WorldWideScience

Sample records for protein atrap angiotensin

  1. Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel.

    Directory of Open Access Journals (Sweden)

    Rene Barro-Soria

    Full Text Available Angiotensin II (AngII receptor (ATR is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap, and transient-receptor-potential channel-V2 (TRPV2. AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE cells by AngII results in biphasic increases in intracellular free Ca(2+inhibited by losartan. Xestospongin C (xest C and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca(2+response. RPE cells from Atrap(-/- mice showed smaller AngII-evoked Ca(2+peak (by 22% and loss of sustained Ca(2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD at 15 µM stimulates intracellular Ca(2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor reduced the cannabidiol-induced Ca(2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca(2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca(2+transients in the RPE by releasing Ca(2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca(2+elevation.

  2. ATRAP - Progress Towards Trapped Antihydrogen

    International Nuclear Information System (INIS)

    Grzonka, D.; Goldenbaum, F.; Oelert, W.; Sefzick, T.; Zhang, Z.; Comeau, D.; Hessels, E.A.; Storry, C.H.; Gabrielse, G.; Larochelle, P.; Lesage, D.; Levitt, B.; Speck, A.; Haensch, T.W.; Pittner, H.; Walz, J.

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s-2s transition in the hydrogen and the antihydrogen atom.Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen.For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP

  3. ATRAP Progress Towards Trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trapping tests of charged particles within a combined magnetic/Penning trap have started at ATRAP.

  4. ATRAP on the road to cold antihydrogen

    CERN Multimedia

    2001-01-01

    The ATRAP collaboration has succeeded in slowing down antiprotons with positrons, the two ingredients of antihydrogen atoms. This is an important step towards capturing and studying antihydrogen. Members of the ATRAP Collaboration with the apparatus that first demonstrated positron cooling. It was in extremis. Last December, during the six short hours of beam remaining to them, ATRAP researchers achieved their initial goal. For the first time, positrons were used to cool antiprotons. To what end, you may ask? The answer is much simpler than the process: physicists think that this is the most effective means of observing antihydrogen. Recall that an antihydrogen atom is composed of an antiproton and a positron. The first atoms of antihydrogen were produced five years ago at LEAR. But their small number and the brevity of their existence made it impossible to study them in depth. However, to understand the subtle nuances between matter and antimatter, which would explain the imbalance in nature between the tw...

  5. ATRAP on the way to trapped Antihydrogen

    CERN Document Server

    Grzonka, D; Gabrielse, G; Goldenbaum, F; Hänsch, T W; Hessels, E A; Larochelle, P; Le Sage, D; Levitt, B; Oelert, W; Pittner, H; Sefzick, T; Speck, A; Storry, C H; Walz, J; Zhang, Z

    2005-01-01

    The ATRAP experiment at the CERN antiproton decelerator AD aims for a test of the CPT invariance by a high precision comparison of the 1s‐2s transition in the hydrogen and the antihydrogen atom. Antihydrogen production is routinely operated at ATRAP and detailed studies have been performed in order to optimize the production efficiency of useful antihydrogen. The shape parameters of the antiproton and positron clouds, the n‐state distribution of the produced Rydberg antihydrogen atoms and the antihydrogen velocity have been studied. Furthermore an alternative method of laser controlled antihydrogen production was successfully applied. For high precision measurements of atomic transitions cold antihydrogen in the ground state is required which must be trapped due to the low number of available antihydrogen atoms compared to the cold hydrogen beam used for hydrogen spectroscopy. To ensure a reasonable antihydrogen trapping efficiency a magnetic trap has to be superposed the nested Penning trap. First trappi...

  6. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  7. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression

    DEFF Research Database (Denmark)

    Dhamrait, Sukhbir S.; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik

    2016-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial...... amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P 

  8. Purification of Angiotensin Converting Enzyme Inhibitory Peptide Derived From Kacang Goat Meat Protein Hydrolysate

    OpenAIRE

    Jamhari, J; Yusiati, L.M; Suryanto, E; Cahyanto, M.N; Erwanto, Y; Muguruma, M

    2013-01-01

    The objective of this study was to identify the Angiotensin Converting Enzyme (ACE) inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC usi...

  9. Modulation of the renin-angiotensin system by food protein ...

    African Journals Online (AJOL)

    Chibuike

    high fat, high sugar, low fibre diet – is another modifiable risk factor for .... identifying appropriate proteolytic enzymes and food protein raw materials, based on .... consumption of milk protein hydrolysates enriched with the LTPs,. IPP/VPP ...

  10. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy.

    Science.gov (United States)

    Goyal, Ravi; Goyal, Dipali; Leitzke, Arthur; Gheorghe, Ciprian P; Longo, Lawrence D

    2010-03-01

    Maternal protein malnutrition during pregnancy can lead to significant alterations in the systemic renin-angiotensin system (RAS) in the fetus. All components of the RAS are present in brain and may be altered in many disease states. Importantly, these disorders are reported to be of higher incidence in prenatally malnourished individuals. In the current study, we tested the hypothesis that antenatal maternal low protein diet (MLPD) leads to epigenetic changes and alterations in gene expression of brain RAS of the mouse fetus. Mice dams were given control and 50% MLPD during second half of the gestation. We analyzed messenger RNA (mRNA), microRNA (miRNA), promoter DNA methylation, and protein expression of various RAS genes in the fetal offspring. As a consequence of 50% MLPD, fetal brains showed increased mRNA expression of angiotensinogen and angiotensin converting enzyme-1 (ACE-1), with a decrease in mRNA levels of angiotensin II type-2 (AT2) receptors. In contrast, while angiotensinogen protein expression was unaltered, the protein levels of ACE-1 and AT2 receptor genes were significantly reduced in the fetal brain from the MLPD dams. Our results also demonstrated hypomethylation of the CpG islands in the promoter regions of ACE-1 gene, and upregulation of the miRNAs, mmu-mir-27a and 27b, which regulate ACE-1 mRNA translation. Furthermore, our study showed reduced expression of the miRNA mmu-mir-330, which putatively regulates AT2 translation. For the developing fetal brain RAS, MLPD leads to significant alterations in the mRNA and protein expression, with changes in DNA methylation and miRNA, key regulators of hypertension in adults.

  11. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  12. PURIFICATION OF ANGIOTENSIN CONVERTING ENZYME INHIBITORY PEPTIDE DERIVED FROM KACANG GOAT MEAT PROTEIN HYDROLYSATE

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The objective of this study was to identify the Angiotensin Converting Enzyme (ACE inhibitorypeptide derived from Kacang goat meat protein hydrolysate. Kacang goat meat loin section washydrolyzed with pepsin, trypsin and chymotrypsin. Protein hydrolysate of Kacang goat meat was thentested the protein concentration and ACE inhibitory activity. ACE inhibitory peptide of the proteinhydrolysate was purified through several steps of purification by column SEP-PAK Plus C18 Cartridgeand RP-HPLC using a Cosmosil column 5PE-SM, 4.6 x 250 mm. The sequence of amino acid of ACEinhibitory peptide was identified by amino acid sequencer. The results showed that amino acidssequence of ACE inhibitory peptide derived from protein hydrolysate of Kacang goat meat was leu-thrglu-ala-pro-leu-asn-pro-lys-ala-arg- asn-glu-lys. It had a molecular weight (MW of 1581 and occurredat the position of 20th to 33rd residues of b-actin of goat meat protein (Capra hircus. The ACE inhibitoryactivity (IC50 of the peptide was 190 mg/mL or 120 mM.

  13. CORRELATION BETWEEN ANGIOTENSIN-CONVERTING ENZYME INHIBITORS LIPOPHILICITY AND PROTEIN BINDING DATA

    Directory of Open Access Journals (Sweden)

    Jasna Trbojević-Stanković

    2012-01-01

    Full Text Available Angiotensin-converting enzyme (ACE inhibitors represent a significant group of drugs primarily used in the treatment of hypertension and congestive heart failure. In this research, seven ACE inhibitors (enalapril, quinapril, fosinopril, lisinopril, cilazapril, ramipril, benazepril were studied to evaluate the relationship between their protein binding and calculated (logP values or ultra-high performance liquid chromatographytandem mass spectrometry (UHPLC-MS and reversed-phase thin-layer chromatography (RP-TLC lipophilicity data (ϕ0, CHI or C0 parameters, respectively. Their protein binding data varied from negligible (lisinopril to 99% (fosinopril, while calculated logPKOWWINvalues ranged from -0.94 (lisinopril to 6.61 (fosinopril. The good correlations were established between protein binding values and logPKOWWIN data (R2=0.7520 as well as between protein binding and chromatographic hydrophobicity data, ϕ0, CHI or C0parameters (R2 were 0.6160, 0.6242 and 0.6547, respectively. The possible application of hydrophobicity data in drugs protein binding evaluation can be of great importance in drug bioavailability.

  14. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  15. G protein-independent effects of the Angiotensin II type I receptor

    DEFF Research Database (Denmark)

    Christensen, Gitte Lund

    2010-01-01

    Angiotensin II type 1 receptoren (AT1R) er en syv transmembranreceptor (7TMR) og et vigtigt terapeutisk target indenfor kardiovaskulær medicin. AT1R er gennem de seneste år blevet en model for det concept, at 7TMRer kan signalere via andre og mindre velbeskrevne signalveje end de G protein...... afhængige. Skæve agonister, som blokerer G protein signaleringen mens de samtidig aktiverer de G protein uafhængige signaleringsveje er blevet brugt til at beskrive de to hovedgrene i AT1R signaleringen i cellemodelsystemer. Vi påviser at denne farmakologiske differentiering af de to signalveje er relevant...... i primære kardiomyocytter og hele hjerter og endvidere at skæve agonister kan adskille skadelig hypertrofisk vækst fra ønskelig fornyelse af hjertemuskelceller. Deruover har fokus i denne PhD afhandling været på at beskrive de G protein uafhængige effekter af AT1R aktivering vha. den skæve agonist...

  16. Interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway in renal carcinogenesis of uninephrectomized rats.

    Science.gov (United States)

    Yang, Ke-Ke; Sui, Yi; Zhou, Hui-Rong; Zhao, Hai-Lu

    2017-05-01

    Renin-angiotensin system and adenosine monophosphate-activated protein kinase signaling pathway both play important roles in carcinogenesis, but the interplay of renin-angiotensin system and adenosine monophosphate-activated protein kinase in carcinogenesis is not clear. In this study, we researched the interaction of renin-angiotensin system and adenosine monophosphate-activated protein kinase in renal carcinogenesis of uninephrectomized rats. A total of 96 rats were stratified into four groups: sham, uninephrectomized, and uninephrectomized treated with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker. Renal adenosine monophosphate-activated protein kinase and its downstream molecule acetyl coenzyme A carboxylase were detected by immunohistochemistry and western blot at 10 months after uninephrectomy. Meanwhile, we examined renal carcinogenesis by histological transformation and expressions of Ki67 and mutant p53. During the study, fasting lipid profiles were detected dynamically at 3, 6, 8, and 10 months. The results indicated that adenosine monophosphate-activated protein kinase expression in uninephrectomized rats showed 36.8% reduction by immunohistochemistry and 89.73% reduction by western blot. Inversely, acetyl coenzyme A carboxylase expression increased 83.3% and 19.07% in parallel to hyperlipidemia at 6, 8, and 10 months. The histopathology of carcinogenesis in remnant kidneys was manifested by atypical proliferation and carcinoma in situ, as well as increased expressions of Ki67 and mutant p53. Intervention with angiotensin-converting enzyme inhibitor or angiotensin receptor blocker significantly prevented the inhibition of adenosine monophosphate-activated protein kinase signaling pathway and renal carcinogenesis in uninephrectomized rats. In conclusion, the novel findings suggest that uninephrectomy-induced disturbance in adenosine monophosphate-activated protein kinase signaling pathway resulted in hyperlipidemia and

  17. Exogenous cathepsin V protein protects human cardiomyocytes HCM from angiotensin Ⅱ-Induced hypertrophy.

    Science.gov (United States)

    Huang, Kun; Gao, Lu; Yang, Ming; Wang, Jiliang; Wang, Zheng; Wang, Lin; Wang, Guobin; Li, Huili

    2017-08-01

    Angiotensin (Ang) Ⅱ-induced cardiac hypertrophy can deteriorate to heart failure, a leading cause of mortality. Endogenous Cathepsin V (CTSV) has been reported to be cardioprotective against hypertrophy. However, little is known about the effect of exogenous CTSV on cardiac hypertrophy. We used the human cardiomyocytes HCM as a cell model to investigate the effects of exogenous CTSV on Ang Ⅱ-induced cardiac cell hypertrophy. Cell surface area and expression of classical markers of hypertrophy were analyzed. We further explored the mechanism of CTSV cardioprotective by assessing the levels and activities of PI3K/Akt/mTOR and MAPK signaling pathway proteins. We found that pre-treating cardiomyocytes with CTSV could significantly inhibit Ang Ⅱ-induced hypertrophy. The mRNA expression of hypertrophy markers ANP, BNP and β-MHC was obviously elevated in Ang Ⅱ-treated cardiac cells. Whereas, exogenous CTSV effectively halted this elevation. Further study revealed that the protective effects of exogenous CTSV might be mediated by repressing the phosphorylation of proteins in the PI3K/Akt/mTOR and MAPK pathways. Based on our results, we concluded that exogenous CTSV inhibited Ang Ⅱ-induced hypertrophy in HCM cells by inhibiting PI3K/Akt/mTOR. This study provides experimental evidence for the application of CTSV protein for the treatment of cardiac hypertrophy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Abalone Protein Hydrolysates: Preparation, Angiotensin I Converting Enzyme Inhibition and Cellular Antioxidant Activity.

    Science.gov (United States)

    Park, Soo Yeon; Je, Jae-Young; Hwang, Joung-Youl; Ahn, Chang-Bum

    2015-09-01

    Abalone protein was hydrolyzed by enzymatic hydrolysis and the optimal enzyme/substrate (E/S) ratios were determined. Abalone protein hydrolysates (APH) produced by Protamex at E/S ratio of 1:100 showed angiotensin I converting enzyme inhibitory activity with IC50 of 0.46 mg/mL, and APH obtained by Flavourzyme at E/S ratio of 1:100 possessed the oxygen radical absorbance capacity value of 457.6 μM trolox equivalent/mg sample. Flavourzyme abalone protein hydrolysates (FAPH) also exhibited H2O2 scavenging activity with IC50 of 0.48 mg/mL and Fe(2+) chelating activity with IC50 of 2.26 mg/mL as well as high reducing power. FAPH significantly (P<0.05) protected H2O2-induced hepatic cell damage in cultured hepatocytes, and the cell viability was restored to 90.27% in the presence of FAPH. FAPH exhibited 46.20% intracellular ROS scavenging activity and 57.89% lipid peroxidation inhibition activity in cultured hepatocytes. Overall, APH may be useful as an ingredient for functional foods.

  19. Angiotensin I-Converting Enzyme Inhibitor Derived from Cross-Linked Oyster Protein

    Directory of Open Access Journals (Sweden)

    Cheng-Liang Xie

    2014-01-01

    Full Text Available Following cross-linking by microbial transglutaminase, modified oyster proteins were hydrolyzed to improve inhibitory activity against angiotensin-converting enzyme (ACE inhibitory activity with the use of a single protease, or a combination of six proteases. The oyster hydrolysate with the lowest 50% ACE inhibitory concentration (IC50 of 0.40 mg/mL was obtained by two-step hydrolysis of the cross-linked oyster protein using Protamex and Neutrase. Five ACE inhibitory peptides were purified from the oyster hydrolysate using a multistep chromatographic procedure comprised of ion-exchange, size exclusion, and reversed-phase liquid chromatography. Their sequences were identified as TAY, VK, KY, FYN, and YA, using automated Edman degradation and mass spectrometry. These peptides were synthesized, and their IC50 values were measured to be 16.7, 29.0, 51.5, 68.2, and 93.9 μM, respectively. Toxicity of the peptides on the HepG2 cell line was not detected. The oyster hydrolysate also significantly decreased the systolic blood pressure of spontaneously hypertensive rats (SHR. The antihypertensive effect of the oyster hydrolysate on SHR was rapid and long-lasting, compared to commercially obtained sardine hydrolysate. These results suggest that the oyster hydrolysate could be a source of effective nutraceuticals against hypertension.

  20. IN SILICO EVALUATION OF ANGIOTENSIN II RECEPTOR ANTAGONIST’S PLASMA PROTEIN BINDING USING COMPUTED MOLECULAR DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    Jadranka Odović

    2014-03-01

    Full Text Available The discovery of new pharmacologically active substances and drugs modeling led to necessity of predicting drugs properties and its ADME data. Angiotensin II receptor antagonists are a group of pharmaceuticals which modulate the renin-angiotensin-aldosterone system and today represent the most commonly prescribed anti-hypertensive drugs. The aim of this study was to compare different molecular properties of seven angiotensin II receptor antagonists / blockers (ARBs, (eprosartan, irbesartan, losartan, olmesartan, telmisartan, valsartan and their plasma protein binding (PPB data. Several ARBs molecular descriptors were calculated using software package Molinspiration Depiction Software as well as Virtual Computational Chemistry Laboratory (electronic descriptor – PSA, constitutional parameter – Mw, geometric descriptor – Vol, lipophilicity descriptors - logP values, aqueous solubility data – logS. The correlations between all collected descriptors and plasma protein binding data obtained from relevant literature were established. In the simple linear regression poor correlations were obtained in relationships between PPB data and all calculated molecular descriptors. In the next stage of the study multiple linear regression (MLR was used for correlation of PPB data with two different descriptors as independent variables. The best correlation (R2=0.70 with P<0.05 was established between PPB data and molecular weight with addition of volume values as independent variables. The possible application of computed molecular descriptors in drugs protein binding evaluation can be of great importance in drug research.

  1. Effects of anti-proteinuric therapy with angiotensin-converting-enzyme inhibition on renal protein catabolism in the adriamycin-induced nephrotic rat

    NARCIS (Netherlands)

    Haas, M; de Jong, PE; Moolenaar, F; Meijer, DKF; de Zeeuw, D

    A direct consequence of glomerular protein leakage is an increased exposure of proximal tubular cells to proteins. The aim of the present study was to examine whether chronic proteinuria affects the tubular handling of proteins and whether anti-proteinuric therapy by angiotensin-converting-enzyme

  2. Identification of intracellular proteins and signaling pathways in human endothelial cells regulated by angiotensin-(1-7).

    Science.gov (United States)

    Meinert, Christian; Gembardt, Florian; Böhme, Ilka; Tetzner, Anja; Wieland, Thomas; Greenberg, Barry; Walther, Thomas

    2016-01-01

    The study aimed to identify proteins regulated by the cardiovascular protective peptide angiotensin-(1-7) and to determine potential intracellular signaling cascades. Human endothelial cells were stimulated with Ang-(1-7) for 1 h, 3 h, 6 h, and 9 h. Peptide effects on intracellular signaling were assessed via antibody microarray, containing antibodies against 725 proteins. Bioinformatics software was used to identify affected intracellular signaling pathways. Microarray data was verified exemplarily by Western blot, Real-Time RT-PCR, and immunohistochemical studies. The microarray identified 110 regulated proteins after 1 h, 119 after 3 h, 31 after 6 h, and 86 after 9 h Ang-(1-7) stimulation. Regulated proteins were associated with high significance to several metabolic pathways like “Molecular Mechanism of Cancer” and “p53 signaling” in a time dependent manner. Exemplarily, Western blots for the E3-type small ubiquitin-like modifier ligase PIAS2 confirmed the microarray data and displayed a decrease by more than 50% after Ang-(1-7) stimulation at 1 h and 3 h without affecting its mRNA. Immunohistochemical studies with PIAS2 in human endothelial cells showed a decrease in cytoplasmic PIAS2 after Ang-(1-7) treatment. The Ang-(1-7) mediated decrease of PIAS2 was reproduced in other endothelial cell types. The results suggest that angiotensin-(1-7) plays a role in metabolic pathways related to cell death and cell survival in human endothelial cells.

  3. The mechanisms behind decreased internalization of angiotensin II type 1 receptor.

    Science.gov (United States)

    Bian, Jingwei; Zhang, Suli; Yi, Ming; Yue, Mingming; Liu, Huirong

    2018-04-01

    The internalization of angiotensin II type 1 receptor (AT 1 R) plays an important role in maintaining cardiovascular homeostasis. Decreased receptor internalization is closely related to cardiovascular diseases induced by the abnormal activation of AT 1 R, such as hypertension. However, the mechanism behind reduced AT 1 R internalization is not fully understood. This review focuses on four parts of the receptor internalization process (the combination of agonists and receptors, receptor phosphorylation, endocytosis, and recycling) and summarizes the possible mechanisms by which AT 1 R internalization is reduced based on these four parts of the process. (1) The agonist has a large molecular weight or a stronger ability to hydrolyze phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P 2 ), which can increase the consumption of PtdIns (4,5) P 2 . (2) AT 1 R phosphorylation is weakened because of an abnormal function of phosphorylated kinase or changes in phospho-barcoding and GPCR-β-arrestin complex conformation. (3) The abnormal formation of vesicles or AT 1 R heterodimers with fewer endocytic receptors results in less AT 1 R endocytosis. (4) The enhanced activity and upregulated expression of small GTP-binding protein 4 (Rab4) and 11 (Rab11), which regulate receptor recycling, and phosphatidylinositol 3-kinase increase AT 1 R recycling. In addition, lower expression of AT 1 R-associated protein (ATRAP) or higher expression of AT 1 R-associated protein 1 (ARAP1) can reduce receptor internalization. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. COMPARATIVE STUDY ON ANGIOTENSIN CONVERTING ENZYME INHIBITORY ACTIVITY OF HYDROLYSATE OF MEAT PROTEIN OF INDONESIAN LOCAL LIVESTOCKS

    Directory of Open Access Journals (Sweden)

    J. Jamhari

    2014-10-01

    Full Text Available The experiment was conducted to investigate the angiotensin converting enzyme (ACE inhibitoryactivity of hydrolysate in meat protein of Bali cattle, Kacang goat, native chicken, and local duck. Themeats of Bali cattle, Kacang goat, native chicken, and local duck were used in this study. The meatswere ground using food processor added with aquadest to obtain meat extract. The meat extracts werethen hydrolyzed using protease enzymes to obtain hydrolysate of meat protein. Protein concentration ofmeat extract and hydrolysate of meat protein were determined, and were confirmed by sodium dodecylsulfate - poly acrylamide gel electrophoresis (SDS-PAGE. ACE inhibitory activity of hydrolysate ofmeat protein derived from Bali cattle, Kacang goat, native chicken, and local duck was also determined.The results showed that protein concentration of hydrolysate of meat protein of Bali cattle, Kacang goat,native chicken, and local duck meat was significantly higher than their meat extracts. SDS-PAGEanalysis indicated that hydrolysate of meat protein of Bali cattle, Kacang goat, native chicken, and localduck had more peptides with lower molecular weight, compared to their meat extracts. Hydrolysate ofmeat protein of Bali cattle, Kacang goat, native chicken, and local duck had potencies in inhibiting ACEactivity, so it will potentially reduce blood pressure.

  5. The impact of maternal protein restriction during rat pregnancy upon renal expression of angiotensin receptors and vasopressin-related aquaporins

    Directory of Open Access Journals (Sweden)

    Cornock Ruth

    2010-08-01

    Full Text Available Abstract Background Maternal protein restriction during rat pregnancy is known to impact upon fetal development, growth and risk of disease in later life. It is of interest to understand how protein undernutrition influences the normal maternal adaptation to pregnancy. Here we investigated the mechanisms regulating renal haemodynamics and plasma volume during pregnancy, in the context of both normal and reduced plasma volume expansion. The study focused on expression of renal angiotensin receptors (ATR and vasopressin-related aquaporins (AQP, hypothesising that an alteration in the balance of these proteins would be associated with pregnancy per se and with compromised plasma volume expansion in rats fed a low-protein diet. Methods Female Wistar rats were mated and fed a control (18% casein or low-protein (9% casein diet during pregnancy. Animals were anaesthetised on days 5, 10, 15 and 20 of gestation (n = 8/group/time-point for determination of plasma volume using Evans Blue dye, prior to euthanasia and collection of tissues. Expression of the ATR subtypes and AQP2, 3 and 4 were assessed in maternal kidneys by PCR and western blotting. 24 non-pregnant Wistar rats underwent the same procedure at defined points of the oestrous cycle. Results As expected, pregnancy was associated with an increase in blood volume and haemodilution impacted upon red blood cell counts and haemoglobin concentrations. Expression of angiotensin II receptors and aquaporins 2, 3 and 4 was stable across all stages of the oestrus cycle. Interesting patterns of intra-renal protein expression were observed in response to pregnancy, including a significant down-regulation of AQP2. In contrast to previous literature and despite an apparent delay in blood volume expansion in low-protein fed rats, blood volume did not differ significantly between groups of pregnant animals. However, a significant down-regulation of AT2R protein expression was observed in low-protein fed animals

  6. Angiotensin-converting enzyme-inhibitory activity in protein hydrolysates from normal and anthracnose disease-damaged Phaseolus vulgaris seeds.

    Science.gov (United States)

    Hernández-Álvarez, Alan Javier; Carrasco-Castilla, Janet; Dávila-Ortiz, Gloria; Alaiz, Manuel; Girón-Calle, Julio; Vioque-Peña, Javier; Jacinto-Hernández, Carmen; Jiménez-Martínez, Cristian

    2013-03-15

    Bean seeds are an inexpensive source of protein. Anthracnose disease caused by the fungus Colletotrichum lindemuthianum results in serious losses in common bean (Phaseolus vulgaris L.) crops worldwide, affecting any above-ground plant part, and protein dysfunction, inducing the synthesis of proteins that allow plants to improve their stress tolerance. The aim of this study was to evaluate the use of beans damaged by anthracnose disease as a source of peptides with angiotensin-converting enzyme (ACE-I)-inhibitory activity. Protein concentrates from beans spoiled by anthracnose disease and from regular beans as controls were prepared by alkaline extraction and precipitation at isolelectric pH and hydrolysed using Alcalase 2.4 L. The hydrolysates from spoiled beans had ACE-I-inhibitory activity (IC(50) 0.0191 mg protein mL(-1)) and were very similar to those from control beans in terms of ACE-I inhibition, peptide electrophoretic profile and kinetics of hydrolysis. Thus preparation of hydrolysates using beans affected by anthracnose disease would allow for revalorisation of this otherwise wasted product. The present results suggest the use of spoiled bean seeds, e.g. anthracnose-damaged beans, as an alternative for the isolation of ACE-I-inhibitory peptides to be further introduced as active ingredients in functional foods. © 2012 Society of Chemical Industry.

  7. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2).

    Science.gov (United States)

    Xu, Zheng; Li, Weixin; Han, Jibo; Zou, Chunpeng; Huang, Weijian; Yu, Weihui; Shan, Xiaoou; Lum, Hazel; Li, Xiaokun; Liang, Guang

    2017-03-21

    Growing evidence indicates that angiotensin II (Ang II), a potent biologically active product of RAS, is a key regulator of renal inflammation and fibrosis. In this study, we tested the hypothesis that Ang II induces renal inflammatory injury and fibrosis through interaction with myeloid differentiation protein-2 (MD2), the accessory protein of toll-like receptor 4 (TLR4) of the immune system. Results indicated that in MD2 -/- mice, the Ang II-induced renal fibrosis, inflammation and kidney dysfunction were significantly reduced compared to control Ang II-infused wild-type mice. Similarly, in the presence of small molecule MD2 specific inhibitor L6H21 or siRNA-MD2, the Ang II-induced increases of pro-fibrotic and pro-inflammatory molecules were prevented in tubular NRK-52E cells. MD2 blockade also inhibited activation of NF-κB and ERK. Moreover, MD2 blockade prevented the Ang II-stimulated formation of the MD2/TLR4/MyD88 signaling complex, as well as the increased surface binding of Ang II in NRK-52E cells. In addition, Ang II directly bound recombinant MD2 protein, rather than TLR4 protein. We conclude that MD2 is a significant contributor in the Ang II-induced kidney inflammatory injury in chronic renal diseases. Furthermore, MD2 inhibition could be a new and important therapeutic strategy for preventing progression of chronic renal diseases.

  8. Conformational Profiling of the AT1 Angiotensin II Receptor Reflects Biased Agonism, G Protein Coupling, and Cellular Context.

    Science.gov (United States)

    Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Zhang, Alice; Shinjo, Yuji; Okde, Rakan; Aoki, Junken; Inoue, Asuka; Hébert, Terence E

    2017-03-31

    Here, we report the design and use of G protein-coupled receptor-based biosensors to monitor ligand-mediated conformational changes in receptors in intact cells. These biosensors use bioluminescence resonance energy transfer with Renilla luciferase (RlucII) as an energy donor, placed at the distal end of the receptor C-tail, and the small fluorescent molecule FlAsH as an energy acceptor, its binding site inserted at different positions throughout the intracellular loops and C-terminal tail of the angiotensin II type I receptor. We verified that the modifications did not compromise receptor localization or function before proceeding further. Our biosensors were able to capture effects of both canonical and biased ligands, even to the extent of discriminating between different biased ligands. Using a combination of G protein inhibitors and HEK 293 cell lines that were CRISPR/Cas9-engineered to delete Gα q , Gα 11 , Gα 12 , and Gα 13 or β-arrestins, we showed that Gα q and Gα 11 are required for functional responses in conformational sensors in ICL3 but not ICL2. Loss of β-arrestin did not alter biased ligand effects on ICL2P2. We also demonstrate that such biosensors are portable between different cell types and yield context-dependent readouts of G protein-coupled receptor conformation. Our study provides mechanistic insights into signaling events that depend on either G proteins or β-arrestin. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Angiotensin II Type 1 Receptor Mechanoactivation Involves RGS5 (Regulator of G Protein Signaling 5) in Skeletal Muscle Arteries: Impaired Trafficking of RGS5 in Hypertension.

    Science.gov (United States)

    Hong, Kwangseok; Li, Min; Nourian, Zahra; Meininger, Gerald A; Hill, Michael A

    2017-12-01

    Studies suggest that arteriolar pressure-induced vasoconstriction can be initiated by GPCRs (G protein-coupled receptors), including the AT 1 R (angiotensin II type 1 receptor). This raises the question, are such mechanisms regulated by negative feedback? The present studies examined whether RGS (regulators of G protein signaling) proteins in vascular smooth muscle cells are colocalized with the AT 1 R when activated by mechanical stress or angiotensin II and whether this modulates AT 1 R-mediated vasoconstriction. To determine whether activation of the AT 1 R recruits RGS5, an in situ proximity ligation assay was performed in primary cultures of cremaster muscle arteriolar vascular smooth muscle cells treated with angiotensin II or hypotonic solution in the absence or presence of candesartan (an AT 1 R blocker). Proximity ligation assay results revealed a concentration-dependent increase in trafficking/translocation of RGS5 toward the activated AT 1 R, which was attenuated by candesartan. In intact arterioles, knockdown of RGS5 enhanced constriction to angiotensin II and augmented myogenic responses to increased intraluminal pressure. Myogenic constriction was attenuated to a higher degree by candesartan in RGS5 siRNA-transfected arterioles, consistent with RGS5 contributing to downregulation of AT 1 R-mediated signaling. Further, translocation of RGS5 was impaired in vascular smooth muscle cells of spontaneously hypertensive rats. This is consistent with dysregulated (RGS5-mediated) AT 1 R signaling that could contribute to excessive vasoconstriction in hypertension. In intact vessels, candesartan reduced myogenic vasoconstriction to a greater extent in spontaneously hypertensive rats compared with controls. Collectively, these findings suggest that AT 1 R activation results in translocation of RGS5 toward the plasma membrane, limiting AT 1 R-mediated vasoconstriction through its role in G q/11 protein-dependent signaling. © 2017 American Heart Association, Inc.

  10. Expression of renin-angiotensin system signalling compounds in maternal protein-restricted rats: effect on renal sodium excretion and blood pressure.

    Science.gov (United States)

    Mesquita, Flávia Fernandes; Gontijo, José Antonio Rocha; Boer, Patrícia Aline

    2010-02-01

    Intrauterine growth restriction due to low maternal dietary protein during pregnancy is associated with retardation of foetal growth, renal alterations and adult hypertension. The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. In the kidney, all the components of the renin-angiotensin system including angiotensin II type 1 (AT1) and type 2 (AT2) receptors are expressed locally during nephrogenesis. Hence, we investigated whether low protein diet intake during pregnancy altered kidney and adrenal expression of AT1(R) and AT2(R) receptors, their pathways and if the modified expression of the RAS compounds occurs associated with changes in urinary sodium and in arterial blood pressure in sixteen-week-old males' offspring of the underfed group. The pregnancy dams were divided in two groups: with normal protein diet (pups named NP) (17% protein) or low protein diet (pups LP) (6% protein) during all pregnancy. The present data confirm a significant enhancement in arterial pressure in the LP group. Furthermore, the study showed a significantly decreased expression of RAS pathway protein and Ang II receptors in the kidney and an increased expression in the adrenal of LP rats. The detailed immunohistochemical analysis of RAS signalling proteins in the kidney confirm the immunoblotting results for both groups. The present investigation also showed a pronounced decrease in fractional urinary sodium excretion in maternal protein-restricted offspring, compared with the NP age-matched group. This occurred despite unchanged creatinine clearance. The current data led us to hypothesize that foetal undernutrition could be associated with decreased kidney expression of AT(R) resulting in the inability of renal tubules to handle the hydro-electrolyte balance, consequently causing arterial hypertension.

