also be used to investigate many other multi-label problems in molecular biology. As a user-friendly web-server, iLoc-Animal is freely accessible to the public at the web-site .

  3. Generation of a Nrf2 homozygous knockout human embryonic stem cell line using CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    So-Jung Kim

    2017-03-01

    Full Text Available Nuclear factor erythroid 2-related factor 2 (NFE2L2 or Nrf2 is a well-known transcription factor that regulates the expression of a large number of anti-oxidant genes in mammalian cells (J.H. Kim et al., 2014. Here, we generated a homozygous Nrf2 knockout human embryonic stem cell (hESC line, H9Nrf2KO-A13, using the CRISPR/Cas9 genome editing method. The Nrf2 homozygous knockout H9 cell line maintains pluripotency, differentiation potential into three germ layers, and a normal karyotype.

  4. A transgenic model of transactivation by the Tax protein of HTLV-I.

    Science.gov (United States)

    Bieberich, C J; King, C M; Tinkle, B T; Jay, G

    1993-09-01

    The human T-lymphotropic virus type I (HTLV-I) Tax protein is a transcriptional regulatory protein that has been suggested to play a causal role in the development of several HTLV-I-associated diseases. Tax regulates expression of its own LTR and of certain cellular promoters perhaps by usurping the function of the host transcriptional machinery. We have established a transgenic mouse model system to define the spectrum of tissues in vivo that are capable of supporting Tax-mediated transcriptional transactivation. Transgenic mice carrying the HTLV-I LTR driving expression of the Escherichia coli beta-galactosidase (beta gal) gene were generated, and this LTR-beta gal gene was transcriptionally inactive in all tissues. When LTR-beta gal mice were mated to transgenic mice carrying the same LTR driving expression of the HTLV-I tax gene, mice that carried both transgenes showed restricted expression of the beta gal reporter gene in several tissues including muscle, bone, salivary glands, skin, and nerve. In addition, a dramatic increase in the number of beta gal-expressing cells was seen in response to wounding. These observations provide direct evidence for viral transactivation in vivo, delimit the tissues capable of supporting that transactivation, and provide a model system to study the mechanism of gene regulation by Tax.

  5. Cloning and knockout of formate hydrogen lyase and H{sub 2}-uptake hydrogenase genes in Enterobacter aerogenes for enhanced hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongxin; Ma, Kun; Lu, Yuan; Zhang, Chong; Wang, Liyan; Xing, Xin-Hui [Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Tsinghua Yuan, Beijing 100084 (China)

    2009-01-15

    A 5431-bp DNA fragment partially encoding the formate hydrogen lyase (FHL) gene cluster hycABCDE was isolated and identified from Enterobacter aerogenes IAM1183 chromosomal DNA. All the five putative gene products showed a high degree of homology to the reported bacterial FHL proteins. The gene hycA, encoding the FHL repressor protein, and hybO, encoding the small subunit of the uptake hydrogenase, were targeted for genetic knockout for improving the hydrogen production. The pYM-Red recombination system was adopted to form insertional mutations in the E. aerogenes genome, thereby creating mutant strains of IAM1183-A ({delta} hycA), IAM1183-O ({delta} hybO), and IAM1183-AO ({delta} hycA/ {delta} hybO double knockout). The hydrogen production experiments with these mutants showed that the maximum specific hydrogen productivities of IAM1183-A, IAM1183-O, and IAM1183-AO were 2879.466 {+-} 38.59, 2747.203 {+-} 13.25 and 3372.019 {+-} 4.39 (ml h{sup -1} g{sup -1}dry cell weight), respectively, higher than that of the wild strain (2321.861 {+-} 15.34 ml h{sup -1} g{sup -1}dry cell weight). The total H{sub 2} yields by the three mutants IAM1183-A, IAM1183-O and IAM1183-AO were 0.73, 0.78, and 0.83 mol-H{sub 2}/mol glucose, respectively, while the wild-type IAM1183 was only 0.65 mol-H{sub 2}/mol glucose. The metabolites of the mutants including acetate, ethanol, 2,3-butanediol and succinate were all increased compared with that of the wild type, implying the changed metabolic flux by the mutation. In the fermentor cultivation with IAM1183 {delta} hycA/ {delta} hybO, the total hydrogen volume after 16 h cultivation reached 4.4 L, while that for the wild type was only 2.9 L. (author)

  6. Haloperidol inhibits the development of atherosclerotic lesions in LDL receptor knockout mice.

    Science.gov (United States)

    van der Sluis, Ronald J; Nahon, Joya E; Reuwer, Anne Q; Van Eck, Miranda; Hoekstra, Menno

    2015-05-01

    Antipsychotic drugs have been shown to modulate the expression of ATP-binding cassette transporter A1 (ABCA1), a key factor in the anti-atherogenic reverse cholesterol transport process, in vitro. Here we evaluated the potential of the typical antipsychotic drug haloperidol to modulate the cholesterol efflux function of macrophages in vitro and their susceptibility to atherosclerosis in vivo. Thioglycollate-elicited peritoneal macrophages were used for in vitro studies. Hyperlipidaemic low-density lipoprotein (LDL) receptor knockout mice were implanted with a haloperidol-containing pellet and subsequently fed a Western-type diet for 5 weeks to induce the development of atherosclerotic lesions in vivo. Haloperidol induced a 54% decrease in the mRNA expression of ABCA1 in peritoneal macrophages. This coincided with a 30% decrease in the capacity of macrophages to efflux cholesterol to apolipoprotein A1. Haloperidol treatment stimulated the expression of ABCA1 (+51%) and other genes involved in reverse cholesterol transport, that is, CYP7A1 (+98%) in livers of LDL receptor knockout mice. No change in splenic ABCA1 expression was noted. However, the average size of the atherosclerotic size was significantly smaller (-31%) in the context of a mildly more atherogenic metabolic phenotype upon haloperidol treatment. More importantly, haloperidol markedly lowered MCP-1 expression (-70%) and secretion (-28%) by peritoneal macrophages. Haloperidol treatment lowered the susceptibility of hyperlipidaemic LDL receptor knockout mice to develop atherosclerotic lesions. Our findings suggest that the beneficial effect of haloperidol on atherosclerosis susceptibility can be attributed to its ability to inhibit macrophage chemotaxis. © 2015 The British Pharmacological Society.

  7. Human stefin B role in cell's response to misfolded proteins and autophagy.

    Directory of Open Access Journals (Sweden)

    Mira Polajnar

    Full Text Available Alternative functions, apart from cathepsins inhibition, are being discovered for stefin B. Here, we investigate its role in vesicular trafficking and autophagy. Astrocytes isolated from stefin B knock-out (KO mice exhibited an increased level of protein aggregates scattered throughout the cytoplasm. Addition of stefin B monomers or small oligomers to the cell medium reverted this phenotype, as imaged by confocal microscopy. To monitor the identity of proteins embedded within aggregates in wild type (wt and KO cells, the insoluble cell lysate fractions were isolated and analyzed by mass spectrometry. Chaperones, tubulins, dyneins, and proteosomal components were detected in the insoluble fraction of wt cells but not in KO aggregates. In contrast, the insoluble fraction of KO cells exhibited increased levels of apolipoprotein E, fibronectin, clusterin, major prion protein, and serpins H1 and I2 and some proteins of lysosomal origin, such as cathepsin D and CD63, relative to wt astrocytes. Analysis of autophagy activity demonstrated that this pathway was less functional in KO astrocytes. In addition, synthetic dosage lethality (SDL gene interactions analysis in Saccharomyces cerevisiae expressing human stefin B suggests a role in transport of vesicles and vacuoles These activities would contribute, directly or indirectly to completion of autophagy in wt astrocytes and would account for the accumulation of protein aggregates in KO cells, since autophagy is a key pathway for the clearance of intracellular protein aggregates.

  8. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    Energy Technology Data Exchange (ETDEWEB)

    O Kocher; G Birrane; K Tsukamoto; S Fenske; A Yesilaltay; R Pal; K Daniels; J Ladias; M Krieger

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M, respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.

  9. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  10. Primary structure of bovine pituitary secretory protein I (chromogranin A) deduced from the cDNA sequence

    International Nuclear Information System (INIS)

    Ahn, T.G.; Cohn, D.V.; Gorr, S.U.; Ornstein, D.L.; Kashdan, M.A.; Levine, M.A.

    1987-01-01

    Secretory protein I (SP-I), also referred to as chromogranin A, is an acidic glycoprotein that has been found in every tissue of endocrine and neuroendocrine origin examined but never in exocrine or epithelial cells. Its co-storage and co-secretion with peptide hormones and neurotransmitters suggest that it has an important endocrine or secretory function. The authors have isolated cDNA clones from a bovine pituitary λgt11 expression library using an antiserum to parathyroid SP-I. The largest clone (SP4B) hybridized to a transcript of 2.1 kilobases in RNA from parathyroid, pituitary, and adrenal medulla. Immunoblots of bacterial lysates derived from SP4B lysognes demonstrated specific antibody binding to an SP4B/β-galactosidase fusion protein (160 kDa) with a cDNA-derived component of 46 kDa. Radioimmunoassay of the bacterial lystates with SP-I antiserum yielded parallel displacement curves of 125 I-labeled SP-I by the SP4B lysate and authentic SP-I. SP4B contains a cDNA of 1614 nucleotides that encodes a 449-amino acid protein (calculated mass, 50 kDa). The nucleotide sequences of the pituitary SP-I cDNA and adrenal medullary SP-I cDNAs are nearly identical. Analysis of genomic DNA suggests that pituitary, adrenal, and parathyroid SP-I are products of the same gene

  11. Primary structure of bovine pituitary secretory protein I (chromogranin A) deduced from the cDNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.G.; Cohn, D.V.; Gorr, S.U.; Ornstein, D.L.; Kashdan, M.A.; Levine, M.A.

    1987-07-01

    Secretory protein I (SP-I), also referred to as chromogranin A, is an acidic glycoprotein that has been found in every tissue of endocrine and neuroendocrine origin examined but never in exocrine or epithelial cells. Its co-storage and co-secretion with peptide hormones and neurotransmitters suggest that it has an important endocrine or secretory function. The authors have isolated cDNA clones from a bovine pituitary lambdagt11 expression library using an antiserum to parathyroid SP-I. The largest clone (SP4B) hybridized to a transcript of 2.1 kilobases in RNA from parathyroid, pituitary, and adrenal medulla. Immunoblots of bacterial lysates derived from SP4B lysognes demonstrated specific antibody binding to an SP4B/..beta..-galactosidase fusion protein (160 kDa) with a cDNA-derived component of 46 kDa. Radioimmunoassay of the bacterial lystates with SP-I antiserum yielded parallel displacement curves of /sup 125/I-labeled SP-I by the SP4B lysate and authentic SP-I. SP4B contains a cDNA of 1614 nucleotides that encodes a 449-amino acid protein (calculated mass, 50 kDa). The nucleotide sequences of the pituitary SP-I cDNA and adrenal medullary SP-I cDNAs are nearly identical. Analysis of genomic DNA suggests that pituitary, adrenal, and parathyroid SP-I are products of the same gene.

  12. Defects in ultrasonic vocalization of cadherin-6 knockout mice.

    Directory of Open Access Journals (Sweden)

    Ryoko Nakagawa

    Full Text Available BACKGROUND: Although some molecules have been identified as responsible for human language disorders, there is still little information about what molecular mechanisms establish the faculty of human language. Since mice, like songbirds, produce complex ultrasonic vocalizations for intraspecific communication in several social contexts, they can be good mammalian models for studying the molecular basis of human language. Having found that cadherins are involved in the vocal development of the Bengalese finch, a songbird, we expected cadherins to also be involved in mouse vocalizations. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether similar molecular mechanisms underlie the vocalizations of songbirds and mammals, we categorized behavioral deficits including vocalization in cadherin-6 knockout mice. Comparing the ultrasonic vocalizations of cadherin-6 knockout mice with those of wild-type controls, we found that the peak frequency and variations of syllables were differed between the mutant and wild-type mice in both pup-isolation and adult-courtship contexts. Vocalizations during male-male aggression behavior, in contrast, did not differ between mutant and wild-type mice. Open-field tests revealed differences in locomotors activity in both heterozygote and homozygote animals and no difference in anxiety behavior. CONCLUSIONS/SIGNIFICANCE: Our results suggest that cadherin-6 plays essential roles in locomotor activity and ultrasonic vocalization. These findings also support the idea that different species share some of the molecular mechanisms underlying vocal behavior.

  13. The LIKE system, a novel protein expression toolbox for Bacillus subtilis based on the liaI promoter

    Science.gov (United States)

    2012-01-01

    Background Bacillus subtilis is a very important Gram-positive model organism of high biotechnological relevance, which is widely used as a host for the production of both secreted and cytoplasmic proteins. We developed a novel and efficient expression system, based on the liaI promoter (PliaI) from B. subtilis, which is under control of the LiaRS antibiotic-inducible two-component system. In the absence of a stimulus, this promoter is kept tightly inactive. Upon induction by cell wall antibiotics, it shows an over 100-fold increase in activity within 10 min. Results Based on these traits of PliaI, we developed a novel LiaRS-controlled gene expression system for B. subtilis (the “LIKE" system). Two expression vectors, the integrative pLIKE-int and the replicative pLIKE-rep, were constructed. To enhance the performance of the PliaI-derived system, site-directed mutagenesis was employed to optimize the ribosome binding site and alter its spacing to the initiation codon used for the translational fusion. The impact of these genetic modifications on protein production yield was measured using GFP as a model protein. Moreover, a number of tailored B. subtilis expression strains containing different markerless chromosomal deletions of the liaIH region were constructed to circumvent undesired protein production, enhance the positive autoregulation of the LiaRS system and thereby increase target gene expression strength from the PliaI promoter. Conclusions The LIKE protein expression system is a novel protein expression system, which offers a number of advantages over existing systems. Its major advantages are (i) a tightly switched-off promoter during exponential growth in the absence of a stimulus, (ii) a concentration-dependent activation of PliaI in the presence of suitable inducers, (iii) a very fast but transient response with a very high dynamic range of over 100-fold (up to 1,000-fold) induction, (iv) a choice from a range of well-defined, commercially available

  14. BIASED AGONISM OF THREE DIFFERENT CANNABINOID RECEPTOR AGONISTS IN MOUSE BRAIN CORTEX

    Directory of Open Access Journals (Sweden)

    Rebeca Diez-Alarcia

    2016-11-01

    Full Text Available Cannabinoid receptors are able to couple to different families of G-proteins when activated by an agonist drug. It has been suggested that different intracellular responses may be activated depending on the ligand. The goal of the present study was to characterize the pattern of G protein subunit stimulation triggered by three different cannabinoid ligands, THC, WIN55212-2 and ACEA in mouse brain cortex.Stimulation of the [35S]GTPS binding coupled to specific immunoprecipitation with antibodies against different subtypes of G proteins (Gαi1, Gαi2, Gαi3, Gαo, Gαz, Gαs, Gαq/11, and Gα12/13, in the presence of Δ9-THC, WIN55212-2 and ACEA (submaximal concentration 10 µM was determined by Scintillation Proximity Assay (SPA technique in mouse cortex of wild type, CB1 knock-out, CB2 knock-out and CB1/CB2 double knock-out mice. Results show that, in mouse brain cortex, cannabinoid agonists are able to significantly stimulate not only the classical inhibitory Gαi/o subunits but also other G subunits like Gαz, Gαq/11, and Gα12/13. Moreover, the specific pattern of G protein subunit activation is different depending on the ligand. In conclusion, our results demonstrate that, in mice brain native tissue, different exogenous cannabinoid ligands are able to selectively activate different inhibitory and non-inhibitory Gα protein subtypes, through the activation of CB1 and/or CB2 receptors. Results of the present study may help to understand the specific molecular pathways involved in the pharmacological effects of cannabinoid-derived drugs.

