WorldWideScience

Sample records for protein chip supports

  1. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  2. Lab-on-a-Chip Based Protein Crystallization

    Science.gov (United States)

    vanderWoerd, Mark J.; Brasseur, Michael M.; Spearing, Scott F.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We are developing a novel technique with which we will grow protein crystals in very small volumes, utilizing chip-based, microfluidic ("LabChip") technology. This development, which is a collaborative effort between NASA's Marshall Space Flight Center and Caliper Technologies Corporation, promises a breakthrough in the field of protein crystal growth. Our initial results obtained from two model proteins, Lysozyme and Thaumatin, show that it is feasible to dispense and adequately mix protein and precipitant solutions on a nano-liter scale. The mixtures have shown crystal growth in volumes in the range of 10 nanoliters to 5 microliters. In addition, large diffraction quality crystals were obtained by this method. X-ray data from these crystals were shown to be of excellent quality. Our future efforts will include the further development of protein crystal growth with LabChip(trademark) technology for more complex systems. We will initially address the batch growth method, followed by the vapor diffusion method and the liquid-liquid diffusion method. The culmination of these chip developments is to lead to an on orbit protein crystallization facility on the International Space Station. Structural biologists will be invited to utilize the on orbit Iterative Biological Crystallization facility to grow high quality macromolecular crystals in microgravity.

  3. Hardware support for CSP on a Java chip multiprocessor

    DEFF Research Database (Denmark)

    Gruian, Flavius; Schoeberl, Martin

    2013-01-01

    Due to memory bandwidth limitations, chip multiprocessors (CMPs) adopting the convenient shared memory model for their main memory architecture scale poorly. On-chip core-to-core communication is a solution to this problem, that can lead to further performance increase for a number of multithreaded...... applications. Programmatically, the Communicating Sequential Processes (CSPs) paradigm provides a sound computational model for such an architecture with message based communication. In this paper we explore hardware support for CSP in the context of an embedded Java CMP. The hardware support for CSP are on......-chip communication channels, implemented by a ring-based network-on-chip (NoC), to reduce the memory bandwidth pressure on the shared memory.The presented solution is scalable and also specific for our limited resources and real-time predictability requirements. CMP architectures of three to eight processors were...

  4. From genes to protein mechanics on a chip.

    Science.gov (United States)

    Otten, Marcus; Ott, Wolfgang; Jobst, Markus A; Milles, Lukas F; Verdorfer, Tobias; Pippig, Diana A; Nash, Michael A; Gaub, Hermann E

    2014-11-01

    Single-molecule force spectroscopy enables mechanical testing of individual proteins, but low experimental throughput limits the ability to screen constructs in parallel. We describe a microfluidic platform for on-chip expression, covalent surface attachment and measurement of single-molecule protein mechanical properties. A dockerin tag on each protein molecule allowed us to perform thousands of pulling cycles using a single cohesin-modified cantilever. The ability to synthesize and mechanically probe protein libraries enables high-throughput mechanical phenotyping.

  5. Utility of lab-on-a-chip technology for high-throughput nucleic acid and protein analysis

    DEFF Research Database (Denmark)

    Hawtin, Paul; Hardern, Ian; Wittig, Rainer

    2005-01-01

    On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysi...

  6. A functional carbohydrate chip platform for analysis of carbohydrate-protein interaction

    International Nuclear Information System (INIS)

    Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2010-01-01

    A carbohydrate chip based on glass or other transparent surfaces has been suggested as a potential tool for high-throughput analysis of carbohydrate-protein interactions. Here we proposed a facile, efficient, and cost-effective method whereby diverse carbohydrate types are modified in a single step and directly immobilized onto a glass surface, with retention of functional orientation. We modified various types of carbohydrates by reductive amination, in which reducing sugar groups were coupled with 4-(2-aminoethyl)aniline, which has di-amine groups at both ends. The modified carbohydrates were covalently attached to an amino-reactive NHS-activated glass surface by formation of stable amide bonds. This proposed method was applied for efficient construction of a carbohydrate microarray to analyze carbohydrate-protein interactions. The carbohydrate chip prepared using our method can be successfully used in diverse biomimetic studies of carbohydrates, including carbohydrate-biomolecule interactions, and carbohydrate sensor chip or microarray development for diagnosis and screening.

  7. A single microfluidic chip with dual surface properties for protein drug delivery.

    Science.gov (United States)

    Bokharaei, Mehrdad; Saatchi, Katayoun; Häfeli, Urs O

    2017-04-15

    Principles of double emulsion generation were incorporated in a glass microfluidic chip fabricated with two different surface properties in order to produce protein loaded polymer microspheres. The microspheres were produced by integrating two microfluidic flow focusing systems and a multi-step droplet splitting and mixing system into one chip. The chip consists of a hydrophobic and a hydrophilic section with two different heights, 12μm and 45μm, respectively. As a result, the protein is homogenously distributed throughout the polymer microsphere matrix, not just in its center (which has been studied before). In our work, the inner phase was bovine serum albumin (BSA) in phosphate buffered saline, the disperse phase was poly (lactic acid) in chloroform and the continuous phase was an aqueous solution of poly(vinyl alcohol). After solvent removal, BSA loaded microspheres with an encapsulation efficiency of up to 96% were obtained. Our results show the feasibility of producing microspheres loaded with a hydrophilic drug in a microfluidic system that integrates different microfluidic units into one chip. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    Science.gov (United States)

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  9. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins

    NARCIS (Netherlands)

    Teytelman, L.; Thurtle, D.M.; Rine, J.; van Oudenaarden, A.

    2013-01-01

    Chromatin immunoprecipitation (ChIP) is the gold-standard technique for localizing nuclear proteins in the genome. We used ChIP, in combination with deep sequencing (Seq), to study the genome-wide distribution of the Silent information regulator (Sir) complex in Saccharomyces cerevisiae. We analyzed

  10. Leverage principle of retardation signal in titration of double protein via chip moving reaction boundary electrophoresis.

    Science.gov (United States)

    Zhang, Liu-Xia; Cao, Yi-Ren; Xiao, Hua; Liu, Xiao-Ping; Liu, Shao-Rong; Meng, Qing-Hua; Fan, Liu-Yin; Cao, Cheng-Xi

    2016-03-15

    In the present work we address a simple, rapid and quantitative analytical method for detection of different proteins present in biological samples. For this, we proposed the model of titration of double protein (TDP) and its relevant leverage theory relied on the retardation signal of chip moving reaction boundary electrophoresis (MRBE). The leverage principle showed that the product of the first protein content and its absolute retardation signal is equal to that of the second protein content and its absolute one. To manifest the model, we achieved theoretical self-evidence for the demonstration of the leverage principle at first. Then relevant experiments were conducted on the TDP-MRBE chip. The results revealed that (i) there was a leverage principle of retardation signal within the TDP of two pure proteins, and (ii) a lever also existed within these two complex protein samples, evidently demonstrating the validity of TDP model and leverage theory in MRBE chip. It was also showed that the proposed technique could provide a rapid and simple quantitative analysis of two protein samples in a mixture. Finally, we successfully applied the developed technique for the quantification of soymilk in adulterated infant formula. The TDP-MRBE opens up a new window for the detection of adulteration ratio of the poor food (milk) in blended high quality one. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. On-Chip Manipulation of Protein-Coated Magnetic Beads via Domain-Wall Conduits

    DEFF Research Database (Denmark)

    Donolato, Marco; Vavassori, Paolo; Gobbi, Marco

    2010-01-01

    Geometrically constrained magnetic domain walls (DWs) in magnetic nanowires can be manipulated at the nanometer scale. The inhomogeneous magnetic stray field generated by a DW can capture a magnetic nanoparticle in solution. On-chip nanomanipulation of individual magnetic beads coated with proteins...

  12. Science Issues Associated with the Use of a Microfluidic Chip Designed Specifically for Protein Crystallization

    Science.gov (United States)

    Holmes, Anna M.; Monaco, Lisa; Barnes, Cindy; Spearing, Scott; Jenkins, Andy; Johnson, Todd; Mayer, Derek; Cole, Helen

    2003-01-01

    The Iterative Biological Crystallization team in partnership with Caliper Technologies has produced a prototype microfluidic chip for batch crystallization that has been designed and tested. The chip is designed for the mixing and dispensing of up to five solutions with possible variation of the recipe being delivered to two growth wells. Developments that have led to the successful on-chip crystallization of a few model proteins have required investigative insight into many different areas, including fluid mixing dynamics, surface treatments, quantification and fidelity of reagent delivery. This presentation will encompass the ongoing studies and data accumulated toward these efforts.

  13. Development of RI protein chip system for measurement of ADMA as risk factor of liver disease, cardiovascular disease and diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gil Hong; An, Sin Ae; Choi, Hyun Mi; Cheong, Kyung Ah; Chang, Yeon Soo [Korea University, Seoul (Korea, Republic of)

    2010-05-15

    ADMA (asymmetric dimethylarginine) is an endogenous competitive NOS (nitric oxide synthase) inhibitor. Elevation of ADMA level in body fluid is related to various diseases including diabetes mellitus, atherosclerosis, hypercholesterolemia, chronic heart failure, and hypertension. Our goal was to elucidate the role for ADMA and protein arginine methylation in the pathogenesis of diabetes and develop RI protein chip system for easy determination of ADMA levels in blood or tissues. As a result, ADMA regulated by protein arginine methylation, DDAH1, and NOS was demonstrated to play some role in the pathogenesis of diabetes mellitus, and arginine methylation of some proteins indicated their possible involvement in the change in ADMA levels. The concept of the RI protein chip system was devised such that firstly, ADMA was acylated by radio-labelled succinic acid, and followed by binding of the complex to anti-acyl ADMA-specific antibody coated on chip. Acylation condition of ADMA with radio-labelled succinic acid was established

  14. Development of RI protein chip system for measurement of ADMA as risk factor of liver disease, cardiovascular disease and diabetes

    International Nuclear Information System (INIS)

    Park, Gil Hong; An, Sin Ae; Choi, Hyun Mi; Cheong, Kyung Ah; Chang, Yeon Soo

    2010-05-01

    ADMA (asymmetric dimethylarginine) is an endogenous competitive NOS (nitric oxide synthase) inhibitor. Elevation of ADMA level in body fluid is related to various diseases including diabetes mellitus, atherosclerosis, hypercholesterolemia, chronic heart failure, and hypertension. Our goal was to elucidate the role for ADMA and protein arginine methylation in the pathogenesis of diabetes and develop RI protein chip system for easy determination of ADMA levels in blood or tissues. As a result, ADMA regulated by protein arginine methylation, DDAH1, and NOS was demonstrated to play some role in the pathogenesis of diabetes mellitus, and arginine methylation of some proteins indicated their possible involvement in the change in ADMA levels. The concept of the RI protein chip system was devised such that firstly, ADMA was acylated by radio-labelled succinic acid, and followed by binding of the complex to anti-acyl ADMA-specific antibody coated on chip. Acylation condition of ADMA with radio-labelled succinic acid was established

  15. Flip chip assembly of thinned chips for hybrid pixel detector applications

    CERN Document Server

    Fritzsch, T; Woehrmann, M; Rothermund, M; Huegging, F; Ehrmann, O; Oppermann, H; Lang, K.D

    2014-01-01

    There is a steady trend to ultra-thin microelectronic devices. Especially for future particle detector systems a reduced readout chip thickness is required to limit the loss of tracking precision due to scattering. The reduction of silicon thickness is performed at wafer level in a two-step thinning process. To minimize the risk of wafer breakage the thinned wafer needs to be handled by a carrier during the whole process chain of wafer bumping. Another key process is the flip chip assembly of thinned readout chips onto thin sensor tiles. Besides the prevention of silicon breakage the minimization of chip warpage is one additional task for a high yield and reliable flip chip process. A new technology using glass carrier wafer will be described in detail. The main advantage of this technology is the combination of a carrier support during wafer processing and the chip support during flip chip assembly. For that a glass wafer is glue-bonded onto the backside of the thinned readout chip wafer. After the bump depo...

  16. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    International Nuclear Information System (INIS)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert; Battaile, Kevin P.; Pai, Emil F.; Chirgadze, Nickolay Y.

    2011-01-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  17. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    Energy Technology Data Exchange (ETDEWEB)

    Kisselman, Gera; Qiu, Wei; Romanov, Vladimir; Thompson, Christine M.; Lam, Robert [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Battaile, Kevin P. [Argonne National Laboratory, Argonne, Illinois 60439 (United States); Pai, Emil F.; Chirgadze, Nickolay Y., E-mail: nchirgad@uhnresearch.ca [Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2C4 (Canada); University of Toronto, Toronto, Ontario M5S 1A8 (Canada)

    2011-06-01

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  18. [Use of algarrobo (Prosopis chilensis (Mol) Stuntz) flour as protein and dietary fiber source in cookies and fried chips manufacture].

    Science.gov (United States)

    Escobar, Berta; Estévez, Ana María; Fuentes, Carolina; Venegas, Daniela

    2009-06-01

    Limiting amino acids of the protein from chilean "algarrobo" are isoleucine, theronine and methionine/cyteine. Cereals and legume blends allow to improve the amino acid balance, since legume have more lysine, and cereals are richer in sulphur amino acids. Due to the nutritional interest of "algarrobo" cotyledons, the use of "algarrobo cotyledon" flour (ACF) in sweet and salty snack manufacture was evaluated. Cookies and fried salty chips with 0%, 10% and 20% ACF were prepared. Flours were analyzed for color, particle size, moisture, proximate composition, available lysine, and soluble, insoluble and total dietary fiber. Cookies and chips were analyzed for the same characteristics (except for particle size); besides there were determined water activity, weight and size of the units, and also, the caloric value was computed. Sensory quality and acceptance of both products were evaluated. It is noticeable the high amount of protein, lipids, ash, crude fiber (63.6; 10.2; 4.3 and 4.2 g/100 g dmb, respectively), available lysine (62.4 mg/g protein) and total dietary fiber (24.2 g/100 g dmb) of ACF. Both, cookies and chips with ACF, showed a significant increase in the amount of protein, lipids, ash, crude fiber and, available lysine (from 15.5 to 19,3 and from 20.3 a 29.6 mg lisina/g protein, respectively), and total dietary fiber (from 1.39 to 2.80 and from 1.60 a 5.60 g/100 g dmb, respectively). All of the cookies trials were well accepted ("I like it very much"); chips with 10% of AFC showed the highest acceptance ("I like it"). It can be concluded that the use of ACF in cookies and chips manufacture increases the contribution of available lysine; their protein and dietary fiber content, improving the soluble/insoluble fiber ratio, without affect neither their physical nor their sensory acceptance.

  19. Characterization of several milk proteins in Domestic Balkan donkey breed during lactation, using lab-on-a-chip capillary electrophoresis

    Directory of Open Access Journals (Sweden)

    Gubić Jasmina

    2016-01-01

    Full Text Available Domestic Balkan donkey (Equus asinus asinus is a native donkey breed, primarily found in the northern and eastern regions of Serbia. The objective of the study was to analyze proteins of Domestic Balkan donkey milk during the lactation period (from the 45th to the 280th day by applying Lab-on-a-Chip electrophoresis. The chip-based separations were performed on the Agilent 2100 Bioanalyzer in combination with the Protein 80 Plus Lab Chip kit. The protein content of Domestic Balkan donkey milk during the lactation period of 280 days ranged from 1.40 % to 1.92 % and the content of αs1-casein, αs2-casein, b-casein, α-, β- lactoglobulin, lysozyme, lactoferrin and serum albumin was relatively quantified. Lysozyme (1040-2970 mg/L, α-lactalbumin 12 kDa (1990-2730 mg/L and α-lactalbumin 17.7 kDa (2240-3090 mg/L were found to be the proteins with the highest relative concentrations. [Projekat Ministarstva nauke Republike Srbije, br. III46012

  20. Flip chip assembly of thinned chips for hybrid pixel detector applications

    International Nuclear Information System (INIS)

    Fritzsch, T; Zoschke, K; Rothermund, M; Oppermann, H; Woehrmann, M; Ehrmann, O; Lang, K D; Huegging, F

    2014-01-01

    There is a steady trend to ultra-thin microelectronic devices. Especially for future particle detector systems a reduced readout chip thickness is required to limit the loss of tracking precision due to scattering. The reduction of silicon thickness is performed at wafer level in a two-step thinning process. To minimize the risk of wafer breakage the thinned wafer needs to be handled by a carrier during the whole process chain of wafer bumping. Another key process is the flip chip assembly of thinned readout chips onto thin sensor tiles. Besides the prevention of silicon breakage the minimization of chip warpage is one additional task for a high yield and reliable flip chip process. A new technology using glass carrier wafer will be described in detail. The main advantage of this technology is the combination of a carrier support during wafer processing and the chip support during flip chip assembly. For that a glass wafer is glue-bonded onto the backside of the thinned readout chip wafer. After the bump deposition process the glass-readout chip stack is diced in one step. Finally the glass carrier chip is released by laser illumination after flip chip assembly of the readout chip onto sensor tile. The results of the flip chip assembly process development for the ATLAS IBL upgrade are described more in detail. The new ATLAS FEI4B chip with a size of 20 × 19 mm 2 is flip chip bonded with a thickness of only 150 μm, but the capability of this technology has been demonstrated on hybrid modules with a reduced readout chip thickness of down to 50 μm which is a major step for ultra-thin electronic systems

  1. Purification and Characterization of Hemagglutinating Proteins from Poker-Chip Venus (Meretrix lusoria and Corbicula Clam (Corbicula fluminea

    Directory of Open Access Journals (Sweden)

    Chin-Fu Cheng

    2012-01-01

    Full Text Available Hemagglutinating proteins (HAPs were purified from Poker-chip Venus (Meretrix lusoria and Corbicula clam (Corbicula fluminea using gel-filtration chromatography on a Sephacryl S-300 column. The molecular weights of the HAPs obtained from Poker-chip Venus and Corbicula clam were 358 kDa and 380 kDa, respectively. Purified HAP from Poker-chip Venus yielded two subunits with molecular weights of 26 kDa and 29 kDa. However, only one HAP subunit was purified from Corbicula clam, and its molecular weight was 32 kDa. The two Poker-chip Venus HAPs possessed hemagglutinating ability (HAA for erythrocytes of some vertebrate animal species, especially tilapia. Moreover, HAA of the HAP purified from Poker-chip Venus was higher than that of the HAP of Corbicula clam. Furthermore, Poker-chip Venus HAPs possessed better HAA at a pH higher than 7.0. When the temperature was at 4°C–10°C or the salinity was less than 0.5‰, the two Poker-chip Venus HAPs possessed better HAA compared with that of Corbicula clam.

  2. Support for Programming Models in Network-on-Chip-based Many-core Systems

    DEFF Research Database (Denmark)

    Rasmussen, Morten Sleth

    This thesis addresses aspects of support for programming models in Network-on- Chip-based many-core architectures. The main focus is to consider architectural support for a plethora of programming models in a single system. The thesis has three main parts. The first part considers parallelization...... models to be supported by a single architecture. The architecture features a specialized network interface processor which allows extensive configurability of the memory system. Based on this architecture, a detailed implementation of the cache coherent shared memory programming model is presented...

  3. Cache-aware network-on-chip for chip multiprocessors

    Science.gov (United States)

    Tatas, Konstantinos; Kyriacou, Costas; Dekoulis, George; Demetriou, Demetris; Avraam, Costas; Christou, Anastasia

    2009-05-01

    This paper presents the hardware prototype of a Network-on-Chip (NoC) for a chip multiprocessor that provides support for cache coherence, cache prefetching and cache-aware thread scheduling. A NoC with support to these cache related mechanisms can assist in improving systems performance by reducing the cache miss ratio. The presented multi-core system employs the Data-Driven Multithreading (DDM) model of execution. In DDM thread scheduling is done according to data availability, thus the system is aware of the threads to be executed in the near future. This characteristic of the DDM model allows for cache aware thread scheduling and cache prefetching. The NoC prototype is a crossbar switch with output buffering that can support a cache-aware 4-node chip multiprocessor. The prototype is built on the Xilinx ML506 board equipped with a Xilinx Virtex-5 FPGA.

  4. Nucleic acid and protein extraction from electropermeabilized E. coli cells on a microfluidic chip

    DEFF Research Database (Denmark)

    Matos, T.; Senkbeil, Silja; Mendonça, A.

    2013-01-01

    technique has been developed which is based on exposing E. coli cells to low voltages to allow extraction of nucleic acids and proteins. The flow-through electropermeability chip used consists of a microfluidic channel with integrated gold electrodes that promote cell envelope channel formation at low...

  5. Microfluidic chips with multi-junctions: an advanced tool in recovering proteins from inclusion bodies.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Miyazaki, Masaya

    2015-01-01

    Active recombinant proteins are used for studying the biological functions of genes and for the development of therapeutic drugs. Overexpression of recombinant proteins in bacteria often results in the formation of inclusion bodies, which are protein aggregates with non-native conformations. Protein refolding is an important process for obtaining active recombinant proteins from inclusion bodies. However, the conventional refolding method of dialysis or dilution is time-consuming and recovered active protein yields are often low, and a cumbersome trial-and-error process is required to achieve success. To circumvent these difficulties, we used controllable diffusion through laminar flow in microchannels to regulate the denaturant concentration. This method largely aims at reducing protein aggregation during the refolding procedure. This Commentary introduces the principles of the protein refolding method using microfluidic chips and the advantage of our results as a tool for rapid and efficient recovery of active recombinant proteins from inclusion bodies.

  6. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    Science.gov (United States)

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  7. Rapid and simultaneous detection of human hepatitis B virus and hepatitis C virus antibodies based on a protein chip assay using nano-gold immunological amplification and silver staining method

    Directory of Open Access Journals (Sweden)

    Wan Zhixiang

    2005-07-01

    Full Text Available Abstract Background Viral hepatitis due to hepatitis B virus and hepatitis C virus are major public health problems all over the world. Traditional detection methods including polymerase chain reaction (PCR-based assays and enzyme-linked immunosorbent assays (ELISA are expensive and time-consuming. In our assay, a protein chip assay using Nano-gold Immunological Amplification and Silver Staining (NIASS method was applied to detect HBV and HCV antibodies rapidly and simultaneously. Methods Chemically modified glass slides were used as solid supports (named chip, on which several antigens, including HBsAg, HBeAg, HBcAg and HCVAg (a mixture of NS3, NS5 and core antigens were immobilized respectively. Colloidal nano-gold labelled staphylococcal protein A (SPA was used as an indicator and immunogold silver staining enhancement technique was applied to amplify the detection signals, producing black image on array spots, which were visible with naked eyes. To determine the detection limit of the protein chip assay, a set of model arrays in which human IgG was spotted were structured and the model arrays were incubated with different concentrations of anti-IgG. A total of 305 serum samples previously characterized with commercial ELISA were divided into 4 groups and tested in this assay. Results We prepared mono-dispersed, spherical nano-gold particles with an average diameter of 15 ± 2 nm. Colloidal nano-gold-SPA particles observed by TEM were well-distributed, maintaining uniform and stable. The optimum silver enhancement time ranged from 8 to 12 minutes. In our assay, the protein chips could detect serum antibodies against HBsAg, HBeAg, HBcAg and HCVAg with the absence of the cross reaction. In the model arrays, the anti-IgG as low as 3 ng/ml could be detected. The data for comparing the protein chip assay with ELISA indicated that no distinct difference (P > 0.05 existed between the results determined by our assay and ELISA respectively. Conclusion

  8. Aurora Kinase A Promotes AR Degradation via the E3 Ligase CHIP.

    Science.gov (United States)

    Sarkar, Sukumar; Brautigan, David L; Larner, James M

    2017-08-01

    Reducing the levels of the androgen receptor (AR) is one of the most viable approaches to combat castration-resistant prostate cancer. Previously, we observed that proteasomal-dependent degradation of AR in response to 2-methoxyestradiol (2-ME) depends primarily on the E3 ligase C-terminus of HSP70-interacting protein (STUB1/CHIP). Here, 2-ME stimulation activates CHIP by phosphorylation via Aurora kinase A (AURKA). Aurora A kinase inhibitors and RNAi knockdown of Aurora A transcript selectively blocked CHIP phosphorylation and AR degradation. Aurora A kinase is activated by 2-ME in the S-phase as well as during mitosis, and phosphorylates CHIP at S273. Prostate cancer cells expressing an S273A mutant of CHIP have attenuated AR degradation upon 2-ME treatment compared with cells expressing wild-type CHIP, supporting the idea that CHIP phosphorylation by Aurora A activates its E3 ligase activity for the AR. These results reveal a novel 2-ME→Aurora A→CHIP→AR pathway that promotes AR degradation via the proteasome that may offer novel therapeutic opportunities for prostate cancer. Mol Cancer Res; 15(8); 1063-72. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Isotachophoresis of proteins in a networked microfluidic chip: experiment and 2-D simulation.

    Science.gov (United States)

    Cui, Huanchun; Dutta, Prashanta; Ivory, Cornelius F

    2007-04-01

    This paper reports both the experimental application and 2-D simulation of ITP of proteins in a networked microfluidic chip. Experiments demonstrate that a mixture of three fluorescent proteins can be concentrated and stacked into adjacent zones of pure protein under a constant voltage of 100 V over a 2 cm long microchannel. Measurements of the isotachophoretic velocity of the moving zones demonstrates that, during ITP under a constant voltage, the zone velocity decreases as more of the channel is occupied by the terminating electrolyte. A 2-D ITP model based on the Nernst-Planck equations illustrates the stacking and separation features of ITP using simulations of three virtual proteins. The self-sharpening behavior of ITP zones dispersed by a T-junction is clearly demonstrated both by experiment and by simulation. Comparison of 2-D simulations of ITP and zone electrophoresis (ZE) confirms that ZE lacks the ability to resharpen protein zones after they pass through a T-junction.

  10. Gradient-free determination of isoelectric points of proteins on chip.

    Science.gov (United States)

    Łapińska, Urszula; Saar, Kadi L; Yates, Emma V; Herling, Therese W; Müller, Thomas; Challa, Pavan K; Dobson, Christopher M; Knowles, Tuomas P J

    2017-08-30

    The isoelectric point (pI) of a protein is a key characteristic that influences its overall electrostatic behaviour. The majority of conventional methods for the determination of the isoelectric point of a molecule rely on the use of spatial gradients in pH, although significant practical challenges are associated with such techniques, notably the difficulty in generating a stable and well controlled pH gradient. Here, we introduce a gradient-free approach, exploiting a microfluidic platform which allows us to perform rapid pH change on chip and probe the electrophoretic mobility of species in a controlled field. In particular, in this approach, the pH of the electrolyte solution is modulated in time rather than in space, as in the case for conventional determinations of the isoelectric point. To demonstrate the general approachability of this platform, we have measured the isoelectric points of representative set of seven proteins, bovine serum albumin, β-lactoglobulin, ribonuclease A, ovalbumin, human transferrin, ubiquitin and myoglobin in microlitre sample volumes. The ability to conduct measurements in free solution thus provides the basis for the rapid determination of isoelectric points of proteins under a wide variety of solution conditions and in small volumes.

  11. Label-free detection of protein biomolecules secreted from a heart-on-a-chip model for drug cardiotoxicity evaluation

    Science.gov (United States)

    DeLuna, Frank; Zhang, Yu Shrike; Bustamante, Gilbert; Li, Le; Lauderdale, Matthew; Dokmeci, Mehmet R.; Khademhosseini, Ali; Ye, Jing Yong

    2018-02-01

    Efficient methods for the accurate analysis of drug toxicities are in urgent demand as failures of newly discovered drug candidates due to toxic side effects have resulted in about 30% of clinical attrition. The high failure rate is partly due to current inadequate models to study drug side effects, i.e., common animal models may fail due to its misrepresentation of human physiology. Therefore, much effort has been allocated in the development of organ-on-a-chip models which offer a variety of human organ models mimicking a multitude of human physiological conditions. However, it is extremely challenging to analyze the transient and long-term response of the organ models to drug treatments during drug toxicity tests, as the proteins secreted from the organ-on-a-chip model are minute due to its volumetric size, and current methods for detecting said biomolecules are not suitable for real-time monitoring. As protein biomolecules are being continuously secreted from the human organ model, fluorescence techniques are practically impossible to achieve real-time fluorescence labeling in the dynamically changing environment, thus making a label-free approach highly desirable for the organ-on-achip applications. In this paper, we report the use of a photonic-crystal biosensor integrated with a microfluidic system for sensitive label-free bioassays of secreted protein biomolecules from a heart-on-the-chip model created with cardiomyocytes derived from human induced pluripotent stem cells.

  12. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    Science.gov (United States)

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  13. Detection of Metallothionein in Javanese Medaka (Oryzias javanicus, Using a scFv-Immobilized Protein Chip

    Directory of Open Access Journals (Sweden)

    Euiyeon Lee

    2018-04-01

    Full Text Available Environmental pollution by various industrial chemicals and biological agents poses serious risks to human health. Especially, marine contamination by potentially toxic elements (PTEs has become a global concern in recent years. Many efforts have been undertaken to monitor the PTE contamination of the aquatic environment. However, there are few approaches available to assess the PTE exposure of aquatic organisms. In this research, we developed a strategy to evaluate the heavy metal exposure of marine organisms, by measuring the expression levels of metallothionein protein derived from Oryzias javanicus (OjaMT. OjaMT is a biomarker of heavy metal exposure because the expression level increases upon heavy metal exposure. The developed assay is based on a real-time, label-free surface plasmon resonance (SPR measurement. Anti-OjaMT antibody and anti-OjaMT single-chain fragment of variable region (scFv were used as detection probes. Two types of SPR sensor chips were fabricated, by immobilizing antibody or Cys3-tagged scFv (scFv-Cys3 in a controlled orientation and were tested for in situ label-free OjaMT detection. Compared to the antibody-presenting sensor chips, the scFv-presenting sensor chips showed improved performance, displaying enhanced sensitivity and enabling semi-quantitative detection. The portable SPR system combined with scFv-immobilized sensor chips is expected to provide an excellent point-of-care testing system that can monitor target biomarkers in real time.

  14. Cloning and characterization of carboxyl terminus of heat shock cognate 70-interacting protein gene from the silkworm, Bombyx mori.

    Science.gov (United States)

    Ohsawa, Takeshi; Fujimoto, Shota; Tsunakawa, Akane; Shibano, Yuka; Kawasaki, Hideki; Iwanaga, Masashi

    2016-11-01

    Carboxyl terminus of heat shock cognate 70-interacting protein (CHIP) is an evolutionarily conserved E3 ubiquitin ligase across different eukaryotic species and is known to play a key role in protein quality control. CHIP has two distinct functional domains, an N-terminal tetratricopeptide repeat (TPR) and a C-terminal U-box domain, which are required for the ubiquitination of numerous labile client proteins that are chaperoned by heat shock proteins (HSPs) and heat shock cognate proteins (HSCs). During our screen for CHIP-like proteins in the Bombyx mori databases, we found a novel silkworm gene, Bombyx mori CHIP. Phylogenetic analysis showed that BmCHIP belongs to Lepidopteran lineages. Quantitative reverse transcription-PCR analysis indicated that BmCHIP was relatively highly expressed in the gonad and fat body. A pull-down experiment and auto-ubiquitination assay showed that BmCHIP interacted with BmHSC70 and had E3 ligase activity. Additionally, immunohistochemical analysis revealed that BmCHIP was partially co-localized with ubiquitin in BmN4 cells. These data support that BmCHIP plays an important role in the ubiquitin proteasome system as an E3 ubiquitin ligase in B. mori. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation

    International Nuclear Information System (INIS)

    Lin, Fengmin; Yu, Shiyong; Gu, Le; Zhu, Xuetao; Wang, Jianshe; Zhu, Han; Lu, Yi; Wang, Yihua; Deng, Yulin; Geng, Lina

    2015-01-01

    A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity. (author)

  16. Cassava chip (Manihot esculenta Crantz as an energy source for ruminant feeding

    Directory of Open Access Journals (Sweden)

    Metha Wanapat

    2015-12-01

    Full Text Available Cassava (Manihot esculenta Crantz is widely grown in sub-tropical and tropical areas, producing roots as an energy source while the top biomass including leaves and immature stems can be sun-dried and used as cassava hay. Cassava roots can be processed as dried chip or pellet. It is rich in soluble carbohydrate (75 to 85% but low in crude protein (2 to 3%. Its energy value is comparable to corn meal but has a relatively higher rate of rumen degradation. Higher levels of non-protein nitrogen especially urea (1 to 4% can be successfully incorporated in concentrates containing cassava chip as an energy source. Cassava chip can also be processed with urea and other ingredients (tallow, sulfur, raw banana meal, cassava hay, and soybean meal to make products such as cassarea, cassa-ban, and cassaya. Various studies have been conducted in ruminants using cassava chip to replace corn meal in the concentrate mixtures and have revealed satisfactory results in rumen fermentation efficiency and the subsequent production of meat and milk. In addition, it was advantageous when used in combination with rice bran in the concentrate supplement. Practical home-made-concentrate using cassava chip can be easily prepared for use on farms. A recent development has involved enriching protein in cassava chips, yielding yeast fermented cassava chip protein (YEFECAP of up to 47.5% crude protein, which can be used to replace soybean meal. It is therefore, recommended to use cassava chip as an alternative source of energy to corn meal when the price is economical and it is locally available.

  17. Haploinsufficiency of the E3 ubiquitin ligase C-terminus of heat shock cognate 70 interacting protein (CHIP produces specific behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Bethann McLaughlin

    Full Text Available The multifunctional E3 ubiquitin ligase CHIP is an essential interacting partner of HSP70, which together promote the proteasomal degradation of client proteins. Acute CHIP overexpression provides neuroprotection against neurotoxic mitochondrial stress, glucocorticoids, and accumulation of toxic amyloid fragments, as well as genetic mutations in other E3 ligases, which have been shown to result in familial Parkinson's disease. These studies have created a great deal of interest in understanding CHIP activity, expression and modulation. While CHIP knockout mice have the potential to provide essential insights into the molecular control of cell fate and survival, the animals have been difficult to characterize in vivo due to severe phenotypic and behavioral dysfunction, which have thus far been poorly characterized. Therefore, in the present study we conducted a battery of neurobehavioral and physiological assays of adult CHIP heterozygotic (HET mutant mice to provide a better understanding of the functional consequence of CHIP deficiency. We found that CHIP HET mice had normal body and brain weight, body temperature, muscle tone and breathing patterns, but do have a significant elevation in baseline heart rate. Meanwhile basic behavioral screens of sensory, motor, emotional and cognitive functions were normative. We observed no alterations in performance in the elevated plus maze, light-dark preference and tail suspension assays, or two simple cognitive tasks: novel object recognition and spontaneous alternation in a Y maze. Significant deficits were found, however, when CHIP HET mice performed wire hang, inverted screen, wire maneuver, and open field tasks. Taken together, our data indicate a clear subset of behaviors that are altered at baseline in CHIP deficient animals, which will further guide whole animal studies of the effects of CHIP dysregulation on cardiac function, brain circuitry and function, and responsiveness to environmental and

  18. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing; Yi, Xin; Xiao, Kang; Li, Shunbo; Kodzius, Rimantas; Qin, Jianhua; Wen, Weijia

    2013-01-01

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  19. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  20. DIVERSITY in binding, regulation, and evolution revealed from high-throughput ChIP.

    Science.gov (United States)

    Mitra, Sneha; Biswas, Anushua; Narlikar, Leelavati

    2018-04-23

    Genome-wide in vivo protein-DNA interactions are routinely mapped using high-throughput chromatin immunoprecipitation (ChIP). ChIP-reported regions are typically investigated for enriched sequence-motifs, which are likely to model the DNA-binding specificity of the profiled protein and/or of co-occurring proteins. However, simple enrichment analyses can miss insights into the binding-activity of the protein. Note that ChIP reports regions making direct contact with the protein as well as those binding through intermediaries. For example, consider a ChIP experiment targeting protein X, which binds DNA at its cognate sites, but simultaneously interacts with four other proteins. Each of these proteins also binds to its own specific cognate sites along distant parts of the genome, a scenario consistent with the current view of transcriptional hubs and chromatin loops. Since ChIP will pull down all X-associated regions, the final reported data will be a union of five distinct sets of regions, each containing binding sites of one of the five proteins, respectively. Characterizing all five different motifs and the corresponding sets is important to interpret the ChIP experiment and ultimately, the role of X in regulation. We present diversity which attempts exactly this: it partitions the data so that each partition can be characterized with its own de novo motif. Diversity uses a Bayesian approach to identify the optimal number of motifs and the associated partitions, which together explain the entire dataset. This is in contrast to standard motif finders, which report motifs individually enriched in the data, but do not necessarily explain all reported regions. We show that the different motifs and associated regions identified by diversity give insights into the various complexes that may be forming along the chromatin, something that has so far not been attempted from ChIP data. Webserver at http://diversity.ncl.res.in/; standalone (Mac OS X/Linux) from https

  1. Quality evaluation of tortilla chips made with corn meal dough and cooked bean flour

    Directory of Open Access Journals (Sweden)

    Luz Araceli Ochoa-Martínez

    2016-12-01

    Full Text Available A mixture of cornmeal dough and cooked bean flour (BF was prepared at different ratios (50/50, 60/40, and 70/30 w/w, and processed to chips. Viscosity profile, temperature of gelatinization and enthalpy, texture, protein content, and in vitro digestibility were measured. Pasting temperature tended to be lower when the flour bean concentration was lower. Maximum viscosity increased significantly in both samples (dough mixture and chips when the BF concentration was lower. In general, gelatinization temperature remains constant, while the heating enthalpy was higher with lower BF concentration. The addition of BF was correlated with greater crispiness, suggesting improved chip texture at higher BF concentrations. The final protein content in the corn-bean chips was very similar, despite the concentration of BF used. Protein digestibility in the chips was affected by the proportion of BF added, being higher when the amount of the BF was lower.

  2. A novel microfluidic chip electrophoresis strategy for simultaneous, label-free, multi-protein detection based on a graphene energy transfer biosensor.

    Science.gov (United States)

    Lin, Fengming; Zhao, Xiaochao; Wang, Jianshe; Yu, Shiyong; Deng, Yulin; Geng, Lina; Li, HuanJun

    2014-06-07

    A new type of high-throughput and parallel optical sensing platform with a single-color probe based on microfluidic chip electrophoresis combined with aptamer-carboxyfluorescein/graphene oxide energy transfer is reported here. Label-free protein multi-targets were detected, even in challenging complex samples without any pre-treatment.

  3. Optimal use of tandem biotin and V5 tags in ChIP assays

    NARCIS (Netherlands)

    K.E. Kolodziej (Katarzyna); F. Pourfarzad, F. (Farzin); E. de Boer (Ernie); S. Krpic (Sanja); F.G. Grosveld (Frank); J. Strouboulis (John)

    2009-01-01

    textabstractBackground: Chromatin immunoprecipitation (ChIP) assays coupled to genome arrays (Chip-on-chip) or massive parallel sequencing (ChIP-seq) lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the

  4. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip.

    Science.gov (United States)

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn(2+) because of the strong coordination interactions. In the presence of adenosine, Zn(2+) cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes.

  5. Hardware-Enabled Security Through On-Chip Reconfigurable Fabric

    Science.gov (United States)

    2016-02-05

    level language (SystemC) instead of in RTL such as Verilog and VHDL . To evaluate our approach, we implemented a set of monitors including soft...techniques can be implemented after chip fabrication. The study showed that such programmable architectures can indeed support a broad range of run- time...accelerators where security techniques can be implemented after chip fabrication. The study showed that such programmable architectures can indeed support a

  6. Design of Networks-on-Chip for Real-Time Multi-Processor Systems-on-Chip

    DEFF Research Database (Denmark)

    Sparsø, Jens

    2012-01-01

    This paper addresses the design of networks-on-chips for use in multi-processor systems-on-chips - the hardware platforms used in embedded systems. These platforms typically have to guarantee real-time properties, and as the network is a shared resource, it has to provide service guarantees...... (bandwidth and/or latency) to different communication flows. The paper reviews some past work in this field and the lessons learned, and the paper discusses ongoing research conducted as part of the project "Time-predictable Multi-Core Architecture for Embedded Systems" (T-CREST), supported by the European...

  7. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.