  11. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    Science.gov (United States)

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  12. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  13. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Isolation of an Angiotensin I-Converting Enzyme Inhibitory Protein with Antihypertensive Effect in Spontaneously Hypertensive Rats from the Edible Wild Mushroom Leucopaxillus tricolor

    Directory of Open Access Journals (Sweden)

    Xueran Geng

    2015-06-01

    Full Text Available An 86-kDa homodimeric angiotensin I-converting enzyme (ACE inhibitory protein designated as LTP was isolated from fruit bodies of the mushroom Leucopaxillus tricolor. The isolation procedure involved ultrafiltration through a membrane with a molecular weight cutoff of 10-kDa, ion exchange chromatography on Q-Sepharose, and finally fast protein liquid chromatography-gel filtration on Superdex 75. LTP exhibited an IC50 value of 1.64 mg∙mL−1 for its ACE inhibitory activity. The unique N-terminal amino acid sequence of LTP was disclosed by Edman degradation to be DGPTMHRQAVADFKQ. In addition, seven internal sequences of LTP were elucidated by liquid chromatography-tandem mass spectrometry (LC-MS/MS analysis. Results of the Lineweaver-Burk plot suggested that LTP competitively inhibited ACE. Both LTP and the water extract of L. tricolor exhibited a clear antihypertensive effect on spontaneously hypertensive rats.

  15. Anthology of the renin-angiotensin system: a one hundred reference approach to angiotensin II antagonists.

    Science.gov (United States)

    Ménard, J

    1993-04-01

    To provide a historical overview of the renin-angiotensin system as a guide to the introduction of a new therapeutic pathway, non-peptide inhibition of a angiotensin II. One hundred references were selected as a personal preference, for their originality or for their potential impact on medicine. This review raises the following questions for future research. (1) Will the long-term cardiovascular effects of angiotensin converting enzyme (ACE) inhibition, angiotensin II antagonism and renin inhibition be similar or not, and dependent or independent of blood pressure levels? (2) What are the local-regional interactions between vasoconstrictor and vasodilator systems, and does the renin-angiotensin system synchronize these regional hemodynamic regulatory mechanisms? (3) If hypertension is the result of an interaction between genetic and environmental factors, do proteins secreted through constitutive pathways contribute to the genetic abnormality (prorenin, angiotensinogen, ACE) while regulated secretion (renin) and other regulatory mechanisms (angiotensin II receptors) provide biological support for the environmental effects?

  16. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Science.gov (United States)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  17. Angiotensin converting enzyme (ACE) inhibitory and antihypertensive activities of protein hydrolysate from meat of Kacang goat (Capra aegagrus hircus).

    Science.gov (United States)

    Mirdhayati, Irdha; Hermanianto, Joko; Wijaya, Christofora H; Sajuthi, Dondin; Arihara, Keizo

    2016-08-01

    The meat of Kacang goat has potential for production of a protein hydrolysate. Functional ingredients from protein hydrolysate of Kacang goat meat were determined by the consistency of angiotensin-converting enzyme (ACE) inhibitory activity and antihypertensive effect. This study examined the potency of Kacang goat protein hydrolysate in ACE inhibition and antihypertensive activity. Protein hydrolysates of Kacang goat meat were prepared using sequential digestion of endo-proteinase and protease complex at several concentrations and hydrolysis times. The highest ACE inhibitory activity resulted from a hydrolysate that was digested for 4 h with 5 g kg(-1) of both enzymes. An ACE inhibitory peptide was purified and a novel peptide found with a sequence of Phe-Gln-Pro-Ser (IC50 value of 27.0 µmol L(-1) ). Both protein hydrolysates and a synthesised peptide (Phe-Gln-Pro-Ser) demonstrated potent antihypertensive activities in spontaneously hypertensive rats. Protein hydrolysate of Kacang goat meat produced by sequential digestion with endo-proteinase and protease complex has great potential as a functional ingredient, particularly as an antihypertensive agent. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  18. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  19. Angiotensin II and Renal Tubular Ion Transport

    Directory of Open Access Journals (Sweden)

    Patricia Valles

    2005-01-01

    Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  20. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins.

    Science.gov (United States)

    González-Guerra, José Luis; Castilla-Cortazar, Inma; Aguirre, Gabriel A; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E; García-Villalón, Ángel Luis

    2017-01-01

    Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.

  1. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins.

    Directory of Open Access Journals (Sweden)

    José Luis González-Guerra

    Full Text Available Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R. In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides; carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.

  2. Short communication: Potential of Fresco-style cheese whey as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme inhibitory activities.

    Science.gov (United States)

    Tarango-Hernández, S; Alarcón-Rojo, A D; Robles-Sánchez, M; Gutiérrez-Méndez, N; Rodríguez-Figueroa, J C

    2015-11-01

    Recently, traditional Mexican Fresco-style cheese production has been increasing, and the volume of cheese whey generated represents a problem. In this study, we investigated the chemical composition of Fresco-style cheese wheys and their potential as a source of protein fractions with antioxidant and angiotensin-I-converting enzyme (ACE)-inhibitory activities. Three samples from Fresco, Panela, and Ranchero cheeses whey were physicochemically characterized. Water-soluble extracts were fractionated to obtain whey fractions with different molecular weights: 10-5, 5-3, 3-1 and wheys. All whey fractions had antioxidant and ACE-inhibitory activities. The 10-5 kDa whey fraction of Ranchero cheese had the highest Trolox equivalent antioxidant capacity (0.62 ± 0.00 mM), and the 3-1 kDa Panela and Fresco cheese whey fractions showed the highest ACE-inhibitory activity (0.57 ± 0.02 and 0.59 ± 0.04 μg/mL 50%-inhibitory concentration values, respectively). These results suggest that Fresco-style cheese wheys may be a source of protein fractions with bioactivity, and thus could be useful ingredients in the manufacture of functional foods with increased nutritional value. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity, Antioxidant Properties, Phenolic Content and Amino Acid Profiles of Fucus spiralis L. Protein Hydrolysate Fractions

    Directory of Open Access Journals (Sweden)

    Lisete Paiva

    2017-10-01

    Full Text Available Food protein-derived hydrolysates with multi-bioactivities such as antihypertensive and antioxidant properties have recently received special attention since both activities can play significant roles in preventing cardiovascular diseases. This study reports, for the first time, the angiotensin I-converting enzyme (ACE-inhibition and antioxidant properties of ultrafiltrate fractions (UF with different molecular weight ranges (<1, 1–3 and ≥3 kDa obtained from Fucus spiralis protein hydrolysate (FSPH digested with cellulase–bromelain. The amino acids profile, recovery yield, protein, peptide and total phenolic contents of these FSPH-UF, and the in vitro digestibility of F. spiralis crude protein were also investigated. FSPH-UF ≥3 kDa presented remarkably higher ACE-inhibition, yield, peptide and polyphenolic (phlorotannins contents. Antioxidant analysis showed that FSPH-UF <1 kDa and ≥3 kDa exhibited significantly higher scavenging of 2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion-chelating (FIC activity. FSPH-UF ≥3 kDa had also notably higher ferric reducing antioxidant power (FRAP. Strong correlations were observed between ACE-inhibition and antioxidant activities (FIC and FRAP. The results suggest that ACE-inhibition and antioxidant properties of FSPH-UF may be due to the bioactive peptides and polyphenols released during the enzymatic hydrolysis. In conclusion, this study shows the potential use of defined size FSPH-UF for the prevention/treatment of hypertension and/or oxidative stress-related diseases.

  4. Stimulated mitogen-activated protein kinase is necessary but not sufficient for the mitogenic response to angiotensin II. A role for phospholipase D.

    Science.gov (United States)

    Wilkie, N; Morton, C; Ng, L L; Boarder, M R

    1996-12-13

    Activation of the mitogen-activated protein kinase (MAPK) cascade has been widely associated with cell proliferation; previous studies have shown that angiotensin II (AII), acting on 7-transmembrane G protein-coupled receptors, stimulates the MAPK pathway. In this report we investigate whether the MAPK pathway is required for the mitogenic response to AII stimulation of vascular smooth muscle cells derived from the hypertensive rat (SHR-VSM). AII stimulates the phosphorylation of MAPK, as determined by Western blot specific for the tyrosine 204 phosphorylated form of the protein. This MAPK phosphorylation was inhibited by the presence of the inhibitor of MAPK kinase activation, PD 098059. Using a peptide kinase assay shown to measure the p42 and p44 isoforms of MAPK, the stimulated response to AII was inhibited by PD 098059 with an IC50 of 15.6 +/- 1.6 microM. The AII stimulation of [3H]thymidine incorporation was inhibited by PD 098059 with an IC50 of 17.8 +/- 3.1 microM. PD 098059 had no effect on AII-stimulated phospholipase C or phospholipase D (PLD) activity. When the SHR-VSM cells were stimulated with phorbol ester, there was an activation of MAPK similar in size and duration to the response to AII, but there was no significant enhancement of [3H]thymidine incorporation. There was also no activation of PLD by phorbol ester, while AII produced a robust PLD response. Diversion of the product of the PLD reaction by 1-butanol caused a partial loss of the [3H]thymidine response; this did not occur with tertiary butanol, which did not interfere with the PLD reaction. These results show that in these cells the MAPK cascade is required but not sufficient for the mitogenic response to AII, and suggest that the full mitogenic response requires both MAPK in conjunction with other signaling components, one of which is PLD.

  5. Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities.

    Science.gov (United States)

    Hsu, Feng-Lin; Lin, Yaw-Huei; Lee, Mei-Hsien; Lin, Chien-Liang; Hou, Wen-Chi

    2002-10-09

    Dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), was purified to homogeneity by DE-52 ion-exchange chromatography. This purified dioscorin was shown by spectrophotometric methods to inhibit angiotensin converting enzyme (ACE) in a dose-dependent manner (12.5-750 microg, respectively, 20.83-62.5% inhibitions) using N-[3-(2-furyl)acryloyl]-Phe-Gly-Gly (FAPGG) as substrates. The 50% inhibition (IC(50)) of ACE activity was 6.404 microM dioscorin (250 microg corresponding to 7.81 nmol) compared to that of 0.00781 microM (0.0095 nmol) for captopril. The commercial bovine serum albumin and casein (bovine milk) showed less ACE inhibitory activity. The use of qualitative TLC also showed dioscorin as ACE inhibitors. Dioscorin showed mixed noncompetitive inhibitions against ACE; when 31.25 microg of dioscorin (0.8 microM) was added, the apparent inhibition constant (K(i)) was 2.738 microM. Pepsin was used for dioscorin hydrolysis at 37 degrees C for different times. It was found that the ACE inhibitory activity was increased from 51.32% to about 75% during 32 h hydrolysis. The smaller peptides were increased with increasing pepsin hydrolytic times. Dioscorin and its hydrolysates might be a potential for hypertension control when people consume yam tuber.

  6. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  7. In vitro inhibitory activities of selected Australian medicinal plant extracts against protein glycation, angiotensin converting enzyme (ACE) and digestive enzymes linked to type II diabetes.

    Science.gov (United States)

    Deo, Permal; Hewawasam, Erandi; Karakoulakis, Aris; Claudie, David J; Nelson, Robert; Simpson, Bradley S; Smith, Nicholas M; Semple, Susan J

    2016-11-04

    There is a need to develop potential new therapies for the management of diabetes and hypertension. Australian medicinal plants collected from the Kuuku I'yu (Northern Kaanju) homelands, Cape York Peninsula, Queensland, Australia were investigated to determine their therapeutic potential. Extracts were tested for inhibition of protein glycation and key enzymes relevant to the management of hyperglycaemia and hypertension. The inhibitory activities were further correlated with the antioxidant activities. Extracts of five selected plant species were investigated: Petalostigma pubescens, Petalostigma banksii, Memecylon pauciflorum, Millettia pinnata and Grewia mesomischa. Enzyme inhibitory activity of the plant extracts was assessed against α-amylase, α-glucosidase and angiotensin converting enzyme (ACE). Antiglycation activity was determined using glucose-induced protein glycation models and formation of protein-bound fluorescent advanced glycation endproducts (AGEs). Antioxidant activity was determined by measuring the scavenging effect of plant extracts against 1, 1-diphenyl-2-picryl hydrazyl (DPPH) and using the ferric reducing anti-oxidant potential assay (FRAP). Total phenolic and flavonoid contents were also determined. Extracts of the leaves of Petalostigma banksii and P. pubescens showed the strongest inhibition of α-amylase with IC 50 values of 166.50 ± 5.50 μg/mL and 160.20 ± 27.92 μg/mL, respectively. The P. pubescens leaf extract was also the strongest inhibitor of α-glucosidase with an IC 50 of 167.83 ± 23.82 μg/mL. Testing for the antiglycation potential of the extracts, measured as inhibition of formation of protein-bound fluorescent AGEs, showed that P. banksii root and fruit extracts had IC 50 values of 34.49 ± 4.31 μg/mL and 47.72 ± 1.65 μg/mL, respectively, which were significantly lower (p < 0.05) than other extracts. The inhibitory effect on α-amylase, α-glucosidase and the antiglycation potential of

  8. Effect of urine urea nitrogen and protein intake adjusted by using the estimated urine creatinine excretion rate on the antiproteinuric effect of angiotensin II type I receptor blockers.

    Science.gov (United States)

    Chin, Ho Jun; Kim, Dong Ki; Park, Jung Hwan; Shin, Sung Joon; Lee, Sang Ho; Choi, Bum Soon; Kim, Suhnggwon; Lim, Chun Soo

    2015-01-01

    The aim of this study was to determine the role of protein intake on proteinuria in chronic kidney disease (CKD), as it is presently not conclusive. This is a subanalysis of data from an open-label, case-controlled, randomized clinical trial on education about low-salt diets (NCT01552954). We estimated the urine excretion rate of parameters in a day, adjusted by using the equation for estimating urine creatinine excretion, and analyzed the effect of urine urea nitrogen (UUN), as well as estimating protein intake on the level of albuminuria in hypertensive patients with chronic kidney disease. Among 174 participants from whom complete 24-h urine specimens were collected, the estimates from the Tanaka equation resulted in the highest accuracy for the urinary excretion rate of creatinine, sodium, albumin, and UUN. Among 227 participants, the baseline value of estimated urine albumin excretion (eUalb) was positively correlated with the estimated UUN (eUUN) or protein intake according to eUUN (P = 0.012 and P = 0.038, respectively). We were able to calculate the ratios of eUalb and eUUN in 221 participants and grouped them according to the ratio of eUUN during 16-wk trial period. The proportion of patients that achieved a decrement of eUalb ≥25% during 16 wk with an angiotensin II type I receptor blocker (ARB) medication was 80% (24 of 30) in group 1, with eUUN ratio ≤-25%; 82.2% (111 of 135) in group 2, with eUUN ratio between -25% and 25%; and 66.1% (37 and 56) in group 3, with eUUN ratio ≥25% (P = 0.048). The probability of a decrease in albuminuria with ARB treatment was lower in patients with an increase of eUUN or protein intake during the 16 wk of ARB treatment, as observed in multiple logistic regression analysis as well. The estimated urine urea excretion rate showed a positive association with the level of albuminuria in hypertensive patients with chronic kidney disease. The increase of eUUN excretion ameliorated the antiproteinuric effect of ARB

  9. Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis.

    Science.gov (United States)

    Lafarga, Tomas; O'Connor, Paula; Hayes, Maria

    2014-09-01

    Angiotensin-I-converting enzyme (ACE-I, EC 3.4.15.1), renin (EC 3.4.23.15), and dipeptidyl peptidase-IV (DPP-IV, EC 3.4.14.5) play key roles in the control of hypertension and the development of type-2 diabetes and other diseases associated with metabolic syndrome. The aim of this work was to utilize known in silico methodologies, peptide databases and software including ProtParam (http://web.expasy.org/protparam/), Basic Local Alignment Tool (BLAST), ExPASy PeptideCutter (http://web.expasy.org/peptide_cutter/) and BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/pl/biopep) to assess the release of potentially bioactive DPP-IV, renin and ACE-I inhibitory peptides from bovine and porcine meat proteins including hemoglobin, collagen and serum albumin. These proteins were chosen as they are found commonly in meat by-products such as bone, blood and low-value meat cuts. In addition, the bioactivities of identified peptides were confirmed using chemical synthesis and in vitro bioassays. The concentration of peptide required to inhibit the activity of ACE-I and DPP-IV by 50% was determined for selected, active peptides. Novel ACE-I and DPP-IV inhibitory peptides were identified in this study using both in silico analysis and a literature search to streamline enzyme selection for peptide production. These novel peptides included the ACE-I inhibitory tri-peptide Ile-Ile-Tyr and the DPP-IV inhibitory tri-peptide Pro-Pro-Leu corresponding to sequences f (182-184) and f (326-328) of both porcine and bovine serum albumin which can be released following hydrolysis with the enzymes papain and pepsin, respectively. This work demonstrates that meat proteins are a suitable resource for the generation of bioactive peptides and further demonstrates the usefulness of in silico methodologies to streamline identification and generation of bioactive peptides. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Clathrin-dependent internalization of the angiotensin II AT₁A receptor links receptor internalization to COX-2 protein expression in rat aortic vascular smooth muscle cells.

    Science.gov (United States)

    Morinelli, Thomas A; Walker, Linda P; Velez, Juan Carlos Q; Ullian, Michael E

    2015-02-05

    The major effects of Angiotensin II (AngII) in vascular tissue are mediated by AngII AT1A receptor activation. Certain effects initiated by AT1A receptor activation require receptor internalization. In rat aortic vascular smooth muscle cells (RASMC), AngII stimulates cyclooxygenase 2 protein expression. We have previously shown this is mediated by β-arrestin-dependent receptor internalization and NF-κB activation. In this study, a specific inhibitor of clathrin-mediated endocytosis (CME), pitstop-2, was used to test the hypothesis that clathrin-dependent internalization of activated AT1A receptor mediates NF-κB activation and subsequent cyclooxygenase 2 expression. Radioligand binding assays, real time qt-PCR and immunoblotting were used to document the effects of pitstop-2 on AngII binding and signaling in RASMC. Laser scanning confocal microscopy (LSCM) was used to image pitstop-2׳s effects on AT1 receptor/GFP internalization in HEK-293 cells and p65 NF-κB nuclear localization in RASMC. Pitstop-2 significantly inhibited internalization of AT1A receptor (44.7% ± 3.1% Control vs. 13.2% ± 8.3% Pitstop-2; n=3) as determined by radioligand binding studies in RASMC. Studies utilizing AT1A receptor/GFP expressed in HEK 293 cells and LSCM confirmed these findings. Pitstop-2 significantly inhibited AngII-induced p65 NF-κB phosphorylation and nuclear localization, COX-2 message and protein expression in RASMC without altering activation of p42/44 ERK or TNFα signaling. Pitstop-2, a specific inhibitor of clathrin-mediated endocytosis, confirms that internalization of activated AT1A receptor mediates AngII activation of cyclooxygenase 2 expression in RASMC. These data provide support for additional intracellular signaling pathways activated through β-arrestin mediated internalization of G protein-coupled receptors, such as AT1A receptors. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Utilisation of rapeseed protein isolates for production of peptides with angiotensin I-converting enzyme (ACE-inhibitory activity

    Directory of Open Access Journals (Sweden)

    Vioque, Javier

    2004-12-01

    Full Text Available ACE activity is related to increased arterial pressure and coronary diseases. A rapeseed protein isolate was hydrolyzed with the protease Alcalase in order to investigate the possible presence of ACE inhibitory peptides in the resulting hydrolysates. Hydrolysis for 30 min yielded a hydrolysate with the highest ACE inhibitory activity. Two fractions of this hydrolysate obtained by Biogel P2 gel filtration chromatography were used for further purification of ACE inhibitory peptides. Three fractions with ACE inhibitory activity were purified by reverse-phase HPLC of Biogel P2 f ractions. This demonstrates that rapeseed protein hydrolysates represent a good source of ACE inhibitory peptides .La actividad de ECA está relacionada con una presión arterial alta y enfermedades cardíacas. Un aislado proteico de colza se hidrolizó con alcalasa para estudiar la posible presencia de péptidos inhibidores de ECA en el hidrolizado. La hidrólisis durante 30 min produjo el hidrolizado con la mayor actividad inhibidora de ECA. Dos fracciones de este hidrolizado, obtenidas por cromatografía de filtración en gel Biogel P2, se usaron para la purificación de péptidos inhibidores de ECA. Tres fracciones con actividad inhibidora de ECA se purificaron mediante HPLC en fase reversa de las fracciones obtenidas mediante Biogel P2. Esto demuestra que los hidrolizados proteicos de colza representan una buena fuente de péptidos inhibidores de ECA.

  12. A novel method to determine new potent angiotensin inhibitor ...

    African Journals Online (AJOL)

    that inhibit the action of angiotensin II by binding directly to the ..... Relatively high plasma protein binding of AZL (>99 .... Ghasemi JB, Zolfonoun E. Application of principal component analysis–multivariate adaptive regression splines for the ...

  13. Angiotensin II Receptor Blockers

    Science.gov (United States)

    ... 2010. Mann JFE, et al. Renin-angiotensin system inhibition in the treatment of hypertension. http://www.uptodate. ... profit organization and proceeds from Web advertising help support our mission. Mayo Clinic does not endorse any ...

  14. The impact of fermentation and in vitro digestion on formation angiotensin converting enzyme (ACE) inhibitory peptides from pea proteins.

    Science.gov (United States)

    Jakubczyk, Anna; Karaś, Monika; Baraniak, Barbara; Pietrzak, Marlena

    2013-12-15

    Pea seeds were fermented by Lactobacillus plantarum 299v in monoculture under different time and temperature conditions and the fermented products were digested in vitro under gastrointestinal conditions. After fermentation and digestion ACE inhibitory activity was determined. In all samples after fermentation no ACE inhibitory activity was noted. Potentially antihypertensive peptides were released during in vitro digestion. The highest DH (68.62%) were noted for control sample, although the lowest IC50 value (0.19 mg/ml) was determined for product after 7 days fermentation at 22 °C. The hydrolysate characterised by the highest ACE inhibitory activity was separated on Sephadex G10 and two peptides fractions were obtained. The highest ACE inhibitory activity (IC50=64.04 μg/ml) for the first fraction was noted. This fraction was separated by HPLC and identified by LC-MS/MS and the sequence of peptide derived from pea proteins was determined as KEDDEEEEQGEEE. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation

    DEFF Research Database (Denmark)

    Hansen, Jakob Lerche; Aplin, Mark; Hansen, Jonas Tind

    2008-01-01

    The angiotensin AT(1) receptor is a key regulator of blood pressure and body fluid homeostasis, and it plays a key role in the pathophysiology of several cardiovascular diseases such as hypertension, cardiac hypertrophy, congestive heart failure, and arrhythmia. The importance of human angiotensi...

  16. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    International Nuclear Information System (INIS)

    Muchir, Antoine; Wu, Wei; Sera, Fusako; Homma, Shunichi; Worman, Howard J.

    2014-01-01

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna H222P/H222P mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna H222P/H222P mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna H222P/H222P mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna H222P/H222P mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional

  17. Protein kinase C epsilon mediates the inhibition of angiotensin II on the slowly activating delayed-rectifier potassium current through channel phosphorylation.

    Science.gov (United States)

    Gou, Xiangbo; Wang, Wenying; Zou, Sihao; Qi, Yajuan; Xu, Yanfang

    2018-03-01

    The slowly activating delayed rectifier K + current (I Ks ) is one of the main repolarizing currents in the human heart. Evidence has shown that angiotensin II (Ang II) regulates I Ks through the protein kinase C (PKC) pathway, but the related results are controversial. This study was designed to identify PKC isoenzymes involved in the regulation of I Ks by Ang II and the underlying molecular mechanism. The whole-cell patch-clamp technique was used to record I Ks in isolated guinea pig ventricular cardiomyocytes and in human embryonic kidney (HEK) 293 cells co-transfected with human KCNQ1/KCNE1 genes and Ang II type 1 receptor genes. Ang II inhibited I Ks in a concentration-dependent manner in native cardiomyocytes. A broad PKC inhibitor Gö6983 (not inhibiting PKCε) and a selective cPKC inhibitor Gö6976 did not affect the inhibitory action of Ang II. In contrast, the inhibition was significantly attenuated by PKCε-selective peptide inhibitor εV1-2. However, direct activation of PKC by phorbol 12-myristate 13-acetate (PMA) increased the cloned human I Ks in HEK293 cells. Similarly, the cPKC peptide activator significantly enhanced the current. In contrast, the PKCε peptide activator inhibited the current. Further evidence showed that PKCε knockdown by siRNA antagonized the Ang II-induced inhibition on KCNQ1/KCNE1 current, whereas knockdown of cPKCs (PKCα and PKCβ) attenuated the potentiation of the current by PMA. Moreover, deletion of four putative phosphorylation sites in the C-terminus of KCNQ1 abolished the action of PMA. Mutation of two putative phosphorylation sites in the N-terminus of KCNQ1 and one site in KCNE1 (S102) blocked the inhibition of Ang II. Our results demonstrate that PKCε isoenzyme mediates the inhibitory action of Ang II on I Ks and by phosphorylating distinct sites in KCNQ1/KCNE1, cPKC and PKCε isoenzymes produce the contrary regulatory effects on the channel. These findings have provided new insight into the molecular mechanism

  18. Mitogen-activated protein kinase kinase 1/2 inhibition and angiotensin II converting inhibition in mice with cardiomyopathy caused by lamin A/C gene mutation

    Energy Technology Data Exchange (ETDEWEB)

    Muchir, Antoine, E-mail: a.muchir@institut-myologie.org [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Wu, Wei [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Sera, Fusako; Homma, Shunichi [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Worman, Howard J., E-mail: hjw14@columbia.edu [Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY (United States); Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY (United States)

    2014-10-03

    Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitor has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left

  19. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  20. Valsartan attenuates intimal hyperplasia in balloon-injured rat aortic arteries through modulating the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas receptor axis.

    Science.gov (United States)

    Li, Yonghong; Cai, Shanglang; Wang, Qixin; Zhou, Jingwei; Hou, Bo; Yu, Haichu; Ge, Zhiming; Guan, Renyan; Liu, Xu

    2016-05-15

    The role of the Mas receptor in the activity of valsartan against intimal hyperplasia is unclear. Herein, we investigated the role of the angiotensin-converting enzyme 2 (ACE2)-angiotensin-(1-7)-Mas receptor axis on the activity of valsartan against intimal hyperplasiain balloon-injured rat aortic arteries. Wistar rats were randomized equally into the sham control group, injured group, and injured plus valsartan (20 mg/kg/d)-treated group. Valsartan significantly attenuated the vascular smooth muscle cell proliferation and intimal and medial thickening on days 14 and 28 after injury. The angiotensin-(1-7) levels as well as ACE2 and Mas receptor mRNA/protein expression were significantly decreased in the injured rats, compared to the uninjured rats; meanwhile, the angiotensin II level as well as the ACE and AT1 receptor mRNA/protein expression were increased (all P valsartan significantly increased the angiotensin-(1-7) levels as well as ACE2 and Mas receptor mRNA/protein expression but decreased the angiotensin II level, ACE and AT1 receptor mRNA/protein expression, as well as the p-ERK protein expression, compared to the injured group (all P valsartan attenuates neointimal hyperplasiain balloon-injured rat aortic arteries through activation of the ACE2-angiotensin-(1-7)-Mas axis as well as inhibition of the ACE-angiotensin II-AT1 and p-ERK pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Radioimmunoassay - renin - angiotensin. Principles of radioimmunoassay and their application in measuring renin and angiotensin

    Energy Technology Data Exchange (ETDEWEB)

    Krause, D K; Hummerich, W; Poulsen, K [eds.

    1978-01-01

    Typical pitfalls such as impurity of 'standard', tracer damage, crossreactivity of antiserum, unspecific binding of protecting proteins, blank effects with negative results, charcoal stripping, invisible coprecipitate or uncertainty in the analysis of the calibration curve (graph, logit-log, polynormal or spline function) can occur in any type of radioimmunoassay; they are detailed in the general part of this book. The special position occupied by radioimmunological quantification of parameters of the renin-angiotensin system creates additional, even more serious problems. While the radioimmunological determination of the decapeptide angiotensin I no longer causes major obstacles, measurement of the biologically active octapeptide angiotensin II is still only possible in a few centers. The (indirect) determination of plasma renin is characterized by a situation where the enzyme renin may be clearly defined in theory as a specific 10-11-leucine-leucine-endopeptidase cleaving only a decapeptide, but the actual renin assay, however, measures various forms of renin and other angiotensin-forming (or angiotensin-destroying) enzymes at the same time.

  2. Angiotensin type 2 receptors

    DEFF Research Database (Denmark)

    Sumners, Colin; de Kloet, Annette D; Krause, Eric G

    2015-01-01

    In most situations, the angiotensin AT2-receptor (AT2R) mediates physiological actions opposing those mediated by the AT1-receptor (AT1R), including a vasorelaxant effect. Nevertheless, experimental evidence vastly supports that systemic application of AT2R-agonists is blood pressure neutral...

  3. The Evaluation of Dipeptidyl Peptidase (DPP)-IV, α-Glucosidase and Angiotensin Converting Enzyme (ACE) Inhibitory Activities of Whey Proteins Hydrolyzed with Serine Protease Isolated from Asian Pumpkin (Cucurbita ficifolia).

    Science.gov (United States)

    Konrad, Babij; Anna, Dąbrowska; Marek, Szołtysik; Marta, Pokora; Aleksandra, Zambrowicz; Józefa, Chrzanowska

    2014-01-01

    In the present study, whey protein concentrate (WPC-80) and β-lactoglobulin were hydrolyzed with a noncommercial serine protease isolated from Asian pumpkin ( Cucurbita ficifolia ). Hydrolysates were further fractionated by ultrafiltration using membranes with cut-offs equal 3 and 10 kDa. Peptide fractions of molecular weight lower than 3 and 3-10 kDa were further subjected to the RP-HPLC. Separated preparations were investigated for their potential as the natural inhibitors of dipeptidyl peptidase (DPP-IV), α-glucosidase and angiotensin converting enzyme (ACE). WPC-80 hydrolysate showed higher inhibitory activities against the three tested enzymes than β-lactoglobulin hydrolysate. Especially high biological activities were exhibited by peptide fractions of molecular weight lower than 3 kDa, with ACE IC50 food ingredients in the diet of patients with type 2 diabetes.

  4. Enhanced expression of Gqα and PLC-β1 proteins contributes to vascular smooth muscle cell hypertrophy in SHR: role of endogenous angiotensin II and endothelin-1.

    Science.gov (United States)

    Atef, Mohammed Emehdi; Anand-Srivastava, Madhu B

    2014-07-01

    Vascular Gqα signaling has been shown to contribute to cardiac hypertrophy. In addition, angiotensin II (ANG II) was shown to induce vascular smooth muscle cell (VSMC) hypertrophy through Gqα signaling; however, the studies on the role of Gqα and PLC-β1 proteins in VSMC hypertrophy in animal model are lacking. The present study was therefore undertaken to examine the role of Gqα/PLC-β1 proteins and the signaling pathways in VSMC hypertrophy using spontaneously hypertensive rats (SHR). VSMC from 16-wk-old SHR and not from 12-wk-old SHR exhibited enhanced levels of Gqα/PLC-β1 proteins compared with age-matched Wistar-Kyoto (WKY) rats as determined by Western blotting. However, protein synthesis as determined by [(3)H]leucine incorporation was significantly enhanced in VSMC from both 12- and 16-wk-old SHR compared with VSMC from age-matched WKY rats. Furthermore, the knockdown of Gqα/PLC-β1 in VSMC from 16-wk-old SHR by antisense and small interfering RNA resulted in attenuation of protein synthesis. In addition, the enhanced expression of Gqα/PLC-β1 proteins, enhanced phosphorylation of ERK1/2, and enhanced protein synthesis in VSMC from SHR were attenuated by the ANG II AT1 and endothelin-1 (ET-1) ETA receptor antagonists losartan and BQ123, respectively, but not by the ETB receptor antagonist BQ788. In addition, PD98059 decreased the enhanced expression of Gqα/PLC-β1 and protein synthesis in VSMC from SHR. These results suggest that the enhanced levels of endogenous ANG II and ET-1 through the activation of AT1 and ETA receptors, respectively, and MAP kinase signaling, enhanced the expression of Gqα/PLC-β1 proteins in VSMC from 16-wk-old SHR and result in VSMC hypertrophy. Copyright © 2014 the American Physiological Society.

  5. Angiotensin I-converting enzyme inhibitor derived from cottonseed ...

    African Journals Online (AJOL)

    Six proteolytic enzymes, including alcalase, flavourzyme, trypsin, neutrase, papain and pepsin, were employed to hydrolyze cottonseed protein to produce the hydrolysates of Angiotensin I-converting enzyme (ACE) inhibitory activity. The result indicated that the cottonseed protein hydrolysate (CPH) produced by papain had ...

  6. The angiotensin type 1 receptor activates extracellular signal-regulated kinases 1 and 2 by G protein-dependent and -independent pathways in cardiac myocytes and langendorff-perfused hearts

    DEFF Research Database (Denmark)

    Aplin, Mark; Christensen, Gitte Lund; Schneider, Mikael

    2007-01-01

    The angiotensin II (AngII) type 1 receptor (AT(1)R) has been shown to activate extracellular signal-regulated kinases 1 and 2 (ERK1/2) through G proteins or G protein-independently through beta-arrestin2 in cellular expression systems. As activation mechanisms may greatly influence the biological...... effects of ERK1/2 activity, differential activation of the AT(1)R in its native cellular context could have important biological and pharmacological implications. To examine if AT(1)R activates ERK1/2 by G protein-independent mechanisms in the heart, we used the [Sar(1), Ile(4), Ile(8)]-AngII ([SII] Ang......II) analogue in native preparations of cardiac myocytes and beating hearts. We found that [SII] AngII does not activate G(q)-coupling, yet stimulates the beta-arrestin2-dependent ERK1/2. The G(q)-activated pool of ERK1/2 rapidly translocates to the nucleus, while the beta-arrestin2-scaffolded pool remains...