  15. Interaction forces between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, C.P.; Belt-Gritter, van de B.; Dijkstra, R.J.B.; Norde, W.; Mei, van der H.C.; Busscher, H.J.

    2007-01-01

    The antigen I/II family of surface proteins is expressed by oral streptococci, including Streptococcus mutans, and mediates specific binding to, among others, salivary films. The aim of this study was to investigate the interaction forces between salivary proteins and S. mutans with (LT11) and

  16. The low molecular weight protein PsaI stabilizes the light-harvesting complex II docking site of photosystem I

    DEFF Research Database (Denmark)

    Plöchinger, Magdalena; Torabi, Salar; Rantala, Marjaana

    2016-01-01

    PsaI represents one of three low molecular weight peptides of PSI. Targeted inactivation of the plastid PsaI gene in Nicotiana tabacum has no measurable effect on photosynthetic electron transport around PSI or on accumulation of proteins involved in photosynthesis. Instead, the lack of Psa......I destabilizes the association of PsaL and PsaH to PSI, both forming the light-harvesting complex (LHC)II docking site of PSI. These alterations at the LHCII binding site surprisingly did not prevent state transition but led to an increased incidence of PSI-LHCII complexes, coinciding with an elevated...

  17. Relevant feature set estimation with a knock-out strategy and random forests

    DEFF Research Database (Denmark)

    Ganz, Melanie; Greve, Douglas N; Fischl, Bruce

    2015-01-01

    unintuitive and difficult to determine. In this article, we propose a novel MVPA method for group analysis of high-dimensional data that overcomes the drawbacks of the current techniques. Our approach explicitly aims to identify all relevant variations using a "knock-out" strategy and the Random Forest...

  18. Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, C.P.; Belt-Gritter, van de B.; Busscher, H.J.; Mei, van der H.C.; Norde, W.

    2007-01-01

    Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT11 and S. mutans IB03987 with and without antigen I/II, respectively, using

  19. Calorimetric comparison of the interactions between salivary proteins and Streptococcus mutans with and without antigen I/II

    NARCIS (Netherlands)

    Xu, Chun-Ping; Belt-Gritter, van de Betsy; Busscher, Henk J.; van der Mei, Henny C.; Norde, Willem

    2007-01-01

    Antigen I/II can be found on streptococcal cell surfaces and is involved in their interaction with salivary proteins. In this paper, we determine the adsorption enthalpies of salivary proteins to Streptococcus mutans LT 11 and S. mutans IB03987 with and without antigen I/II, respectively, using

  20. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Sam [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom); School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom); Stuerzenbaum, Stephen R. [School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL (United Kingdom) and School of Biomedical and Health Sciences, Pharmaceutical Sciences Research Division, King' s College London, 150 Stamford Street, London SE1 9NH (United Kingdom)]. E-mail: stephen.sturzenbaum@kcl.ac.uk

    2007-01-15

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters.

  1. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits

    International Nuclear Information System (INIS)

    Hughes, Sam; Stuerzenbaum, Stephen R.

    2007-01-01

    The genome of the nematode Caenorhabditis elegans contains two metallothionein genes, both involved in metal homeostasis and/or detoxification. Single metallothionein knockout mutants have been created and now, for the first time, a double mutant has been isolated. Life history studies in the presence or absence of cadmium showed that all metallothionein mutants are viable. Although cadmium did not influence longevity, a dose dependent reduction in total brood size and volumetric growth was observed in wild type animals, which was magnified in single knockouts and further exacerbated in the double knockout. However, the metallothionein deletion caused two effects that are independent of cadmium exposure, namely all knockout strains displayed a reduced total brood size and the deletion of both metallothionein loci caused a significant reduction in volumetric growth. In summary, metallothionein is undoubtedly an important player in cadmium detoxification, but evidently also an important factor in cadmium independent pathways. - Metallothionein is a modifier of life-history parameters

  2. Generation of ERα-floxed and knockout mice using the Cre/LoxP system

    International Nuclear Information System (INIS)

    Antonson, P.; Omoto, Y.; Humire, P.; Gustafsson, J.-Å.

    2012-01-01

    Highlights: ► ERα floxed and knockout mice were generated. ► Disruption of the ERα gene results in sterility in both male and female mice. ► ERα −/− mice have ovaries with hemorrhagic follicles and hypoplastic uterus. ► Female ERα −/− mice develop obesity. -- Abstract: Estrogen receptor alpha (ERα) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ERα mouse line that can be used to knock out ERα in selected tissues by using the Cre/LoxP system. In this study, we established a new ERα knockout mouse line by crossing the floxed ERα mice with Cre deleter mice. Here we show that genetic disruption of the ERα gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ERα is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  3. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2.

    Directory of Open Access Journals (Sweden)

    Deepti Chugh

    Full Text Available Synapsins are pre-synaptic vesicle-associated proteins linked to the pathogenesis of epilepsy through genetic association studies in humans. Deletion of synapsins causes an excitatory/inhibitory imbalance, exemplified by the epileptic phenotype of synapsin knockout mice. These mice develop handling-induced tonic-clonic seizures starting at the age of about 3 months. Hence, they provide an opportunity to study epileptogenic alterations in a temporally controlled manner. Here, we evaluated brain inflammation, synaptic protein expression, and adult hippocampal neurogenesis in the epileptogenic (1 and 2 months of age and tonic-clonic (3.5-4 months phase of synapsin 2 knockout mice using immunohistochemical and biochemical assays. In the epileptogenic phase, region-specific microglial activation was evident, accompanied by an increase in the chemokine receptor CX3CR1, interleukin-6, and tumor necrosis factor-α, and a decrease in chemokine keratinocyte chemoattractant/ growth-related oncogene. Both post-synaptic density-95 and gephyrin, scaffolding proteins at excitatory and inhibitory synapses, respectively, showed a significant up-regulation primarily in the cortex. Furthermore, we observed an increase in the inhibitory adhesion molecules neuroligin-2 and neurofascin and potassium chloride co-transporter KCC2. Decreased expression of γ-aminobutyric acid receptor-δ subunit and cholecystokinin was also evident. Surprisingly, hippocampal neurogenesis was reduced in the epileptogenic phase. Taken together, we report molecular alterations in brain inflammation and excitatory/inhibitory balance that could serve as potential targets for therapeutics and diagnostic biomarkers. In addition, the regional differences in brain inflammation and synaptic protein expression indicate an epileptogenic zone from where the generalized seizures in synapsin 2 knockout mice may be initiated or spread.

  4. Preaxial Polydactyly in Sost/Sostdc1 Double Knockouts

    Energy Technology Data Exchange (ETDEWEB)

    Yee, C M; Collette, N M; Loots, G G

    2011-07-29

    In the United States, {approx}5% are born with congenital birth defects due to abnormal function of cellular processes and interactions. Sclerosteosis, a rare autosomal recessive disease, causes hyperostosis of the axial and appendicular skeleton, and patients present radial deviation, digit syndactyly, nail dysplasia, and overall high bone mineral density. Sclerosteosis is due to a loss of function of sclerostin (Sost). Sost is a Wnt (abbrev.) antagonist; when mutated, nonfunctional Sost results in hyperactive osteoblast activity which leads to abnormal high bone mass. Previous studies have shown that Sost overexpression in transgenic mice causes reduced bone mineral density and a variety of limb phenotypes ranging from lost, fused, and split phalanges. Consistent with clinical manifestations of Sclerosteosis, Sost knockout mice exhibit increased generalized bone mineral density and syndactyly of the digits. Sostdc1 is a paralog of Sost that has also been described as an antagonist of Wnt signaling, in developing tooth buds. Unlike Sost knockouts, Sostdc1 null mice do not display any limb abnormalities. To determine if Sost and Sostdc1 have redundant functions during limb patterning, we examined Sost; Sostdc1 mice determined that they exhibit a novel preaxial polydactyly phenotype with a low penetrance. LacZ staining, skeletal preparations, and in situ hybridization experiments were used to help characterize this novel phenotype and understand how this phenotype develops. We find Sost and Sostdc1 to have complementary expression patterns during limb development, and the loss of their expression alters the transcription of several key limb regulators, such as Fgf8, Shh and Grem.

  5. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A Jacob/Nsmf Gene Knockout Results in Hippocampal Dysplasia and Impaired BDNF Signaling in Dendritogenesis.

    Directory of Open Access Journals (Sweden)

    Christina Spilker

    2016-03-01

    Full Text Available Jacob, the protein encoded by the Nsmf gene, is involved in synapto-nuclear signaling and docks an N-Methyl-D-Aspartate receptor (NMDAR-derived signalosome to nuclear target sites like the transcription factor cAMP-response-element-binding protein (CREB. Several reports indicate that mutations in NSMF are related to Kallmann syndrome (KS, a neurodevelopmental disorder characterized by idiopathic hypogonadotropic hypogonadism (IHH associated with anosmia or hyposmia. It has also been reported that a protein knockdown results in migration deficits of Gonadotropin-releasing hormone (GnRH positive neurons from the olfactory bulb to the hypothalamus during early neuronal development. Here we show that mice that are constitutively deficient for the Nsmf gene do not present phenotypic characteristics related to KS. Instead, these mice exhibit hippocampal dysplasia with a reduced number of synapses and simplification of dendrites, reduced hippocampal long-term potentiation (LTP at CA1 synapses and deficits in hippocampus-dependent learning. Brain-derived neurotrophic factor (BDNF activation of CREB-activated gene expression plays a documented role in hippocampal CA1 synapse and dendrite formation. We found that BDNF induces the nuclear translocation of Jacob in an NMDAR-dependent manner in early development, which results in increased phosphorylation of CREB and enhanced CREB-dependent Bdnf gene transcription. Nsmf knockout (ko mice show reduced hippocampal Bdnf mRNA and protein levels as well as reduced pCREB levels during dendritogenesis. Moreover, BDNF application can rescue the morphological deficits in hippocampal pyramidal neurons devoid of Jacob. Taken together, the data suggest that the absence of Jacob in early development interrupts a positive feedback loop between BDNF signaling, subsequent nuclear import of Jacob, activation of CREB and enhanced Bdnf gene transcription, ultimately leading to hippocampal dysplasia.

  7. Abnormal monocyte recruitment and collateral artery formation in monocyte chemoattractant protein-1 deficient mice

    NARCIS (Netherlands)

    Voskuil, Michiel; Hoefer, Imo E.; van Royen, Niels; Hua, Jing; de Graaf, Stijn; Bode, Christoph; Buschmann, Ivo R.; Piek, Jan J.

    2004-01-01

    Monocyte chemoattractant protein 1 (MCP-1) has been shown to be effective for the stimulation of collateral artery formation in small and large animal models. The availability of a genetic knockout mouse enables evaluation of the importance of the role of MCP-1 in the natural course of collateral

  8. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    Energy Technology Data Exchange (ETDEWEB)

    Harrill, Joshua A. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Hukkanen, Renee R.; Lawson, Marie; Martin, Greg [The Dow Chemical Company, Midland, MI 48640 (United States); Gilger, Brian [North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606 (United States); Soldatow, Valerie [University of North Carolina, Department of Environmental Sciences and Engineering, Chapel Hill, NC 27599 (United States); LeCluyse, Edward L. [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States); Budinsky, Robert A.; Rowlands, J. Craig [The Dow Chemical Company, Midland, MI 48640 (United States); Thomas, Russell S., E-mail: RThomas@thehamner.org [The Hamner Institute for Health Sciences, Institute for Chemical Safety Sciences, RTP, NC 27709 (United States)

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  9. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie; Martin, Greg; Gilger, Brian; Soldatow, Valerie; LeCluyse, Edward L.; Budinsky, Robert A.; Rowlands, J. Craig; Thomas, Russell S.

    2013-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expression of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in vascular

  10. Rotavirus nonstructural protein 1 antagonizes innate immune response by interacting with retinoic acid inducible gene I

    Directory of Open Access Journals (Sweden)

    Qin Lan

    2011-12-01

    Full Text Available Abstract Background The nonstructural protein 1 (NSP1 of rotavirus has been reported to block interferon (IFN signaling by mediating proteasome-dependent degradation of IFN-regulatory factors (IRFs and (or the β-transducin repeat containing protein (β-TrCP. However, in addition to these targets, NSP1 may subvert innate immune responses via other mechanisms. Results The NSP1 of rotavirus OSU strain as well as the IRF3 binding domain truncated NSP1 of rotavirus SA11 strain are unable to degrade IRFs, but can still inhibit host IFN response, indicating that NSP1 may target alternative host factor(s other than IRFs. Overexpression of NSP1 can block IFN-β promoter activation induced by the retinoic acid inducible gene I (RIG-I, but does not inhibit IFN-β activation induced by the mitochondrial antiviral-signaling protein (MAVS, indicating that NSP1 may target RIG-I. Immunoprecipitation experiments show that NSP1 interacts with RIG-I independent of IRF3 binding domain. In addition, NSP1 induces down-regulation of RIG-I in a proteasome-independent way. Conclusions Our findings demonstrate that inhibition of RIG-I mediated type I IFN responses by NSP1 may contribute to the immune evasion of rotavirus.

  11. Acceleration of lipid peroxidation in alpha-tocopherol transfer protein-knockout mice following the consumption of drinking water containing a radical initiator.

    Science.gov (United States)

    Yoshida, Yasukazu; Hayakawa, Mieko; Cynshi, Osamu; Jishage, Kou-ichi; Niki, Etsuo

    2008-01-01

    To assess the antioxidative role of vitamin E (VE) in a mouse model of severe VE deficiency by using biomarkers, alpha-tocopherol transfer protein (alpha-TTP(-/-))-knockout mice were maintained on a VE-deficient diet for 28 weeks [KO group, n = 6]. Wild-type C57BL/6 mice were maintained on a diet containing 0.002% alpha-tocopherol [WT group, n = 6]. The animals were housed individually in a metabolic cage from the age of 9 weeks (Week 0) to 27 weeks. Urine was collected every week, and the levels of total hydroxyoctadecadienoic acid (tHODE), 7-hydroxycholesterol (t7-OHCh), and 8-iso-prostaglandin F(2alpha)(t8-isoPGF(2alpha)), which are biomarkers for lipid peroxidation, were measured by gas chromatography (GC)-mass spectrometry. From the age of 21 weeks (Week 12), three mice in each group were provided drinking water containing the water-soluble radical initiator 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) until the end of the study (Week 19). Blood and tissue samples were collected, and the levels of the abovementioned biomarkers therein were assessed. AIPH consumption clearly elevated the plasma and erythrocyte levels of tHODE and t8-isoPGF(2alpha) in both the WT and KO groups except for the erythrocyte level of tHODE in the WT group. Furthermore, this elevation was more prominent in the KO group than in the WT group. Interestingly, AIPH consumption reduced the stereoisomer ratio of HODE (ZE/EE), which is reflective of the efficacy of a compound as an antioxidant in vivo; this suggests that free radical-mediated oxidation reduces the antioxidant capacity in vivo. The urine levels of tHODE, t7-OHCh, and t8-isoPGF(2alpha) tended to increase with AIPH consumption, but these individual levels fluctuated. It was clearly demonstrated by the proposed biomarkers that maintaining alpha-TTP(-/-) mice on a VE-deficient diet results in a severe VE deficiency and promotes lipid peroxidation.