    2014-04-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  8. 60 GHz system-on-chip (SoC) with built-in memory and an on-chip antenna

    KAUST Repository

    Ghaffar, Farhan A.; Arsalan, Muhammad; Cheema, Hammad; Salama, Khaled N.; Shamim, Atif

    2014-01-01

    A novel 60 GHz transmitter SoC with an on-chip antenna and integrated memory in CMOS 65 nm technology is presented in this paper. This highly integrated transmitter design can support a data rate of 2 GBPS with a transmission range of 1 m. The transmitter consists of a fundamental frequency 60 GHz PLL which covers the complete ISM band. The modulator following the PLL can support both BPSK and OOK modulation schemes. Both stored data on the integrated memory or directly from an external source can be transmitted. A tapered slot on chip antenna is integrated with the power amplifier to complete the front end of the transmitter design. Size of the complete transmitter with on-chip antenna is only 1.96 mm × 1.96 mm. The core circuits consume less than 100 mW of power. The high data rate capability of the design makes it extremely suitable for bandwidth hungry applications such as unencrypted HD video streaming and transmission.

  9. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.

    Science.gov (United States)

    Tu, Yu-Hsuan; Ho, Yu-Hsuan; Chuang, Ying-Chih; Chen, Po-Chung; Chen, Chien-Sheng

    2011-01-01

    Lactoferricin B (LfcinB) is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.

  10. Identification of lactoferricin B intracellular targets using an Escherichia coli proteome chip.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Tu

    Full Text Available Lactoferricin B (LfcinB is a well-known antimicrobial peptide. Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this antimicrobial peptide have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP assays. Sixteen proteins were identified, and an E. coli interaction database (EcID analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets of LfcinB using an E. coli proteome chip approach.

  11. Applications and theory of electrokinetic enrichment in micro-nanofluidic chips.

    Science.gov (United States)

    Chen, Xueye; Zhang, Shuai; Zhang, Lei; Yao, Zhen; Chen, Xiaodong; Zheng, Yue; Liu, Yanlin

    2017-09-01

    This review reports the progress on the recent development of electrokinetic enrichment in micro-nanofluidic chips. The governing equations of electrokinetic enrichment in micro-nanofluidic chips are given. Various enrichment applications including protein analysis, DNA analysis, bacteria analysis, viruses analysis and cell analysis are illustrated and discussed. The advantages and difficulties of each enrichment method are expatiated. This paper will provide a particularly convenient and valuable reference to those who intend to research the electrokinetic enrichment based on micro-nanofluidic chips.

  12. In situ synthesis of protein arrays.

    Science.gov (United States)

    He, Mingyue; Stoevesandt, Oda; Taussig, Michael J

    2008-02-01

    In situ or on-chip protein array methods use cell free expression systems to produce proteins directly onto an immobilising surface from co-distributed or pre-arrayed DNA or RNA, enabling protein arrays to be created on demand. These methods address three issues in protein array technology: (i) efficient protein expression and availability, (ii) functional protein immobilisation and purification in a single step and (iii) protein on-chip stability over time. By simultaneously expressing and immobilising many proteins in parallel on the chip surface, the laborious and often costly processes of DNA cloning, expression and separate protein purification are avoided. Recently employed methods reviewed are PISA (protein in situ array) and NAPPA (nucleic acid programmable protein array) from DNA and puromycin-mediated immobilisation from mRNA.

  13. Benefits and Limitations of Lab-on-a-Chip Method over Reversed-Phase High-Performance Liquid Chromatography Method in Gluten Proteins Evaluation

    Directory of Open Access Journals (Sweden)

    Dragan Živančev

    2015-01-01

    Full Text Available RP-HPLC (reversed-phase high-performance liquid chromatography is widely used to determine the amounts of the different gluten protein types. However, this method is time-consuming, especially at early stages of wheat breeding, when large number of samples needs to be analyzed. On the other hand, LoaC (Lab-on-a-Chip technique has the potential for a fast, reliable, and automatable analysis of proteins. In the present study, benefits and limitations of Lab-on-a-Chip method over RP-HPLC method in gluten proteins evaluation were explored in order to determine in which way LoaC method should be improved in order to make its results more compliant with the results of RP-HPLC method. Strong correlation (P≤0.001 was found between numbers of HMW glutenin peaks determined by LoaC and RP-HPLC methods. Significant correlations (P≤0.05 were obtained between percentages of HMW and LMW glutenin subunits calculated with regard to total HMW + LMW area. Even more significant correlation (P≤0.001 was found when percentages of individual HMW areas were calculated with regard to total HMW. RP-HPLC method showed superiority in determination of gliadins since larger number and better resolution of gliadin peaks were obtained by this method.

  14. Surface engineering on mesoporous silica chips for enriching low molecular weight phosphorylated proteins

    Science.gov (United States)

    Hu, Ye; Peng, Yang; Lin, Kevin; Shen, Haifa; Brousseau, Louis C., III; Sakamoto, Jason; Sun, Tong; Ferrari, Mauro

    2011-02-01

    Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous silica thin films with precisely engineered pore sizes that sterically select for molecular size combined with chemically selective surface modifications (i.e. Ga3+, Ti4+ and Zr4+) that target phosphoroproteins. These materials provide high reproducibility (CV = 18%) and increase the stability of the captured proteins by excluding degrading enzymes, such as trypsin. The chemical and physical properties of the composite mesoporous thin films were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and ellipsometry. Using mass spectroscopy and biostatistics analysis, the enrichment efficiency of different metal ions immobilized on mesoporous silica chips was investigated. The novel technology reported provides a platform capable of efficiently profiling the serum proteome for biomarker discovery, forensic sampling, and routine diagnostic applications.Phosphorylated peptides and proteins play an important role in normal cellular activities, e.g., gene expression, mitosis, differentiation, proliferation, and apoptosis, as well as tumor initiation, progression and metastasis. However, technical hurdles hinder the use of common fractionation methods to capture phosphopeptides from complex biological fluids such as human sera. Herein, we present the development of a dual strategy material that offers enhanced capture of low molecular weight phosphoproteins: mesoporous

  15. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  16. Optimal use of tandem biotin and V5 tags in ChIP assays

    Directory of Open Access Journals (Sweden)

    Krpic Sanja

    2009-02-01

    Full Text Available Abstract Background Chromatin immunoprecipitation (ChIP assays coupled to genome arrays (Chip-on-chip or massive parallel sequencing (ChIP-seq lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies. Results Using the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking. Conclusion The combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes.

  17. Optimal use of tandem biotin and V5 tags in ChIP assays

    Science.gov (United States)

    Kolodziej, Katarzyna E; Pourfarzad, Farzin; de Boer, Ernie; Krpic, Sanja; Grosveld, Frank; Strouboulis, John

    2009-01-01

    Background Chromatin immunoprecipitation (ChIP) assays coupled to genome arrays (Chip-on-chip) or massive parallel sequencing (ChIP-seq) lead to the genome wide identification of binding sites of chromatin associated proteins. However, the highly variable quality of antibodies and the availability of epitopes in crosslinked chromatin can compromise genomic ChIP outcomes. Epitope tags have often been used as more reliable alternatives. In addition, we have employed protein in vivo biotinylation tagging as a very high affinity alternative to antibodies. In this paper we describe the optimization of biotinylation tagging for ChIP and its coupling to a known epitope tag in providing a reliable and efficient alternative to antibodies. Results Using the biotin tagged erythroid transcription factor GATA-1 as example, we describe several optimization steps for the application of the high affinity biotin streptavidin system in ChIP. We find that the omission of SDS during sonication, the use of fish skin gelatin as blocking agent and choice of streptavidin beads can lead to significantly improved ChIP enrichments and lower background compared to antibodies. We also show that the V5 epitope tag performs equally well under the conditions worked out for streptavidin ChIP and that it may suffer less from the effects of formaldehyde crosslinking. Conclusion The combined use of the very high affinity biotin tag with the less sensitive to crosslinking V5 tag provides for a flexible ChIP platform with potential implications in ChIP sequencing outcomes. PMID:19196479

  18. Spatially resolved protein hydrogen exchange measured by subzero-cooled chip-based nanoelectrospray ionization tandem mass spectrometry

    DEFF Research Database (Denmark)

    Amon, Sabine; Trelle, Morten B; Jensen, Ole N

    2012-01-01

    . After a given period of deuteration, the exchange reaction is quenched by acidification (pH 2.5) and cooling (0 °C) and the deuterated protein (or a digest thereof) is analyzed by mass spectrometry. The unavoidable loss of deuterium (back-exchange) that occurs under quench conditions is undesired...... as it leads to loss of information. Here we describe the successful application of a chip-based nanoelectrospray ionization mass spectrometry top-down fragmentation approach based on cooling to subzero temperature (-15 °C) which reduces the back-exchange at quench conditions to very low levels. For example...

  19. Protein: MPB2 [TP Atlas

    Lifescience Database Archive (English)

    Full Text Available MPB2 Ubiquitin ligases STUB1 CHIP STUB1 E3 ubiquitin-protein ligase CHIP Antigen NY...-CO-7, CLL-associated antigen KW-8, Carboxy terminus of Hsp70-interacting protein, STIP1 homology and U box-containing pr

  20. On-chip network interfaces supporting automatic burst write creation, posted writes and read prefetch

    NARCIS (Netherlands)

    Stefan, R.; Windt, de J.; Goossens, K.G.W.

    2010-01-01

    Networks-on-Chip are seen as a scalable solution for facilitating the development of Systems-on-Chip with an increasing number of IP cores. Many studies already address the implementation details of such networks and a large effort has been invested in optimizing the routing strategy and the

  1. CHIP promotes thyroid cancer proliferation via activation of the MAPK and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li [Department of Pharmacy, Urumchi General Hospital of Lanzhou Military Region, Urumchi, Xinjiang 830000 (China); Liu, Lianyong [Medical College of Soochow University, Suzhou, Jiangsu 215123 (China); Department of Endocrinology, Shanghai Punan Hospital, Shanghai 200125 (China); He, Xiaohua; Shen, Yunling; Liu, Xuerong; Wei, Jing; Yu, Fang [Department of Endocrinology, Urumchi General Hospital of Lanzhou Military Region, Urumchi, Xinjiang 830000 (China); Tian, Jianqing, E-mail: jianqing0991@163.com [Department of Endocrinology, Urumchi General Hospital of Lanzhou Military Region, Urumchi, Xinjiang 830000 (China)

    2016-08-26

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a U box-type ubiquitin ligase that plays crucial roles in various biological processes, including tumor progression. To date, the functional mechanism of CHIP in thyroid cancer remains unknown. Here, we obtained evidence of upregulation of CHIP in thyroid cancer tissues and cell lines. CHIP overexpression markedly enhanced thyroid cancer cell viability and colony formation in vitro and accelerated tumor growth in vivo. Conversely, CHIP knockdown impaired cell proliferation and tumor growth. Notably, CHIP promoted cell growth through activation of MAPK and AKT pathways, subsequently decreasing p27 and increasing cyclin D1 and p-FOXO3a expression. Our findings collectively indicate that CHIP functions as an oncogene in thyroid cancer, and is therefore a potential therapeutic target for this disease. - Highlights: • CHIP is significantly upregulated in thyroid cancer cells. • Overexpression of CHIP facilitates proliferation and tumorigenesis of thyroid cancer cells. • Silencing of CHIP inhibits the proliferation and tumorigenesis of thyroid cancer cells. • CHIP promotes thyroid cancer cell proliferation via activating the MAPK and AKT pathways.

  2. Silicon Chip-to-Chip Mode-Division Multiplexing

    DEFF Research Database (Denmark)

    Baumann, Jan Markus; Porto da Silva, Edson; Ding, Yunhong

    2018-01-01

    A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes.......A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes....

  3. Lab-on-a-chip and SDS-PAGE analysis of hemolymph protein profile from Rhipicephalus microplus (Acari: Ixodidae) infected with entomopathogenic nematode and fungus.

    Science.gov (United States)

    Golo, Patrícia Silva; Dos Santos, Alessa Siqueira de Oliveira; Monteiro, Caio Marcio Oliveira; Perinotto, Wendell Marcelo de Souza; Quinelato, Simone; Camargo, Mariana Guedes; de Sá, Fillipe Araujo; Angelo, Isabele da Costa; Martins, Marta Fonseca; Prata, Marcia Cristina de Azevedo; Bittencourt, Vânia Rita Elias Pinheiro

    2016-09-01

    In the present study, lab-on-a-chip electrophoresis (LoaC) was suggested as an alternative method to the conventional polyacrylamide gel electrophoresis under denaturing conditions (SDS-PAGE) to analyze raw cell-free tick hemolymph. Rhipicephalus microplus females were exposed to the entomopathogenic fungus Metarhizium anisopliae senso latu IBCB 116 strain and/or to the entomopathogenic nematode Heterorhabditis indica LPP1 strain. Hemolymph from not exposed or exposed ticks was collected 16 and 24 h after exposure and analyze by SDS-PAGE or LoaC. SDS-PAGE yielded 15 bands and LoaC electrophoresis 17 bands. Despite the differences in the number of bands, when the hemolymph protein profiles of exposed or unexposed ticks were compared in the same method, no suppressing or additional bands were detected among the treatments regardless the method (i.e., SDS-PAGE or chip electrophoresis using the Protein 230 Kit®). The potential of LoaC electrophoresis to detect protein bands from tick hemolymph was considered more efficient in comparison to the detection obtained using the traditional SDS-PAGE method, especially when it comes to protein subunits heavier than 100 KDa. LoaC electrophoresis provided a very good reproducibility, and is much faster than the conventional SDS-PAGE method, which requires several hours for one analysis. Despite both methods can be used to analyze tick hemolymph composition, LoaC was considered more suitable for cell-free hemolymph protein separation and detection. LoaC hemolymph band percent data reported changes in key proteins (i.e., HeLp and vitellogenin) exceptionally important for tick embryogenesis. This study reported, for the first time, tick hemolymph protein profile using LoaC.

  4. CHIP regulates aquaporin-2 quality control and body water homeostasis

    DEFF Research Database (Denmark)

    Wu, Qi; Moeller, Hanne B.; Stevens, Donté A.

    2018-01-01

    The importance of the kidney distal convoluted tubule (DCT) and cortical collecting duct (CCD) is highlighted by various water and electrolyte disorders that arise when the unique transport properties of these segments are disturbed. Despite this critical role, little is known about which proteins...... by vasopressin; interacts with aquaporin-2 (AQP2), Hsp70, and Hsc70; and can directly ubiquitylate the water channel AQP2 in vitro. shRNA knockdown of CHIP in CCD cells increased AQP2 protein t1/2 and reduced AQP2 ubiquitylation, resulting in greater levels of AQP2 andphosphorylatedAQP2.CHIP knockdown increased...... the plasma membrane abundance of AQP2 in these cells. Compared with wild-type controls, CHIP knockout mice or novel CRISPR/Cas9 mice without CHIPE3 ligase activity had greater AQP2 abundance and altered renal water handling, with decreased water intake and urine volume, alongside higher urine osmolality. We...

  5. The Chip-Scale Atomic Clock - Prototype Evaluation

    Science.gov (United States)

    2007-11-01

    39th Annual Precise Time and Time Interval (PTTI) Meeting THE CHIP-SCALE ATOMIC CLOCK – PROTOTYPE EVALUATION R. Lutwak *, A. Rashed...been supported by the Defense Advanced Research Projects Agency, Contract # NBCHC020050. REFERENCES [1] R. Lutwak , D. Emmons, W. Riley, and...D.C.), pp. 539-550. [2] R. Lutwak , D. Emmons, T. English, W. Riley, A. Duwel, M. Varghese, D. K. Serkland, and G. M. Peake, 2004, “The Chip-Scale

  6. On-chip determination of C-reactive protein using magnetic particles in continuous flow.

    Science.gov (United States)

    Phurimsak, Chayakom; Tarn, Mark D; Peyman, Sally A; Greenman, John; Pamme, Nicole

    2014-11-04

    We demonstrate the application of a multilaminar flow platform, in which functionalized magnetic particles are deflected through alternating laminar flow streams of reagents and washing solutions via an external magnet, for the rapid detection of the inflammatory biomarker, C-reactive protein (CRP). The two-step sandwich immunoassay was accomplished in less than 60 s, a vast improvement on the 80-300 min time frame required for enzyme-linked immunosorbent assays (ELISA) and the 50 min necessary for off-chip magnetic particle-based assays. The combination of continuous flow and a stationary magnet enables a degree of autonomy in the system, while a detection limit of 0.87 μg mL(-1) makes it suitable for the determination of CRP concentrations in clinical diagnostics. Its applicability was further proven by assaying real human serum samples and comparing those results to values obtained using standard ELISA tests.

  7. A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.

    Science.gov (United States)

    Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao

    2016-10-17

    In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.

  8. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications

    Energy Technology Data Exchange (ETDEWEB)

    Ou Junjie [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Ren, Carolyn L., E-mail: c3ren@mecheng1.uwaterloo.ca [Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada); Pawliszyn, Janusz [Department of Chemistry, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1 (Canada)

    2010-03-10

    A new, simple method was reported to prepare PDMS membranes with micrometer size pores for microfluidic chip applications. The pores were formed by adding polystyrene and toluene into PDMS prepolymer solution prior to spin-coating and curing. The resulting PDMS membrane has a thickness of around 10 {mu}m and macropores with a diameter ranging from 1 to 2 {mu}m measured using scanning electron microscope (SEM) imaging. This PDMS membrane was validated by integrating it with PDMS microfluidic chips for protein separation using isoelectric focusing mechanism coupled with whole channel imaging detection (IEF-WCID). It has been shown that five standard pI markers and a mixture of two proteins, myoglobin and {beta}-lactoglobulin, can be separated using these chips. The results indicated that this macroporous PDMS membrane can replace the dialysis membrane in PDMS chips for the IEF-WCID technique. The preparation method of macroporous PDMS membrane may be potentially applied in other fields of microfluidic chips.

  9. Dietary protein considerations to support active aging.

    Science.gov (United States)

    Wall, Benjamin T; Cermak, Naomi M; van Loon, Luc J C

    2014-11-01

    Given our rapidly aging world-wide population, the loss of skeletal muscle mass with healthy aging (sarcopenia) represents an important societal and public health concern. Maintaining or adopting an active lifestyle alleviates age-related muscle loss to a certain extent. Over time, even small losses of muscle tissue can hinder the ability to maintain an active lifestyle and, as such, contribute to the development of frailty and metabolic disease. Considerable research focus has addressed the application of dietary protein supplementation to support exercise-induced gains in muscle mass in younger individuals. In contrast, the role of dietary protein in supporting the maintenance (or gain) of skeletal muscle mass in active older persons has received less attention. Older individuals display a blunted muscle protein synthetic response to dietary protein ingestion. However, this reduced anabolic response can largely be overcome when physical activity is performed in close temporal proximity to protein consumption. Moreover, recent evidence has helped elucidate the optimal type and amount of dietary protein that should be ingested by the older adult throughout the day in order to maximize the skeletal muscle adaptive response to physical activity. Evidence demonstrates that when these principles are adhered to, muscle maintenance or hypertrophy over prolonged periods can be further augmented in active older persons. The present review outlines the current understanding of the role that dietary protein occupies in the lifestyle of active older adults as a means to increase skeletal muscle mass, strength and function, and thus support healthier aging.

  10. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura; Caracciolo, Giulio; Caruso, Giuseppe; Cavaliere, Chiara; Pozzi, Daniela; Samperi, Roberto; Laganà , Aldo

    2010-01-01

    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  11. Analysis of plasma protein adsorption onto DC-Chol-DOPE cationic liposomes by HPLC-CHIP coupled to a Q-TOF mass spectrometer

    KAUST Repository

    Capriotti, Anna Laura

    2010-09-22

    Plasma protein adsorption is regarded as a key factor in the in vivo organ distribution of intravenously administered drug carriers, and strongly depends on vector surface characteristics. The present study aimed to characterize the "protein corona" absorbed onto DC-Chol-DOPE cationic liposomes. This system was chosen because it is one of the most efficient and widely used non-viral formulations in vitro and a potential candidate for in vivo transfection of genetic material. After incubation of human plasma with cationic liposomes, nanoparticle-protein complex was separated from plasma by centrifugation. An integrated approach based on protein separation by one-dimensional 12% polyacrylamide gel electrophoresis followed by the automated HPLC-Chip technology coupled to a high-resolution mass spectrometer was employed for protein corona characterization. Thirty gel lanes, approximately 2 mm, were cut, digested and analyzed by HPLC-MS/MS. Fifty-eight human plasma proteins adsorbed onto DC-Chol-DOPE cationic liposomes were identified. The knowledge of the interactions of proteins with liposomes can be exploited for future controlled design of colloidal drug carriers and possibly in the controlled creation of biocompatible surfaces of other devices that come into contact with proteins in body fluids. © 2010 Springer-Verlag.

  12. Rapid and Low-Cost CRP Measurement by Integrating a Paper-Based Microfluidic Immunoassay with Smartphone (CRP-Chip)

    Science.gov (United States)

    Dong, Meili; Wu, Jiandong; Ma, Zimin; Peretz-Soroka, Hagit; Zhang, Michael; Komenda, Paul; Tangri, Navdeep; Liu, Yong; Rigatto, Claudio; Lin, Francis

    2017-01-01

    Traditional diagnostic tests for chronic diseases are expensive and require a specialized laboratory, therefore limiting their use for point-of-care (PoC) testing. To address this gap, we developed a method for rapid and low-cost C-reactive protein (CRP) detection from blood by integrating a paper-based microfluidic immunoassay with a smartphone (CRP-Chip). We chose CRP for this initial development because it is a strong biomarker of prognosis in chronic heart and kidney disease. The microfluidic immunoassay is realized by lateral flow and gold nanoparticle-based colorimetric detection of the target protein. The test image signal is acquired and analyzed using a commercial smartphone with an attached microlens and a 3D-printed chip–phone interface. The CRP-Chip was validated for detecting CRP in blood samples from chronic kidney disease patients and healthy subjects. The linear detection range of the CRP-Chip is up to 2 μg/mL and the detection limit is 54 ng/mL. The CRP-Chip test result yields high reproducibility and is consistent with the standard ELISA kit. A single CRP-Chip can perform the test in triplicate on a single chip within 15 min for less than 50 US cents of material cost. This CRP-Chip with attractive features of low-cost, fast test speed, and integrated easy operation with smartphones has the potential to enable future clinical PoC chronic disease diagnosis and risk stratification by parallel measurements of a panel of protein biomarkers. PMID:28346363

  13. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip

    OpenAIRE

    An, Seong Soo; Ankireddy,Seshadri Reddy; Kim,Jongsung

    2015-01-01

    Seshadri Reddy Ankireddy, Jongsung Kim Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-Do, South Korea Abstract: Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescen...

  14. On-chip concentration of bacteria using a 3D dielectrophoretic chip and subsequent laser-based DNA extraction in the same chip

    International Nuclear Information System (INIS)

    Cho, Yoon-Kyoung; Kim, Tae-hyeong; Lee, Jeong-Gun

    2010-01-01

    We report the on-chip concentration of bacteria using a dielectrophoretic (DEP) chip with 3D electrodes and subsequent laser-based DNA extraction in the same chip. The DEP chip has a set of interdigitated Au post electrodes with 50 µm height to generate a network of non-uniform electric fields for the efficient trapping by DEP. The metal post array was fabricated by photolithography and subsequent Ni and Au electroplating. Three model bacteria samples (Escherichia coli, Staphylococcus epidermidis, Streptococcus mutans) were tested and over 80-fold concentrations were achieved within 2 min. Subsequently, on-chip DNA extraction from the concentrated bacteria in the 3D DEP chip was performed by laser irradiation using the laser-irradiated magnetic bead system (LIMBS) in the same chip. The extracted DNA was analyzed with silicon chip-based real-time polymerase chain reaction (PCR). The total process of on-chip bacteria concentration and the subsequent DNA extraction can be completed within 10 min including the manual operation time.

  15. Protein folding on a chip

    CERN Multimedia

    2004-01-01

    "Scientists at the U.S. Department of Energy's Brookhaven National Laboratory are proposing to use a super- computer originally developed to simulate elementary particles in high- energy physics to help determine the structures and functions of proteins, including, for example, the 30,000 or so proteins encoded by the human genome" (1 page)

  16. Near-chip compliant layer for reducing perimeter stress during assembly process

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Mark D.; Takken, Todd E.; Tian, Shurong; Yao, Yuan

    2018-03-20

    A heat source (single semiconductor chip or group of closely spaced semiconductor chips of similar height) is provided on a first side of a substrate, which substrate has on said first side a support member comprising a compressible material. A heat removal component, oriented at an angle to said heat source, is brought into proximity of said heat source such that said heat removal component contacts said support member prior to contacting said heat source. Said heat removal component is assembled to said heat source such that said support member at least partially absorbs global inequality of force that would otherwise be applied to said heat source, absent said support member comprising said compressible material.

  17. Pipeline template for streaming applications on heterogeneous chips

    OpenAIRE

    Rodríguez, Andrés; Navarro, Ángeles; Asenjo-Plaza, Rafael; Corbera, Francisco; Vilches, Antonio; Garzarán, María

    2015-01-01

    We address the problem of providing support for executing single streaming applications implemented as a pipeline of stages that run on heterogeneous chips comprised of several cores and one on-chip GPU. In this paper, we mainly focus on the API that allows the user to specify the type of parallelism exploited by each pipeline stage running on the multicore CPU, the mapping of the pipeline stages to the devices (GPU or CPU), and the number of active threads. We use a rea...

  18. Chips 2020

    CERN Document Server

    2016-01-01

    The release of this second volume of CHIPS 2020 coincides with the 50th anniversary of Moore’s Law, a critical year marked by the end of the nanometer roadmap and by a significantly reduced annual rise in chip performance. At the same time, we are witnessing a data explosion in the Internet, which is consuming 40% more electrical power every year, leading to fears of a major blackout of the Internet by 2020. The messages of the first CHIPS 2020, published in 2012, concerned the realization of quantum steps for improving the energy efficiency of all chip functions. With this second volume, we review these messages and amplify upon the most promising directions: ultra-low-voltage electronics, nanoscale monolithic 3D integration, relevant-data, brain- and human-vision-inspired processing, and energy harvesting for chip autonomy. The team of authors, enlarged by more world leaders in low-power, monolithic 3D, video, and Silicon brains, presents new vistas in nanoelectronics, promising  Moore-like exponential g...

  19. A Cytomorphic Chip for Quantitative Modeling of Fundamental Bio-Molecular Circuits.

    Science.gov (United States)

    2015-08-01

    We describe a 0.35 μm BiCMOS silicon chip that quantitatively models fundamental molecular circuits via efficient log-domain cytomorphic transistor equivalents. These circuits include those for biochemical binding with automatic representation of non-modular and loading behavior, e.g., in cascade and fan-out topologies; for representing variable Hill-coefficient operation and cooperative binding; for representing inducer, transcription-factor, and DNA binding; for probabilistic gene transcription with analogic representations of log-linear and saturating operation; for gain, degradation, and dynamics of mRNA and protein variables in transcription and translation; and, for faithfully representing biological noise via tunable stochastic transistor circuits. The use of on-chip DACs and ADCs enables multiple chips to interact via incoming and outgoing molecular digital data packets and thus create scalable biochemical reaction networks. The use of off-chip digital processors and on-chip digital memory enables programmable connectivity and parameter storage. We show that published static and dynamic MATLAB models of synthetic biological circuits including repressilators, feed-forward loops, and feedback oscillators are in excellent quantitative agreement with those from transistor circuits on the chip. Computationally intensive stochastic Gillespie simulations of molecular production are also rapidly reproduced by the chip and can be reliably tuned over the range of signal-to-noise ratios observed in biological cells.

  20. A Router Architecture for Connection-Oriented Service Guarantees in the MANGO Clockless Network-on-Chip

    DEFF Research Database (Denmark)

    Bjerregaard, Tobias; Sparsø, Jens

    2005-01-01

    On-chip networks for future system-on-chip designs need simple, high performance implementations. In order to promote system-level integrity, guaranteed services (GS) need to be provided. We propose a network-on-chip (NoC) router architecture to support this, and demonstrate with a CMOS standard...... cell design. Our implementation is based on clockless circuit techniques, and thus inherently supports a modular, GALS-oriented design flow. Our router exploits virtual channels to provide connection-oriented GS, as well as connection-less best-effort (BE) routing. The architecture is highly flexible...

  1. Microfluidic "Pouch" Chips for Immunoassays and Nucleic Acid Amplification Tests.

    Science.gov (United States)

    Mauk, Michael G; Liu, Changchun; Qiu, Xianbo; Chen, Dafeng; Song, Jinzhao; Bau, Haim H

    2017-01-01

    Microfluidic cassettes ("chips") for processing and analysis of clinical specimens and other sample types facilitate point-of-care (POC) immunoassays and nucleic acid based amplification tests. These single-use test chips can be self-contained and made amenable to autonomous operation-reducing or eliminating supporting instrumentation-by incorporating laminated, pliable "pouch" and membrane structures for fluid storage, pumping, mixing, and flow control. Materials and methods for integrating flexible pouch compartments and diaphragm valves into hard plastic (e.g., acrylic and polycarbonate) microfluidic "chips" for reagent storage, fluid actuation, and flow control are described. We review several versions of these pouch chips for immunoassay and nucleic acid amplification tests, and describe related fabrication techniques. These protocols thus offer a "toolbox" of methods for storage, pumping, and flow control functions in microfluidic devices.

  2. Price of forest chips decreasing

    International Nuclear Information System (INIS)

    Hakkila, P.

    2001-01-01

    Use of forest chips was studied in 1999 in the national Puuenergia (Wood Energy) research program. Wood combusting heating plants were questioned about are the main reasons restricting the increment of the use of forest chips. Heating plants, which did not use forest chips at all or which used less than 250 m 3 (625 bulk- m 3 ) in 1999 were excluded. The main restrictions for additional use of forest chips were: too high price of forest chips; lack of suppliers and/or uncertainty of deliveries; technical problems of reception and processing of forest chips; insufficiency of boiler output especially in winter; and unsatisfactory quality of chips. The price of forest chips becomes relatively high because wood biomass used for production of forest chips has to be collected from wide area. Heavy equipment has to be used even though small fragments of wood are processed, which increases the price of chips. It is essential for forest chips that the costs can be pressed down because competition with fossil fuels, peat and industrial wood residues is hard. Low market price leads to the situation in which forest owner gets no price of the raw material, the entrepreneurs operate at the limit of profitability and renovation of machinery is difficult, and forest chips suppliers have to sell the chips at prime costs. Price of forest chips has decreased significantly during the past decade. Nominal price of forest chips is now lower than two decades ago. The real price of chips has decreased even more than the nominal price, 35% during the past decade and 20% during the last five years. Chips, made of small diameter wood, are expensive because the price includes the felling costs and harvesting is carried out at thinning lots. Price is especially high if chips are made of delimbed small diameter wood due to increased the work and reduced amount of chips. The price of logging residue chips is most profitable because cutting does not cause additional costs. Recovery of chips is

  3. GeoChips for Analysis of Microbial Functional Communities

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joy D.; Wu, Liyou; He, Zhili; Zhou, Jizhong

    2008-09-30

    Functional gene arrays (FGA) are microarrays that contain probes for genes encoding proteins or enzymes involved in functions of interest and allow for the study of thousands of genes at one time. The most comprehensive FGA to date is the GeoChip, which contains ~;;24,000 probes for ~;;10,000 genes involved in the geochemical cycling of C, N, P, and S, as well as genes involved in metal resistance and reduction and contaminant degradation. This chapter details the methods necessary for GeoChip analysis. Methods covered include preparation of DNA (whole community genome amplification and labeling), array setup (prehybridization steps), hybridization (sample and hybridization buffers), and post hybridization steps (slide washing and array scanning).

  4. A compact PE memory for vision chips

    Science.gov (United States)

    Cong, Shi; Zhe, Chen; Jie, Yang; Nanjian, Wu; Zhihua, Wang

    2014-09-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm2/bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction.

  5. A compact PE memory for vision chips

    International Nuclear Information System (INIS)

    Shi Cong; Chen Zhe; Yang Jie; Wu Nanjian; Wang Zhihua

    2014-01-01

    This paper presents a novel compact memory in the processing element (PE) for single-instruction multiple-data (SIMD) vision chips. The PE memory is constructed with 8 × 8 register cells, where one latch in the slave stage is shared by eight latches in the master stage. The memory supports simultaneous read and write on the same address in one clock cycle. Its compact area of 14.33 μm 2 /bit promises a higher integration level of the processor. A prototype chip with a 64 × 64 PE array is fabricated in a UMC 0.18 μm CMOS technology. Five types of the PE memory cell structure are designed and compared. The testing results demonstrate that the proposed PE memory architecture well satisfies the requirement of the vision chip in high-speed real-time vision applications, such as 1000 fps edge extraction. (semiconductor integrated circuits)

  6. Hydroponics on a chip: analysis of the Fe deficient Arabidopsis thylakoid membrane proteome.

    Science.gov (United States)

    Laganowsky, Arthur; Gómez, Stephen M; Whitelegge, Julian P; Nishio, John N

    2009-04-13

    The model plant Arabidopsis thaliana was used to evaluate the thylakoid membrane proteome under Fe-deficient conditions. Plants were cultivated using a novel hydroponic system, called "hydroponics on a chip", which yields highly reproducible plant tissue samples for physiological analyses, and can be easily used for in vivo stable isotope labeling. The thylakoid membrane proteome, from intact chloroplasts isolated from Fe-sufficient and Fe-deficient plants grown with hydroponics on a chip, was analyzed using liquid chromatography coupled to mass spectrometry. Intact masses of thylakoid membrane proteins were measured, many for the first time, and several proteins were identified with post-translational modifications that were altered by Fe deficiency; for example, the doubly phosphorylated form of the photosystem II oxygen evolving complex, PSBH, increased under Fe-deficiency. Increased levels of photosystem II protein subunit PSBS were detected in the Fe-deficient samples. Antioxidant enzymes, including ascorbate peroxidase and peroxiredoxin Q, were only detected in the Fe-deficient samples. We present the first biochemical evidence that the two major LHC IIb proteins (LHCB1 and LHCB2) may have significantly different functions in the thylakoid membrane. The study illustrates the utility of intact mass proteomics as an indispensable tool for functional genomics. "Hydroponics on a chip" provides the ability to grow A. thaliana under defined conditions that will be useful for systems biology.

  7. Smart Chips for Smart Surroundings -- 4S

    NARCIS (Netherlands)

    Schuler, Eberhard; König, Ralf; Becker, Jürgen; Rauwerda, G.K.; van de Burgwal, M.D.; Smit, Gerardus Johannes Maria; Cardoso, João M.P.; Hübner, Michael

    2011-01-01

    The overall mission of the 4S project (Smart Chips for Smart Surroundings) was to define and develop efficient flexible, reconfigurable core building blocks, including the supporting tools, for future Ambient System Devices. Reconfigurability offers the needed flexibility and adaptability, it

  8. Biomass energy from wood chips: Diesel fuel dependence?

    International Nuclear Information System (INIS)

    Timmons, Dave; Mejia, Cesar Viteri

    2010-01-01

    Most renewable energy sources depend to some extent on use of other, non-renewable sources. In this study we explore use of diesel fuel in producing and transporting woody biomass in the state of New Hampshire, USA. We use two methods to estimate the diesel fuel used in woody biomass production: 1) a calculation based on case studies of diesel consumption in different parts of the wood chip supply chain, and 2) to support extrapolating those results to a regional system, an econometric study of the variation of wood-chip prices with respect to diesel fuel prices. The econometric study relies on an assumption of fixed demand, then assesses variables impacting supply, with a focus on how the price of diesel fuel affects price of biomass supplied. The two methods yield similar results. The econometric study, representing overall regional practices, suggests that a $1.00 per liter increase in diesel fuel price is associated with a $5.59 per Mg increase in the price of wood chips. On an energy basis, the diesel fuel used directly in wood chip production and transportation appears to account for less than 2% of the potential energy in the wood chips. Thus, the dependence of woody biomass energy production on diesel fuel does not appear to be extreme. (author)

  9. STUDY OF CHIP IGNITION AND CHIP MORPHOLOGY AFTER MILLING OF MAGNESIUM ALLOYS

    Directory of Open Access Journals (Sweden)

    Ireneusz Zagórski

    2016-12-01

    Full Text Available The paper analyses the impact of specified technological parameters of milling (vc, fz, ap on time to ignition. Stages leading to chip ignition were analysed. Metallographic images of magnesium chip were presented. No significant difference was observed in time to ignition in different chip fractions. Moreover, the surface of chips was free of products of ignition and signs of strong oxidation.

  10. The Advances, Challenges and Future Possibilities of Millimeter-Wave Chip-to-Chip Interconnections for Multi-Chip Systems

    Directory of Open Access Journals (Sweden)

    Amlan Ganguly

    2018-02-01

    Full Text Available With aggressive scaling of device geometries, density of manufacturing faults is expected to increase. Therefore, yield of complex Multi-Processor Systems-on-Chips (MP-SoCs will decrease due to higher probability of manufacturing defects especially, in dies with large area. Therefore, disintegration of large SoCs into smaller chips called chiplets will improve yield and cost of complex platform-based systems. This will also provide functional flexibility, modular scalability as well as the capability to integrate heterogeneous architectures and technologies in a single unit. However, with scaling of the number of chiplets in such a system, the shared resources in the system such as the interconnection fabric and memory modules will become performance bottlenecks. Additionally, the integration of heterogeneous chiplets operating at different frequencies and voltages can be challenging. State-of-the-art inter-chip communication requires power-hungry high-speed I/O circuits and data transfer over long wired traces on substrates. This increases energy consumption and latency while decreasing data bandwidth for chip-to-chip communication. In this paper, we explore the advances and the challenges of interconnecting a multi-chip system with millimeter-wave (mm-wave wireless interconnects from a variety of perspectives spanning multiple aspects of the wireless interconnection design. Our discussion on the recent advances include aspects such as interconnection topology, physical layer, Medium Access Control (MAC and routing protocols. We also present some potential paradigm-shifting applications as well as complementary technologies of wireless inter-chip communications.

  11. Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    Science.gov (United States)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-09-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (~1 μm). The hydrophilicity (advancing contact angle of ~60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min-1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers.

  12. One-step fabrication of an organ-on-a-chip with spatial heterogeneity using a 3D bioprinting technology.

    Science.gov (United States)

    Lee, Hyungseok; Cho, Dong-Woo

    2016-07-05

    Although various types of organs-on-chips have been introduced recently as tools for drug discovery, the current studies are limited in terms of fabrication methods. The fabrication methods currently available not only need a secondary cell-seeding process and result in severe protein absorption due to the material used, but also have difficulties in providing various cell types and extracellular matrix (ECM) environments for spatial heterogeneity in the organs-on-chips. Therefore, in this research, we introduce a novel 3D bioprinting method for organ-on-a-chip applications. With our novel 3D bioprinting method, it was possible to prepare an organ-on-a-chip in a simple one-step fabrication process. Furthermore, protein absorption on the printed platform was very low, which will lead to accurate measurement of metabolism and drug sensitivity. Moreover, heterotypic cell types and biomaterials were successfully used and positioned at the desired position for various organ-on-a-chip applications, which will promote full mimicry of the natural conditions of the organs. The liver organ was selected for the evaluation of the developed method, and liver function was shown to be significantly enhanced on the liver-on-a-chip, which was prepared by 3D bioprinting. Consequently, the results demonstrate that the suggested 3D bioprinting method is easier and more versatile for production of organs-on-chips.

  13. Programmable lab-on-a-chip system for single cell analysis

    Science.gov (United States)

    Thalhammer, S.