  7. Effect of partially purified angiotensin converting enzyme inhibitory ...

    African Journals Online (AJOL)

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  8. Systemic and lung protein changes in sarcoidosis. Lymphocyte counts, gallium uptake values, and serum angiotensin-converting enzyme levels may reflect different aspects of disease activity

    International Nuclear Information System (INIS)

    Check, I.J.; Kidd, M.R.; Staton, G.W. Jr.

    1986-01-01

    BAL lymphocyte percentages, quantitated gallium-67 lung uptake, and SACE levels have all been proposed as measures of disease activity in sarcoidosis. We analyzed 32 paired sera and BAL fluids from sarcoidosis patients by high-resolution agarose electrophoresis to look for protein changes characteristic of systemic or local inflammation and compared the results with those from the above tests. Nine patients (group 1) had serum inflammatory protein changes and increased total protein, albumin, beta 1-globulin (transferrin), and gamma-globulin levels in fluid recovered by BAL. Thirteen patients (group 2) had normal protein levels in sera but abnormal protein levels in BAL specimens. Ten patients (group 3) had normal protein levels in sera and in BAL specimens. Patients in groups 1 and 2 had a disproportionate increase in beta 1-globulin (transferrin) and gamma-globulin levels in their BAL specimens. The BAL lymphocyte percentage changes paralleled the BAL protein level changes, suggesting relationships among the immunoregulatory role of these cells, increased local immunoglobulin synthesis, and the pathogenesis of altered alveolar permeability. Gallium-67 uptake was highest in patients with serum inflammatory protein changes. Thus, systemic inflammation may facilitate pulmonary gallium-67 uptake, possibly by changes in BAL fluid or serum transferrin saturation and/or kinetics. SACE levels showed no relationship to changes in the levels of serum or BAL proteins. These data suggest that the various proposed measures of disease activity reflect different aspects of inflammation in sarcoidosis

  9. Recruitment of macrophages from the spleen contributes to myocardial fibrosis and hypertension induced by angiotensin II

    Directory of Open Access Journals (Sweden)

    Ning-Ping Wang

    2017-05-01

    Full Text Available Introduction: The purpose of this study was to determine whether macrophages migrated from the spleen are associated with angiotensin II-induced cardiac fibrosis and hypertension. Methods: Sprague-Dawley rats were subjected to angiotensin II infusion in vehicle (500 ng/kg/min for up to four weeks. In splenectomy, the spleen was removed before angiotensin II infusion. In the angiotensin II AT1 receptor blockade, telmisartan was administered by gastric gavage (10 mg/kg/day during angiotensin II infusion. The heart and aorta were isolated for Western blot analysis and immunohistochemistry. Results: Angiotensin II infusion caused a significant reduction in the number of monocytes in the spleen through the AT1 receptor-activated monocyte chemoattractant protein-1. Comparison of angiotensin II infusion, splenectomy and telmisartan comparatively reduced the recruitment of macrophages into the heart. Associated with this change, transforming growth factor β1 expression and myofibroblast proliferation were inhibited, and Smad2/3 and collagen I/III were downregulated. Furthermore, interstitial/perivascular fibrosis was attenuated. These modifications occurred in coincidence with reduced blood pressure. At week 4, invasion of macrophages and myofibroblasts in the thoracic aorta was attenuated and expression of endothelial nitric oxide synthase was upregulated, along with a reduction in aortic fibrosis. Conclusions: These results suggest that macrophages when recruited into the heart and aorta from the spleen potentially contribute to angiotensin II-induced cardiac fibrosis and hypertension.

  10. QGQS Granule in SHR Serum Metabonomics Study Based on Tools of UPLC-Q-TOF and Renin-Angiotensin-Aldosterone System Form Protein Profilin-1

    Directory of Open Access Journals (Sweden)

    Ke Li

    2017-01-01

    Full Text Available QGQS granule is effective for the therapeutic of hypertension in clinic. The aim of this research is to observe the antihypertension effect of QGQS granule on SHR and explain the mechanism of its lowering blood pressure. 30 SHR were selected as model group, captopril group, and QGQS group, 10 WKYr were used as control group, and RBP were measured on tail artery consciously. And all the serum sample analysis was carried out on UPLC-TOF-MS system to determine endogenous metabolites and to find the metabonomics pathways. Meanwhile, ELISA kits for the determination pharmacological indexes of PRA, AngI, AngII, and ALD were used for pathway confirmatory; WB for determination of profilin-1 protein expression was conducted for Ang II pathway analysis as well. It is demonstrated that QGQS granule has an excellent therapeutic effect on antihypertension, which exerts effect mainly on metabonomics pathway by regulating glycerophospholipid, sphingolipid, and arachidonic acid metabolism, and it could inhibit the overexpression of the profilin-1 protein. We can come to a conclusion that RAAS should be responsible mainly for the metabonomics pathway of QGQS granule on antihypertension, and it plays a very important role in protein of profilin-1 inhibition.

  11. Targeting Renin–Angiotensin System Against Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Abadi Kahsu Gebre

    2018-04-01

    Full Text Available Renin Angiotensin System (RAS is a hormonal system that regulates blood pressure and fluid balance through a coordinated action of renal, cardiovascular, and central nervous systems. In addition to its hemodynamic regulatory role, RAS involves in many brain activities, including memory acquisition and consolidation. This review has summarized the involvement of RAS in the pathology of Alzheimer’s disease (AD, and the outcomes of treatment with RAS inhibitors. We have discussed the effect of brain RAS in the amyloid plaque (Aβ deposition, oxidative stress, neuroinflammation, and vascular pathology which are directly and indirectly associated with AD. Angiotensin II (AngII via AT1 receptor is reported to increase brain Aβ level via different mechanisms including increasing amyloid precursor protein (APP mRNA, β-secretase activity, and presenilin expression. Similarly, it was associated with tau phosphorylation, and reactive oxygen species generation. However, these effects are counterbalanced by Ang II mediated AT2 signaling. The protective effect observed with angiotensin receptor blockers (ARBs and angiotensin converting enzyme inhibitors (ACEIs could be as the result of inhibition of Ang II signaling. ARBs also offer additional benefit by shifting the effect of Ang II toward AT2 receptor. To conclude, targeting RAS in the brain may benefit patients with AD though it still requires further in depth understanding.

  12. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wösten-van Asperen, Roelie M.; Bos, Albert P.; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, René

    2013-01-01

    Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts angiotensin

  13. Focus on Brain Angiotensin III and Aminopeptidase A in the Control of Hypertension

    Directory of Open Access Journals (Sweden)

    John W. Wright

    2012-01-01

    Full Text Available The classic renin-angiotensin system (RAS was initially described as a hormone system designed to mediate cardiovascular and body water regulation. The discovery of a brain RAS composed of the necessary functional components (angiotensinogen, peptidases, angiotensins, and specific receptor proteins independent of the peripheral system significantly expanded the possible physiological and pharmacological functions of this system. This paper first describes the enzymatic pathways resulting in active angiotensin ligands and their interaction with AT1, AT2, and mas receptor subtypes. Recent evidence points to important contributions by brain angiotensin III (AngIII and aminopeptidases A (APA and N (APN in sustaining hypertension. Next, we discuss current approaches to the treatment of hypertension followed by novel strategies that focus on limiting the binding of AngII and AngIII to the AT1 receptor subtype by influencing the activity of APA and APN. We conclude with thoughts concerning future treatment approaches to controlling hypertension and hypotension.

  14. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    Science.gov (United States)

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and

  15. The evolution of renin-angiotensin blockade: angiotensin-converting enzyme inhibitors as the starting point.

    Science.gov (United States)

    Sica, Domenic A

    2010-04-01

    The renin-angiotensin system has been a target in the treatment of hypertension for close to three decades. Several medication classes that block specific aspects of this system have emerged as useful therapies, including angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and, most recently, direct renin inhibitors. There has been a natural history to the development of each of these three drug classes, starting with their use as antihypertensive agents; thereafter, in each case they have been employed as end-organ protective agents. To date, there has been scant evidence to favor angiotensin receptor blockers or direct renin inhibitors over angiotensin-converting enzyme inhibitors in treating hypertension or in affording end-organ protection; thus, angiotensin-converting enzyme inhibitors remain the standard of care when renin-angiotensin system blockade is warranted.

  16. The Renal Renin-Angiotensin System

    Science.gov (United States)

    Harrison-Bernard, Lisa M.

    2009-01-01

    The renin-angiotensin system (RAS) is a critical regulator of sodium balance, extracellular fluid volume, vascular resistance, and, ultimately, arterial blood pressure. In the kidney, angiotensin II exerts its effects to conserve salt and water through a combination of the hemodynamic control of renal blood flow and glomerular filtration rate and…

  17. Renin-Angiotensin System in Diabetes.

    Science.gov (United States)

    Rein, Johannes; Bader, Michael

    2017-11-17

    The renin-angiotensin system (RAS) has two different axes, the classical one with the effector peptide angiotensin II and the new one with the effector peptide angiotensin (1-7). Both peptides have been shown to be involved in the pathogenesis of diabetes mellitus and its consequences, nephropathy, retinopathy and cardiomyopathy in animal models and patients. In diabetes, angiotensin II acts mostly deleterious and angiotensin (1-7) protective. In this review we summarize the knowledge about the role of the different RAS axes in diabetes mellitus and the use of drugs interfering with the RAS in the therapy of the disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration.

    Directory of Open Access Journals (Sweden)

    Erika Costa de Alvarenga

    Full Text Available The angiotensin-I converting enzyme (ACE plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II. More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet.Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration.We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC, and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5 showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein.ACE activation regulates melanoma cell proliferation and migration.

  19. Imbalance between pulmonary angiotensin-converting enzyme and angiotensin-converting enzyme 2 activity in acute respiratory distress syndrome

    NARCIS (Netherlands)

    Wosten-van Asperen, Roelie M.; Bos, Albert; Bem, Reinout A.; Dierdorp, Barbara S.; Dekker, Tamara; van Goor, Harry; Kamilic, Jelena; van der Loos, Chris M.; van den Berg, Elske; Bruijn, Martijn; van Woensel, Job B.; Lutter, Rene

    2013-01-01

    Objective: Angiotensin-converting enzyme and its effector peptide angiotensin II have been implicated in the pathogenesis of acute respiratory distress syndrome. Recently, angiotensin-converting enzyme 2 was identified as the counter-regulatory enzyme of angiotensin-converting enzyme that converts

  20. Renin-angiotensin system inhibitors, angiotensin I-converting enzyme gene insertion/deletion polymorphism, and cancer: The Rotterdam study

    NARCIS (Netherlands)

    R. van der Knaap (Ronald); C. Siemes (Claire); J.W.W. Coebergh (Jan Willem); P. Tikka-Kleemola (Päivi); A. Hofman (Albert); B.H.Ch. Stricker (Bruno)

    2008-01-01

    textabstractBACKGROUND. Angiotensin I-converting enzyme (ACE) inhibitors, angiotensin II antagonists, and the ACE insertion/deletion (I/D) gene polymorphism all influence serum angiotensin II action. Because angiotensin II levels have been associated with cancer, the objective of the current

  1. Estimation of urinary angiotensin II by radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, S [Tohoku Univ., Sendai (Japan). School of Medicine

    1974-11-01

    Urine samples were collected from fasting subjects after maintaining posture for 2 hr in early morning. Urinary angiotensin II was extracted with SE-Sephadex. The extracts, after being dissolved in phosphate buffer, pH 7.5, were measured by radioimmunoassay. Recovery, sensitivity and accuracy were found to be satisfactory. The normal values obtained from 6 subjects were 52-280 pg/2 hr. The values were almost normal in essential hypertension and in chronic glomerulonephritis. They were high in 3 out of 6 cases with renovascular hypertension and subsequently dropped after surgery. In 6 cases with primary aldosteronism, very low levels were found. These increased after the removal of adrenal adenomas. No positive correlation between simultaneous plasma and urinary angiotensin samples was apparent. Also no positive correlation between urinary angiotensin and urine volume was found. In renovascular hypertention, during glucose infusion, lower values in urine volume and angiotensin excretion were observed on the stenotic side as compared to the intact side. Thus, the angiotensin excretion rate does not appear to be regulated by arterial angiotensin concentration, but rather by the angiotensin perfusion rate.

  2. Chymase-dependent generation of angiotensin II from angiotensin-(1-12 in human atrial tissue.

    Directory of Open Access Journals (Sweden)

    Sarfaraz Ahmad

    Full Text Available Since angiotensin-(1-12 [Ang-(1-12] is a non-renin dependent alternate precursor for the generation of cardiac Ang peptides in rat tissue, we investigated the metabolism of Ang-(1-12 by plasma membranes (PM isolated from human atrial appendage tissue from nine patients undergoing cardiac surgery for primary control of atrial fibrillation (MAZE surgical procedure. PM was incubated with highly purified ¹²⁵I-Ang-(1-12 at 37°C for 1 h with or without renin-angiotensin system (RAS inhibitors [lisinopril for angiotensin converting enzyme (ACE, SCH39370 for neprilysin (NEP, MLN-4760 for ACE2 and chymostatin for chymase; 50 µM each]. ¹²⁵I-Ang peptide fractions were identified by HPLC coupled to an inline γ-detector. In the absence of all RAS inhibitor, ¹²⁵I-Ang-(1-12 was converted into Ang I (2±2%, Ang II (69±21%, Ang-(1-7 (5±2%, and Ang-(1-4 (2±1%. In the absence of all RAS inhibitor, only 22±10% of ¹²⁵I-Ang-(1-12 was unmetabolized, whereas, in the presence of the all RAS inhibitors, 98±7% of ¹²⁵I-Ang-(1-12 remained intact. The relative contribution of selective inhibition of ACE and chymase enzyme showed that ¹²⁵I-Ang-(1-12 was primarily converted into Ang II (65±18% by chymase while its hydrolysis into Ang II by ACE was significantly lower or undetectable. The activity of individual enzyme was calculated based on the amount of Ang II formation. These results showed very high chymase-mediated Ang II formation (28±3.1 fmol × min⁻¹ × mg⁻¹, n = 9 from ¹²⁵I-Ang-(1-12 and very low or undetectable Ang II formation by ACE (1.1±0.2 fmol×min⁻¹ × mg⁻¹. Paralleling these findings, these tissues showed significant content of chymase protein that by immunocytochemistry were primarily localized in atrial cardiac myocytes. In conclusion, we demonstrate for the first time in human cardiac tissue a dominant role of cardiac chymase in the formation of Ang II from Ang-(1-12.

  3. Discovery and Characterization of Alamandine, a Novel Component of the Renin-Angiotensin System

    DEFF Research Database (Denmark)

    Lautner, Roberto Q.; Villela, Daniel C; Fraga-Silva, Rodrigo A

    2013-01-01

    by angiotensin-(1-7), including vasodilation, anti-fibrosis, anti-hypertensive and central effects. Interestingly, our data reveals that its actions are independent of the known vasodilator receptors of the RAS, Mas and AT2. Rather, we demonstrate that alamandine acts through the Mas-related G-Protein coupled...

  4. Angiotensin II potentiates prostaglandin stimulation of cyclic AMP levels in intact bovine adrenal medulla cells but not adenylate cyclase in permeabilized cells.

    Science.gov (United States)

    Boarder, M R; Plevin, R; Marriott, D B

    1988-10-25

    The level of cyclic AMP in primary cultures of bovine adrenal medulla cells is elevated by prostaglandin E1. Angiotensin II is commonly reported to act on receptors linked to phosphoinositide metabolism or to inhibition of adenylate cyclase. We have investigated the effect of angiotensin II on prostaglandin E1-stimulated cyclic AMP levels in these primary cultures. Rather than reducing cyclic AMP levels, we have found that angiotensin II powerfully potentiates prostaglandin E1-stimulated cyclic AMP accumulation in intact cells, both in the presence and absence of phosphodiesterase inhibitors. The 50% maximal response was similar to that for stimulation of phosphoinositide breakdown by angiotensin II in these cultures. The potentiation of stimulated cyclic AMP levels was seen, although to a smaller maximum, with the protein kinase C (Ca2+/phospholipid-dependent enzyme) activating phorbol ester tetradecanoyl phorbolacetate and with the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol; pretreatment (24 h) with active phorbol ester, which would be expected to diminish protein kinase C levels, attenuated the angiotensin II potentiation of cyclic AMP. Using digitonin-permeabilized cells we showed that adenylate cyclase activity was stimulated by prostaglandin E1 with the same dose-response relationship as was cyclic AMP accumulation in intact cells, but the permeabilized cells showed no response to angiotensin II. The results are discussed with respect to the hypothesis that the angiotensin II influence on cyclic AMP levels is mediated, in part, by diacylglycerol stimulation of protein kinase C.

  5. Trends in co-prescribing of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in Ireland.

    LENUS (Irish Health Repository)

    Wan Md Adnan, Wan A H

    2011-03-01

    (i) To examine the trends in co-prescribing of angiotensin converting enzyme inhibitor (ACEI) and angiotensin-II receptor blocker (ARB) therapy and (ii) to examine the influence of major clinical trials (CALM, COOPERATE, VALIANT and ONTARGET) on co-prescribing.

  6. Oral delivery of Angiotensin-converting enzyme 2 and Angiotensin-(1-7) bioencapsulated in plant cells attenuates pulmonary hypertension.

    Science.gov (United States)

    Shenoy, Vinayak; Kwon, Kwang-Chul; Rathinasabapathy, Anandharajan; Lin, Shina; Jin, Guiying; Song, Chunjuan; Shil, Pollob; Nair, Anand; Qi, Yanfei; Li, Qiuhong; Francis, Joseph; Katovich, Michael J; Daniell, Henry; Raizada, Mohan K

    2014-12-01

    Emerging evidences indicate that diminished activity of the vasoprotective axis of the renin-angiotensin system, constituting angiotensin-converting enzyme 2 (ACE2) and its enzymatic product, angiotensin-(1-7) [Ang-(1-7)] contribute to the pathogenesis of pulmonary hypertension (PH). However, long-term repetitive delivery of ACE2 or Ang-(1-7) would require enhanced protein stability and ease of administration to improve patient compliance. Chloroplast expression of therapeutic proteins enables their bioencapsulation within plant cells to protect against gastric enzymatic degradation and facilitates long-term storage at room temperature. Besides, fusion to a transmucosal carrier helps effective systemic absorption from the intestine on oral delivery. We hypothesized that bioencapsulating ACE2 or Ang-(1-7) fused to the cholera nontoxin B subunit would enable development of an oral delivery system that is effective in treating PH. PH was induced in male Sprague Dawley rats by monocrotaline administration. Subset of animals was simultaneously treated with bioencapsulaed ACE2 or Ang-(1-7) (prevention protocol). In a separate set of experiments, drug treatment was initiated after 2 weeks of PH induction (reversal protocol). Oral feeding of rats with bioencapsulated ACE2 or Ang-(1-7) prevented the development of monocrotaline-induced PH and improved associated cardiopulmonary pathophysiology. Furthermore, in the reversal protocol, oral ACE2 or Ang-(1-7) treatment significantly arrested disease progression, along with improvement in right heart function, and decrease in pulmonary vessel wall thickness. In addition, a combination therapy with ACE2 and Ang-(1-7) augmented the beneficial effects against monocrotaline-induced lung injury. Our study provides proof-of-concept for a novel low-cost oral ACE2 or Ang-(1-7) delivery system using transplastomic technology for pulmonary disease therapeutics. © 2014 American Heart Association, Inc.

  7. Distinct Molecular Effects of Angiotensin II and Angiotensin III in Rat Astrocytes

    Directory of Open Access Journals (Sweden)

    Michelle A. Clark

    2013-01-01

    Full Text Available It is postulated that central effects of angiotensin (Ang II may be indirect due to rapid conversion to Ang III by aminopeptidase A (APA. Previously, we showed that Ang II and Ang III induced mitogen-activated protein (MAP kinases ERK1/2 and stress-activated protein kinase/Jun-terminal kinases (SAPK/JNK phosphorylation in cultured rat astrocytes. Most importantly, both peptides were equipotent in causing phosphorylation of these MAP kinases. In these studies, we used brainstem and cerebellum astrocytes to determine whether Ang II’s phosphorylation of these MAP kinases is due to the conversion of the peptide to Ang III. We pretreated astrocytes with 10 μM amastatin A or 100 μM glutamate phosphonate, selective APA inhibitors, prior to stimulating with either Ang II or Ang III. Both peptides were equipotent in stimulating ERK1/2 and SAPK/JNK phosphorylation. The APA inhibitors failed to prevent Ang II- and Ang III-mediated phosphorylation of the MAP kinases. Further, pretreatment of astrocytes with the APA inhibitors did not affect Ang II- or Ang III-induced astrocyte growth. These findings suggest that both peptides directly induce phosphorylation of these MAP kinases as well as induce astrocyte growth. These studies establish both peptides as biologically active with similar intracellular and physiological effects.

  8. Angiotensin II inhibits cortical cholinergic function: Implications for cognition

    International Nuclear Information System (INIS)

    Barnes, J.M.; Barnes, N.M.; Costall, B.; Horovitz, Z.P.; Ironside, J.W.; Naylor, R.J.; Williams, T.J.

    1990-01-01

    In the present studies we have shown that angiotensin II (AT II), in a concentration-dependent manner in rat tissue (10(-9)-10(-5) M) or at a single concentration in human tissue (10(-6) M), can inhibit potassium-stimulated release of [3H]acetylcholine ( [3H]Ach) from slices of rat entorhinal cortex and human temporal cortex preloaded with [3H]choline for the biochemical analyses. The inhibitory effects of AT II (10(-6) M) were antagonised by the specific AT II receptor antagonist [1-sarcosine, 8-threonine]AT II in a concentration-dependent manner in rat tissue (10(-11)-10(-8) M) and at the single concentration employed in the human studies (10(-7) M). Also demonstrated were other components of the angiotensin system in the human temporal cortex; ACE activity was present (1.03 nmol min-1 mg-1 protein), as were AT II recognition sites (Bmax = 8.6 fmol mg-1 protein). It is hypothesised that the potential cognitive enhancing properties of ACE inhibitors may reflect their action to prevent the formation of AT II and so remove an inhibitory modulator of cholinergic function

  9. The Protective Arm of the Renin Angiotensin System (RAS)

    DEFF Research Database (Denmark)

    understanding of the protective side of the Renin Angiotensin System (RAS) involving angiotensin AT2 receptor, ACE2, and Ang(1-7)/Mas receptor Combines the knowledge of editors who pioneered research on the protective renin angiotensin system including; Dr. Thomas Unger, one of the founders of AT2 receptor......The Protective Arm of the Renin Angiotensin System: Functional Aspects and Therapeutic Implications is the first comprehensive publication to signal the protective role of a distinct part of the renin-angiotensin system (RAS), providing readers with early insight into a complex system which...... will become of major medical importance in the near future. Focusing on recent research, The Protective Arm of the Renin Angiotensin System presents a host of new experimental studies on specific components of the RAS, namely angiotensin AT2 receptors (AT2R), the angiotensin (1-7) peptide with its receptor...

  10. Localization and characterization of angiotensin II receptor binding and angiotensin converting enzyme in the human medulla oblongata.

    Science.gov (United States)

    Allen, A M; Chai, S Y; Clevers, J; McKinley, M J; Paxinos, G; Mendelsohn, F A

    1988-03-08

    Angiotensin II receptor and angiotensin converting enzyme distributions in the human medulla oblongata were localised by quantitative in vitro autoradiography. Angiotensin II receptors were labelled with the antagonist analogue 125I-[Sar1, Ile8] AII while angiotensin converting enzyme was labelled with 125I-351A, a derivative of the specific converting enzyme inhibitor, lisinopril. Angiotensin II receptor binding and angiotensin converting enzyme are present in high concentrations in the nucleus of the solitary tract, the dorsal motor nucleus of vagus, the rostral and caudal ventrolateral reticular nucleus, and in a band connecting the dorsal and ventral regions. In the rostral and caudal ventrolateral reticular nucleus, angiotensin II receptors are distributed in a punctate pattern that registers with neuronal cell bodies. The distribution and density of these cell bodies closely resemble those of catecholamine-containing neurones mapped by others. In view of the known interactions of angiotensin II with both central and peripheral catecholamine-containing neurons of laboratory animals, the current anatomical findings suggest similar interactions between these neuroactive compounds in the human central nervous system. The presence of angiotensin II receptors and angiotensin converting enzyme in the nucleus of the solitary tract, dorsal motor nucleus of vagus, and rostral and caudal ventrolateral reticular nucleus demonstrates sites for central angiotensin II to exert its known actions on vasopressin release and autonomic functions including blood pressure control. These data also suggest a possible interaction between angiotensin II and central catecholeminergic systems.

  11. Renal graft failure after addition of an angiotensin II receptor antagonist to an angiotensin-converting enzyme inhibitor

    DEFF Research Database (Denmark)

    Kamper, Anne-Lise; Nielsen, Arne Høj; Baekgaard, Niels

    2002-01-01

    Combined treatment with an angiotensin-converting enzyme (ACE) inhibitor and an angiotensin II (Ang II) receptor blocker (ARB) has been suggested in order to achieve a more complete blockade of the renin-angiotensin-aldosterone system in cardiovascular and renal disease. The present report descri...

  12. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  13. Comparative biochemistry of renins and angiotensins in the vertebrates.

    Science.gov (United States)

    Nakajima, T; Khosla, M C; Sakakibara, S

    1978-09-01

    Comparative biochemistry of renins and angiotensins was discussed. Renin extracted from hog kidney was different from that from mouse submaxillary glands in immunoreactivity and carbohydrate content. Rat kidney renin was also different from hog kidney renin in the amino acid composition. The presence of big and big-big renins was pointed out immunochemically. These big renins were considered to be precursors of kidney renin. Angiotensins in mammalian and nonmammalian species produced by renal or extrarenal renin have been differentiated by some biochemical and pharmacological criteria. Some of these angiotensins were analyzed sequentially. The replacements of amino acid residues at positions 1, 5, and/or 9 of angiotensin I have been demonstrated in nonmammalian species. Specific pressor activities have been determined using synthetic angiotensins by a 4 point assay in rat. Specific pressor activities of various angiotensins were obtained from the dose-blood pressure-response curves using a single angiotensin sample per assay rat.

  14. Investigation into the Mechanism of Homo- and Heterodimerization of Angiotensin-Converting Enzyme.

    Science.gov (United States)

    Abrie, J Albert; Moolman, Wessel J A; Cozier, Gyles E; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D

    2018-04-01

    Angiotensin-converting enzyme (ACE) plays a central role in the renin-angiotensin system (RAS), which is primarily responsible for blood pressure homeostasis. Studies have shown that ACE inhibitors yield cardiovascular benefits that cannot be entirely attributed to the inhibition of ACE catalytic activity. It is possible that these benefits are due to interactions between ACE and RAS receptors that mediate the protective arm of the RAS, such as angiotensin II receptor type 2 (AT 2 R) and the receptor MAS. Therefore, in this study, we investigated the molecular interactions of ACE, including ACE homodimerization and heterodimerization with AT 2 R and MAS, respectively. Molecular interactions were assessed by fluorescence resonance energy transfer and bimolecular fluorescence complementation in human embryonic kidney 293 cells and Chinese hamster ovary-K1 cells transfected with vectors encoding fluorophore-tagged proteins. The specificity of dimerization was verified by competition experiments using untagged proteins. These techniques were used to study several potential requirements for the germinal isoform of angiotensin-converting enzyme expressed in the testes (tACE) dimerization as well as the effect of ACE inhibitors on both somatic isoforms of angiotensin-converting enzyme expressed in the testes (sACE) and tACE dimerization. We demonstrated constitutive homodimerization of sACE and of both of its domains separately, as well as heterodimerization of both sACE and tACE with AT 2 R, but not MAS. In addition, we investigated both soluble sACE and the sACE N domain using size-exclusion chromatography-coupled small-angle X-ray scattering and we observed dimers in solution for both forms of the enzyme. Our results suggest that ACE homo- and heterodimerization does occur under physiologic conditions. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  15. The adipose renin-angiotensin system modulates sysemic markers of insulin sensitivity activates the intrarenal renin-angiotensin system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suyeon [University of Tennessee, Knoxville (UTK); Soltani-Bejnood, Morvarid [University of Tennessee, Knoxville (UTK); Quignard-Boulange, Annie [Centre Biomedical des Cordeliers, Paris, France; Massiera, Florence [Centre de Biochimie, Nice, France; Teboul, Michele [Centre de Biochimie, Nice, France; Ailhaud, Gerard [Centre de Biochimie, Nice, France; Kim, Jung [University of Tennessee, Knoxville (UTK); Moustaid-Moussa, Naima [University of Tennessee, Knoxville (UTK); Voy, Brynn H [ORNL

    2006-07-01

    BACKGROUND: A growing body of data provides increasing evidence that the adipose tissue renin-angiotensin system (RAS) contributes to regulation of fat mass. Beyond its paracrine actions within adipose tissue, adipocyte-derived angiotensin II (Ang II) may also impact systemic functions such as blood pressure and metabolism. METHODS AND RESULTS: We used a genetic approach to manipulate adipose RAS activity in mice and then study the consequences on metabolic parameters and on feedback regulation of the RAS. The models included deletion of the angiotensinogen (Agt) gene (Agt-KO), its expression solely in adipose tissue under the control of an adipocyte-specific promoter (aP2-Agt/ Agt-KO), and overexpression in adipose tissue of wild type mice (aP2-Agt). Total body weight, epididymal fat pad weight, and circulating levels of leptin, insulin and resistin were significantly decreased in Agt-KO mice, while plasma adiponectin levels were increased. Overexpression of Agt in adipose tissue resulted in increased adiposity and plasma leptin and insulin levels compared to wild type (WT) controls. Angiotensinogen and type I Ang II receptor protein levels were also markedly elevated in kidney of aP2-Agt mice, suggesting that hypertension in these animals may be in part due to stimulation of the intrarenal RAS. CONCLUSIONS: Taken together, the results from this study demonstrate that alterations in adipose RAS activity significantly alter both local and systemic physiology in a way that may contribute to the detrimental health effects of obesity.

  16. Angiotensin Converting Enzyme Insertion/Deletion Gene ...

    African Journals Online (AJOL)

    Angiotensin Converting Enzyme Insertion/Deletion Gene Polymorphism: An Observational Study among Diabetic Hypertensive Subjects in Malaysia. ... Methods: The pharmacological effect of ACE inhibition on mean arterial pressure (MAP) and glomerular filtration rate (GFR) were observed among a total of 62 subjects for ...

  17. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition

    Science.gov (United States)

    Hubers, Scott A.; Brown, Nancy J.

    2016-01-01

    Heart failure affects approximately 5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the FDA approved the first of a new class of drugs for the treatment of heart failure; valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses two of the pathophysiologic mechanisms of heart failure - activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective comparison of ARNI with ACEI to Determine Impact on Global Mortality and morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared to enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacologic properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  18. Angiotensin converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy

    Science.gov (United States)

    Wysocki, Jan; Ye, Minghao; Khattab, Ahmed M.; Fogo, Agnes; Martin, Aline; David, Nicolae Valentin; Kanwar, Yashpal; Osborn, Mark; Batlle, Daniel

    2016-01-01

    Blockers of the renin-angiotensin system are effective in the treatment of experimental and clinical diabetic nephropathy. An approach different from blocking the formation or action of angiotensin II(1-8) that could also be effective involves fostering its degradation. Angiotensin converting enzyme 2 (ACE2) is a monocarboxypeptidase than cleaves angiotensin II (1-8) to form angiotensin (1-7). Therefore, we examined the renal effects of murine recombinant ACE2 in mice with streptozotocin-induced diabetic nephropathy as well as that of amplification of circulating ACE2 using minicircle DNA delivery prior to induction of experimental diabetes. This delivery resulted in a long-term sustained and profound increase in serum ACE2 activity and enhanced ability to metabolize an acute angiotensin II (1-8) load. In mice with streptozotocin-induced diabetes pretreated with minicircle ACE2, ACE2 protein in plasma increased markedly and this was associated with a more than 100-fold increase in serum ACE2 activity. However, minicircle ACE2 did not result in changes in urinary ACE2 activity as compared to untreated diabetic mice. In both diabetic groups, glomerular filtration rate increased significantly and to the same extent as compared to non-diabetic controls. Albuminuria, glomerular mesangial expansion, glomerular cellularity and glomerular size, were all increased to a similar extent in minicircle ACE2-treated and untreated diabetic mice, as compared to non-diabetic controls. Recombinant mouse ACE2 given for 4 weeks by intraperitoneal daily injections in mice with streptozotocin-induced diabetic nephropathy also failed to improve albuminuria or kidney pathology. Thus, a profound augmentation of ACE2 confined to the circulation failed to ameliorate the glomerular lesions and hyperfiltration characteristic of early diabetic nephropathy. These findings emphasize the importance of targeting the kidney rather than the circulatory renin angiotensin system to combat diabetic

  19. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Indu Dhar

    Full Text Available The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs. Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs. HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH, proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  20. Increased methylglyoxal formation with upregulation of renin angiotensin system in fructose fed Sprague Dawley rats.

    Science.gov (United States)

    Dhar, Indu; Dhar, Arti; Wu, Lingyun; Desai, Kaushik M

    2013-01-01

    The current epidemic of obesity and type 2 diabetes is attributed to a high carbohydrate diet, containing mainly high fructose corn syrup and sucrose. More than two thirds of diabetic patients have hypertension. Methylglyoxal is a highly reactive dicarbonyl generated during glucose and fructose metabolism, and a major precursor of advanced glycation end products (AGEs). Plasma methylglyoxal levels are increased in hypertensive rats and diabetic patients. Our aim was to examine the levels of methylglyoxal, mediators of the renin angiotensin system and blood pressure in male Sprague-Dawley rats treated with a high fructose diet (60% of total calories) for 4 months. The thoracic aorta and kidney were used for molecular studies, along with cultured vascular smooth muscle cells (VSMCs). HPLC, Western blotting and Q-PCR were used to measure methylglyoxal and reduced glutathione (GSH), proteins and mRNA, respectively. Fructose treated rats developed a significant increase in blood pressure. Methylglyoxal level and protein and mRNA for angiotensin II, AT1 receptor, adrenergic α1D receptor and renin were significantly increased, whereas GSH levels were decreased, in the aorta and/or kidney of fructose fed rats. The protein expression of the receptor for AGEs (RAGE) and NF-κB were also significantly increased in the aorta of fructose fed rats. MG treated VSMCs showed increased protein for angiotensin II, AT1 receptor, and α1D receptor. The effects of methylglyoxal were attenuated by metformin, a methylglyoxal scavenger and AGEs inhibitor. In conclusion, we report a strong association between elevated levels of methylglyoxal, RAGE, NF-κB, mediators of the renin angiotensin system and blood pressure in high fructose diet fed rats.