  12. Synapsin I (Protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia. [Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, R; Alafuzoff, I; Winblad, B [Umeaa Univ. (Sweden); Perdahl, E; Albert, K A; Nestler, E J; Greengard, P [Rockefeller Univ., New York (USA)

    1984-01-01

    Synapsin I (Protein I), a neuron-specfic phosphoprotein enriched in presynaptic nerve terminals, has been used as a quantitative marker for the density of nerve terminals in five brain regions (caudate nucleus, cingulate gyrus, hippocampus, mesencephalon and putamen) from patients who had suffered from Alzheimer disease/senile dementia of Alzheimer type (AD/SDAT), from patients with multi-infarct dementia (MID), and from agematched controls. Samples were obtained at autopsy. Lower levels of Synapsin I were observed in the hippocampus of patients with AD/SDAT but not with MID. There were no significant differences in Synapsin I levels between patients and controls in any of the other four brain regions examined.

  13. Switch I-dependent allosteric signaling in a G-protein chaperone-B12 enzyme complex.

    Science.gov (United States)

    Campanello, Gregory C; Lofgren, Michael; Yokom, Adam L; Southworth, Daniel R; Banerjee, Ruma

    2017-10-27

    G-proteins regulate various processes ranging from DNA replication and protein synthesis to cytoskeletal dynamics and cofactor assimilation and serve as models for uncovering strategies deployed for allosteric signal transduction. MeaB is a multifunctional G-protein chaperone, which gates loading of the active 5'-deoxyadenosylcobalamin cofactor onto methylmalonyl-CoA mutase (MCM) and precludes loading of inactive cofactor forms. MeaB also safeguards MCM, which uses radical chemistry, against inactivation and rescues MCM inactivated during catalytic turnover by using the GTP-binding energy to offload inactive cofactor. The conserved switch I and II signaling motifs used by G-proteins are predicted to mediate allosteric regulation in response to nucleotide binding and hydrolysis in MeaB. Herein, we targeted conserved residues in the MeaB switch I motif to interrogate the function of this loop. Unexpectedly, the switch I mutations had only modest effects on GTP binding and on GTPase activity and did not perturb stability of the MCM-MeaB complex. However, these mutations disrupted multiple MeaB chaperone functions, including cofactor editing, loading, and offloading. Hence, although residues in the switch I motif are not essential for catalysis, they are important for allosteric regulation. Furthermore, single-particle EM analysis revealed, for the first time, the overall architecture of the MCM-MeaB complex, which exhibits a 2:1 stoichiometry. These EM studies also demonstrate that the complex exhibits considerable conformational flexibility. In conclusion, the switch I element does not significantly stabilize the MCM-MeaB complex or influence the affinity of MeaB for GTP but is required for transducing signals between MeaB and MCM. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Hippocampal Focal Knockout of CBP Affects Specific Histone Modifications, Long-Term Potentiation, and Long-Term Memory

    Science.gov (United States)

    Barrett, Ruth M; Malvaez, Melissa; Kramar, Eniko; Matheos, Dina P; Arrizon, Abraham; Cabrera, Sara M; Lynch, Gary; Greene, Robert W; Wood, Marcelo A

    2011-01-01

    To identify the role of the histone acetyltransferase (HAT) CREB-binding protein (CBP) in neurons of the CA1 region of the hippocampus during memory formation, we examine the effects of a focal homozygous knockout of CBP on histone modifications, gene expression, synaptic plasticity, and long-term memory. We show that CBP is critical for the in vivo acetylation of lysines on histones H2B, H3, and H4. CBP's homolog p300 was unable to compensate for the loss of CBP. Neurons lacking CBP maintained phosphorylation of the transcription factor CREB, yet failed to activate CREB:CBP-mediated gene expression. Loss of CBP in dorsal CA1 of the hippocampus resulted in selective impairments to long-term potentiation and long-term memory for contextual fear and object recognition. Together, these results suggest a necessary role for specific chromatin modifications, selectively mediated by CBP in the consolidation of memories. PMID:21508930

  15. Increase in tendon protein synthesis in response to insulin-like growth factor-I is preserved in elderly men

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Malmgaard-Clausen, Nikolaj Mølkjær

    2014-01-01

    the in vivo IGF-I stimulation of tendon protein synthesis in elderly compared with young men. We injected IGF-I in the patellar tendons of young (n = 11, 20-30 yr of age) and old (n = 11, 66-75 yr of age) men, and the acute fractional synthesis rate (FSR) of tendon protein was measured with the stable isotope.......01). This increase in protein synthesis was seen in both young and old men, with no differences between age groups. The old group had markedly lower serum IGF-I levels compared with young (165 ± 17 vs. 281 ± 27 ng/ml, P protein synthesis in both young and old men...... technique and compared with the contralateral side (injected with saline as control). We found that tendons injected with IGF-I had significantly higher protein FSR compared with controls (old group: 0.018 ± 0.015 vs. 0.008 ± 0.008, young group: 0.016 ± 0.009 vs. 0.009 ± 0.006%/h, mean ± SE, P

  16. Changes of Protein Turnover in Aging <i>Caenorhabditis elegansi>

    Energy Technology Data Exchange (ETDEWEB)

    Dhondt, Ineke; Petyuk, Vladislav A.; Bauer, Sophie; Brewer, Heather M.; Smith, Richard D.; Depuydt, Geert; Braeckman, Bart P.

    2017-07-05

    Protein turnover rates severely decline in aging organisms, including C. elegans. However, limited information is available on turnover dynamics at the individual protein level during aging. We followed changes in protein turnover at one-day resolution using a multiple-pulse 15Nlabeling and accurate mass spectrometry approach. Forty percent of the proteome shows gradual slowdown in turnover with age, whereas only few proteins show increased turnover. Decrease in protein turnover was consistent for only a minority of functionally related protein subsets, including tubulins and vitellogenins, whereas randomly diverging turnover patterns with age were the norm. Our data suggests increased heterogeneity of protein turnover of the translation machinery, whereas protein turnover of ubiquitin-proteasome and antioxidant systems are well-preserved over time. Hence, we presume that maintenance of quality control mechanisms is a protective strategy in aging worms, although the ultimate proteome collapse is inescapable.

  17. An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    Science.gov (United States)

    Natarajan, Aravind; Haitjema, Charles H; Lee, Robert; Boock, Jason T; DeLisa, Matthew P

    2017-05-19

    The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved for most synthetic biology and metabolic engineering applications. To address this challenge, we developed a generalizable survival-based selection strategy that effectively couples extracellular protein secretion to antibiotic resistance and enables facile isolation of rare mutants from very large populations (i.e., 10 10-12 clones) based simply on cell growth. Using this strategy in the context of the YebF pathway, a comprehensive library of E. coli single-gene knockout mutants was screened and several gain-of-function mutations were isolated that increased the efficiency of extracellular expression without compromising the integrity of the outer membrane. We anticipate that this user-friendly strategy could be leveraged to better understand the YebF pathway and other secretory mechanisms-enabling the exploration of protein secretion in pathogenesis as well as the creation of designer E. coli strains with greatly expanded secretomes-all without the need for expensive exogenous reagents, assay instruments, or robotic automation.

  18. [Screening differentially expressed plasma proteins in cold stress rats based on iTRAQ combined with mass spectrometry technology].

    Science.gov (United States)

    Liu, Yan-zhi; Guo, Jing-ru; Peng, Meng-ling; Ma, Li; Zhen, Li; Ji, Hong; Yang, Huan-min

    2015-09-01

    Isobaric tags for relative and absolute quantitation (iTRAQ) combined with mass spectrometry were used to screen differentially expressed plasma proteins in cold stress rats. Thirty health SPF Wistar rats were randomly divided into cold stress group A and control group B, then A and B were randomly divided into 3 groups (n = 5): A1, A2, A3 and B1, B2, B3. The temperature of room raising was (24.0 +/- 0.1) degrees C, and the cold stress temperature was (4.0 +/- 0.1) degrees C. The rats were treated with different temperatures until 12 h. The abdominal aortic blood was collected with heparin anticoagulation suction tube. Then, the plasma was separated for protein extraction, quantitative, enzymolysis, iTHAQ labeling, scx fractionation and mass spectrometry analysis. Totally, 1085 proteins were identified in the test, 39 differentially expressed proteins were screened, including 29 up-regulated proteins and 10 down-regulated proteins. Three important differentially expressed proteins related to cold stress were screened by bioinfonnatics analysis (Minor histocompatihility protein HA-1, Has-related protein Rap-1b, Integrin beta-1). In the experiment, the differentially expressed plasma proteins were successfully screened in cold stress rats. iTRAQ technology provided a good platform to screen protein diaguostic markers on cold stress rats, and laid a good foundation for further. study on animal cold stress mechanism.

  19. X-ray crystallographic studies of the extracellular domain of the first plant ATP receptor, DORN1, and the orthologous protein from <i>Camelina sativai>

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijie; Chakraborty, Sayan; Xu, Guozhou (NCSU)

    2016-10-26

    Does not respond to nucleotides 1 (DORN1) has recently been identified as the first membrane-integral plant ATP receptor, which is required for ATP-induced calcium response, mitogen-activated protein kinase activation and defense responses inArabidopsis thaliana. In order to understand DORN1-mediated ATP sensing and signal transduction, crystallization and preliminary X-ray studies were conducted on the extracellular domain of DORN1 (atDORN1-ECD) and that of an orthologous protein,Camelina sativalectin receptor kinase I.9 (csLecRK-I.9-ECD or csI.9-ECD). A variety of deglycosylation strategies were employed to optimize the glycosylated recombinant atDORN1-ECD for crystallization. In addition, the glycosylated csI.9-ECD protein was crystallized at 291 K. X-ray diffraction data were collected at 4.6 Å resolution from a single crystal. The crystal belonged to space groupC222 orC2221, with unit-cell parametersa= 94.7,b= 191.5,c= 302.8 Å. These preliminary studies have laid the foundation for structural determination of the DORN1 and I.9 receptor proteins, which will lead to a better understanding of the perception and function of extracellular ATP in plants.

  20. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse.

    Science.gov (United States)

    Kielar, Catherine; Sawiak, Stephen J; Navarro Negredo, Paloma; Tse, Desmond H Y; Morton, A Jennifer

    2012-01-01

    Complexins (Cplxs) are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/-)) have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/-) mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/-) mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/-) and Cplx1(+/+) mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/-) mice when compared to Cplx1(+/+) animals. Our study is the first to describe pathological changes in Cplx1(-/-) mouse brain. We suggest that the ataxia in Cplx1(-/-) mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/-) mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.

  1. Tensor-based morphometry and stereology reveal brain pathology in the complexin1 knockout mouse.

    Directory of Open Access Journals (Sweden)

    Catherine Kielar

    Full Text Available Complexins (Cplxs are small, soluble, regulatory proteins that bind reversibly to the SNARE complex and modulate synaptic vesicle release. Cplx1 knockout mice (Cplx1(-/- have the earliest known onset of ataxia seen in a mouse model, although hitherto no histopathology has been described in these mice. Nevertheless, the profound neurological phenotype displayed by Cplx1(-/- mutants suggests that significant functional abnormalities must be present in these animals. In this study, MRI was used to automatically detect regions where structural differences were not obvious when using a traditional histological approach. Tensor-based morphometry of Cplx1(-/- mouse brains showed selective volume loss from the thalamus and cerebellum. Stereological analysis of Cplx1(-/- and Cplx1(+/+ mice brain slices confirmed the volume loss in the thalamus as well as loss in some lobules of the cerebellum. Finally, stereology was used to show that there was loss of cerebellar granule cells in Cplx1(-/- mice when compared to Cplx1(+/+ animals. Our study is the first to describe pathological changes in Cplx1(-/- mouse brain. We suggest that the ataxia in Cplx1(-/- mice is likely to be due to pathological changes in both cerebellum and thalamus. Reduced levels of Cplx proteins have been reported in brains of patients with neurodegenerative diseases. Therefore, understanding the effects of Cplx depletion in brains from Cplx1(-/- mice may also shed light on the mechanisms underlying pathophysiology in disorders in which loss of Cplx1 occurs.

  2. Gene knockout of the KCNJ8-encoded Kir6.1 K(ATP) channel imparts fatal susceptibility to endotoxemia.

    Science.gov (United States)

    Kane, Garvan C; Lam, Chen-Fuh; O'Cochlain, Fearghas; Hodgson, Denice M; Reyes, Santiago; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Katusic, Zvonimir S; Terzic, Andre

    2006-11-01

    Sepsis, the systemic inflammatory response to infection, imposes a high demand for bodily adaptation, with the cardiovascular response a key determinant of outcome. The homeostatic elements that secure cardiac tolerance in the setting of the sepsis syndrome are poorly understood. Here, in a model of acute septic shock induced by endotoxin challenge with Escherichia coli lipopolysaccharide (LPS), knockout of the KCNJ8 gene encoding the vascular Kir6.1 K(ATP) channel pore predisposed to an early and profound survival disadvantage. The exaggerated susceptibility provoked by disruption of this stress-responsive sensor of cellular metabolism was linked to progressive deterioration in cardiac activity, ischemic myocardial damage, and contractile dysfunction. Deletion of KCNJ8 blunted the responsiveness of coronary vessels to cytokine- or metabolic-mediated vasodilation necessary to support myocardial perfusion in the wild-type (WT), creating a deficit in adaptive response in the Kir6.1 knockout. Application of a K(ATP) channel opener drug improved survival in the endotoxic WT but had no effect in the Kir6.1 knockout. Restoration of the dilatory capacity of coronary vessels was required to rescue the Kir6.1 knockout phenotype and reverse survival disadvantage in lethal endotoxemia. Thus, the Kir6.1-containing K(ATP) channel, by coupling vasoreactivity with metabolic demand, provides a vital feedback element for cardiovascular tolerance in endotoxic shock.

  3. Human I-mfa domain proteins specifically interact with KSHV LANA and affect its regulation of Wnt signaling-dependent transcription

    Energy Technology Data Exchange (ETDEWEB)

    Kusano, Shuichi, E-mail: skusano@m2.kufm.kagoshima-u.ac.jp [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Eizuru, Yoshito [Division of Persistent and Oncogenic Viruses, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2010-06-04

    Kaposi's sarcoma-associated herpes virus (KSHV)-encoded latency-associated nuclear antigen (LANA) protein has been reported to interact with glycogen synthase kinase 3{beta} (GSK-3{beta}) and to negatively regulate its activity, leading to stimulation of GSK-3{beta}-dependent {beta}-catenin degradation. We show here that the I-mfa domain proteins, HIC (human I-mfa domain-containing protein) and I-mfa (inhibitor of MyoD family a), interacted in vivo with LANA through their C-terminal I-mfa domains. This interaction affected the intracellular localization of HIC, inhibited the LANA-dependent transactivation of a {beta}-catenin-regulated reporter construct, and decreased the level of the LANA.GSK-3{beta} complex. These data reveal for the first time that I-mfa domain proteins interact with LANA and negatively regulate LANA-mediated activation of Wnt signaling-dependent transcription by inhibiting the formation of the LANA.GSK-3{beta} complex.

  4. Proteins labelling with 125I and experimental determination of their specific activity

    International Nuclear Information System (INIS)

    Caro, R.A.; Ciscato, V.A.; Giacomini, S.M.V. de; Quiroga, S.; Radicella, R.