    2009-05-01

    The collection, selection, amplification and detection of minimum genetic samples became a part of everyday life in medical and biological laboratories, to analyze DNA-fragments of pathogens, patient samples and traces on crime scenes. About a decade ago, a handful of researchers began discussing an intriguing idea. Could the equipment needed for everyday chemistry and biology procedures be shrunk to fit on a chip in the size of a fingernail? Miniature devices for, say, analysing DNA and proteins should be faster and cheaper than conventional versions. Lab-on-a-chip is an advanced technology that integrates a microfluidic system on a microscale chip device. The "laboratory" is created by means of channels, mixers, reservoirs, diffusion chambers, integrated electrodes, pumps, valves and more. With lab-ona- chip technology, complete laboratories on a square centimetre can be created. Here, a multifunctional programmable Lab-on-a-Chip driven by nanofluidics and controlled by surface acoustic waves (SAW) is presented. This system combines serial DNA-isolation-, amplification- and array-detection-process on a modified glass-platform. The fluid actuation is controlled via SAW by interdigital transducers implemented in the chemical modified chip surface. The chemical surface modification allows fluid handling in the sub-microliter range. Minute amount of sample material is extracted by laser-based microdissection out of e.g. histological sections at the single cell level. A few picogram of genetic material are isolated and transferred via a low-pressure transfer system (SPATS) onto the chip. Subsequently the genetic material inside single droplets, which behave like "virtual" beaker, is transported to the reaction and analysis centers on the chip surface via surface acoustic waves, mainly known as noise dumping filters in mobile phones. At these "biological reactors" the genetic material is processed, e.g. amplified via polymerase chain reaction methods, and genetically

  14. Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR

    Energy Technology Data Exchange (ETDEWEB)

    Watrelot, Aude A., E-mail: aude.watrelot@avignon.inra.fr [INRA, UMR408 Sécurité et Qualité des Produits d’Origine Végétale, Domaine St Paul, Site Agroparc, 84914 Avignon (France); Université d’Avignon, UMR408 Sécurité et Qualité des Produits d' Origine Végétale, F-84000 Avignon (France); Tran, Dong Tien [Université de Bordeaux, Institut des Sciences Moléculaires (UMR-CNRS 5255), 351 cours de la Libération, 33405 Talence (France); Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France); Buffeteau, Thierry [Université de Bordeaux, Institut des Sciences Moléculaires (UMR-CNRS 5255), 351 cours de la Libération, 33405 Talence (France); Deffieux, Denis [Université de Bordeaux, Institut des Sciences Moléculaires (UMR-CNRS 5255), 351 cours de la Libération, 33405 Talence (France); Institut Européen de Chimie et Biologie (IECB), 2 rue Robert Escarpit, 33607 Pessac (France); and others

    2016-05-15

    Highlights: • Flavanol-macromolecule interactions were determined using SPR. • Flavanols were chemically modified with a linker bearing a thiol group. • Flavanols were immobilized onto a carboxymethyl dextran surface. • Citrus pectin interacted more with flavanols than apple pectin. • Epicatechin interacted more with BSA than flavanol oligomer. - Abstract: Interactions between plant polyphenols and biomacromolecules such as proteins and pectins have been studied by several methods in solution (e.g. isothermal titration calorimetry, dynamic light scattering, nuclear magnetic resonance and spectrophotometry). Herein, these interactions were investigated in real time by Surface Plasmon Resonance (SPR) analysis after immobilization of flavan-3-ols onto a sensor chip surface. (−)-epicatechin, (+)-catechin and flavan-3-ol oligomers with an average degree of polymerization of 2 and 8 were chemically modified using N-(2-(tritylthio)ethyl)propiolamide in order to introduce a spacer unit onto the catecholic B ring. Modified flavan-3-ols were then immobilized onto a carboxymethylated dextran surface (CM5). Immobilization was validated and further verified by evaluating flavan-3-ol interaction with bovine serum albumin (BSA), poly-L-proline or commercial pectins. BSA was found to have a stronger association with monomeric flavan-3-ols than oligomers. SPR analysis of selected flavan-3-ols immobilized onto CM5 sensor chips showed a stronger association for citrus pectins than apple pectins, regardless of flavan-3-ol degree of polymerization.

  15. Immobilization of flavan-3-ols onto sensor chips to study their interactions with proteins and pectins by SPR

    International Nuclear Information System (INIS)

    Watrelot, Aude A.; Tran, Dong Tien; Buffeteau, Thierry; Deffieux, Denis

    2016-01-01

    Highlights: • Flavanol-macromolecule interactions were determined using SPR. • Flavanols were chemically modified with a linker bearing a thiol group. • Flavanols were immobilized onto a carboxymethyl dextran surface. • Citrus pectin interacted more with flavanols than apple pectin. • Epicatechin interacted more with BSA than flavanol oligomer. - Abstract: Interactions between plant polyphenols and biomacromolecules such as proteins and pectins have been studied by several methods in solution (e.g. isothermal titration calorimetry, dynamic light scattering, nuclear magnetic resonance and spectrophotometry). Herein, these interactions were investigated in real time by Surface Plasmon Resonance (SPR) analysis after immobilization of flavan-3-ols onto a sensor chip surface. (−)-epicatechin, (+)-catechin and flavan-3-ol oligomers with an average degree of polymerization of 2 and 8 were chemically modified using N-(2-(tritylthio)ethyl)propiolamide in order to introduce a spacer unit onto the catecholic B ring. Modified flavan-3-ols were then immobilized onto a carboxymethylated dextran surface (CM5). Immobilization was validated and further verified by evaluating flavan-3-ol interaction with bovine serum albumin (BSA), poly-L-proline or commercial pectins. BSA was found to have a stronger association with monomeric flavan-3-ols than oligomers. SPR analysis of selected flavan-3-ols immobilized onto CM5 sensor chips showed a stronger association for citrus pectins than apple pectins, regardless of flavan-3-ol degree of polymerization.

  16. Chip-to-Chip Half Duplex Spiking Data Communication over Power Supply Rails

    Science.gov (United States)

    Hashida, Takushi; Nagata, Makoto

    Chip-to-chip serial data communication is superposed on power supply over common Vdd/Vss connections through chip, package, and board traces. A power line transceiver demonstrates half duplex spiking communication at more than 100Mbps. A pair of transceivers consumes 1.35mA from 3.3V, at 130Mbps. On-chip power line LC low pass filter attenuates pseudo-differential communication spikes by 30dB, purifying power supply current for internal circuits. Bi-directional spiking communication was successfully examined in a 90-nm CMOS prototype setup of on-chip waveform capturing. A micro controller forwards clock pulses to and receives data streams from a comparator based waveform capturer formed on a different chip, through a single pair of power and ground traces. The bit error rate is small enough not to degrade waveform acquisition capability, maintaining the spurious free dynamic range of higher than 50dB.

  17. Chromatin Immunoprecipitation (ChIP): Revisiting the Efficacy of Sample Preparation, Sonication, Quantification of Sheared DNA, and Analysis via PCR

    Science.gov (United States)

    Schoppee Bortz, Pamela D.; Wamhoff, Brian R.

    2011-01-01

    The “quantitative” ChIP, a tool commonly used to study protein-DNA interactions in cells and tissue, is a difficult assay often plagued with technical error. We present, herein, the process required to merge multiple protocols into a quick, reliable and easy method and an approach to accurately quantify ChIP DNA prior to performing PCR. We demonstrate that high intensity sonication for at least 30 min is required for full cellular disruption and maximum DNA recovery because ChIP lysis buffers fail to lyse formaldehyde-fixed cells. In addition, extracting ChIP DNA with chelex-100 yields samples that are too dilute for evaluation of shearing efficiency or quantification via nanospectrophotometry. However, DNA extracted from the Mock-ChIP supernatant via the phenol-chloroform-isoamyl alcohol (PCIA) method can be used to evaluate DNA shearing efficiency and used as the standard in a fluorescence-based microplate assay. This enabled accurate quantification of DNA in chelex-extracted ChIP samples and normalization to total DNA concentration prior to performing real-time PCR (rtPCR). Thus, a quick ChIP assay that can be completed in nine bench hours over two days has been validated along with a rapid, accurate and repeatable way to quantify ChIP DNA. The resulting rtPCR data more accurately depicts treatment effects on protein-DNA interactions of interest. PMID:22046253

  18. A Transcriptome—Targeting EcoChip for Assessing Functional Mycodiversity

    Directory of Open Access Journals (Sweden)

    Derek Peršoh

    2011-10-01

    Full Text Available A functional biodiversity microarray (EcoChip prototype has been developed to facilitate the analysis of fungal communities in environmental samples with broad functional and phylogenetic coverage and to enable the incorporation of nucleic acid sequence data as they become available from large-scale (next generation sequencing projects. A dual probe set (DPS was designed to detect a functional enzyme transcripts at conserved protein sites and b phylogenetic barcoding transcripts at ITS regions present in precursor rRNA. Deviating from the concept of GeoChip-type microarrays, the presented EcoChip microarray phylogenetic information was obtained using a dedicated set of barcoding microarray probes, whereas functional gene expression was analyzed by conserved domain-specific probes. By unlinking these two target groups, the shortage of broad sequence information of functional enzyme-coding genes in environmental communities became less important. The novel EcoChip microarray could be successfully applied to identify specific degradation activities in environmental samples at considerably high phylogenetic resolution. Reproducible and unbiased microarray signals could be obtained with chemically labeled total RNA preparations, thus avoiding the use of enzymatic labeling steps. ITS precursor rRNA was detected for the first time in a microarray experiment, which confirms the applicability of the EcoChip concept to selectively quantify the transcriptionally active part of fungal communities at high phylogenetic resolution. In addition, the chosen microarray platform facilitates the conducting of experiments with high sample throughput in almost any molecular biology laboratory.

  19. Chip-olate’ and dry-film resists for efficient fabrication, singulation and sealing of microfluidic chips

    International Nuclear Information System (INIS)

    Temiz, Yuksel; Delamarche, Emmanuel

    2014-01-01

    This paper describes a technique for high-throughput fabrication and efficient singulation of chips having closed microfluidic structures and takes advantage of dry-film resists (DFRs) for efficient sealing of capillary systems. The technique is illustrated using 4-inch Si/SiO 2 wafers. Wafers carrying open microfluidic structures are partially diced to about half of their thickness. Treatments such as surface cleaning are done at wafer-level, then the structures are sealed using low-temperature (45 °C) lamination of a DFR that is pre-patterned using a craft cutter, and ready-to-use chips are finally separated manually like a chocolate bar by applying a small force (≤ 4 N). We further show that some DFRs have low auto-fluorescence at wavelengths typically used for common fluorescent dyes and that mechanical properties of some DFRs allow for the lamination of 200 μm wide microfluidic structures with negligible sagging (∼1 μm). The hydrophilicity (advancing contact angle of ∼60°) of the DFR supports autonomous capillary-driven flow without the need for additional surface treatment of the microfluidic chips. Flow rates from 1 to 5 µL min -1 are generated using different geometries of channels and capillary pumps. In addition, the ‘chip-olate’ technique is compatible with the patterning of capture antibodies on DFR for use in immunoassays. We believe this technique to be applicable to the fabrication of a wide range of microfluidic and lab-on-a-chip devices and to offer a viable alternative to many labor-intensive processes that are currently based on wafer bonding techniques or on the molding of poly(dimethylsiloxane) (PDMS) layers. (technical note)

  20. A proposed holistic approach to on-chip, off-chip, test, and package interconnections

    Science.gov (United States)

    Bartelink, Dirk J.

    1998-11-01

    The term interconnection has traditionally implied a `robust' connection from a transistor or a group of transistors in an IC to the outside world, usually a PC board. Optimum system utilization is done from outside the IC. As an alternative, this paper addresses `unimpeded' transistor-to-transistor interconnection aimed at reaching the high circuit densities and computational capabilities of neighboring IC's. In this view, interconnections are not made to some human-centric place outside the IC world requiring robustness—except for system input and output connections. This unimpeded interconnect style is currently available only through intra-chip signal traces in `system-on-a-chip' implementations, as exemplified by embedded DRAMs. Because the traditional off-chip penalty in performance and wiring density is so large, a merging of complex process technologies is the only option today. It is suggested that, for system integration to move forward, the traditional robustness requirement inherited from conventional packaging interconnect and IC manufacturing test must be discarded. Traditional system assembly from vendor parts requires robustness under shipping, inspection and assembly. The trend toward systems on a chip signifies willingness by semiconductor companies to design and fabricate whole systems in house, so that `in-house' chip-to-chip assembly is not beyond reach. In this scenario, bare chips never leave the controlled environment of the IC fabricator while the two major contributors to off-chip signal penalty, ESD protection and the need to source a 50-ohm test head, are avoided. With in-house assembly, ESD protection can be eliminated with the precautions already familiar in plasma etching. Test interconnection impacts the fundamentals of IC manufacturing, particularly with clock speeds approaching 1GHz, and cannot be an afterthought. It should be an integral part of the chip-to-chip interconnection bandwidth optimization, because—as we must

  1. A scalable single-chip multi-processor architecture with on-chip RTOS kernel

    NARCIS (Netherlands)

    Theelen, B.D.; Verschueren, A.C.; Reyes Suarez, V.V.; Stevens, M.P.J.; Nunez, A.

    2003-01-01

    Now that system-on-chip technology is emerging, single-chip multi-processors are becoming feasible. A key problem of designing such systems is the complexity of their on-chip interconnects and memory architecture. It is furthermore unclear at what level software should be integrated. An example of a

  2. The GenoChip: a new tool for genetic anthropology.

    Science.gov (United States)

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G; Greenspan, Bennett; Spencer Wells, R

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project's new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  3. The GenoChip: A New Tool for Genetic Anthropology

    Science.gov (United States)

    Elhaik, Eran; Greenspan, Elliott; Staats, Sean; Krahn, Thomas; Tyler-Smith, Chris; Xue, Yali; Tofanelli, Sergio; Francalacci, Paolo; Cucca, Francesco; Pagani, Luca; Jin, Li; Li, Hui; Schurr, Theodore G.; Greenspan, Bennett; Spencer Wells, R.

    2013-01-01

    The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic

  4. Silicon carbide transparent chips for compact atomic sensors

    Science.gov (United States)

    Huet, L.; Ammar, M.; Morvan, E.; Sarazin, N.; Pocholle, J.-P.; Reichel, J.; Guerlin, C.; Schwartz, S.

    2017-11-01

    Atom chips [1] are an efficient tool for trapping, cooling and manipulating cold atoms, which could open the way to a new generation of compact atomic sensors addressing space applications. This is in particular due to the fact that they can achieve strong magnetic field gradients near the chip surface, hence strong atomic confinement at moderate electrical power. However, this advantage usually comes at the price of reducing the optical access to the atoms, which are confined very close to the chip surface. We will report at the conference experimental investigations showing how these limits could be pushed farther by using an atom chip made of a gold microcircuit deposited on a single-crystal Silicon Carbide (SiC) substrate [2]. With a band gap energy value of about 3.2 eV at room temperature, the latter material is transparent at 780nm, potentially restoring quasi full optical access to the atoms. Moreover, it combines a very high electrical resistivity with a very high thermal conductivity, making it a good candidate for supporting wires with large currents without the need of any additional electrical insulation layer [3].

  5. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    Science.gov (United States)

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Object Recognition System-on-Chip Using the Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Houzet Dominique

    2005-01-01

    Full Text Available The first aim of this work is to propose the design of a system-on-chip (SoC platform dedicated to digital image and signal processing, which is tuned to implement efficiently multiply-and-accumulate (MAC vector/matrix operations. The second aim of this work is to implement a recent promising neural network method, namely, the support vector machine (SVM used for real-time object recognition, in order to build a vision machine. With such a reconfigurable and programmable SoC platform, it is possible to implement any SVM function dedicated to any object recognition problem. The final aim is to obtain an automatic reconfiguration of the SoC platform, based on the results of the learning phase on an objects' database, which makes it possible to recognize practically any object without manual programming. Recognition can be of any kind that is from image to signal data. Such a system is a general-purpose automatic classifier. Many applications can be considered as a classification problem, but are usually treated specifically in order to optimize the cost of the implemented solution. The cost of our approach is more important than a dedicated one, but in a near future, hundreds of millions of gates will be common and affordable compared to the design cost. What we are proposing here is a general-purpose classification neural network implemented on a reconfigurable SoC platform. The first version presented here is limited in size and thus in object recognition performances, but can be easily upgraded according to technology improvements.

  7. Chip compacting press; Jido kirikuzu asshukuki

    Energy Technology Data Exchange (ETDEWEB)

    Oura, K. [Yuken Kogyo Co. Ltd., Kanagawa (Japan)

    1998-08-15

    The chips exhausted from various machine tools are massy, occupy much space and make working environment worse by staying added cutting oil to lower part. The chips are exhausted as a result of machining and have not constant quality. Even if used material is same the chips have various shapes and properties by kinds and machining methods of used machine tools, and are troublesome materials from a standpoint of their treatment. Pressing and solidification of the chips have frequently been tried. A chip compacting press introduced in this paper, a relatively cheap chip compacting press aimed for relatively small scale chip treatment, and has such characteristics and effects as follows. Chips are pressed and solidified by each raw material, so fractional management can be easily conducted. As casting metal chips and curled chips of iron and aluminum can be pressed to about 1/3 to 1/5 and about 1/40, respectively, space saving can be conducted. Chip compacting pressing upgrades its transporting efficiency to make possible to reduce its transporting cost. As chip solidification controls its oxidation and most cutting oil are removed, chips are easy to recycle. 2 figs., 1 tab.

  8. Automating dChip: toward reproducible sharing of microarray data analysis

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2008-05-01

    Full Text Available Abstract Background During the past decade, many software packages have been developed for analysis and visualization of various types of microarrays. We have developed and maintained the widely used dChip as a microarray analysis software package accessible to both biologist and data analysts. However, challenges arise when dChip users want to analyze large number of arrays automatically and share data analysis procedures and parameters. Improvement is also needed when the dChip user support team tries to identify the causes of reported analysis errors or bugs from users. Results We report here implementation and application of the dChip automation module. Through this module, dChip automation files can be created to include menu steps, parameters, and data viewpoints to run automatically. A data-packaging function allows convenient transfer from one user to another of the dChip software, microarray data, and analysis procedures, so that the second user can reproduce the entire analysis session of the first user. An analysis report file can also be generated during an automated run, including analysis logs, user comments, and viewpoint screenshots. Conclusion The dChip automation module is a step toward reproducible research, and it can prompt a more convenient and reproducible mechanism for sharing microarray software, data, and analysis procedures and results. Automation data packages can also be used as publication supplements. Similar automation mechanisms could be valuable to the research community if implemented in other genomics and bioinformatics software packages.

  9. A Low Cost Single Chip VDL Compatible Transceiver ASIC

    Science.gov (United States)

    Becker, Robert

    2004-01-01

    Recent trends in commercial communications system components have focussed almost exclusively on cellular telephone technology. As many of the traditional sources of receiver components have discontinued non-cellular telephone products, the designers of avionics and other low volume radio applications find themselves increasingly unable to find highly integrated components. This is particularly true for low power, low cost applications which cannot afford the lavish current consumption of the software defined radio approach increasingly taken by certified device manufacturers. In this paper, we describe a low power transceiver chip targeting applications from low VHF to low UHF frequencies typical of avionics systems. The chip encompasses a selectable single or double conversion design for the receiver and a low power IF upconversion transmitter. All local oscillators are synthesized and integrated into the chip. An on-chip I-Q modulator and demodulator provide baseband modulation and demodulation capability allowing the use of low power, fixed point signal processing components for signal demodulation. The goal of this program is to demonstrate a low cost VDL mode-3 transceiver using this chip to receive text weather information sent using 4-slot TDMA with no support for voice. The data will be sent from an experimental ground station. This work is funded by NASA Glenn Research Center.

  10. On-chip electrochromic micro display for a disposable bio-sensor chip

    Science.gov (United States)

    Zhu, Yanjun; Tsukamoto, Takashiro; Tanaka, Shuji

    2017-12-01

    This paper reports an on-chip electrochromic micro display made of polyaniline (PANi) which can be easily made on a CMOS chip. Micro-patterned PANi thin films were selectively deposited on pre-patterned microelectrodes by using electrodeposition. The optimum conditions for deposition and electrochromism were investigated. An 8-pixel on-chip micro display was made on a Si chip. The color of each PANi film could be independently but simultaneously controlled, which means any 1-byte digital data could be displayed on the display. The PANi display had a response time as fast as about 100 ms, which means the transfer data rate was as fast as 80 bits per second.

  11. CATCHprofiles: Clustering and Alignment Tool for ChIP Profiles

    DEFF Research Database (Denmark)

    G. G. Nielsen, Fiona; Galschiøt Markus, Kasper; Møllegaard Friborg, Rune

    2012-01-01

    IP-profiling data and detect potentially meaningful patterns, the areas of enrichment must be aligned and clustered, which is an algorithmically and computationally challenging task. We have developed CATCHprofiles, a novel tool for exhaustive pattern detection in ChIP profiling data. CATCHprofiles is built upon...... a computationally efficient implementation for the exhaustive alignment and hierarchical clustering of ChIP profiling data. The tool features a graphical interface for examination and browsing of the clustering results. CATCHprofiles requires no prior knowledge about functional sites, detects known binding patterns...... it an invaluable tool for explorative research based on ChIP profiling data. CATCHprofiles and the CATCH algorithm run on all platforms and is available for free through the CATCH website: http://catch.cmbi.ru.nl/. User support is available by subscribing to the mailing list catch-users@bioinformatics.org....

  12. Covalent attachment of proteins to solid supports and surfaces via Sortase-mediated ligation.

    Directory of Open Access Journals (Sweden)

    Lilyan Chan

    Full Text Available BACKGROUND: There is growing interest in the attachment of proteins to solid supports for the development of supported catalysts, affinity matrices, and micro devices as well as for the development of planar and bead based protein arrays for multiplexed assays of protein concentration, interactions, and activity. A critical requirement for these applications is the generation of a stable linkage between the solid support and the immobilized, but still functional, protein. METHODOLOGY: Solid supports including crosslinked polymer beads, beaded agarose, and planar glass surfaces, were modified to present an oligoglycine motif to solution. A range of proteins were ligated to the various surfaces using the Sortase A enzyme of S. aureus. Reactions were carried out in aqueous buffer conditions at room temperature for times between one and twelve hours. CONCLUSIONS: The Sortase A transpeptidase of S. aureus provides a general, robust, and gentle approach to the selective covalent immobilization of proteins on three very different solid supports. The proteins remain functional and accessible to solution. Sortase mediated ligation is therefore a straightforward methodology for the preparation of solid supported enzymes and bead based assays, as well as the modification of planar surfaces for microanalytical devices and protein arrays.

  13. Micro-patterning of self-supporting layers with conducting polymer wires for 3D-chip interconnection applications

    International Nuclear Information System (INIS)

    Ackermann, J.; Videlot, C.; Nguyen, T.N.; Wang, L.; Sarro, P.M.; Crawley, D.; Nikolic, K.; Forshaw, M.

    2003-01-01

    Highly conducting polymers have attracted much interest because of their potential applications in sensors and electronic devices. By the use of templates like porous membranes during polymerization conducting molecular wires can be formed with highly anisotropic properties which can be used as interconnecting layers in a three-dimensional (3D)-chip stacking. We focussed on two electrochemical polymerization (ECP) techniques to produce molecular wires based on polypyrrole (PPy) embedded in isolating porous polycarbonate membranes as self-supporting layers. The growth of the polymer through the membrane pores was investigated in order to achieve a good conductivity through the pores, but with a small cross-talk between them. A new polymerization technique based on a structured cathode has been developed in order to control the polymerization locally. By that technique micro-patterned membranes with separated conducting polymer wires could be produced

  14. "Hook"-calibration of GeneChip-microarrays: Chip characteristics and expression measures

    Directory of Open Access Journals (Sweden)

    Krohn Knut

    2008-08-01

    Full Text Available Abstract Background Microarray experiments rely on several critical steps that may introduce biases and uncertainty in downstream analyses. These steps include mRNA sample extraction, amplification and labelling, hybridization, and scanning causing chip-specific systematic variations on the raw intensity level. Also the chosen array-type and the up-to-dateness of the genomic information probed on the chip affect the quality of the expression measures. In the accompanying publication we presented theory and algorithm of the so-called hook method which aims at correcting expression data for systematic biases using a series of new chip characteristics. Results In this publication we summarize the essential chip characteristics provided by this method, analyze special benchmark experiments to estimate transcript related expression measures and illustrate the potency of the method to detect and to quantify the quality of a particular hybridization. It is shown that our single-chip approach provides expression measures responding linearly on changes of the transcript concentration over three orders of magnitude. In addition, the method calculates a detection call judging the relation between the signal and the detection limit of the particular measurement. The performance of the method in the context of different chip generations and probe set assignments is illustrated. The hook method characterizes the RNA-quality in terms of the 3'/5'-amplification bias and the sample-specific calling rate. We show that the proper judgement of these effects requires the disentanglement of non-specific and specific hybridization which, otherwise, can lead to misinterpretations of expression changes. The consequences of modifying probe/target interactions by either changing the labelling protocol or by substituting RNA by DNA targets are demonstrated. Conclusion The single-chip based hook-method provides accurate expression estimates and chip-summary characteristics

  15. Building blocks for a polarimeter-on-a-chip

    International Nuclear Information System (INIS)

    Stevenson, Thomas R.; Hsieh, W.-T.; Schneider, Gideon; Travers, Douglas; Cao, Nga; Wollack, Edward; Limon, Michele; Kogut, Alan

    2006-01-01

    For the 'Primordial Anisotropy Polarization Pathfinder Array (PAPPA)' balloon flight project, we have designed and made thin-film niobium microstrip circuits as building blocks for a 'polarimeter-on-a-chip' in which superconducting transmission lines are used to couple millimeter wave signals from planar antennas to superconducting transition edge sensor (TES) detectors. Our goal is to demonstrate technology for precision measurements of the polarization of the cosmic microwave background. To enable characterization and verification of our microstrip components, we have incorporated waveguide probes on each chip that can bring millimeter wave signals from a room temperature vector network analyzer to the superconducting circuits on the chip and back again for S-parameter measurements. We have designed a planar antenna and RF choke on the probes to efficiently couple radiation between waveguide and thin-film microstrip. To support the probe antennas in waveguides, we sculpted thin silicon cantilevers that extend from an edge of each silicon chip into a pair of waveguides within a specially designed split-block mount. This technique will allow us to make calibrated measurements at low temperatures of the velocity, impedance, and loss properties of our niobium transmission lines, the frequency response of microstrip filters, hybrid couplers, or terminations, and the performance of integrated detectors

  16. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  17. Localized, stepwise template growth of functional nanowires from an amino acid-supported framework in a microfluidic chip.

    Science.gov (United States)

    Puigmartí-Luis, Josep; Rubio-Martínez, Marta; Imaz, Inhar; Cvetković, Benjamin Z; Abad, Llibertat; Pérez Del Pino, Angel; Maspoch, Daniel; Amabilino, David B

    2014-01-28

    A spatially controlled synthesis of nanowire bundles of the functional crystalline coordination polymer (CP) Ag(I)TCNQ (tetracyanoquinodimethane) from previously fabricated and trapped monovalent silver CP (Ag(I)Cys (cysteine)) using a room-temperature microfluidic-assisted templated growth method is demonstrated. The incorporation of microengineered pneumatic clamps in a two-layer polydimethylsiloxane-based (PDMS) microfluidic platform was used. Apart from guiding the formation of the Ag(I)Cys coordination polymer, this microfluidic approach enables a local trapping of the in situ synthesized structures with a simple pneumatic clamp actuation. This method not only enables continuous and multiple chemical events to be conducted upon the trapped structures, but the excellent fluid handling ensures a precise chemical activation of the amino acid-supported framework in a position controlled by interface and clamp location that leads to a site-specific growth of Ag(I)TCNQ nanowire bundles. The synthesis is conducted stepwise starting with Ag(I)Cys CPs, going through silver metal, and back to a functional CP (Ag(I)TCNQ); that is, a novel microfluidic controlled ligand exchange (CP → NP → CP) is presented. Additionally, the pneumatic clamps can be employed further to integrate the conductive Ag(I)TCNQ nanowire bundles onto electrode arrays located on a surface, hence facilitating the construction of the final functional interfaced systems from solution specifically with no need for postassembly manipulation. This localized self-supported growth of functional matter from an amino acid-based CP shows how sequential localized chemistry in a fluid cell can be used to integrate molecular systems onto device platforms using a chip incorporating microengineered pneumatic tools. The control of clamp pressure and in parallel the variation of relative flow rates of source solutions permit deposition of materials at different locations on a chip that could be useful for device

  18. Preservation of forest wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Kofman, P.D.; Thomsen, I.M.; Ohlsson, C.; Leer, E.; Ravn Schmidt, E.; Soerensen, M.; Knudsen, P.

    1999-01-01

    As part of the Danish Energy Research Programme on biomass utilisation for energy production (EFP), this project concerns problems connected to the handling and storing of wood chips. In this project, the possibility of preserving wood chips of the Norway Spruce (Picea Abies) is addressed, and the potential improvements by anaerobic storage are tested. Preservation of wood chips aims at reducing dry matter losses from extensive heating during storage and to reduce production of fungal spores. Fungal spores pose a health hazards to workers handling the chips. Further the producers of wood chips are interested in such a method since it would enable them to give a guarantee for the delivery of homogeneous wood chips also during the winter period. Three different types of wood chips were stored airtight and further one of these was stored in accordance with normal practise and use as reference. The results showed that airtight storage had a beneficial impact on the quality of the chips: no redistribution of moisture, low dry matter losses, unfavourable conditions for microbial activity of most fungi, and the promotion of yeasts instead of fungi with airborne spores. Likewise the firing tests showed that no combustion problems, and no increased risk to the environment or to the health of staff is caused by anaerobic storage of wood chips. In all, the tests of the anaerobic storage method of forest wood chips were a success and a large-scale test of the method will be carried out in 1999. (au)

  19. Transmembrane protein diffusion in gel-supported dual-leaflet membranes.

    Science.gov (United States)

    Wang, Chih-Ying; Hill, Reghan J

    2014-11-18

    Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed permeability and solvent viscosity. For asymmetric configurations, i.e., supports with contrasting permeability, as realized for cells in contact with hydrogel scaffolds or culture media, the diffusion coefficient can reflect interleaflet friction. Reasonable approximations, for sufficiently large tracers on low-permeability supports, are furnished by a recent phenomenological theory from the literature. Interpreting literature data, albeit for hard-supported membranes, provides a theoretical basis for the phenomenological Stokes drag law as well as strengthening assertions that nonhydrodynamic interactions are important in supported bilayer systems, possibly leading to overestimates of the membrane/leaflet viscosity. Our theory provides a theoretical foundation for future experimental studies of tracer diffusion in gel-supported membranes.

  20. Integrated three-dimensional optical MEMS for chip-based fluorescence detection

    Science.gov (United States)

    Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng

    2009-04-01

    This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.

  1. The impact of CHIP premium increases on insurance outcomes among CHIP eligible children.

    Science.gov (United States)

    Nikolova, Silviya; Stearns, Sally

    2014-03-03

    Within the United States, public insurance premiums are used both to discourage private health policy holders from dropping coverage and to reduce state budget costs. Prior research suggests that the odds of having private coverage and being uninsured increase with increases in public insurance premiums. The aim of this paper is to test effects of Children's Health Insurance Program (CHIP) premium increases on public insurance, private insurance, and uninsurance rates. The fact that families just below and above a state-specific income cut-off are likely very similar in terms of observable and unobservable characteristics except the premium contribution provides a natural experiment for estimating the effect of premium increases. Using 2003 Medical Expenditure Panel Survey (MEPS) merged with CHIP premiums, we compare health insurance outcomes for CHIP eligible children as of January 2003 in states with a two-tier premium structure using a cross-sectional regression discontinuity methodology. We use difference-in-differences analysis to compare longitudinal insurance outcomes by December 2003. Higher CHIP premiums are associated with higher likelihood of private insurance. Disenrollment from CHIP in response to premium increases over time does not increase the uninsurance rate. When faced with higher CHIP premiums, private health insurance may be a preferable alternative for CHIP eligible families with higher incomes. Therefore, competition in the insurance exchanges being formed under the Affordable Care Act could enhance choice.

  2. Advanced flip chip packaging

    CERN Document Server

    Lai, Yi-Shao; Wong, CP

    2013-01-01

    Advanced Flip Chip Packaging presents past, present and future advances and trends in areas such as substrate technology, material development, and assembly processes. Flip chip packaging is now in widespread use in computing, communications, consumer and automotive electronics, and the demand for flip chip technology is continuing to grow in order to meet the need for products that offer better performance, are smaller, and are environmentally sustainable. This book also: Offers broad-ranging chapters with a focus on IC-package-system integration Provides viewpoints from leading industry executives and experts Details state-of-the-art achievements in process technologies and scientific research Presents a clear development history and touches on trends in the industry while also discussing up-to-date technology information Advanced Flip Chip Packaging is an ideal book for engineers, researchers, and graduate students interested in the field of flip chip packaging.

  3. UW VLSI chip tester

    Science.gov (United States)

    McKenzie, Neil

    1989-12-01

    We present a design for a low-cost, functional VLSI chip tester. It is based on the Apple MacIntosh II personal computer. It tests chips that have up to 128 pins. All pin drivers of the tester are bidirectional; each pin is programmed independently as an input or an output. The tester can test both static and dynamic chips. Rudimentary speed testing is provided. Chips are tested by executing C programs written by the user. A software library is provided for program development. Tests run under both the Mac Operating System and A/UX. The design is implemented using Xilinx Logic Cell Arrays. Price/performance tradeoffs are discussed.

  4. Experiment list: SRX122496 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available || chip antibody=Rel || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip ant...ibody catalog number 1=sc-71 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc

  5. Smart vision chips: An overview

    Science.gov (United States)

    Koch, Christof

    1994-01-01

    This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.

  6. Experiment list: SRX122465 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 6 || chip antibody=Relb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Bethyl || chip anti...body catalog number 1=A302-183A || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2

  7. Experiment list: SRX122555 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available chip antibody=Stat1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip anti...body catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-7

  8. On-chip digital power supply control for system-on-chip applications

    NARCIS (Netherlands)

    Meijer, M.; Pineda de Gyvez, J.; Otten, R.H.J.M.

    2005-01-01

    The authors presented an on-chip, fully-digital, power-supply control system. The scheme consists of two independent control loops that regulate power supply variations due to semiconductor process spread, temperature, and chip's workload. Smart power-switches working as linear voltage regulators

  9. LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi.

    Science.gov (United States)

    Weis, Corina; Hückelhoven, Ralph; Eichmann, Ruth

    2013-09-01

    Pathogenic microbes manipulate eukaryotic cells during invasion and target plant proteins to achieve host susceptibility. BAX INHIBITOR-1 (BI-1) is an endoplasmic reticulum-resident cell death suppressor in plants and animals and is required for full susceptibility of barley to the barley powdery mildew fungus Blumeria graminis f.sp. hordei. LIFEGUARD (LFG) proteins resemble BI-1 proteins in terms of predicted membrane topology and cell-death-inhibiting function in metazoans, but display clear sequence-specific distinctions. This work shows that barley (Hordeum vulgare L.) and Arabidopsis thaliana genomes harbour five LFG genes, HvLFGa-HvLFGe and AtLFG1-AtLFG5, whose functions are largely uncharacterized. As observed for HvBI-1, single-cell overexpression of HvLFGa supports penetration success of B. graminis f.sp. hordei into barley epidermal cells, while transient-induced gene silencing restricts it. In penetrated barley epidermal cells, a green fluorescent protein-tagged HvLFGa protein accumulates at the site of fungal entry, around fungal haustoria and in endosomal or vacuolar membranes. The data further suggest a role of LFG proteins in plant-powdery mildew interactions in both monocot and dicot plants, because stable overexpression or knockdown of AtLFG1 or AtLFG2 also support or delay development of the powdery mildew fungus Erysiphe cruciferarum on the respective Arabidopsis mutants. Together, this work has identified new modulators of plant-powdery mildew interactions, and the data further support functional similarities between BI-1 and LFG proteins beyond cell death regulation.

  10. Antioxidative ability, dioscorin stability, and the quality of yam chips from various yam species as affected by processing method.

    Science.gov (United States)

    Liu, Y-M; Lin, K-W

    2009-03-01

    The antioxidative ability, stability of storage protein dioscorin, and the quality of fried yam chips from different cultivars of Chinese yams influenced by various processing treatments were investigated. Total phenolic content and DPPH free radical scavenging effect were found to be the highest in Mingchien (MC) and the lowest in Keelung (KL) yam. Following processing, freeze-dried yams of all varieties showed the least decrease in total phenolic compounds and DPPH radical scavenging effect, while boiling caused the greatest decrease in both. Fresh yams of all varieties contained the highest dioscorin contents comparing with their counterparts. Boiling and deep-frying caused severe protein denaturation resulting in loss of dioscorin solubility after purification. Freeze-drying resulted in increase in protein surface hydrophobicity (So); nonetheless, it attained higher total phenol content, antioxidative capacity, and dioscorin stability of yams compared with other processing treatments. The peroxide values of all yam chips increased during the initial stage, then declined with advanced storage. Fracturability of all yam chips gradually decreased, due to the absorption of moisture, with increasing storage time.

  11. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    Directory of Open Access Journals (Sweden)

    Michael Heymann

    2014-09-01

    Full Text Available An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

  12. A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry.

    Science.gov (United States)

    Brambilla, Francesca; Resta, Donatella; Isak, Ilena; Zanotti, Marco; Arnoldi, Anna

    2009-01-01

    Quantitative proteomics based on MS is useful for pointing out the differences in some food proteomes relevant to human nutrition. Stable isotope label-free (SIF) techniques are suitable for comparing an unlimited number of samples by the use of relatively simple experimental workflows. We have developed an internal standard label-free method based on the intensities of peptide precursor ions from MS/MS spectra, collected in data dependent runs, for the simultaneous qualitative characterization and relative quantification of storage proteins of Lupinus albus seeds in protein extracts of four lupin cultivars (cv Adam, Arés, Lucky, Multitalia). The use of an innovative microfluidic system, the HPLC-Chip, coupled with a classical IT mass spectrometer, has allowed a complete qualitative characterization of all proteins. In particular, the homology search mode has permitted to identify single amino acid substitutions in the sequences of vicilins (beta-conglutin precursor and vicilin-like protein). The MS/MS sequencing of substituted peptides confirms the high heterogeneity of vicilins according to the peculiar characteristics of the vicilin-encoding gene family. Two suitable bioinformatics parameters were optimized for the differential analyses of the main bioactive proteins: the "normalized protein average of common reproducible peptides" (N-ACRP) for gamma-conglutin, which is a homogeneous protein, and the "normalized protein mean peptide spectral intensity" (N-MEAN) for the highly heterogenous class of the vicilins.

  13. Supply chains of forest chip production in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, Kalle (Metsaeteho Oy, Helsinki (Finland)), e-mail: kalle.karha@metsateho.fi

    2010-07-15

    The Metsaeteho study investigated how logging residue chips, stump wood chips, and chips from small sized thinning wood and large-sized (rotten) roundwood used by heating and power plants were produced in Finland in 2008. Almost all the major forest chip suppliers in Finland were involved in the study. The total volume of forest chips supplied in 2008 by these suppliers was 6.5 TWh. The study was implemented by conducting an e-mail questionnaire survey and telephone interviews. Research data was collected in March-May 2009. The majority of the logging residue chips and chips from small-sized thinning wood were produced using the roadside chipping supply chain in Finland in 2008. The chipping at plant supply chain was also significant in the production of logging residue chips. 70% of all stump wood chips consumed were comminuted at the plant and 29% at terminals. The role of the terminal chipping supply chain was also significant in the production of chips from logging residues and small-sized wood chips. When producing chips from large-sized (rotten) roundwood, nearly a half of chips were comminuted at plants and more than 40% at terminals

  14. Supply systems of forest chip production in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), e-mail: kalle.karha@metsateho.fi

    2010-07-01

    The Metsaeteho study investigated how logging residue chips, stump wood chips, and chips from small-diameter thinning wood and large-sized (rotten) roundwood used by heating and power plants were produced in Finland in 2009. Almost all the major forest chip suppliers in Finland were involved in the study. The total volume of forest chips supplied in 2009 by these suppliers was 8,4 TWh. The study was implemented by conducting an e-mail questionnaire survey and telephone interviews. Research data was collected from March-May, 2010. The majority of the logging residue chips and chips from small-diameter thinning wood were produced using the roadside chipping supply system in Finland in 2009. The chipping at plant supply system was also significant in the production of logging residue chips. Nearly 70 % of all stump wood chips consumed were comminuted at the plant and 28 % at terminals. The role of the terminal chipping supply system was also significant in the production of chips from logging residues and small-diameter wood chips. When producing chips from large-sized (rotten) roundwood, similarly roughly 70 % of chips were comminuted at plants and 23 % at terminals. (orig.)

  15. Supply chains of forest chip production in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Kaerhae, K. (Metsaeteho Oy, Helsinki (Finland)), Email: kalle.karha@metsateho.fi

    2009-07-01

    The Metsaeteho study investigated how logging residue chips. stump wood chips, and chips from small-sized thinning wood and large-sized (rotten) roundwood used by heating and power plants were produced in Finland in 2008. Almost all the major forest chip suppliers in Finland were involved in the study. The total volume of forest chips supplied in 2008 by these suppliers was 6,5 TWh. The study was implemented by conducting an e-mail questionnaire survey and telephone interviews. Research data was collected in March-May 2009. The majority of the logging residue chips and chips from small-sized thinning wood were produced using the roadside chipping supply chain in Finland in 2008. The chipping at plant supply chain was also significant in the production of logging residue chips. 70% of all stump wood chips consumed were comminuted at the plant and 29% at terminals. The role of the terminal chipping supply chain was also significant in the production of chips from logging residues and small-sized wood chips. When producing chips from large-sized (rotten) roundwood, nearly a half of chips were comminuted at plants and more than 40 % at terminals. (orig.)