  1. beta-Arrestin 1 and 2 stabilize the angiotensin II type I receptor in distinct high-affinity conformations

    DEFF Research Database (Denmark)

    Sanni, S J; Hansen, J T; Bonde, M M

    2010-01-01

    The angiotensin II type 1 (AT(1)) receptor belongs to family A of 7 transmembrane (7TM) receptors. The receptor has important roles in the cardiovascular system and is commonly used as a drug target in cardiovascular diseases. Interaction of 7TM receptors with G proteins or beta-arrestins often...

  2. Targeting of captopril to the kidney reduces renal angiotensin-converting enzyme activity without affecting systemic blood pressure

    NARCIS (Netherlands)

    Kok, RJ; Haverdings, Rene; Grijpstra, F; Koiter, J.; Moolenaar, F; De Zeeuw, D; Meijer, DKF

    We have synthesized a prodrug of the angiotensin-converting enzyme (ACE) inhibitor captopril by coupling this drug covalently to the low molecular weight protein (LMWP) lysozyme. Such drug-LMWP conjugates can be used for renal drug delivery, since LMWPs accumulate specifically in the proximal

  3. Homogeneous deuteriodeiodination of iodinated tyrosine in angiotensin-I using synthesized triethyl[H-2]silane and Pd(0)

    DEFF Research Database (Denmark)

    Pedersen, Martin Holst Friborg; Martiny, Lars

    2011-01-01

    In our efforts to develop new reactions for the efficient labelling of peptides and proteins with tritium, we now report the use of silane hydrides together with homogenous Pd(0) catalysis for the protio- and deuteriodeiodination of an o-iodo-tyrosine containing peptide (angiotensin-I) performed...

  4. Antidiabetic mechanisms of angiotensin-converting enzyme inhibitors and angiotensin II receptor antagonists: beyond the renin-angiotensin system

    Czech Academy of Sciences Publication Activity Database

    Kurtz, T. W.; Pravenec, Michal

    2004-01-01

    Roč. 22, č. 12 (2004), s. 2253-2261 ISSN 0263-6352 R&D Projects: GA ČR GA301/03/0751 Grant - others:HHMI(US) HHMI55000331 Institutional research plan: CEZ:AV0Z5011922 Keywords : angiotensin II receptors * metabolic syndrome * peroxisome proliferator activated receptors Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.871, year: 2004

  5. Angiotensin-Converting Enzymes Play a Dominant Role in Fertility

    Directory of Open Access Journals (Sweden)

    Fan Jin

    2013-10-01

    Full Text Available According to the World Health Organization, infertility, associated with metabolic syndrome, has become a global issue with a 10%–20% incidence worldwide. An accumulating body of evidence has shown that the renin–angiotensin system is involved in the fertility problems observed in some populations. Moreover, alterations in the expression of angiotensin-converting enzyme-1, angiotensin-converting enzyme-2, and angiotensin-converting enzyme-3 might be one of the most important mechanisms underlying both female and male infertility. However, as a pseudogene in humans, further studies are needed to explore whether the abnormal angiotensin-converting enzyme-3 gene could result in the problems of human reproduction. In this review, the relationship between angiotensin-converting enzymes and fertile ability is summarized, and a new procedure for the treatment of infertility is discussed.

  6. Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy

    NARCIS (Netherlands)

    J. Deinum (Jacob); J.M. van Gool (Jeanette); M.J.M. Kofflard (Marcel); A.H.J. Danser (Jan); F.J. ten Cate (Folkert)

    2001-01-01

    textabstractThe development of left ventricular hypertrophy in subjects with hypertrophic cardiomyopathy (HCM) is variable, suggesting a role for modifying factors such as angiotensin II. Angiotensin II mediates both trophic and antitrophic effects, via angiotensin II type 1

  7. Assessment of the degree of oxidative stress injury, renin-angiotensin system activity and podocyte loss after combined treatment of keto acid with low protein diet for patients with diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Yuan-Hua Xu

    2016-03-01

    Full Text Available Objective: To analyze the degree of oxidative stress injury, RAS activity and podocyte loss after patients with diabetic nephropathy received keto acid combined with low protein diet. Methods: A total of 106 cases of patients with diabetic nephropathy who received hospital treatment in our hospital from September 2012 to July 2015 were selected as research subjects and randomly divided into observation group and control group according to different treatment, each group with 53 cases. Control group received low protein diet treatment alone, observation group received keto acid combined with low protein diet treatment, and then the degree of oxidative stress injury, RAS activity and podocyte loss of two groups were compared. Results: Serum MDA and AOPP levels of observation group after treatment were lower than those of control group, and levels of SOD and T-AOC were higher than those of control group; PRA, Ang栻 and Aldosterone levels of observation group after treatment were lower than those of control group; mRNA expression levels of podocin and synaptopodin in urine sediment of observation group after treatment were lower than those of control group. Conclusion: Keto acid combined with low protein diet treatment for patients with diabetic nephropathy can reduce the degree of oxidative stress injury and RAS activity, decrease podocyte loss and optimize patients’ condition.

  8. Angiotensin and bradykinin interactions with phospholipids

    International Nuclear Information System (INIS)

    Elliott, M.E.; Goodfriend, T.L.

    1979-01-01

    Reversible interactions were demonstrated between some phospholipids and some polypeptides related to angiotensin and bradykinin. The extent of the interaction was dependent on the structures of the lipid and peptide. The naturally occurring compounds that interacted most avidly were cardiolipin and (des-Asp 1 )-angiotensins. The apparent dissociation constant of this complex in chloroform was 10 -5 M. The complex contained more than one cardiolipin molecule/molecule of peptide. Kinins interacted most strongly with lecithin. The phospholipids altered the chromatographic behaviour of radioiodinated derivatives of the polypeptides, and solubilized radioactive and unlabeled polypeptides in chloroform. In aqueous media, cardiolipin suspensions preferentially bound (des-Asp 1 )-angiotensin II, and inhibited its binding by antibody. The interactions were sensitive to pH and cations in the aqueous phase, and were reversed by some reagents added to the organic phase. These interactions have direct implications for binding reactions of peptides in vitro, and may bear upon the actions of the hormones in vivo. (Auth.)

  9. Assessment of the degree of oxidative stress injury, renin-angiotensin system activity and podocyte loss after combined treatment of keto acid with low protein diet for patients with diabetic nephropathy

    OpenAIRE

    Yuan-Hua Xu; Mei Wang

    2016-01-01

    Objective: To analyze the degree of oxidative stress injury, RAS activity and podocyte loss after patients with diabetic nephropathy received keto acid combined with low protein diet. Methods: A total of 106 cases of patients with diabetic nephropathy who received hospital treatment in our hospital from September 2012 to July 2015 were selected as research subjects and randomly divided into observation group and control group according to different treatment, each group with 53...

  10. Angiotensin, transforming growth factor β and aortic dilatation in Marfan syndrome: Of mice and humans

    Directory of Open Access Journals (Sweden)

    Christopher Yu

    2018-03-01

    Full Text Available Marfan syndrome is consequent upon mutations in FBN1, which encodes the extracellular matrix microfibrillar protein fibrillin-1. The phenotype is characterised by development of thoracic aortic aneurysm. Current understanding of the pathogenesis of aneurysms in Marfan syndrome focuses upon abnormal vascular smooth muscle cell signalling through the transforming growth factor beta (TGFβ pathway. Angiotensin II (Ang II can directly induce aortic dilatation and also influence TGFβ synthesis and signalling. It has been hypothesised that antagonism of Ang II signalling may protect against aortic dilatation in Marfan syndrome. Experimental studies have been supportive of this hypothesis, however results from multiple clinical trials are conflicting. This paper examines current knowledge about the interactions of Ang II and TGFβ signalling in the vasculature, and critically interprets the experimental and clinical findings against these signalling interactions. Keywords: Aneurysm, Angiotensin blocker, Cell Signalling, Clinical trial

  11. Angiotensin II Regulates Th1 T Cell Differentiation Through Angiotensin II Type 1 Receptor-PKA-Mediated Activation of Proteasome.

    Science.gov (United States)

    Qin, Xian-Yun; Zhang, Yun-Long; Chi, Ya-Fei; Yan, Bo; Zeng, Xiang-Jun; Li, Hui-Hua; Liu, Ying

    2018-01-01

    Naive CD4+ T cells differentiate into T helper cells (Th1 and Th2) that play an essential role in the cardiovascular diseases. However, the molecular mechanism by which angiotensin II (Ang II) promotes Th1 differentiation remains unclear. The aim of this study was to determine whether the Ang II-induced Th1 differentiation regulated by ubiquitin-proteasome system (UPS). Jurkat cells were treated with Ang II (100 nM) in the presence or absence of different inhibitors. The gene mRNA levels were detected by real-time quantitative PCR analysis. The protein levels were measured by ELISA assay or Western blot analysis, respectively. Ang II treatment significantly induced a shift from Th0 to Th1 cell differentiation, which was markedly blocked by angiotensin II type 1 receptor (AT1R) inhibitor Losartan (LST). Moreover, Ang II significantly increased the activities and the expression of proteasome catalytic subunits (β1, β1i, β2i and β5i) in a dose- and time-dependent manner. However, Ang II-induced proteasome activities were remarkably abrogated by LST and PKA inhibitor H-89. Mechanistically, Ang II-induced Th1 differentiation was at least in part through proteasome-mediated degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB. This study for the first time demonstrates that Ang II activates AT1R-PKA-proteasome pathway, which promotes degradation of IκBα and MKP-1 and activation of STAT1 and NF-κB thereby leading to Th1 differentiation. Thus, inhibition of proteasome activation might be a potential therapeutic target for Th1-mediated diseases. © 2018 The Author(s). Published by S. Karger AG, Basel.

  12. Angiotensin type 2 receptor (AT2R) and receptor Mas

    DEFF Research Database (Denmark)

    Villela, Daniel; Leonhardt, Julia; Patel, Neal

    2015-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striki...

  13. Angiotensin antagonists in the dog with chronic pericardial tamponade

    International Nuclear Information System (INIS)

    Moore, G.J.; Taub, K.J.

    1980-01-01

    Assessing the role played by angiotensin in the pathogenesis and maintenance of the renal function and perfusion abnormalities dogs with chronic pericardial tamponade were used in the experiment as a stable model of chronic low output heart failure. The heptapeptide and octapeptide antagonist were used. The results of the experiments suggest that there is a role for angiotensin in the pathologenesis of congestive heart failure. The renin-angiotensin system was activated in the model. Plasma renin activity was elevated and increased further in response to angiotensin blockade. Under the experiment condition there was no evidence for a role for angiotensin in the maintenance of arterial blood pressure. But there was angiotensin-mediated renal vasoconstriction and a reduction in renal blood flow. Both analogues of angiotensin were able to antagonize this effect in similar fashion. Failure to achieve a natriuresis in response to angiotensin blockade may reflect the redistribution of blood flow that occured and suggests that additional factors are operative in this model. (APR)

  14. Analysis of serum angiotensin-converting enzyme.

    Science.gov (United States)

    Muller, B R

    2002-09-01

    Serum angiotensin-converting enzyme (SACE) levels are influenced by genetic polymorphism. Interpretation of serum levels with the appropriate genotypic reference range improves the diagnostic sensitivity of the assay for sarcoidosis. SACE assays are performed by a large number of routine clinical laboratories. However, there is no external quality assessment (EQA) for SACE other than an informal regional scheme. This showed analytical performance of SACE assays to be poor, with a diversity of reference ranges, leading to widely disparate clinical classification of EQA samples. Genetic polymorphism combined with poor analytical performance suggest that perhaps SACE assays should revert to being the province of specialized laboratories.

  15. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme

    DEFF Research Database (Denmark)

    Parving, H H; Jacobsen, P; Tarnow, L

    1996-01-01

    OBJECTIVE: To evaluate the concept that an insertion/deletion polymorphism of the angiotensin converting enzyme gene predicts the therapeutic efficacy of inhibition of angiotensin converting enzyme on progression of diabetic nephropathy. DESIGN: Observational follow up study of patients with insu...

  16. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling.

    Science.gov (United States)

    Gelband, C H; Sumners, C; Lu, D; Raizada, M K

    1998-02-27

    The objective of this review is to examine the role of neuronal angiotensin II (Ang II) receptors in vitro. Two types of G protein-coupled Ang II receptors have been identified in cardiovascularly relevant areas of the brain: the AT1 and the AT2. We have utilized neurons in culture to study the signaling mechanisms of AT1 and AT2 receptors. Neuronal AT1 receptors are involved in norepinephrine (NE) neuromodulation. NE neuromodulation can be either evoked or enhanced. Evoked NE neuromodulation involves AT1 receptor-mediated, losartan-dependent, rapid NE release, inhibition of K+ channels and stimulation of Ca2+ channels. AT1 receptor-mediated enhanced NE neuromodulation involves the Ras-Raf-MAP kinase cascade and ultimately leads to an increase in NE transporter, tyrosine hydroxylase and dopamine beta-hydroxylase mRNA transcription. Neuronal AT2 receptors signal via a Gi protein and are coupled to activation of PP2A and PLA2 and stimulation of K+ channels. Finally, putative cross-talk pathways between AT1 and AT2 receptors will be discussed.

  17. Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system.

    Directory of Open Access Journals (Sweden)

    Giuseppina Mattace Raso

    Full Text Available Palmitoylethanolamide (PEA, a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR. Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF, and renin angiotensin system (RAS modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the

  18. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of angiotensin...

  19. Outcome of Venom Bradykinin Potentiating Factor on Renin Angiotensin System in Irradiated Rats

    International Nuclear Information System (INIS)

    Ashry, O.; Farouk, H.; Moustafa, M.; Abu Sinn, G.; Abd ElBaset, A.

    2011-01-01

    Scorpion Venom contains a strong bradykinin potentiating factor (BPF) exhibiting angiotensin converting enzyme inhibition (ACEI). Irradiation and stimulation of renin-angiotensin system (RAS) induce oxidative stress. Interruption of the RAS by an ACEI or angiotensin II receptor blocker (ARB) losartan (LOS) and/or gamma-rays (4 Gy) were evaluated. Rats received 6 doses of BPF (1μg/g body wt) or of LOS (5 μg/g body wt). Treatment with BPF induced significant elevation in the level of potassium (K) and significant drop in the level of sodium (Na) and uric acid. Treatment with LOS significantly depressed the level of Na and uric acid compared to control. Irradiation discerned a significant elevation in malondialdehyde (MDA), advanced oxidative protein product (AOPP), aldosterone, Na, urea and creatinine, and a significant drop in the haematological values, glutathione (GSH), calcium (Ca) and uric acid. A significant decrease in MDA, aldosterone, urea, creatinine and uric acid compared to irradiated group was observed in irradiated treated groups. Irradiated animals treated with LOS showed a significant decrease in Na and chloride (Cl) compared to the irradiated group. Considerable amelioration of radiation-induced depression in haematopoiesis, improvement of oxidative stress and kidney function by BPF as ACEI or LOS as ARB are detected. Results add further identification to the properties of BPF

  20. Angiotensin receptor blockers: Focus on cardiac and renal injury.

    Science.gov (United States)

    Arumugam, Somasundaram; Sreedhar, Remya; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Krishnamurthy, Prasanna; Suzuki, Kenji; Nakamura, Masahiko; Watanabe, Kenichi

    2016-04-01

    Angiotensin II, an important component of renin angiotensin system, is a potent vasopressor and its actions are mostly mediated via angiotensin II type 1 receptor (AT1R) and role of AT2R in counterbalancing the actions of AT1R stimulation are under extensive research. In addition to its physiological actions, angiotensin II plays important roles in the pathogenesis of atherosclerosis, hypertension, left ventricular hypertrophy, and heart failure. The effects of angiotensin II can be blocked by either suppressing its production by blocking angiotensin converting enzyme or by antagonizing its actions on AT1R using angiotensin II receptor blockers (ARBs). Instead of the extensive use of ARBs in the treatment of various cardiovascular diseases, proper selection of a particular ARB is crucial as the clinical condition of individual patient is different and also their economic status would play an essential role in medication compliance. Thus a critical review of the proven and promising actions of ARBs against various pathological conditions will be of great importance for the clinicians as well as for the researchers. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Angiotensin IV and the human esophageal mucosa: An exploratory study in healthy subjects and gastroesophageal reflux disease patients.

    Science.gov (United States)

    Björkman, Eleonora; Edebo, Anders; Fändriks, Lars; Casselbrant, Anna

    2015-09-01

    The human esophageal mucosa expresses various components of the renin-angiotensin system (RAS), e.g. the main effector peptide angiotensin II (AngII). The aim of this study was to investigate the esophageal presence of angiotensin III (AngIII) and angiotensin IV (AngIV) forming enzymes and the AngIV receptor (AT4R). The aim was also to study the actions of AngIV and to look for aberrations in patients with gastroesophageal reflux disease (GERD). Esophageal biopsies were collected from healthy volunteers (n: 19) and individuals with erosive reflux disease (n: 14). Gene transcripts and protein expression of aminopeptidase A, -B and -M, and the AT4R were investigated by reverse transcriptase polymerase chain reaction (rt-PCR), western blot (WB) and immunohistochemistry (IHC). The functional impact of AngIV was examined in an Ussing chamber. Aminopeptidase A, -B and -M and the AT4R were expressed in the esophageal epithelium. The AT4R was less prominent in certain areas in the mucosa of reflux patients. AngIV influenced the esophageal epithelial ion transport. The impact was lower in patients with GERD. The AT4R and formation enzymes of AngIII and AngIV are present in the human esophageal epithelium. Moreover, the present results suggest that AngIV exert regulatory impact on the epithelium and that RAS is involved in mucosal aberrations associated with GERD. © The Author(s) 2014.

  2. Angiotensin-converting enzyme 2 amplification limited to the circulation does not protect mice from development of diabetic nephropathy.

    Science.gov (United States)

    Wysocki, Jan; Ye, Minghao; Khattab, Ahmed M; Fogo, Agnes; Martin, Aline; David, Nicolae Valentin; Kanwar, Yashpal; Osborn, Mark; Batlle, Daniel

    2017-06-01

    Blockers of the renin-angiotensin system are effective in the treatment of experimental and clinical diabetic nephropathy. An approach different from blocking the formation or action of angiotensin II (1-8) that could also be effective involves fostering its degradation. Angiotensin-converting enzyme 2 (ACE2) is a monocarboxypeptidase that cleaves angiotensin II (1-8) to form angiotensin (1-7). Therefore, we examined the renal effects of murine recombinant ACE2 in mice with streptozotocin-induced diabetic nephropathy as well as that of amplification of circulating ACE2 using minicircle DNA delivery prior to induction of experimental diabetes. This delivery resulted in a long-term sustained and profound increase in serum ACE2 activity and enhanced ability to metabolize an acute angiotensin II (1-8) load. In mice with streptozotocin-induced diabetes pretreated with minicircle ACE2, ACE2 protein in plasma increased markedly and this was associated with a more than 100-fold increase in serum ACE2 activity. However, minicircle ACE2 did not result in changes in urinary ACE2 activity as compared to untreated diabetic mice. In both diabetic groups, glomerular filtration rate increased significantly and to the same extent as compared to non-diabetic controls. Albuminuria, glomerular mesangial expansion, glomerular cellularity, and glomerular size were all increased to a similar extent in minicircle ACE2-treated and untreated diabetic mice, as compared to non-diabetic controls. Recombinant mouse ACE2 given for 4 weeks by intraperitoneal daily injections in mice with streptozotocin-induced diabetic nephropathy also failed to improve albuminuria or kidney pathology. Thus, a profound augmentation of ACE2 confined to the circulation failed to ameliorate the glomerular lesions and hyperfiltration characteristic of early diabetic nephropathy. These findings emphasize the importance of targeting the kidney rather than the circulatory renin angiotensin system to combat diabetic

  3. Csk regulates angiotensin II-induced podocyte apoptosis.

    Science.gov (United States)

    Zhang, Lu; Ren, Zhilong; Yang, Qian; Ding, Guohua

    2016-07-01

    Increasing data have shown that angiotensin II (Ang II) perpetuates podocyte injury and promotes progression to end-stage kidney disease. The mechanism underlying Ang II-induced podocyte apoptosis has not been established. C-terminal Src kinase (Csk) is a cytoplasmic kinase that interacts with scaffolding proteins involved in cell growth, adhesion, and polarization, and the role of Csk in regulating cellular apoptosis has gradually attracted attention. This study evaluates the role of Csk in Ang II-induced podocyte apoptosis. In vivo, Wistar rats were randomly subjected to a normal saline or Ang II infusion. In vitro, we exposed differentiated mouse podocytes to Ang II. Ang II increased Csk expression and induced podocyte apoptosis, stimulated Csk translocation and binding to Caveolin-1, and stimulated decreased Fyn pY416, increased Fyn pY529, and nephrin dephosphorylation. Csk knockdown prevented Ang II-induced podocyte apoptosis, reduced Fyn kinase inactivation, and increased the interaction between nephrin and the activated form of Fyn, accompanied by a reduced interaction between Csk and Caveolin-1. These findings indicate that Ang II induces podocyte injury via a Csk-dependent pathway.

  4. EPOXYEICOSATRIENOIC ACID ANALOG ATTENUATES ANGIOTENSIN II HYPERTENSION AND KIDNEY INJURY

    Directory of Open Access Journals (Sweden)

    Md. Abdul Hye Khan

    2014-09-01

    Full Text Available Epoxyeicosatrienoic acids (EETs contribute to blood pressure regulation leading to the concept that EETs can be therapeutically targeted for hypertension and the associated end-organ damage. In the present study, we investigated anti-hypertensive and kidney protective actions of an EET analog, EET-B in angiotensin II (ANG II-induced hypertension. EET-B was administered in drinking water for 14 days (10mg/kg/d and resulted in a decreased blood pressure elevation in ANG II hypertension. At the end of the two-week period, blood pressure was 30 mmHg lower in EET analog-treated ANG II hypertensive rats. The vasodilation of mesenteric resistance arteries to acetylcholine was impaired in ANG II hypertension; however, it was improved with EET-B treatment. Further, EET-B protected the kidney in ANG II hypertension as evidenced by a marked 90% decrease in albuminuria and 54% decrease in nephrinuria. Kidney histology demonstrated a decrease in renal tubular cast formation in EET analog-treated hypertensive rats. In ANG II hypertension, EET-B treatment markedly lowered renal inflammation. Urinary monocyte chemoattractant protein-1 excretion was decreased by 55% and kidney macrophage infiltration was reduced by 52% with EET-B treatment. Overall, our results demonstrate that EET-B has anti-hypertensive properties, improves vascular function, and decreases renal inflammation and injury in ANG II hypertension.

  5. Angiotensins in Alzheimer's disease - friend or foe?

    Science.gov (United States)

    Kehoe, Patrick G; Miners, Scott; Love, Seth

    2009-12-01

    The renin-angiotensin system (RAS) is an important regulator of blood pressure. Observational and experimental studies suggest that alterations in blood pressure and components of the brain RAS contribute to the development and progression of Alzheimer's disease (AD), resulting in changes that can lead or contribute to cognitive decline. The complexity of the RAS and diversity of its interactions with neurological processes have recently become apparent but large gaps in our understanding still remain. Modulation of activity of components of the brain RAS offers substantial opportunities for the treatment and prevention of dementia, including AD. This paper reviews molecular, genetic, experimental and clinical data as well as the therapeutic opportunities that relate to the involvement of the RAS in AD.

  6. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3) gene: a novel mammalian homologue of ACE

    OpenAIRE

    Rella, Monika; Elliot, Joann L; Revett, Timothy J; Lanfear, Jerry; Phelan, Anne; Jackson, Richard M; Turner, Anthony J; Hooper, Nigel M

    2007-01-01

    Abstract Background Mammalian angiotensin converting enzyme (ACE) plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple ...

  7. Structural determinants for binding to angiotensin converting enzyme 2 (ACE2 and angiotensin receptors

    Directory of Open Access Journals (Sweden)

    Daniel eClayton

    2015-01-01

    Full Text Available Angiotensin converting enzyme 2 (ACE2 is a zinc carboxypeptidase involved in the renin angiotensin system (RAS and inactivates the potent vasopressive peptide angiotensin II (Ang II by removing the C-terminal phenylalanine residue to yield Ang1-7. This conversion inactivates the vasoconstrictive action of Ang II and yields a peptide that acts as a vasodilatory molecule at the Mas receptor and potentially other receptors. Given the growing complexity of RAS and level of cross-talk between ligands and their corresponding enzymes and receptors, the design of molecules with selectivity for the major RAS binding partners to control cardiovascular tone is an on-going challenge. In previous studies we used single β-amino acid substitutions to modulate the structure of Ang II and its selectivity for ACE2, AT1R and angiotensin type 2 (AT2R receptor. We showed that modification at the C-terminus of Ang II generally resulted in more pronounced changes to secondary structure and ligand binding, and here we further explore this region for the potential to modulate ligand specificity. In this study, 1 a library of forty-seven peptides derived from the C-terminal tetra-peptide sequence (-IHPF of Ang II was synthesised and assessed for ACE2 binding, 2 the terminal group requirements for high affinity ACE2 binding were explored by and N- and C-terminal modification, 3 high affinity ACE2 binding chimeric AngII analogues were then synthesized and assessed, 4 the structure of the full-length Ang II analogues were assessed by circular dichroism, and 5 the Ang II analogues were assessed for AT1R/AT2R selectivity by cell-based assays. Studies on the C-terminus of Ang II demonstrated varied specificity at different residue positions for ACE2 binding and four Ang II chimeric peptides were identified as selective ligands for the AT2 receptor. Overall, these results provide insight into the residue and structural requirements for ACE2 binding and angiotensin receptor

  8. The renin-angiotensin system and its blockers

    Directory of Open Access Journals (Sweden)

    Igić Rajko

    2014-01-01

    Full Text Available Research on the renin-angiotensin system (RAS has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well.

  9. Angiotensin II, hypertension and angiotensin II receptor antagonism: Roles in the behavioural and brain pathology of a mouse model of Alzheimer's disease

    NARCIS (Netherlands)

    Wiesmann, M.; Roelofs, M.; Lugt, R. Van Der; Heerschap, A.; Kiliaan, A.J.; Claassen, J.A.H.R.

    2017-01-01

    Elevated angiotensin II causes hypertension and contributes to Alzheimer's disease by affecting cerebral blood flow. Angiotensin II receptor blockers may provide candidates to reduce (vascular) risk factors for Alzheimer's disease. We studied effects of two months of angiotensin II-induced

  10. Organisation and functional role of the brain angiotensin system

    OpenAIRE

    Catherine Llorens-Cortes; Frederic AO Mendelsohn

    2002-01-01

    The discovery that all components of the renin-angiotensin system (RAS) are present in the brain led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurones have been visualised in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular and supraoptic nuclei, and a second pathway connecting the hypothalamus to the medulla oblongata. Bloo...

  11. The role of renin angiotensin system in retinal inflammation

    OpenAIRE

    Zhu, Tong

    2017-01-01

    Purpose: Retinopathy of prematurity (ROP) is the main cause of vision loss and blindness in children, and is replicated and intensively studied in rodent models of oxygen-induced retinopathy (OIR). One signature feature of ROP is retinal neovascularization, which is also present in patients with proliferative diabetic retinopathy (PDR). Inflammation is another feature in ROP and PDR. In both diseases, the renin angiotensin system (RAS) is dysregulated, and blockade of RAS via angiotensin II (...

  12. Angiotensin effects on calcium and steroidogenesis in adrenal glomerulosa cells

    International Nuclear Information System (INIS)

    Elliott, M.E.; Siegel, F.L.; Hadjokas, N.E.; Goodfriend, T.L.

    1985-01-01

    We investigated the role of cellular calcium pools in angiotensin II-stimulated aldosterone synthesis in bovine adrenal glomerulosa cells. Angiotensin II decreased the size of the exchangeable cell calcium pool by 34%, consistent with previous observations that angiotensin II causes decreased uptake of 45 Ca+2 into cells and increased efflux of 45 Ca+2 from preloaded cells. Atomic absorption spectroscopy showed that angiotension II caused a decrease of 21% in total cellular calcium. Angiotensin II caused efflux of 45 Ca+2 in the presence of EGTA and retarded uptake of 45 Ca+2 when choline was substituted for sodium, suggesting that hormone effects on calcium pools do not involve influx of trigger calcium or sodium. Cells incubated in calcium-free buffer and 0.1 mM or 0.5 mM EGTA synthesized reduced (but still significant) amounts of the steroid in response to hormone. Cells incubated in increasing concentrations of extracellular calcium contained increasing amounts of intracellular calcium and synthesized increasing amounts of aldosterone in response to angiotensin II. These results point to the participation of intracellular calcium pools in angiotensin II-stimulated steroidogenesis and the importance of extracellular calcium in maintaining these pools

  13. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  14. Troglitazone stimulates β-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1A receptor

    International Nuclear Information System (INIS)

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-01-01

    Peroxisome proliferator-activated receptor γ (PPARγ) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPARγ-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPARγ activity, thus we hypothesized that a PPARγ agonist may exert physiologic effects via the angiotensin II type 1 A receptor (AT1 A R). In AT1 A R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPARγ agonist troglitazone (Trog) enhanced AT1 A R internalization and recruitment of endogenous β-arrestin1/2 (βarr1/2) to the AT1 A R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1 A R-G q protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of βarr1/2 was selective to AT1 A R as the response was prevented by an ARB- and Trog-mediated βarr1/2 recruitment to β1-adrenergic receptor (β1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be βarr2-dependent, as cardiomyocytes isolated from βarr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPARγ agonist Trog acts at the AT1 A R to simultaneously block G q protein activation and induce the recruitment of βarr1/2, which leads to an increase in cardiomyocyte contractility.

  15. Molecule-specific Effects of Angiotensin II–Receptor Blockers Independent of the Renin–Angiotensin System

    Czech Academy of Sciences Publication Activity Database

    Kurtz, T. W.; Pravenec, Michal

    2008-01-01

    Roč. 21, č. 8 (2008), s. 852-859 ISSN 0895-7061 R&D Projects: GA MŠk(CZ) 1M0520; GA MZd(CZ) NR8545 Grant - others:EURATOOLS(XE) LSHG-CT-2005-019015; HHMI(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : angiotensin-receptor blockers * cardiovascular protection * renin-angiotensin system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.122, year: 2008

  16. Association between angiotensin II receptor gene polymorphism and serum angiotensin converting enzyme (SACE) activity in patients with sarcoidosis

    OpenAIRE

    Takemoto, Y.; Sakatani, M.; Takami, S.; Tachibana, T.; Higaki, J.; Ogihara, T.; Miki, T.; Katsuya, T.; Tsuchiyama, T.; Yoshida, A.; Yu, H.; Tanio, Y.; Ueda, E.

    1998-01-01

    BACKGROUND—Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SA...

  17. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk

    International Nuclear Information System (INIS)

    Xu, Shanqin; Zhi, Hui; Hou, Xiuyun; Jiang, Bingbing

    2011-01-01

    Highlights: → We examine how angiotensin II modulates ERK-NF-κB crosstalk and gene expression. → Angiotensin II suppresses IL-1β-induced prolonged ERK and NF-κB activation. → ERK-RSK1 signaling is required for IL-1β-induced prolonged NF-κB activation. → Angiotensin II modulates NF-κB responsive genes via regulating ERK-NF-κB crosstalk. → ERK-NF-κB crosstalk is a novel mechanism regulating inflammatory gene expression. -- Abstract: Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE -/- ) mice. VCAM-1 and iNOS expression were higher in ApoE -/- than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE -/- mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells

  18. Effects of angiotensin (1-7 on nephrosis of the mice with metabolic syndrome induced by high-salt and high-fat diet

    Directory of Open Access Journals (Sweden)

    Nan ZHU

    2013-11-01

    Full Text Available Objective  To establish a metabolic syndrome model of C57BL/6 mice by high-salt and high-fat diet, and investigate the effects of angiotensin converting enzyme 2 (ACE 2 and angiotensin (1-7 on renal damage in mice. Methods Fifty-six male C57BL/6 mice were randomly divided into 7 groups (8 each, and fed with normal diet (0.3% NaCl, 10% fat, high-salt diet (8% NaCl, 10% fat, high-fat diet (0.3% NaCl, 60% fat, high-salt and high-fat diet (8% NaCl, 60% fat, high-salt and high-fat diet with enalapril 20mg/(kg•d, with valsartan 50mg/(kg•d, and with valsartan 50mg/(kg•d plus Mas receptor antagonist (A-779 150ng/(kg•d, respectively for 16 weeks. Basal metabolic index including blood pressure, body weight, blood glucose and urinary albumin excretion rate (UAER were tested. After intraperitoneal anesthesia with chloral hydrate, the blood was collected from the carotid artery. Serum angiotensin Ⅱ and angiotensin (1-7 levels were detected by ELISA; Western blotting was performed to evaluate the expression of ACE 2 protein and collagen Ⅲ in renal tissue; renal pathological changes were observed by HE and Masson staining. Results The blood pressure, ratio of visceral fat weight/body weight, blood lipid, blood glucose and UAER increased significantly in the C57BL/6 mice fed with high-salt and high-fat diet for 16 weeks, and the renal fibrosis change was obvious, serum angiotensin Ⅱ level increased, expressions of ACE 2 and angiotensin (1-7 decreased significantly in the renal tissue. In different intervention groups, valsartan obviously alleviated the abnormal metabolism, ameliorated renal injury, promoted the expression of ACE2 and angiotensin (1-7 in the kidney and serum. However, no significant change was observed in the groups with intervention of enalapril or valsartan+A-779 compared with non-intervention group. Conclusions High-salt and high-fat diet can be used to successfully establish the model of metabolic syndrome in C57BL/6

  19. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    Science.gov (United States)

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Regulation of the renin-angiotensin-aldosterone system in fibromyalgia.