    1975-11-01

    A standardization of the labelling technique of proteins with 125 I and the control of the obtained products, principally their specific activities was performed, in order to utilize them correctly in radioimmunoassays. The quantities of chloramine-T and sodium metabisulphite were lowered, with regard to the original method, to 3.6 and 9.6 μg respectively. Under these conditions, optimal yields and radioiodinated proteins with good immunological activities were obtained. It was found that the specific activity calculated, as usual, from the yield obtained by electrophoresis, is higher than the real value. For these reasons the yields and the corresponding specific activities were determined from ascending chromatographies performed with 70 per cent methanol as solvent, during two hours in darkness. The radioimmunoassay displacement curves obtained with proteins labelled which the proposed method and the specific activities of which were calculated from their radiochromatographic patterns, were reproducible and gave a percentage of bound radioiodinated protein in the absence of cold protein of 50 +- 4. (author) [es

  5. Organization of the BcgI restriction-modification protein for the cleavage of eight phosphodiester bonds in DNA

    Science.gov (United States)

    Smith, Rachel M.; Marshall, Jacqueline J. T.; Jacklin, Alistair J.; Retter, Susan E.; Halford, Stephen E.; Sobott, Frank

    2013-01-01

    Type IIB restriction-modification systems, such as BcgI, feature a single protein with both endonuclease and methyltransferase activities. Type IIB nucleases require two recognition sites and cut both strands on both sides of their unmodified sites. BcgI cuts all eight target phosphodiester bonds before dissociation. The BcgI protein contains A and B polypeptides in a 2:1 ratio: A has one catalytic centre for each activity; B recognizes the DNA. We show here that BcgI is organized as A2B protomers, with B at its centre, but that these protomers self-associate to assemblies containing several A2B units. Moreover, like the well known FokI nuclease, BcgI bound to its site has to recruit additional protomers before it can cut DNA. DNA-bound BcgI can alternatively be activated by excess A subunits, much like the activation of FokI by its catalytic domain. Eight A subunits, each with one centre for nuclease activity, are presumably needed to cut the eight bonds cleaved by BcgI. Its nuclease reaction may thus involve two A2B units, each bound to a recognition site, with two more A2B units bridging the complexes by protein–protein interactions between the nuclease domains. PMID:23147005

  6. Generation of knockout rabbits using transcription activator-like effector nucleases

    OpenAIRE

    Wang, Yu; Fan, Nana; Song, Jun; Zhong, Juan; Guo, Xiaogang; Tian, Weihua; Zhang, Quanjun; Cui, Fenggong; Li, Li; Newsome, Philip N; Frampton, Jon; Esteban, Miguel A; Lai, Liangxue

    2014-01-01

    Zinc-finger nucleases and transcription activator-like effector nucleases are novel gene-editing platforms contributing to redefine the boundaries of modern biological research. They are composed of a non-specific cleavage domain and a tailor made DNA-binding module, which enables a broad range of genetic modifications by inducing efficient DNA double-strand breaks at desired loci. Among other remarkable uses, these nucleases have been employed to produce gene knockouts in mid-size and large ...

  7. Serotonin Transporter Knockout Rats Show Improved Strategy Set-Shifting and Reduced Latent Inhibition

    Science.gov (United States)

    Nonkes, Lourens J. P.; van de Vondervoort, Ilse I. G. M.; de Leeuw, Mark J. C.; Wijlaars, Linda P.; Maes, Joseph H. R.; Homberg, Judith R.

    2012-01-01

    Behavioral flexibility is a cognitive process depending on prefrontal areas allowing adaptive responses to environmental changes. Serotonin transporter knockout (5-HTT[superscript -/-]) rodents show improved reversal learning in addition to orbitofrontal cortex changes. Another form of behavioral flexibility, extradimensional strategy set-shifting…

  8. Concentration of serum thyroid hormone binding proteins after 131I treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Harrop, J.S.; Hopton, M.R.; Lazarus, J.H.

    1981-01-01

    Serum concentrations of the thyroid hormone binding proteins, thyroxine binding globulin, prealbumin, and albumin were determined in 30 thyrotoxic patients before and after 131 I treatment. Each patient was placed into one of three groups according to response to treatment. The serum concentration of all three proteins rose significantly in 10 patients who became euthyroid, and a greater increase was seen in 10 patients who developed hypothyroidism. There was no significant change in thyroid hormone binding protein concentrations in 10 subjects who remained hyperthyroid. Changes in the concentration of thyroid hormone binding proteins should be borne in mind when total thyroid hormone concentrations are used to monitor the progress of patients receiving treatment for hyperthyroidism. (author)

  9. Congenital deficiency of two polypeptide subunits of the iron-protein fragment of mitochondrial complex I.

    Science.gov (United States)

    Moreadith, R W; Cleeter, M W; Ragan, C I; Batshaw, M L; Lehninger, A L

    1987-02-01

    Recently, we described a patient with severe lactic acidosis due to congenital complex I (NADH-ubiquinone oxidoreductase) deficiency. We now report further enzymatic and immunological characterizations. Both NADH and ferricyanide titrations of complex I activity (measured as NADH-ferricyanide reductase) were distinctly altered in the mitochondria from the patient's tissues. In addition, antisera against complex I immunoprecipitated NADH-ferricyanide reductase from the control but not the patient's mitochondria. However, immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of complex I polypeptides demonstrated that the majority of the 25 polypeptides comprising complex I were present in the affected mitochondria. A more detailed analysis using subunit selective antisera against the main polypeptides of the iron-protein fragments of complex I revealed a selective absence of the 75- and 13-kD polypeptides. These findings suggest that the underlying basis for this patient's disease was a congenital deficiency of at least two polypeptides comprising the iron-protein fragment of complex I, which resulted in the inability to correctly assemble a functional enzyme complex.

  10. Isolation and expression of a novel chick G-protein cDNA coding for a G alpha i3 protein with a G alpha 0 N-terminus.

    OpenAIRE

    Kilbourne, E J; Galper, J B

    1994-01-01

    We have cloned cDNAs coding for G-protein alpha subunits from a chick brain cDNA library. Based on sequence similarity to G-protein alpha subunits from other eukaryotes, one clone was designated G alpha i3. A second clone, G alpha i3-o, was identical to the G alpha i3 clone over 932 bases on the 3' end. The 5' end of G alpha i3-o, however, contained an alternative sequence in which the first 45 amino acids coded for are 100% identical to the conserved N-terminus of G alpha o from species such...

  11. Akt1/protein kinase Bα is critical for ischemic and VEGF-mediated angiogenesis

    OpenAIRE

    Ackah, Eric; Yu, Jun; Zoellner, Stefan; Iwakiri, Yasuko; Skurk, Carsten; Shibata, Rei; Ouchi, Noriyuki; Easton, Rachael M.; Galasso, Gennaro; Birnbaum, Morris J.; Walsh, Kenneth; Sessa, William C.

    2005-01-01

    Akt, or protein kinase B, is a multifunctional serine-threonine protein kinase implicated in a diverse range of cellular functions including cell metabolism, survival, migration, and gene expression. However, the in vivo roles and effectors of individual Akt isoforms in signaling are not explicitly clear. Here we show that the genetic loss of Akt1, but not Akt2, in mice results in defective ischemia and VEGF-induced angiogenesis as well as severe peripheral vascular disease. Akt1 knockout (Ak...

  12. MHC-I-induced apoptosis in human B-lymphoma cells is dependent on protein tyrosine and serine/threonine kinases

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Bregenholt, S; Johansen, B

    1999-01-01

    B lymphoma cells, is dependent on protein tyrosine kinases and the phosphatidylinositol 3 (PI-3) kinase. Functional studies showed that MHC-I crosslinking induced almost complete inhibition of the spontaneous proliferation of the B lymphoma cells as early as 6 h post-crosslinking and apoptosis 24 h...... post-crosslinking. Preincubation with either protein tyrosine kinase or protein serine/threonine kinase inhibitors reduced the MHC-I-induced apoptosis to background levels, whereas inhibition of PI-3 kinase had no effect. These data demonstrate a pivotal role for protein tyrosine and serine...

  13. iTRAQ-Based Quantitative Proteomics Identifies Potential Regulatory Proteins Involved in Chicken Eggshell Brownness.

    Directory of Open Access Journals (Sweden)

    Guangqi Li

    Full Text Available Brown eggs are popular in many countries and consumers regard eggshell brownness as an important indicator of egg quality. However, the potential regulatory proteins and detailed molecular mechanisms regulating eggshell brownness have yet to be clearly defined. In the present study, we performed quantitative proteomics analysis with iTRAQ technology in the shell gland epithelium of hens laying dark and light brown eggs to investigate the candidate proteins and molecular mechanisms underlying variation in chicken eggshell brownness. The results indicated 147 differentially expressed proteins between these two groups, among which 65 and 82 proteins were significantly up-regulated in the light and dark groups, respectively. Functional analysis indicated that in the light group, the down-regulated iron-sulfur cluster assembly protein (Iba57 would decrease the synthesis of protoporphyrin IX; furthermore, the up-regulated protein solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator, member 5 (SLC25A5 and down-regulated translocator protein (TSPO would lead to increased amounts of protoporphyrin IX transported into the mitochondria matrix to form heme with iron, which is supplied by ovotransferrin protein (TF. In other words, chickens from the light group produce less protoporphyrin IX, which is mainly used for heme synthesis. Therefore, the exported protoporphyrin IX available for eggshell deposition and brownness is reduced in the light group. The current study provides valuable information to elucidate variation of chicken eggshell brownness, and demonstrates the feasibility and sensitivity of iTRAQ-based quantitative proteomics analysis in providing useful insights into the molecular mechanisms underlying brown eggshell pigmentation.

  14. Application of CRISPR/Cas9 Genome Editing to Improve Recombinant Protein Production in CHO Cells

    DEFF Research Database (Denmark)

    Grav, Lise Marie; Julie la Cour Karottki, Karen; Lee, Jae Seong

    2017-01-01

    and yields. In this chapter, we present our protocol on how to use the genome editing tool Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) to knockout engineering target genes in CHO cells. As an example, we refer to the glutamine synthetase (GS...

  15. Arterial injury promotes medial chondrogenesis in Sm22 knockout mice.

    Science.gov (United States)

    Shen, Jianbin; Yang, Maozhou; Jiang, Hong; Ju, Donghong; Zheng, Jian-Pu; Xu, Zhonghui; Liao, Tang-Dong; Li, Li

    2011-04-01

    Expression of SM22 (also known as SM22alpha and transgelin), a vascular smooth muscle cells (VSMCs) marker, is down-regulated in arterial diseases involving medial osteochondrogenesis. We investigated the effect of SM22 deficiency in a mouse artery injury model to determine the role of SM22 in arterial chondrogenesis. Sm22 knockout (Sm22(-/-)) mice developed prominent medial chondrogenesis 2 weeks after carotid denudation as evidenced by the enhanced expression of chondrogenic markers including type II collagen, aggrecan, osteopontin, bone morphogenetic protein 2, and SRY-box containing gene 9 (SOX9). This was concomitant with suppression of VSMC key transcription factor myocardin and of VSMC markers such as SM α-actin and myosin heavy chain. The conversion tendency from myogenesis to chondrogenesis was also observed in primary Sm22(-/-) VSMCs and in a VSMC line after Sm22 knockdown: SM22 deficiency altered VSMC morphology with compromised stress fibre formation and increased actin dynamics. Meanwhile, the expression level of Sox9 mRNA was up-regulated while the mRNA levels of myocardin and VSMC markers were down-regulated, indicating a pro-chondrogenic transcriptional switch in SM22-deficient VSMCs. Furthermore, the increased expression of SOX9 was mediated by enhanced reactive oxygen species production and nuclear factor-κB pathway activation. These findings suggest that disruption of SM22 alters the actin cytoskeleton and promotes chondrogenic conversion of VSMCs.

  16. Quasi-free one nucleon knockout reactions on neutron-rich oxygen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atar, Leyla; Aumann, Thomas [TU Darmstadt, Darmstadt (Germany); GSI, Darmstadt (Germany); Bertulani, Carlos [Texas A and M University-Commerce, Commerse (United States); Paschalis, Stefanos [TU Darmstadt, Darmstadt (Germany); Nociforo, Chiara [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    Recent experiments have shown a reduction of spectroscopic strengths to about 60-70% for stable nuclei. When going to drip lines this tendency is changing, loosely bound nucleons have spectroscopic strengths close unity while deeply bound nucleons have a large reduction of the strength. We aim to make a systematic study of spectroscopic factors (SF) of the Oxygen isotopes using quasi-free (p,2p) and (p,pn) knockout reactions in inverse kinematics. Quasi-free knockout reactions are a direct tool to study the occupancy and the location of valance and deeply bound single particle states. The Oxygen isotopes offer a large variation of separation energies which will allow us to obtain a qualitative and quantitative understanding of SF in a large variation of isospin asymmetry. For this we performed an experiment at the R3B-LAND setup at the GSI with secondary beams containing {sup 14-24}O. The {sup 16-18}O and {sup 21-23}O isotopes have been analyzed and the preliminary results will be presented. The results include the partial cross sections, gamma ray spectra of the residual fragments in coincidence, and the SF obtained via comparison with theory.

  17. Novel roles for metallothionein-I + II (MT-I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: insights from global gene expression profiling in wild-type and MT-I + II knockout mice

    DEFF Research Database (Denmark)

    Penkowa, Milena; Cáceres, Mario; Borup, Rehannah

    2006-01-01

    of the somatosensorial cortex and killed at 0, 1, 4, 8, and 16 days postlesion (dpl) using Affymetrix genechips/oligonucleotide arrays interrogating approximately 10,000 different murine genes (MG_U74Av2). Hierarchical clustering analysis of these genes readily shows an orderly pattern of gene responses at specific...... and opened new avenues that were confirmed by immunohistochemistry. Data in KO, MT-I-overexpressing, and MT-II-injected mice strongly suggest a role of these proteins in postlesional activation of neural stem cells....

  18. Urea transporter proteins as targets for small-molecule diuretics.

    Science.gov (United States)

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  19. Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Youfeng Shen

    2017-11-01

    Full Text Available Abstract Background Pigs have many features that make them attractive as biomedical models for various diseases, including cancer. P53 is an important tumor suppressor gene that exerts a central role in protecting cells from oncogenic transformation and is mutated in a large number of human cancers. P53 mutations occur in almost every type of tumor and in over 50% of all tumors. In a recent publication, pigs with a mutated P53 gene were generated that resulted in lymphoma and renal and osteogenic tumors. However, approximately 80% of human tumors have dysfunctional P53. A P53-deficient pig model is still required to elucidate. Methods Transcription activator-like effector nucleases (TALENs were designed to target porcine P53 exon 4. The targeting activity was evaluated using a luciferase SSA recombination assay. P53 biallelic knockout (KO cell lines were established from single-cell colonies of fetal fibroblasts derived from Diannan miniature pigs followed by electroporation with TALENs plasmids. One cell line was selected as the donor cell line for somatic cell nuclear transfer (SCNT for the generation of P53 KO pigs. P53 KO stillborn fetuses and living piglets were obtained. Gene typing of the collected cloned individuals was performed by T7EI assay and sequencing. Fibroblast cells from Diannan miniature piglets with a P53 biallelic knockout or wild type were analyzed for the P53 response to doxorubicin treatment by confocal microscopy and western blotting. Results The luciferase SSA recombination assay revealed that the targeting activities of the designed TALENs were 55.35-fold higher than those of the control. Eight cell lines (8/19 were mutated for P53, and five of them were biallelic knockouts. One of the biallelic knockout cell lines was selected as nuclear donor cells for SCNT. The cloned embryos were transferred into five recipient gilts, three of them becoming pregnant. Five live fetuses were obtained from one surrogate by caesarean

  20. The recombination protein RAD52 cooperates with the excision repair protein OGG1 for the repair of oxidative lesions in mammalian cells

    DEFF Research Database (Denmark)

    de Souza-Pinto, Nadja C; Maynard, Scott; Hashiguchi, Kazunari

    2009-01-01

    number of protein interactions have been identified for OGG1, while very few appear to have functional consequences. We report here that OGG1 interacts with the recombination protein RAD52 in vitro and in vivo. This interaction has reciprocal functional consequences as OGG1 inhibits RAD52 catalytic...... knockdown, and mouse cells lacking the protein via gene knockout showed increased sensitivity to oxidative stress. Moreover, cells depleted of RAD52 show higher accumulation of oxidized bases in their genome than cells with normal levels of RAD52. Our results indicate that RAD52 cooperates with OGG1...... to repair oxidative DNA damage and enhances the cellular resistance to oxidative stress. Our observations suggest a coordinated action between these proteins that may be relevant when oxidative lesions positioned close to strand breaks impose a hindrance to RAD52 catalytic activities....