  16. Micromotor-based lab-on-chip immunoassays

    Science.gov (United States)

    García, Miguel; Orozco, Jahir; Guix, Maria; Gao, Wei; Sattayasamitsathit, Sirilak; Escarpa, Alberto; Merkoçi, Arben; Wang, Joseph

    2013-01-01

    Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic polymer/Ni/Pt microtube engine, containing carboxy moieties on its mixed poly(3,4-ethylenedioxythiophene) (PEDOT)/COOH-PEDOT polymeric outermost layer, is further functionalized with the antibody receptor to selectively recognize and capture the target protein. The new motor-based microchip immunoassay operations are carried out without any bulk fluid flow, replacing the common washing steps in antibody-based protein bioassays with the active transport of the captured protein throughout the different reservoirs, where each step of the immunoassay takes place. A first microchip format involving an `on-the-fly' double-antibody sandwich assay (DASA) is used for demonstrating the selective capture of the target protein, in the presence of excess of non-target proteins. A secondary antibody tagged with a polymeric-sphere tracer allows the direct visualization of the binding events. In a second approach the immuno-nanomotor captures and transports the microsphere-tagged antigen through a microchannel network. An anti-protein-A modified microengine is finally used to demonstrate the selective capture, transport and convenient label-free optical detection of a Staphylococcus aureus target bacteria (containing proteinA in its cell wall) in the presence of a large excess of non-target (Saccharomyces cerevisiae) cells. The resulting nanomotor-based microchip immunoassay offers considerable potential for diverse applications in clinical diagnostics, environmental and security monitoring fields.Here we describe the first example of using self-propelled antibody-functionalized synthetic catalytic microengines for capturing and transporting target proteins between the different reservoirs of a lab-on-a-chip (LOC) device. A new catalytic

  17. Single chip camera active pixel sensor

    Science.gov (United States)

    Shaw, Timothy (Inventor); Pain, Bedabrata (Inventor); Olson, Brita (Inventor); Nixon, Robert H. (Inventor); Fossum, Eric R. (Inventor); Panicacci, Roger A. (Inventor); Mansoorian, Barmak (Inventor)

    2003-01-01

    A totally digital single chip camera includes communications to operate most of its structure in serial communication mode. The digital single chip camera include a D/A converter for converting an input digital word into an analog reference signal. The chip includes all of the necessary circuitry for operating the chip using a single pin.

  18. Simulation and experimental validation of a SU-8 based PCR thermocycler chip with integrated heaters and temperature sensor

    DEFF Research Database (Denmark)

    El-Ali, Jamil; Perch-Nielsen, Ivan R.; Poulsen, Claus Riber

    2004-01-01

    We present a SU-8 based polymerase chain reaction (PCR) chip with integrated platinum thin film heaters and temperature sensor. The device is fabricated in SU-8 on a glass substrate. The use of SU-8 provides a simple microfabrication process for the PCR chamber, controllable surface properties......C/s, respectively, the performance of the chip is comparable with the best silicon micromachined PCR chips presented in the literature. The SU-8 chamber surface was found to be PCR compatible by amplification of yeast gene ribosomal protein S3 and Campylobacter gene cadF. The PCR compatibility of the chamber...

  19. Exploring chip-capillary electrophoresis-laser-induced fluorescence field-deployable platform flexibility: Separations of fluorescent dyes by chip-based non-aqueous capillary electrophoresis

    Czech Academy of Sciences Publication Activity Database

    Nuchtavorn, N.; Smejkal, Petr; Breadmore, M. C.; Guijt, R. M.; Doble, P.; Bek, F.; Foret, František; Suntornsuk, L.; Macka, M.

    2013-01-01

    Roč. 1286, APR (2013), s. 216-221 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GBP206/12/G014 Institutional support: RVO:68081715 Keywords : microfluidic chip CE * capillary electrophoresis * NACE * LIF detection Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.258, year: 2013

  20. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  1. An economic evaluation of a chlorhexidine chip for treating chronic periodontitis: the CHIP (chlorhexidine in periodontitis) study.

    Science.gov (United States)

    Henke, C J; Villa, K F; Aichelmann-Reidy, M E; Armitage, G C; Eber, R M; Genco, R J; Killoy, W J; Miller, D P; Page, R C; Polson, A M; Ryder, M I; Silva, S J; Somerman, M J; Van Dyke, T E; Wolff, L F; Evans, C J; Finkelman, R D

    2001-11-01

    The authors previously suggested that an adjunctive, controlled-release chlorhexidine, or CHX, chip may reduce periodontal surgical needs at little additional cost. This article presents an economic analysis of the CHX chip in general dental practice. In a one-year prospective clinical trial, 484 chronic periodontitis patients in 52 general practices across the United States were treated with either scaling and root planing, or SRP, plus any therapy prescribed by treating, unblinded dentists; or SRP plus other therapy as above but including the CHX chip. Economic data were collected from bills, case report forms and 12-month treatment recommendations from blinded periodontist evaluators. Total dental charges were higher for SRP + CHX chip patients vs. SRP patients when CHX chip costs were included (P = .027) but lower when CHX chip costs were excluded (P = .012). About one-half of the CHX chip acquisition cost was offset by savings in other charges. SRP + CHX chip patients were about 50 percent less likely to undergo surgical procedures than were SRP patients (P = .021). At the end of the trial, periodontist evaluators recommended similar additional procedures for both groups: SRP, about 46 percent; maintenance, about 37 percent; surgery, 56 percent for SRP alone and 63 percent for SRP + CHX chip. Adjunctive CHX chip use for general-practice patients with periodontitis increased costs but reduced surgeries over one year. At study's end, periodontists recommended similar additional surgical treatment for both groups. In general practice, routine use of the CHX chip suggests that costs will be partially offset by reduced surgery over at least one year.

  2. Photonic network-on-chip design

    CERN Document Server

    Bergman, Keren; Biberman, Aleksandr; Chan, Johnnie; Hendry, Gilbert

    2013-01-01

    This book provides a comprehensive synthesis of the theory and practice of photonic devices for networks-on-chip. It outlines the issues in designing photonic network-on-chip architectures for future many-core high performance chip multiprocessors. The discussion is built from the bottom up: starting with the design and implementation of key photonic devices and building blocks, reviewing networking and network-on-chip theory and existing research, and finishing with describing various architectures, their characteristics, and the impact they will have on a computing system. After acquainting

  3. Solid state silicon based condenser microphone for hearing aid, has transducer chip and IC chip between intermediate chip and openings on both sides of intermediate chip, to allow sound towards diaphragm

    DEFF Research Database (Denmark)

    2000-01-01

    towards diaphragm. Surface of the chip (2) has electrical conductors (14) to connect chip with IC chip (3). USE - For use in miniature electroacoustic devices such as hearing aid. ADVANTAGE - Since sound inlet is covered by filter, dust, moisture and other impurities do not obstruct interior and sound...... inlet of microphone. External electrical connection can be made economically reliable and the thermal stress is avoided with the small size solid state silicon based condenser microphone....

  4. Experiment list: SRX214086 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available entiated || cell line=KH2 || chip antibody 1=none || chip antibody manufacturer 1=none || chip antibody 2=none || chip antibody manuf...acturer 2=none http://dbarchive.biosciencedbc.jp/kyushu-

  5. Impacts of boat paint chips on the distribution and availability of copper in an English ria

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk; Fitzer, Susan; Glegg, Gillian A. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA (United Kingdom)

    2008-01-15

    Discarded paint chips collected from a leisure boat maintenance facility on the Kingsbridge estuary, SW England, have been fractionated to <63 {mu}m and chemically characterised. At about 16% by weight, Cu was the most abundant metallic component, reflecting its biocidal application in antifouling paint. Bioavailability of Cu in the chips, determined by protein digestion, was about 4%, and sea water leachability was about 8%. Copper concentrations in fractionated intertidal sediment from the estuary were highly variable (<10-460 {mu}g g{sup -1}). Specifically, greatest concentrations and greatest variability among replicates were found in samples collected near boat maintenance facilities. Bioavailability of Cu in sediment averaged 7% but was also variable. We attribute Cu 'hot spots' to heterogeneous contamination of local sediment by small quantities of paint chips. Contamination may arise directly, from relatively inert particulates, or indirectly, via release of Cu from chips to interstitial waters and its subsequent adsorption to local sediment. - Discarded paint chips from boat cleaning are a potentially significant source of local Cu contamination in marine environments.

  6. Optical lattice on an atom chip

    DEFF Research Database (Denmark)

    Gallego, D.; Hofferberth, S.; Schumm, Thorsten

    2009-01-01

    Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....

  7. Experiment list: SRX214071 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Undifferentiated || treatment=Overexpress Sox2-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacturer 2=

  8. Experiment list: SRX214075 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available age=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  9. Experiment list: SRX214074 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ge=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  10. Experiment list: SRX214072 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=none || chip antibody manufacture...r 1=none || chip antibody 2=V5 || chip antibody manufacture

  11. Experiment list: SRX214067 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available fferentiated || cell line=F9 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufacture...r 1=Santa Cruz || chip antibody 2=none || chip antibody manufacturer 2=none http://dbarchive.bioscien

  12. Experiment list: SRX122523 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Irf2 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://

  13. Experiment list: SRX122414 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  14. Experiment list: SRX214077 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available erentiated || treatment=Overexpress Sox17_V5 tagged || cell line=KH2 || chip antibody 1=Sox17 || chip antibody manufacture...r 1=R&D || chip antibody 2=V5 || chip antibody manufacturer 2=Invit

  15. Experiment list: SRX122485 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Atf3 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ...catalog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100

  16. Experiment list: SRX122521 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Irf2 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://

  17. Experiment list: SRX122417 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  18. Experiment list: SRX122520 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Irf2 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://

  19. Experiment list: SRX122413 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Junb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http:/

  20. Experiment list: SRX122412 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Junb || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http:/

  1. Experiment list: SRX122406 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Irf1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog... number 1=ab52520 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-640 http:/

  2. Experiment list: SRX122415 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  3. Experiment list: SRX122416 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catalog ...number 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://d

  4. Experiment list: SRX122565 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat2 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog... number 1=ab53149 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-839 http:/

  5. "On-chip magnetic bead microarray using hydrodynamic focusing in a passive magnetic separator"

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Kjeldsen, B.; Reimers, R.L.

    2005-01-01

    Implementing DNA and protein microarrays into lab-on-a-chip systems can be problematic since these are sensitive to heat and strong chemicals. Here, we describe the functionalization of a microchannel with two types of magnetic beads using hydrodynamic focusing combined with a passive magnetic...

  6. Experiment list: SRX122510 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Egr1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog... number 1=ab54966-100 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-110 ht

  7. Experiment list: SRX122519 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Irf2 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http:

  8. Experiment list: SRX122472 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Runx1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab61753 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-8564 http

  9. Experiment list: SRX122473 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Runx1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody ca...talog number 1=ab61753 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-8564

  10. Experiment list: SRX122497 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Rel || treatment=LPS || time=30 min || chip antibody manufacturer 1=Santa Cruz || chip antibody cat...alog number 1=sc-71 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-70 http:

  11. Experiment list: SRX122410 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog n...umber 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://db

  12. Experiment list: SRX186172 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 1=YY1 || chip antibody manufacturer 1=Abcam || chip antibody 2=YY1 || chip antibody manufacturer 2=Santa Cru...ip-Seq; Mus musculus; ChIP-Seq source_name=Rag1 -/- pro-B cells || chip antibody

  13. Experiment list: SRX122493 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Atf4 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catal...og number 1=ab28830-100 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-200

  14. Experiment list: SRX122571 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat2 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catal...og number 1=ab53149 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-839 http

  15. Experiment list: SRX122411 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Junb || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog n...umber 1=ab28838 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-46 http://db

  16. Experiment list: SRX122498 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Rel || treatment=LPS || time=60 min || chip antibody manufacturer 1=Santa Cruz || chip antibody cat...alog number 1=sc-71 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-70 http:

  17. Experiment list: SRX122516 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Irf2 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody catalo...g number 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http:

  18. Experiment list: SRX122495 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Rel || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody catal...og number 1=sc-71 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-70 http://

  19. Experiment list: SRX122563 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ...catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A h

  20. Experiment list: SRX122564 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ...catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A h

  1. Experiment list: SRX122488 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Atf3 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibody c...atalog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100 h

  2. Experiment list: SRX122491 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Atf3 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Santa Cruz || chip antibody cat...alog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100 htt

  3. Experiment list: SRX122548 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody... catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A

  4. Experiment list: SRX122468 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Rela || treatment=LPS || time=0 min || chip antibody manufacturer 1=Bethyl || chip antibody catalo...g number 1=A301-824A || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-372 htt

  5. Experiment list: SRX122561 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ...catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A h

  6. Experiment list: SRX122409 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Irf1 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody cata...log number 1=ab52520 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-640 htt

  7. Experiment list: SRX122487 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Atf3 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibody c...atalog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100 h

  8. Experiment list: SRX122552 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Stat1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibo...dy catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753

  9. Experiment list: SRX122408 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available p antibody=Irf1 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Abcam || chip antibody catal...og number 1=ab52520 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-640 http

  10. Experiment list: SRX122513 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available p antibody=Egr1 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Abcam || chip antibody catal...og number 1=ab54966-100 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-110

  11. Experiment list: SRX122567 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available p antibody=Stat2 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody cat...alog number 1=ab53149 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-839 ht

  12. Experiment list: SRX122490 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Atf3 || treatment=LPS || time=30 min || chip antibody manufacturer 1=Santa Cruz || chip antibody cat...alog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100 htt

  13. Experiment list: SRX122558 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hip antibody=Stat1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antib...ody catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-75

  14. Experiment list: SRX122494 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hip antibody=Atf4 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody ca...talog number 1=ab28830-100 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-2

  15. Experiment list: SRX122557 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available hip antibody=Stat1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antib...ody catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-75

  16. Experiment list: SRX122492 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Atf3 || treatment=LPS || time=60 min || chip antibody manufacturer 1=Santa Cruz || chip antibody cat...alog number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100 htt

  17. Experiment list: SRX122549 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody... catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A

  18. Experiment list: SRX122484 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ntibody=Atf3 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody cata...log number 1=sc-188 || chip antibody manufacturer 2=Abcam || chip antibody catalog number 2=ab70005-100 http

  19. Experiment list: SRX122514 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available tibody=Irf2 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Abcam || chip antibody catalog nu...mber 1=ab65048 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-498 http://db

  20. Experiment list: SRX122570 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available p antibody=Stat2 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody cat...alog number 1=ab53149 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-839 ht

  1. Experiment list: SRX122569 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Stat2 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody ca...talog number 1=ab53149 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-839 h

  2. Experiment list: SRX122511 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Egr1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Abcam || chip antibody cat...alog number 1=ab54966-100 || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-11

  3. Experiment list: SRX122471 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Rela || treatment=LPS || time=60 min || chip antibody manufacturer 1=Bethyl || chip antibody cat...alog number 1=A301-824A || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-372

  4. Experiment list: SRX122554 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ip antibody=Stat1 || treatment=LPS || time=120 min || chip antibody manufacturer 1=Santa Cruz || chip antibo...dy catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753

  5. Automated electric valve for electrokinetic separation in a networked microfluidic chip.

    Science.gov (United States)

    Cui, Huanchun; Huang, Zheng; Dutta, Prashanta; Ivory, Cornelius F

    2007-02-15

    This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulations demonstrate that dispersion and sample loss can be reduced by applying a constant additional electric field in the side channel to straighten current streamlines in linear electrokinetic flow (zone electrophoresis). This additional electric field was provided by a pair of platinum microelectrodes integrated into the chip in the vicinity of the T-junction. Both simulations and experiments of this electric valve with constant valve voltages were shown to provide unsatisfactory valve performance during nonlinear electrophoresis (isotachophoresis). On the basis of these results, however, an automated electric valve system was developed with improved valve performance. Experiments conducted with this system showed decreased dispersion and increased reproducibility as protein zones isotachophoretically passed the T-junction. Simulations of the automated electric valve offer further support that the desired shape of current streamlines was maintained at the T-junction during isotachophoresis. Valve performance was evaluated at different valve currents based on statistical variance due to dispersion. With the automated control system, two integrated microelectrodes provide an effective way to manipulate current streamlines, thus acting as an electric valve for charged species in electrokinetic separations.

  6. Experiment list: SRX122551 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ca...talog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A htt

  7. Experiment list: SRX122546 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available p antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody ...catalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A h

  8. Experiment list: SRX122547 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody c...atalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A ht

  9. Experiment list: SRX214084 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available turer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox17-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufac

  10. Experiment list: SRX122544 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody c...atalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A ht

  11. Experiment list: SRX214082 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available facturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...age=Undifferentiated || treatment=Overexpress Sox17EK-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manu

  12. Experiment list: SRX122466 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available p antibody=Relb || treatment=LPS || time=30 min || chip antibody manufacturer 1=Bethyl || chip antibody cata...log number 1=A302-183A || chip antibody manufacturer 2=Santa Cruz || chip antibody catalog number 2=sc-226 h

  13. Experiment list: SRX122545 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available antibody=Stat1 || treatment=LPS || time=0 min || chip antibody manufacturer 1=Santa Cruz || chip antibody c...atalog number 1=sc-346 || chip antibody manufacturer 2=Bethyl || chip antibody catalog number 2=A302-753A ht

  14. Experiment list: SRX214080 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufa

  15. Experiment list: SRX214081 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available cturer 1=Santa Cruz || chip antibody 2=V5 || chip antibody manufacture...ge=Undifferentiated || treatment=Overexpress Sox2KE-V5 tagged || cell line=KH2 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufa

  16. Nano technologies for Biosensor and Bio chip

    International Nuclear Information System (INIS)

    Kim, I.M.; Park, T.J.; Paskaleva, E.E.; Sun, F.; Seo, J.W.; Mehta, K.K.

    2015-01-01

    The bio sensing devices are characterized by their biological receptors, which have specificity to their corresponding analytes. These analytes are a vast and diverse group of biological molecules, DNAs, proteins (such as antibodies), fatty acids, or entire biological systems, such as pathogenic bacteria, viruses, cancerous cells, or other living organisms. A main challenge in the development of biosensor applications is the efficient recognition of a biological signal in a low signal-to-noise ratio environment, and its transduction into an electrochemical, optical, or other signals. The advent of nano material technology greatly increased the potential for achieving exquisite sensitivity of such devises, due to the innate high surface-to-volume ratio and high reactivity of the nano material. The second major challenge facing the biosensor application, that of sca lability, is addressed by multiplexing and miniaturizing of the biosensor devises into a bio chip. In recent years, biosensor and bio chip technologies have made significant progress by taking advantages of diverse kinds of nano materials that are derived from nano technology

  17. Debugging systems-on-chip communication-centric and abstraction-based techniques

    CERN Document Server

    Vermeulen, Bart

    2014-01-01

    This book describes an approach and supporting infrastructure to facilitate debugging the silicon implementation of a System-on-Chip (SOC), allowing its associated product to be introduced into the market more quickly.  Readers learn step-by-step the key requirements for debugging a modern, silicon SOC implementation, nine factors that complicate this debugging task, and a new debug approach that addresses these requirements and complicating factors.  The authors’ novel communication-centric, scan-based, abstraction-based, run/stop-based (CSAR) debug approach is discussed in detail, showing how it helps to meet debug requirements and address the nine, previously identified factors that complicate debugging silicon implementations of SOCs. The authors also derive the debug infrastructure requirements to support debugging of a silicon implementation of an SOC with their CSAR debug approach. This debug infrastructure consists of a generic on-chip debug architecture, a configurable automated design-for-debug ...

  18. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  19. SUPPORT CARD FOR THE FORWARD SCT MODULE

    CERN Document Server

    Greenall, A

    2002-01-01

    Previously in the development and testing stage of ATLAS SCT Forward modules support cards have been used which interface the module to the DAQ by using only the Redundant inputs for the module configuration and the 'spying' of the ABCD Master chip(s) data. As module development has matured there is now a necessity to be able to test modules in the laboratory using also their Primary input/output data routes i.e. using the optical chips DORIC [1] and VDC [2] but without the need of optical fibres. A Forward Kapton Support Card, FKSC, has been developed so that both Primary and Redundant data routes can be used for module testing.

  20. Mining protein function from text using term-based support vector machines

    Science.gov (United States)

    Rice, Simon B; Nenadic, Goran; Stapley, Benjamin J

    2005-01-01

    Background Text mining has spurred huge interest in the domain of biology. The goal of the BioCreAtIvE exercise was to evaluate the performance of current text mining systems. We participated in Task 2, which addressed assigning Gene Ontology terms to human proteins and selecting relevant evidence from full-text documents. We approached it as a modified form of the document classification task. We used a supervised machine-learning approach (based on support vector machines) to assign protein function and select passages that support the assignments. As classification features, we used a protein's co-occurring terms that were automatically extracted from documents. Results The results evaluated by curators were modest, and quite variable for different problems: in many cases we have relatively good assignment of GO terms to proteins, but the selected supporting text was typically non-relevant (precision spanning from 3% to 50%). The method appears to work best when a substantial set of relevant documents is obtained, while it works poorly on single documents and/or short passages. The initial results suggest that our approach can also mine annotations from text even when an explicit statement relating a protein to a GO term is absent. Conclusion A machine learning approach to mining protein function predictions from text can yield good performance only if sufficient training data is available, and significant amount of supporting data is used for prediction. The most promising results are for combined document retrieval and GO term assignment, which calls for the integration of methods developed in BioCreAtIvE Task 1 and Task 2. PMID:15960835

  1. Experiment list: SRX214068 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available inoic acid || cell line=F9 || chip antibody 1=Pou5f1/Oct4 || chip antibody manufacturer 1=Santa Cruz || chip... antibody 2=none || chip antibody manufacturer 2=none http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachDat

  2. Prototyping chips in minutes: Direct Laser Plotting (DLP) of functional microfluidic structures

    KAUST Repository

    Wang, Limu

    2013-10-10

    We report a fast and simple prototyping method to fabricate polymer-based microfluidic chips using Direct Laser Plotting (DLP) technique, by which various functional micro-structures can be realized within minutes, in a mask-free and out-of-cleanroom fashion. A 2D Computer-Aid-Design (CAD) software was employed to layout the required micro-structures and micro-channels, a CO2 laser plotter was then used to construct the microstructures. The desired patterns can be plotted directly on PDMS substrates and bio-compatible polymer films by manipulating the strength and density of laser pulses. With the DLP technique, chip-embedded micro-electrodes, micro-mixers and 3D microfluidic chips with 5 layers, which normally require several days of work in a cleanroom facility, can be fabricated in minutes in common laboratory. This novel method can produce microfluidic channels with average feature size of 100 μm, while feature size of 50 μm or smaller is achievable by making use of the interference effect from laser impulsion. In this report, we present the optimized parameters for successful fabrication of 3D microchannels, micro-mixers and microfluidic chips for protein concentration measurements (Bovine Serum Albumine (BSA) test), and a novel procedure to pattern flexible embedding electrodes on PDMS-based microfluidic chips. DLP offers a convenient and low cost alternative to conventional microfluidic channel fabrication technique which relies on complicated and hazardous soft lithography process.

  3. Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model

    KAUST Repository

    Mo, Qianxing

    2010-01-29

    ChIP-chip experiments are procedures that combine chromatin immunoprecipitation (ChIP) and DNA microarray (chip) technology to study a variety of biological problems, including protein-DNA interaction, histone modification, and DNA methylation. The most important feature of ChIP-chip data is that the intensity measurements of probes are spatially correlated because the DNA fragments are hybridized to neighboring probes in the experiments. We propose a simple, but powerful Bayesian hierarchical approach to ChIP-chip data through an Ising model with high-order interactions. The proposed method naturally takes into account the intrinsic spatial structure of the data and can be used to analyze data from multiple platforms with different genomic resolutions. The model parameters are estimated using the Gibbs sampler. The proposed method is illustrated using two publicly available data sets from Affymetrix and Agilent platforms, and compared with three alternative Bayesian methods, namely, Bayesian hierarchical model, hierarchical gamma mixture model, and Tilemap hidden Markov model. The numerical results indicate that the proposed method performs as well as the other three methods for the data from Affymetrix tiling arrays, but significantly outperforms the other three methods for the data from Agilent promoter arrays. In addition, we find that the proposed method has better operating characteristics in terms of sensitivities and false discovery rates under various scenarios. © 2010, The International Biometric Society.

  4. ALICE chip processor

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    This tiny chip provides data processing for the time projection chamber on ALICE. Known as the ALICE TPC Read Out (ALTRO), this device was designed to minimize the size and power consumption of the TPC front end electronics. This single chip contains 16 low-power analogue-to-digital converters with six million transistors of digital processing and 8 kbits of data storage.

  5. Versatile single-chip event sequencer for atomic physics experiments

    Science.gov (United States)

    Eyler, Edward

    2010-03-01

    A very inexpensive dsPIC microcontroller with internal 32-bit counters is used to produce a flexible timing signal generator with up to 16 TTL-compatible digital outputs, with a time resolution and accuracy of 50 ns. This time resolution is easily sufficient for event sequencing in typical experiments involving cold atoms or laser spectroscopy. This single-chip device is capable of triggered operation and can also function as a sweeping delay generator. With one additional chip it can also concurrently produce accurately timed analog ramps, and another one-chip addition allows real-time control from an external computer. Compared to an FPGA-based digital pattern generator, this design is slower but simpler and more flexible, and it can be reprogrammed using ordinary `C' code without special knowledge. I will also describe the use of the same microcontroller with additional hardware to implement a digital lock-in amplifier and PID controller for laser locking, including a simple graphics-based control unit. This work is supported in part by the NSF.

  6. Protein array staining methods for undefined protein content, manufacturing quality control, and performance validation.

    Science.gov (United States)

    Schabacker, Daniel S; Stefanovska, Ivana; Gavin, Igor; Pedrak, Casandra; Chandler, Darrell P

    2006-12-01

    Methods to assess the quality and performance of protein microarrays fabricated from undefined protein content are required to elucidate slide-to-slide variability and interpolate resulting signal intensity values after an interaction assay. We therefore developed several simple total- and posttranslational modification-specific, on-chip staining methods to quantitatively assess the quality of gel element protein arrays manufactured with whole-cell lysate in vitro protein fractions derived from two-dimensional liquid-phase fractionation (PF2D) technology. A linear dynamic range of at least 3 logs was observed for protein stains and immobilized protein content, with a lower limit of detection at 8 pg of protein per gel element with Deep Purple protein stain and a field-portable microarray imager. Data demonstrate the successful isolation, separation, transfer, and immobilization of putative transmembrane proteins from Yersinia pestis KIM D27 with the combined PF2D and gel element array method. Internal bovine serum albumin standard curves provided a method to assess on-chip PF2D transfer and quantify total protein immobilized per gel element. The basic PF2D array fabrication and quality assurance/quality control methods described here therefore provide a standard operating procedure and basis for developing whole-proteome arrays for interrogating host-pathogen interactions, independent of sequenced genomes, affinity tags, or a priori knowledge of target cell composition.

  7. Pelly Crossing wood chip boiler

    Energy Technology Data Exchange (ETDEWEB)

    1985-03-11

    The Pelly wood chip project has demonstrated that wood chips are a successful fuel for space and domestic water heating in a northern climate. Pelly Crossing was chosen as a demonstration site for the following reasons: its extreme temperatures, an abundant local supply of resource material, the high cost of fuel oil heating and a lack of local employment. The major obstacle to the smooth operation of the boiler system was the poor quality of the chip supply. The production of poor quality chips has been caused by inadequate operation and maintenance of the chipper. Dull knives and faulty anvil adjustments produced chips and splinters far in excess of the one centimetre size specified for the system's design. Unanticipated complications have caused costs of the system to be higher than expected by approximately $15,000. The actual cost of the project was approximately $165,000. The first year of the system's operation was expected to accrue $11,600 in heating cost savings. This estimate was impossible to confirm given the system's irregular operation and incremental costs. Consistent operation of the system for a period of at least one year plus the installation of monitoring devices will allow the cost effectiveness to be calculated. The wood chip system's impact on the environment was estimated to be minimal. Wood chip burning was considered cleaner and safer than cordwood burning. 9 refs., 6 figs., 6 tabs.

  8. Supplemental protein in support of muscle mass and health: advantage whey.

    Science.gov (United States)

    Devries, Michaela C; Phillips, Stuart M

    2015-03-01

    Skeletal muscle is an integral body tissue playing key roles in strength, performance, physical function, and metabolic regulation. It is essential for athletes to ensure that they have optimal amounts of muscle mass to ensure peak performance in their given sport. However, the role of maintaining muscle mass during weight loss and as we age is an emerging concept, having implications in chronic disease prevention, functional capacity, and quality of life. Higher-protein diets have been shown to: (1) promote gains in muscle mass, especially when paired with resistance training; (2) spare muscle mass loss during caloric restriction; and (3) attenuate the natural loss of muscle mass that accompanies aging. Protein quality is important to the gain and maintenance of muscle mass. Protein quality is a function of protein digestibility, amino acid content, and the resulting amino acid availability to support metabolic function. Whey protein is one of the highest-quality proteins given its amino acid content (high essential, branched-chain, and leucine amino acid content) and rapid digestibility. Consumption of whey protein has a robust ability to stimulate muscle protein synthesis. In fact, whey protein has been found to stimulate muscle protein synthesis to a greater degree than other proteins such as casein and soy. This review examines the existing data supporting the role for protein consumption, with an emphasis on whey protein, in the regulation of muscle mass and body composition in response to resistance training, caloric restriction, and aging. © 2015 Institute of Food Technologists®

  9. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    Directory of Open Access Journals (Sweden)

    Diwei He

    2015-07-01

    Full Text Available Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1% with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  10. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection.

    Science.gov (United States)

    He, Diwei; Morgan, Stephen P; Trachanis, Dimitrios; van Hese, Jan; Drogoudis, Dimitris; Fummi, Franco; Stefanni, Francesco; Guarnieri, Valerio; Hayes-Gill, Barrie R

    2015-07-14

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 µm CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the transimpedance amplifier, transimpedance gain of the transimpedance amplifier, and the central frequency and bandwidth of the analogue band-pass filters, show a good match (within 1%) with the circuit simulations. With modulated light source and integrated lock-in detection the sensor effectively suppresses the interference from ambient light and 1/f noise. In a breath hold and release experiment the single chip sensor demonstrates consistent and comparable performance to commercial pulse oximetry devices with a mean of 1.2% difference. The single-chip sensor enables a compact and robust design solution that offers a route towards wearable devices for health monitoring.

  11. Solid-phase synthesis of protein-polymers on reversible immobilization supports.

    Science.gov (United States)

    Murata, Hironobu; Carmali, Sheiliza; Baker, Stefanie L; Matyjaszewski, Krzysztof; Russell, Alan J

    2018-02-27

    Facile automated biomacromolecule synthesis is at the heart of blending synthetic and biologic worlds. Full access to abiotic/biotic synthetic diversity first occurred when chemistry was developed to grow nucleic acids and peptides from reversibly immobilized precursors. Protein-polymer conjugates, however, have always been synthesized in solution in multi-step, multi-day processes that couple innovative chemistry with challenging purification. Here we report the generation of protein-polymer hybrids synthesized by protein-ATRP on reversible immobilization supports (PARIS). We utilized modified agarose beads to covalently and reversibly couple to proteins in amino-specific reactions. We then modified reversibly immobilized proteins with protein-reactive ATRP initiators and, after ATRP, we released and analyzed the protein polymers. The activity and stability of PARIS-synthesized and solution-synthesized conjugates demonstrated that PARIS was an effective, rapid, and simple method to generate protein-polymer conjugates. Automation of PARIS significantly reduced synthesis/purification timelines, thereby opening a path to changing how to generate protein-polymer conjugates.

  12. Lab-on a-Chip

    Science.gov (United States)

    1999-01-01

    Labs on chips are manufactured in many shapes and sizes and can be used for numerous applications, from medical tests to water quality monitoring to detecting the signatures of life on other planets. The eight holes on this chip are actually ports that can be filled with fluids or chemicals. Tiny valves control the chemical processes by mixing fluids that move in the tiny channels that look like lines, connecting the ports. Scientists at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama designed this chip to grow biological crystals on the International Space Station (ISS). Through this research, they discovered that this technology is ideally suited for solving the challenges of the Vision for Space Exploration. For example, thousands of chips the size of dimes could be loaded on a Martian rover looking for biosignatures of past or present life. Other types of chips could be placed in handheld devices used to monitor microbes in water or to quickly conduct medical tests on astronauts. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the ISS, the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)

  13. Normalization and experimental design for ChIP-chip data

    Directory of Open Access Journals (Sweden)

    Alekseyenko Artyom A

    2007-06-01

    Full Text Available Abstract Background Chromatin immunoprecipitation on tiling arrays (ChIP-chip has been widely used to investigate the DNA binding sites for a variety of proteins on a genome-wide scale. However, several issues in the processing and analysis of ChIP-chip data have not been resolved fully, including the effect of background (mock control subtraction and normalization within and across arrays. Results The binding profiles of Drosophila male-specific lethal (MSL complex on a tiling array provide a unique opportunity for investigating these topics, as it is known to bind on the X chromosome but not on the autosomes. These large bound and control regions on the same array allow clear evaluation of analytical methods. We introduce a novel normalization scheme specifically designed for ChIP-chip data from dual-channel arrays and demonstrate that this step is critical for correcting systematic dye-bias that may exist in the data. Subtraction of the mock (non-specific antibody or no antibody control data is generally needed to eliminate the bias, but appropriate normalization obviates the need for mock experiments and increases the correlation among replicates. The idea underlying the normalization can be used subsequently to estimate the background noise level in each array for normalization across arrays. We demonstrate the effectiveness of the methods with the MSL complex binding data and other publicly available data. Conclusion Proper normalization is essential for ChIP-chip experiments. The proposed normalization technique can correct systematic errors and compensate for the lack of mock control data, thus reducing the experimental cost and producing more accurate results.

  14. On-chip COMA cache-coherence protocol for microgrids of microthreaded cores

    NARCIS (Netherlands)

    Zhang, L.; Jesshope, C.

    2008-01-01

    This paper describes an on-chip COMA cache coherency protocol to support the microthread model of concurrent program composition. The model gives a sound basis for building multi-core computers as it captures concurrency, abstracts communication and identifies resources, such as processor groups

  15. Supported silver clusters as nanoplasmonic transducers for protein sensing

    DEFF Research Database (Denmark)

    Fojan, Peter; Hanif, Muhammad; Bartling, Stephen

    2015-01-01

    Transducers for optical sensing of proteins are prepared using cluster beam deposition on quartz substrates. Surface plasmon resonance phenomenon of the supported silver clusters is used for the detection. It is shown that surface immobilisation procedure providing adhesion of the silver clusters...... stages and protein immobilisation scheme the sensing of protein of interest can be assured using a relatively simple optical spectroscopy method....... an enhancement of the plasmon absorption band used for the detection. Atomic force microscopy study allows to suggest that immobilisation of antibodies on silver clusters has been achieved, thus giving a possibility to incubate and detect an antigen of interest. Hence, by applying the developed preparation...

  16. Rupturing Giant Plasma Membrane Vesicles to Form Micron-sized Supported Cell Plasma Membranes with Native Transmembrane Proteins.

    Science.gov (United States)

    Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling

    2017-11-09

    Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.

  17. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation.

    Science.gov (United States)

    Wu, Huei-Wen; Hsiao, Yi-Hsing; Chen, Chih-Chen; Yet, Shaw-Fang; Hsu, Chia-Hsien

    2016-07-06

    The conventional hanging drop technique is the most widely used method for embryoid body (EB) formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS) from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  18. A PDMS-Based Microfluidic Hanging Drop Chip for Embryoid Body Formation

    Directory of Open Access Journals (Sweden)

    Huei-Wen Wu

    2016-07-01

    Full Text Available The conventional hanging drop technique is the most widely used method for embryoid body (EB formation. However, this method is labor intensive and limited by the difficulty in exchanging the medium. Here, we report a microfluidic chip-based approach for high-throughput formation of EBs. The device consists of microfluidic channels with 6 × 12 opening wells in PDMS supported by a glass substrate. The PDMS channels were fabricated by replicating polydimethyl-siloxane (PDMS from SU-8 mold. The droplet formation in the chip was tested with different hydrostatic pressures to obtain optimal operation pressures for the wells with 1000 μm diameter openings. The droplets formed at the opening wells were used to culture mouse embryonic stem cells which could subsequently developed into EBs in the hanging droplets. This device also allows for medium exchange of the hanging droplets making it possible to perform immunochemistry staining and characterize EBs on chip.

  19. An electrochromatography chip with integrated waveguides for UV absorbance detection

    International Nuclear Information System (INIS)

    Gustafsson, O; Mogensen, K B; Ohlsson, P D; Kutter, J P; Liu, Y; Jacobson, S C

    2008-01-01

    A silicon-based microchip for electrochromatographic separations is presented. Apart from a microfluidic network, the microchip has integrated UV-transparent waveguides for detection and integrated couplers for optical fibers on the chip, yielding the most complete chromatography microchip to date in terms of the integration of optical components. The microfluidic network and the optical components are fabricated in a single etching step in silicon and subsequently thermally oxidized. The separation column consists of a regular array of microfabricated solid support structures with a monolayer of an octylsilane covalently bonded to the surfaces to provide chromatographic interaction. The chip features a 1 mm long U-shaped detection cell and planar silicon dioxide waveguides that couple light to and from the detection cell. Microfabricated on-chip fiber couplers assure perfect alignment of optical fibers to the waveguides. The entire oxidized silicon microchip structure is sealed with a glass lid. Reversed phase electrochromatographic separation of three neutral compounds is demonstrated using UV absorbance detection at 254 nm. Baseline separation of the analytes is achieved in less than two minutes

  20. Drug Induced Sialorrhea and Microfluidic-Chip-Electrophoretic Analysis of Engorged Adult Female Tick Saliva of Haemaphysalis longicornis (Acari: Ixodidae

    Directory of Open Access Journals (Sweden)

    Mohammad Saiful Islam

    2017-04-01

    Full Text Available Background: The aim of the present study was to induce salivation in Haemaphysalis longicornis to increase saliva production and to characterize the collection of proteins present in the collected saliva using on-chip-electrophoresis.Methods: Saliva of adult female engorged H. longicornis was collected by treatment with 0.2% dopamine hydrochlo­ride. All protein samples were characterized by SDS-PAGE electrophoresis using a microfluidic High Sensitiv­ity Protein Assay 250 kit by 2100 Bioanalyzer (Agilent Technologies, USA under non-reducing conditions.Results: The average salivary protein concentration was 0.169 µg/µl/tick and saliva secretion decreased with in­creased time of tick detachment from the host. Saliva secretion volume increased to 3.56 µl in the group of ticks with a body weight between 301–350 mg as compared to higher and lower body weight groups. On-chip-electrophoresis results show 13 distinct bands ranging from 9.9 to 294 kDa.Conclusion: Based on molecular weight, the putative salivary proteins are comprised of proline-rich proteins, tria­bin, apyrase members of the 12-kDa protein family, platelet inhibitors and anti-inflammatory proteins as tick saliva contains anti-inflammatory components.

  1. Optimal selection of TLD chips

    International Nuclear Information System (INIS)

    Phung, P.; Nicoll, J.J.; Edmonds, P.; Paris, M.; Thompson, C.

    1996-01-01

    Large sets of TLD chips are often used to measure beam dose characteristics in radiotherapy. A sorting method is presented to allow optimal selection of chips from a chosen set. This method considers the variation

  2. Patterned Fibers Embedded Microfluidic Chips Based on PLA and PDMS for Ag Nanoparticle Safety Testing

    Directory of Open Access Journals (Sweden)

    Yaowen Liu

    2016-11-01

    Full Text Available A new method to integrate poly-dl-lactide (PLA patterned electrospun fibers with a polydimethylsiloxane (PDMS microfluidic chip was successfully developed via lithography. Hepatocyte behavior under static and dynamic conditions was investigated. Immunohistochemical analyses indicated good hepatocyte survival under the dynamic culture system with effective hepatocyte spheroid formation in the patterned microfluidic chip vs. static culture conditions and tissue culture plate (TCP. In particular, hepatocytes seeded in this microfluidic chip under a flow rate of 10 μL/min could re-establish hepatocyte polarity to support biliary excretion and were able to maintain high levels of albumin and urea secretion over 15 days. Furthermore, the optimized system could produce sensitive and consistent responses to nano-Ag-induced hepatotoxicity during culture. Thus, this microfluidic chip device provides a new means of fabricating complex liver tissue-engineered scaffolds, and may be of considerable utility in the toxicity screening of nanoparticles.