    Science.gov (United States)

    Maliszewski, Anne M; Goldenberg, Don L; Hurwitz, Shelley; Adler, Gail K

    2002-07-01

    To assess the function of the renin-angiotensin-aldosterone (RAA) system in women with fibromyalgia (FM) compared to healthy women. Women with FM [n = 14, age 41.0+/-7.2 yrs, body mass index (BMI) 26.4+/-5.4 kg/m2] and healthy women (n = 13, age 40.0+/-7.7 yrs, BMI 25.0+/-5.0 kg/m2) were placed on a low sodium diet (10 mEq sodium/day) for 5 days. After being supine and fasting overnight, subjects received an intravenous infusion of angiotensin II at successive doses of 1, 3, and 10 ng/kg/min for 45 min per dose. Blood pressure (BP), plasma renin activity (PRA), aldosterone, and cortisol were measured at baseline and after each dose of angiotensin II. Prior to sodium restriction, women with FM completed the Hopkins Symptom Checklist-90, which included a question grading the extent of dizziness/faintness on a scale of 0 (none) to 4 (extremely). After dietary sodium restriction, baseline PRA, aldosterone, and supine BP were similar in healthy women and women with FM. Aldosterone and BP rose in response to infused angiotensin II; these responses did not differ significantly between healthy women and women with FM. In women with FM, symptoms of dizziness correlated inversely with BMI (r = -0.81, p < 0.001) and the systolic BP response to 10 ng/kg/min angiotensin II (r = -0.81, p < 0.001). The functioning of the RAA system, including the vascular response to angiotensin II, was intact in women with FM compared to healthy women. However, women with FM who complained of dizziness had a blunted vascular response to angiotensin II. This blunted vascular response may indicate intravascular volume depletion in women with symptoms of dizziness.

  1. High-salt diets during pregnancy affected fetal and offspring renal renin-angiotensin system.

    Science.gov (United States)

    Mao, Caiping; Liu, Rong; Bo, Le; Chen, Ningjing; Li, Shigang; Xia, Shuixiu; Chen, Jie; Li, Dawei; Zhang, Lubo; Xu, Zhice

    2013-07-01

    Intrauterine environments are related to fetal renal development and postnatal health. Influence of salty diets during pregnancy on renal functions and renin-angiotensin system (RAS) was determined in the ovine fetuses and offspring. Pregnant ewes were fed high-salt diet (HSD) or normal-salt diet (NSD) for 2 months during middle-to-late gestation. Fetal renal functions, plasma hormones, and mRNA and protein expressions of the key elements of renal RAS were measured in the fetuses and offspring. Fetal renal excretion of sodium was increased while urine volume decreased in the HSD group. Fetal blood urea nitrogen was increased, while kidney weight:body weight ratio decreased in the HSD group. The altered ratio was also observed in the offspring aged 15 and 90 days. Maternal and fetal plasma antidiuretic hormone was elevated without changes in plasma renin activity and Ang I levels, while plasma Ang II was decreased. The key elements of local renal RAS, including angiotensinogen, angiotensin converting enzyme (ACE), ACE2, AT1, and AT2 receptor expression in both mRNA and protein, except renin, were altered following maternal high salt intake. The results suggest that high intake of salt during pregnancy affected fetal renal development associated with an altered expression of the renal key elements of RAS, some alterations of fetal origins remained after birth as possible risks in developing renal or cardiovascular diseases.

  2. Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin.

    Science.gov (United States)

    Zhang, Yan; Diao, Teng-Yue; Gu, Sa-Sa; Wu, Shu-Yan; Gebru, Yoseph A; Chen, Xi; Wang, Jing-Yu; Ran, Shu; Wong, Man-Sau

    2014-09-01

    This study was performed to address the pathological roles of the skeletal renin-angiotensin system (RAS) in type 1 diabetes-induced osteoporosis and the effects of the angiotensin II type 1 receptor blocker losartan on bones in diabetic mice. Bone histomorphology was detected by H&E staining, Safranin O staining and X-ray radiography. Micro-CT was performed for the analysis of bone parameters. Gene and protein expression were determined by RT-PCR and immunoblotting. Type 1 diabetic mice displayed osteopenia phenotype, and losartan treatment had no osteoprotective effects on diabetic mice as shown by the reduction of bone mineral density and microarchitectural parameters at the proximal metaphysis of the tibia. The mRNA expression of AGT, renin receptor and ACE, and protein expression of renin and AT1R were markedly up-regulated in the bones of vehicle-treated diabetic mice compared to those of non-diabetic mice. The treatment with losartan further significantly increased the expression of AGT, renin, angiotensin II and AT1R, and reduced the expression of AT2R receptor as compared to those of diabetic mice. Local bone RAS functionally played a role in the development of type 1 diabetic osteoporosis, and losartan had no bone-sparing function in diabetes mice because of enhance skeletal RAS activity. © The Author(s) 2013.

  3. Effect of all-trans retinoic acid treatment on prohibitin and renin-angiotensin-aldosterone system expression in hypoxia-induced renal tubular epithelial cell injury.

    Science.gov (United States)

    Zhou, Tian-Biao; Ou, Chao; Rong, Liang; Drummen, Gregor P C

    2014-09-01

    All-trans retinoic acid (ATRA) exerts various effects on physiological processes such as cell growth, differentiation, apoptosis and inflammation. Prohibitins (PHB), including prohibitin 1 (PHB1) and prohibitin 2 (PHB2), are evolutionary conserved and pleiotropic proteins implicated in various cellular functions, including proliferation, tumor suppression, apoptosis, transcription, and mitochondrial protein folding. The renin-angiotensin-aldosterone system plays a pivotal role in the regulation of blood pressure and volume homeostasis. All these factors and systems have been implicated in renal interstitial fibrosis. Therefore, the objective of this study was to investigate the effect of ATRA treatment on the renin-angiotensin-aldosterone system and expression of prohibitins to further understand its role in the processes leading to renal interstitial fibrosis. The hypoxic and oxidative stress conditions in obstructive renal disease were simulated in a hypoxia/reoxygenation model with renal tubular epithelial cells (RTEC) as a model system. Subsequently, the effect of ATRA on mRNA and protein expression levels was determined and correlations were established between factors involved in the renin-angiotensin-aldosterone system, the prohibitins, cellular redox status, renal interstitial fibrosis and ATRA treatment. Correlation analysis showed that both PHB1 and PHB2 protein levels were negatively correlated with angiotensin I, ACE1, angiotensin II, TGF-β1, Col-IV, FN, ROS, and MDA (PHB1: r = -0.792, -0.834, -0.805, -0.795, -0.778, -0.798, -0.751, -0.682; PHB2: r = -0.872, -0.799, -0.838, -0.773, -0.769, -0.841, -0.794, -0.826; each p system under hypoxia/reoxygenation conditions. © The Author(s) 2014.

  4. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    Science.gov (United States)

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  5. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    Science.gov (United States)

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  6. Sex differences in angiotensin II- induced hypertension

    Directory of Open Access Journals (Sweden)

    B. Xue

    2007-05-01

    Full Text Available Sex differences in the development of hypertension and cardiovascular disease have been described in humans and in animal models. In this paper we will review some of our studies which have as their emphasis the examination of the role of sex differences and sex steroids in modulating the central actions of angiotensin II (ANG II via interactions with free radicals and nitric oxide, generating pathways within brain circumventricular organs and in central sympathomodulatory systems. Our studies indicate that low-dose infusions of ANG II result in hypertension in wild-type male mice but not in intact wild-type females. Furthermore, we have demonstrated that ANG II-induced hypertension in males is blocked by central infusions of the androgen receptor antagonist, flutamide, and by central infusions of the superoxide dismutase mimetic, tempol. We have also found that, in comparison to females, males show greater levels of intracellular reactive oxygen species in circumventricular organ neurons following long-term ANG II infusions. In female mice, ovariectomy, central blockade of estrogen receptors or total knockout of estrogen a receptors augments the pressor effects of ANG II. Finally, in females but not in males, central blockade of nitric oxide synthase increases the pressor effects of ANG II. Taken together, these results suggest that sex differences and estrogen and testosterone play important roles in the development of ANG II-induced hypertension.

  7. Embryonic Stem Cell-Like Population in Dupuytren’s Disease Expresses Components of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Nicholas On

    2017-07-01

    Full Text Available Background:. The renin-angiotensin system (RAS mediates cardiac and renal fibrosis. Dupuytren’s disease (DD is a proliferative fibromatosis affecting the hands. This study investigated the expression of the RAS in DD. Methods:. 3,3-Diaminobenzidine (DAB and immunofluorescent immunohistochemical (IHC staining for (prorenin receptor (PRR, angiotensin-converting enzyme (ACE, angiotensin II receptor 1 (ATIIR1, and angiotensin II receptor 2 (ATIIR2 was performed on 4-μm thick formalin-fixed paraffin-embedded sections of DD cords and nodules from 6 patients. Western blotting (WB and NanoString mRNA analysis were performed to confirm RAS protein expression and transcriptional activation, respectively. Results:. IHC staining demonstrated the expression of PRR, ACE, ATIIR1, and ATIIR2 on the ERG+ and CD34+ endothelium of the micro vessels surrounding the DD cords and nodules. PRR was also expressed on the pericyte layer of these microvessels. WB confirmed protein expression of PRR, ACE, and ATIIR2 but not ATIIR1. NanoString analysis confirmed transcriptional activation of PRR, ACE, ATIIR1, but ATIIR2 was below detectable levels. Conclusions:. We demonstrated expression of PRR, ATIIR1, ATIIR2, and ACE on the embryonic stem cell–like cell population on the microvessels surrounding DD nodules and cords by IHC staining, although the expression of ATIIR1 was not confirmed by WB and that of ATIIR2 was below detectable levels on NanoString analysis. These findings suggest the embryonic stem cell–like cell population as a potential therapeutic target for DD, by using RAS modulators.

  8. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    OpenAIRE

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, ...

  9. Dual pathway for angiotensin II formation in human internal mammary arteries

    NARCIS (Netherlands)

    Voors, A. A.; Pinto, Y. M.; Buikema, H.; Urata, H.; Oosterga, M.; Rooks, G.; Grandjean, J. G.; Ganten, D.; van Gilst, W. H.

    1998-01-01

    1. Angiotensin converting enzyme (ACE) is thought to be the main enzyme to convert antiotensin I to the vasoactive angiotensin II. Recently, in the human heart, it was found that the majority of angiotensin II formation was due to another enzyme, identified as human heart chymase. In the human

  10. Dual pathway for angiotensin II formation in human internal mammary arteries

    NARCIS (Netherlands)

    Voors, AA; Pinto, YM; Buikema, H; Urata, H; Oosterga, M; Roos, G; Grandjean, JG; Ganten, D; van Gilst, WH

    1 Angiotensin converting enzyme (ACE) is thought to be the main enzyme to convect antiotensin I to the vasoactive angiotensin II. Recently, in the human heart, it was found that the majority of angiotensin ZI formation was due to another enzyme, identified as human heart chymase. In the human

  11. Chronic blockade of angiotensin II action prevents glomerulosclerosis, but induces graft vasculopathy in experimental kidney transplantation

    NARCIS (Netherlands)

    Smit-van Oosten, A; Navis, G; Stegeman, CA; Joles, JA; Klok, PA; Kuipers, F; Tiebosch, ATMG; van Goor, H

    Long-term renin-angiotensin system blockade is beneficial in a variety of renal diseases, This study examines the long-term (34 weeks) effects of the angiotensin-converting enzyme inhibitor lisinopril and the angiotensin II receptor type I blocker L158,809 in the Fisher to Lewis rat model of chronic

  12. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral cir...

  13. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Science.gov (United States)

    Segura-Campos, Maira R.; Peralta-González, Fanny; Castellanos-Ruelas, Arturo; Chel-Guerrero, Luis A.; Betancur-Ancona, David A.

    2013-01-01

    Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE) plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%). Hydrophobic residues contributed substantially to the peptides' inhibitory potency. The 5–10 and Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry. PMID:24224169

  14. The effect of angiotensin-converting-enzyme inhibitors on progression of advanced polycystic kidney disease

    DEFF Research Database (Denmark)

    Jafar, Tazeen H; Stark, Paul C; Schmid, Christopher H

    2005-01-01

    BACKGROUND: It is not known whether angiotensin-converting-enzyme (ACE) inhibitors slow the progression of polycystic kidney disease (PKD). We performed a patient-level meta-analysis to compare the effect of antihypertensive regimens, including ACE inhibitors, to those without ACE inhibitors...... of doubling of baseline serum creatinine or onset of kidney failure). We also performed multivariable linear regression and Cox proportional hazards analyses. Based on previous findings, we searched for interactions between the treatment effect (effect of ACE inhibitors vs. controls) and baseline urine......%) in the ACE inhibitor group and 30 patients (41%) in the control group (P= 0.17). ACE inhibitors had a greater effect on lowering urine protein excretion and slowing kidney disease progression in patients with higher levels of baseline urine protein excretion (interaction P

  15. The renin–angiotensin system and diabetes: An update

    Directory of Open Access Journals (Sweden)

    Antônio Ribeiro-Oliveira Jr

    2008-08-01

    Full Text Available Antônio Ribeiro-Oliveira Jr1, Anelise Impeliziere Nogueira1, Regina Maria Pereira2, Walkiria Wingester Vilas Boas3, Robson Augusto Souza dos Santos4, Ana Cristina Simões e Silva51Laboratório de Endocrinologia, Departamento de Clínica Médica, 2Departamento de Ciências Biológicas, Centro Universitário de Belo Horizonte, UNIBH, Belo Horizonte, MG, Brazil; 3Hospital Life Center, Belo Horizonte, MG, Brazil; 4Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil; 5Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG, Belo Horizonte, MG, BrazilAbstract: In the past few years the classical concept of the renin–angiotensin system (RAS has experienced substantial conceptual changes. The identification of the renin/prorenin receptor, the angiotensin-converting enzyme homologue ACE2 as an angiotensin peptide processing enzyme, Mas as a receptor for Ang-(1-7 and the possibility of signaling through ACE, have contributed to switch our understanding of the RAS from the classical limited-proteolysis linear cascade to a cascade with multiple mediators, multiple receptors, and multi-functional enzymes. In this review we will focus on the recent findings related to RAS and, in particular, on its role in diabetes by discussing possible interactions between RAS mediators, endothelium function, and insulin signaling transduction pathways as well as the putative role of ACE2-Ang-(1-7-Mas axis in disease pathogenesis.Keywords: renin–angiotensin system, diabetes, angiotensin II, angiotensin-(1-7, insulin, endothelium

  16. Angiotensin II facilitates breast cancer cell migration and metastasis.

    Directory of Open Access Journals (Sweden)

    Sylvie Rodrigues-Ferreira

    Full Text Available Breast cancer metastasis is a leading cause of death by malignancy in women worldwide. Efforts are being made to further characterize the rate-limiting steps of cancer metastasis, i.e. extravasation of circulating tumor cells and colonization of secondary organs. In this study, we investigated whether angiotensin II, a major vasoactive peptide both produced locally and released in the bloodstream, may trigger activating signals that contribute to cancer cell extravasation and metastasis. We used an experimental in vivo model of cancer metastasis in which bioluminescent breast tumor cells (D3H2LN were injected intra-cardiacally into nude mice in order to recapitulate the late and essential steps of metastatic dissemination. Real-time intravital imaging studies revealed that angiotensin II accelerates the formation of metastatic foci at secondary sites. Pre-treatment of cancer cells with the peptide increases the number of mice with metastases, as well as the number and size of metastases per mouse. In vitro, angiotensin II contributes to each sequential step of cancer metastasis by promoting cancer cell adhesion to endothelial cells, trans-endothelial migration and tumor cell migration across extracellular matrix. At the molecular level, a total of 102 genes differentially expressed following angiotensin II pre-treatment were identified by comparative DNA microarray. Angiotensin II regulates two groups of connected genes related to its precursor angiotensinogen. Among those, up-regulated MMP2/MMP9 and ICAM1 stand at the crossroad of a network of genes involved in cell adhesion, migration and invasion. Our data suggest that targeting angiotensin II production or action may represent a valuable therapeutic option to prevent metastatic progression of invasive breast tumors.

  17. Circadian rhythm of blood pressure and the renin-angiotensin system in the kidney.

    Science.gov (United States)

    Ohashi, Naro; Isobe, Shinsuke; Ishigaki, Sayaka; Yasuda, Hideo

    2017-05-01

    Activation of the intrarenal renin-angiotensin system (RAS) has a critical role in the pathophysiology of the circadian rhythm of blood pressure (BP) and renal injury, independent of circulating RAS. Although it is clear that the circulating RAS has a circadian rhythm, reports of a circadian rhythm in tissue-specific RAS are limited. Clinical studies evaluating intrarenal RAS activity by urinary angiotensinogen (AGT) levels have indicated that urinary AGT levels were equally low during both the daytime and nighttime in individuals without chronic kidney disease (CKD) and that urinary AGT levels were higher during the daytime than at nighttime in patients with CKD. Moreover, urinary AGT levels of the night-to-day (N/D) ratio of urinary AGT were positively correlated with the levels of N/D of urinary protein, albumin excretion and BP. In addition, animal studies have demonstrated that the expression of intrarenal RAS components, such as AGT, angiotensin II (AngII) and AngII type 1 receptor proteins, increased and peaked at the same time as BP and urinary protein excretion during the resting phase, and the amplitude of the oscillations of these proteins was augmented in a chronic progressive nephritis animal compared with a control. Thus, the circadian rhythm of intrarenal RAS activation may lead to renal damage and hypertension, which both are associated with diurnal variations in BP. It is possible that augmented glomerular permeability increases AGT excretion levels into the tubular lumen and that circadian fluctuation of glomerular permeability influences the circadian rhythm of the intrarenal RAS.

  18. Intramuscular renin-angiotensin system is activated in human muscular dystrophy.

    Science.gov (United States)

    Sun, Guilian; Haginoya, Kazuhiro; Dai, Hongmei; Chiba, Yoko; Uematsu, Mitsugu; Hino-Fukuyo, Naomi; Onuma, Akira; Iinuma, Kazuie; Tsuchiya, Shigeru

    2009-05-15

    To investigate the role of the muscular renin-angiotensin system (RAS) in human muscular dystrophy, we used immunohistochemistry and Western blotting to examine the cellular localization of angiotensin-converting enzyme (ACE), the angiotensin II type 1 receptor (AT1) and the angiotensin II type 2 receptor (AT2) in muscle biopsies from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy (BMD), and congenital muscular dystrophy (CMD). In normal muscle, ACE was expressed in vascular endothelial cells and neuromuscular junctions (NMJs), whereas AT1 was immunolocalized to the smooth muscle cells of blood vessels and intramuscular nerve twigs. AT2 was immunolocalized in the smooth muscle cells of blood vessels. These findings suggest that the RAS has a functional role in peripheral nerves and NMJs. ACE and AT1, but AT2 immunoreactivity were increased markedly in dystrophic muscle as compared to controls. ACE and the AT1 were strongly expressed in the cytoplasm and nuclei of regenerating muscle fibers, fibroblasts, and in macrophages infiltrating necrotic fibers. Double immunolabeling revealed that activated fibroblasts in the endomysium and perimysium of DMD and CMD muscle were positive for ACE and AT1. Triple immunolabeling demonstrated that transforming growth factor-beta1 (TGF-beta1) and ACE were colocalized on the cytoplasm of activated fibroblasts in dystrophic muscle. Furthermore, Western blotting showed increases in the expression of AT1 and TGF-beta1 protein in dystrophic muscle, which coincided with our immunohistochemical results. The overexpression of ACE and AT1 in dystrophic muscle would likely result in the increased production of Ang II, which may act on these cells in an autocrine manner via AT1. The activation of AT1 may induce fibrous tissue formation through overexpression of TGF-beta1, which potently activates fibrogenesis and suppresses regeneration. In conclusion, our results imply that the intramuscular RAS-TGF-beta1 pathway

  19. Angiotensin II for the Treatment of Vasodilatory Shock.

    Science.gov (United States)

    Khanna, Ashish; English, Shane W; Wang, Xueyuan S; Ham, Kealy; Tumlin, James; Szerlip, Harold; Busse, Laurence W; Altaweel, Laith; Albertson, Timothy E; Mackey, Caleb; McCurdy, Michael T; Boldt, David W; Chock, Stefan; Young, Paul J; Krell, Kenneth; Wunderink, Richard G; Ostermann, Marlies; Murugan, Raghavan; Gong, Michelle N; Panwar, Rakshit; Hästbacka, Johanna; Favory, Raphael; Venkatesh, Balasubramanian; Thompson, B Taylor; Bellomo, Rinaldo; Jensen, Jeffrey; Kroll, Stew; Chawla, Lakhmir S; Tidmarsh, George F; Deane, Adam M

    2017-08-03

    Vasodilatory shock that does not respond to high-dose vasopressors is associated with high mortality. We investigated the effectiveness of angiotensin II for the treatment of patients with this condition. We randomly assigned patients with vasodilatory shock who were receiving more than 0.2 μg of norepinephrine per kilogram of body weight per minute or the equivalent dose of another vasopressor to receive infusions of either angiotensin II or placebo. The primary end point was a response with respect to mean arterial pressure at hour 3 after the start of infusion, with response defined as an increase from baseline of at least 10 mm Hg or an increase to at least 75 mm Hg, without an increase in the dose of background vasopressors. A total of 344 patients were assigned to one of the two regimens; 321 received a study intervention (163 received angiotensin II, and 158 received placebo) and were included in the analysis. The primary end point was reached by more patients in the angiotensin II group (114 of 163 patients, 69.9%) than in the placebo group (37 of 158 patients, 23.4%) (odds ratio, 7.95; 95% confidence interval [CI], 4.76 to 13.3; Pthe mean improvement in the cardiovascular Sequential Organ Failure Assessment (SOFA) score (scores range from 0 to 4, with higher scores indicating more severe dysfunction) was greater in the angiotensin II group than in the placebo group (-1.75 vs. -1.28, P=0.01). Serious adverse events were reported in 60.7% of the patients in the angiotensin II group and in 67.1% in the placebo group. Death by day 28 occurred in 75 of 163 patients (46%) in the angiotensin II group and in 85 of 158 patients (54%) in the placebo group (hazard ratio, 0.78; 95% CI, 0.57 to 1.07; P=0.12). Angiotensin II effectively increased blood pressure in patients with vasodilatory shock that did not respond to high doses of conventional vasopressors. (Funded by La Jolla Pharmaceutical Company; ATHOS-3 ClinicalTrials.gov number, NCT02338843 .).

  20. CHANGES IN THE LEVELS OF ANGIOTENSIN II, ALDOSTERONE, AND FIBROBLAST GROWTH FACTOR IN PATIENTS WITH RHEUMATOID ARTHRITIS IN RELATION TO CLINICAL FEATURES

    Directory of Open Access Journals (Sweden)

    E. B. Komarova

    2016-01-01

    Full Text Available Angiotensin II, aldosterone, and fibroblast growth factor (FGF stimulate neoangiogenesis, fibroblast proliferation, and elaboration of proinflammatory cytokines, which in turn contributes to increased pannus mass and the development of joint tissue destruction in rheumatoid arthritis (RA.Objective: to establish the specific features of changes in the blood levels of angiotensin II, aldosterone, and FGF in patients with RA in relation to the duration and severity of the disease.Subjects and methods. Examinations were made in 194 patients diagnosed with RA without comorbidity; the patients’ mean age was 47.7±10.2 years; the disease duration was 3.82±3.43 years. DAS28 scores for RA were calculated based on C-reactive protein levels. An enzyme immunoassay was used to determine the serum levels of anti-cyclic citrullinated peptide antibodies (ACCPA, angiotensin II, aldosterone, and FGF.Results and discussion. All the examinees were ascertained to have increases in the concentration of angiotensin II and aldosterone in blood by twice and in that of FGF by 2.5 times compared to the controls (p < 0.05. In patients with a RA duration of < 2 years, the blood level of angiotensin II was 25% higher than in those with a RA duration of > 5 years and the concentrations of aldosterone and FGF in patients with long-term RA were twice as high as in those with early RA. In patients with high RA activity, the blood level of angiotensin II was 1.5-fold higher than in those with low and moderate disease activity (p < 0.05. In patients with a high blood ACCPA level, the concentrations of angiotensin II, aldosterone, and FGF were 20, 30, and 25%, respectively, higher than in those with low ACCPA levels. The correlation of DAS28 with blood angiotensin II levels increased with enhanced RA activity. The high aldosterone and FGF values in RA patients are associated with the progression of joint radiographic changes.

  1. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.

    Science.gov (United States)

    Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga

    2017-05-01

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

  2. Aldosterone downregulates delayed rectifier potassium currents through an angiotensin type 1 receptor-dependent mechanism.

    Science.gov (United States)

    Lv, Yankun; Wang, Yanjun; Zhu, Xiaoran; Zhang, Hua

    2018-01-01

    We have previously shown that aldosterone downregulates delayed rectifier potassium currents (I Ks ) via activation of the mineralocorticoid receptor (MR) in adult guinea pig cardiomyocytes. Here, we investigate whether angiotensin II/angiotensin type 1 receptor (AngII/AT1R) and intracellular calcium also play a role in these effects. Ventricular cardiomyocytes were isolated from adult guinea pigs and incubated with aldosterone (1 μmol·L -1 ) either alone or in combination with enalapril (1 μmol·L -1 ), losartan (1 μmol·L -1 ), nimodipine (1 μmol·L -1 ), or BAPTA-AM (2.5 μmol·L -1 ) for 24 h. We used the conventional whole cell patch-clamp technique to record the I Ks component. In addition, we evaluated expression of the I Ks subunits KCNQ1 and KCNE1 using Western blotting. Our results showed that both enalapril and losartan, but not nimodipine or BAPTA-AM, completely reversed the aldosterone-induced inhibition of I Ks and its effects on KCNQ1/KCNE1 protein levels. Furthermore, we found that AngII/AT1R mediates the inhibitory effects of aldosterone on I Ks . Finally, the downregulation of I Ks induced by aldosterone did not occur secondarily to a change in intracellular calcium concentrations. Taken together, our findings demonstrate that crosstalk between MR and AT1R underlies the effects of aldosterone, and provide new insights into the mechanism underlying potassium channels.

  3. Angiotensin-(1-7)/Mas axis integrity is required for the expression of object recognition memory.

    Science.gov (United States)

    Lazaroni, Thiago L N; Raslan, Ana Cláudia S; Fontes, Walkiria R P; de Oliveira, Marilene L; Bader, Michael; Alenina, Natalia; Moraes, Márcio F D; Dos Santos, Robson A; Pereira, Grace S

    2012-01-01

    It has been shown that the brain has its own intrinsic renin-angiotensin system (RAS) and angiotensin-(1-7) (Ang-(1-7)) is particularly interesting, because it appears to counterbalance most of the Ang II effects. Ang-(1-7) exerts its biological function through activation of the G-protein-coupled receptor Mas. Interestingly, hippocampus is one of the regions with higher expression of Mas. However, the role of Ang-(1-7)/Mas axis in hippocampus-dependent memories is still poorly understood. Here we demonstrated that Mas ablation, as well as the blockade of Mas in the CA1-hippocampus, impaired object recognition memory (ORM). We also demonstrated that the blockade of Ang II receptors AT1, but not AT2, recovers ORM impairment of Mas-deficient mice. Considering that high concentrations of Ang-(1-7) may activate AT1 receptors, nonspecifically, we evaluate the levels of Ang-(1-7) and its main precursors Ang I and Ang II in the hippocampus of Mas-deficient mice. The Ang I and Ang II levels are unaltered in the whole hipocampus of MasKo. However, Ang-(1-7) concentration is increased in the whole hippocampus of MasKo mice, as well as in the CA1 area. Taken together, our findings suggest that the functionality of the Ang-(1-7)/Mas axis is essential for normal ORM processing. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Early pharmacological inhibition of angiotensin-I converting enzyme activity induces obesity in adulthood

    Directory of Open Access Journals (Sweden)

    Kely ede Picoli Souza

    2015-04-01

    Full Text Available We have investigated early programming of body mass in order to understand the multifactorial etiology of obesity. Considering that the renin-angiotensin system is expressed and functional in the white adipose tissue (WAT and modulates its development, we reasoned whether early transitory inhibition of angiotensin-I converting enzyme activity after birth could modify late body mass development. Therefore, newborn Wistar rats were treated with enalapril (10 mg/kg of body mass or saline, starting at the first day of life until the age of 16 days. Between days 90th and 180th, a group of these animals received high fat diet (HFD. Molecular, biochemical, histological and physiological data were collected. Enalapril treated animals presented hyperphagia, overweight and increased serum level of triglycerides, total cholesterol and leptin, in adult life. Body composition analyses revealed higher fat mass with increased adipocyte size in these animals. Molecular analyses revealed that enalapril treatment increases neuropeptide Y (NPY and cocaine- and amphetamine-regulated transcript (CART gene expression in hypothalamus, fatty acid synthase (FAS and hormone-sensitive lipase (HSL gene expression in retroperitoneal WAT and decreases peroxixome proliferators-activated receptor (PPAR γ, PPARα, uncoupling protein (UCP 2 and UCP3 gene expression in WAT. The results of the current study indicate that enalapril administration during early postnatal development increases body mass, adiposity and serum lipids in adulthood associated with enhanced food intake and decreased metabolic activity in WAT, predisposing to obesity in adulthood.

  5. Cancer Stem Cells in Moderately Differentiated Buccal Mucosal Squamous Cell Carcinoma Express Components of the Renin-Angiotensin System

    Directory of Open Access Journals (Sweden)

    Therese Featherston

    2016-09-01

    Full Text Available Aim We have recently identified and characterized cancer stem cell (CSC subpopulations within moderately differentiated buccal mucosal squamous cell carcinoma (MDBMSCC. We hypothesized that these CSCs express components of the renin-angiotensin system (RAS.Methods 3,3-Diaminobenzidine (DAB immunohistochemical (IHC staining was performed on formalin-fixed paraffin-embedded MDBMSCC samples to investigate the expression of the components of the RAS: pro(renin receptor (PRR, angiotensin converting enzyme (ACE, angiotensin II receptor 1 (ATIIR1 and angiotensin II receptor 2 (ATIIR2. NanoString mRNA gene expression analysis and Western Blotting (WB were performed on snap-frozen MDBMSCC samples to confirm gene expression and translation of these transcripts, respectively. Double immunofluorescent (IF IHC staining of these components of the RAS with the embryonic stem cell markers OCT4 or SALL4 was performed to demonstrate their localization in relation to the CSC subpopulations within MDBMSCC.Results DAB IHC staining demonstrated expression of PRR, ACE, ATIIR1 and ATIIR2 in MDBMSCC. IF IHC staining showed that PRR was expressed by the CSC subpopulations within the tumor nests, the peri-tumoral stroma and the endothelium of the microvessels within the peri-tumoral stroma. ATIIR1 and ATIIR2 were localized to the CSC subpopulations within the tumor nests and the peri-tumoral stroma, while ACE was localized to the endothelium of the microvessels within the peri-tumoral stroma. WB and NanoString analyses confirmed protein expression and transcription activation of PRR, ACE and ATIIR1 but not of ATIIR2, respectively.

  6. Electroacupuncture improves cerebral blood flow and attenuates moderate ischemic injury via Angiotensin II its receptors-mediated mechanism in rats.

    Science.gov (United States)

    Li, Jing; He, Jiaojun; Du, Yuanhao; Cui, Jingjun; Ma, Ying; Zhang, Xuezhu

    2014-11-11

    To investigate the effects and potential mechanism of electroacupuncture intervention on expressions of Angiotensin II and its receptors-mediated signaling pathway in experimentally induced cerebral ischemia. Totally 126 male Wistar rats were randomly divided into control group, model group and EA group. The latter two were further divided into ten subgroups (n = 6) following Middle Cerebral Artery Occlusion (MCAO). Changes in regional cerebral blood flow (rCBF) and expressions of Angiotensin II and its receptors (AT1R, AT2R), as well as effector proteins in phosphatidyl inositol signal pathway were monitored before and at different times after MCAO. MCAO-induced decline of ipsilateral rCBF was partially suppressed by electroacupuncture, and contralateral blood flow was also superior to that of model group. Angiotensin II level was remarkably elevated immediately after MCAO, while electroacupuncture group exhibited significantly lower levels at 1 to 3 h and the value was significantly increased thereafter. The enhanced expression of AT1R was partially inhibited by electroacupuncture, while increased AT2R level was further induced. Electroacupuncture stimulation attenuated and postponed the upregulated-expressions of Gq and CaM these upregulations. ELISA results showed sharply increased expressions of DAG and IP3, which were remarkably neutralized by electroacupuncture. MCAO induced significant increases in expression of Angiotensin II and its receptor-mediated signal pathway. These enhanced expressions were significantly attenuated by electroacupuncture intervention, followed by reduced vasoconstriction and improved blood supply in ischemic region, and ultimately conferred beneficial effects on cerebral ischemia.

  7. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    Science.gov (United States)

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  8. Combination inhibition of the renin-angiotensin system: is more better?