  1. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase

    International Nuclear Information System (INIS)

    Witters, L.A.; Bacon, G.W.

    1985-01-01

    The protein phosphatases in rat liver cytosol, active on rat liver acetyl-CoA carboxylase (ACC) phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase, have been partially purified by anion-exchange and gel filtration chromatography. The major phosphatase activities against all three substrates copurify through fractionation and appear to be identical to protein phosphatases 2A1 and 2A2. No unique protein phosphatase active on 32 P-ACC phosphorylated by the casein kinases was identified

  2. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  3. Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and CryoEM modeling.

    Science.gov (United States)

    Rizzo, Alessandro A; Suhanovsky, Margaret M; Baker, Matthew L; Fraser, LaTasha C R; Jones, Lisa M; Rempel, Don L; Gross, Michael L; Chiu, Wah; Alexandrescu, Andrei T; Teschke, Carolyn M

    2014-06-10

    Some capsid proteins built on the ubiquitous HK97-fold have accessory domains imparting specific functions. Bacteriophage P22 coat protein has a unique insertion domain (I-domain). Two prior I-domain models from subnanometer cryoelectron microscopy (cryoEM) reconstructions differed substantially. Therefore, the I-domain's nuclear magnetic resonance structure was determined and also used to improve cryoEM models of coat protein. The I-domain has an antiparallel six-stranded β-barrel fold, not previously observed in HK97-fold accessory domains. The D-loop, which is dynamic in the isolated I-domain and intact monomeric coat protein, forms stabilizing salt bridges between adjacent capsomers in procapsids. The S-loop is important for capsid size determination, likely through intrasubunit interactions. Ten of 18 coat protein temperature-sensitive-folding substitutions are in the I-domain, indicating its importance in folding and stability. Several are found on a positively charged face of the β-barrel that anchors the I-domain to a negatively charged surface of the coat protein HK97-core. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes

    Science.gov (United States)

    Juin, Amélie; Billottet, Clotilde; Moreau, Violaine; Destaing, Olivier; Albiges-Rizo, Corinne; Rosenbaum, Jean; Génot, Elisabeth; Saltel, Frédéric

    2012-01-01

    Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes. PMID:22114353

  5. Fragmentation of the CRISPR-Cas Type I-B signature protein Cas8b.

    Science.gov (United States)

    Richter, Hagen; Rompf, Judith; Wiegel, Julia; Rau, Kristina; Randau, Lennart

    2017-11-01

    CRISPR arrays are transcribed into long precursor RNA species, which are further processed into mature CRISPR RNAs (crRNAs). Cas proteins utilize these crRNAs, which contain spacer sequences that can be derived from mobile genetic elements, to mediate immunity during a reoccurring virus infection. Type I CRISPR-Cas systems are defined by the presence of different Cascade interference complexes containing large and small subunits that play major roles during target DNA selection. Here, we produce the protein and crRNA components of the Type I-B CRISPR-Cas complex of Clostridium thermocellum and Methanococcus maripaludis. The C. thermocellum Cascade complexes were reconstituted and analyzed via size-exclusion chromatography. Activity of the heterologous M. maripaludis CRISPR-Cas system was followed using phage lambda plaques assays. The reconstituted Type-I-B Cascade complex contains Cas7, Cas5, Cas6b and the large subunit Cas8b. Cas6b can be omitted from the reconstitution protocol. The large subunit Cas8b was found to be represented by two tightly associated protein fragments and a small C-terminal Cas8b segment was identified in recombinant complexes and C. thermocellum cell lysate. Production of Cas8b generates a small C-terminal fragment, which is suggested to fulfill the role of the missing small subunit. A heterologous, synthetic M. maripaludis Type I-B system is active in E. coli against phage lambda, highlighting a potential for genome editing using endogenous Type-I-B CRISPR-Cas machineries. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Knockout of GAD65 has major impact on synaptic GABA synthesized from astrocyte-derived glutamine

    DEFF Research Database (Denmark)

    Walls, Anne Byriel; Eyjolfsson, Elvar M.; Smeland, Olav B.

    2011-01-01

    γ-Aminobutyric acid (GABA) synthesis from glutamate is catalyzed by glutamate decarboxylase (GAD) of which two isoforms, GAD65 and GAD67, have been identified. The GAD65 has repeatedly been shown to be important during intensified synaptic activity. To specifically elucidate the significance of G...... glutamine both via direct synthesis and via a pathway involving mitochondrial metabolism. Furthermore, a severe neuronal hypometabolism, involving glycolysis and tricarboxylic acid (TCA) cycle activity, was observed in cerebral cortex of GAD65 knockout mice.......65 for maintenance of the highly compartmentalized intracellular and intercellular GABA homeostasis, GAD65 knockout and corresponding wild-type mice were injected with [1-(13)C]glucose and the astrocyte-specific substrate [1,2-(13)C]acetate. Synthesis of GABA from glutamine in the GABAergic synapses...

  7. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Characterisation of different forms of the accessory gp3 canine coronavirus type I protein identified in cats.

    Science.gov (United States)

    d'Orengiani, Anne-Laure Pham-Hung d'Alexandry; Duarte, Lidia; Pavio, Nicole; Le Poder, Sophie

    2015-04-16

    ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Disabling a Type I-E CRISPR-Cas Nuclease with a Bacteriophage-Encoded Anti-CRISPR Protein

    Directory of Open Access Journals (Sweden)

    April Pawluk

    2017-12-01

    Full Text Available CRISPR (clustered regularly interspaced short palindromic repeat-Cas adaptive immune systems are prevalent defense mechanisms in bacteria and archaea. They provide sequence-specific detection and neutralization of foreign nucleic acids such as bacteriophages and plasmids. One mechanism by which phages and other mobile genetic elements are able to overcome the CRISPR-Cas system is through the expression of anti-CRISPR proteins. Over 20 different families of anti-CRISPR proteins have been described, each of which inhibits a particular type of CRISPR-Cas system. In this work, we determined the structure of type I-E anti-CRISPR protein AcrE1 by X-ray crystallography. We show that AcrE1 binds to the CRISPR-associated helicase/nuclease Cas3 and that the C-terminal region of the anti-CRISPR protein is important for its inhibitory activity. We further show that AcrE1 can convert the endogenous type I-E CRISPR system into a programmable transcriptional repressor.

  10. Peroxiredoxin I protein, a potential biomarker of hydronephrosis in fetal mice exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    Science.gov (United States)

    Liu, Mingxue; Liu, Jing; Liu, Xing; Wei, Guanghui

    2014-06-01

    In previous studies, we established an animal model of human congenital hydronephrosis with exposure of developing mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), but the etiopathogenesis is not entirely clear. The present study was to identify the changes that may be involved in the etiology at the protein level. C57BL/6J mice fetuses were treated with TCDD. Comparative proteomic analysis was adopted to identify the proteins associated with hydronephrosis induced by TCDD. Two-dimensional electrophoresis display revealed that 19 protein spots were differentially expressed in the upper urinary tract tissues in fetal mice after exposure to TCDD. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) identified 12 up-regulated proteins: peroxiredoxin I (Prx I), cadherin 6, gamma-actin, radixin, desmin, type II transforming growth factor-beta receptor, chromogranin B, serum albumin precursor, transferrin, hypothetical protein LOC70984, lipk protein, and zinc finger protein 336. Histochemical staining indicated that Prx I protein was positively expressed in the ureteric epithelium in the treated group, and not in the control group, which is consistent with MALDI-TOF-MS. Prx I protein may be a potential biomarker or responsive protein of hydronephrosis in fetal mice induced by TCDD. Copyright © 2013 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  11. Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 levels are increased in central precocious puberty

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Nielsen, C T

    1995-01-01

    Central precocious puberty (CPP) is characterized by early activation of the pituitary-gonadal axis, which leads to increased growth velocity and development of secondary sexual characteristics. It is generally believed that gonadal sex steroids stimulate pulsatile GH secretion, which, in turn......, stimulates insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) production. However, little is known about GH, IGF-I, and IGFBP-3 serum levels in children with precocious puberty. Treatment of CPP by GnRH agonists has become the treatment of choice. However, the effect of long term...

  12. Enhancement of cell wall protein SRPP expression during emergent root hair development in Arabidopsis.

    Science.gov (United States)

    Uno, Hiroshi; Tanaka-Takada, Natsuki; Sato, Ryosuke; Maeshima, Masayoshi

    2017-10-03

    SRPP is a protein expressed in seeds and root hairs and is significantly induced in root hairs under phosphate (Pi)-deficient conditions. Root hairs in the knockout mutant srpp-1 display defects, i.e., suppression of cell growth and cell death. Here, we analyzed the expression profile of SRPP during cell elongation of root hairs and compared the transcript levels in several mutants with short root hairs. The mRNA level was increased in wild-type plants and decreased in mutants with short root hairs. Induction of SRPP expression by Pi starvation occurred one or two days later than induction of Pi-deficient sensitive genes, such as PHT1 and PHF1. These results indicate that the expression of SRPP is coordinated with root hair elongation. We hypothesize that SRPP is essential for structural robustness of the cell walls of root hairs.

  13. Effects of an endurance cycling competition on resting serum insulin-like growth factor I (IGF-I) and its binding proteins IGFBP-1 and IGFBP-3

    Science.gov (United States)

    Chicharro, J; Lopez-Calderon, A; Hoyos, J; Martin-Velasco, A; Villa, G; Villanua, M; Lucia, A

    2001-01-01

    Objectives—To determine whether consecutive bouts of intense endurance exercise over a three week period alters serum concentrations of insulin-like growth factor I (IGF-I) and/or its binding proteins. Methods—Seventeen professional cyclists (mean (SEM) VO2MAX, 74.7 (2.1) ml/kg/min; age, 27 (1) years) competing in a three week tour race were selected as subjects. Blood samples were collected at each of the following time points: t0 (control, before the start of competition), t1 (end of first week), and t3 (end of third week). Serum levels of both total and free IGF-I and IGF binding proteins 1 and 3 (IGFBP-1 and IGFBP-3) were measured in each of the samples. Cortisol levels were measured in nine subjects. Results—A significant (p<0.01) increase was found in total IGF-I and IGFBP-1 at both t1 and t3 compared with to (IGF-I: 110.9 (17.7), 186.8 (12.0), 196.9 (14.7) ng/ml at t0, t1, and t3 respectively; IGFBP-1: 54.6 (6.6), 80.6 (8.0), and 89.2 (7.9) ng/ml at t0, t1, and t3 respectively). A significant (p<0.01) decrease was noted in free IGF-I at t3 compared with both to and t1 (t0: 0.9 (0.1) ng/ml; t1: 0.9 (0.1) ng/ml; t3: 0.7 (0.1) ng/ml); in contrast, IGFBP-3 levels remained stable throughout the race. Conclusions—It would appear that the increase in circulating levels of both IGF-I and its binding protein IGFBP-1 is a short term (one week) endocrine adaptation to endurance exercise. After three weeks of training, total IGF-I and IGFBP-1 remained stable, whereas free IGF-I fell below starting levels. Key Words: cycling; insulin-like growth factor; exercise; endurance; binding proteins PMID:11579061

  14. NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase.

    Science.gov (United States)

    Habjan, Matthias; Pichlmair, Andreas; Elliott, Richard M; Overby, Anna K; Glatter, Timo; Gstaiger, Matthias; Superti-Furga, Giulio; Unger, Hermann; Weber, Friedemann

    2009-05-01

    Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.

  15. Brief Report: Altered Social Behavior in Isolation-Reared "Fmr1" Knockout Mice

    Science.gov (United States)

    Heitzer, Andrew M.; Roth, Alexandra K.; Nawrocki, Lauren; Wrenn, Craige C.; Valdovinos, Maria G.

    2013-01-01

    Social behavior abnormalities in Fragile X syndrome (FXS) are characterized by social withdrawal, anxiety, and deficits in social cognition. To assess these deficits, a model of FXS, the "Fmr1" knockout mouse ("Fmr1" KO), has been utilized. This mouse model has a null mutation in the fragile X mental retardation 1 gene ("Fmr1") and displays…

  16. Site- and strand-specific nicking of DNA by fusion proteins derived from MutH and I-SceI or TALE repeats.

    Science.gov (United States)

    Gabsalilow, Lilia; Schierling, Benno; Friedhoff, Peter; Pingoud, Alfred; Wende, Wolfgang

    2013-04-01

    Targeted genome engineering requires nucleases that introduce a highly specific double-strand break in the genome that is either processed by homology-directed repair in the presence of a homologous repair template or by non-homologous end-joining (NHEJ) that usually results in insertions or deletions. The error-prone NHEJ can be efficiently suppressed by 'nickases' that produce a single-strand break rather than a double-strand break. Highly specific nickases have been produced by engineering of homing endonucleases and more recently by modifying zinc finger nucleases (ZFNs) composed of a zinc finger array and the catalytic domain of the restriction endonuclease FokI. These ZF-nickases work as heterodimers in which one subunit has a catalytically inactive FokI domain. We present two different approaches to engineer highly specific nickases; both rely on the sequence-specific nicking activity of the DNA mismatch repair endonuclease MutH which we fused to a DNA-binding module, either a catalytically inactive variant of the homing endonuclease I-SceI or the DNA-binding domain of the TALE protein AvrBs4. The fusion proteins nick strand specifically a bipartite recognition sequence consisting of the MutH and the I-SceI or TALE recognition sequences, respectively, with a more than 1000-fold preference over a stand-alone MutH site. TALE-MutH is a programmable nickase.

  17. Plasma intestinal fatty acid binding protein (I-FABP) concentrations increase following intestinal ischemia in pigs

    NARCIS (Netherlands)

    Niewold, T.A.; Meinen, M.; Meulen, van der J.

    2004-01-01

    Intestinal fatty acid binding protein (I-FABP) is an intracellular epithelial protein in the intestinal mucosa of many animals. IFABP appears in the circulation following epithelial damage, and in humans, is proven to be a parameter for damage to the mucosa. In this paper, an ELISA test designed for

  18. Regional registration of [6-14C]glucose metabolism during brain activation of α-syntrophin knockout mice

    Science.gov (United States)

    Cruz, Nancy F.; Ball, Kelly K.; Froehner, Stanley C.; Adams, Marvin E.; Dienel, Gerald A.