  3. Novel Protein Microarray Technology to Examine Men with Prostate Cancer

    National Research Council Canada - National Science Library

    Lilja, Hans

    2005-01-01

    The authors developed a novel macro and nanoporous silicon surface for protein microarrays to facilitate high-throughput biomarker discovery, and high-density protein-chip array analyses of complex biological samples...

  4. Experiment list: SRX110782 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e3 (ab6002, abcam), Pol II (CTD4H8, Millipore) || chip antibody 1 manufacturer=ab...cam || chip antibody 2=Pol II (CTD4H8, Millipore) || chip antibody 2 manufacturer=Millipore http://dbarchive

  5. Avaliação da aceitação de "chips" de mandioca Acceptance evaluation of cassava chips

    Directory of Open Access Journals (Sweden)

    Regina Kitagawa Grizotto

    2003-12-01

    Full Text Available Pré-tratamentos como o cozimento, a fermentação natural e a secagem parcial foram aplicados em raízes de mandioca, visando a obtenção de "chips" comestíveis. A avaliação sensorial foi feita com base na aceitação e aparência dos "chips" das variedades IAC Mantiqueira e IAC 576.70. Trinta consumidores potenciais do produto foram selecionados em função da disponibilidade e interesse em participar dos testes. Foi utilizada escala hedônica de 7 pontos, onde os provadores avaliaram as amostras delineadas em blocos casualizados. Os resultados obtidos mostraram que os "chips" controle e pré-cozidos foram aceitos sensorialmente, apresentado médias de 5,1 (gostei ligeiramente para IAC Mantiqueira e 6,0 (gostei moderadamente para IAC 576.70. Os "chips" pré-fermentados de ambas variedades foram rejeitados. Os termos de agrado mais comentados pelos provadores foram "sabor de mandioca", "crocância" e "textura". Os termos de desagrado mais citados incluem "textura dura", "falta sabor de mandioca" e "gosto de óleo". Os provadores consideraram adequada a aparência dos "chips" de ambas variedades, sendo ligeiramente preferida a aparência dos "chips" da IAC 576.70, com exceção dos "chips" cozidos por 8 minutos e os fermentados, rejeitados pelos consumidores. A cor amarela da polpa pode ter influenciado a aceitação da variedade IAC 576.70. A composição centesimal e o teor de fibras na mandioca in natura e, o teor de lipídeos em "chips" de mandioca, também foram apresentados.Pre-treatments such as cooking, natural fermentation and partial drying were applied to cassava roots, aimed at obtaining edible cassava chips. The sensory evaluation was based on the acceptance and appearance of the chips, using the varieties IAC Mantiqueira and IAC 576.70. Thirty potential consumers of the product were selected based on their availability and interest. A 7-point hedonic scale was used, all the judges evaluating all the samples using a randomised

  6. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields

    Science.gov (United States)

    Henz, Diana; Schöllhorn, Wolfgang I.; Poeggeler, Burkhard

    2018-01-01

    shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use. PMID:29670503

  7. Mobile Phone Chips Reduce Increases in EEG Brain Activity Induced by Mobile Phone-Emitted Electromagnetic Fields.

    Science.gov (United States)

    Henz, Diana; Schöllhorn, Wolfgang I; Poeggeler, Burkhard

    2018-01-01

    shown. We hypothesize that a reduction of EEG beta and gamma activation constitutes the key neural mechanism in mobile phone chip use that supports the brain to a degree in maintaining its natural activity and performance level during mobile phone use.

  8. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  9. Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection

    Science.gov (United States)

    Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.

    2012-06-01

    The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.

  10. ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Directory of Open Access Journals (Sweden)

    Porter Christopher J

    2007-09-01

    Full Text Available Abstract Background SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs. These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments. Results Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes. Conclusion The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.

  11. Simulating the Effect of Modulated Tool-Path Chip Breaking On Surface Texture and Chip Length

    Energy Technology Data Exchange (ETDEWEB)

    Smith, K.S.; McFarland, J.T.; Tursky, D. A.; Assaid, T. S.; Barkman, W. E.; Babelay, Jr., E. F.

    2010-04-30

    One method for creating broken chips in turning processes involves oscillating the cutting tool in the feed direction utilizing the CNC machine axes. The University of North Carolina at Charlotte and the Y-12 National Security Complex have developed and are refining a method to reliably control surface finish and chip length based on a particular machine's dynamic performance. Using computer simulations it is possible to combine the motion of the machine axes with the geometry of the cutting tool to predict the surface characteristics and map the surface texture for a wide range of oscillation parameters. These data allow the selection of oscillation parameters to simultaneously ensure broken chips and acceptable surface characteristics. This paper describes the machine dynamic testing and characterization activities as well as the computational method used for evaluating and predicting chip length and surface texture.

  12. Fast differential scanning calorimetry of liquid samples with chips

    DEFF Research Database (Denmark)

    Splinter, R.; van Herwaarden, A. W.; van Wetten, I. A.

    2015-01-01

    Based on a modified version of standard chips for fast differential scanning calorimetry, DSC of liquid samples has been performed at temperature scan rates of up to 1000 °C/s. This paper describes experimental results with the protein lysozyme, bovine serum, and olive oil. The heating and cooling....... The bovine serum measurements show two main peaks, in good agreement with standard DSC measurements. Olive oil has been measured, with good agreement for the cooling curve and qualitative agreement for the heater curve, compared to DSC measurements....

  13. Power-aware transceiver design for half-duplex bidirectional chip-to-chip optical interconnects

    International Nuclear Information System (INIS)

    Sangirov Jamshid; Ukaegbu Ikechi Augustine; Lee Tae-Woo; Park Hyo-Hoon; Sangirov Gulomjon

    2013-01-01

    A power-aware transceiver for half-duplex bidirectional chip-to-chip optical interconnects has been designed and fabricated in a 0.13 μm complementary metal–oxide–semiconductor (CMOS) technology. The transceiver can detect the presence and absence of received signals and saves 55% power in Rx enabled mode and 45% in Tx enabled mode. The chip occupies an area of 1.034 mm 2 and achieves a 3-dB bandwidth of 6 GHz and 7 GHz in Tx and Rx modes, respectively. The disabled outputs for the Tx and Rx modes are isolated with 180 dB and 139 dB, respectively, from the enabled outputs. Clear eye diagrams are obtained at 4.25 Gbps for both the Tx and Rx modes. (semiconductor integrated circuits)

  14. Rapid manufacturing of low-noise membranes for nanopore sensors by trans-chip illumination lithography

    International Nuclear Information System (INIS)

    Janssen, Xander J A; Jonsson, Magnus P; Plesa, Calin; Soni, Gautam V; Dekker, Cees; Dekker, Nynke H

    2012-01-01

    In recent years, the concept of nanopore sensing has matured from a proof-of-principle method to a widespread, versatile technique for the study of biomolecular properties and interactions. While traditional nanopore devices based on a nanopore in a single layer membrane supported on a silicon chip can be rapidly fabricated using standard microfabrication methods, chips with additional insulating layers beyond the membrane region can provide significantly lower noise levels, but at the expense of requiring more costly and time-consuming fabrication steps. Here we present a novel fabrication protocol that overcomes this issue by enabling rapid and reproducible manufacturing of low-noise membranes for nanopore experiments. The fabrication protocol, termed trans-chip illumination lithography, is based on illuminating a membrane-containing wafer from its backside such that a photoresist (applied on the wafer’s top side) is exposed exclusively in the membrane regions. Trans-chip illumination lithography permits the local modification of membrane regions and hence the fabrication of nanopore chips containing locally patterned insulating layers. This is achieved while maintaining a well-defined area containing a single thin membrane for nanopore drilling. The trans-chip illumination lithography method achieves this without relying on separate masks, thereby eliminating time-consuming alignment steps as well as the need for a mask aligner. Using the presented approach, we demonstrate rapid and reproducible fabrication of nanopore chips that contain small (12 μm × 12 μm) free-standing silicon nitride membranes surrounded by insulating layers. The electrical noise characteristics of these nanopore chips are shown to be superior to those of simpler designs without insulating layers and comparable in quality to more complex designs that are more challenging to fabricate. (paper)

  15. A Single-Chip CMOS Pulse Oximeter with On-Chip Lock-In Detection

    OpenAIRE

    Diwei He; Stephen P. Morgan; Dimitrios Trachanis; Jan van Hese; Dimitris Drogoudis; Franco Fummi; Francesco Stefanni; Valerio Guarnieri; Barrie R. Hayes-Gill

    2015-01-01

    Pulse oximetry is a noninvasive and continuous method for monitoring the blood oxygen saturation level. This paper presents the design and testing of a single-chip pulse oximeter fabricated in a 0.35 ?m CMOS process. The chip includes photodiode, transimpedance amplifier, analogue band-pass filters, analogue-to-digital converters, digital signal processor and LED timing control. The experimentally measured AC and DC characteristics of individual circuits including the DC output voltage of the...

  16. Experiment list: SRX485203 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346544: Rhino ChIP from control germline knock-down ovaries, replicate 2; Drosophila melanogaster; ChIP-Seq ...source_name=Rhino ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult ||... Sex=female || tissue=ovary || germline knock-down=control || chip antibody=custo

  17. Experiment list: SRX485202 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346543: Rhino ChIP from control germline knock-down ovaries, replicate 1; Drosophila melanogaster; ChIP-Seq ...source_name=Rhino ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult ||... Sex=female || tissue=ovary || germline knock-down=control || chip antibody=custo

  18. Experiment list: SRX485210 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 6551: Deadlock ChIP from deadlock germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_name...=Deadlock ChIP from deadlock germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=fe...male || tissue=ovary || germline knock-down=deadlock || chip antibody=custom-made

  19. Experiment list: SRX485211 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346552: Cutoff ChIP from control germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_name=...Cutoff ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female... || tissue=ovary || germline knock-down=control || chip antibody=custom-made rabb

  20. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif; Salama, Khaled N.; Sedky, S.; Soliman, E. A.

    2012-01-01

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  1. On-chip antenna: Practical design and characterization considerations

    KAUST Repository

    Shamim, Atif

    2012-07-28

    This paper highlights the challenges of an emergent field, namely, on-chip antenna design. Consistent with the RF System-on-Chip (SoC) concept, co-design strategy for circuits and on-chip antennas is described. A number of design and layout issues, arising from the highly integrated nature of this kind of systems, are discussed. The characterization difficulties related to on-chip antennas radiation properties are also highlighted. Finally, a novel on-wafer test fixture is proposed to measure the gain and radiation pattern of the on-chip antennas in the anechoic chamber.

  2. The evolutionarily conserved E3 ubiquitin ligase AtCHIP contributes to plant immunity

    Directory of Open Access Journals (Sweden)

    Xin eLi

    2016-03-01

    Full Text Available Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, C. elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP’s role in regulating plant immune responses.

  3. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    Science.gov (United States)

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  4. Newborn screening by matrix-assisted laser desorption/ionization mass spectrometry based on parylene-matrix chip.

    Science.gov (United States)

    Kim, Jo-Il; Noh, Joo-Yoon; Kim, Mira; Park, Jong-Min; Song, Hyun-Woo; Kang, Min-Jung; Pyun, Jae-Chul

    2017-08-01

    Newborn screening for diagnosis of phenylketonuria, homocystinuria, and maple syrup urine disease have been conducted by analyzing the concentration of target amino acids using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-ToF MS) based on parylene-matrix chip. Parylene-matrix chip was applied to MALDI-ToF MS analysis reducing the matrix peaks significantly at low mass-to-charge ratio range (m/z  0.98) and the LODs were ranging from 9.0 to 22.9 μg/mL. Effect of proteins in serum was estimated by comparing MALDI-ToF mass spectra of amino acids-spiked serum before and after the methanol extraction. Interference of other amino acids on analysis of target analyte was determined to be insignificant. From these results, MALDI-ToF MS based on parylene-matrix chip could be applicable to medical diagnosis of neonatal metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Influence of passivation process on chip performance

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; Schmitz, Jurriaan

    2009-01-01

    In this work, we have studied the performance of CMOS chips before and after a low temperature post-processing step. In order to prevent damage to the IC chips by the post-processing steps, a first passivation layers is needed on top of the IC chips. Two different passivation layer deposition

  6. Experiment list: SRX485205 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 46546: Rhino ChIP from deadlock germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_name=R...hino ChIP from deadlock germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female ...|| tissue=ovary || germline knock-down=deadlock || chip antibody=custom-made rabb

  7. Experiment list: SRX485212 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346553: Cutoff ChIP from cutoff germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_name=C...utoff ChIP from cutoff germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female |...| tissue=ovary || germline knock-down=cutoff || chip antibody=custom-made rabbit

  8. Experiment list: SRX485206 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346547: Rhino ChIP from cutoff germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_name=Rh...ino ChIP from cutoff germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female || ...tissue=ovary || germline knock-down=cutoff || chip antibody=custom-made rabbit po

  9. Experiment list: SRX485209 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346550: Deadlock ChIP from control germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_nam...e=Deadlock ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=fe...male || tissue=ovary || germline knock-down=control || chip antibody=custom-made

  10. The use of forest chips in Finland

    International Nuclear Information System (INIS)

    Hakkila, P.

    2001-01-01

    International commitments require the industrial world to restrict their greenhouse gas emissions. In Finland, where the annual timber cut per capita is more than ten times the average cut in the other EU countries, the primary means to reduce CO 2 emissions is to replace fossil fuels with forest biomass. The annual consumption of wood-based energy corresponds to 6 million tonnes of oil equivalent (toe) or almost 20% of the total primary energy consumption. The goal is to rise the annual production of wood-based energy to 7.8 million toe by 2010. Substantial part of the targeted increase could be obtained by forest chips produced of unmerchantable small-diameter trees and logging residues. The goal for 2010 is to use 5 million solid m 3 of forest chips, which equals to 0.9 million toe. The use of forest chips is increasing. About 474 000 solid m 3 of forest chips were used as fuel in 1999. At the moment, the growth is rapid especially in cogeneration plants producing both heat and electricity. The growth is based primarily on chips obtained from logging residues. The price of forest chips decreased considerably during the 1990s but the price range remained wide. Chips made of logging residues are cheaper than those made of small trees. The average price of forest chips at the plant, VAT excluded, is about 53 FIM per MWh. In Sweden, the average price is more than 40% higher

  11. Development and production of an oligonucleotide MuscleChip: use for validation of ambiguous ESTs

    Directory of Open Access Journals (Sweden)

    Lanfranchi Gerolamo

    2002-10-01

    Full Text Available Abstract Background We describe the development, validation, and use of a highly redundant 120,000 oligonucleotide microarray (MuscleChip containing 4,601 probe sets representing 1,150 known genes expressed in muscle and 2,075 EST clusters from a non-normalized subtracted muscle EST sequencing project (28,074 EST sequences. This set included 369 novel EST clusters showing no match to previously characterized proteins in any database. Each probe set was designed to contain 20–32 25 mer oligonucleotides (10–16 paired perfect match and mismatch probe pairs per gene, with each probe evaluated for hybridization kinetics (Tm and similarity to other sequences. The 120,000 oligonucleotides were synthesized by photolithography and light-activated chemistry on each microarray. Results Hybridization of human muscle cRNAs to this MuscleChip (33 samples showed a correlation of 0.6 between the number of ESTs sequenced in each cluster and hybridization intensity. Out of 369 novel EST clusters not showing any similarity to previously characterized proteins, we focused on 250 EST clusters that were represented by robust probe sets on the MuscleChip fulfilling all stringent rules. 102 (41% were found to be consistently "present" by analysis of hybridization to human muscle RNA, of which 40 ESTs (39% could be genome anchored to potential transcription units in the human genome sequence. 19 ESTs of the 40 ESTs were furthermore computer-predicted as exons by one or more than three gene identification algorithms. Conclusion Our analysis found 40 transcriptionally validated, genome-anchored novel EST clusters to be expressed in human muscle. As most of these ESTs were low copy clusters (duplex and triplex in the original 28,000 EST project, the identification of these as significantly expressed is a robust validation of the transcript units that permits subsequent focus on the novel proteins encoded by these genes.

  12. Experiment list: SRX485220 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 53 GSM1346561: RNA Polymerase II ChIP from rhino germline knock-down ovaries; Drosophila melanogaster; ChIP-...Seq source_name=RNA Polymerase II ChIP from rhino germline knock-down ovaries || developmental stage=4-6 day...s old adult || Sex=female || tissue=ovary || germline knock-down=rhino || chip an

  13. Experiment list: SRX485204 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346545: Rhino ChIP from rhino germline knock-down ovaries; Drosophila melanogaster; ChIP-Seq source_name=Rhi...no ChIP from rhino germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female || ti...ssue=ovary || germline knock-down=rhino || chip antibody=custom-made rabbit polyc

  14. Experiment list: SRX485208 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 346549: Rhino ChIP from piwi germline knock-down ovaries, replicate 2; Drosophila melanogaster; ChIP-Seq sou...rce_name=Rhino ChIP from piwi germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=f...emale || tissue=ovary || germline knock-down=piwi || chip antibody=custom-made ra

  15. METAL CHIP HEATING PROCESS INVESTIGATION (Part I

    Directory of Open Access Journals (Sweden)

    O. M. Dyakonov

    2007-01-01

    Full Text Available The main calculation methods for heat- and mass transfer in porous heterogeneous medium have been considered. The paper gives an evaluation of the possibility to apply them for calculation of metal chip heating process. It has been shown that a description of transfer processes in a chip has its own specific character that is attributed to difference between thermal and physical properties of chip material and lubricant-coolant components on chip surfaces. It has been determined that the known expressions for effective heat transfer coefficients can be used as basic ones while approaching mutually penetrating continuums. A mathematical description of heat- and mass transfer in chip medium can be considered as a basis of mathematical modeling, numerical solution and parameter optimization of the mentioned processes.

  16. A one-step strategy for ultra-fast and low-cost mass production of plastic membrane microfluidic chips.

    Science.gov (United States)

    Hu, Chong; Lin, Sheng; Li, Wanbo; Sun, Han; Chen, Yangfan; Chan, Chiu-Wing; Leung, Chung-Hang; Ma, Dik-Lung; Wu, Hongkai; Ren, Kangning

    2016-10-05

    An ultra-fast, extremely cost-effective, and environmentally friendly method was developed for fabricating flexible microfluidic chips with plastic membranes. With this method, we could fabricate plastic microfluidic chips rapidly (within 12 seconds per piece) at an extremely low cost (less than $0.02 per piece). We used a heated perfluoropolymer perfluoroalkoxy (often called Teflon PFA) solid stamp to press a pile of two pieces of plastic membranes, low density polyethylene (LDPE) and polyethylene terephthalate (PET) coated with an ethylene-vinyl acetate copolymer (EVA). During the short period of contact with the heated PFA stamp, the pressed area of the membranes permanently bonded, while the LDPE membrane spontaneously rose up at the area not pressed, forming microchannels automatically. These two regions were clearly distinguishable even at the micrometer scale so we were able to fabricate microchannels with widths down to 50 microns. This method combines the two steps in the conventional strategy for microchannel fabrication, generating microchannels and sealing channels, into a single step. The production is a green process without using any solvent or generating any waste. Also, the chips showed good resistance against the absorption of Rhodamine 6G, oligonucleotides, and green fluorescent protein (GFP). We demonstrated some typical microfluidic manipulations with the flexible plastic membrane chips, including droplet formation, on-chip capillary electrophoresis, and peristaltic pumping for quantitative injection of samples and reagents. In addition, we demonstrated convenient on-chip detection of lead ions in water samples by a peristaltic-pumping design, as an example of the application of the plastic membrane chips in a resource-limited environment. Due to the high speed and low cost of the fabrication process, this single-step method will facilitate the mass production of microfluidic chips and commercialization of microfluidic technologies.

  17. A contact-lens-shaped IC chip technology

    International Nuclear Information System (INIS)

    Liu, Ching-Yu; Yang, Frank; Teng, Chih-Chiao; Fan, Long-Sheng

    2014-01-01

    We report on novel contact-lens-shaped silicon integrated circuit chip technology for applications such as forming a conforming retinal prosthesis. This is achieved by means of patterning thin films of high residual stress on top of a shaped thin silicon substrate. Several strategies are employed to achieve curvatures of various amounts. Firstly, high residual stress on a thin film makes a thin chip deform into a designed three-dimensional shape. Also, a series of patterned stress films and ‘petal-shaped’ chips were fabricated and analyzed. Large curvatures can also be formed and maintained by the packaging process of bonding the chips to constraining elements such as thin-film polymer ring structures. As a demonstration, a complementary metal oxide semiconductor transistor (CMOS) image-sensing retina chip is made into a contact-lens shape conforming to a human eyeball 12.5 mm in radius. This non-planar and flexible chip technology provides a desirable device surface interface to soft tissues or non-planar bio surfaces and opens up many other possibilities for biomedical applications. (paper)

  18. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review

    Energy Technology Data Exchange (ETDEWEB)

    Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Aquino, Adriano [Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil); Cervantes, Cesar [Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP (Brazil); Carrilho, Emanuel, E-mail: emanuel@iqsc.usp.br [Instituto de Química de São Carlos, Universidade de São Paulo, Av. Trabalhador São-carlense, 400, 13566-590 São Carlos, SP (Brazil); Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP (Brazil)

    2016-09-07

    We present here a critical review covering conventional analytical tools of recombinant drug analysis and discuss their evolution towards miniaturized systems foreseeing a possible unique recombinant drug-on-a-chip device. Recombinant protein drugs and/or pro-drug analysis require sensitive and reproducible analytical techniques for quality control to ensure safety and efficacy of drugs according to regulatory agencies. The versatility of miniaturized systems combined with their low-cost could become a major trend in recombinant drugs and bioprocess analysis. Miniaturized systems are capable of performing conventional analytical and proteomic tasks, allowing for interfaces with other powerful techniques, such as mass spectrometry. Microdevices can be applied during the different stages of recombinant drug processing, such as gene isolation, DNA amplification, cell culture, protein expression, protein separation, and analysis. In addition, organs-on-chips have appeared as a viable alternative to testing biodrug pharmacokinetics and pharmacodynamics, demonstrating the capabilities of the miniaturized systems. The integration of individual established microfluidic operations and analytical tools in a single device is a challenge to be overcome to achieve a unique recombinant drug-on-a-chip device. - Highlights: • Principal analytical tools for analysis of recombinant drugs are presented. • A critical comparison among different substrates for fabrication of miniaturized systems is made. • Applications of miniaturized systems to produce recombinant drugs are shown. • Future trends of miniaturized systems capable of integrating analytical and proteomic tools in a single device are envisioned.

  19. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review

    International Nuclear Information System (INIS)

    Morbioli, Giorgio Gianini; Mazzu-Nascimento, Thiago; Aquino, Adriano; Cervantes, Cesar; Carrilho, Emanuel

    2016-01-01

    We present here a critical review covering conventional analytical tools of recombinant drug analysis and discuss their evolution towards miniaturized systems foreseeing a possible unique recombinant drug-on-a-chip device. Recombinant protein drugs and/or pro-drug analysis require sensitive and reproducible analytical techniques for quality control to ensure safety and efficacy of drugs according to regulatory agencies. The versatility of miniaturized systems combined with their low-cost could become a major trend in recombinant drugs and bioprocess analysis. Miniaturized systems are capable of performing conventional analytical and proteomic tasks, allowing for interfaces with other powerful techniques, such as mass spectrometry. Microdevices can be applied during the different stages of recombinant drug processing, such as gene isolation, DNA amplification, cell culture, protein expression, protein separation, and analysis. In addition, organs-on-chips have appeared as a viable alternative to testing biodrug pharmacokinetics and pharmacodynamics, demonstrating the capabilities of the miniaturized systems. The integration of individual established microfluidic operations and analytical tools in a single device is a challenge to be overcome to achieve a unique recombinant drug-on-a-chip device. - Highlights: • Principal analytical tools for analysis of recombinant drugs are presented. • A critical comparison among different substrates for fabrication of miniaturized systems is made. • Applications of miniaturized systems to produce recombinant drugs are shown. • Future trends of miniaturized systems capable of integrating analytical and proteomic tools in a single device are envisioned.

  20. Wood chip delivery and research project at Mikkeli region

    International Nuclear Information System (INIS)

    Saksa, T.; Auvinen, P.

    1995-01-01

    In 1994, a large-scale energywood production chain was started as a co-operation project by the Mikkeli city forest office and local forestry societies. Over 60 000 m 3 (about 46 000 MWh of energy) of forest processed chips were delivered to Pursiala heat and power plant in Mikkeli. About 60 % of these chips was whole tree chips from improvement cuttings of young forest stands and the rest was logging waste chips from regeneration cutting areas. The average total delivery costs of forest processed chips after reduction of energywood and other subsidies were approximately 51 FIM/m 3 (68 FIM/MWh) for the whole tree chips and 40 FIM/m 3 (53 FIM/MWh) for logging waste chips. The delivery costs of wood chips could compete with those of fuel peat only in the most favourable cases. The resources of forest processed chips were studied on the basis of forestry plans. According to the study, there is enough raw material for permanent, large-scale delivery of forest processed chips (up to 250 000 m 3 /a) in the forests located at a distance of under 40 road kilometers from the Pursiala heat and power plant. The following project stages will involve further development of the wood chip delivery chain logistics, as well as improvement of logging and chipping equipment and methods in energywood and logging waste production. Also the effects of wood energy production on the economy and environment of the whole Mikkeli region will be studied. (author)

  1. Inhibition of the Hedgehog Signaling Pathway Depresses the Cigarette Smoke-Induced Malignant Transformation of 16HBE Cells on a Microfluidic Chip.

    Science.gov (United States)

    Qin, Yong-Xin; Yang, Zhi-Hui; Du, Xiao-Hui; Zhao, Hui; Liu, Yuan-Bin; Guo, Zhe; Wang, Qi

    2018-05-20

    The hedgehog signaling system (HHS) plays an important role in the regulation of cell proliferation and differentiation during the embryonic phases. However, little is known about the involvement of HHS in the malignant transformation of cells. This study aimed to detect the role of HHS in the malignant transformation of human bronchial epithelial (16HBE) cells. In this study, two microfluidic chips were designed to investigate cigarette smoke extract (CSE)-induced malignant transformation of cells. Chip A contained a concentration gradient generator, while chip B had four cell chambers with a central channel. The 16HBE cells cultured in chip A were used to determine the optimal concentration of CSE for inducing malignant transformation. The 16HBE cells in chip B were cultured with 12.25% CSE (Group A), 12.25% CSE + 5 μmol/L cyclopamine (Group B), or normal complete medium as control for 8 months (Group C), to establish the in vitro lung inflammatory-cancer transformation model. The transformed cells were inoculated into 20 nude mice as cells alone (Group 1) or cells with cyclopamine (Group 2) for tumorigenesis testing. Expression of HHS proteins was detected by Western blot. Data were expressed as mean ± standard deviation. The t-test was used for paired samples, and the difference among groups was analyzed using a one-way analysis of variance. The optimal concentration of CSE was 12.25%. Expression of HHS proteins increased during the process of malignant transformation (Group B vs. Group A, F = 7.65, P < 0.05). After CSE exposure for 8 months, there were significant changes in cellular morphology, which allowed the transformed cells to grow into tumors in 40 days after being inoculated into nude mice. Cyclopamine could effectively depress the expression of HHS proteins (Group C vs. Group B, F = 6.47, P < 0.05) and prevent tumor growth in nude mice (Group 2 vs. Group 1, t = 31.59, P < 0.01). The activity of HHS is upregulated during the CSE-induced malignant

  2. Experiment list: SRX485222 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 4me2 ChIP from control germline knock-down ovaries, replicate 2; Drosophila melanogaster; ChIP-Seq source_na...me=H3K4me2 ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=fe...male || tissue=ovary || germline knock-down=control || chip antibody=Anti-dimethy

  3. Experiment list: SRX485221 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available K4me2 ChIP from control germline knock-down ovaries, replicate 1; Drosophila melanogaster; ChIP-Seq source_n...ame=H3K4me2 ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=f...emale || tissue=ovary || germline knock-down=control || chip antibody=Anti-dimeth

  4. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.

    Science.gov (United States)

    Komar, Dorota N; Mouriz, Alfonso; Jarillo, José A; Piñeiro, Manuel

    2016-01-14

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a procedure to identify the DNA-binding sites of proteins in genes or genomic regions of the model species Arabidopsis thaliana. The interactions with DNA of proteins of interest such as transcription factors, chromatin proteins or posttranslationally modified versions of histones can be efficiently analyzed with the ChIP protocol. This method is based on the fixation of protein-DNA interactions in vivo, random fragmentation of chromatin, immunoprecipitation of protein-DNA complexes with specific antibodies, and quantification of the DNA associated with the protein of interest by PCR techniques. The use of this methodology in Arabidopsis has contributed significantly to unveil transcriptional regulatory mechanisms that control a variety of plant biological processes. This approach allowed the identification of the binding sites of the Arabidopsis chromatin protein EBS to regulatory regions of the master gene of flowering FT. The impact of this protein in the accumulation of particular histone marks in the genomic region of FT was also revealed through ChIP analysis.

  5. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis

    Science.gov (United States)

    Zhang, Boyang; Montgomery, Miles; Chamberlain, M. Dean; Ogawa, Shinichiro; Korolj, Anastasia; Pahnke, Aric; Wells, Laura A.; Massé, Stéphane; Kim, Jihye; Reis, Lewis; Momen, Abdul; Nunes, Sara S.; Wheeler, Aaron R.; Nanthakumar, Kumaraswamy; Keller, Gordon; Sefton, Michael V.; Radisic, Milica

    2016-06-01

    We report the fabrication of a scaffold (hereafter referred to as AngioChip) that supports the assembly of parenchymal cells on a mechanically tunable matrix surrounding a perfusable, branched, three-dimensional microchannel network coated with endothelial cells. The design of AngioChip decouples the material choices for the engineered vessel network and for cell seeding in the parenchyma, enabling extensive remodelling while maintaining an open-vessel lumen. The incorporation of nanopores and micro-holes in the vessel walls enhances permeability, and permits intercellular crosstalk and extravasation of monocytes and endothelial cells on biomolecular stimulation. We also show that vascularized hepatic tissues and cardiac tissues engineered by using AngioChips process clinically relevant drugs delivered through the vasculature, and that millimetre-thick cardiac tissues can be engineered in a scalable manner. Moreover, we demonstrate that AngioChip cardiac tissues implanted with direct surgical anastomosis to the femoral vessels of rat hindlimbs establish immediate blood perfusion.

  6. Label-free detection of C-reactive protein using reflectometric interference spectroscopy-based sensing system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyung Woo; Sakata, Yasuhiko [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Kurihara, Yoshikazu [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); KONICA MINOLTA OPTO, Inc., 1 Sakura-machi, Hino-shi, Tokyo 191-8511 (Japan); Ooya, Tooru [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan); Takeuchi, Toshifumi, E-mail: takeuchi@gold.kobe-u.ac.jp [Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 (Japan)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer A new RIfS-based label-free biosensing system for C-reactive protein was developed. Black-Right-Pointing-Pointer Silicon-based inexpensive chips and the simple optical setup were employed. Black-Right-Pointing-Pointer Owing to the TMS treatment and the use of protein A, the sensitivity was enhanced. Black-Right-Pointing-Pointer It can be applied to other target as a substitute of SPR-based expensive sensors. - Abstract: Reflectometric interference spectroscopy (RIfS) is a label-free, time-resolved technique, and suitable for detecting antibody-antigen interaction. This work describes a continuous flow biosensor for C-reactive protein (CRP), involving an effective immobilization method of a monoclonal antibody against CRP (anti-CRP) to achieve highly sensitive RIfS-based detection of CRP. The silicon nitride-coated silicon chip (SiN chip) for the RIfS sensing was first treated with trimethylsilylchloride (TMS), followed by UV-light irradiation to in situ generation of homogeneous silanols on the surface. Following amination by 3-aminopropyltriethoxysilane, carboxymethyldextran (CMD) was grafted, and subsequently, protein A was immobilized to create the oriented anti-CRP surface. The immobilization process of protein A and anti-CRP was monitored with the RIfS system by consecutive injections of an amine coupling reagent, protein A and anti-CRP, respectively, to confirm the progress of each step in real time. The sensitivity was enhanced when all of the processes were adopted, suggesting that the oriented immobilization of anti-CRP via protein A that was coupled with the grafted CMD on the aminated surface of TMS-treated SiN chip. The feasibility of the present sensing system was demonstrated on the detection of CRP, where the silicon-based inexpensive chips and the simple optical setup were employed. It can be applied to other target molecules in various fields of life science as a substitute of surface plasmon resonance

  7. Rework of flip chip bonded radiation pixel detectors

    International Nuclear Information System (INIS)

    Vaehaenen, S.; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S.

    2008-01-01

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process

  8. Rework of flip chip bonded radiation pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vaehaenen, S. [VTT MEMS and Micropackaging, Espoo 02150 (Finland)], E-mail: sami.vahanen@vtt.fi; Heikkinen, H.; Pohjonen, H.; Salonen, J.; Savolainen-Pulli, S. [VTT MEMS and Micropackaging, Espoo 02150 (Finland)

    2008-06-11

    In this paper, some practical aspects of reworking flip chip hybridized pixel detectors are discussed. As flip chip technology has been advancing in terms of placement accuracy and reliability, large-area hybrid pixel detectors have been developed. The area requirements are usually fulfilled by placing several readout chips (ROCs) on single sensor chip. However, as the number of ROCs increases, the probability of failure in the hybridization process and the ROC operation also increases. Because high accuracy flip chip bonding takes time, a significant part of the price of a pixel detector comes from the flip chip assembly process itself. As large-area detector substrates are expensive, and many flip chip placements are required, the price of an assembled detector can become very high. In a typical case, there is just one bad ROC (out of several) on a faulty detector to be replaced. Considering the high price of pixel detectors and the fact that reworking faulty ROCs does not take much longer than the original placement, it is worthwhile to investigate the feasibility of a rework process.

  9. Multimedia-Based Chip Design Education.

    Science.gov (United States)

    Catalkaya, Tamer; Golze, Ulrich

    This paper focuses on multimedia computer-based training programs on chip design. Their development must be fast and economical, in order to be affordable by technical university institutions. The self-produced teaching program Illusion, which demonstrates a monitor controller as an example of a small but complete chip design, was implemented to…

  10. Weak cation magnetic separation technology and MALDI-TOF-MS in screening serum protein markers in primary type I osteoporosis.

    Science.gov (United States)

    Shi, X L; Li, C W; Liang, B C; He, K H; Li, X Y

    2015-11-30

    We investigated weak cation magnetic separation technology and matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS) in screening serum protein markers of primary type I osteoporosis. We selected 16 postmenopausal women with osteoporosis and nine postmenopausal women as controls to find a new method for screening biomarkers and establishing a diagnostic model for primary type I osteoporosis. Serum samples were obtained from controls and patients. Serum protein was extracted with the WCX protein chip system; protein fingerprints were examined using MALDI-TOF-MS. The preprocessed and model construction data were handled by the ProteinChip system. The diagnostic models were established using a genetic arithmetic model combined with a support vector machine (SVM). The SVM model with the highest Youden index was selected. Combinations with the highest accuracy in distinguishing different groups of data were selected as potential biomarkers. From the two groups of serum proteins, 123 cumulative MS protein peaks were selected. Significant intensity differences in the protein peaks of 16 postmenopausal women with osteoporosis were screened. The difference in Youden index between the four groups of protein peaks showed that the highest peaks had mass-to-charge ratios of 8909.047, 8690.658, 13745.48, and 15114.52. A diagnosis model was established with these four markers as the candidates, and the model specificity and sensitivity were found to be 100%. Two groups of specimens in the SVM results on the scatterplot were distinguishable. We established a diagnosis model, and provided a new serological method for screening and diagnosis of osteoporosis with high sensitivity and specificity.

  11. Experiment list: SRX485218 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available K9me3 ChIP from piwi germline knock-down ovaries, replicate 2; Drosophila melanogaster; ChIP-Seq source_name...=H3K9me3 ChIP from piwi germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female ...|| tissue=ovary || germline knock-down=piwi || chip antibody=Histone H3K9me3 anti

  12. Experiment list: SRX485213 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available K9me3 ChIP from control germline knock-down ovaries, replicate 1; Drosophila melanogaster; ChIP-Seq source_n...ame=H3K9me3 ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=f...emale || tissue=ovary || germline knock-down=control || chip antibody=Histone H3K

  13. Experiment list: SRX485214 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available K9me3 ChIP from control germline knock-down ovaries, replicate 2; Drosophila melanogaster; ChIP-Seq source_n...ame=H3K9me3 ChIP from control germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=f...emale || tissue=ovary || germline knock-down=control || chip antibody=Histone H3K

  14. 75 FR 16149 - Medicaid and CHIP Programs; Meeting of the CHIP Working Group-April 26, 2010

    Science.gov (United States)

    2010-03-31

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Medicare & Medicaid Services [CMS-2312-N] DEPARTMENT OF LABOR Employee Benefits Security Administration Medicaid and CHIP Programs; Meeting of the CHIP Working Group-- April 26, 2010 AGENCIES: Centers for Medicare & Medicaid Services (CMS), Department of...

  15. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    Science.gov (United States)

    Hudson, Matthew B; Smuder, Ashley J; Nelson, W Bradley; Wiggs, Michael P; Shimkus, Kevin L; Fluckey, James D; Szeto, Hazel H; Powers, Scott K

    2015-01-01

    Mechanical ventilation (MV) is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1) determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2) establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  16. Partial Support Ventilation and Mitochondrial-Targeted Antioxidants Protect against Ventilator-Induced Decreases in Diaphragm Muscle Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Matthew B Hudson

    Full Text Available Mechanical ventilation (MV is a life-saving intervention in patients in respiratory failure. Unfortunately, prolonged MV results in the rapid development of diaphragm atrophy and weakness. MV-induced diaphragmatic weakness is significant because inspiratory muscle dysfunction is a risk factor for problematic weaning from MV. Therefore, developing a clinical intervention to prevent MV-induced diaphragm atrophy is important. In this regard, MV-induced diaphragmatic atrophy occurs due to both increased proteolysis and decreased protein synthesis. While efforts to impede MV-induced increased proteolysis in the diaphragm are well-documented, only one study has investigated methods of preserving diaphragmatic protein synthesis during prolonged MV. Therefore, we evaluated the efficacy of two therapeutic interventions that, conceptually, have the potential to sustain protein synthesis in the rat diaphragm during prolonged MV. Specifically, these experiments were designed to: 1 determine if partial-support MV will protect against the decrease in diaphragmatic protein synthesis that occurs during prolonged full-support MV; and 2 establish if treatment with a mitochondrial-targeted antioxidant will maintain diaphragm protein synthesis during full-support MV. Compared to spontaneously breathing animals, full support MV resulted in a significant decline in diaphragmatic protein synthesis during 12 hours of MV. In contrast, diaphragm protein synthesis rates were maintained during partial support MV at levels comparable to spontaneous breathing animals. Further, treatment of animals with a mitochondrial-targeted antioxidant prevented oxidative stress during full support MV and maintained diaphragm protein synthesis at the level of spontaneous breathing animals. We conclude that treatment with mitochondrial-targeted antioxidants or the use of partial-support MV are potential strategies to preserve diaphragm protein synthesis during prolonged MV.

  17. One-step fabrication of microfluidic chips with in-plane, adhesive-free interconnections

    International Nuclear Information System (INIS)

    Sabourin, D; Dufva, M; Jensen, T; Kutter, J; Snakenborg, D

    2010-01-01

    A simple method for creating interconnections to a common microfluidic device material, poly(methyl methacrylate) (PMMA), is presented. A press-fit interconnection is created between oversized, deformable tubing and complementary, undersized semi-circular ports fabricated into PMMA bonding surfaces by direct micromilling. Upon UV-assisted bonding the tubing is trapped in the ports of the PMMA chip and forms an integrated, in-plane and adhesive-free interconnection. The interconnections support the average pressure of 6.1 bar and can be made with small dead volumes. A comparison is made to a similar interconnection approach which uses tubing to act as a gasket between a needle and port on the microfluidic chip. (technical note)

  18. Modelling, Synthesis, and Configuration of Networks-on-Chips

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo

    This thesis presents three contributions in two different areas of network-on-chip and system-on-chip research: Application modelling and identifying and solving different optimization problems related to two specific network-on-chip architectures. The contribution related to application modelling...... is an analytical method for deriving the worst-case traffic pattern caused by an application and the cache-coherence protocol in a cache-coherent shared-memory system. The contributions related to network-on-chip optimization problems consist of two parts: The development and evaluation of six heuristics...... for solving the network synthesis problem in the MANGO network-on-chip, and the identification and formalization of the ReNoC configuration problem together with three heuristics for solving it....