    Science.gov (United States)

    Krause, Michelle W; Fonseca, Vivian A; Shah, Sudhir V

    2011-08-01

    Angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers are considered the standard of care for treatment of cardiovascular disease and chronic kidney disease. Combination therapy with both angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers effectively inhibits the renin-angiotensin system as well as potentiates the vasodilatory effects of bradykinin. It has been advocated that this dual blockade approach theoretically should result in improved clinical outcomes in both cardiovascular disease and chronic kidney disease. Clinical trial evidence for the use of combination therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in cardiovascular disease has provided conflicting results in hypertension, congestive heart failure, and ischemic heart disease. Clinical trial evidence to support combination therapy with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers in chronic kidney disease has largely been based on proteinuria reduction as a surrogate marker for clinically meaningful outcomes. Recent large-scale randomized clinical trials have not been able to validate protection in halting progression in chronic kidney disease with a dual blockade approach. This review serves as an appraisal on the clinical evidence of combination angiotensin-converting enzyme inhibition and angiotensin II receptor blockade in both cardiovascular disease and chronic kidney disease.

  9. Angiotensin-(1-7) augments endothelium-dependent relaxations of porcine coronary arteries to bradykinin by inhibiting angiotensin-converting enzyme 1.

    Science.gov (United States)

    Raffai, Gábor; Khang, Gilson; Vanhoutte, Paul M

    2014-05-01

    Angiotensin-converting enzyme 2 (ACE2) converts angiotensin II to angiotensin-(1-7) that activates Mas receptors, inhibits ACE1, and modulates bradykinin receptor sensitivity. This in vitro study compared the direct and indirect effects of angiotensin-(1-7), the ACE1 inhibitor captopril, and diminazene aceturate (DIZE) an alleged ACE2 activator in rings of porcine coronary arteries, by measuring changes of isometric tension. Angiotensin-(1-7), captopril, and DIZE did not cause significant changes in tension before or after desensitization of bradykinin receptors in preparations contracted with U46619. Bradykinin caused concentration-dependent and endothelium-dependent relaxations that were not affected by DIZE but were potentiated to a similar extent by angiotensin-(1-7) and captopril, given alone or in combination. Bradykinin responses potentiated by angiotensin-(1-7) and captopril were not affected by the BK1 antagonist SSR240612 and remained augmented in the presence of either N-nitro-L-arginine methyl ester hydrochloride plus indomethacin or TRAM-34 plus UCL-1684. ACE2 was identified in the coronary endothelium by immunofluorescence, but its basal activity was not influenced by DIZE. These results suggest that in coronary arteries, angiotensin-(1-7) and captopril both improves NO bioavailability and enhances endothelium-dependent hyperpolarization to bradykinin solely by ACE1 inhibition. Endothelial ACE2 activity cannot be increased by DIZE to produce local adequate amounts of angiotensin-(1-7) to influence vascular tone.

  10. Angiotensin AT1-receptor blockers and cerebrovascular protection: do they actually have a cutting edge over angiotensin-converting enzyme inhibitors?

    DEFF Research Database (Denmark)

    Oprisiu-Fournier, Roxana; Faure, Sébastien; Mazouz, Hakim

    2009-01-01

    First, an update of the vascular systemic and tissue renin-angiotensin-aldosterone system is provided to explain how it is regulated at the systemic and tissue levels, and how many angiotensin peptides and receptors can be modulated by the various antihypertensive drugs. Second, experimental data...... stroke prevention trial PRoFESS, most trials support the hypothesis that angiotensin II-increasing drugs confer specific blood pressure-independent brain ischemia protection when compared with angiotensin II-decreasing drugs or placebo. A careful analysis of the PRoFESS trial, however, reveals study...

  11. Association studies suggest a key role for endothelin-1 in the pathogenesis of preeclampsia and the accompanying renin-angiotensin-aldosterone system suppression.

    Science.gov (United States)

    Verdonk, Koen; Saleh, Langeza; Lankhorst, Stephanie; Smilde, J E Ilse; van Ingen, Manon M; Garrelds, Ingrid M; Friesema, Edith C H; Russcher, Henk; van den Meiracker, Anton H; Visser, Willy; Danser, A H Jan

    2015-06-01

    Women with preeclampsia display low renin-angiotensin-aldosterone system activity and a high antiangiogenic state, the latter characterized by high levels of soluble Fms-like tyrosine kinase (sFlt)-1 and reduced placental growth factor levels. To investigate whether renin-angiotensin-aldosterone system suppression in preeclampsia is because of this disturbed angiogenic balance, we measured mean arterial pressure, creatinine, endothelin-1 (ET-1), and renin-angiotensin-aldosterone system components in pregnant women with a high (≥85; n=38) or low (<85; n=65) soluble Fms-like tyrosine kinase-1/placental growth factor ratio. Plasma ET-1 levels were increased in women with a high ratio, whereas their plasma renin activity and plasma concentrations of renin, angiotensinogen, and aldosterone were decreased. Plasma renin activity-aldosterone relationships were identical in both the groups. Multiple regression analysis revealed that plasma renin concentration correlated independently with mean arterial pressure and plasma ET-1. Plasma ET-1 correlated positively with soluble Fms-like tyrosine kinase-1 and negatively with plasma renin concentration, and urinary protein correlated with plasma ET-1 and mean arterial pressure. Despite the lower plasma levels of renin and angiotensinogen in the high-ratio group, their urinary levels of these components were elevated. Correction for albumin revealed that this was because of increased glomerular filtration. Subcutaneous arteries obtained from patients with preeclampsia displayed an enhanced, AT2 receptor-mediated response to angiotensin II. In conclusion, a high antiangiogenic state associates with ET-1 activation, which together with the increased mean arterial pressure may underlie the parallel reductions in renin and aldosterone in preeclampsia. Because ET-1 also was a major determinant of urinary protein, our data reveal a key role for ET-1 in the pathogenesis of preeclampsia. Finally, the enhanced angiotensin responsiveness

  12. The transcription factor ETS-1 regulates angiotensin II-stimulated fibronectin production in mesangial cells.

    Science.gov (United States)

    Hua, Ping; Feng, Wenguang; Rezonzew, Gabriel; Chumley, Phillip; Jaimes, Edgar A

    2012-06-01

    Angiotensin II (ANG II) produced as result of activation of the renin-angiotensin system (RAS) plays a critical role in the pathogenesis of chronic kidney disease via its hemodynamic effects on the renal microcirculation as well as by its nonhemodynamic actions including the production of extracellular matrix proteins such as fibronectin, a multifunctional extracellular matrix protein that plays a major role in cell adhesion and migration as well as in the development of glomerulosclerosis. ETS-1 is an important transcription factor essential for normal kidney development and glomerular integrity. We previously showed that ANG II increases ETS-1 expression and is required for fibronectin production in mesangial cells. In these studies, we determined that ANG II induces phosphorylation of ETS-1 via activation of the type 1 ANG II receptor and that Erk1/2 and Akt/PKB phosphorylation are required for these effects. In addition, we characterized the role of ETS-1 on the transcriptional activation of fibronectin production in mesangial cells. We determined that ETS-1 directly activates the fibronectin promoter and by utilizing gel shift assays and chromatin immunoprecipitation assays identified two different ETS-1 binding sites that promote the transcriptional activation of fibronectin in response to ANG II. In addition, we identified the essential role of CREB and its coactivator p300 on the transcriptional activation of fibronectin by ETS-1. These studies unveil novel mechanisms involved in RAS-induced production of the extracellular matrix protein fibronectin in mesangial cells and establish the role of the transcription factor ETS-1 as a direct mediator of these effects.

  13. Expression of Angiotensin II Types 1 and 2 Receptors in Endometriotic Lesions.

    Science.gov (United States)

    Nakao, Takehiro; Chishima, Fumihisa; Sugitani, Masahiko; Tsujimura, Ryusuke; Hayashi, Chuyu; Yamamoto, Tatsuo

    2017-01-01

    The aim of this study was to evaluate the gene and protein expression of angiotensin type (AT) 1, AT2 receptors in endometriotic lesions and its relation to prostaglandin (PG) synthases. Endometriosis samples were obtained from 32 patients with endometriotic cysts. Endometrial tissues were obtained during operations for benign gynecological conditions. The expression of the AT1 and AT2 receptor mRNA and that of PG-endoperoxide synthase 2 and microsomal PGE2 synthase-1 (mPGES-1) was examined by quantitative RT-PCR. Immunohistochemical staining was performed for these receptors. AT1 and AT2 receptor proteins were mostly located in endometrial glandular epithelium and some stromal cells. Immunoreactivity of the receptor proteins was observed in both the eutopic endometrium and endometriotic lesions. The AT1/AT2 ratio in endometriotic cysts (median 7.29, range 1.88-187.60) was significantly increased compared with that in the eutopic endometrium in the proliferative-phase in controls (median 1.01, range 0.37-2.09, p < 0.001). There was a relationship between the AT1 mRNA expression and that of mPGES-1 mRNA in the endometriotic cysts (r = 0.394089, p < 0.05). There was a significant relationship between the mRNA expression of the AT2 receptor and that of mPGES-1 in eutopic endometrium of non-endometriotic control (r = 0.610714, p < 0.05). Renin-angiotensin system may play an important role in the pathophysiology of endometriosis. © 2016 S. Karger AG, Basel.

  14. Treatment with salvianolic acid B restores endothelial function in angiotensin II-induced hypertensive mice.

    Science.gov (United States)

    Ling, Wei Chih; Liu, Jian; Lau, Chi Wai; Murugan, Dharmani Devi; Mustafa, Mohd Rais; Huang, Yu

    2017-07-15

    Salvianolic acid B (Sal B) is one of the most abundant phenolic acids derived from the root of Danshen with potent anti-oxidative properties. The present study examined the vasoprotective effect of Sal B in hypertensive mice induced by angiotensin II (Ang II). Sal B (25mg/kg/day) was administered via oral gavage for 11days to Ang II (1.2mg/kg/day)-infused C57BL/6J mice (8-10weeks old). The vascular reactivity (both endothelium-dependent relaxations and contractions) in mouse arteries was examined by wire myography. The production of reactive oxygen species (ROS), protein level and localization of angiotensin AT 1 receptors and the proteins involved in ROS formation were evaluated using dihydroethidium (DHE) fluorescence, lucigenin-enhanced chemiluminescence, immunohistochemistry and Western blotting, respectively. The changes of ROS generating proteins were also assessed in vitro in human umbilical vein endothelial cells (HUVECs) exposed to Ang II with and without co-treatment with Sal B (0.1-10nM). Oral administration of Sal B reversed the Ang II-induced elevation of arterial systolic blood pressure in mice, augmented the impaired endothelium-dependent relaxations and attenuated the exaggerated endothelium-dependent contractions in both aortas and renal arteries of Ang II-infused mice. In addition, Sal B treatment normalized the elevated levels of AT 1 receptors, NADPH oxidase subunits (NOx-2 and NOx-4) and nitrotyrosine in arteries of Ang II-infused mice or in Ang II-treated HUVECs. In summary, the present study provided additional evidence demonstrating that Sal B treatment for 11days reverses the impaired endothelial function and with a marked inhibition of AT 1 receptor-dependent vascular oxidative stress. This vasoprotective and anti-oxidative action of Sal B most likely contributes to the anti-hypertensive action of the plant-derived compound. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Angiotensin converting enzyme (ACE D/I) polymorphism and its ...

    African Journals Online (AJOL)

    Hepatitis C virus (HCV) infection is a global health problem in Egypt and causes different liver disease spectrum. Evidence indicates that angiotensin I converting enzyme (ACE) gene polymorphism may play a role in determining disease progression. We aimed to determine the association of ACE gene I/D polymorphism ...

  16. Purification and characterization of angiotensin-1 converting enzyme

    African Journals Online (AJOL)

    The Nemopilema nomurai hydrolysate was produced by the reaction of papain, and an angiotensin-Ι converting enzyme (ACE)-inhibitory peptide was purified by ... The infrared (IR), proton nuclear magnetic resonance spectroscopy (1H NMR), carbon nuclear magnetic resonance (13C NMR) and mass spectrometry (MS) ...

  17. Angiotensin-converting enzyme insertion/deletion gene ...

    Indian Academy of Sciences (India)

    Angiotensin-converting enzyme insertion/deletion gene polymorphism in cystic fibrosis patients. Sabrine Oueslati Sondess Hadj Fredj Hajer Siala Amina Bibi Hajer Aloulou Lamia Boughamoura Khadija Boussetta Sihem Barsaoui Taieb Messaoud. Research Note Volume 95 Issue 1 March 2016 pp 193-196 ...

  18. Organisation and functional role of the brain angiotensin system

    Directory of Open Access Journals (Sweden)

    Catherine Llorens-Cortes

    2002-03-01

    Full Text Available The discovery that all components of the renin-angiotensin system (RAS are present in the brain led investigators to postulate the existence of a local brain RAS. Supporting this, angiotensin immunoreactive neurones have been visualised in the brain. Two major pathways were described: a forebrain pathway which connects circumventricular organs to the median preoptic nucleus, paraventricular and supraoptic nuclei, and a second pathway connecting the hypothalamus to the medulla oblongata. Blood-brain-barrier deficient circumventricular organs are rich in angiotensin II (Ang II receptors. By activating these receptors, circulating Ang II may act on central cardiovascular centres via angiotensinergic neurones, providing a link between peripheral and central Ang II systems. Among the effector peptides of the brain RAS, Ang II and angiotensin III (Ang III have the same affinity for type 1 and type 2 Ang II receptors. When injected into the brain, both peptides increase blood pressure (BP, water intake and pituitary hormone release and may modify learning and memory. Since Ang II is converted in vivo to Ang III, the nature of the true effector is unknown. This review summarises new insights into the predominant role of brain Ang III in the control of BP and underlines the fact that brain aminopeptidase A, the enzyme forming central Ang III, could constitute a putative central therapeutic target for the treatment of hypertension.

  19. The insertion/deletion polymorphism of angiotensin-converting ...

    African Journals Online (AJOL)

    The association between type 2 diabetes mellitus (T2DM) and essential hypertension (EH) is not well understood. Both conditions result from an interaction of multiple genetic (ethnic) and environmental (geographical) factors. One possible genetic determinant is the angiotensin-converting enzyme (ACE) insertion/deletion ...

  20. Effect of Dual Blockade of Renin-Angiotensin Aldosterone System ...

    African Journals Online (AJOL)

    Purpose: To investigate the dual effect of angiotensin blockade by irbesartan and enalapril on proteinuria in diabetic patients with azotemia. Methods: Patients with diabetes of > 5 years duration, proteinuria at a nephrotic level and serum creatinine > 1.5 mg/dL were enrolled in the study. Forty-five enrolled patients were ...

  1. Effect of triptolide on proliferation and apoptosis of angiotensin II ...

    African Journals Online (AJOL)

    Background: The effect of triptolide (TPL) on cardiac fibroblasts (CFbs) and cardiac fibrosis remain unknown till now. This study was conducted to explore the effects of TPL on proliferation and apoptosis of angiotensin II (Ang II)-induced CFbs. Materials and Methods: Ang II was used to promote proliferation of CFbs.

  2. Angiotensin receptor blockers & endothelial dysfunction: Possible correlation & therapeutic implications

    Directory of Open Access Journals (Sweden)

    Miroslav Radenkovic

    2016-01-01

    Full Text Available The endothelium is one of the most important constituents of vascular homeostasis, which is achieved through continual and balanced production of different relaxing and contractile factors. When there is a pathological disturbance in release of these products, endothelial dysfunction (ED will probably occur. ED is considered to be the initial step in the development of atherosclerosis. This pathological activation and inadequate functioning of endothelial cells was shown to be to some extent a reversible process, which all together resulted in increased interest in investigation of different beneficial treatment options. To this point, the pharmacological approach, including for example, the use of angiotensin-converting enzyme inhibitors or statins, was clearly shown to be effective in the improvement of ED. One of many critical issues underlying ED represents instability in the balance between nitric oxide and angiotensin II (Ang II production. Considering that Ang II was confirmed to be important for the development of ED, the aim of this review article was to summarize the findings of up to date clinical studies associated with therapeutic application of angiotensin receptor blockers and improvement in ED. In addition, it was of interest to review the pleiotropic actions of angiotensin receptor blockers linked to the improvement of ED. The prospective, randomized, double-blind, placebo or active-controlled clinical trials were identified and selected for the final evaluation.

  3. Angiotensin converting enzyme induced angioedema: The need for ...

    African Journals Online (AJOL)

    The complication can be life threatening with serious morbidity and mortality if not promptly diagnosed from drug history and properly handled within the emergency unit. Apart from taking drug history concerning ACE inhibitor use in patients with heart failure, coronary heart disease and hypertension, a history of angiotensin ...

  4. Angiotensin converting enzyme 2 activity and human atrial fibrillation: increased plasma angiotensin converting enzyme 2 activity is associated with atrial fibrillation and more advanced left atrial structural remodelling.

    Science.gov (United States)

    Walters, Tomos E; Kalman, Jonathan M; Patel, Sheila K; Mearns, Megan; Velkoska, Elena; Burrell, Louise M

    2017-08-01

    Angiotensin converting enzyme 2 (ACE2) is an integral membrane protein whose main action is to degrade angiotensin II. Plasma ACE2 activity is increased in various cardiovascular diseases. We aimed to determine the relationship between plasma ACE2 activity and human atrial fibrillation (AF), and in particular its relationship to left atrial (LA) structural remodelling. One hundred and three participants from a tertiary arrhythmia centre, including 58 with paroxysmal AF (PAF), 20 with persistent AF (PersAF), and 25 controls, underwent clinical evaluation, echocardiographic analysis, and measurement of plasma ACE2 activity. A subgroup of 20 participants underwent invasive LA electroanatomic mapping. Plasma ACE2 activity levels were increased in AF [control 13.3 (9.5-22.3) pmol/min/mL; PAF 16.9 (9.7-27.3) pmol/min/mL; PersAF 22.8 (13.7-33.4) pmol/min/mL, P = 0.006]. Elevated plasma ACE2 was associated with older age, male gender, hypertension and vascular disease, elevated left ventricular (LV) mass, impaired LV diastolic function and advanced atrial disease (P < 0.05 for all). Independent predictors of elevated plasma ACE2 activity were AF (P = 0.04) and vascular disease (P < 0.01). There was a significant relationship between elevated ACE2 activity and low mean LA bipolar voltage (adjusted R2 = 0.22, P = 0.03), a high proportion of complex fractionated electrograms (R2 = 0.32, P = 0.009) and a long LA activation time (R2 = 0.20, P = 0.04). Plasma ACE2 activity is elevated in human AF. Both AF and vascular disease predict elevated plasma ACE2 activity, and elevated plasma ACE2 is significantly associated with more advanced LA structural remodelling. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.

  5. Angiotensin II up-regulates PAX2 oncogene expression and activity in prostate cancer via the angiotensin II type I receptor.

    Science.gov (United States)

    Bose, Sudeep K; Gibson, Willietta; Giri, Shailendra; Nath, Narender; Donald, Carlton D

    2009-09-01

    Paired homeobox 2 gene (PAX2) is a transcriptional regulator, aberrantly expressed in prostate cancer cells and its down-regulation promotes cell death in these cells. The molecular mechanisms of tumor progression by PAX2 over-expression are still unclear. However, it has been reported that angiotensin-II (A-II) induces cell growth in prostate cancer via A-II type 1 receptor (AT1R) and is mediated by the phosphorylation of mitogen activated protein kinase (MAPK) as well as signal transducer and activator of transcription 3 (STAT3). Here we have demonstrated that A-II up-regulates PAX2 expression in prostate epithelial cells and prostate cancer cell lines resulting in increased cell growth. Furthermore, AT1R receptor antagonist losartan was shown to inhibit A-II induced PAX2 expression in prostate cancer. Moreover, analysis using pharmacological inhibitors against MEK1/2, ERK1/2, JAK-II, and phospho-STAT3 demonstrated that AT1R-mediated stimulatory effect of A-II on PAX2 expression was regulated in part by the phosphorylation of ERK1/2, JAK II, and STAT3 pathways. In addition, we have showed that down-regulation of PAX2 by an AT1R antagonist as well as JAK-II and STAT3 inhibitors suppress prostate cancer cell growth. Collectively, these findings show for the first time that the renin-angiotensin system (RAS) may promote prostate tumorigenesis via up-regulation of PAX2 expression. Therefore, PAX2 may be a novel therapeutic target for the treatment of carcinomas such as prostate cancer via the down-regulation of its expression by targeting the AT1R signaling pathways.

  6. Evidence for a cyclic AMP-dependent pathway in angiotensin AT1-receptor activation of human omental arteries

    Directory of Open Access Journals (Sweden)

    Hoa Ytterberg

    2001-03-01

    Full Text Available Enhanced responses to vasoconstriction induced by neuropeptide Y and α2-adrenoceptor agonists have been seen following pharmacological activation of the adenylyl cyclase (AC system. Since preliminary studies revealed only minor responses to angiotensin II (Ang II in human omental arteries, we have investigated whether enhanced activity of AC may unravel further functional Ang II receptors. Human omental arteries were obtained in conjunction with elective gut surgery. After dissection of the vessel, the endothelium was removed by 10 sec of Triton X-100 treatment. Ring segments (1—2 mm long were mounted on a myograph and studied. Ang II produced small contractions, 27±5% relative to the response elicited by 60 mM K+. However, enhanced Ang II (105±10%, p<0.001 responses were seen during AC activation by forskolin (0.1—1 µM. This enhanced contractile response to Ang II was not inhibited by the angiotensin II type 2 (AT2-receptor antagonist PD 123319 (0.1 µM, but was blocked in an insurmountable way by the angiotensin II type 1 (AT1-receptor antagonist candesartan (1 nM and in a surmountable manner by losartan (0.1 µM and irbesartan (0.1 µM. Pertussis toxin (a Gi-protein blocker and the protein kinase C inhibitor, RO31—8220 (0.01, 0.1 and 1 µM, markedly reduced this response, while the protein kinase A inhibitor, H89 (1, 10 µM, had no effect. RT-PCR provided evidence for the presence of mRNA for both AT1- and AT2-receptors. The results suggest that both a cAMP-dependent and a cAMP-independent mechanism are involved in the contractile responses to Ang II in human omental arteries and that both responses are mediated via the AT1-receptor.

  7. Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    Science.gov (United States)

    Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172

  8. Angiotensin II infusion induces marked diaphragmatic skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Bashir M Rezk

    Full Text Available Advanced congestive heart failure (CHF and chronic kidney disease (CKD are characterized by increased angiotensin II (Ang II levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1 and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase and of the satellite cell marker M-cadherin (59.2±22.2% increase. Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase, those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD.

  9. Attenuation of the pressor response to exogenous angiotensin by angiotensin receptor blockers and benazepril hydrochloride in clinically normal cats.

    Science.gov (United States)

    Jenkins, Tiffany L; Coleman, Amanda E; Schmiedt, Chad W; Brown, Scott A

    2015-09-01

    To compare the attenuation of the angiotensin I-induced blood pressure response by once-daily oral administration of various doses of angiotensin receptor blockers (irbesartan, telmisartan, and losartan), benazepril hydrochloride, or lactose monohydrate (placebo) for 8 days in clinically normal cats. 6 healthy cats (approx 17 months old) with surgically implanted arterial telemetric blood pressure-measuring catheters. Cats were administered orally the placebo or each of the drug treatments (benazepril [2.5 mg/cat], irbesartan [6 and 10 mg/kg], telmisartan [0.5, 1, and 3 mg/kg], and losartan [2.5 mg/kg]) once daily for 8 days in a crossover study. Approximately 90 minutes after capsule administration on day 8, each cat was anesthetized and arterial blood pressure measurements were recorded before and after IV administration of each of 4 boluses of angiotensin I (20, 100, 500, and 1,000 ng/kg). This protocol was repeated 24 hours after benazepril treatment and telmisartan (3 mg/kg) treatment. Differences in the angiotensin I-induced change in systolic arterial blood pressure (ΔSBP) among treatments were determined. At 90 minutes after capsule administration, only losartan did not significantly reduce ΔSBP in response to the 3 higher angiotensin doses, compared with placebo. Among drug treatments, telmisartan (3 mg/kg dosage) attenuated ΔSBP to a significantly greater degree than benazepril and all other treatments. At 24 hours, telmisartan was more effective than benazepril (mean ± SEM ΔSBP, 15.7 ± 1.9 mm Hg vs 55.9 ± 12.42 mm Hg, respectively). Results indicated that telmisartan administration may have advantages over benazepril administration for cats with renal or cardiovascular disease.

  10. Association between angiotensin II receptor gene polymorphism and serum angiotensin converting enzyme (SACE) activity in patients with sarcoidosis.

    Science.gov (United States)

    Takemoto, Y; Sakatani, M; Takami, S; Tachibana, T; Higaki, J; Ogihara, T; Miki, T; Katsuya, T; Tsuchiyama, T; Yoshida, A; Yu, H; Tanio, Y; Ueda, E

    1998-06-01

    Serum angiotensin converting enzyme (SACE) is considered to reflect disease activity in sarcoidosis. SACE activity is increased in many patients with active sarcoid lesions. The mechanism for the increased SACE activity in this disease has not been clarified. ACE insertion/deletion (I/D) gene polymorphism has been reported to have an association with SACE levels in sarcoidosis, but no evidence of an association between angiotensin II receptor gene polymorphism and SACE in this disease has been found. A study of the association of angiotensin II receptor gene polymorphisms with sarcoidosis was therefore undertaken. ACE (I/D), angiotensin II type 1 receptor (AGTR1), and angiotensin II type 2 receptor (AGTR2) gene polymorphisms were investigated by polymerase chain reaction (PCR) and SACE levels were measured in three groups of patients: those with sarcoidosis or tuberculosis and normal controls. There was no difference in allele frequency of AGTR1 and AGTR2 polymorphism among the three groups. Neither AGTR1 nor AGTR2 polymorphisms were associated with sarcoidosis. SACE activity was higher in patients with sarcoidosis with the AGTR1 A/C genotype than in others. However, this tendency was not detected in patients with tuberculosis. The AGTR1 allele C is associated with high activity of SACE in patients with sarcoidosis. It is another predisposing factor for high levels of SACE in patients with sarcoidosis and is considered to be an independent factor from the ACE D allele for high levels of SACE in sarcoidosis. This fact could be one of the explanations for the increased SACE activity in sarcoidosis.

  11. Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs.

    Science.gov (United States)

    Gonzalez-Vicente, Agustin; Saikumar, Jagannath H; Massey, Katherine J; Hong, Nancy J; Dominici, Fernando P; Carretero, Oscar A; Garvin, Jeffrey L

    2016-02-01

    Angiotensin II (Ang II) causes nitric oxide synthase (NOS) to become a source of superoxide (O2 (-)) via a protein kinase C (PKC)-dependent process in endothelial cells. Ang II stimulates both NO and O2 (-) production in thick ascending limbs. We hypothesized that Ang II causes O2 (-) production by NOS in thick ascending limbs via a PKC-dependent mechanism. NO production was measured in isolated rat thick ascending limbs using DAF-FM, whereas O2 (-) was measured in thick ascending limb suspensions using the lucigenin assay. Consistent stimulation of NO was observed with 1 nmol/L Ang II (P thick ascending limbs via a PKC- and NADPH oxidase-dependent process; and (2) the effect of Ang II is not due to limited substrate. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  12. Aktivitas Inhibitor Enzim Pengubah Angiotensin (ACE dan Antioksidan Peptida Kolagen dari Teripang Gama (Stichopus variegatus

    Directory of Open Access Journals (Sweden)

    M. Habbib Khirzin

    2015-05-01

    Full Text Available Teripang merupakan salah satu echinodermata yang memiliki kandungan protein tinggi dan sekitar 70% dari proteinnya merupakan kolagen. Tujuan penelitian ini adalah untuk mengetahui aktivitas inhibitor Angiotensin Converting Enzyme (ACE dan antioksidan dari peptida kolagen teripang Gama (Stichopus variegatus. Ekstraksi kolagen dilakukan menggunakan asam asetat 0,5 M. Peptida kolagen diperoleh melalui hidrolisis kolagen menggunakan enzim pepsin dengan konsentrasi 0,1 U/g kolagen, selama 0; 30; 60; 90; 120; 180; dan 240 menit. Aktivitas inhibitor ACE dan antioksidan peptida kolagen diuji dengan metode spektroskopi. Kolagen yang dihasilkan memiliki rendemen 16,40% dengan berat molekul 130,33 kDa. Aktivitas inhibitor ACE tertinggi dihasilkan dari proses hidrolisis selama 180 menit dengan penghambatan sebesar 82,31%, sedangkan aktivitas antioksidan tertinggi dihasilkan oleh peptida kolagen dari hidrolisis kolagen selama 120 menit dengan nilai IC50 1,9 mg/ml.

  13. Role of the inhibitors of angiotensin renin system on the DNA integrity of irradiated spermatozoids

    International Nuclear Information System (INIS)

    Spadella, Maria A.; Mansano, Naira S.; Schwarz, Franciele C.; Viani, Gustavo A.; Chies, Agnaldo B.

    2016-01-01

    Radiation action in the testes can significantly affect the reproductive capacity due to oxidative stress generated; phenomenon in which there is evidence of involvement of the Renin Angiotensin System (RAS). This study evaluated the role of AT1 receptor inhibitors, in mitigating the radioinduced DNA damage sperm from semen samples left vas deferens. Male Wistar rats were divided into six experimental groups: Control, 5Gy, Telmisartan (12mg/kg/day) and Losartan (34mg/kg/2x/day), 5 Gy + Telmisartan and 5 Gy + Losartan. The results showed increase in the percentage of sperm with fragmented DNA in irradiated groups when compared to controls, which was not reversed in the irradiated and treated groups. The radiation of 5Gy (single dose) affected the DNA-protein complex of the sperm and the treatments did not influence in reversing this damage, considering the experimental protocol used. (author)

  14. Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial

    DEFF Research Database (Denmark)

    NN, NN; Yusuf, S; Teo, K

    2008-01-01

    BACKGROUND: Angiotensin-converting enzyme (ACE) inhibitors reduce major cardiovascular events, but are not tolerated by about 20% of patients. We therefore assessed whether the angiotensin-receptor blocker telmisartan would be effective in patients intolerant to ACE inhibitors with cardiovascular...

  15. Angiotensin II stimulates basolateral 50-pS K channels in the thick ascending limb.

    Science.gov (United States)

    Wang, Mingxiao; Luan, Haiyan; Wu, Peng; Fan, Lili; Wang, Lijun; Duan, Xinpeng; Zhang, Dandan; Wang, Wen-Hui; Gu, Ruimin

    2014-03-01

    We used the patch-clamp technique to examine the effect of angiotensin II (ANG II) on the basolateral K channels in the thick ascending limb (TAL) of the rat kidney. Application of ANG II increased the channel activity and the current amplitude of the basolateral 50-pS K channel. The stimulatory effect of ANG II on the K channels was completely abolished by losartan, an inhibitor of type 1 angiotensin receptor (AT1R), but not by PD123319, an AT2R antagonist. Moreover, inhibition of phospholipase C (PLC) and protein kinase C (PKC) also abrogated the stimulatory effect of ANG II on the basolateral K channels in the TAL. This suggests that the stimulatory effect of ANG II on the K channels was induced by activating PLC and PKC pathways. Western blotting demonstrated that ANG II increased the phosphorylation of c-Src at tyrosine residue 416, an indication of c-Src activation. This effect was mimicked by PKC stimulator but abolished by calphostin C. Moreover, inhibition of NADPH oxidase (NOX) also blocked the effect of ANG II on c-Src tyrosine phosphorylation. The role of Src-family protein tyrosine kinase (SFK) in mediating the effect of ANG II on the basolateral K channel was further suggested by the experiments in which inhibition of SFK abrogated the stimulatory effect of ANG II on the basolateral 50-pS K channel. We conclude that ANG II increases basolateral 50-pS K channel activity via AT1R and that activation of AT1R stimulates SFK by a PLC-PKC-NOX-dependent mechanism.

  16. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    Science.gov (United States)

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  17. Angiotensin receptors and angiotensin I-converting enzyme in rat intestine

    International Nuclear Information System (INIS)

    Duggan, K.A.; Mendelsohn, F.A.; Levens, N.R.