    2013-01-01

    α-Syntrophin is a component of the dystrophin scaffold-protein complex that serves as an adaptor for recruitment of key proteins to the cytoplasmic side of plasma membranes. α-Syntrophin knockout (KO) causes loss of the polarized localization of aquaporin4 (AQP4) at astrocytic endfeet and interferes with water and K+ homeostasis. During brain activation, release of ions and metabolites from endfeet is anticipated to increase perivascular fluid osmolarity, AQP4-mediated osmotic water flow from endfeet, and metabolite washout from brain. This study tests the hypothesis that reduced levels of endfoot AQP4 increase retention of [14C]metabolites during sensory stimulation. Conscious KO and wildtype mice were pulse-labeled with [6-14C]glucose during unilateral acoustic stimulation or bilateral acoustic plus whisker stimulation, and label retention was assayed by computer-assisted brain imaging or analysis of [14C]metabolites in extracts, respectively. High-resolution autoradiographic assays detected a 17% side-to-side difference (P<0.05) in inferior colliculus of KO mice, not wildtype mice. However, there were no labeling differences between KO and wildtype mice for five major HPLC fractions from four dissected regions, presumably due to insufficient anatomical resolution. The results suggest a role for AQP4-mediated water flow in support of washout of metabolites, and underscore the need for greater understanding of astrocytic water and metabolite fluxes. PMID:23346911

  19. Epigenetic modifications by Trithorax group proteins during early embryogenesis: do members of Trx-G function as maternal effect genes?

    Science.gov (United States)

    Andreu-Vieyra, Claudia; Matzuk, Martin M

    2007-02-01

    Maternal effect genes encode transcripts that are expressed during oogenesis. These gene products are stored in the oocyte and become functional during resumption of meiosis and zygote genome activation, and in embryonic stem cells. To date, a few maternal effect genes have been identified in mammals. Epigenetic modifications have been shown to be important during early embryonic development and involve DNA methylation and post-translational modification of core histones. During development, two families of proteins have been shown to be involved in epigenetic changes: Trithorax group (Trx-G) and Polycomb group (Pc-G) proteins. Trx-G proteins function as transcriptional activators and have been shown to accumulate in the oocyte. Deletion of Trx-G members using conventional knockout technology results in embryonic lethality in the majority of the cases analysed to date. Recent studies using conditional knockout mice have revealed that at least one family member is necessary for zygote genome activation. We propose that other Trx-G members may also regulate embryonic genome activation and that the use of oocyte-specific deletor mouse lines will help clarify their roles in this process.

  20. GPR39 (zinc receptor) knockout mice exhibit depression-like behavior and CREB/BDNF down-regulation in the hippocampus

    DEFF Research Database (Denmark)

    Młyniec, Katarzyna; Budziszewska, Bogusława; Holst, Birgitte

    2015-01-01

    Background: Zinc may act as a neurotransmitter in the central nervous system by activation of the GPR39 metabotropic receptors. Methods: In the present study, we investigated whether GPR39 knockout would cause depressive-like and/or anxiety-like behavior, as measured by the forced swim test, tail...... investigated activity in the hypothalamus-pituitary-adrenal axis under both zinc- and GPR39-deficient conditions. Zinc-deficient mice had higher serum corticosterone levels and lower glucocorticoid receptor levels in the hippocampus and frontal cortex. Conclusions: There were no changes in the GPR39 knockout...

  1. The Verticillium dahliae SnodProt1-Like Protein VdCP1 Contributes to Virulence and Triggers the Plant Immune System

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-10-01

    Full Text Available During pathogenic infection, hundreds of proteins that play vital roles in the Verticillium dahliae-host interaction are secreted. In this study, an integrated proteomic analysis of secreted V. dahliae proteins was performed, and a conserved secretory protein, designated VdCP1, was identified as a member of the SnodProt1 phytotoxin family. An expression analysis of the vdcp1 gene revealed that the transcript is present in every condition studied and displays elevated expression throughout the infection process. To investigate the natural role of VdCP1 in V. dahliae, two vdcp1 knockout mutants and their complementation strains were generated. Bioassays of these mutants revealed no obvious phenotypic differences from the wild-type (WT in terms of mycelial growth, conidial production or mycelial/spore morphology. However, compared with the WT, the vdcp1 knockout mutants displayed attenuated pathogenicity in cotton plants. Furthermore, treating plants with purified recombinant VdCP1 protein expressed in Pichia pastoris induced the accumulation of reactive oxygen species (ROS, expression of several defense-related genes, leakage of ion electrolytes, enhancement of defense-related enzyme activity and production of salicylic acid. Moreover, VdCP1 conferred resistance to Botrytis cinerea and Pseudomonas syringae pv. tabaci in tobacco and to V. dahliae in cotton. Further research revealed that VdCP1 possesses chitin-binding properties and that the growth of vdcp1 knockout mutants was more affected by treatments with chitinase, indicating that VdCP1 could protect V. dahliae cell wall from enzymatic degradation, which suggests an effector role of VdCP1 in infecting hosts.

  2. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: Effect of sex and arsenic exposure

    Science.gov (United States)

    Huang, Madelyn C.; Douillet, Christelle; Su, Mingming; Zhou, Kejun; Wu, Tao; Chen, Wenlian; Galanko, Joseph A.; Drobná, Zuzana; Saunders, R. Jesse; Martin, Elizabeth; Fry, Rebecca C.; Jia, Wei; Stýblo, Miroslav

    2016-01-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex-specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation. PMID:26883664

  3. In vitro activation of transcription by the human T-cell leukemia virus type I Tax protein.

    Science.gov (United States)

    Matthews, M A; Markowitz, R B; Dynan, W S

    1992-05-01

    The human T-cell leukemia virus type I (HTLV-I) regulatory protein Tax activates transcription of the proviral long terminal repeats and a number of cellular promoters. We have developed an in vitro system to characterize the mechanism by which Tax interacts with the host cell transcription machinery. Tax was purified from cells infected with a baculovirus expression vector. Addition of these Tax preparations to nuclear extracts from uninfected human T lymphocytes activated transcription of the HTLV-I long terminal repeat approximately 10-fold. Transcription-stimulatory activity copurified with the immunoreactive 40-kDa Tax polypeptide on gel filtration chromatography, and, as expected, the effect of recombinant Tax was diminished in HTLV-I-infected T-lymphocyte extracts containing endogenous Tax. Tax-mediated transactivation in vivo has been previously shown to require 21-bp-repeat Tax-responsive elements (TxREs) in the promoter DNA. Stimulation of transcription in vitro was also strongly dependent on these sequences. To investigate the mechanism of Tax transactivation, cellular proteins that bind the 21-bp-repeat TxREs were prepared by DNA affinity chromatography. Recombinant Tax markedly increased the formation of a specific host protein-DNA complex detected in an electrophoretic mobility shift assay. These data suggest that Tax activates transcription through a direct interaction with cellular proteins that bind to the 21-bp-repeat TxREs.

  4. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor

    DEFF Research Database (Denmark)

    Versteyhe, Soetkin; Klaproth, Birgit; Borup, Rehannah

    2013-01-01

    Insulin and the insulin-like growth factors (IGF)-I and -II are closely related peptides important for regulation of metabolism, growth, differentiation, and development. The IGFs exert their main effects through the IGF-I receptor. Although the insulin receptor is the main physiological receptor...... for insulin, this peptide hormone can also bind at higher concentrations to the IGF-I receptor and exert effects through it. We used microarray gene expression profiling to investigate the gene expression regulated by IGF-I, IGF-II, and insulin after stimulation of the IGF-I receptor. Fibroblasts from mice......, knockout for IGF-II and the IGF-II/cation-independent mannose-6-phosphate receptor, and expressing functional IGF-I but no insulin receptors, were stimulated for 4 h with equipotent saturating concentrations of insulin, IGF-I, and IGF-II. Each ligand specifically regulated a group of transcripts...

  5. Physiological roles of CNS muscarinic receptors gained from knockout mice

    DEFF Research Database (Denmark)

    Thomsen, Morgane; Sørensen, Gunnar; Dencker, Ditte

    2017-01-01

    receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains......, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics...

  6. Tendon protein synthesis rate in classic Ehlers-Danlos patients can be stimulated with insulin-like growth factor-I

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Holm, Lars; Jensen, Jacob Kildevang

    2014-01-01

    tissue protein turnover is unknown. We investigated whether cEDS affected the protein synthesis rate in skin and tendon, and whether this could be stimulated in tendon tissue with insulin-like growth factor-I (IGF-I). Five patients with cEDS and 10 healthy, matched controls (CTRL) were included. One...... patellar tendon of each participant was injected with 0.1 ml IGF-I (Increlex, Ipsen, 10 mg/ml) and the contralateral tendon with 0.1 ml isotonic saline as control. The injections were performed at both 24 and 6 h prior to tissue sampling. The fractional synthesis rate (FSR) of proteins in skin and tendon.......002 (cEDS) and 0.007 ± 0.002 (CTRL); tendon: 0.008 ± 0.001 (cEDS) and 0.009 ± 0.002 (CTRL) %/h, mean ± SE]. IGF-I injections significantly increased FSR values in cEDS patients but not in controls (delta values: cEDS 0.007 ± 0.002, CTRL 0.001 ± 0.001%/h). In conclusion, baseline protein synthesis rates...

  7. CD8 Knockout Mice Are Protected from Challenge by Vaccination with WR201, a Live Attenuated Mutant of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Samuel L. Yingst

    2013-01-01

    Full Text Available CD8+ T cells have been reported to play an important role in defense against B. abortus infection in mouse models. In the present report, we use CD8 knockout mice to further elucidate the role of these cells in protection from B. melitensis infection. Mice were immunized orally by administration of B. melitensis WR201, a purine auxotrophic attenuated vaccine strain, then challenged intranasally with B. melitensis 16M. In some experiments, persistence of WR201 in the spleens of CD8 knockout mice was slightly longer than that in the spleens of normal mice. However, development of anti-LPS serum antibody, antigen-induced production of γ-interferon (IFN-γ by immune splenic lymphocytes, protection against intranasal challenge, and recovery of nonimmunized animals from intranasal challenge were similar between normal and knockout animals. Further, primary Brucella infection was not exacerbated in perforin knockout and Fas-deficient mice and these animals’ anti-Brucella immune responses were indistinguishable from those of normal mice. These results indicate that CD8+ T cells do not play an essential role as either cytotoxic cells or IFN-γ producers, yet they do participate in a specific immune response to immunization and challenge in this murine model of B. melitensis infection.

  8. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Colon, S

    1988-01-01

    on the I-Ad binding of the immunogenic peptide OVA 323-339. The results obtained demonstrated the very permissive nature of Ag-Ia interaction. We also showed that unrelated peptides that are good I-Ad binders share a common structural motif and speculated that recognition of such motifs could represent...... that I-Ad molecules recognize a large library of Ag by virtue of common structural motifs present in peptides derived from phylogenetically unrelated proteins....

  9. Characterization of the Pichia pastoris protein-O-mannosyltransferase gene family.

    Directory of Open Access Journals (Sweden)

    Juergen H Nett

    Full Text Available The methylotrophic yeast, Pichiapastoris, is an important organism used for the production of therapeutic proteins. However, the presence of fungal-like glycans, either N-linked or O-linked, can elicit an immune response or enable the expressed protein to bind to mannose receptors, thus reducing their efficacy. Previously we have reported the elimination of β-linked glycans in this organism. In the current report we have focused on reducing the O-linked mannose content of proteins produced in P. pastoris, thereby reducing the potential to bind to mannose receptors. The initial step in the synthesis of O-linked glycans in P. pastoris is the transfer of mannose from dolichol-phosphomannose to a target protein in the yeast secretory pathway by members of the protein-O-mannosyltransferase (PMT family. In this report we identify and characterize the members of the P. pastoris PMT family. Like Candida albicans, P. pastoris has five PMT genes. Based on sequence homology, these PMTs can be grouped into three sub-families, with both PMT1 and PMT2 sub-families possessing two members each (PMT1 and PMT5, and PMT2 and PMT6, respectively. The remaining sub-family, PMT4, has only one member (PMT4. Through gene knockouts we show that PMT1 and PMT2 each play a significant role in O-glycosylation. Both, by gene knockouts and the use of Pmt inhibitors we were able to significantly reduce not only the degree of O-mannosylation, but also the chain-length of these glycans. Taken together, this reduction of O-glycosylation represents an important step forward in developing the P. pastoris platform as a suitable system for the production of therapeutic glycoproteins.

  10. In vitro PROLIFERATION ABILITY OF AXILLARY BUDS IN Musa spp

    African Journals Online (AJOL)

    AISA

    The proliferation rate of Axillary and apical buds and other growth parameters ... types of buds after four to five sub cultures in all the varieties except for CRBP 39 where the axillary bud exhibits ..... propagation, conservation and exchange.

  11. Pea DNA topoisomerase I is phosphorylated and stimulated by casein kinase 2 and protein kinase C.

    Science.gov (United States)

    Tuteja, Narendra; Reddy, Malireddy Kodandarami; Mudgil, Yashwanti; Yadav, Badam Singh; Chandok, Meena Rani; Sopory, Sudhir Kumar

    2003-08-01

    DNA topoisomerase I catalyzes the relaxation of superhelical DNA tension and is vital for DNA metabolism; therefore, it is essential for growth and development of plants. Here, we have studied the phosphorylation-dependent regulation of topoisomerase I from pea (Pisum sativum). The purified enzyme did not show autophosphorylation but was phosphorylated in an Mg(2+)-dependent manner by endogenous protein kinases present in pea nuclear extracts. This phosphorylation was abolished with calf intestinal alkaline phosphatase and lambda phosphatase. It was also phosphorylated by exogenous casein kinase 2 (CK2), protein kinase C (PKC; from animal sources), and an endogenous pea protein, which was purified using a novel phorbol myristate acetate affinity chromatography method. All of these phosphorylations were inhibited by heparin (inhibitor of CK2) and calphostin (inhibitor of PKC), suggesting that pea topoisomerase I is a bona fide substrate for these kinases. Spermine and spermidine had no effect on the CK2-mediated phosphorylation, suggesting that it is polyamine independent. Phospho-amino acid analysis showed that only serine residues were phosphorylated, which was further confirmed using antiphosphoserine antibody. The topoisomerase I activity increased after phosphorylation with exogenous CK2 and PKC. This study shows that these kinases may contribute to the physiological regulation of DNA topoisomerase I activity and overall DNA metabolism in plants.

  12. Probing the structure of unstable nuclei through the recoiled proton tagged knockout reaction

    International Nuclear Information System (INIS)

    Ye, Y.; Cao, Z.; Jiang, D.

    2010-01-01

    Recoiled proton tagged knockout reaction experiments were carried-out for 8 He at 82,5 MeV/u in RIKEN and for 6 He at 65 MeV/u in Lanzhou. The very preliminary results for the distinguish of the reaction mechanism are presented and compared to the kinematics calculation. (authors)

  13. Identification of cypermethrin induced protein changes in green algae by iTRAQ quantitative proteomics.

    Science.gov (United States)

    Gao, Yan; Lim, Teck Kwang; Lin, Qingsong; Li, Sam Fong Yau

    2016-04-29

    Cypermethrin (CYP) is one of the most widely used pesticides in large scale for agricultural and domestic purpose and the residue often seriously affects aquatic system. Environmental pollutant-induced protein changes in organisms could be detected by proteomics, leading to discovery of potential biomarkers and understanding of mode of action. While proteomics investigations of CYP stress in some animal models have been well studied, few reports about the effects of exposure to CYP on algae proteome were published. To determine CYP effect in algae, the impact of various dosages (0.001μg/L, 0.01μg/L and 1μg/L) of CYP on green algae Chlorella vulgaris for 24h and 96h was investigated by using iTRAQ quantitative proteomics technique. A total of 162 and 198 proteins were significantly altered after CYP exposure for 24h and 96h, respectively. Overview of iTRAQ results indicated that the influence of CYP on algae protein might be dosage-dependent. Functional analysis of differentially expressed proteins showed that CYP could induce protein alterations related to photosynthesis, stress responses and carbohydrate metabolism. This study provides a comprehensive view of complex mode of action of algae under CYP stress and highlights several potential biomarkers for further investigation of pesticide-exposed plant and algae. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. β2-Adrenergic Receptor Knockout Mice Exhibit A Diabetic Retinopathy Phenotype

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Liu, Li; Tang, Jie; Kern, Timothy S.; Steinle, Jena J.