  19. Research of Dielectric Breakdown Micro fluidic Sampling Chip

    International Nuclear Information System (INIS)

    Jiang, F.; Lei, Y.; Yu, J.

    2013-01-01

    Micro fluidic chip is mainly driven electrically by external electrode and array electrode, but there are certain disadvantages in both of ways, which affect the promotion and application of micro fluidic technology. This paper discusses a scheme that uses the conductive solution in a microchannel made by PDMS, replacing electrodes and the way of dielectric breakdown to achieve microfluidic chip driver. It could reduce the driving voltage and simplify the chip production process. To prove the feasibility of this method, we produced a micro fluidic chip used in PDMS material with the lithography technology and experimented it. The results showed that using the dielectric breakdown to achieve microfluidic chip driver is feasible, and it has certain application prospect.

  20. Experiment list: SRX485216 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 3K9me3 ChIP from rhino germline knock-down ovaries, replicate 2; Drosophila melanogaster; ChIP-Seq source_na...me=H3K9me3 ChIP from rhino germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=fema...le || tissue=ovary || germline knock-down=rhino || chip antibody=Histone H3K9me3

  1. Experiment list: SRX485215 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available K9me3 ChIP from rhino germline knock-down ovaries, replicate 1; Drosophila melanogaster; ChIP-Seq source_nam...e=H3K9me3 ChIP from rhino germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=femal...e || tissue=ovary || germline knock-down=rhino || chip antibody=Histone H3K9me3 a

  2. Experiment list: SRX485217 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 3K9me3 ChIP from piwi germline knock-down ovaries, replicate 1; Drosophila melanogaster; ChIP-Seq source_nam...e=H3K9me3 ChIP from piwi germline knock-down ovaries || developmental stage=4-6 days old adult || Sex=female... || tissue=ovary || germline knock-down=piwi || chip antibody=Histone H3K9me3 ant

  3. Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients

    NARCIS (Netherlands)

    Weijs, P.J.M.; Cynober, L.; DeLegge, M.; Kreymann, G.; Wernerman, J.; Wolfe, R.R.

    2014-01-01

    Proteins and amino acids are widely considered to be subcomponents in nutritional support. However, proteins and amino acids are fundamental to recovery and survival, not only for their ability to preserve active tissue (protein) mass but also for a variety of other functions. Understanding the

  4. ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly

    Directory of Open Access Journals (Sweden)

    Spang Rainer

    2009-12-01

    Full Text Available Abstract Background The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis. Results We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/. Conclusions ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.

  5. Thermal-Aware Scheduling for Future Chip Multiprocessors

    Directory of Open Access Journals (Sweden)

    Pedro Trancoso

    2007-04-01

    Full Text Available The increased complexity and operating frequency in current single chip microprocessors is resulting in a decrease in the performance improvements. Consequently, major manufacturers offer chip multiprocessor (CMP architectures in order to keep up with the expected performance gains. This architecture is successfully being introduced in many markets including that of the embedded systems. Nevertheless, the integration of several cores onto the same chip may lead to increased heat dissipation and consequently additional costs for cooling, higher power consumption, decrease of the reliability, and thermal-induced performance loss, among others. In this paper, we analyze the evolution of the thermal issues for the future chip multiprocessor architectures and show that as the number of on-chip cores increases, the thermal-induced problems will worsen. In addition, we present several scenarios that result in excessive thermal stress to the CMP chip or significant performance loss. In order to minimize or even eliminate these problems, we propose thermal-aware scheduler (TAS algorithms. When assigning processes to cores, TAS takes their temperature and cooling ability into account in order to avoid thermal stress and at the same time improve the performance. Experimental results have shown that a TAS algorithm that considers also the temperatures of neighboring cores is able to significantly reduce the temperature-induced performance loss while at the same time, decrease the chip's temperature across many different operation and configuration scenarios.

  6. Integration of microcoils for on-chip immunosensors based on magnetic nanoparticles capture

    Directory of Open Access Journals (Sweden)

    Olivier Lefebvre

    2017-04-01

    Full Text Available Immunoassays using magnetic nanoparticles (MNP are generally performed under the control of permanent magnet close to the micro-tube of reaction. Using a magnet gives a powerful method for driving MNP but remains unreliable or insufficient for a fully integrated immunoassay on lab-on-chip. The aim of this study is to develop a novel lab-on-chip concept for high efficient immunoassays to detect ovalbumin (Biodefense model molecule with microcoils employed for trapping MNP during the biofunctionalization steps. The objectives are essentially to optimize their efficiency for biological recognition by assuring a better bioactivity (antibodies-ovalbumin, and detect small concentrations of the targeted protein (~10 pg/mL. In this work, we studied the response of immunoassays complex function of ovalbumin concentration. The impact of MNP diameter in the biografting protocol was studied and permitted to choose a convenient MNP size for efficient biorecognition. We realized different immunoassays by controlling MNP in test tube and in microfluidic device using a permanent magnet. The comparison between these two experiments allows us to highlight an improvement of the limit of detection in microfluidic conditions by controlling MNP trapping with a magnet. Keywords: Bacteria, Lab-on-chip, ELISA, Magnetic nanoparticles, Ovalbumin, Microcoils, Fluorescent microscopy

  7. Recent Developments in the Site-Specific Immobilization of Proteins onto Solid Supports

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2007-02-21

    Immobilization of proteins onto surfaces is of great importance in numerous applications, including protein analysis, drug screening, and medical diagnostics, among others. The success of all these technologies relies on the immobilization technique employed to attach a protein to the corresponding surface. Non-specific physical adsorption or chemical cross-linking with appropriate surfaces results in the immobilization of the protein in random orientations. Site-specific covalent attachment, on the other hand, leads to molecules being arranged in a definite, orderly fashion and allows the use of spacers and linkers to help minimize steric hindrances between the protein and the surface. The present work reviews the latest chemical and biochemical developments for the site-specific covalent attachment of proteins onto solid supports.

  8. 75 FR 30046 - Medicaid and CHIP Programs; Meeting of the CHIP Working Group-June 14, 2010

    Science.gov (United States)

    2010-05-28

    ..., Employee Benefits Security Administration, DOL at (202) 693-8335. News media representatives must contact... eligible for benefits under titles XIX or XXI of the Social Security Act (the Act) to enable them to enroll...] DEPARTMENT OF LABOR Employee Benefits Security Administration Medicaid and CHIP Programs; Meeting of the CHIP...

  9. Instrument for measuring moisture in wood chips

    Energy Technology Data Exchange (ETDEWEB)

    Werme, L

    1980-06-01

    A method to determine the moisture content in wood chips, in batch and on-line, has been investigated. The method can be used for frozen and non frozen chips. Samples of wood chips are thawn and dryed with microwaves. During the drying the sample is weighed continously and the rate of drying is measured. The sample is dried t 10 percent moisture content. The result is extrapolated to the drying rate zero. The acccuracy at the method is 1.6 to 1.7 percent for both frozen and non frozen chips. The accuracy of the method is considered acceptable, but sofisticated sampling equipment is necessary. This makes the method too complex to make the instrument marketable.

  10. On-chip power delivery and management

    CERN Document Server

    Vaisband, Inna P; Popovich, Mikhail; Mezhiba, Andrey V; Köse, Selçuk; Friedman, Eby G

    2016-01-01

    This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.

  11. A Streaming PCA VLSI Chip for Neural Data Compression.

    Science.gov (United States)

    Wu, Tong; Zhao, Wenfeng; Guo, Hongsun; Lim, Hubert H; Yang, Zhi

    2017-12-01

    Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.

  12. Characterizing Rat PNS Electrophysiological Response to Electrical Stimulation Using in vitro Chip-Based Human Investigational Platform (iCHIP)

    Energy Technology Data Exchange (ETDEWEB)

    Khani, Joshua [Georgetown Univ., Washington, DC (United States); Prescod, Lindsay [Georgetown Univ., Washington, DC (United States); Enright, Heather [Georgetown Univ., Washington, DC (United States); Felix, Sarah [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Osburn, Joanne [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wheeler, Elizabeth [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kulp, Kris [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-08-18

    Ex vivo systems and organ-on-a-chip technology offer an unprecedented approach to modeling the inner workings of the human body. The ultimate goal of LLNL’s in vitro Chip-based Human Investigational Platform (iCHIP) is to integrate multiple organ tissue cultures using microfluidic channels, multi-electrode arrays (MEA), and other biosensors in order to effectively simulate and study the responses and interactions of the major organs to chemical and physical stimulation. In this study, we focused on the peripheral nervous system (PNS) component of the iCHIP system. Specifically we sought to expound on prior research investigating the electrophysiological response of rat dorsal root ganglion cells (rDRGs) to chemical exposures, such as capsaicin. Our aim was to establish a protocol for electrical stimulation using the iCHIP device that would reliably elicit a characteristic response in rDRGs. By varying the parameters for both the stimulation properties – amplitude, phase width, phase shape, and stimulation/ return configuration – and the culture conditions – day in vitro and neural cell types - we were able to make several key observations and uncover a potential convention with a minimal number of devices tested. Future work will seek to establish a standard protocol for human DRGs in the iCHIP which will afford a portable, rapid method for determining the effects of toxins and novel therapeutics on the PNS.

  13. Modified precision-husky progrind H-3045 for chipping biomass

    Science.gov (United States)

    Dana Mitchell; Fernando Seixas; John. Klepac

    2008-01-01

    A specific size of whole tree chip was needed to co-mill wood chips with coal. The specifications are stringent because chips must be mixed with coal, as opposed to a co-firing process. In co-firing, two raw products are conveyed separately to a boiler. In co-milling, such as at Alabama Power's Plant Gadsden, the chip and coal mix must pass through a series of...

  14. Introduction to solid supported membrane based electrophysiology.

    Science.gov (United States)

    Bazzone, Andre; Costa, Wagner Steuer; Braner, Markus; Călinescu, Octavian; Hatahet, Lina; Fendler, Klaus

    2013-05-11

    The electrophysiological method we present is based on a solid supported membrane (SSM) composed of an octadecanethiol layer chemisorbed on a gold coated sensor chip and a phosphatidylcholine monolayer on top. This assembly is mounted into a cuvette system containing the reference electrode, a chlorinated silver wire. After adsorption of membrane fragments or proteoliposomes containing the membrane protein of interest, a fast solution exchange is used to induce the transport activity of the membrane protein. In the single solution exchange protocol two solutions, one non-activating and one activating solution, are needed. The flow is controlled by pressurized air and a valve and tubing system within a faraday cage. The kinetics of the electrogenic transport activity is obtained via capacitive coupling between the SSM and the proteoliposomes or membrane fragments. The method, therefore, yields only transient currents. The peak current represents the stationary transport activity. The time dependent transporter currents can be reconstructed by circuit analysis. This method is especially suited for prokaryotic transporters or eukaryotic transporters from intracellular membranes, which cannot be investigated by patch clamp or voltage clamp methods.

  15. An acoustic on-chip goniometer for room temperature macromolecular crystallography.

    Science.gov (United States)

    Burton, C G; Axford, D; Edwards, A M J; Gildea, R J; Morris, R H; Newton, M I; Orville, A M; Prince, M; Topham, P D; Docker, P T

    2017-12-05

    This paper describes the design, development and successful use of an on-chip goniometer for room-temperature macromolecular crystallography via acoustically induced rotations. We present for the first time a low cost, rate-tunable, acoustic actuator for gradual in-fluid sample reorientation about varying axes and its utilisation for protein structure determination on a synchrotron beamline. The device enables the efficient collection of diffraction data via a rotation method from a sample within a surface confined droplet. This method facilitates efficient macromolecular structural data acquisition in fluid environments for dynamical studies.

  16. Perspective: Fabrication of integrated organ-on-a-chip via bioprinting.

    Science.gov (United States)

    Yang, Qingzhen; Lian, Qin; Xu, Feng

    2017-05-01

    Organ-on-a-chip has emerged as a powerful platform with widespread applications in biomedical engineering, such as pathology studies and drug screening. However, the fabrication of organ-on-a-chip is still a challenging task due to its complexity. For an integrated organ-on-a-chip, it may contain four key elements, i.e., a microfluidic chip, live cells/microtissues that are cultured in this chip, components for stimulus loading to mature the microtissues, and sensors for results readout. Recently, bioprinting has been used for fabricating organ-on-a-chip as it enables the printing of multiple materials, including biocompatible materials and even live cells in a programmable manner with a high spatial resolution. Besides, all four elements for organ-on-a-chip could be printed in a single continuous procedure on one printer; in other words, the fabrication process is assembly free. In this paper, we discuss the recent advances of organ-on-a-chip fabrication by bioprinting. Light is shed on the printing strategies, materials, and biocompatibility. In addition, some specific bioprinted organs-on-chips are analyzed in detail. Because the bioprinted organ-on-a-chip is still in its early stage, significant efforts are still needed. Thus, the challenges presented together with possible solutions and future trends are also discussed.

  17. Experiment list: SRX319558 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available | cell type=mouse embryonic stem cells || genotype/variation=expressing control BirA || chip beads=Dynabeads... MyOne Streptavidin T1 || chip beads vendor=Invitrogen http://dbarchive.bioscienc

  18. Experiment list: SRX319557 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available se embryonic stem cells || genotype/variation=expressing Flag-bio tagged Nanog || chip beads=Dynabeads MyOne... Streptavidin T1 || chip beads vendor=Invitrogen http://dbarchive.biosciencedbc.j

  19. Dual-Color Fluorescence Imaging of EpCAM and EGFR in Breast Cancer Cells with a Bull's Eye-Type Plasmonic Chip.

    Science.gov (United States)

    Izumi, Shota; Yamamura, Shohei; Hayashi, Naoko; Toma, Mana; Tawa, Keiko

    2017-12-19

    Surface plasmon field-enhanced fluorescence microscopic observation of a live breast cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), observed in both cells. The membrane proteins are surface markers used to differentiate and classify breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor ® 488-labeled anti-EGFR antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM), respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of membrane proteins with the help of the surface plasmon-enhanced field.

  20. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Irmler, C., E-mail: christian.irmler@oeaw.ac.at [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria); Higuchi, T. [University of Tokyo, Kavli Institute for Physics and Mathematics of the Universe, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Ishikawa, A. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Joo, C. [Seoul National University, High Energy Physics Laboratory, 25-107 Shinlim-dong, Kwanak-gu, Seoul 151-742 (Korea, Republic of); Kah, D.H.; Kang, K.H. [Kyungpook National University, Department of Physics, 1370 Sankyuk Dong, Buk Gu, Daegu 702-701 (Korea, Republic of); Rao, K.K. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Kato, E. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Mohanty, G.B. [Tata Institute of Fundamental Research, Experimental High Energy Physics Group, Homi Bhabha Road, Mumbai 400 005 (India); Negishi, K. [Tohoku University, Department of Physics, Aoba Aramaki Aoba-ku, Sendai 980-8578 (Japan); Onuki, Y.; Shimizu, N. [University of Tokyo, Department of Physics, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Tsuboyama, T. [KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Valentan, M. [HEPHY Vienna – Institute of High Energy Physics of the Austrian Academy of Sciences, Nikolsdorfer Gasse 18, A-1050 Vienna (Austria)

    2013-12-21

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO{sub 2} system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules.

  1. A Low Mass On-Chip Readout Scheme for Double-Sided Silicon Strip Detectors

    International Nuclear Information System (INIS)

    Irmler, C.; Bergauer, T.; Frankenberger, A.; Friedl, M.; Gfall, I.; Higuchi, T.; Ishikawa, A.; Joo, C.; Kah, D.H.; Kang, K.H.; Rao, K.K.; Kato, E.; Mohanty, G.B.; Negishi, K.; Onuki, Y.; Shimizu, N.; Tsuboyama, T.; Valentan, M.

    2013-01-01

    B-factories like the KEKB in Tsukuba, Japan, operate at relatively low energies and thus require detectors with very low material budget in order to minimize multiple scattering. On the other hand, front-end chips with short shaping time like the APV25 have to be placed as close to the sensor strips as possible to reduce the capacitive load, which mainly determines the noise figure. In order to achieve both – minimal material budget and low noise – we developed a readout scheme for double-sided silicon detectors, where the APV25 chips are placed on a flexible circuit, which is glued onto the top side of the sensor. The bottom-side strips are connected by two flexible circuits, which are bent around the edge of the sensor. This so-called “Origami” design will be utilized to build the Silicon Vertex Detector of the Belle II experiment, which will consist of four layers made from ladders with up to five double-sided silicon strip sensors in a row. Each ladder will be supported by two ribs made of a carbon fiber and Airex foam core sandwich. The heat dissipated by the front-end chips will be removed by a highly efficient two-phase CO 2 system. Thanks to the Origami concept, all APV25 chips are aligned in a row and thus can be cooled by a single thin cooling pipe per ladder. We present the concept and the assembly procedure of the Origami chip-on-sensor modules

  2. A simple clockless Network-on-Chip for a commercial audio DSP chip

    DEFF Research Database (Denmark)

    Stensgaard, Mikkel Bystrup; Bjerregaard, Tobias; Sparsø, Jens

    2006-01-01

    We design a very small, packet-switched, clockless Network-on-Chip (NoC) as a replacement for the existing crossbar-based communication infrastructure in a commercial audio DSP chip. Both solutions are laid out in a 0.18 um process, and compared in terms of area, power consumption and routing...... to the existing crossbar, it allows all blocks to communicate. The total wire length is decreased by 22% which eases the layout process and makes the design less prone to routing congestion. Not least, the communicating blocks are decoupled by means of the NoC, providing a Globally-Asynchronous, Locally...

  3. Experiment list: SRX319556 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ype=mouse embryonic stem cells || genotype/variation=expressing Flag-bio tagged Dax1 || chip beads=Dynabeads... MyOne Streptavidin T1 || chip beads vendor=Invitrogen http://dbarchive.bioscienc

  4. Experiment list: SRX319553 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available se embryonic stem cells || genotype/variation=expressing Flag-bio tagged Tip60 || chip beads=Dynabeads MyOne... Streptavidin T1 || chip beads vendor=Invitrogen http://dbarchive.biosciencedbc.j

  5. Experiment list: SRX319555 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ype=mouse embryonic stem cells || genotype/variation=expressing Flag-bio tagged Dax1 || chip beads=Dynabeads... MyOne Streptavidin T1 || chip beads vendor=Invitrogen http://dbarchive.bioscienc

  6. Experiment list: SRX319551 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available use embryonic stem cells || genotype/variation=expressing Flag-bio tagged Dmap1 || chip beads=Dynabeads MyOn...e Streptavidin T1 || chip beads vendor=Invitrogen http://dbarchive.biosciencedbc.

  7. Space division multiplexing chip-to-chip quantum key distribution

    DEFF Research Database (Denmark)

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld

    2017-01-01

    nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum...

  8. Wood harvesting as chunkwood chips and multi-stage chipping; Puun korjuu palahakkeena ja monivaiheinen lastuaminen

    Energy Technology Data Exchange (ETDEWEB)

    Kaipainen, H; Seppaenen, V

    1997-12-31

    The task for the year 1995 was to define the preliminary results of the previous years, to measure the productivity of a harvester, designed for production of chunkwood, and the properties of the chunks. The costs of the PALAPUU method from the felling site to pulpwood chips were to be examined on this basis. Because the prototype of the harvester was not yet available for field tests, the costs were partially calculated on the basis of previous measurements, completed by productivity data obtained from the time-consumption measurements of a multi-tree harvester, applied with minor alteration for this purpose. According to the calculations the PALAPUU method cannot compete with partial-tree or shortwood methods. The profitability of the method could be improved by adding the transportation density and the productivity of the harvester. It is also possible to procure timber to the mill as partial-trees and to chunk it while feeding it into the drum. Chipping tests were made using the steel-frame-chipper owned by VTT Construction Technology. The blade construction of the chipper was changed so, that it was possible to adjust the cutting thickness of the chips to 4 mm, while in the previous mill-tests it had been 6 mm. The chips were used for cooking tests in the Department of Chemistry of the University of Jyvaeskylae. The results showed that the thinner chips were cooked further under the same cooking conditions. By using the chunkwood method it is possible to harvest 10-70 more biomass for the mills, than it is possible in the pulpwood harvesting

  9. Wood harvesting as chunkwood chips and multi-stage chipping; Puun korjuu palahakkeena ja monivaiheinen lastuaminen

    Energy Technology Data Exchange (ETDEWEB)

    Kaipainen, H.; Seppaenen, V.

    1996-12-31

    The task for the year 1995 was to define the preliminary results of the previous years, to measure the productivity of a harvester, designed for production of chunkwood, and the properties of the chunks. The costs of the PALAPUU method from the felling site to pulpwood chips were to be examined on this basis. Because the prototype of the harvester was not yet available for field tests, the costs were partially calculated on the basis of previous measurements, completed by productivity data obtained from the time-consumption measurements of a multi-tree harvester, applied with minor alteration for this purpose. According to the calculations the PALAPUU method cannot compete with partial-tree or shortwood methods. The profitability of the method could be improved by adding the transportation density and the productivity of the harvester. It is also possible to procure timber to the mill as partial-trees and to chunk it while feeding it into the drum. Chipping tests were made using the steel-frame-chipper owned by VTT Construction Technology. The blade construction of the chipper was changed so, that it was possible to adjust the cutting thickness of the chips to 4 mm, while in the previous mill-tests it had been 6 mm. The chips were used for cooking tests in the Department of Chemistry of the University of Jyvaeskylae. The results showed that the thinner chips were cooked further under the same cooking conditions. By using the chunkwood method it is possible to harvest 10-70 more biomass for the mills, than it is possible in the pulpwood harvesting

  10. Comparison of a Ring On-Chip Network and a Code-Division Multiple-Access On-Chip Network

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2007-01-01

    Full Text Available Two network-on-chip (NoC designs are examined and compared in this paper. One design applies a bidirectional ring connection scheme, while the other design applies a code-division multiple-access (CDMA connection scheme. Both of the designs apply globally asynchronous locally synchronous (GALS scheme in order to deal with the issue of transferring data in a multiple-clock-domain environment of an on-chip system. The two NoC designs are compared with each other by their network structures, data transfer principles, network node structures, and their asynchronous designs. Both the synchronous and the asynchronous designs of the two on-chip networks are realized using a hardware-description language (HDL in order to make the entire designs suit the commonly used synchronous design tools and flow. The performance estimation and comparison of the two NoC designs which are based on the HDL realizations are addressed. By comparing the two NoC designs, the advantages and disadvantages of applying direct connection and CDMA connection schemes in an on-chip communication network are discussed.

  11. Experiment list: SRX319550 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e embryonic stem cells || genotype/variation=expressing Flag-bio tagged Myc || chip beads=Dynabeads MyOne Streptavidin T1 || chip bea...ds vendor=Invitrogen http://dbarchive.biosciencedbc.jp/k

  12. A fast template matching method for LED chip Localization

    Directory of Open Access Journals (Sweden)

    Zhong Fuqiang

    2015-01-01

    Full Text Available Efficiency determines the profits of the semiconductor producers. So the producers spare no effort to enhance the efficiency of every procedure. The purpose of the paper is to present a method to shorten the time to locate the LED chips on wafer. The method consists of 3 steps. Firstly, image segmentation and blob analyzation are used to predict the positions of potential chips. Then predict the orientations of potential chips based on their dominant orientations. Finally, according to the positions and orientations predicted above, locate the chips precisely based on gradient orientation features. Experiments show that the algorithm is faster than the traditional method we choose to locate the LED chips. Besides, even the orientations of the chips on wafer are of big deviation to the orientation of the template, the efficiency of this method won't be affected.

  13. Chemiluminescence generation and detection in a capillary-driven microfluidic chip

    Science.gov (United States)

    Ramon, Charlotte; Temiz, Yuksel; Delamarche, Emmanuel

    2017-02-01

    The use of microfluidic technology represents a strong opportunity for providing sensitive, low-cost and rapid diagnosis at the point-of-care and such a technology might therefore support better, faster and more efficient diagnosis and treatment of patients at home and in healthcare settings both in developed and developing countries. In this work, we consider luminescence-based assays as an alternative to well-established fluorescence-based systems because luminescence does not require a light source or expensive optical components and is therefore a promising detection method for point-of-care applications. Here, we show a proof-of-concept of chemiluminescence (CL) generation and detection in a capillary-driven microfluidic chip for potential immunoassay applications. We employed a commercial acridan-based reaction, which is catalyzed by horseradish peroxidase (HRP). We investigated CL generation under flow conditions using a simplified immunoassay model where HRP is used instead of the complete sandwich immunocomplex. First, CL signals were generated in a capillary microfluidic chip by immobilizing HRP on a polydimethylsiloxane (PDMS) sealing layer using stencil deposition and flowing CL substrate through the hydrophilic channels. CL signals were detected using a compact (only 5×5×2.5 cm3) and custom-designed scanner, which was assembled for less than $30 and comprised a 128×1 photodiode array, a mini stepper motor, an Arduino microcontroller, and a 3D-printed housing. In addition, microfluidic chips having specific 30-μm-deep structures were fabricated and used to immobilize ensembles of 4.50 μm beads functionalized with HRP so as to generate high CL signals from capillary-driven chips.

  14. Directed evolution of enzymes using microfluidic chips

    Science.gov (United States)

    Pilát, Zdeněk.; Ježek, Jan; Šmatlo, Filip; Kaůka, Jan; Zemánek, Pavel

    2016-12-01

    Enzymes are highly versatile and ubiquitous biological catalysts. They can greatly accelerate large variety of reactions, while ensuring appropriate catalytic activity and high selectivity. These properties make enzymes attractive biocatalysts for a wide range of industrial and biomedical applications. Over the last two decades, directed evolution of enzymes has transformed the field of protein engineering. We have devised microfluidic systems for directed evolution of haloalkane dehalogenases in emulsion droplets. In such a device, individual bacterial cells producing mutated variants of the same enzyme are encapsulated in microdroplets and supplied with a substrate. The conversion of a substrate by the enzyme produced by a single bacterium changes the pH in the droplet which is signalized by pH dependent fluorescence probe. The droplets with the highest enzymatic activity can be separated directly on the chip by dielectrophoresis and the resultant cell lineage can be used for enzyme production or for further rounds of directed evolution. This platform is applicable for fast screening of large libraries in directed evolution experiments requiring mutagenesis at multiple sites of a protein structure.

  15. Experiment list: SRX180159 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sd || cell type=hemogenic endothelium || chip antibody=CEBPb || chip antibody vendor=santa cruz biotechnol...ogy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachData/bw/SRX180159.bw http://

  16. Experiment list: SRX112178 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available line=OS25 ES cells || chip antibody=8WG16 (MMS-126R, Covance) || chip antibody manufacturer=Covance || chromatin=Fixed || beads...=Magnetic beads http://dbarchive.biosciencedbc.jp/kyushu-u/mm

  17. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders

    2016-01-01

    On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range.......On chip tunable laser is demonstrated by realizing a microfluidic droplet array. The periodicity is controlled by the pressure applied to two separate inlets, allowing to tune the lasing frequency over a broad spectral range....

  18. On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Takanori Akagi

    Full Text Available Extracellular vesicles (EVs including exosomes and microvesicles have attracted considerable attention in the fields of cell biology and medicine. For a better understanding of EVs and further exploration of their applications, the development of analytical methods for biological nanovesicles has been required. In particular, considering the heterogeneity of EVs, methods capable of measuring individual vesicles are desired. Here, we report that on-chip immunoelectrophoresis can provide a useful method for the differential protein expression profiling of individual EVs. Electrophoresis experiments were performed on EVs collected from the culture supernatant of MDA-MB-231 human breast cancer cells using a measurement platform comprising a microcapillary electrophoresis chip and a laser dark-field microimaging system. The zeta potential distribution of EVs that reacted with an anti-human CD63 (exosome and microvesicle marker antibody showed a marked positive shift as compared with that for the normal immunoglobulin G (IgG isotype control. Thus, on-chip immunoelectrophoresis could sensitively detect the over-expression of CD63 glycoproteins on EVs. Moreover, to explore the applicability of on-chip immunoelectrophoresis to cancer diagnosis, EVs collected from the blood of a mouse tumor model were analyzed by this method. By comparing the zeta potential distributions of EVs after their immunochemical reaction with normal IgG, and the anti-human CD63 and anti-human CD44 (cancer stem cell marker antibodies, EVs of tumor origin circulating in blood were differentially detected in the real sample. The result indicates that the present method is potentially applicable to liquid biopsy, a promising approach to the low-invasive diagnosis of cancer.

  19. Near-Field, On-Chip Optical Brownian Ratchets.

    Science.gov (United States)

    Wu, Shao-Hua; Huang, Ningfeng; Jaquay, Eric; Povinelli, Michelle L

    2016-08-10

    Nanoparticles in aqueous solution are subject to collisions with solvent molecules, resulting in random, Brownian motion. By breaking the spatiotemporal symmetry of the system, the motion can be rectified. In nature, Brownian ratchets leverage thermal fluctuations to provide directional motion of proteins and enzymes. In man-made systems, Brownian ratchets have been used for nanoparticle sorting and manipulation. Implementations based on optical traps provide a high degree of tunability along with precise spatiotemporal control. Here, we demonstrate an optical Brownian ratchet based on the near-field traps of an asymmetrically patterned photonic crystal. The system yields over 25 times greater trap stiffness than conventional optical tweezers. Our technique opens up new possibilities for particle manipulation in a microfluidic, lab-on-chip environment.

  20. Method and apparatus to debug an integrated circuit chip via synchronous clock stop and scan

    Science.gov (United States)

    Bellofatto, Ralph E [Ridgefield, CT; Ellavsky, Matthew R [Rochester, MN; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Gooding, Thomas M [Rochester, MN; Haring, Rudolf A [Cortlandt Manor, NY; Hehenberger, Lance G [Leander, TX; Ohmacht, Martin [Yorktown Heights, NY

    2012-03-20

    An apparatus and method for evaluating a state of an electronic or integrated circuit (IC), each IC including one or more processor elements for controlling operations of IC sub-units, and each the IC supporting multiple frequency clock domains. The method comprises: generating a synchronized set of enable signals in correspondence with one or more IC sub-units for starting operation of one or more IC sub-units according to a determined timing configuration; counting, in response to one signal of the synchronized set of enable signals, a number of main processor IC clock cycles; and, upon attaining a desired clock cycle number, generating a stop signal for each unique frequency clock domain to synchronously stop a functional clock for each respective frequency clock domain; and, upon synchronously stopping all on-chip functional clocks on all frequency clock domains in a deterministic fashion, scanning out data values at a desired IC chip state. The apparatus and methodology enables construction of a cycle-by-cycle view of any part of the state of a running IC chip, using a combination of on-chip circuitry and software.

  1. Experiment list: SRX185907 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Homo sapiens; ChIP-Seq source_name=MCF-7 breast adenocarcinoma cells, control, FOXM1 ChIP || cell_line=MCF-...7 || cell_type=ER-positive breast adenocarcinoma cells || treatment=DMSO || chip_

  2. Experiment list: SRX319552 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available embryonic stem cells || genotype/variation=expressing Flag-bio tagged E2F4 || chip beads=Dynabeads MyOne Streptavidin T1 || chip bea...ds vendor=Invitrogen http://dbarchive.biosciencedbc.jp/k

  3. Experiment list: SRX112184 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available line=OS25 ES cells || chip antibody=CTD4H8 (MMS-128P, Covance) || chip antibody manufacturer=Covance || chromatin=Fixed || beads...=Sepharose beads http://dbarchive.biosciencedbc.jp/kyushu-u/m

  4. Experiment list: SRX367328 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siCTL http://dbarchive.bio...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  5. Experiment list: SRX543048 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/ea...CID.adh murine thymic lymphoma || development stage=DN3 || chip antibody=rabbit anti-Miz-1 || chip antibody vendor=Santa Cruz Biotech

  6. Venom On-a-Chip: A Fast and Efficient Method for Comparative Venomics.

    Science.gov (United States)

    Zancolli, Giulia; Sanz, Libia; Calvete, Juan J; Wüster, Wolfgang

    2017-05-28

    Venom research has attracted an increasing interest in disparate fields, from drug development and pharmacology, to evolutionary biology and ecology, and rational antivenom production. Advances in "-omics" technologies have allowed the characterization of an increasing number of animal venoms, but the methodology currently available is suboptimal for large-scale comparisons of venom profiles. Here, we describe a fast, reproducible and semi-automated protocol for investigating snake venom variability, especially at the intraspecific level, using the Agilent Bioanalyzer on-chip technology. Our protocol generated a phenotype matrix which can be used for robust statistical analysis and correlations of venom variation with ecological correlates, or other extrinsic factors. We also demonstrate the ease and utility of combining on-chip technology with previously fractionated venoms for detection of specific individual toxin proteins. Our study describes a novel strategy for rapid venom discrimination and analysis of compositional variation at multiple taxonomic levels, allowing researchers to tackle evolutionary questions and unveiling the drivers of the incredible biodiversity of venoms.

  7. CMOS Image Sensors: Electronic Camera On A Chip

    Science.gov (United States)

    Fossum, E. R.

    1995-01-01

    Recent advancements in CMOS image sensor technology are reviewed, including both passive pixel sensors and active pixel sensors. On- chip analog to digital converters and on-chip timing and control circuits permit realization of an electronic camera-on-a-chip. Highly miniaturized imaging systems based on CMOS image sensor technology are emerging as a competitor to charge-coupled devices for low cost uses.

  8. A 2.4GHz ULP OOK single-chip transceiver for healthcare applications

    NARCIS (Netherlands)

    Vidojkovic, M.; Huang, X.; Harpe, P.J.A.; Rampu, S.; Zhou, C.; Huang, Li; Molengraft, van de J.; Imamura, K.; Büsze, B.; Bouwens, F.; Konijnenburg, M.; Santana, J.; Breeschoten, A.; Huisken, J.; Philips, K.; Dolmans, G.; Groot, de H.W.H.

    2011-01-01

    This paper describes an ultra-low power (ULP) single chip transceiver for wireless body area network (WBAN) applications. It supports on-off keying (OOK) modulation, and it operates in the 2.36–2.4 GHz medical BAN and 2.4–2.485 GHz ISM bands. It is implemented in 90 nm CMOS technology. The direct

  9. Experiment list: SRX185915 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available mo sapiens; ChIP-Seq source_name=MCF-7 breast adenocarcinoma cells, control, FOXM1 ChIP || cell_line=MCF-7 |...| cell_type=ER-positive breast adenocarcinoma cells || treatment=DMSO || chip_tar

  10. Experiment list: SRX185909 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available omo sapiens; ChIP-Seq source_name=MCF-7 breast adenocarcinoma cells, control, FOXM1 ChIP || cell_line=MCF-7 ...|| cell_type=ER-positive breast adenocarcinoma cells || treatment=DMSO || chip_ta

  11. Experiment list: SRX185917 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available omo sapiens; ChIP-Seq source_name=MCF-7 breast adenocarcinoma cells, control, FOXM1 ChIP || cell_line=MCF-7 ...|| cell_type=ER-positive breast adenocarcinoma cells || treatment=DMSO || chip_ta

  12. Experiment list: SRX112179 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =OS25 ES cells || chip antibody=H5 (MMS-129R, Covance) || chip antibody manufacturer=Covance || chromatin=Fixed || beads=Magnetic bea...ds http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachDa

  13. Experiment list: SRX367330 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nology) || sirna transfection=siBrd4 http://dbarchive.bi...=HEK293T cell || cell line=Human Embryonic Kidney 293 cells || chip antibody=CDK9 || chip antibody details=2316S (Cell Signaling Tech

  14. VLSI design of an RSA encryption/decryption chip using systolic array based architecture

    Science.gov (United States)

    Sun, Chi-Chia; Lin, Bor-Shing; Jan, Gene Eu; Lin, Jheng-Yi

    2016-09-01

    This article presents the VLSI design of a configurable RSA public key cryptosystem supporting the 512-bit, 1024-bit and 2048-bit based on Montgomery algorithm achieving comparable clock cycles of current relevant works but with smaller die size. We use binary method for the modular exponentiation and adopt Montgomery algorithm for the modular multiplication to simplify computational complexity, which, together with the systolic array concept for electric circuit designs effectively, lower the die size. The main architecture of the chip consists of four functional blocks, namely input/output modules, registers module, arithmetic module and control module. We applied the concept of systolic array to design the RSA encryption/decryption chip by using VHDL hardware language and verified using the TSMC/CIC 0.35 m 1P4 M technology. The die area of the 2048-bit RSA chip without the DFT is 3.9 × 3.9 mm2 (4.58 × 4.58 mm2 with DFT). Its average baud rate can reach 10.84 kbps under a 100 MHz clock.

  15. Wood chips procurement and research project at the Mikkeli region

    International Nuclear Information System (INIS)

    Saksa, T.; Auvinen, P.

    1996-01-01

    In 1993-94, a large-scale energywood production chain started as a co-operation project by the Mikkeli city forest office and local forestry societies. In 1995 over 115 000 m 3 (about 85 000 MWh of energy) of wood chips were delivered to Pursiala heat and power plant in Mikkeli. About 75 % of these chips was forest processed chips. About 70 % of the forest processed chips was whole tree chips from improvement cuttings of young forest stands and the rest was logging waste chips from regeneration cutting areas. The average total delivery costs of forest processed chips after reduction of energywood and other subsidies were approximately 45 FIM/m 3 (60 FIM/MWh) for the whole tree chips and 38 FIM/m 3 (50 FIM/MWh) for logging waste chips. The delivery costs of forest processed chips could meet the target of Bioenergy Research Programme (45 FIM/MWh) only in the most favourable cases. In an average the delivery costs were about 9 FIM/MWh more than the price obtained when sold to the heat and power plant. However the wood chip production created 27 new jobs and the increase of income to the local economy was about 2.2 milj. FIM /year. The local communities got new tax revenue about 3 FIM/MWh. The gain for the forestry was approximated to be 5 - 6 FIM/MWh. The resources of forest processed chips were studied on the basis of stand measurements. According to the study the most remarkable energywood resources were in young thinning stands on Oxalis-Myrtillus and Myrtillus forest site types. On Oxalis-Myrtillus type almost every and on Myrtillus type every second stand included energywood more than 40 m 3 /ha

  16. A primary battery-on-a-chip using monolayer graphene

    Science.gov (United States)

    Iost, Rodrigo M.; Crespilho, Frank N.; Kern, Klaus; Balasubramanian, Kannan

    2016-07-01

    We present here a bottom-up approach for realizing on-chip on-demand batteries starting out with chemical vapor deposition-grown graphene. Single graphene monolayers contacted by electrode lines on a silicon chip serve as electrodes. The anode and cathode are realized by electrodeposition of zinc and copper respectively onto graphene, leading to the realization of a miniature graphene-based Daniell cell on a chip. The electrolyte is housed partly in a gel and partly in liquid form in an on-chip enclosure molded using a 3d printer or made out of poly(dimethylsiloxane). The realized batteries provide a stable voltage (∼1.1 V) for many hours and exhibit capacities as high as 15 μAh, providing enough power to operate a pocket calculator. The realized batteries show promise for deployment as on-chip power sources for autonomous systems in lab-on-a-chip or biomedical applications.

  17. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  18. Microfluidic Organ-on-a-Chip Models of Human IntestineSummary

    Directory of Open Access Journals (Sweden)

    Amir Bein

    Full Text Available Microfluidic organ-on-a-chip models of human intestine have been developed and used to study intestinal physiology and pathophysiology. In this article, we review this field and describe how microfluidic Intestine Chips offer new capabilities not possible with conventional culture systems or organoid cultures, including the ability to analyze contributions of individual cellular, chemical, and physical control parameters one-at-a-time; to coculture human intestinal cells with commensal microbiome for extended times; and to create human-relevant disease models. We also discuss potential future applications of human Intestine Chips, including how they might be used for drug development and personalized medicine. Keywords: Organs-on-Chips, Gut-on-a-Chip, Intestine-on-a-Chip, Microfluidic

  19. Experiment list: SRX112176 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available e=OS25 ES cells || chip antibody=CTD4H8 (MMS-128P, Covance) || chip antibody manufacturer=Covance || chromatin=Fixed || beads...=Magnetic beads http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/e

  20. Properties of the malarial proteins Pf2, Pf9 and PfP0, which support ...

    Indian Academy of Sciences (India)

    Properties of the malarial proteins Pf2, Pf9 and PfP0, which support their roles as immune targets. Antibodies raised to each of these proteins (or purified from immune adults) inhibit the growth of Plasmodium falciparum at the red cell invasion step. The proteins are localized on the parasite cell surface. Each protein is ...