    1989-01-01

    The purpose of this study was to map the distribution of angiotensin II (ANG II) receptors and ANG I-converting enzyme (ACE) in rat intestine. ANG II binding sites were visualized by in vitro autoradiography using iodinated [Sar1, Ile8]ANG II. The distribution of ACE was mapped using an iodinated derivative of lisinopril. Male Sprague-Dawley rats were killed and the interior of the whole intestine washed with ice-cold saline. Segments of duodenum, jejunum, ileum, and colon were quickly frozen in a mixture of isopentane and dry ice. Twenty-micron frozen sections were thaw-mounted onto gelatin-coated slides, incubated with either ligand, and exposed to X-ray film. After exposure and subsequent development, the films were quantitated by computerized densitometry. ANG II receptors were most dense in the colon, followed by the ileum, duodenum, and jejunum. Within each segment of intestine, specific ANG II binding sites were localized exclusively to the muscularis. In contrast, ACE was present in both the mucosa and the muscularis. The colocalization of ANG II receptors and ACE may suggest a role for locally generated ANG II in the control of intestinal function. The luminal orientation of ACE in the mucosa of the small intestine may suggest that at this site ACE serves primarily to hydrolyze dietary peptides

  18. Safflor yellow B suppresses angiotensin II-mediated human umbilical vein cell injury via regulation of Bcl-2/p22phox expression

    International Nuclear Information System (INIS)

    Wang, Chaoyun; He, Yanhao; Yang, Ming; Sun, Hongliu; Zhang, Shuping; Wang, Chunhua

    2013-01-01

    Intracellular reactive oxygen species (ROS) are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Angiotensin II (Ang II) can cause endothelial dysfunction by promoting intracellular ROS generation. Safflor yellow B (SYB) effectively inhibits ROS generation by upregulating Bcl-2 expression. In this study, we examined the effects of SYB on Ang II-induced injury to human umbilical vein endothelial cells (HUVECs), and elucidated the roles of NADPH oxidase and Bcl-2. We treated cultured HUVECs with Ang II, SYB, and Bcl-2 siRNA, and determined NADPH oxidase activity and ROS levels. Furthermore, cellular and mitochondrial physiological states were evaluated, and the expression levels of target proteins were analyzed. Ang II significantly enhanced intracellular ROS levels, caused mitochondrial membrane dysfunction, and decreased cell viability, leading to apoptosis. This was associated with increased expression of AT1R and p22 phox , increased NADPH oxidase activity, and an increased ratio of Bax/Bcl-2, leading to decreases in antioxidant enzyme activities, which were further strengthened after blocking Bcl-2. Compared to Ang II treatment alone, co-treatment with SYB significantly reversed HUVEC injury. Taken together, these results demonstrate that SYB could significantly protect endothelial cells from Ang II-induced cell damage, and that it does so by upregulating Bcl-2 expression and inhibiting ROS generation. - Highlights: • Angiotensin II depresses mitochondria physiological function. • Angiotensin II activates NADPH oxidase via up-regulating expresion of p22 phox . • Bcl-2 plays a pivotal role in improving mitochondria function and regulates ROS level. • Inhibitor of Bcl-2 promotes angiotensin II mediated HUVEC injury. • SYB attenuates angiotensin II mediated HUVEC injury via up regulating Bcl-2 expression

  19. Regulation of aortic extracellular matrix synthesis via noradrenergic system and angiotensin II in juvenile rats.

    Science.gov (United States)

    Dab, Houcine; Hachani, Rafik; Dhaouadi, Nedra; Sakly, Mohsen; Hodroj, Wassim; Randon, Jacques; Bricca, Giampiero; Kacem, Kamel

    2012-10-01

    Extracellular matrix (ECM) synthesis regulation by sympathetic nervous system (SNS) or angiotensin II (ANG II) was widely reported, but interaction between the two systems on ECM synthesis needs further investigation. We tested implication of SNS and ANG II on ECM synthesis in juvenile rat aorta. Sympathectomy with guanethidine (50 mg/kg, subcutaneous) and blockade of the ANG II AT1 receptors (AT1R) blocker with losartan (20 mg/kg/day in drinking water) were performed alone or in combination in rats. mRNA and protein synthesis of collagen and elastin were examined by Q-RT-PCR and immunoblotting. Collagen type I and III mRNA were increased respectively by 62 and 43% after sympathectomy and decreased respectively by 31 and 60% after AT1R blockade. Combined treatment increased collagen type III by 36% but not collagen type I. The same tendency of collagen expression was observed at mRNA and protein levels after the three treatments. mRNA and protein level of elastin was decreased respectively by 63 and 39% and increased by 158 and 15% after losartan treatment. Combined treatment abrogates changes induced by single treatments. The two systems act as antagonists on ECM expression in the aorta and combined inhibition of the two systems prevents imbalance of mRNA and protein level of collagen I and elastin induced by single treatment. Combined inhibition of the two systems prevents deposit or excessive reduction of ECM and can more prevent cardiovascular disorders.

  20. Angiotensin Type-2 Receptors Influence the Activity of Vasopressin Neurons in the Paraventricular Nucleus of the Hypothalamus in Male Mice.

    Science.gov (United States)

    de Kloet, Annette D; Pitra, Soledad; Wang, Lei; Hiller, Helmut; Pioquinto, David J; Smith, Justin A; Sumners, Colin; Stern, Javier E; Krause, Eric G

    2016-08-01

    It is known that angiotensin-II acts at its type-1 receptor to stimulate vasopressin (AVP) secretion, which may contribute to angiotensin-II-induced hypertension. Less well known is the impact of angiotensin type-2 receptor (AT2R) activation on these processes. Studies conducted in a transgenic AT2R enhanced green fluorescent protein reporter mouse revealed that although AT2R are not themselves localized to AVP neurons within the paraventricular nucleus of the hypothalamus (PVN), they are localized to neurons that extend processes into the PVN. In the present set of studies, we set out to characterize the origin, phenotype, and function of nerve terminals within the PVN that arise from AT2R-enhanced green fluorescent protein-positive neurons and synapse onto AVP neurons. Initial experiments combined genetic and neuroanatomical techniques to determine that γ-aminobutyric acid (GABA)ergic neurons derived from the peri-PVN area containing AT2R make appositions onto AVP neurons within the PVN, thereby positioning AT2R to negatively regulate neuroendocrine secretion. Subsequent patch-clamp electrophysiological experiments revealed that selective activation of AT2R in the peri-PVN area using compound 21 facilitates inhibitory (ie, GABAergic) neurotransmission and leads to reduced activity of AVP neurons within the PVN. Final experiments determined the functional impact of AT2R activation by testing the effects of compound 21 on plasma AVP levels. Collectively, these experiments revealed that AT2R expressing neurons make GABAergic synapses onto AVP neurons that inhibit AVP neuronal activity and suppress baseline systemic AVP levels. These findings have direct implications in the targeting of AT2R for disorders of AVP secretion and also for the alleviation of high blood pressure.

  1. Local Bone Marrow Renin-Angiotensin System and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Yavuz Beyazit

    2011-01-01

    Full Text Available Local hematopoietic bone marrow (BM renin-angiotensin system (RAS affects the growth, production, proliferation differentiation, and function of hematopoietic cells. Angiotensin II (Ang II, the dominant effector peptide of the RAS, regulates cellular growth in a wide variety of tissues in pathobiological states. RAS, especially Ang II and Ang II type 1 receptor (AT1R, has considerable proinflammatory and proatherogenic effects on the vessel wall, causing progression of atherosclerosis. Recent investigations, by analyzing several BM chimeric mice whose BM cells were positive or negative for AT1R, disclosed that AT1R in BM cells participates in the pathogenesis of atherosclerosis. Therefore, AT1R blocking not only in vascular cells but also in the BM could be an important therapeutic approach to prevent atherosclerosis. The aim of this paper is to review the function of local BM RAS in the pathogenesis of atherosclerosis.

  2. [Arteriosclerosis obliterans. Treatment with angiotensin-converting enzyme inhibitors].

    Science.gov (United States)

    Orea, A; Valdés, R; Niebla, L; Rivas, R; Camacho, B

    1990-01-01

    We compare the effects of two of the main angiotensin convertase enzyme inhibitors, captopril and enalapril, aiming to evaluate their effects in the arterial circulation performance, micro-circulation, and changes in regional blood flow, assuming their property of lowering the angiotensin II blood levels, a very strong peripheral vasoconstrictor. We studied 22 patients: all of them with hypertension and/or skin ulcerations, dropping out those who had venous. They were evaluated periodically, clinically and with photoelectric plethysmography of lower extremities. To interpret the traces we designed an ideogram which gathered the plethysmographic behavior before and after the treatment. Nearly 80% showed considerable improvement in pain, functional capacity and plethysmographic traces patterns. healing of the ulcerations was achieved in all case. We propose some hypothesis to explain the good effect that we have observed.

  3. Angiotensin-converting enzyme inhibition in diabetic nephropathy

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, P; Hommel, E

    1995-01-01

    The aim of our prospective study was to evaluate putative progression promoters, kidney function, and prognosis during long-term treatment with angiotensin-converting enzyme inhibition in insulin-dependent diabetes mellitus patients suffering from diabetic nephropathy. Eighteen consecutive......, albuminuria (geometric mean +/- antilog SE) 982 +/- 1.2 micrograms/min, and GFR 98 +/- 5 mL/min/1.73 m2. Angiotensin-converting enzyme inhibition induced a significant reduction during the whole treatment period of blood pressure (137/85 +/- 3/1 mm Hg; P ....01), and the rate of decline in GFR was 4.4 +/- 0.7 mL/min/yr, in contrast to previous reports of 10 to 14 mL/min/yr (natural history). Univariate analysis revealed a significant correlation between the rate of decline in GFR and mean arterial blood pressure (r = 0.58, P = 0.01), albuminuria (r = 0.67, P

  4. Atrial overexpression of angiotensin-converting enzyme 2 improves the canine rapid atrial pacing-induced structural and electrical remodeling. Fan, ACE2 improves atrial substrate remodeling.

    Science.gov (United States)

    Fan, Jinqi; Zou, Lili; Cui, Kun; Woo, Kamsang; Du, Huaan; Chen, Shaojie; Ling, Zhiyu; Zhang, Quanjun; Zhang, Bo; Lan, Xianbin; Su, Li; Zrenner, Bernhard; Yin, Yuehui

    2015-01-01

    The purpose of this study was to investigate whether atrial overexpression of angiotensin-converting enzyme 2 (ACE2) by homogeneous transmural atrial gene transfer can reverse atrial remodeling and its mechanisms in a canine atrial-pacing model. Twenty-eight mongrel dogs were randomly divided into four groups: Sham-operated, AF-control, gene therapy with adenovirus-enhanced green fluorescent protein (Ad-EGFP) and gene therapy with Ad-ACE2 (Ad-ACE2) (n = 7 per subgroup). AF was induced in all dogs except the Sham-operated group by rapid atrial pacing at 450 beats/min for 2 weeks. Ad-EGFP and Ad-ACE2 group then received epicardial gene painting. Three weeks after gene transfer, all animals except the Sham group underwent rapid atrial pacing for another 3 weeks and then invasive electrophysiological, histological and molecular studies. The Ad-ACE2 group showed an increased ACE2 and Angiotensin-(1-7) expression, and decreased Angiotensin II expression in comparison with Ad-EGFP and AF-control group. ACE2 overexpression attenuated rapid atrial pacing-induced increase in activated extracellular signal-regulated kinases and mitogen-activated protein kinases (MAPKs) levels, and decrease in MAPK phosphatase 1(MKP-1) level, resulting in attenuation of atrial fibrosis collagen protein markers and transforming growth factor-β1. Additionally, ACE2 overexpression also modulated the tachypacing-induced up-regulation of connexin 40, down-regulation of connexin 43 and Kv4.2, and significantly decreased the inducibility and duration of AF. ACE2 overexpression could shift the renin-angiotensin system balance towards the protective axis, attenuate cardiac fibrosis remodeling associated with up-regulation of MKP-1 and reduction of MAPKs activities, modulate tachypacing-induced ion channels and connexin remodeling, and subsequently reduce the inducibility and duration of AF.

  5. The importance of the renin-angiotensin system in normal cardiovascular homeostasis

    Science.gov (United States)

    Haber, E.

    1975-01-01

    Studies were carried out on adult mongrel dogs (20 to 30 kilograms) to investigate the importance of the renin-angiotensin system. Results indicate that the renin-angiotensin system plays a major role in the maintenance of circulatory homeostasis when extracellular fluid volume is depleted. It was also found that angiotensin II concentration, in addition to renal perfusion pressure, is a factor in the regulation of renin release.

  6. Mass-spectrometric identification of a novel angiotensin peptide in human plasma

    DEFF Research Database (Denmark)

    Jankowski, Vera; Vanholder, Raymond; van der Giet, Markus

    2007-01-01

    Angiotensin peptides play a central role in cardiovascular physiology and pathology. Among these peptides, angiotensin II (Ang II) has been investigated most intensively. However, further angiotensin peptides such as Ang 1-7, Ang III, and Ang IV also contribute to vascular regulation, and may eli...... elicit additional, different, or even opposite effects to Ang II. Here, we describe a novel Ang II-related, strong vasoconstrictive substance in plasma from healthy humans and end-stage renal failure patients....

  7. Dipeptidyl Peptidase IV in Angiotensin-Converting Enzyme Inhibitor–Associated Angioedema

    OpenAIRE

    Byrd, James Brian; Touzin, Karine; Sile, Saba; Gainer, James V.; Yu, Chang; Nadeau, John; Adam, Albert; Brown, Nancy J.

    2007-01-01

    Angioedema is a potentially life-threatening adverse effect of angiotensin-converting enzyme inhibitors. Bradykinin and substance P, substrates of angiotensin-converting enzyme, increase vascular permeability and cause tissue edema in animals. Studies indicate that amino-terminal degradation of these peptides, by aminopeptidase P and dipeptidyl peptidase IV, may be impaired in individuals with angiotensin-converting enzyme inhibitor–associated angioedema. This case-control study tested the hy...

  8. Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    2008-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin–angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin–angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin–angiotensin system in Sprague–Dawley rats was fixed by chronic angiotensin II infusion (40 ng/ min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0·1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0·12 ± 0·03 and 0·15 ± 0·03 μg/h per liter, 126 ± 5 and 130 ± 5 ng/l respectively) (means ± s.e.m.). Despite stabilization of the circulating renin–angiotensin system, thyroid hormone induced cardiac hypertrophy (5·0 ± 0·5 vs 3·5 ± 0·1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74 ± 2 vs 48 ± 2%, 6·5 ± 0·8 vs 3·8 ± 0·4 ng/h per g, 231 ± 30 vs 149 ± 2 pg/g respectively). These results indicate that the local renin–angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy. PMID:9854175

  9. Local renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Miyashita, Y; Hayashi, M; Saruta, T

    1999-01-01

    We have reported previously that thyroid hormone activates the circulating and tissue renin-angiotensin systems without involving the sympathetic nervous system, which contributes to cardiac hypertrophy in hyperthyroidism. This study examined whether the circulating or tissue renin-angiotensin system plays the principal role in hyperthyroidism-induced cardiac hypertrophy. The circulating renin-angiotensin system in Sprague-Dawley rats was fixed by chronic angiotensin II infusion (40 ng/min, 28 days) via mini-osmotic pumps. Daily i.p. injection of thyroxine (0.1 mg/kg per day, 28 days) was used to mimic hyperthyroidism. Serum free tri-iodothyronine, plasma renin activity, plasma angiotensin II, cardiac renin and cardiac angiotensin II were measured with RIAs. The cardiac expression of renin mRNA was evaluated by semiquantitative reverse transcriptase-polymerase chain reaction. Plasma renin activity and plasma angiotensin II were kept constant in the angiotensin II and angiotensin II+thyroxine groups (0.12+/-0.03 and 0.15+/-0.03 microgram/h per liter, 126+/-5 and 130+/-5 ng/l respectively) (means+/-s.e.m.). Despite stabilization of the circulating renin-angiotensin system, thyroid hormone induced cardiac hypertrophy (5.0+/-0.5 vs 3.5+/-0.1 mg/g) in conjunction with the increases in cardiac expression of renin mRNA, cardiac renin and cardiac angiotensin II (74+/-2 vs 48+/-2%, 6.5+/-0.8 vs 3.8+/-0.4 ng/h per g, 231+/-30 vs 149+/-2 pg/g respectively). These results indicate that the local renin-angiotensin system plays the primary role in the development of hyperthyroidism-induced cardiac hypertrophy.

  10. Elevated serum angiotensin converting enzyme levels in metastatic ovarian dysgerminoma.

    LENUS (Irish Health Repository)

    Cotter, T P

    2012-02-03

    A case of a 32-year-old XY genotype female is described, presenting with mediastinal and abdominal lymphadenopathy and associated with an elevated serum angiotensin I converting enzyme (SACE) level. Lymph node histology showed a malignant dysgerminoma of ovarian origin. Combined chemotherapy led to a radiological regression of the lymphadenopathy and coincided with a decrease in SACE concentration. The authors suggest that SACE may be a marker for disseminated germinoma tumours and may be useful for monitoring treatment.

  11. The renin-angiotensin system and aging in the kidney

    OpenAIRE

    Yoon, Hye Eun; Choi, Bum Soon

    2014-01-01

    Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and function...

  12. TRPC6 enhances angiotensin II-induced albuminuria.

    LENUS (Irish Health Repository)

    Eckel, Jason

    2011-03-01

    Mutations in the canonical transient receptor potential cation channel 6 (TRPC6) are responsible for familial forms of adult onset focal segmental glomerulosclerosis (FSGS). The mechanisms by which TRPC6 mutations cause kidney disease are not well understood. We used TRPC6-deficient mice to examine the function of TRPC6 in the kidney. We found that adult TRPC6-deficient mice had BP and albumin excretion rates similar to wild-type animals. Glomerular histomorphology revealed no abnormalities on both light and electron microscopy. To determine whether the absence of TRPC6 would alter susceptibility to hypertension and renal injury, we infused mice with angiotensin II continuously for 28 days. Although both groups developed similar levels of hypertension, TRPC6-deficient mice had significantly less albuminuria, especially during the early phase of the infusion; this suggested that TRPC6 adversely influences the glomerular filter. We used whole-cell patch-clamp recording to measure cell-membrane currents in primary cultures of podocytes from both wild-type and TRPC6-deficient mice. In podocytes from wild-type mice, angiotensin II and a direct activator of TRPC6 both augmented cell-membrane currents; TRPC6 deficiency abrogated these increases in current magnitude. Our findings suggest that TRPC6 promotes albuminuria, perhaps by promoting angiotensin II-dependent increases in Ca(2+), suggesting that TRPC6 blockade may be therapeutically beneficial in proteinuric kidney disease.

  13. Reappraisal of role of angiotensin receptor blockers in cardiovascular protection

    Directory of Open Access Journals (Sweden)

    Ram CV

    2011-05-01

    Full Text Available C Venkata S RamTexas Blood Pressure Institute, Clinical Research Institute of Dallas Nephrology Associates; and Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USAAbstract: Angiotensin-converting enzyme inhibitors (ACEIs and angiotensin receptor blockers (ARBs have shown cardioprotective and renoprotective properties. These agents are recommended as first-line therapy for the treatment of hypertension and the reduction of cardiovascular risk. Early studies pointed to the cardioprotective and renoprotective effects of ARBs in high-risk patients. The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET established the clinical equivalence of the cardioprotective and renoprotective effects of telmisartan and ramipril, but did not find an added benefit of the combination over ramipril alone. Similar findings were observed in the Telmisartan Randomized AssessmeNt Study in aCE INtolerant subjects with cardiovascular Disease (TRANSCEND trial conducted in ACEI-intolerant patients. In ONTARGET, telmisartan had a better tolerability profile with similar renoprotective properties compared with ramipril, suggesting a potential clinical benefit over ramipril. The recently completed Olmesartan Reducing Incidence of Endstage Renal Disease in Diabetic Nephropathy Trial (ORIENT and Olmesartan and Calcium Antagonists Randomized (OSCAR studies will further define the role of ARBs in cardioprotection and renoprotection for high-risk patients.Keywords: angiotensin receptor blockers, hypertension, outcomes, clinical trials

  14. Angiotensin receptors in Dupuytren's disease: a target for pharmacological treatment?

    Science.gov (United States)

    Stephen, Christopher; Touil, Leila; Vaiude, Partha; Singh, Jaipaul; McKirdy, Stuart

    2018-02-01

    Attempts at the pharmacological treatment of Dupuytren's disease have so far been unsuccessful, and the disease is not yet fully understood on a cellular level. The Renin-Angiotensin System has long been understood to play a circulating hormonal role. However, there is much evidence showing Angiotensin II to play a local role in wound healing and fibrosis, with ACE inhibitors being widely used as an anti-fibrotic agent in renal and cardiac disease. This study was designed to investigate the presence of Angiotensin II receptors 1 (AT1) and 2 (AT2) in Dupuytren's tissue to form a basis for further study into the pharmacological treatment of this condition. Tissue was harvested from 11 patients undergoing surgery for Dupuytren's disease. Each specimen was processed into frozen sections and immunostaining was employed to identify AT1 and AT2 receptors. Immunostaining for AT1 receptors was mildly positive in one patient and negative in all the remaining patients. However, all specimens stained extensively for AT2 receptors. This suggests that the expression of AT2 receptors is more prominent than AT1 receptors in Dupuytren's disease. These findings have opened a new avenue for future research involving ACE inhibitors, AT2 agonists, and AT2 antagonists in Dupuytren's disease.

  15. The renin-angiotensin system in kidney development

    DEFF Research Database (Denmark)

    Jensen, B L; Stubbe, J; Madsen, K

    2004-01-01

    Recent data from studies in rodents with targeted gene disruption and pharmacological antagonists have shown that the renin-angiotensin-aldosterone system (RAAS) and cyclooxygenase type-2 (COX-2) are necessary for late stages of kidney development. The present review summarizes data on the develo......Recent data from studies in rodents with targeted gene disruption and pharmacological antagonists have shown that the renin-angiotensin-aldosterone system (RAAS) and cyclooxygenase type-2 (COX-2) are necessary for late stages of kidney development. The present review summarizes data...... on the developmental changes of RAAS and COX-2 and the pathways by which they are activated; their possible interplay and the mechanisms by which they affect kidney development. Intrarenal and circulating renin and angiotensin II (ANG II) are stimulated at birth in most mammals. In rats, renin and ANG II stay...... glucocorticoid concentration and by a low NaCl intake. Studies with selective inhibitors of COX-2 and COX-2 null mice show that COX-2 activity stimulates renin secretion from JG-cells during postnatal kidney development and that lack of COX-2 activity leads to pathological change in cortical architecture...

  16. Alternative pathways for angiotensin II generation in the cardiovascular system

    Directory of Open Access Journals (Sweden)

    C. Becari

    2011-09-01

    Full Text Available The classical renin-angiotensin system (RAS consists of enzymes and peptides that regulate blood pressure and electrolyte and fluid homeostasis. Angiotensin II (Ang II is one of the most important and extensively studied components of the RAS. The beneficial effects of angiotensin converting enzyme (ACE inhibitors in the treatment of hypertension and heart failure, among other diseases, are well known. However, it has been reported that patients chronically treated with effective doses of these inhibitors do not show suppression of Ang II formation, suggesting the involvement of pathways alternative to ACE in the generation of Ang II. Moreover, the finding that the concentration of Ang II is preserved in the kidney, heart and lungs of mice with an ACE deletion indicates the important role of alternative pathways under basal conditions to maintain the levels of Ang II. Our group has characterized the serine protease elastase-2 as an alternative pathway for Ang II generation from Ang I in rats. A role for elastase-2 in the cardiovascular system was suggested by studies performed in heart and conductance and resistance vessels of normotensive and spontaneously hypertensive rats. This mini-review will highlight the pharmacological aspects of the RAS, emphasizing the role of elastase-2, an alternative pathway for Ang II generation.

  17. Angiotensin Converting Enzyme Gene Insertion/Deletion Polymorphism in Migraine Patients

    Directory of Open Access Journals (Sweden)

    Belgin Alaşehirli

    2009-12-01

    Full Text Available OBJECTIVE: The beneficial effects of angiotensin converting enzyme inhibitor drugs on migraine attack frequency have been shown. We aimed to study the relationship between the angiotensin converting enzyme gene and migraine pathophysiology. METHODS: In the present study, to assess whether the angiotensin converting enzyme insertion/deletion (I/D gene polymorphisms have an effect on migraine attacks, we studied the angiotensin converting enzyme genotypes of 102 migraine patients (35 cases of migraine with aura and 67 of migraine without aura and 75 age-and sex-matched normal volunteers. Frequency and age of onset of migraine attacks were also assessed according to angiotensin converting enzyme genotypes. RESULTS: Patients with migraine with and without aura were comparable with each other and the control group with respect to angiotensin converting enzyme genotypes (respectively; p= 0.88 and p= 0.76, p= 0.624. We could not determine a relationship between angiotensin converting enzyme genotypes and attack frequency (p= 0.125, but cases with angiotensin converting enzyme-II genotype showed a significantly younger age for onset of migraine attacks in comparison with the I/D genotype patients (p= 0.021. CONCLUSION: We believe that further angiotensin converting enzyme gene studies are warranted in younger age groups of patients with migraine and also in different populations

  18. Renin-angiotensin system antagonists, glomerular filtration rate and blood pressure

    Directory of Open Access Journals (Sweden)

    D.D. Ivanov

    2018-02-01

    Full Text Available The article deals with the mModern data on the influence of renin-angiotensin system blockers on the glomerular filtration rate, the level of arterial pressure and the outcome of chronic kidney disease. The strategy of  rennin-angiotensine blockade is offered to be changed depending on the criteria va­lues of glomerular filtration rate: a combination of inhibitors of angiotensin-converting enzyme + angiotensin receptors blo­ckers, monotherapy and drug withdrawal in glomerular filtration rate under 15–30 ml/min/m2. The formula BRIMONEL for treatment of chronic kidney disease is given.

  19. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat

    International Nuclear Information System (INIS)

    Rabinovitch, M.; Mullen, M.; Rosenberg, H.C.; Maruyama, K.; O'Brodovich, H.; Olley, P.M.

    1988-01-01

    Angiotensin II, a vasoconstrictor, has been previously demonstrated to produce a secondary vasodilatation due to release of prostaglandins. Because of this effect, the authors investigated whether infusion of exogenous angiotensin II via miniosmopumps in rats during a 1-wk exposure to chronic hypobaric hypoxia might prevent pulmonary hypertension, right ventricular hypertrophy, and vascular changes. They instrumented the rats with indwelling cardiovascular catheters and compared the hemodynamic and structural response in animals given angiotensin II, indomethacin in addition to angiotensin II (to block prostaglandin production), or saline with or without indomethacin. They then determine whether angiotensin II infusion also prevents acute hypoxic pulmonary vasoconstriction. They observed that exogenous angiotensin II infusion abolished the rise in pulmonary artery pressure, the right ventricular hypertrophy, and the vascular changes induced during chronic hypoxia in control saline-infused rats with or without indomethacin. The protective effects of angiotensin II was lost when indomethacin was given to block prostaglandin synthesis. During acute hypoxia, both antiotensin II and prostacyclin infusion similarly prevented the rise in pulmonary artery pressure observed in saline-infused rats and in rats given indomethacin or saralasin in addition to angiotensin II. Thus exogenous angiotensin II infusion prevents chronic hypoxic pulmonary hypertension, associated right ventricular hypertrophy, and vascular changes and blocks acute hypoxic pulmonary hypertension, and this is likely related to its ability to release vasodilator prostaglandins

  20. [Angiotensin converting enzyme: the antigenic properties of the domain, role in Alzheimer's disease and tumor progression].

    Science.gov (United States)

    Kugaevskaya, E V; Timoshenko, O S; Solovyeva, N I

    2015-01-01

    Angiotensin converting enzyme (ACE, EC 3.4.15.1) was discovered and characterized in the Laboratory of biochemistry and chemical pathology of proteins under the direction of academician V.N. Orekhovich, where its physiological function, associated with a key role in the regulation of the renin-angiotensin (RAS) and the kallikrein-kinin systems that control blood flow in the body and homeostasis was first deciphered. We carried out a search for structural differences between the two highly homologous domains (N- and C-domains) of somatic ACE (sACE); it was based on a comparative analysis of antigenic determinants (or B-epitopes) of both domains. The revealed epitopes were classified with variable and conserved regions and functionally important sites of the molecule ACE. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. These data indicate the existence of structural differences between the domains of sACE. We studied the role of the domains of ACE in the metabolism of human amyloid beta peptide (Ab) - the main component of senile plaques, found in the brains of patients with Alzheimer's disease (AD). Our results demonstrated that only N-domain ACE cleaved the Ab between residues R5-H6, while, the C-domain of ACE failed to hydrolyze this region. In addition, the effect of post-translational modifications of Ab on its hydrolysis by the ACE was investigated. We show that isomerization of residue D7, a common non-enzymatic age-related modification found in AD-associated species, does not reduce the affinity of the peptide to the N-domain of ACE, and conversely, it increases. According to our data, the role of ACE in the metabolism of Ab becomes more significant in the development of AD. RAS is involved in malignant transformation and tumor progression. RAS components, including ACE and angiotensin II receptors type 1 (AT1R) are expressed in various human tumors. We found a significant increase in the level of ACE activity

  1. Angiotensin-I Converting Enzyme (ACE Inhibitory and Anti-Oxidant Activities of Sea Cucumber (Actinopyga lecanora Hydrolysates

    Directory of Open Access Journals (Sweden)

    Raheleh Ghanbari

    2015-12-01

    Full Text Available In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8% after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH (56.00% and ferrous ion-chelating (FIC (59.00% methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.

  2. The Renal Protective Effect of Jiangya Tongluo Formula, through Regulation of Adrenomedullin and Angiotensin II, in Rats with Hypertensive Nephrosclerosis

    Directory of Open Access Journals (Sweden)

    Lin Han

    2015-01-01

    Full Text Available We investigated the effect of Jiangya Tongluo (JYTL formula on renal function in rats with hypertensive nephrosclerosis. A total of 21 spontaneously hypertensive rats (SHRs were randomized into 3 groups: valsartan (10 mg/kg/d valsartan, JYTL (14.2 g/kg/d JYTL, and a model group (5 mL/kg/d distilled water; Wistar Kyoto rats comprised the control group (n = 7, 5 mL/kg/d distilled water. Treatments were administered by gavage every day for 8 weeks. Blood pressure, 24-h urine protein, pathological changes in the kidney, serum creatinine, and blood urea nitrogen (BUN levels were estimated. The contents of adrenomedullin (ADM and angiotensin II (Ang II in both the kidney and plasma were evaluated. JYTL lowered BP, 24-h urine protein, serum creatinine, and BUN. ADM content in kidneys increased and negatively correlated with BP, while Ang II decreased and negatively correlated with ADM, but there was no statistically significant difference of plasma ADM between the model and the treatment groups. Possibly, activated intrarenal renin-angiotensin system (RAS plays an important role in hypertensive nephrosclerosis and the protective function of ADM via local paracrine. JYTL may upregulate endogenous ADM level in the kidneys and antagonize Ang II during vascular injury by dilating renal blood vessels.

  3. Pioglitazone Upregulates Angiotensin Converting Enzyme 2 Expression in Insulin-Sensitive Tissues in Rats with High-Fat Diet-Induced Nonalcoholic Steatohepatitis

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available Background and Aim. Thiazolidinediones (TZDs can improve hepatic steatosis in nonalcoholic steatohepatitis (NASH. Angiotensin (Ang II, the primary effector of renin-angiotensin system (RAS, plays vital roles in the development and progression of NASH. And some AngII-mediated effects can be regulated by TZDs. Angiotensin-converting enzyme (ACE 2, a new component of RAS, can degrade Ang II to attenuate its subsequent physiological actions. We aimed to evaluate the effects of TZDs on ACE2 expression in insulin-sensitive tissues in NASH rats. Methods. Forty rats were divided into the normal control, high-fat diet (HFD, pioglitazone control, and HFD plus pioglitazone groups. After 24 weeks of treatment, we evaluated changes in liver histology and tissue-specific ACE2 expression. Results. ACE2 gene and protein expression was significantly greater in liver and adipose tissue in the HFD group compared with normal control group, while was significantly reduced in skeletal muscle. Pioglitazone significantly reduced the degree of hepatic steatosis compared with the HFD group. Pioglitazone significantly increased ACE2 protein expression in liver, adipose tissue, and skeletal muscle compared with the HFD group. Conclusions. Pioglitazone improves hepatic steatosis in the rats with HFD-induced NASH and upregulates ACE2 expression in insulin-sensitive tissues.

  4. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    Science.gov (United States)

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  5. Local angiotensin II promotes adipogenic differentiation of human adipose tissue mesenchymal stem cells through type 2 angiotensin receptor

    Directory of Open Access Journals (Sweden)

    Veronika Y. Sysoeva

    2017-12-01

    Full Text Available Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS. Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs. We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII receptor type 1 (AT1. Using the analysis of Ca2+ mobilization in single cells we found that only 5.2 ± 2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2, which was responsible for increased adipose competency of this ADSC subpopulation.

  6. Regulation of angiotensin II-induced neuromodulation by MARCKS in brain neurons.

    Science.gov (United States)

    Lu, D; Yang, H; Lenox, R H; Raizada, M K

    1998-07-13

    Angiotensin II (Ang II) exerts chronic stimulatory actions on tyrosine hydroxylase (TH), dopamine beta-hydroxylase (DbetaH), and the norepinephrine transporter (NET), in part, by influencing the transcription of their genes. These neuromodulatory actions of Ang II involve Ras-Raf-MAP kinase signal transduction pathways (Lu, D., H. Yang, and M.K. Raizada. 1997. J. Cell Biol. 135:1609-1617). In this study, we present evidence to demonstrate participation of another signaling pathway in these neuronal actions of Ang II. It involves activation of protein kinase C (PKC)beta subtype and phosphorylation and redistribution of myristoylated alanine-rich C kinase substrate (MARCKS) in neurites. Ang II caused a dramatic redistribution of MARCKS from neuronal varicosities to neurites. This was accompanied by a time-dependent stimulation of its phosphorylation, that was mediated by the angiotensin type 1 receptor subtype (AT1). Incubation of neurons with PKCbeta subtype specific antisense oligonucleotide (AON) significantly attenuated both redistribution and phosphorylation of MARCKS. Furthermore, depletion of MARCKS by MARCKS-AON treatment of neurons resulted in a significant decrease in Ang II-stimulated accumulation of TH and DbetaH immunoreactivities and [3H]NE uptake activity in synaptosomes. In contrast, mRNA levels of TH, DbetaH, and NET were not influenced by MARKS-AON treatment. MARCKS pep148-165, which contains PKC phosphorylation sites, inhibited Ang II stimulation of MARCKS phosphorylation and reduced the amount of TH, DbetaH, and [3H]NE uptake in neuronal synaptosomes. These observations demonstrate that phosphorylation of MARCKS by PKCbeta and its redistribution from varicosities to neurites is important in Ang II-induced synaptic accumulation of TH, DbetaH, and NE. They suggest that a coordinated stimulation of transcription of TH, DbetaH, and NET, mediated by Ras-Raf-MAP kinase followed by their transport mediated by PKCbeta-MARCKS pathway are key in persistent

  7. Angiotensin II type 1a receptor-deficient mice develop angiotensin II-induced oxidative stress and DNA damage without blood pressure increase.