    2013-01-01

    There is considerable evidence from our lab and others for a functional link between β-adrenergic receptor and insulin receptor signaling pathways in retina. Furthermore, we hypothesize that this link may contribute to lesions similar to diabetic retinopathy in that the loss of adrenergic input observed in diabetic retinopathy may disrupt normal anti-apoptotic insulin signaling, leading to retinal cell death. Our studies included assessment of neural retina function (ERG), vascular degeneration, and Müller glial cells (which express only β1 and β2-adrenergic receptor subtypes). In the current study, we produced β2-adrenergic receptor knockout mice to examine this deletion on retinal neurons and vasculature, and to identify specific pathways through which β2-adrenergic receptor modulates insulin signaling. As predicted from our hypothesis, β2-adrenergic receptor knockout mice display certain features similar to diabetic retinopathy. In addition, loss of β2-adrenergic input resulted in an increase in TNFα, a key inhibitor of insulin receptor signaling. Increased TNFα may be associated with insulin-dependent production of the anti-apoptotic factor, Akt. Since the effects occurred in vivo under normal glucose conditions, we postulate that aspects of the diabetic retinopathy phenotype might be triggered by loss of β2-adrenergic receptor signaling. PMID:23894672

  15. A model of knock-out of oxygen by charged particle irradiation of Bi-2212

    International Nuclear Information System (INIS)

    Bandyopadhyay, S.K.; Sen, Pintu; Barat, P.; Mukherjee, P.; Das, S.K.; Ghosh, B.

    1996-01-01

    A model of knock-out of oxygen by charged particle (α and proton) irradiation of Bi 2 Sr 2 CaCu 2 O 8+x (Bi-2212) is proposed on the basis of Monte Carlo TRIM calculations. In Bi-2212, the loosely bound excess oxygen is vulnerable to be displaced by particle irradiation. Binding energy and hence, displacement energy of this loosely bound excess oxygen is less compared to that of stoichiometric lattice bound oxygen and other atoms. The displaced or knocked out oxygen goes to pores or intergranular region and generates large pressure inside the sample. Because of porosity of the material, this displaced oxygen diffuses out and there is a net reduction of oxygen content of the sample. The irradiation induced oxygen knock-out is dominant in the bulk where nonionizing energy loss is maximum. (author). 29 refs., 1 fig., 3 tabs

  16. Serum insulin-like growth factor I (IGF-I) and IGF-binding protein 3 levels are increased in central precocious puberty

    DEFF Research Database (Denmark)

    Juul, A; Scheike, Thomas Harder; Nielsen, C T

    1995-01-01

    between IGF-I and IGFBP-3 (i.e. free biologically active IGF-I) declined concomitantly with a decrease in growth velocity. Serum levels of IGF-I and IGFBP-3 (expressed as the SD score for bone age), but not those of estradiol, correlated with height velocity before and during treatment (r = 0.34; P ...Central precocious puberty (CPP) is characterized by early activation of the pituitary-gonadal axis, which leads to increased growth velocity and development of secondary sexual characteristics. It is generally believed that gonadal sex steroids stimulate pulsatile GH secretion, which, in turn......, stimulates insulin-like growth factor I (IGF-I) and IGF-binding protein 3 (IGFBP-3) production. However, little is known about GH, IGF-I, and IGFBP-3 serum levels in children with precocious puberty. Treatment of CPP by GnRH agonists has become the treatment of choice. However, the effect of long term...

  17. Generation of ER{alpha}-floxed and knockout mice using the Cre/LoxP system

    Energy Technology Data Exchange (ETDEWEB)

    Antonson, P., E-mail: per.antonson@ki.se [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Omoto, Y.; Humire, P. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Gustafsson, J.-A. [Department of Biosciences and Nutrition, Karolinska Institutet, Novum, SE-141 83 Huddinge (Sweden); Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204 (United States)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer ER{alpha} floxed and knockout mice were generated. Black-Right-Pointing-Pointer Disruption of the ER{alpha} gene results in sterility in both male and female mice. Black-Right-Pointing-Pointer ER{alpha}{sup -/-} mice have ovaries with hemorrhagic follicles and hypoplastic uterus. Black-Right-Pointing-Pointer Female ER{alpha}{sup -/-} mice develop obesity. -- Abstract: Estrogen receptor alpha (ER{alpha}) is a nuclear receptor that regulates a range of physiological processes in response to estrogens. In order to study its biological role, we generated a floxed ER{alpha} mouse line that can be used to knock out ER{alpha} in selected tissues by using the Cre/LoxP system. In this study, we established a new ER{alpha} knockout mouse line by crossing the floxed ER{alpha} mice with Cre deleter mice. Here we show that genetic disruption of the ER{alpha} gene in all tissues results in sterility in both male and female mice. Histological examination of uterus and ovaries revealed a dramatically atrophic uterus and hemorrhagic cysts in the ovary. These results suggest that infertility in female mice is the result of functional defects of the reproductive tract. Moreover, female knockout mice are hyperglycemic, develop obesity and at the age of 4 months the body weight of these mice was more than 20% higher compared to wild type littermates and this difference increased over time. Our results demonstrate that ER{alpha} is necessary for reproductive tract development and has important functions as a regulator of metabolism in females.

  18. Raphe serotonin neuron-specific oxytocin receptor knockout reduces aggression without affecting anxiety-like behavior in male mice only.

    Science.gov (United States)

    Pagani, J H; Williams Avram, S K; Cui, Z; Song, J; Mezey, É; Senerth, J M; Baumann, M H; Young, W S

    2015-02-01

    Serotonin and oxytocin influence aggressive and anxiety-like behaviors, though it is unclear how the two may interact. That the oxytocin receptor is expressed in the serotonergic raphe nuclei suggests a mechanism by which the two neurotransmitters may cooperatively influence behavior. We hypothesized that oxytocin acts on raphe neurons to influence serotonergically mediated anxiety-like, aggressive and parental care behaviors. We eliminated expression of the oxytocin receptor in raphe neurons by crossing mice expressing Cre recombinase under control of the serotonin transporter promoter (Slc6a4) with our conditional oxytocin receptor knockout line. The knockout mice generated by this cross are normal across a range of behavioral measures: there are no effects for either sex on locomotion in an open-field, olfactory habituation/dishabituation or, surprisingly, anxiety-like behaviors in the elevated O and plus mazes. There was a profound deficit in male aggression: only one of 11 raphe oxytocin receptor knockouts showed any aggressive behavior, compared to 8 of 11 wildtypes. In contrast, female knockouts displayed no deficits in maternal behavior or aggression. Our results show that oxytocin, via its effects on raphe neurons, is a key regulator of resident-intruder aggression in males but not maternal aggression. Furthermore, this reduction in male aggression is quite different from the effects reported previously after forebrain or total elimination of oxytocin receptors. Finally, we conclude that when constitutively eliminated, oxytocin receptors expressed by serotonin cells do not contribute to baseline anxiety-like behaviors or maternal care. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration.

    Science.gov (United States)

    Chen, Hsin-Hsiung; Chen, Wen-Pin; Yan, Wan-Lun; Huang, Yuan-Chun; Chang, Szu-Wei; Fu, Wen-Mei; Su, Ming-Jai; Yu, I-Shing; Tsai, Tzung-Chieh; Yan, Yu-Ting; Tsao, Yeou-Ping; Chen, Show-Li

    2015-11-15

    Nuclear receptor interaction protein (NRIP, also known as DCAF6 and IQWD1) is a Ca(2+)-dependent calmodulin-binding protein. In this study, we newly identify NRIP as a Z-disc protein in skeletal muscle. NRIP-knockout mice were generated and found to have reduced muscle strength, susceptibility to fatigue and impaired adaptive exercise performance. The mechanisms of NRIP-regulated muscle contraction depend on NRIP being downstream of Ca(2+) signaling, where it stimulates activation of both 'calcineurin-nuclear factor of activated T-cells, cytoplasmic 1' (CaN-NFATc1; also known as NFATC1) and calmodulin-dependent protein kinase II (CaMKII) through interaction with calmodulin (CaM), resulting in the induction of mitochondrial activity and the expression of genes encoding the slow class of myosin, and in the regulation of Ca(2+) homeostasis through the internal Ca(2+) stores of the sarcoplasmic reticulum. Moreover, NRIP-knockout mice have a delayed regenerative capacity. The amount of NRIP can be enhanced after muscle injury and is responsible for muscle regeneration, which is associated with the increased expression of myogenin, desmin and embryonic myosin heavy chain during myogenesis, as well as for myotube formation. In conclusion, NRIP is a novel Z-disc protein that is important for skeletal muscle strength and regenerative capacity. © 2015. Published by The Company of Biologists Ltd.

  20. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling.

    Directory of Open Access Journals (Sweden)

    Helen M Lazear

    2013-01-01

    Full Text Available Although the transcription factors IRF-3 and IRF-7 are considered master regulators of type I interferon (IFN induction and IFN stimulated gene (ISG expression, Irf3(-/-×Irf7(-/- double knockout (DKO myeloid dendritic cells (mDC produce relatively normal levels of IFN-β after viral infection. We generated Irf3(-/-×Irf5(-/-×Irf7(-/- triple knockout (TKO mice to test whether IRF-5 was the source of the residual induction of IFN-β and ISGs in mDCs. In pathogenesis studies with two unrelated positive-sense RNA viruses (West Nile virus (WNV and murine norovirus, TKO mice succumbed at rates greater than DKO mice and equal to or approaching those of mice lacking the type I IFN receptor (Ifnar(-/-. In ex vivo studies, after WNV infection or exposure to Toll-like receptor agonists, TKO mDCs failed to produce IFN-β or express ISGs. In contrast, this response was sustained in TKO macrophages following WNV infection. To define IRF-regulated gene signatures, we performed microarray analysis on WNV-infected mDC from wild type (WT, DKO, TKO, or Ifnar(-/- mice, as well as from mice lacking the RIG-I like receptor adaptor protein MAVS. Whereas the gene induction pattern in DKO mDC was similar to WT cells, remarkably, almost no ISG induction was detected in TKO or Mavs(-/- mDC. The relative equivalence of TKO and Mavs(-/- responses suggested that MAVS dominantly regulates ISG induction in mDC. Moreover, we showed that MAVS-dependent induction of ISGs can occur through an IRF-5-dependent yet IRF-3 and IRF-7-independent pathway. Our results establish IRF-3, -5, and -7 as the key transcription factors responsible for mediating the type I IFN and ISG response in mDC during WNV infection and suggest a novel signaling link between MAVS and IRF-5.

  1. Site-directed mutagenesis of Azotobacter vinelandii ferredoxin I: [Fe-S] cluster-driven protein rearrangement

    International Nuclear Information System (INIS)

    Martin, A.E.; Burgess, B.K.; Stout, C.D.; Cash, V.L.; Dean, D.R.; Jensen, G.M.; Stephens, P.J.

    1990-01-01

    Azotobacter vinelandii ferredoxin I is a small protein that contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. Recently the x-ray crystal structure has been redetermined and the fdxA gene, which encodes the protein, has been cloned and sequenced. Here the authors report the site-directed mutation of Cys-20, which is a ligand of the [4Fe-4S] cluster in the native protein, to alanine and the characterization of the protein product by x-ray crystallographic and spectroscopic methods. The data show that the mutant protein again contains one [4Fe-4S] cluster and one [3Fe-4S] cluster. The new [4Fe-4S] cluster obtains its fourth ligand from Cys-24, a free cysteine in the native structure. The formation of this [4Fe-4S] cluster drives rearrangement of the protein structure

  2. CRISPR/Cas9-mediated gene knockout is insensitive to target copy number but is dependent on guide RNA potency and Cas9/sgRNA threshold expression level.

    Science.gov (United States)

    Yuen, Garmen; Khan, Fehad J; Gao, Shaojian; Stommel, Jayne M; Batchelor, Eric; Wu, Xiaolin; Luo, Ji

    2017-11-16

    CRISPR/Cas9 is a powerful gene editing tool for gene knockout studies and functional genomic screens. Successful implementation of CRISPR often requires Cas9 to elicit efficient target knockout in a population of cells. In this study, we investigated the role of several key factors, including variation in target copy number, inherent potency of sgRNA guides, and expression level of Cas9 and sgRNA, in determining CRISPR knockout efficiency. Using isogenic, clonal cell lines with variable copy numbers of an EGFP transgene, we discovered that CRISPR knockout is relatively insensitive to target copy number, but is highly dependent on the potency of the sgRNA guide sequence. Kinetic analysis revealed that most target mutation occurs between 5 and 10 days following Cas9/sgRNA transduction, while sgRNAs with different potencies differ by their knockout time course and by their terminal-phase knockout efficiency. We showed that prolonged, low level expression of Cas9 and sgRNA often fails to elicit target mutation, particularly if the potency of the sgRNA is also low. Our findings provide new insights into the behavior of CRISPR/Cas9 in mammalian cells that could be used for future improvement of this platform. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  3. Adeno-associated virus LPL(S447X) gene therapy in LDL receptor knockout mice

    NARCIS (Netherlands)

    Rip, Jaap; Sierts, Jeroen A.; Vaessen, Stefan F. C.; Kastelein, John J. P.; Twisk, Jaap; Kuivenhoven, Jan Albert

    2007-01-01

    BACKGROUND: Overexpression of lipoprotein lipase (LPL) protects against atherosclerosis in genetically engineered mice. We tested whether a gene therapy vector that delivers human (h) LPL(S447X) cDNA to skeletal muscle could induce similar effects. METHODS: LDL receptor knockout (LDLr-/-) mice were

  4. Local sequence information in cellular retinoic acid-binding protein I: specific residue roles in beta-turns.

    Science.gov (United States)

    Rotondi, Kenneth S; Gierasch, Lila M

    2003-01-01

    We have recently shown that two of the beta-turns (III and IV) in the ten-stranded, beta-clam protein, cellular retinoic acid-binding protein I (CRABP I), are favored in short peptide fragments, arguing that they are encoded by local interactions (K. S. Rotondi and L. M. Gierasch, Biochemistry, 2003, Vol. 42, pp. 7976-7985). In this paper we examine these turns in greater detail to dissect the specific local interactions responsible for their observed native conformational biases. Conformations of peptides corresponding to the turn III and IV fragments were examined under conditions designed to selectively disrupt stabilizing interactions, using pH variation, chaotrope addition, or mutagenesis to probe specific side-chain influences. We find that steric constraints imposed by excluded volume effects between near neighbor residues (i,i+2), favorable polar (i,i+2) interactions, and steric permissiveness of glycines are the principal factors accounting for the observed native bias in these turns. Longer-range stabilizing interactions across the beta-turns do not appear to play a significant role in turn stability in these short peptides, in contrast to their importance in hairpins. Additionally, our data add to a growing number of examples of the 3:5 type I turn with a beta-bulge as a class of turns with high propensity to form locally defined structure. Current work is directed at the interplay between the local sequence information in the turns and more long-range influences in the mechanism of folding of this predominantly beta-sheet protein. Copyright 2004 Wiley Periodicals, Inc.