  1. Chipping operations and efficiency in different operational environments

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, D.; Mola-Yudego, B.; Prinz, R.; Emer, B.; Sikanen, L., e-mail: dominik.roser@metla.fi

    2012-11-01

    This research analyses the productivity of energy wood chipping operations at several sites in Austria and Finland. The aim of the work is to examine the differences in productivity and the effects of the operational environment for the chipping of bioenergy at the roadside. Furthermore, the study quantifies the effects of different variables such as forest energy assortments, tree species, sieve size and machines on the overall productivity of chipping. The results revealed that there are significant differences in the chipping productivity in Austria and Finland which are largely based on the use of different sieve sizes. Furthermore, the different operational environments in both countries, as well as the characteristics of the raw material also seem to have an effect on productivity. In order to improve the chipping productivity, particularly in Central European conditions, all relevant stakeholders need to work jointly to find solutions that will allow a greater variation of chip size. Furthermore, in the future more consideration has to be given to the close interlinkage between the chipper, crane and grapple. As a result, investments costs can be optimized and operational costs and stress on the machines reduced. (orig.)

  2. Developing an Integrated Design Strategy for Chip Layout Optimization

    NARCIS (Netherlands)

    Wits, Wessel Willems; Jauregui Becker, Juan Manuel; van Vliet, Frank Edward; te Riele, G.J.

    2011-01-01

    This paper presents an integrated design strategy for chip layout optimization. The strategy couples both electric and thermal aspects during the conceptual design phase to improve chip performances; thermal management being one of the major topics. The layout of the chip circuitry is optimized

  3. Arraying proteins by cell-free synthesis.

    Science.gov (United States)

    He, Mingyue; Wang, Ming-Wei

    2007-10-01

    Recent advances in life science have led to great motivation for the development of protein arrays to study functions of genome-encoded proteins. While traditional cell-based methods have been commonly used for generating protein arrays, they are usually a time-consuming process with a number of technical challenges. Cell-free protein synthesis offers an attractive system for making protein arrays, not only does it rapidly converts the genetic information into functional proteins without the need for DNA cloning, but also presents a flexible environment amenable to production of folded proteins or proteins with defined modifications. Recent advancements have made it possible to rapidly generate protein arrays from PCR DNA templates through parallel on-chip protein synthesis. This article reviews current cell-free protein array technologies and their proteomic applications.

  4. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  5. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  6. Precision Photothermal Annealing of Nanoporous Gold Thin Films for the Microfabrication of a Single-chip Material Libraries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Shen, N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rubenchik, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Demos, S. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Matthews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-30

    Single-chip material libraries of thin films of nanostructured materials are a promising approach for high throughput studies of structure-property relationship in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material of specific interest in both these fields. One attractive property of np-Au is its self-similar coarsening behavior by thermally induced surface diffusion. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip. Laser micromachining offers an attractive solution to this problem by providing a means to apply energy with high spatial and temporal resolution. In the present study we use finite element multiphysics simulations to predict the effects of laser mode (continuous-wave vs. pulsed) and supporting substrate thermal conductivity on the local np-Au film temperatures during photothermal annealing and subsequently investigate the mechanisms by which the np-Au network is coarsening. Our simulations predict that continuous-wave mode laser irradiation on a silicon supporting substrate supports the widest range of morphologies that can be created through the photothermal annealing of thin film np-Au. Using this result we successfully fabricate a single-chip material library consisting of 81 np-Au samples of 9 different morphologies for use in increased throughput material interaction studies.

  7. Opto-electronic DNA chip-based integrated card for clinical diagnostics.

    Science.gov (United States)

    Marchand, Gilles; Broyer, Patrick; Lanet, Véronique; Delattre, Cyril; Foucault, Frédéric; Menou, Lionel; Calvas, Bernard; Roller, Denis; Ginot, Frédéric; Campagnolo, Raymond; Mallard, Frédéric

    2008-02-01

    Clinical diagnostics is one of the most promising applications for microfluidic lab-on-a-chip or lab-on-card systems. DNA chips, which provide multiparametric data, are privileged tools for genomic analysis. However, automation of molecular biology protocol and use of these DNA chips in fully integrated systems remains a great challenge. Simplicity of chip and/or card/instrument interfaces is amongst the most critical issues to be addressed. Indeed, current detection systems for DNA chip reading are often complex, expensive, bulky and even limited in terms of sensitivity or accuracy. Furthermore, for liquid handling in the lab-on-cards, many devices use complex and bulky systems, either to directly manipulate fluids, or to ensure pneumatic or mechanical control of integrated valves. All these drawbacks prevent or limit the use of DNA-chip-based integrated systems, for point-of-care testing or as a routine diagnostics tool. We present here a DNA-chip-based protocol integration on a plastic card for clinical diagnostics applications including: (1) an opto-electronic DNA-chip, (2) fluid handling using electrically activated embedded pyrotechnic microvalves with closing/opening functions. We demonstrate both fluidic and electric packaging of the optoelectronic DNA chip without major alteration of its electronical and biological functionalities, and fluid control using novel electrically activable pyrotechnic microvalves. Finally, we suggest a complete design of a card dedicated to automation of a complex biological protocol with a fully electrical fluid handling and DNA chip reading.

  8. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  9. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  10. Biostability of an implantable glucose sensor chip

    Science.gov (United States)

    Fröhlich, M.; Birkholz, M.; Ehwald, K. E.; Kulse, P.; Fursenko, O.; Katzer, J.

    2012-12-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and Ra roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  11. Biostability of an implantable glucose sensor chip

    International Nuclear Information System (INIS)

    Fröhlich, M; Ehwald, K E; Kulse, P; Fursenko, O; Katzer, J; Birkholz, M

    2012-01-01

    Surface materials of an implantable microelectronic chip intended for medical applications were evaluated with respect to their long-term stability in bio-environments. The sensor chip shall apply in a glucose monitor by operating as a microviscosimeter according to the principle of affinity viscosimetry. A monolithic integration of a microelectromechanical system (MEMS) into the sensor chip was successfully performed in a combined 0.25 μm CMOS/BiCMOS technology. In order to study material durability and biostability of the surfaces, sensor chips were exposed to various in vitro and in vivo tests. Corrosional damage of SiON, SiO 2 and TiN surfaces was investigated by optical microscopy, ellipsometry and AFM. The results served for optimizing the Back-end-of-Line (BEoL) stack, from which the MEMS was prepared. Corrosion of metal lines could significantly be reduced by improving the topmost passivation layer. The experiments revealed no visible damage of the actuator or other functionally important MEMS elements. Sensor chips were also exposed to human body fluid for three month by implantation into the abdomen of a volunteer. Only small effects were observed for layer thickness and R a roughness after explantation. In particular, TiN as used for the actuator beam showed no degradation by biocorrosion. The highest degradation rate of about 50 nm per month was revealed for the SiON passivation layer. These results suggest that the sensor chip may safely operate in subcutaneous tissue for a period of several months.

  12. Experiment list: SRX262781 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available _name=NIH3T3_SRF_15 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SRF || chip antibody vendor=Santa Cruz Biotec...hnology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/e

  13. Experiment list: SRX262786 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available H3T3_MRTFA_15 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-A || chip antibody vendor=Santa Cruz Biotechno...logy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/each

  14. Experiment list: SRX262791 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available IH3T3_MRTFB_LAT || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-B || chip antibody vendor=Santa Cruz Biotech...nology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/ea

  15. Experiment list: SRX262782 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available echnology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9...ce_name=NIH3T3_SRF_15 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SRF || chip antibody vendor=Santa Cruz Biot

  16. Experiment list: SRX262788 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available IH3T3_MRTFA_UO || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-A || chip antibody vendor=Santa Cruz Biotechn...ology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eac

  17. Experiment list: SRX262787 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available IH3T3_MRTFA_LAT || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=MRTF-A || chip antibody vendor=Santa Cruz Biotech...nology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/ea

  18. Experiment list: SRX262780 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available chnology http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/...e_name=NIH3T3_SRF_03 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SRF || chip antibody vendor=Santa Cruz Biote

  19. 3D Printing of Organs-On-Chips.

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  20. Identification of conformational epitopes for human IgG on Chemotaxis inhibitory protein of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Furebring Christina

    2009-03-01

    Full Text Available Abstract Background The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS blocks the Complement fragment C5a receptor (C5aR and formylated peptide receptor (FPR and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface. We also initiate the process to identify a mutated CHIPS molecule that is not efficiently recognized by preformed anti-CHIPS antibodies and retains anti-inflammatory activity. Results In this paper, we panned peptide displaying phage libraries against a pool of CHIPS specific affinity-purified polyclonal human IgG. The selected peptides could be divided into two groups of sequences. The first group was the most dominant with 36 of the 48 sequenced clones represented. Binding to human affinity-purified IgG was verified by ELISA for a selection of peptide sequences in phage format. For further analysis, one peptide was chemically synthesized and antibodies affinity-purified on this peptide were found to bind the CHIPS molecule as studied by ELISA and Surface Plasmon Resonance. Furthermore, seven potential conformational epitopes responsible for antibody recognition were identified by mapping phage selected peptide sequences on the CHIPS surface as defined in the NMR structure of the recombinant CHIPS31–121 protein. Mapped epitopes were verified by in vitro mutational analysis of the CHIPS molecule. Single mutations introduced in the proposed antibody epitopes were shown to decrease antibody binding to CHIPS. The biological function in terms of C5aR signaling was studied by flow cytometry. A few mutations were shown to affect this biological function as well as the antibody binding. Conclusion Conformational epitopes recognized by human antibodies

  1. Bioprinting and Organ-on-Chip Applications Towards Personalized Medicine for Bone Diseases.

    Science.gov (United States)

    Arrigoni, Chiara; Gilardi, Mara; Bersini, Simone; Candrian, Christian; Moretti, Matteo

    2017-06-01

    The skeleton supports and confers structure to the whole body but several pathological and traumatic conditions affect the bone tissue. Most of those pathological conditions are specific and different among different patients, such as bone defects due to traumatic injuries or bone remodeling alterations due to congenital diseases. In this context, the development of personalized therapies would be highly desirable. In recent years the advent of innovative techniques like bioprinting and microfluidic organ-on-chip raised hopes of achieving key tools helping the application of personalized therapies for bone diseases. In this review we will illustrate the latest progresses in the bioprinting of personalized bone grafts and generation of patient-specific bone-on-chip devices, describing current approaches and limitations and possible future improvements for more effective personalized bone grafts and disease models.

  2. Chip-based microtrap arrays for cold polar molecules

    Science.gov (United States)

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2017-12-01

    Compared to the atomic chip, which has been a powerful platform to perform an astonishing range of applications from rapid Bose-Einstein condensate (BEC) production to the atomic clock, the molecular chip is only in its infant stages. Recently a one-dimensional electric lattice was demonstrated to trap polar molecules on a chip. This excellent work opens up the way to building a molecular chip laboratory. Here we propose a two-dimensional (2D) electric lattice on a chip with concise and robust structure, which is formed by arrays of squared gold wires. Arrays of microtraps that originate in the microsize electrodes offer a steep gradient and thus allow for confining both light and heavy polar molecules. Theoretical analysis and numerical calculations are performed using two types of sample molecules, N D3 and SrF, to justify the possibility of our proposal. The height of the minima of the potential wells is about 10 μm above the surface of the chip and can be easily adjusted in a wide range by changing the voltages applied on the electrodes. These microtraps offer intriguing perspectives for investigating cold molecules in periodic potentials, such as quantum computing science, low-dimensional physics, and some other possible applications amenable to magnetic or optical lattice. The 2D adjustable electric lattice is expected to act as a building block for a future gas-phase molecular chip laboratory.

  3. An Energy-Efficient Reconfigurable Circuit Switched Network-on-Chip

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Rauwerda, G.K.; Smit, L.T.

    Network-on-Chip (NoC) is an energy-efficient on-chip communication architecture for multi-tile System-on-Chip (SoC) architectures. The SoC architecture, including its run-time software, can replace inflexible ASICs for future ambient systems. These ambient systems have to be flexible as well as

  4. Energy Model of Networks-on-Chip and a Bus

    NARCIS (Netherlands)

    Wolkotte, P.T.; Smit, Gerardus Johannes Maria; Kavaldjiev, N.K.; Becker, Jens E.; Becker, Jürgen; Nurmi, J.; Takala, J.; Hamalainen, T.D.

    2005-01-01

    A Network-on-Chip (NoC) is an energy-efficient onchip communication architecture for Multi-Processor Systemon-Chip (MPSoC) architectures. In earlier papers we proposed two Network-on-Chip architectures based on packet-switching and circuit-switching. In this paper we derive an energy model for both

  5. Reagent-loaded plastic microfluidic chips for detecting homocysteine

    International Nuclear Information System (INIS)

    Suk, Ji Won; Jang, Jae-Young; Cho, Jun-Hyeong

    2008-01-01

    This report describes the preliminary study on plastic microfluidic chips with pre-loaded reagents for detecting homocysteine (Hcy). All reagents needed in an Hcy immunoassay were included in a microfluidic chip to remove tedious assay steps. A simple and cost-effective bonding method was developed to realize reagent-loaded microfluidic chips. This technique uses an intermediate layer between two plastic substrates by selectively patterning polydimethylsiloxane (PDMS) on the embossed surface of microchannels and fixing the substrates under pressure. Using this bonding method, the competitive immunoassay for SAH, a converted form of Hcy, was performed without any damage to reagents in chips, and the results showed that the fluorescent signal from antibody antigen binding decreased as the SAH concentration increased. Based on the SAH immunoassay, whole immunoassay steps for Hcy detection were carried out in plastic microfluidic chips with all necessary reagents. These experiments demonstrated the feasibility of the Hcy immunoassay in microfluidic devices

  6. Experiment list: SRX262797 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 3T3_SAP1_03 || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SAP-1a || chip antibody vendor=Santa Cruz Biotechnolo...gy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/eachDa

  7. Experiment list: SRX262799 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available H3T3_SAP1_LAT || cell line=NIH3T3 fibroblasts || genotype=normal || chip antibody=SAP-1a || chip antibody vendor=Santa Cruz Biotechno...logy http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/each

  8. Experiment list: SRX352046 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available SM1232564: CSB M CHIP; Homo sapiens; ChIP-Seq source_name=fibroblast_menadione_CSB-ChIP || cell type=fibroblast || treated with=menad...ione || chip antibody=Mouse monoclonal anti-CSB N Terminus (1B1) http://dbarchive.b

  9. Microneedle Array Interface to CE on Chip

    NARCIS (Netherlands)

    Lüttge, Regina; Gardeniers, Johannes G.E.; Vrouwe, E.X.; van den Berg, Albert; Northrup, M.A.; Jensen, K.F; Harrison, D.J.

    2003-01-01

    This paper presents a microneedle array sampler interfaced to a capillary electrophoresis (CE) glass chip with integrated conductivity detection electrodes. A solution of alkali ions was electrokinetically loaded through the microneedles onto the chip and separation was demonstrated compared to a

  10. Experiment list: SRX144526 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available stein-Barr Virus transformed 11803840,92.5,91.6,38 GSM922971: NRF2 ChIP vehicle treated rep2; Homo sapiens; ...ChIP-Seq source_name=NRF2 ChIP vehicle treated || biomaterial_provider=Coriell; h

  11. Experiment list: SRX151245 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 0: CTCF ChIPSeq; Homo sapiens; ChIP-Seq source_name=BCBL1 pleural effusion lymphoma, CTCF ChIP || cell line=...BCBL1 || cell type=KSHV-infected pleural effusion lymphoma cells || chip antibody=rabbit anti-CTCF || antibo

  12. Developing technology for large-scale production of forest chips. Wood Energy Technology Programme 1999-2003. Interim report

    International Nuclear Information System (INIS)

    Hakkila, P.

    2003-01-01

    Finland is enhancing its use of renewable sources in energy production. From the 1995 level, the use of renewable energy is to be increased by 50 % by 2010, and 100 % by 2025. Wood-based fuels will play a leading role in this development. The main source of wood-based fuels is processing residues from the forest industries. However, as all processing residues are already in use, an increase is possible only as far as the capacity and wood consumption of the forest industries grow. Energy policy affects the production and availability of processing residues only indirectly. Another large source of wood-based energy is forest fuels, consisting of traditional firewood and chips comminuted from low-quality biomass. It is estimated that the reserve of technically harvest-able forest biomass is 10-16 Mm' annually, when no specific cost limit is applied. This corresponds to 2-3 Mtoe or 6-9 % of the present consumption of primary energy in Finland. How much of this re-serve it will actually be possible to harvest and utilize depends on the cost competitiveness of forest chips against alternative sources of energy. A goal of Finnish energy and climate strategies is to use 5 Mm' forest chips annually by 2010. The use of wood fuels is being promoted by means of taxation, investment aid and support for chip production from young forests. Furthermore, research and development is being supported in order to create techno-economic conditions for the competitive production of forest chips. In 1999, the National Technology Agency Tekes established the five-year Wood Energy Technology Programme to stimulate the development of efficient systems for the large-scale production of forest chips. Key tar-gets are competitive costs, reliable supply and good quality chips. The two guiding principles of the programme are: (1) close cooperation between researchers and practitioners and (2) to apply research and development to the practical applications and commercialization. As of November

  13. Synthesis of on-chip control circuits for mVLSI biochips

    DEFF Research Database (Denmark)

    Potluri, Seetal; Schneider, Alexander Rüdiger; Hørslev-Petersen, Martin

    2017-01-01

    them to laboratory environments. To address this issue, researchers have proposed methods to reduce the number of offchip pressure sources, through integration of on-chip pneumatic control logic circuits fabricated using three-layer monolithic membrane valve technology. Traditionally, mVLSI biochip......-chip control circuit design and (iii) the integration of on-chip control in the placement and routing design tasks. In this paper we present a design methodology for logic synthesis and physical synthesis of mVLSI biochips that use on-chip control. We show how the proposed methodology can be successfully...... applied to generate biochip layouts with integrated on-chip pneumatic control....

  14. Experiment list: SRX150568 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Adenocarcinoma 59265240,72.4,16.4,4779 GSM935489: Harvard ChipSeq HeLa-S3 RPC155 std source_name=HeLa-S3 ...|| biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipS

  15. Experiment list: SRX150661 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Adenocarcinoma 59396606,71.7,11.1,1200 GSM935582: Harvard ChipSeq HeLa-S3 BRF1 std source_name=HeLa-S3 ||... biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipSeq

  16. Experiment list: SRX150495 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available is=Adenocarcinoma 62508352,67.6,8.4,1556 GSM935416: Harvard ChipSeq HeLa-S3 ZZZ3 std source_name=HeLa-S3 || ...biomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipSeq

  17. Experiment list: SRX150565 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Adenocarcinoma 54953593,74.3,12.2,1703 GSM935486: Harvard ChipSeq HeLa-S3 BDP1 std source_name=HeLa-S3 || b...iomaterial_provider=ATCC || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipSeq |

  18. Performance evaluation of chip seals in Idaho.

    Science.gov (United States)

    2010-08-01

    The intent of this research project is to identify a wide variety of parameters that influence the performance of pavements treated via chip seals within the State of Idaho. Chip sealing is currently one of the most popular methods of maintenance for...

  19. Experiment list: SRX507380 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=anti-HP1 || chip antibody vend...1770: WT anti-HP1- replicate#2; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_anti-HP1 || strain=piwi/

  20. Experiment list: SRX176054 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nosis=Carcinoma 13338805,91.2,4.9,792 GSM984386: LNCAP AR vehicle; Homo sapiens; ChIP-Seq source_name=prosta...te cancer cells || cell line=LNCaP || chip antibody=AR || chip antibody manufacturer=Abcam || treatment=EtOH vehicle

  1. Experiment list: SRX144525 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available neage=mesoderm|Description=parental cell type to lymphoblastoid cell lines 14487710,85.8,82.8,188 GSM922970: NRF2 ChIP vehicle... treated rep1; Homo sapiens; ChIP-Seq source_name=NRF2 ChIP vehicle treated || biomaterial

  2. Experiment list: SRX144524 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available neage=mesoderm|Description=parental cell type to lymphoblastoid cell lines 4766716,6.2,89.4,0 GSM922969: NRF2 ChIP vehicle... treated pilot; Homo sapiens; ChIP-Seq source_name=NRF2 ChIP vehicle treated || biomaterial_pr

  3. Experiment list: SRX151246 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 11: SMC1 ChIPSeq; Homo sapiens; ChIP-Seq source_name=BCBL1 pleural effusion lymphoma, SMC1 ChIP || cell line...=BCBL1 || cell type=KSHV-infected pleural effusion lymphoma cells || chip antibody=rabbit anti-SMC1 || antib

  4. New generation of single-chip microcomputers focused on cost performance

    Energy Technology Data Exchange (ETDEWEB)

    Akao, Y.; Iwashita, H. (Hitachi, Ltd., Tokyo (Japan))

    1993-06-01

    A single-chip microcomputer which incorporates a CPU (central processing unit), memory, and peripheral functions in one chip has been increasingly applied to various fields as the heart of electronic equipment in terms of its economy, compactness, lightness, and suitability for mass production. In response to a wide variety of needs, a lineup must have substantial breadth with regard to performance, on-chip memory capacity, on-chip peripheral functions, operating voltage, and packaging. In particular, low-voltage high-speed operation, high integration, expanded address space, and improved software productivity, which are required for mobile communication terminals, are the common needs for single-chip microcomputers. In accordance with these needs, Hitachi has been actively developing new products. The present paper introduces Hitachi's lineup of single-chip microcomputers. 10 figs., 1 tab.

  5. Prediction and analysis of beta-turns in proteins by support vector machine.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  6. Sensory and Quality Evaluation of Traditional Compared with Power Ultrasound Processed Corn (Zea Mays) Tortilla Chips.

    Science.gov (United States)

    Janve, Bhaskar; Yang, Wade; Sims, Charles

    2015-06-01

    Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P power ultrasound as potential tortilla chips processing aid. © 2015 Institute of Food Technologists®

  7. The RD53 Collaboration's SystemVerilog-UVM Simulation Framework and its General Applicability to Design of Advanced Pixel Readout Chips

    CERN Document Server

    Marconi, S.; Placidi, P.; Christiansen, J.; Hemperek, T.

    2014-01-01

    The foreseen Phase 2 pixel upgrades at the LHC have very challenging requirements for the design of hybrid pixel readout chips. A versatile pixel simulation platform is as an essential development tool for the design, verification and optimization of both the system architecture and the pixel chip building blocks (Intellectual Properties, IPs). This work is focused on the implemented simulation and verification environment named VEPIX53, built using the SystemVerilog language and the Universal Verification Methodology (UVM) class library in the framework of the RD53 Collaboration. The environment supports pixel chips at different levels of description: its reusable components feature the generation of different classes of parameterized input hits to the pixel matrix, monitoring of pixel chip inputs and outputs, conformity checks between predicted and actual outputs and collection of statistics on system performance. The environment has been tested performing a study of shared architectures of the trigger late...

  8. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  9. Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photo-immobilization process

    Directory of Open Access Journals (Sweden)

    Sirasa Yodmongkol

    2016-03-01

    Full Text Available In this study, protein microarrays based on sandwich immunoassays are generated to quantify the amount of alpha fetoprotein (AFP in blood serum. For chip generation a mixture of capture antibody and a photoactive copolymer consisting of N,N-dimethylacrylamide (DMAA, methacryloyloxy benzophenone (MaBP, and Na-4-styrenesulfonate (SSNa was spotted onto unmodified polymethyl methacrylate (PMMA substrates. Subsequently to printing of the microarray, the polymer and protein were photochemically cross-linked and the forming, biofunctionalized hydrogels simultaneously bound to the chip surface by short UV- irradiation. The obtained biochip was incubated with AFP antigen, followed by biotinylated AFP antibody and streptavidin-Cy5 and the fluorescence signal read-out. The developed microarray biochip covers the range of AFP in serum samples such as maternal serum in the range of 5 and 100 ng/ml. The chip production process is based on a fast and simple immobilization process, which can be applied to conventional plastic surfaces. Therefore, this protein microarray production process is a promising method to fabricate biochips for AFP screening processes. Keywords: Photo-immobilization, Protein microarray, Alpha fetoprotein, Hydrogel, 3D surface, Down syndrome

  10. Experiment list: SRX150586 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -Barr Virus 33195472,90.4,25.9,15633 GSM935507: Harvard ChipSeq GM12878 NF-YB IgG-mus source_name=GM12878 ||...?PgId=165&q=GM12878 || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipSeq || dat

  11. Experiment list: SRX150496 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ein-Barr Virus 63040797,85.0,19.7,1435 GSM935417: Harvard ChipSeq GM12878 SPT20 std source_name=GM12878 || b...gId=165&q=GM12878 || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipSeq || datat

  12. Experiment list: SRX150585 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -Barr Virus 32926476,94.0,12.0,2668 GSM935506: Harvard ChipSeq GM12878 NF-YA IgG-mus source_name=GM12878 || ...PgId=165&q=GM12878 || lab=Harvard || lab description=Struhl - Harvard University || datatype=ChipSeq || data

  13. A Chip for an Implantable Neural Stimulator

    DEFF Research Database (Denmark)

    Gudnason, Gunnar; Bruun, Erik; Haugland, Morten

    2000-01-01

    This paper describes a chip for a multichannel neural stimulator for functional electrical stimulation (FES). The purpose of FES is to restore muscular control in disabled patients. The chip performs all the signal processing required in an implanted neural stimulator. The power and digital data...

  14. Experiment list: SRX153146 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -Seq source_name=Human breast adenocarcinoma cell-line MCF7 || cell-line=MCF7 || passage=5 || chip antibody=...n=Pleura|Tissue Diagnosis=Adenocarcinoma 60170246,98.4,5.7,16756 GSM946850: MCF7 H3K27ac; Homo sapiens; ChIP

  15. Experiment list: SRX176063 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available =Carcinoma 11279321,95.5,3.6,13985 GSM984395: LNCAP ACH3 vehicle; Homo sapiens; ChIP-Seq source_name=prostat...e cancer cells || cell line=LNCaP || chip antibody=AcH3 || chip antibody manufacturer=Millipore || treatment=EtOH vehicle

  16. Experiment list: SRX176057 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available nosis=Carcinoma 21582823,90.1,7.3,1074 GSM984389: 22RV1 AR vehicle; Homo sapiens; ChIP-Seq source_name=prost...ate cancer cells || cell line=22RV1 || chip antibody=AR || chip antibody manufacturer=Abcam || treatment=EtOH vehicle

  17. Experiment list: SRX144527 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available neage=mesoderm|Description=parental cell type to lymphoblastoid cell lines 8704444,92.1,92.5,9 GSM922972: NRF2 ChIP vehicle... treated rep3; Homo sapiens; ChIP-Seq source_name=NRF2 ChIP vehicle treated || biomaterial_pr

  18. Experiment list: SRX160914 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available M970829: IgG for KSHV LANA; Homo sapiens; ChIP-Seq source_name=BCBL1 pleural effusion lymphoma, IgG ChIP || ...cell line=BCBL1 || cell type=KSHV-infected pleural effusion lymphoma cells || chip antibody=Rabbit IgG [Sant

  19. Experiment list: SRX160915 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available M970828: IgG for CTCF SMC1; Homo sapiens; ChIP-Seq source_name=BCBL1 pleural effusion lymphoma, IgG ChIP || ...cell line=BCBL1 || cell type=KSHV-infected pleural effusion lymphoma cells || chip antibody=Mouse IgG [Santa

  20. Ion Chromatography-on-a-chip for Water Quality Analysis

    Science.gov (United States)

    Kidd, R. D.; Noell, A.; Kazarians, G.; Aubrey, A. D.; Scianmarello, N.; Tai, Y.-C.

    2015-01-01

    We report progress towards developing a Micro-Electro-Mechanical Systems (MEMS)- based ion chromatograph (IC) for crewed spacecraft water analysis. This IC-chip is an offshoot of a NASA-funded effort to produce a high performance liquid chromatograph (HPLC)-chip. This HPLC-chip system would require a desalting (i.e. ion chromatography) step. The complete HPLC instrument consists of the Jet Propulsion Labortory's (JPL's) quadrupole ion trap mass spectrometer integrated with a state-of-the-art MEMS liquid chromatograph (LC) system developed by the California Institute of Technology's (Caltech's) Micromachining Laboratory. The IC version of the chip consist of an electrolysis-based injector, a separation column, two electrolysis pumps for gradient generation, mixer, and a built-in conductivity detector. The HPLC version of the chip also includes a nanospray tip. The low instrument mass, coupled with its high analytical capabilities, makes the LC chip ideally suitable for wide range of applications such as trace contaminant, inorganic analytical science and, when coupled to a mass spectrometer, a macromolecular detection system for either crewed space exploration vehicles or robotic planetary missions.

  1. 3D Printing of Organs-On-Chips

    Science.gov (United States)

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  2. Emission of organic substances from chip-boards

    Energy Technology Data Exchange (ETDEWEB)

    Deppe, H.J.

    1982-01-01

    A relatively small number of investigations on emissions of organic substances from chip-board is available up to now. The emissions known to date are caused by glues or other additives rather than by the wood itself. As concerns aminoplast glues (urea-formaldehyde or melamine-formaldehyde resins) the most important point of public interest has been the off-gassing of formaldehyde from chip-board. Chip-board with phenol-formaldehyde glues has been known in some cases to give off phenol. The formation of diamino diphenyl methane from isocyanate glues is still a matter of discussion. A further source for possible emissions are wood and fire protectives which are added during the manufacturing process. Finally, coating of chip-board may lead to emissions of organic substances. The lack of adequate detection methods has so far delayed the treatment of questions in relation to emissions from chip-board. Even now, there are numerous problems in this field especially when investigating isocyanate glues. Problems in relation to the origin of emissions due to the kind of glue used and the manufacturing process are discussed, and proposals are made how to solve some of these problems. The question of the health risk is dealt with from the view-point of the civil engineer and in an general economic context.

  3. 3D Printing of Organs-On-Chips

    Directory of Open Access Journals (Sweden)

    Hee-Gyeong Yi

    2017-01-01

    Full Text Available Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  4. Chip-Level Electromigration Reliability for Cu Interconnects

    International Nuclear Information System (INIS)

    Gall, M.; Oh, C.; Grinshpon, A.; Zolotov, V.; Panda, R.; Demircan, E.; Mueller, J.; Justison, P.; Ramakrishna, K.; Thrasher, S.; Hernandez, R.; Herrick, M.; Fox, R.; Boeck, B.; Kawasaki, H.; Haznedar, H.; Ku, P.

    2004-01-01

    Even after the successful introduction of Cu-based metallization, the electromigration (EM) failure risk has remained one of the most important reliability concerns for most advanced process technologies. Ever increasing operating current densities and the introduction of low-k materials in the backend process scheme are some of the issues that threaten reliable, long-term operation at elevated temperatures. The traditional method of verifying EM reliability only through current density limit checks is proving to be inadequate in general, or quite expensive at the best. A Statistical EM Budgeting (SEB) methodology has been proposed to assess more realistic chip-level EM reliability from the complex statistical distribution of currents in a chip. To be valuable, this approach requires accurate estimation of currents for all interconnect segments in a chip. However, no efficient technique to manage the complexity of such a task for very large chip designs is known. We present an efficient method to estimate currents exhaustively for all interconnects in a chip. The proposed method uses pre-characterization of cells and macros, and steps to identify and filter out symmetrically bi-directional interconnects. We illustrate the strength of the proposed approach using a high-performance microprocessor design for embedded applications as a case study

  5. Mechanical desorption of immobilized proteins using carbon dioxide aerosols for reusable biosensors

    International Nuclear Information System (INIS)

    Singh, Renu; Hong, Seongkyeol; Jang, Jaesung

    2015-01-01

    Highlights: • Immobilized proteins were removed using carbon dioxide aerosols. • We observed high removal efficiencies due to the aerosol treatment. • We confirmed the removal with FTIR and X-ray photoelectron spectroscopy. • This CO 2 aerosol treatment did not undermine re-functionalization. • This technique is a fast and damage-free method to reuse a sensor surface. - Abstract: Reusability of a biosensor has recently received considerable attention, and it is closely related with the effective desorption of probe molecules. We present a novel mechanical desorption technique to reuse biosensors by using periodic jets of carbon dioxide (CO 2 ) aerosols (a mixture of solid and gaseous CO 2 ), and demonstrate its feasibility by removing physically adsorbed and covalently bonded fluorescent proteins i.e., Escherichia coli fluorescein isothiocyanate antibody and bovine serum albumin (E. coli FITC–Ab and FITC–BSA) from silicon chips. The proteins on the chip surfaces were measured by fluorescent images before and after applying the aerosols. The removal efficiency of the aerosol treatment was measured for various concentrations (1–20 μg mL −1 ) of E. coli FITC–Ab and FITC–BSA with two different removal cycles (5 and 11 cycles; each cycle: 8 s). We observed high removal efficiencies (>93.5% for physically adsorbed Ab and >84.6% for covalently bonded Ab) at 11 cycle aerosol treatment. This CO 2 aerosol treatment did not undermine re-functionalization, which was confirmed by the fluorescent images of FITC–Abs for fresh and reused chips. Desorption of the immobilized layers was validated by Fourier transform infrared and X-ray photoelectron spectroscopic analyses. We also conducted an experiment on the regeneration of E. coli sensing chips using this aerosol treatment, and the chips were re-used 5 times successfully. This mechanical desorption technique is a highly effective and novel strategy for reusable biosensors

  6. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  7. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  8. An automatic chip structure optical inspection system for electronic components

    Science.gov (United States)

    Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe

    2018-01-01

    An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.

  9. Experiment list: SRX153147 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -Seq source_name=Human breast adenocarcinoma cell-line MCF7 || cell-line=MCF7 || passage=5 || chip antibody=...on=Pleura|Tissue Diagnosis=Adenocarcinoma 64054379,98.7,5.2,764 GSM946851: MCF7 H3K27me3; Homo sapiens; ChIP

  10. Experiment list: SRX153148 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -Seq source_name=Human breast adenocarcinoma cell-line MCF7 || cell-line=MCF7 || passage=5 || chip antibody=...n=Pleura|Tissue Diagnosis=Adenocarcinoma 57306360,95.7,15.1,2666 GSM946852: MCF7 H3K9me3; Homo sapiens; ChIP

  11. On-chip integrated lasers for biophotonic applications

    DEFF Research Database (Denmark)

    Mappes, Timo; Wienhold, Tobias; Bog, Uwe

    Meeting the need of biomedical users, we develop disposable Lab-on-a-Chip systems based on commercially available polymers. We are combining passive microfluidics with active optical elements on-chip by integrating multiple solid-state and liquid-core lasers. While covering a wide range of laser ...

  12. Error Control for Network-on-Chip Links

    CERN Document Server

    Fu, Bo

    2012-01-01

    As technology scales into nanoscale regime, it is impossible to guarantee the perfect hardware design. Moreover, if the requirement of 100% correctness in hardware can be relaxed, the cost of manufacturing, verification, and testing will be significantly reduced. Many approaches have been proposed to address the reliability problem of on-chip communications. This book focuses on the use of error control codes (ECCs) to improve on-chip interconnect reliability. Coverage includes detailed description of key issues in NOC error control faced by circuit and system designers, as well as practical error control techniques to minimize the impact of these errors on system performance. Provides a detailed background on the state of error control methods for on-chip interconnects; Describes the use of more complex concatenated codes such as Hamming Product Codes with Type-II HARQ, while emphasizing integration techniques for on-chip interconnect links; Examines energy-efficient techniques for integrating multiple error...

  13. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    Energy Technology Data Exchange (ETDEWEB)

    Ma Kunquan; Liu Jing [Cryogenic Laboratory, PO Box 2711, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2007-08-07

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern.

  14. Heat-driven liquid metal cooling device for the thermal management of a computer chip

    International Nuclear Information System (INIS)

    Ma Kunquan; Liu Jing

    2007-01-01

    The tremendous heat generated in a computer chip or very large scale integrated circuit raises many challenging issues to be solved. Recently, liquid metal with a low melting point was established as the most conductive coolant for efficiently cooling the computer chip. Here, by making full use of the double merits of the liquid metal, i.e. superior heat transfer performance and electromagnetically drivable ability, we demonstrate for the first time the liquid-cooling concept for the thermal management of a computer chip using waste heat to power the thermoelectric generator (TEG) and thus the flow of the liquid metal. Such a device consumes no external net energy, which warrants it a self-supporting and completely silent liquid-cooling module. Experiments on devices driven by one or two stage TEGs indicate that a dramatic temperature drop on the simulating chip has been realized without the aid of any fans. The higher the heat load, the larger will be the temperature decrease caused by the cooling device. Further, the two TEGs will generate a larger current if a copper plate is sandwiched between them to enhance heat dissipation there. This new method is expected to be significant in future thermal management of a desk or notebook computer, where both efficient cooling and extremely low energy consumption are of major concern

  15. Characterizing and modeling protein-surface interactions in lab-on-chip devices

    Science.gov (United States)

    Katira, Parag

    Protein adsorption on surfaces determines the response of other biological species present in the surrounding solution. This phenomenon plays a major role in the design of biomedical and biotechnological devices. While specific protein adsorption is essential for device function, non-specific protein adsorption leads to the loss of device function. For example, non-specific protein adsorption on bioimplants triggers foreign body response, in biosensors it leads to reduced signal to noise ratios, and in hybrid bionanodevices it results in the loss of confinement and directionality of molecular shuttles. Novel surface coatings are being developed to reduce or completely prevent the non-specific adsorption of proteins to surfaces. A novel quantification technique for extremely low protein coverage on surfaces has been developed. This technique utilizes measurement of the landing rate of microtubule filaments on kinesin proteins adsorbed on a surface to determine the kinesin density. Ultra-low limits of detection, dynamic range, ease of detection and availability of a ready-made kinesin-microtubule kit makes this technique highly suitable for detecting protein adsorption below the detection limits of standard techniques. Secondly, a random sequential adsorption model is presented for protein adsorption to PEO-coated surfaces. The derived analytical expressions accurately predict the observed experimental results from various research groups, suggesting that PEO chains act as almost perfect steric barriers to protein adsorption. These expressions can be used to predict the performance of a variety of systems towards resisting protein adsorption and can help in the design of better non-fouling surface coatings. Finally, in biosensing systems, target analytes are captured and concentrated on specifically adsorbed proteins for detection. Non-specific adsorption of proteins results in the loss of signal, and an increase in the background. The use of nanoscale transducers as

  16. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  17. FISH & CHIPS: Four Electrode Conductivity / Salinity Sensor on a Silicon Multi-sensor chip for Fisheries Research

    DEFF Research Database (Denmark)

    Hyldgård, Anders; Olafsdottir, Iris; Olesen, M.

    2005-01-01

    The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given......The design and fabrication of a single chip silicon salinity, temperature, pressure and light multisensor is presented. The behavior 2- and 4-electrode conductivity microsensors are described and methods for precise determination of water conductivity are given...

  18. Teaching Quality Control with Chocolate Chip Cookies

    Science.gov (United States)

    Baker, Ardith

    2014-01-01

    Chocolate chip cookies are used to illustrate the importance and effectiveness of control charts in Statistical Process Control. By counting the number of chocolate chips, creating the spreadsheet, calculating the control limits and graphing the control charts, the student becomes actively engaged in the learning process. In addition, examining…

  19. Exploration within the Network-on-Chip Paradigm

    NARCIS (Netherlands)

    Wolkotte, P.T.

    2009-01-01

    A general purpose processor used to consist of a single processing core, which performed and controlled all tasks on the chip. Its functionality and maximum clock frequency grew steadily over the years. Due to the continuous increase of the number of transistors available on-chip and the operational

  20. Experiment list: SRX119679 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 8,18360 GSM874985: ES.H3K27me3; Homo sapiens; ChIP-Seq source_name=H1 human Embryonic stem cells || cell line=H1 || treatment=diagnos...tic sample (pre-treatment) || chip antibody=H3K27me3 || chip antibody manufacturer=

  1. Experiment list: SRX119684 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 2,13603 GSM874990: ES.H3K79me2; Homo sapiens; ChIP-Seq source_name=H1 human Embryonic stem cell || cell line=H1 || treatment=diagnost...ic sample (pre-treatment) || chip antibody=H3K79me2 || chip antibody manufacturer=A

  2. Self-powered integrated systems-on-chip (energy chip)

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-04-23

    In today\\'s world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  3. Self-powered integrated systems-on-chip (energy chip)

    Science.gov (United States)

    Hussain, M. M.; Fahad, H.; Rojas, J.; Hasan, M.; Talukdar, A.; Oommen, J.; Mink, J.

    2010-04-01

    In today's world, consumer driven technology wants more portable electronic gadgets to be developed, and the next big thing in line is self-powered handheld devices. Therefore to reduce the power consumption as well as to supply sufficient power to run those devices, several critical technical challenges need to be overcome: a. Nanofabrication of macro/micro systems which incorporates the direct benefit of light weight (thus portability), low power consumption, faster response, higher sensitivity and batch production (low cost). b. Integration of advanced nano-materials to meet the performance/cost benefit trend. Nano-materials may offer new functionalities that were previously underutilized in the macro/micro dimension. c. Energy efficiency to reduce power consumption and to supply enough power to meet that low power demand. We present a pragmatic perspective on a self-powered integrated System on Chip (SoC). We envision the integrated device will have two objectives: low power consumption/dissipation and on-chip power generation for implementation into handheld or remote technologies for defense, space, harsh environments and medical applications. This paper provides insight on materials choices, intelligent circuit design, and CMOS compatible integration.

  4. A Neuron- and a Synapse Chip for Artificial Neural Networks

    DEFF Research Database (Denmark)

    Lansner, John; Lehmann, Torsten

    1992-01-01

    A cascadable, analog, CMOS chip set has been developed for hardware implementations of artificial neural networks (ANN's):I) a neuron chip containing an array of neurons with hyperbolic tangent activation functions and adjustable gains, and II) a synapse chip (or a matrix-vector multiplier) where...

  5. A polymer chip-integrable piezoelectric micropump with low backpressure dependence

    DEFF Research Database (Denmark)

    Conde, A. J.; Bianchetti, A.; Veiras, F. E.

    2015-01-01

    We describe a piezoelectric micropump constructed in polymers with conventional machining methods. The micropump is self-contained and can be built as an independent device or as an on-chip module within laminated microfluidic chips. We demonstrate on-chip integrability by the fabrication and tes...

  6. Determining wood chip size: image analysis and clustering methods

    Directory of Open Access Journals (Sweden)

    Paolo Febbi

    2013-09-01

    Full Text Available One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149- 1:2010. Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm; the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors and size descriptors (area, perimeter, Feret diameters, eccentricity was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3- dimensional acquisition process.

  7. Least cost supply strategies for wood chips

    DEFF Research Database (Denmark)

    Möller, Bernd

    The abstract presents a study based on a geographical information system, which produce  cost-supply curves by location for forest woods chips in Denmark.......The abstract presents a study based on a geographical information system, which produce  cost-supply curves by location for forest woods chips in Denmark....

  8. Experiment list: SRX507384 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=Anti-H3K4me2 || chip antibody ... Anti-H3K4me2- replicate#2; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_Anti-H3K4me2 || strain=piwi/

  9. Experiment list: SRX507382 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available + (wildtype) || age of animals=1-5 day old || tissue=Ovaries || chip antibody=Anti-H3K9me3 || chip antibody ... Anti-H3K9me3- replicate#2; Drosophila melanogaster; ChIP-Seq source_name=WT_WT_Anti-H3K9me3 || strain=piwi/

  10. Experiment list: SRX037432 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s from PBMC, normal || gender=male || cell type=aTconv cells || chip antibody=H3K4me1 || chip antibody vendo...=peripheral blood mononuclear cells 14792460,17.0,2.9,5804 GSM648494: aTconv-H3K4me1 source_name=aTconv cell

  11. Diffusion driven optofluidic dye lasers encapsulated into polymer chips

    DEFF Research Database (Denmark)

    Wienhold, Tobias; Breithaupt, Felix; Vannahme, Christoph

    2012-01-01

    Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate that these ......Lab-on-a-chip systems made of polymers are promising for the integration of active optical elements, enabling e.g. on-chip excitation of fluorescent markers or spectroscopy. In this work we present diffusion operation of tunable optofluidic dye lasers in a polymer foil. We demonstrate...... that these first order distributed feedback lasers can be operated for more than 90 min at a pulse repetition rate of 2 Hz without fluidic pumping. Ultra-high output pulse energies of more than 10 μJ and laser thresholds of 2 μJ are achieved for resonator lengths of 3 mm. By introducing comparatively large on......-chip dye solution reservoirs, the required exchange of dye molecules is accomplished solely by diffusion. Polymer chips the size of a microscope cover slip (18 × 18 mm2) were fabricated in batches on a wafer using a commercially available polymer (TOPAS® Cyclic Olefin Copolymer). Thermal imprinting...

  12. Support vector machines for prediction and analysis of beta and gamma-turns in proteins.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2005-04-01

    Tight turns have long been recognized as one of the three important features of proteins, together with alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns and most of the rest are gamma-turns. Analysis and prediction of beta-turns and gamma-turns is very useful for design of new molecules such as drugs, pesticides, and antigens. In this paper we investigated two aspects of applying support vector machine (SVM), a promising machine learning method for bioinformatics, to prediction and analysis of beta-turns and gamma-turns. First, we developed two SVM-based methods, called BTSVM and GTSVM, which predict beta-turns and gamma-turns in a protein from its sequence. When compared with other methods, BTSVM has a superior performance and GTSVM is competitive. Second, we used SVMs with a linear kernel to estimate the support of amino acids for the formation of beta-turns and gamma-turns depending on their position in a protein. Our analysis results are more comprehensive and easier to use than the previous results in designing turns in proteins.

  13. A study on oxidation treatment of uranium metal chip under controlling atmosphere for safe storage

    International Nuclear Information System (INIS)

    Kim, Chang Kyu; Ji, Chul Goo; Bae, Sang Oh; Woo, Yoon Myeoung; Kim, Jong Goo; Ha, Yeong Keong

    2011-01-01

    The U metal chips generated in developing nuclear fuel and a gamma radioisotope shield have been stored under immersion of water in KAERI. When the water of the storing vessels vaporizes or drains due to unexpected leaking, the U metal chips are able to open to air. A new oxidation treatment process was raised for a long time safe storage with concepts of drying under vacuum, evaporating the containing water and organic material with elevating temperature, and oxidizing the uranium metal chips at an appropriate high temperature under conditions of controlling the feeding rate of oxygen gas. In order to optimize the oxidation process the uranium metal chips were completely dried at higher temperature than 300 .deg. C and tested for oxidation at various temperatures, which are 300 .deg. C, 400 .deg. C, and 500 .deg. C. When the oxidation temperature was 400 .deg. C, the oxidized sample for 7 hours showed a temperature rise of 60 .deg. C in the self-ignition test. But the oxidized sample for 14 hours revealed a slight temperature rise of 7 .deg. C representing a stable behavior in the self-ignition test. When the temperature was 500 .deg. C, the shorter oxidation for 7 hours appeared to be enough because the self-ignition test represented no temperature rise. By using several chemical analyses such as carbon content determination, X-ray deflection (XRD), Infrared spectra (IR) and Thermal gravimetric analysis (TGA) on the oxidation treated samples, the results of self-ignition test of new oxidation treatment process for U metal chip were interpreted and supported

  14. HARDWARE IMPLEMENTATION OF PIPELINE BASED ROUTER DESIGN FOR ON-CHIP NETWORK

    Directory of Open Access Journals (Sweden)

    U. Saravanakumar

    2012-12-01

    Full Text Available As the feature size is continuously decreasing and integration density is increasing, interconnections have become a dominating factor in determining the overall quality of a chip. Due to the limited scalability of system bus, it cannot meet the requirement of current System-on-Chip (SoC implementations where only a limited number of functional units can be supported. Long global wires also cause many design problems, such as routing congestion, noise coupling, and difficult timing closure. Network-on-Chip (NoC architectures have been proposed to be an alternative to solve the above problems by using a packet-based communication network. In this paper, the Circuit-Switched (CS Router was designed and analysed the various parameters such as power, timing and area. The CS router has taken more number of cycles to transfer the data from source to destination. So the pipelining concept was implemented by adding registers in the CS router architecture. The proposed architecture increases the speed of operation and reduces the critical path of the circuit. The router has been implemented using Verilog HDL. The parameters area, power and timing were calculated in 130 nm CMOS technology using Synopsys tool with nominal operating voltage of 1V and packet size is 39 bits. Finally power, area and time of these two routers have been analysed and compared.

  15. Microtechnology in Space: NASA's Lab-on-a-Chip Applications Development Program

    Science.gov (United States)

    Monaco, Lisa; Spearing, Scott; Jenkins, Andy; Symonds, Wes; Mayer, Derek; Gouldie, Edd; Wainwright, Norm; Fries, Marc; Maule, Jake; Toporski, Jan

    2004-01-01

    NASA's Marshall Space Flight Center (MSFC) Lab on a Chip Application Development LOCAD) team has worked with microfluidic technology for the past few years in an effort to support NASA's Mission. In that time, such microfluidic based Lab-on-a-Chip (LOC) systems have become common technology in clinical and diagnostic laboratories. The approach is most attractive due to its highly miniaturized platform and ability to perform reagent handling (i-e., dilution, mixing, separation) and diagnostics for multiple reactions in an integrated fashion. LOCAD, along with Caliper Life Sciences has successfully developed the first LOC device for macromolecular crystallization using a workstation acquired specifically for designing custom chips, the Caliper 42. LOCAD uses this, along with a novel MSFC-designed and built workstation for microfluidic development. The team has a cadre of LOC devices that can be used to perform initial feasibility testing to determine the efficacy of the LOC approach for a specific application. Once applicability has been established, the LOCAD team, along with the Army's Aviation and Missile Command microfabrication facility, can then begin to custom design and fabricate a device per the user's specifications. This presentation will highlight the LOCAD team's proven and unique expertise that has been utilized to provide end to end capabilities associated with applying microfluidics for applications that include robotic life detection instrumentation, crew health monitoring and microbial and environmental monitoring for human Exploration.

  16. Prototype detection unit for the CHIPS experiment

    Science.gov (United States)

    Pfützner, Maciej M.

    2017-09-01

    CHIPS (CHerenkov detectors In mine PitS) is an R&D project aiming to develop novel cost-effective neutrino detectors, focused on measuring the CP-violating neutrino mixing phase (δ CP). A single detector module, containing an enclosed volume of purified water, would be submerged in an existing lake, located in a neutrino beam. A staged approach is proposed with first detectors deployed in a flooded mine pit in Northern Minnesota, 7 mrad off-axis from the existing NuMI beam. A small proof-of-principle model (CHIPS-M) has already been tested and the first stage of a fully functional 10 kt module (CHIPS-10) is planned for 2018. One of the instruments submerged on board of CHIPS-M in autumn 2015 was a prototype detection unit, constructed at Nikhef. The unit contains hardware borrowed from the KM3NeT experiment, including 16 3 inch photomultiplier tubes and readout electronics. In addition to testing the mechanical design and data acquisition, the detector was used to record a large sample of cosmic ray muon events. The collected data is valuable for characterising the cosmic muon background and validating a Monte Carlo simulation used to optimise future designs. This paper introduces the CHIPS project, describes the design of the prototype unit, and presents the results of a preliminary data analysis.

  17. Fabrication and characterization of SPR chips with the modified bovine serum albumin

    Science.gov (United States)

    Chen, Xing; Zhang, Lu-lu; Cui, Da-fu

    2016-03-01

    A facile surface plasmon resonance (SPR) chip is developed for small molecule determination and analysis. The SPR chip was prepared based on a self assembling principle, in which the modified bovine serum albumin (BSA) was directly self-assembled onto the bare gold surface. The surface morphology of the chip with the modified BSA was investigated by atomic force microscopy (AFM) and its optical properties were characterized. The surface binding capacity of the bare facile SPR chip with a uniform morphology is 8 times of that of the bare control SPR chip. Based on the experiments of immune reaction between cortisol antibody and cortisol derivative, the sensitivity of the facile SPR chip with the modified BSA is much higher than that of the control SPR chip with the un-modified BSA. The facile SPR chip has been successfully used to detect small molecules. The lowest detection limit is 5 ng/mL with a linear range of 5—100 ng/mL for cortisol analysis. The novel facile SPR chip can also be applied to detect other small molecules.

  18. Experiment list: SRX176067 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sis=Carcinoma 6619400,91.7,7.2,13648 GSM984399: LNCAP H3K4ME3 vehicle; Homo sapiens; ChIP-Seq source_name=pr...ostate cancer cells || cell line=LNCaP || chip antibody=H3K4Me3 || chip antibody manufacturer=Millipore || treatment=EtOH vehicle

  19. Experiment list: SRX485219 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available 56 GSM1346560: RNA Polymerase II ChIP from control germline knock-down ovaries; Drosophila melanogaster; ChI...P-Seq source_name=RNA Polymerase II ChIP from control germline knock-down ovaries || developmental stage=4-6... days old adult || Sex=female || tissue=ovary || germline knock-down=control || c

  20. Experiment list: SRX107410 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Adenocarcinoma 37378122,96.3,56.7,376 GSM838388: h3k36me3 si23 ChIP-Seq; Homo sapiens; ChIP-Seq source_name=Hela cells knock...down Med23 || chip antibody=H3K36me3 || treatment=knockdown Med23 || cell line=HeLa || chip

  1. New movable plate for efficient millimeter wave vertical on-chip antenna

    KAUST Repository

    Marnat, Loic; Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Galicia Martinez, Miguel Angel; Foulds, Ian G.; Shamim, Atif

    2013-01-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  2. New movable plate for efficient millimeter wave vertical on-chip antenna

    KAUST Repository

    Marnat, Loic

    2013-04-01

    A new movable plate concept is presented in this paper to realize mm-wave vertical on-chip antennas through MEMS based post-processing steps in a CMOS compatible process. By virtue of its vertical position, the antenna is isolated from the lossy Si substrate and hence performs with a better efficiency as compared to the horizontal position. In addition, the movable plate concept enables polarization diversity by providing both horizontal and vertical polarizations on the same chip. Through a first iteration fractal bowtie antenna design, dual band (60 and 77 GHz) operation is demonstrated in both horizontal and vertical positions without any change in dimensions or use of switches for two different mediums (Si and air). To support the movable plate concept, the transmission line and antenna are designed on a flexible polyamide, where the former has been optimized to operate in the bent position. The design is highly suitable for compact, low cost and efficient SoC solutions. © 1963-2012 IEEE.

  3. Forerunners of the New Epoch in Lithic Chipped Industries of the Moravian Young Eneolithic

    Czech Academy of Sciences Publication Activity Database

    Kopacz, J.; Přichystal, A.; Šebela, Lubomír

    2016-01-01

    Roč. 1, č. 1 (2016), s. 105-118 ISSN 2453-8612 Institutional support: RVO:68081758 Keywords : Moravia and Czech Silesia * East part of the Czech Republic * Young Eneolithic * lithic chipped industry Subject RIV: AC - Archeology, Anthropology, Ethnology https://fphil.uniba.sk/fileadmin/fif/katedry_pracoviska/karch/MusArch/1_1/105-118.pdf

  4. Culture and the Immune System: Cultural Consonance in Social Support and C-reactive Protein in Urban Brazil.

    Science.gov (United States)

    Dressler, William W; Balieiro, Mauro C; Ribeiro, Rosane P; Dos Santos, José Ernesto

    2016-06-01

    In this article, we examine the distribution of a marker of immune system stimulation-C-reactive protein-in urban Brazil. Social relationships are associated with immunostimulation, and we argue that cultural dimensions of social support, assessed by cultural consonance, are important in this process. Cultural consonance is the degree to which individuals, in their own beliefs and behaviors, approximate shared cultural models. A measure of cultural consonance in social support, based on a cultural consensus analysis regarding sources and patterns of social support in Brazil, was developed. In a survey of 258 persons, the association of cultural consonance in social support and C-reactive protein was examined, controlling for age, sex, body mass index, low-density lipoprotein cholesterol, depressive symptoms, and a social network index. Lower cultural consonance in social support was associated with higher C-reactive protein. Implications of these results for future research are discussed. © 2016 by the American Anthropological Association.

  5. Chips in banknotes for a banknote electronic signature

    Science.gov (United States)

    Perron, Maurice; Grimal, Jean-Michel; Beauchet, Frederic; Dell'Ova, Francis

    2004-06-01

    A lot of information can be found in the media about the possibility of using micro-chips in banknotes. This mostly comes from chip manufacturers whose technology is becoming mature for this application. A lot of patents have been applied therefore but what must be noticed is that all these patents concern the processes to insert chips in banknotes and not a lot is said about the product itself and for what use. The Banque de France is a Central Bank involved in all tasks concerning banknotes from design, production, issue, recirculation and sorting, action against counterfeiting and finally destruction. These activities concern, of course, the banknotes in circulation in France (formerly the French francs notes, presently the Euro notes as Banque de France is part of the Eurosystem) and in other countries in the world. The Banque de France approach in looking to the future of chips in banknotes is at first a product approach. Banknotes are means of payment for which security of authentication is fundamental. They could carry chips to provide more security in the transactions but without altering their nature: the anonyminity and immediacy of the transactions.

  6. Simple photolithographic rapid prototyping of microfluidic chips

    DEFF Research Database (Denmark)

    Kunstmann-Olsen, Casper; Hoyland, James; Rubahn, Horst-Günter

    2012-01-01

    Vi præsenterer en simpel metode til at producere støbeforme til støbning af PDMS mikrofluide chips vha. fotolitografi, med 35mm fotonegativer som masker. Vi demonstrer metodens muligheder og begrænsninger. Vi har optimeret processen til at fremstille planare lab-on-a-chip strukturer med meget høj...

  7. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network.

    Science.gov (United States)

    Lee, Dasheng

    2008-12-02

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  8. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Science.gov (United States)

    Lee, Dasheng

    2008-01-01

    In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV) measurement. The energy harvesting wireless sensor network (WSN) was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR) is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an energy efficient

  9. Energy Harvesting Chip and the Chip Based Power Supply Development for a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-12-01

    Full Text Available In this study, an energy harvesting chip was developed to scavenge energy from artificial light to charge a wireless sensor node. The chip core is a miniature transformer with a nano-ferrofluid magnetic core. The chip embedded transformer can convert harvested energy from its solar cell to variable voltage output for driving multiple loads. This chip system yields a simple, small, and more importantly, a battery-less power supply solution. The sensor node is equipped with multiple sensors that can be enabled by the energy harvesting power supply to collect information about the human body comfort degree. Compared with lab instruments, the nodes with temperature, humidity and photosensors driven by harvested energy had variation coefficient measurement precision of less than 6% deviation under low environmental light of 240 lux. The thermal comfort was affected by the air speed. A flow sensor equipped on the sensor node was used to detect airflow speed. Due to its high power consumption, this sensor node provided 15% less accuracy than the instruments, but it still can meet the requirement of analysis for predicted mean votes (PMV measurement. The energy harvesting wireless sensor network (WSN was deployed in a 24-hour convenience store to detect thermal comfort degree from the air conditioning control. During one year operation, the sensor network powered by the energy harvesting chip retained normal functions to collect the PMV index of the store. According to the one month statistics of communication status, the packet loss rate (PLR is 2.3%, which is as good as the presented results of those WSNs powered by battery. Referring to the electric power records, almost 54% energy can be saved by the feedback control of an energy harvesting sensor network. These results illustrate that, scavenging energy not only creates a reliable power source for electronic devices, such as wireless sensor nodes, but can also be an energy source by building an

  10. GWA Analysis for Milk Production Traits in Dairy Sheep and Genetic Support for a QTN Influencing Milk Protein Percentage in the LALBA Gene

    DEFF Research Database (Denmark)

    García-Gámez, Elsa; Gutiérrez-Gil, Beatriz; Sahana, Goutam

    2012-01-01

    In this study, we used the Illumina OvineSNP50 BeadChip to conduct a genome-wide association (GWA) analysis for milk production traits in dairy sheep by analyzing a commercial population of Spanish Churra sheep. The studied population consisted of a total of 1,681 Churra ewes belonging to 16 half...... identified was located within the coding gene sequence (LALBA_g.242T.C) and was predicted to cause an amino acid change in the protein (Val27Ala). Different approaches, including GWA analysis, a combined linkage and linkage disequilibrium study and a concordance test with the QTL segregating status...

  11. Microfluidic organ-on-chip technology for blood-brain barrier research.

    Science.gov (United States)

    van der Helm, Marinke W; van der Meer, Andries D; Eijkel, Jan C T; van den Berg, Albert; Segerink, Loes I

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and the challenges that are still ahead. The BBB is formed by specialized endothelial cells and separates blood from brain tissue. It protects the brain from harmful compounds from the blood and provides homeostasis for optimal neuronal function [corrected]. Studying BBB function and dysfunction is important for drug development and biomedical research. Microfluidic BBBs-on-chips enable real-time study of (human) cells in an engineered physiological microenvironment, for example incorporating small geometries and fluid flow as well as sensors. Examples of BBBs-on-chips in literature already show the potential of more realistic microenvironments and the study of organ-level functions. A key challenge in the field of BBB-on-chip development is the current lack of standardized quantification of parameters such as barrier permeability and shear stress. This limits the potential for direct comparison of the performance of different BBB-on-chip models to each other and existing models. We give recommendations for further standardization in model characterization and conclude that the rapidly emerging field of BBB-on-chip models holds great promise for further studies in BBB biology and drug development.

  12. Modular microfluidics for point-of-care protein purifications.

    Science.gov (United States)

    Millet, L J; Lucheon, J D; Standaert, R F; Retterer, S T; Doktycz, M J

    2015-04-21

    Biochemical separations are the heart of diagnostic assays and purification methods for biologics. On-chip miniaturization and modularization of separation procedures will enable the development of customized, portable devices for personalized health-care diagnostics and point-of-use production of treatments. In this report, we describe the design and fabrication of miniature ion exchange, size exclusion and affinity chromatography modules for on-chip clean-up of recombinantly-produced proteins. Our results demonstrate that these common separations techniques can be implemented in microfluidic modules with performance comparable to conventional approaches. We introduce embedded 3-D microfluidic interconnects for integrating micro-scale separation modules that can be arranged and reconfigured to suit a variety of fluidic operations or biochemical processes. We demonstrate the utility of the modular approach with a platform for the enrichment of enhanced green fluorescent protein (eGFP) from Escherichia coli lysate through integrated affinity and size-exclusion chromatography modules.

  13. Improved liquid chromatography-MS/MS of heparan sulfate oligosaccharides via chip-based pulsed makeup flow.

    Science.gov (United States)

    Huang, Yu; Shi, Xiaofeng; Yu, Xiang; Leymarie, Nancy; Staples, Gregory O; Yin, Hongfeng; Killeen, Kevin; Zaia, Joseph

    2011-11-01

    Microfluidic chip-based hydrophilic interaction chromatography (HILIC) is a useful separation system for liquid chromatography-mass spectrometry (LC-MS) in compositional profiling of heparan sulfate (HS) oligosaccharides; however, ions observed using HILIC LC-MS are low in charge. Tandem MS of HS oligosaccharide ions with low charge results in undesirable losses of SO(3) from precursor ions during collision induced dissociation. One solution is to add metal cations to stabilize sulfate groups. Another is to add a nonvolatile, polar compound such as sulfolane, a molecule known to supercharge proteins, to produce a similar effect for oligosaccharides. We demonstrate use of a novel pulsed makeup flow (MUF) HPLC-chip. The chip enables controlled application of additives during specified chromatographic time windows and thus minimizes the extent to which nonvolatile additives build up in the ion source. The pulsed MUF system was applied to LC-MS/MS of HS oligosaccharides. Metal cations and sulfolane were tested as additives. The most promising results were obtained for sulfolane, for which supercharging of the oligosaccharide ions increased their signal strengths relative to controls. Tandem MS of these supercharged precursor ions showed decreased abundances of product ions from sulfate losses yet more abundant product ions from backbone cleavages.

  14. Deep Artificial Neural Networks and Neuromorphic Chips for Big Data Analysis: Pharmaceutical and Bioinformatics Applications.

    Science.gov (United States)

    Pastur-Romay, Lucas Antón; Cedrón, Francisco; Pazos, Alejandro; Porto-Pazos, Ana Belén

    2016-08-11

    Over the past decade, Deep Artificial Neural Networks (DNNs) have become the state-of-the-art algorithms in Machine Learning (ML), speech recognition, computer vision, natural language processing and many other tasks. This was made possible by the advancement in Big Data, Deep Learning (DL) and drastically increased chip processing abilities, especially general-purpose graphical processing units (GPGPUs). All this has created a growing interest in making the most of the potential offered by DNNs in almost every field. An overview of the main architectures of DNNs, and their usefulness in Pharmacology and Bioinformatics are presented in this work. The featured applications are: drug design, virtual screening (VS), Quantitative Structure-Activity Relationship (QSAR) research, protein structure prediction and genomics (and other omics) data mining. The future need of neuromorphic hardware for DNNs is also discussed, and the two most advanced chips are reviewed: IBM TrueNorth and SpiNNaker. In addition, this review points out the importance of considering not only neurons, as DNNs and neuromorphic chips should also include glial cells, given the proven importance of astrocytes, a type of glial cell which contributes to information processing in the brain. The Deep Artificial Neuron-Astrocyte Networks (DANAN) could overcome the difficulties in architecture design, learning process and scalability of the current ML methods.

  15. Microfluidic organ-on-chip technology for blood-brain barrier research

    NARCIS (Netherlands)

    van der Helm, Marieke Willemijn; van der Meer, Andries Dirk; Eijkel, Jan C.T.; van den Berg, Albert; Segerink, Loes Irene

    2016-01-01

    Organs-on-chips are a new class of microengineered laboratory models that combine several of the advantages of current in vivo and in vitro models. In this review, we summarize the advances that have been made in the development of organ-on-chip models of the blood-brain barrier (BBBs-on-chips) and

  16. Experiment list: SRX150629 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available sue Diagnosis=Fibrocystic Disease 27949151,89.1,5.9,589 GSM935550: Harvard ChipSeq MCF10A-Er-Src EtOH 0.01pc...t 12hr Input std source_name=MCF10A-Er-Src || biomaterial_provider=Struhl laboratory || lab=Harvard || lab description=Struhl - Harva...rd University || datatype=ChipSeq || datatype descriptio

  17. Experiment list: SRX150494 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available n-Barr Virus 44912180,85.6,7.7,1806 GSM935415: Harvard ChipSeq GM12878 GCN5 std source_name=GM12878 || bioma...ard || lab description=Struhl - Harvard University || datatype=ChipSeq || datatype ...terial_provider=Coriell; http://ccr.coriell.org/Sections/Search/Search.aspx?PgId=165&q=GM12878 || lab=Harv

  18. Experiment list: SRX150667 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available t|Tissue Diagnosis=Fibrocystic Disease 69172664,86.5,35.3,28780 GSM935588: Harvard ChipSeq MCF10A-Er-Src EtO...H 0.01pct Pol2 std source_name=MCF10A-Er-Src || biomaterial_provider=Struhl laboratory || lab=Harvard || lab description=Struhl - Har...vard University || datatype=ChipSeq || datatype descript

  19. Experiment list: SRX150535 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available t|Tissue Diagnosis=Fibrocystic Disease 69171580,86.8,43.7,20874 GSM935456: Harvard ChipSeq MCF10A-Er-Src 4OH...TAM 1uM 36hr Pol2 std source_name=MCF10A-Er-Src || biomaterial_provider=Struhl laboratory || lab=Harvard || ...lab description=Struhl - Harvard University || datatype=ChipSeq || datatype descr

  20. Experiment list: SRX150562 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available -Barr Virus 57294082,73.4,6.6,1909 GSM935483: Harvard ChipSeq GM12878 ZZZ3 std source_name=GM12878 || biomat...rd || lab description=Struhl - Harvard University || datatype=ChipSeq || datatype d...erial_provider=Coriell; http://ccr.coriell.org/Sections/Search/Search.aspx?PgId=165&q=GM12878 || lab=Harva

  1. Experiment list: SRX688848 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available d prostate cancer cell line || treatment=vehicle || chip antibody=rabbit anti-ASH... prostate cancer cells, vehicle, ASH2 ChIP || cell line=VCaP || cell type=vertebral metastatic lesion-derive...agnosis=Carcinoma 25750434,89.3,6.2,7152 GSM1489926: vcap ash2l veh; Homo sapiens; ChIP-Seq source_name=VCaP

  2. Forecasting forest chip energy production in Finland 2008-2014

    International Nuclear Information System (INIS)

    Linden, Mikael

    2011-01-01

    Energy policy measures aim to increase energy production from forest chips in Finland to 10 TWh by year 2010. However, on the regional level production differences are large, and the regional estimates of the potential base of raw materials for the production of forest chips are heterogeneous. In order to analyse the validity of the above target, two methods are proposed to derive forecasts for region-level energy production from forest chips in Finland in the years 2008-2014. The plant-level data from 2003-2007 gives a starting point for a detailed statistical analysis of present and future region-level forest chip production. Observed 2008 regional levels are above the estimated prediction 95% confidence intervals based on aggregation of plant-level time averages. A simple time trend model with fixed-region effects provides accurate forecasts for the years 2008-2014. Forest chip production forecast confidence intervals cover almost all regions for the 2008 levels and the estimates of potential production levels for 2014. The forecast confidence intervals are also derived with re-sampling methods, i.e. with bootstrap methods, to obtain more reliable results. Results confirm that a general materials shortfall is not expected in the near future for forest chip energy production in Finland.

  3. Numerical Investigation of a Chip Printed Antenna Performances for Wireless Implantable Body Area Network Applications

    Science.gov (United States)

    Ramli, N. H.; Jaafar, H.; Lee, Y. S.

    2018-03-01

    Recently, wireless implantable body area network (WiBAN) system become an active area of research due to their various applications such as healthcare, support systems for specialized occupations and personal communications. Biomedical sensors networks mounted in the human body have drawn greater attention for health care monitoring systems. The implantable chip printed antenna for WiBAN applications is designed and the antenna performances is investigated in term of gain, efficiency, return loss, operating bandwidth and radiation pattern at different environments. This paper is presents the performances of implantable chip printed antenna in selected part of human body (hand, chest, leg, heart and skull). The numerical investigation is done by using human voxel model in built in the CST Microwave Studio Software. Results proved that the chip printed antenna is suitable to implant in the human hand model. The human hand model has less complex structure as it consists of skin, fat, muscle, blood and bone. Moreover, the antenna is implanted under the skin. Therefore the signal propagation path length to the base station at free space environment is considerably short. The antenna’s gain, efficiency and Specific Absorption Rate (SAR) are - 13.62dBi, 1.50 % and 0.12 W/kg respectively; which confirms the safety of the antenna usage. The results of the investigations can be used as guidance while designing chip implantable antenna in future.

  4. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    Science.gov (United States)

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  5. PreBIND and Textomy – mining the biomedical literature for protein-protein interactions using a support vector machine

    Directory of Open Access Journals (Sweden)

    Baskin Berivan

    2003-03-01

    Full Text Available Abstract Background The majority of experimentally verified molecular interaction and biological pathway data are present in the unstructured text of biomedical journal articles where they are inaccessible to computational methods. The Biomolecular interaction network database (BIND seeks to capture these data in a machine-readable format. We hypothesized that the formidable task-size of backfilling the database could be reduced by using Support Vector Machine technology to first locate interaction information in the literature. We present an information extraction system that was designed to locate protein-protein interaction data in the literature and present these data to curators and the public for review and entry into BIND. Results Cross-validation estimated the support vector machine's test-set precision, accuracy and recall for classifying abstracts describing interaction information was 92%, 90% and 92% respectively. We estimated that the system would be able to recall up to 60% of all non-high throughput interactions present in another yeast-protein interaction database. Finally, this system was applied to a real-world curation problem and its use was found to reduce the task duration by 70% thus saving 176 days. Conclusions Machine learning methods are useful as tools to direct interaction and pathway database back-filling; however, this potential can only be realized if these techniques are coupled with human review and entry into a factual database such as BIND. The PreBIND system described here is available to the public at http://bind.ca. Current capabilities allow searching for human, mouse and yeast protein-interaction information.

  6. Firing with wood chips in heating and cogeneration plants

    International Nuclear Information System (INIS)

    Kofman, P.D.

    1992-01-01

    The document was produced for use as detailed teaching material aimed at spreading information on the use of wood chips as fuel for heating and cogeneration plants. It includes information and articles on wood fuels generally, combustion values, chopping machines, suppliers, occupational health hazards connected with the handling of wood chips, measuring amounts, the selection of types, prices, ash, environmental aspects and information on the establishment of a wood-chip fired district heating plant. (AB)

  7. Runtime adaptive multi-processor system-on-chip: RAMPSoC

    OpenAIRE

    Göhringer, D.; Hübner, M.; Schatz, V.; Becker, J.

    2008-01-01

    Current trends in high performance computing show, that the usage of multiprocessor systems on chip are one approach for the requirements of computing intensive applications. The multiprocessor system on chip (MPSoC) approaches often provide a static and homogeneous infrastructure of networked microprocessor on the chip die. A novel idea in this research area is to introduce the dynamic adaptivity of reconfigurable hardware in order to provide a flexible heterogeneous set of processing elemen...

  8. The Chip-Scale Atomic Clock - Recent Development Progress

    Science.gov (United States)

    2004-09-01

    35th Annual Precise Time and Time Interval (PTTI) Meeting 467 THE CHIP-SCALE ATOMIC CLOCK – RECENT DEVELOPMENT PROGRESS R. Lutwak ...1] R. Lutwak , et al., 2003, “The Chip-Scale Atomic Clock – Coherent Population Trapping vs. Conventional Interrogation,” in

  9. Flip-chip bonded optoelectronic integration based on ultrathin silicon (UTSi) CMOS

    Science.gov (United States)

    Hong, Sunkwang; Ho, Tawei; Zhang, Liping; Sawchuk, Alexander A.

    2003-06-01

    We describe the design and test of flip-chip bonded optoelectronic CMOS devices based on Peregrine Semiconductor's 0.5 micron Ultra-Thin Silicon on sapphire (UTSi) technology. The UTSi process eliminates the substrate leakage that typically results in crosstalk and reduces parasitic capacitance to the substrate, providing many benefits compared to bulk silicon CMOS. The low-loss synthetic sapphire substrate is optically transparent and has a coefficient of thermal expansion suitable for flip-chip bonding of vertical cavity surface emitting lasers (VCSELs) and detectors. We have designed two different UTSi CMOS chips. One contains a flip-chip bonded 1 x 4 photodiode array, a receiver array, a double edge triggered D-flip flop-based 2047-pattern pseudo random bit stream (PRBS) generator and a quadrature-phase LC-voltage controlled oscillator (VCO). The other chip contains a flip-chip bonded 1 x 4 VCSEL array, a driver array based on high-speed low-voltage differential signals (LVDS) and a full-balanced differential LC-VCO. Each VCSEL driver and receiver has individual input and bias voltage adjustments. Each UTSi chip is mounted on different printed circuit boards (PCBs) which have holes with about 1 mm radius for optical output and input paths through the sapphire substrate. We discuss preliminary testing of these chips.

  10. Estimate the thermomechanical fatigue life of two flip chip packages

    International Nuclear Information System (INIS)

    Pash, R.A.; Ullah, H.S.; Khan, M.Z.

    2005-01-01

    The continuing demand towards high density and low profile integrated circuit packaging has accelerated the development of flip chip structures as used in direct chip attach (DCA) technology, ball grid array (BOA) and chip scale package (CSP). In such structures the most widely used flip chip interconnects are solder joints. The reliability of flip chip structures largely depends on the reliability of solder joints. In this work solder joint fatigue life prediction for two chip scale packages is carried out. Elasto-plastic deformation behavior of the solder was simulated using ANSYS. Two dimensional plain strain finite element models were developed for each package to numerically compute the stress and total strain of the solder joints under temperature cycling. These stress and strain values are then used to predict the solder joint lifetime through modified Coffin Manson equation. The effect of solder joint's distance from edge of silicon die on life of the package is explored. The solder joint fatigue response is modeled for a typical temperature cycling of -60 to 140 degree C. (author)

  11. Quality wood chips - an alternative to pellets; Alternative zu Pellets. Qualischnitzel

    Energy Technology Data Exchange (ETDEWEB)

    Keel, A.

    2008-07-01

    This article takes a look at a new wood-chip product that features wood-chips that are dryer than traditional ones. The new 'quality chips' are also of a calibrated size and are supplied dust-free. Their low water content permits their use in the same areas as wood pellets, where, especially in summer, low water-content is important. The increasing use of pellets and the growing shortages of clean sawdust and shavings for their production is commented on, as is the use of forestry wastes in pellet production. The new wood-chip product is further discussed as being a direct alternative to pellets. The low 'grey energy' content for tree-felling, hacking, transport and the drying of the chips is quoted as being less than 5% of the energy in the chippings.

  12. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  13. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    Science.gov (United States)

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  14. 21 CFR 102.41 - Potato chips made from dried potatoes.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Potato chips made from dried potatoes. 102.41... Specific Nonstandardized Foods § 102.41 Potato chips made from dried potatoes. (a) The common or usual name of the food product that resembles and is of the same composition as potato chips, except that it is...

  15. SNP typing on the NanoChip electronic microarray

    DEFF Research Database (Denmark)

    Børsting, Claus; Sanchez Sanchez, Juan Jose; Morling, Niels

    2005-01-01

    We describe a single nucleotide polymorphism (SNP) typing protocol developed for the NanoChip electronic microarray. The NanoChip array consists of 100 electrodes covered by a thin hydrogel layer containing streptavidin. An electric currency can be applied to one, several, or all electrodes...

  16. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoyong, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn; Yan, Xiaojun, E-mail: zhangxy@buaa.edu.cn, E-mail: yanxiaojun@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beijing 100191 (China); Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191 (China); Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2016-06-15

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  17. Note: A component-level frequency tunable isolator for vibration-sensitive chips using SMA beams

    International Nuclear Information System (INIS)

    Zhang, Xiaoyong; Yan, Xiaojun; Ding, Xin; Wu, Di; Qi, Junlei; Wang, Ruixin; Lu, Siwei

    2016-01-01

    This note presents a component-level frequency tunable isolator for vibration-sensitive chips. The isolator employed 8 U-shaped shape memory alloy (SMA) beams to support an isolation island (used for mounting chips). Due to the temperature-induced Young’s modulus variation of SMA, the system stiffness of the isolator can be controlled through heating the SMA beams. In such a way, the natural frequency of the isolator can be tuned. A prototype was fabricated to evaluate the concept. The test results show that the natural frequency of the isolator can be tuned in the range of 64 Hz–97 Hz by applying different heating strategies. Moreover, resonant vibration can be suppressed significantly (the transmissibility decreases about 65% near the resonant frequency) using a real-time tuning method.

  18. Hybridization of Environmental Microbial Community Nucleic Acids by GeoChip.

    Science.gov (United States)

    Van Nostrand, Joy D; Yin, Huaqin; Wu, Liyou; Yuan, Tong; Zhou, Jizhong

    2016-01-01

    Functional gene arrays, like the GeoChip, allow for the study of tens of thousands of genes in a single assay. The GeoChip array (5.0) contains probes for genes involved in geochemical cycling (N, C, S, and P), metal homeostasis, stress response, organic contaminant degradation, antibiotic resistance, secondary metabolism, and virulence factors as well as genes specific for fungi, protists, and viruses. Here, we briefly describe GeoChip design strategies (gene selection and probe design) and discuss minimum quantity and quality requirements for nucleic acids. We then provide detailed protocols for amplification, labeling, and hybridization of samples to the GeoChip.

  19. A system-level multiprocessor system-on-chip modeling framework

    DEFF Research Database (Denmark)

    Virk, Kashif Munir; Madsen, Jan

    2004-01-01

    We present a system-level modeling framework to model system-on-chips (SoC) consisting of heterogeneous multiprocessors and network-on-chip communication structures in order to enable the developers of today's SoC designs to take advantage of the flexibility and scalability of network-on-chip and...... SoC design. We show how a hand-held multimedia terminal, consisting of JPEG, MP3 and GSM applications, can be modeled as a multiprocessor SoC in our framework....

  20. Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seizi Someya

    2010-01-01

    Full Text Available Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is based on support vector machines (SVMs. We first clarified the definition of carbohydrate-binding proteins and then constructed positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method delivered 0.92 of the area under the receiver operating characteristic (ROC curve. We also examined two amino acid grouping methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB, we found that the true positive rate of prediction was improved.