  5. Expression of IGF-I and Protein Degradation Markers During Hindlimb Unloading and Growth Hormone Administration in Rats

    Science.gov (United States)

    Leinsoo, T. A.; Turtikova, O. V.; Shenkman, B. S.

    2013-02-01

    It is known that hindlimb unloading or spaceflight produce atrophy and a number of phenotypic alterations in skeletal muscles. Many of these processes are triggered by the axis growth hormone/insulin-like growth factor I. However growth hormone (GH) and insulin-like growth factor I (IGF-I) expression relationship in rodent models of gravitational unloading is weakly investigated. We supposed the IGF-I is involved in regulation of protein turnover. In this study we examined the IGF-I expression by RT-PCR assay in the rat soleus, tibialis anterior and liver after 3 day of hindlimb suspension with growth hormone administration. Simultaneously were studied expression levels of MuRF-1 and MAFbx/atrogin as a key markers of intracellular proteolysis. We demonstrated that GH administration did not prevent IGF-I expression decreasing under the conditions of simulated weightlessness. It was concluded there are separate mechanisms of action of GH and IGF-I on protein metabolism in skeletal muscles. Gravitational unloading activate proteolysis independently of growth hormone activity.

  6. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    Science.gov (United States)

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  7. Type I bHLH Proteins Daughterless and Tcf4 Restrict Neurite Branching and Synapse Formation by Repressing Neurexin in Postmitotic Neurons

    Directory of Open Access Journals (Sweden)

    Mitchell D’Rozario

    2016-04-01

    Full Text Available Proneural proteins of the class I/II basic-helix-loop-helix (bHLH family are highly conserved transcription factors. Class I bHLH proteins are expressed in a broad number of tissues during development, whereas class II bHLH protein expression is more tissue restricted. Our understanding of the function of class I/II bHLH transcription factors in both invertebrate and vertebrate neurobiology is largely focused on their function as regulators of neurogenesis. Here, we show that the class I bHLH proteins Daughterless and Tcf4 are expressed in postmitotic neurons in Drosophila melanogaster and mice, respectively, where they function to restrict neurite branching and synapse formation. Our data indicate that Daughterless performs this function in part by restricting the expression of the cell adhesion molecule Neurexin. This suggests a role for these proteins outside of their established roles in neurogenesis.

  8. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I)

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Kristensen, B.; Ladekjaer-Mikkelsen, A.S.

    2002-01-01

    The extracellular domains of swine leukocyte antigen class I (SLA-I, major histocompatibility complex protein class 1) were cloned and sequenced for two haplotypes (114 and H7) which do not share any alleles based on serological typing, and which are the most important in Danish farmed pigs....... The extracellular domain of SLA-I was connected to porcine beta2 microglobulin by glycine-rich linkers. The engineered sin.-le-chain proteins, consisting of fused SLA-I and beta2 microglobulin, were overexpressed as inclusion bodies in Escherichia coli. Also, variants were made of the single-chain proteins......, by linking them through glycine-rich linkers to peptides representing T-cell epitopes from classical swine fever virus (CSFV) and foot-and-mouth disease virus (FMDV). An in vitro refold assay was developed, using a monoclonal anti-SLA antibody (PT85A) to gauge refolding. The single best-defined, SLA...

  9. β-Arrestin-2 knockout prevents development of cellular μ-opioid receptor tolerance but does not affect opioid-withdrawal-related adaptations in single PAG neurons.

    Science.gov (United States)

    Connor, M; Bagley, E E; Chieng, B C; Christie, M J

    2015-01-01

    Tolerance to the behavioural effects of morphine is blunted in β-arrestin-2 knockout mice, but opioid withdrawal is largely unaffected. The cellular mechanisms of tolerance have been studied in some neurons from β-arrestin-2 knockouts, but tolerance and withdrawal mechanisms have not been examined at the cellular level in periaqueductal grey (PAG) neurons, which are crucial for central tolerance and withdrawal phenomena. μ-Opioid receptor (MOPr) inhibition of voltage-gated calcium channel currents (ICa ) was examined by patch-clamp recordings from acutely dissociated PAG neurons from wild-type and β-arrestin-2 knockout mice treated chronically with morphine (CMT) or vehicle. Opioid withdrawal-induced activation of GABA transporter type 1 (GAT-1) currents was determined using perforated patch recordings from PAG neurons in brain slices. MOPr inhibition of ICa in PAG neurons was unaffected by β-arrestin-2 deletion. CMT impaired coupling of MOPrs to ICa in PAG neurons from wild-type mice, but this cellular tolerance was not observed in neurons from CMT β-arrestin-2 knockouts. However, β-arrestin-2 knockouts displayed similar opioid-withdrawal-induced activation of GAT-1 currents as wild-type PAG neurons. In β-arrestin-2 knockout mice, the central neurons involved in the anti-nociceptive actions of opioids also fail to develop cellular tolerance to opioids following chronic morphine. The results also provide the first cellular physiological evidence that opioid withdrawal is not disrupted by β-arrestin-2 deletion. However, the unaffected basal sensitivity to opioids in PAG neurons provides further evidence that changes in basal MOPr sensitivity cannot account for the enhanced acute nociceptive response to morphine reported in β-arrestin-2 knockouts. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British

  10. Acute food deprivation reverses morphine-induced locomotion deficits in M5 muscarinic receptor knockout mice.

    Science.gov (United States)

    Steidl, Stephan; Lee, Esther; Wasserman, David; Yeomans, John S

    2013-09-01

    Lesions of the pedunculopontine tegmental nucleus (PPT), one of two sources of cholinergic input to the ventral tegmental area (VTA), block conditioned place preference (CPP) for morphine in drug-naïve rats. M5 muscarinic cholinergic receptors, expressed by midbrain dopamine neurons, are critical for the ability of morphine to increase nucleus accumbens dopamine levels and locomotion, and for morphine CPP. This suggests that M5-mediated PPT cholinergic inputs to VTA dopamine neurons critically contribute to morphine-induced dopamine activation, reward and locomotion. In the current study we tested whether food deprivation, which reduces PPT contribution to morphine CPP in rats, could also reduce M5 contributions to morphine-induced locomotion in mice. Acute 18-h food deprivation reversed the phenotypic differences usually seen between non-deprived wild-type and M5 knockout mice. That is, food deprivation increased morphine-induced locomotion in M5 knockout mice but reduced morphine-induced locomotion in wild-type mice. Food deprivation increased saline-induced locomotion equally in wild-type and M5 knockout mice. Based on these findings, we suggest that food deprivation reduces the contribution of M5-mediated PPT cholinergic inputs to the VTA in morphine-induced locomotion and increases the contribution of a PPT-independent pathway. The contributions of cholinergic, dopaminergic and GABAergic neurons to the effects of acute food deprivation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Correlation of mitochondrial protein expression in complexes I to V with natural and induced forms of canine idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Lopes, Rosana; Solter, Philip F; Sisson, D David; Oyama, Mark A; Prosek, Robert

    2006-06-01

    To identify qualitative and quantitative differences in cardiac mitochondrial protein expression in complexes I to V between healthy dogs and dogs with natural or induced dilated cardiomyopathy (DCM). Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with DCM induced by rapid right ventricular pacing. Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by 2-fold or greater between groups were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry. A total of 22 altered mitochondrial proteins were identified in complexes I to V. Ten and 12 were found in complex I and complexes II to V, respectively. Five were mitochondrial encoded, and 17 were nuclear encoded. Most altered mitochondrial proteins in tissue specimens from dogs with naturally occurring DCM were associated with complexes I and V, whereas in tissue specimens from dogs subjected to rapid ventricular pacing, complexes I and IV were more affected. In the experimentally induced form of DCM, only nuclear-encoded subunits were changed in complex I. In both disease groups, the 22-kd subunit was downregulated. Natural and induced forms of DCM resulted in altered mitochondrial protein expression in complexes I to V. However, subcellular differences between the experimental and naturally occurring forms of DCM may exist.

  12. BAD knockout provides metabolic seizure resistance in a genetic model of epilepsy with sudden unexplained death in epilepsy.

    Science.gov (United States)

    Foley, Jeannine; Burnham, Veronica; Tedoldi, Meghan; Danial, Nika N; Yellen, Gary

    2018-01-01

    Metabolic alteration, either through the ketogenic diet (KD) or by genetic alteration of the BAD protein, can produce seizure protection in acute chemoconvulsant models of epilepsy. To assess the seizure-protective role of knocking out (KO) the Bad gene in a chronic epilepsy model, we used the Kcna1 -/- model of epilepsy, which displays progressively increased seizure severity and recapitulates the early death seen in sudden unexplained death in epilepsy (SUDEP). Beginning on postnatal day 24 (P24), we continuously video monitored Kcna1 -/- and Kcna1 -/- Bad -/- double knockout mice to assess survival and seizure severity. We found that Kcna1 -/- Bad -/- mice outlived Kcna1 -/- mice by approximately 2 weeks. Kcna1 -/- Bad -/- mice also spent significantly less time in seizure than Kcna1 -/- mice on P24 and the day of death, showing that BadKO provides seizure resistance in a genetic model of chronic epilepsy. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  13. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  14. RNA-seq reveals transcriptome changes in goats following myostatin gene knockout

    Science.gov (United States)

    Cai, Bei; Zhou, Shiwei; Zhu, Haijing; Qu, Lei; Wang, Xiaolong

    2017-01-01

    Myostatin (MSTN) is a powerful negative regulator of skeletal muscle mass in mammalian species that is primarily expressed in skeletal muscles, and mutations of its encoding gene can result in the double-muscling trait. In this study, the CRISPR/Cas9 technique was used to edit MSTN in Shaanbei Cashmere goats and generate knockout animals. RNA sequencing was used to determine and compare the transcriptome profiles of the muscles from three wild-type (WT) goats, three fibroblast growth factor 5 (FGF5) knockout goats (FGF5+/- group) and three goats with disrupted expression of both the FGF5 and MSTN genes (FM+/- group). The sequence reads were obtained using the Illumina HiSeq 2000 system and mapped to the Capra hircus reference genome using TopHat (v2.0.9). In total, 68.93, 62.04 and 66.26 million clean sequencing reads were obtained from the WT, FM+/- and FGF5+/- groups, respectively. There were 201 differentially expressed genes (DEGs) between the WT and FGF5+/- groups, with 86 down- and 115 up-regulated genes in the FGF5+/- group. Between the WT and FM+/- groups, 121 DEGs were identified, including 81 down- and 40 up-regulated genes in the FM+/- group. A total of 198 DEGs were detected between the FGF5+/- group and FM+/- group, with 128 down- and 70 up-regulated genes in the FM+/- group. At the transcriptome level, we found substantial changes in genes involved in fatty acid metabolism and the biosynthesis of unsaturated fatty acids, such as stearoyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydratase 2, ELOVL fatty acid elongase 6 and fatty acid synthase, suggesting that the expression levels of these genes may be directly regulated by MSTN and that these genes are likely downstream targets of MSTN with potential roles in lipid metabolism in goats. Moreover, five randomly selected DEGs were further validated with qRT-PCR, and the results were consistent with the transcriptome analysis. The present study provides insight into the unique transcriptome profile of the

  15. Arabidopsis scaffold protein RACK1A modulates rare sugar D-allose regulated gibberellin signaling.

    Science.gov (United States)

    Fennell, Herman; Olawin, Abdulquadri; Mizanur, Rahman M; Izumori, Ken; Chen, Jin-Gui; Ullah, Hemayet

    2012-11-01

    As energy sources and structural components, sugars are the central regulators of plant growth and development. In addition to the abundant natural sugars in plants, more than 50 different kinds of rare sugars exist in nature, several of which show distinct roles in plant growth and development. Recently, one of the rare sugars, D-allose, an epimer of D-glucose at C3, is found to suppress plant hormone gibberellin (GA) signaling in rice. Scaffold protein RACK1A in the model plant Arabidopsis is implicated in the GA pathway as rack1a knockout mutants show insensitivity to GA in GA-induced seed germination. Using genetic knockout lines and a reporter gene, the functional role of RACK1A in the D-allose pathway was investigated. It was found that the rack1a knockout seeds showed hypersensitivity to D-allose-induced inhibition of seed germination, implicating a role for RACK1A in the D-allose mediated suppression of seed germination. On the other hand, a functional RACK1A in the background of the double knockout mutations in the other two RACK1 isoforms, rack1b/rack1c, showed significant resistance to the D-allose induced inhibition of seed germination. The collective results implicate the RACK1A in the D-allose mediated seed germination inhibition pathway. Elucidation of the rare sugar signaling mechanism will help to advance understanding of this less studied but important cellular signaling pathway.

  16. Masking of the contribution of V protein to sendai virus pathogenesis in an infection model with a highly virulent field isolate

    International Nuclear Information System (INIS)

    Sakaguchi, Takemasa; Kiyotani, Katsuhiro; Watanabe, Hitoshi; Huang Cheng; Fukuhara, Noriko; Fujii, Yutaka; Shimazu, Yukie; Sugahara, Fumihiro; Nagai, Yoshiyuki; Yoshida, Tetsuya

    2003-01-01

    Sendai virus V protein is not essential for virus replication in cultured cells but is essential for efficient virus replication and pathogenesis in mice, indicating that the V protein has a luxury function to facilitate virus propagation in mice. This was discovered in the Z strain, an egg-adapted avirulent laboratory strain. In the present study, we reexamined the function of Sendai virus V protein by generating a V-knockout Sendai virus derived from the Hamamatsu strain, a virulent field isolate, which is an appropriate model for studying the natural course of Sendai virus infection in mice. We unexpectedly found that the V-knockout virus propagated efficiently in mice and was as virulent as the wild-type virus. Switching of the functionally important V unique region demonstrated that this region of the Hamamatsu strain was also functional in a Z strain background. It thus appears that the V protein is nonsense in a field isolate of Sendai virus. However, the V protein was required for virus growth and pathogenesis of the Hamamatsu strain in mice when the virulence of the virus was attenuated by introducing mutations that had been found in an egg-adapted, avirulent virus. The V protein therefore seems to be potentially functional in the highly virulent Hamamatsu strain and to be prominent if virus replication is restricted

  17. The small serine-threonine protein SIP2 interacts with STE12 and is involved in ascospore germination in Sordaria macrospora.

    Science.gov (United States)

    Elleuche, Skander; Bernhards, Yasmine; Schäfers, Christian; Varghese, Jans Manjali; Nolting, Nicole; Pöggeler, Stefanie

    2010-12-01

    In fungi, the homoeodomain protein STE12 controls diverse developmental processes, and derives its regulatory specificity from different protein interactions. We recently showed that in the homothallic ascomycete Sordaria macrospora, STE12 is essential for ascospore development, and is able to interact with the alpha-domain mating-type protein SMTA-1 and the MADS box protein MCM1. To further evaluate the functional roles of STE12, we used the yeast two-hybrid approach to identify new STE12-interacting partners. Using STE12 as bait, a small, serine-threonine-rich protein (designated STE12-interacting protein 2, SIP2) was identified. SIP2 is conserved among members of the fungal class Sordariomycetes. In vivo localization studies revealed that SIP2 was targeted to the nucleus and cytoplasm. The STE12/SIP2 interaction was further confirmed in vivo by bimolecular fluorescence complementation. Nuclear localization of SIP2 was apparently mediated by STE12. Unlike deletion of ste12, deletion of sip2 in S. macrospora led to only a slight decrease in ascospore germination, and no other obvious morphological phenotype. In comparison to the Δste12 single knockout strain, ascospore germination was significantly increased in a Δsip2/ste12 double knockout strain. Our data provide evidence for a regulatory role of the novel fungal protein SIP2 in ascospore germination. Copyright © 2010