    Science.gov (United States)

    Zimnol, Anna; Amann, Kerstin; Mandel, Philipp; Hartmann, Christina; Schupp, Nicole

    2017-12-01

    Hypertensive patients have an increased risk of developing kidney cancer. We have shown in vivo that besides elevating blood pressure, angiotensin II causes DNA damage dose dependently. Here, the role of blood pressure in the formation of DNA damage is studied. Mice lacking one of the two murine angiotensin II type 1 receptor (AT1R) subtypes, AT1aR, were equipped with osmotic minipumps, delivering angiotensin II during 28 days. Parameters of oxidative stress and DNA damage of kidneys and hearts of AT1aR-knockout mice were compared with wild-type (C57BL/6) mice receiving angiotensin II, and additionally, with wild-type mice treated with candesartan, an antagonist of both AT1R subtypes. In wild-type mice, angiotensin II induced hypertension, reduced kidney function, and led to a significant formation of reactive oxygen species (ROS). Furthermore, genomic damage was markedly increased in this group. All these responses to angiotensin II could be attenuated by concurrent administration of candesartan. In AT1aR-deficient mice treated with angiotensin II, systolic pressure was not increased, and renal function was not affected. However, angiotensin II still led to an increase of ROS in kidneys and hearts of these animals. Additionally, genomic damage in the form of double-strand breaks was significantly induced in kidneys of AT1aR-deficient mice. Our results show that angiotensin II induced ROS production and DNA damage even without the presence of AT1aR and independently of blood pressure changes. Copyright © 2017 the American Physiological Society.

  8. Central administration of angiotensin IV rapidly enhances novel object recognition among mice.

    Science.gov (United States)

    Paris, Jason J; Eans, Shainnel O; Mizrachi, Elisa; Reilley, Kate J; Ganno, Michelle L; McLaughlin, Jay P

    2013-07-01

    Angiotensin IV (Val(1)-Tyr(2)-Ile(3)-His(4)-Pro(5)-Phe(6)) has demonstrated potential cognitive-enhancing effects. The present investigation assessed and characterized: (1) dose-dependency of angiotensin IV's cognitive enhancement in a C57BL/6J mouse model of novel object recognition, (2) the time-course for these effects, (3) the identity of residues in the hexapeptide important to these effects and (4) the necessity of actions at angiotensin IV receptors for procognitive activity. Assessment of C57BL/6J mice in a novel object recognition task demonstrated that prior administration of angiotensin IV (0.1, 1.0, or 10.0, but not 0.01 nmol, i.c.v.) significantly enhanced novel object recognition in a dose-dependent manner. These effects were time dependent, with improved novel object recognition observed when angiotensin IV (0.1 nmol, i.c.v.) was administered 10 or 20, but not 30 min prior to the onset of the novel object recognition testing. An alanine scan of the angiotensin IV peptide revealed that replacement of the Val(1), Ile(3), His(4), or Phe(6) residues with Ala attenuated peptide-induced improvements in novel object recognition, whereas Tyr(2) or Pro(5) replacement did not significantly affect performance. Administration of the angiotensin IV receptor antagonist, divalinal-Ang IV (20 nmol, i.c.v.), reduced (but did not abolish) novel object recognition; however, this antagonist completely blocked the procognitive effects of angiotensin IV (0.1 nmol, i.c.v.) in this task. Rotorod testing demonstrated no locomotor effects with any angiotensin IV or divalinal-Ang IV dose tested. These data demonstrate that angiotensin IV produces a rapid enhancement of associative learning and memory performance in a mouse model that was dependent on the angiotensin IV receptor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Preadmission use of renin-angiotensin blockers and rupture of abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Wemmelund, Holger; Høgh, Annette; Hundborg, Heidi H.

    2016-01-01

    PURPOSE: Rupture of abdominal aortic aneurysms (rAAA) is associated with high mortality. Use of angiotensin converting enzyme inhibitors (ACE-inhibitors) and angiotensin receptor blockers (ARBs) has been suggested to reduce the risk of rAAA. This nationwide, combined case-control and follow-up st...

  10. Evidence for Heterodimerization and Functional Interaction of the Angiotensin Type 2 Receptor and the Receptor MAS

    DEFF Research Database (Denmark)

    Leonhardt, Julia; Villela, Daniel C.; Teichmann, Anke

    2017-01-01

    The angiotensin type 2 receptor (AT2R) and the receptor MAS are receptors of the protective arm of the renin-angiotensin system. They mediate strikingly similar actions. Moreover, in various studies, AT2R antagonists blocked the effects of MAS agonists and vice versa. Such cross-inhibition may in...

  11. Angiotensin II promotes development of the renal microcirculation through AT1 receptors

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Marcussen, Niels; Pedersen, Michael

    2010-01-01

    Pharmacologic or genetic deletion of components of the renin-angiotensin system leads to postnatal kidney injury, but the roles of these components in kidney development are unknown. To test the hypothesis that angiotensin II supports angiogenesis during postnatal kidney development, we quantifie...

  12. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...

  13. Between-patient differences in the renal response to renin-angiotensin system intervention : clue to optimising renoprotective therapy?

    NARCIS (Netherlands)

    Laverman, GD; de Zeeuw, D; Navis, G

    2002-01-01

    Renin-angiotensin-aldosterone system (RAAS) blockade with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin II (Ang II), AT(1)-receptor blockers (ARB) is the cornerstone of renoprotective therapy. Still, the number of patients with end-stage renal disease is increasing worldwide,

  14. Renoprotective effects of angiotensin II receptor blockade in type 1 diabetic patients with diabetic nephropathy

    DEFF Research Database (Denmark)

    Andersen, S; Tarnow, L; Rossing, P

    2000-01-01

    BACKGROUND: Angiotensin I-converting enzyme (ACE) inhibitors reduce angiotensin II formation and induce bradykinin accumulation. Animal studies suggest that bradykinin may play a role for the effects of ACE inhibition on blood pressure and kidney function. Therefore, we compared the renal and hem...... inhibition is primarily caused by interference in the renin-angiotensin system. Our study suggest that losartan represents a valuable new drug in the treatment of hypertension and proteinuria in type 1 diabetic patients with diabetic nephropathy....... and hemodynamic effects of specific intervention in the renin-angiotensin system by blockade of the angiotensin II subtype-1 receptor to the effect of ACE inhibition. METHODS: A randomized, double-blind, cross-over trial was performed in 16 type 1 diabetic patients (10 men), age 42 +/- 2 years (mean +/- SEM...

  15. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    Science.gov (United States)

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  16. RENIN ANGIOTENSIN SYSTEM GENE POLYMORPHISMS IN CHILDREN WITH NEPHROTIC SYNDROM

    Directory of Open Access Journals (Sweden)

    Zh.P. Sharnova

    2006-01-01

    Full Text Available To investigate the role of the reninangiotensin system genes polymorphisms in develop and progression of nephrotic syndrom (NS in children we determined the genotypes of angiotensin converting enzyme (ACE, angiotensinogen (AGT and angiotensin ii receptor (ATII-R of 1 type in 80 russian children with ns including and 15 children with chronic renal failure (CRF. Genotype frequencies did not differ between patients with ns and controls (n = 165. The distribution of ace, AGT and ATII-R 1 type genotypes was similar among ns sub groups, such as focal segmental glomerulosclerosis (FSGS (n = 18, steroid-sensitive nephrotic syndrome (n = 32, nephrotic syndrome with hypertension and hemoturia (n = 22 and with control group. When ns subjects with CRF (n = 15 were compared with control, the prevalence of ace DD genotype was significantly higher (47% VS 21%; χ2 = 4,44; p < 0,05. Our results indicate that the DD genotype ace may be a factor of risk for the dеvеlopment of progressive renal impairment in the children with nephrotic syndrome. The analysis of treatment's effect with inhibitor of ace in groups patients with steroid resistant NS (SRNS demonstrated decreasing of renoprotective effect of this drugs in patients with id and dd genotypes com? Pared with ii genotype: the degree of blood pressure, proteinuria and the rate of glomerular filtration decrease was significantly lower (55,46 ± 9,25 VS 92,74 ± 25; р < 0,05 in these patients.Key words: nephrotic syndrom, chronic renal failure, polymorphism of genes, renin-angiotensin system.

  17. Renin angiotensin system and gender differences in dopaminergic degeneration

    Directory of Open Access Journals (Sweden)

    Rodriguez-Perez Ana I

    2011-08-01

    Full Text Available Abstract Background There are sex differences in dopaminergic degeneration. Men are approximately two times as likely as premenopausal women of the same age to develop Parkinson's disease (PD. It has been shown that the local renin angiotensin system (RAS plays a prominent role in sex differences in the development of chronic renal and cardiovascular diseases, and there is a local RAS in the substantia nigra and dopaminergic cell loss is enhanced by angiotensin via type 1 (AT1 receptors. Results In the present study, we observed that intrastriatal injection of 6-hydroxydopamine induced a marked loss of dopaminergic neurons in the substantia nigra of male rats, which was significantly higher than the loss induced in ovariectomized female rats given estrogen implants (i.e. rats with estrogen. However, the loss of dopaminergic neurons was significantly lower in male rats treated with the AT1 antagonist candesartan, and similar to that observed in female rats with estrogen. The involvement of the RAS in gender differences in dopaminergic degeneration was confirmed with AT1a-null mice lesioned with the dopaminergic neurotoxin MPTP. Significantly higher expression of AT1 receptors, angiotensin converting enzyme activity, and NADPH-oxidase complex activity, and much lower levels of AT2 receptors were observed in male rats than in female rats with estrogen. Conclusions The results suggest that brain RAS plays a major role in the increased risk of developing PD in men, and that manipulation of brain RAS may be an efficient approach for neuroprotective treatment of PD in men, without the feminizing effects of estrogen.

  18. The Angiotensin AT2 Receptor

    DEFF Research Database (Denmark)

    Unger, Thomas; Steckelings, Ulrike M.; Dzau, Victor J.

    2015-01-01

    Since its discovery, 25 years ago, the angiotensin AT2 receptor (AT2R) has puzzled the scientific community because of its distinct -localization, regulation, signaling pathways, and biological effects separating it clearly from the classical features of the renin...... programs that can counterbalance pathological processes and enable recovery from disease. The AT2R has thus mutated from an "-enigmatic" receptor to a significant member of the "protective arm" of the RAS. The recent development of novel, small molecule- and peptide-derived AT2

  19. Resveratrol inhibits the intracellular calcium increase and angiotensin/endothelin system activation induced by soluble uric acid in mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Albertoni, G.; Schor, N. [Divisão de Nefrologia, Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP (Brazil)

    2014-10-24

    Resveratrol (Resv) is natural polyphenol found in grapes. This study evaluated the protective effect of Resv against the effects of uric acid (UA) in immortalized human mesangial cells (ihMCs). ihMCs were preincubated with Resv (12.5 µM) for 1 h and treated with UA (10 mg/dL) for 6 or 12 h. The intracellular calcium concentration [Ca{sup 2+}]i was quantified by fluorescence using flow cytometry. Angiotensinogen (AGT) and pre-pro endothelin-1 (ppET-1) mRNA were assayed by quantitative real-time RT-PCR. Angiotensin II (AII) and endothelin-1 (ET-1) were assayed by ELISA. UA significantly increased [Ca{sup 2+}]i. Pre-incubation with Resv significantly reduced the change in [Ca{sup 2+}]i induced by UA. Incubation with UA for 6 or 12 h also increased AGT mRNA expression and AII protein synthesis. Resv blunted these increases in AGT mRNA expression and AII protein. Incubation with UA in the ihMCs increased ppET-1 expression and ET-1 protein synthesis at 6 and 12 h. When ihMCs were pre-incubated with Resv, UA had a significantly diminished effect on ppET-1 mRNA expression and ET-1 protein synthesis at 6 and 12 h, respectively. Our results suggested that UA triggers reactions including AII and ET-1 production in mesangial cells. The renin-angiotensin system may contribute to the pathogenesis of renal function and chronic kidney disease. Resv can minimize the impact of UA on AII, ET-1 and the increase of [Ca{sup 2+}]i in mesangial cells, suggesting that, at least in part, Resv can prevent the effects of soluble UA in mesangial cells.

  20. Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling.

    Science.gov (United States)

    Liu, Cun-Fei; Zhang, Jia; Shen, Kai; Gao, Ping-Jin; Wang, Hai-Ya; Jin, Xin; Meng, Chao; Fang, Ning-Yuan

    2015-04-01

    Vascular adventitia and adventitia‑derived reactive oxygen species (ROS) contribute to vascular remodeling following vascular injury. A previous ex vivo study in adventitial fibroblasts showed that catalase, one of most important anti‑oxide enzymes, was downregulated by angiotensin II (AngII). The aim of the present study was to investigate whether adventitial gene transfer of catalase affects AngII‑induced vascular remodeling in vivo. Adenoviruses co‑expressing catalase and enhanced green fluorescent protein (eGFP) or expressing eGFP only were applied to the adventitial surface of common carotid arteries of Sprague‑Dawley rats. Alzet minipumps administering AngII (0.75 mg/kg/day) were then implanted subcutaneously for 14 days. Systolic blood pressure and biological parameters of vascular remodeling were measured in each group. Adventitial fibroblasts were cultured and p38 mitogen‑activated protein kinase (MAPK) phosphorylation was measured using western blot analysis. The results showed that adventitial gene transfer of catalase had no effect on AngII‑induced systolic blood pressure elevation. However, catalase adenovirus transfection significantly inhibited AngII‑induced media hypertrophy compared with that of the control virus (Padventitial α‑smooth muscle actin expression. Furthermore, catalase transfection significantly inhibited the AngII‑induced increase in p38MAPK phosphorylation. In conclusion, the results of the present study demonstrated that adventitial gene transfer of catalase significantly attenuated AngII‑induced vascular remodeling in rats via inhibition of adventitial p38MAPK phosphorylation.

  1. Interaction between sympathetic nervous system and renin angiotensin system on MMPs expression in juvenile rat aorta.

    Science.gov (United States)

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2011-09-01

    The aim of our present study is to investigate the interaction between angiotensin II (ANG II) and sympathetic nervous system (SNS) on matrix metalloproteinase MMP-2 and MMP-9 expression and activity in juvenile rat aorta under normal conditions. Sympathectomy with guanethidine and blockade of the ANG II receptors (AT1R) by losartan were performed alone or in combination on new-born rats. mRNA, protein expression and activity of MMP-2 and MMP-9 were examined by Q-RT-PCR, immunoblotting and zymography, respectively. MMP-2 mRNA and protein amount were decreased after sympathectomy or AT1R blockade and an additive effect was observed after combined treatment. However, MMP-9 expression was reduced to the same level in the three treated groups. There were some detectable gelatinolytic activity of the MMPs in both control and treated rats. We concluded that ANG II stimulates directly and indirectly (via sympathostimulator pathway) the MMP-2 expression but seems unable to affect MMP-9 expression through direct pathway. Combined inhibition of SNS and ANG II were more efficient than a single inhibition in reducing MMP amounts in rat vessels.

  2. Effect of Jatropha curcas Peptide Fractions on the Angiotensin I-Converting Enzyme Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Maira R. Segura-Campos

    2013-01-01

    Full Text Available Hypertension is one of the most common worldwide diseases in humans. Angiotensin I-converting enzyme (ACE plays an important role in regulating blood pressure and hypertension. An evaluation was done on the effect of Alcalase hydrolysis of defatted Jatropha curcas kernel meal on ACE inhibitory activity in the resulting hydrolysate and its purified fractions. Alcalase exhibited broad specificity and produced a protein hydrolysate with a 21.35% degree of hydrolysis and 34.87% ACE inhibition. Ultrafiltration of the hydrolysate produced peptide fractions with increased biological activity (24.46–61.41%. Hydrophobic residues contributed substantially to the peptides’ inhibitory potency. The 5–10 and <1 kDa fractions were selected for further fractionation by gel filtration chromatography. ACE inhibitory activity (% ranged from 22.66 to 45.96% with the 5–10 kDa ultrafiltered fraction and from 36.91 to 55.83% with the <1 kDa ultrafiltered fraction. The highest ACE inhibitory activity was observed in F2 ( μg/mL from the 5–10 kDa fraction and F1 ( μg/mL from the <1 kDa fraction. ACE inhibitory fractions from Jatropha kernel have potential applications in alternative hypertension therapies, adding a new application for the Jatropha plant protein fraction and improving the financial viability and sustainability of a Jatropha-based biodiesel industry.

  3. Role of integrin-linked kinase in vascular smooth muscle cells: Regulation by statins and angiotensin II

    International Nuclear Information System (INIS)

    Friedrich, Erik B.; Clever, Yvonne P.; Wassmann, Sven; Werner, Nikos; Boehm, Michael; Nickenig, Georg

    2006-01-01

    Our goal was to characterize the role of integrin-linked kinase (ILK) in vascular smooth muscle cells (VSMC), which play a crucial role in atherogenesis. Transfection of VSMC with wild-type and dominant-negative ILK cDNA constructs revealed that ILK mediates migration and proliferation of VSMC but has no effect on VSMC survival. The pro-atherogenic mediator angiotensin II increases ILK protein expression and kinase activity while statin treatment down-regulates ILK in VSMC. Functionally, ILK is necessary for angiotensin II-mediated VSMC migration and proliferation. In VSMC transduced with dominant-negative ILK, statins mediate an additive inhibition of VSMC migration and proliferation, while transfection with wild-type ILK is sufficient to overcome the inhibitory effects of statin treatment on VSMC migration and proliferation. In vivo, ILK is expressed in VSMC of aortic sections from wild-type mice where it is down-regulated following statin treatment and up-regulated following induction of atherosclerosis in apoE-/- mice. These data identify ILK as a novel target in VSMC for anti-atherosclerotic therapy

  4. Relationship between Angiotensin Converting Enzyme, Apelin, and New-Onset Atrial Fibrillation after Off-Pump Coronary Artery Bypass Grafting

    Directory of Open Access Journals (Sweden)

    Shu Xu

    2017-01-01

    Full Text Available It has been shown that inflammation and oxidative stress are important factors in postoperative atrial fibrillation (POAF. Angiotensin converting enzyme (ACE and apelin have a close relationship with inflammation and oxidative stress. The effect of ACE and apelin on POAF after off-pump coronary artery bypass grafting (OPCABG remains a question. The concentrations of serum ACE, angiotensin II (Ang II, apelin, bradykinin (BK, malondialdehyde (MDA, and C reactive protein (CRP were measured in the perioperative period of OPCABG. The levels of serum ACE in the POAF group were higher than in the no POAF group both preoperatively and postoperatively. Apelin in the POAF group was lower than in the no POAF group. There was a correlation between serum ACE and apelin. Postoperatively, CRP and MDA in the POAF group were higher than in the no POAF group; however, there was no difference before the operation. Preoperative ACE and apelin were both significant and independent risk factors for POAF. In conclusion, the high ACE and low apelin preoperatively led to CRP and MDA being increased postoperatively, which was probably associated with POAF after OPCABG. Apelin may be a new predictor for POAF.

  5. Angiotensin II increases phosphodiesterase 5A expression in vascular smooth muscle cells: A mechanism by which angiotensin II antagonizes cGMP signaling

    Science.gov (United States)

    Kim, Dongsoo; Aizawa, Toru; Wei, Heng; Pi, Xinchun; Rybalkin, Sergei D.; Berk, Bradford C.; Yan, Chen

    2014-01-01

    Angiotensin II (Ang II) and nitric oxide (NO)/natriuretic peptide (NP) signaling pathways mutually regulate each other. Imbalance of Ang II and NO/NP has been implicated in the pathophysiology of many vascular diseases. cGMP functions as a key mediator in the interaction between Ang II and NO/NP. Cyclic nucleotide phosphodiesterase 5A (PDE5A) is important in modulating cGMP signaling by hydrolyzing cGMP in vascular smooth muscle cells (VSMC). Therefore, we examined whether Ang II negatively modulates intracellular cGMP signaling in VSMC by regulating PDE5A. Ang II rapidly and transiently increased PDE5A mRNA levels in rat aortic VSMC. Upregulation of PDE5A mRNA was associated with a time-dependent increase of both PDE5 protein expression and activity. Increased PDE5A mRNA level was transcription-dependent and mediated by the Ang II type 1 receptor. Ang II-mediated activation of extracellular signal-regulated kinases 1/2 (ERK1/2) was essential for Ang II-induced PDE5A upregulation. Pretreatment of VSMC with Ang II inhibited C-type NP (CNP) stimulated cGMP signaling, such as cGMP dependent protein kinase (PKG)-mediated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP). Ang II-mediated inhibition of PKG was blocked when PDE5 activity was decreased by selective PDE5 inhibitors, suggesting that upregulation of PDE5A expression is an important mechanism for Ang II to attenuate cGMP signaling. PDE5A may also play a critical role in the growth promoting effects of Ang II because inhibition of PDE5A activity significantly decreased Ang II-stimulated VSMC growth. These observations establish a new mechanism by which Ang II antagonizes cGMP signaling and stimulates VSMC growth. PMID:15623434

  6. Renin inhibitor aliskiren exerts beneficial effect on trabecular bone by regulating skeletal renin-angiotensin system and kallikrein-kinin system in ovariectomized mice.

    Science.gov (United States)

    Zhang, Y; Wang, L; Song, Y; Zhao, X; Wong, M S; Zhang, W

    2016-03-01

    The skeletal renin-angiotensin system contributes to the development of osteoporosis. The renin inhibitor aliskiren exhibited beneficial effects on trabecular bone of osteoporotic mice, and this action might be mediated through angiotensin and bradykinin receptor pathways. This study implies the potential application of renin inhibitor in the management for postmenopausal osteoporosis. The skeletal renin-angiotensin system plays key role in the pathological process of osteoporosis. The present study is designed to elucidate the effect of renin inhibitor aliskiren on trabecular bone and its potential action mechanism in ovariectomized (OVX) mice. The OVX mice were treated with low dose (5 mg/kg) or high dose (25 mg/kg) of aliskiren or its vehicle for 8 weeks. The bone turnover markers were measured by ELISA. The structural parameters of trabecular bone at lumbar vertebra (LV) and distal femoral metaphysis were measured by micro-CT. The expression of messenger RNA (mRNA) and protein was studied by RT-PCR and immunoblotting, respectively. Aliskiren treatment reduced urinary excretion of calcium and serum level of tartrate-resistant acid phosphatase in OVX mice. The treatment with aliskiren significantly increased bone volume (BV/TV) and connectivity density (Conn.D) of trabecular bone at LV-2 and LV-5 as well as dramatically enhanced BV/TV, Conn.D, bone mineral density (BMD/BV) and decreased bone surface (BS/BV) at the distal femoral end. Aliskiren significantly down-regulated the expression of angiotensinogen, angiotensin II (Ang II), Ang II type 1 receptor, bradykinin receptor (BR)-1, and osteocytic-specific gene sclerostin as well as the osteoclast-specific genes, including carbonic anhydrase II, matrix metalloproteinase-9, and cathepsin K. This study revealed that renin inhibitor aliskiren exhibited the beneficial effects on trabecular bone of ovariectomy-induced osteoporotic mice, and the underlying mechanism for this action might be mediated through Ang II and

  7. Emerging drugs which target the renin-angiotensin-aldosterone system.

    Science.gov (United States)

    Steckelings, Ulrike Muscha; Paulis, Ludovit; Unger, Thomas; Bader, Michael

    2011-12-01

    The renin-angiotensin-aldosterone system (RAAS) is already the most important target for drugs in the cardiovascular system. However, still new developments are underway to interfere with the system on different levels. The novel strategies to interfere with RAAS aim to reduce the synthesis of the two major RAAS effector hormones, angiotensin (Ang) II and aldosterone, or interfere with their receptors, AT1 and mineralocorticoid receptor, respectively. Moreover, novel targets have been identified in RAAS, such as the (pro)renin receptor, and molecules, which counteract the classical actions of Ang II and are therefore beneficial in cardiovascular diseases. These include the AT2 receptor and the ACE2/Ang-(1-7)/Mas axis. The search for drugs activating these tissue-protective arms of RAAS is therefore the most innovative field in RAAS pharmacology. Most of the novel pharmacological strategies to inhibit the classical RAAS need to prove their superiority above the existing treatment in clinical trials and then have to compete against these now quite cheap drugs in a competitive market. The newly discovered targets have functions beyond the cardiovascular system opening up novel therapeutic areas for drugs interfering with RAAS components.

  8. Brain renin angiotensin system in cardiac hypertrophy and failure

    Directory of Open Access Journals (Sweden)

    Luciana eCampos

    2012-01-01

    Full Text Available Brain renin-angiotensin system (RAS is significantly involved in the roles of the endocrine RAS in cardiovascular regulation. Our studies indicate that the brain RAS participates in the development of cardiac hypertrophy and fibrosis through sympathetic activation. Inhibition of sympathetic hyperactivity after myocardial infarction through suppression of the brain RAS appears beneficial. The brain RAS is involved in the modulation of circadian rhythms of arterial pressure, contributing to nondipping hypertension. We conclude that the brain RAS in pathophysiological states interacts synergistically with the chronically overactive RAS through a positive biofeedback in order to maintain a state of alert diseased conditions, such as cardiac hypertrophy and failure. Therefore, targeting brain RAS with drugs such as angiotensin converting inhibitors or receptor blockers having increased brain penetrability could be of advantage. These RAS-targeting drugs are first-line therapy for all heart failure patients. Since the RAS has both endocrine and local tissue components, RAS drugs are being developed to attain increased tissue penetrability and volume of distribution and consequently an efficient inhibition of both RAS components.

  9. A novel mechanism of angiotensin II-regulated placental vascular tone in the development of hypertension in preeclampsia.

    Science.gov (United States)

    Gao, Qinqin; Tang, Jiaqi; Li, Na; Zhou, Xiuwen; Li, Yongmei; Liu, Yanping; Wu, Jue; Yang, Yuxian; Shi, Ruixiu; He, Axin; Li, Xiang; Zhang, Yingying; Chen, Jie; Zhang, Lubo; Sun, Miao; Xu, Zhice

    2017-05-09

    The present study tested the hypothesis that angiotensin II plays a role in the regulation of placental vascular tone, which contributes to hypertension in preeclampsia. Functional and molecular assays were performed in large and micro placental and non-placental vessels from humans and animals. In human placental vessels, angiotensin II induced vasoconstrictions in 78.7% vessels in 155 tests, as referenced to KCl-induced contractions. In contrast, phenylephrine only produced contractions in 3.0% of 133 tests. In non-placental vessels, phenylephrine induced contractions in 76.0% of 67 tests, whereas angiotensin II failed to produce contractions in 75 tests. Similar results were obtained in animal placental and non-placental vessels. Compared with non-placental vessels, angiotensin II receptors and β-adrenoceptors were significantly increased in placental vessels. Compared to the vessels from normal pregnancy, angiotensin II-induced vasoconstrictions were significantly reduced in preeclamptic placentas, which was associated with a decrease in angiotensin II receptors. In addition, angiotensin II and angiotensin converting enzyme in the maternal-placenta circulation in preeclampsia were increased, whereas angiotensin I and angiotensin1-7 concentrations were unchanged. The study demonstrates a selective effect of angiotensin II in maintaining placental vessel tension, which may play an important role in development of hypertension in preeclampsia.

  10. Renin angiotensin system and cardiac hypertrophy after sinoaortic denervation in rats

    Directory of Open Access Journals (Sweden)

    Aline Cristina Piratello

    2010-01-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of angiotensin I, II and 1-7 on left ventricular hypertrophy of Wistar and spontaneously hypertensive rats submitted to sinoaortic denervation. METHODS: Ten weeks after sinoaortic denervation, hemodynamic and morphofunctional parameters were analyzed, and the left ventricle was dissected for biochemical analyses. RESULTS: Hypertensive groups (controls and denervated showed an increase on mean blood pressure compared with normotensive ones (controls and denervated. Blood pressure variability was higher in denervated groups than in their respective controls. Left ventricular mass and collagen content were increased in the normotensive denervated and in both spontaneously hypertensive groups compared with Wistar controls. Both hypertensive groups presented a higher concentration of angiotensin II than Wistar controls, whereas angiotensin 1-7 concentration was decreased in the hypertensive denervated group in relation to the Wistar groups. There was no difference in angiotensin I concentration among groups. CONCLUSION: Our results suggest that not only blood pressure variability and reduced baroreflex sensitivity but also elevated levels of angiotensin II and a reduced concentration of angiotensin 1-7 may contribute to the development of left ventricular hypertrophy. These data indicate that baroreflex dysfunction associated with changes in the renin angiotensin system may be predictive factors of left ventricular hypertrophy and cardiac failure.

  11. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension.

    Science.gov (United States)

    Ahad, Abdul; Al-Mohizea, Abdullah Mohammed; Al-Jenoobi, Fahad Ibrahim; Aqil, Mohd

    2016-01-01

    Angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) are some of the most commonly prescribed medications for hypertension. Most of all conventional dosage forms of ARBs and ACEIs undergo extensive first-pass metabolism, which significantly reduces bioavailability. Majority of ARBs and ACEIs are inherently short acting due to a rapid elimination half-life. In addition, oral dosage forms of ARBs and ACEIs have many high incidences of adverse effects due to variable absorption profiles, higher frequency of administration and poor patient compliance. Many attempts have been made globally at the laboratory level to investigate the skin permeation and to develop transdermal therapeutic systems of various ARBs, ACEIs and other anti-hypertensives, to circumvent the drawbacks associated with their conventional dosage form. This manuscript presents an outline of the transdermal research specifically in the area of ARBs, ACEIs and other anti-hypertensives reported in various pharmaceutical journals. The transdermal delivery has gained a significant importance for systemic treatment as it is able to avoid first-pass metabolism and major fluctuations of plasma levels typical of repeated oral administration. As we can experience from this review article that transdermal delivery of different ARBs and ACEIs improves bioavailability as well as patient compliance by many folds. In fact, the rationale development of some newer ARBs, ACEIs and other anti-hypertensives transdermal systems will provide new ways of treatment, circumventing current limitations for conventional dosage forms.

  12. Effects of angiotensin converting enzyme inhibitor and angiotensin II antagonist receptor on neointima hyperplasia after vascular balloon injury

    International Nuclear Information System (INIS)

    Wang Yeling; Zhao Lihua

    2004-01-01

    Objective: To study the effects of angiotensin converting enzyme inhibitor (captopril) and angiotensin II antagonist receptor (valsartan) on neointima hyperplasia after vascular balloon injury. Methods: Thirty-six rabbit models were randomly divided into three groups: injuried group, captopril group and valsartan group. Captopril (2 mg·kg -1 ·d -1 po) and valsartan (10 mg·kg -1 ·d -1 po) were given to twelve rabbits respectively from 1 day before the right carotidarteries were injuried by 2.0 mm ballon cathether to 14 days after injury in captopil group and valsartan group. The medicine was not administered in the injuried group. The tissue plasminogen activator (tPA), plaminogen activor inhibitor-1 (PAI-1) antigen level and plasma endothelin (ET) levels were measured before injury, and 7, 14 days after vascular injury. The pathomorphoiogical examination were carried out 14 days after angioplasty. Results: The levels of plasma PAI-1 and ET in captopril group and valsartan group were significantly lower than those in the injuried group (P<0.05). The intimal thickness and extent of lumen stenosis in captopril and valsartan groups were significantly lower than those in the injuried group (P<0.05). Conclusion: Captopril and valsartan can inhibit neointima hyperplasia after vascular ballon injury. (authors)

  13. Angiotensin converting enzyme 1 in the median preoptic nucleus contributes to chronic intermittent hypoxia hypertension.

    Science.gov (United States)

    Faulk, Katelynn E; Nedungadi, T Prashant; Cunningham, J Thomas

    2017-05-01

    Obstructive sleep apnea is associated with hypertension and cardiovascular disease. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in sleep apnea patients and is associated with increased sympathetic nerve activity and a sustained diurnal increase in blood pressure. The renin angiotensin system has been associated with hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1, which cleaves angiotensin I to the active counterpart angiotensin II, is present within the central nervous system and has been shown to be regulated by AP-1 transcription factors, such as ΔFosB. Our previous study suggested that this transcriptional regulation in the median preoptic nucleus contributes to the sustained blood pressure seen following chronic intermittent hypoxia. Viral mediated delivery of a short hairpin RNA against angiotensin converting enzyme 1 in the median preoptic nucleus was used along with radio-telemetry measurements of blood pressure to test this hypothesis. FosB immunohistochemistry was utilized in order to assess the effects of angiotensin converting enzyme 1 knockdown on the activity of nuclei downstream from median preoptic nucleus. Angiotensin converting enzyme 1 knockdown within median preoptic nucleus significantly attenuated the sustained hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1 seems to be partly responsible for regulating downstream regions involved in sympathetic and blood pressure control, such as the paraventricular nucleus and the rostral ventrolateral medulla. The data suggest that angiotensin converting enzyme 1 within median preoptic nucleus plays a critical role in the sustained hypertension seen in chronic intermittent hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  14. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    Science.gov (United States)

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  15. Severe hepatic encephalopathy in a patient with liver cirrhosis after administration of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker combination therapy: a case report

    Directory of Open Access Journals (Sweden)

    Podda Mauro

    2010-05-01

    Full Text Available Abstract Introduction A combination therapy of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers has been used to control proteinuria, following initial demonstration of its efficacy. However, recently concerns about the safety of this therapy have emerged, prompting several authors to urge for caution in its use. In the following case report, we describe the occurrence of a serious and unexpected adverse drug reaction after administration of a combination of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers to a patient with nephrotic syndrome and liver cirrhosis with severe portal hypertension. Case presentation We administered this combination therapy to a 40-year-old Caucasian man with liver cirrhosis in our Hepatology Clinic, given the concomitant presence of glomerulopathy associated with severe proteinuria. While the administration of one single drug appeared to be well-tolerated, our patient developed severe acute encephalopathy after the addition of the second one. Discontinuation of the therapy led to the disappearance of the side-effect. A tentative rechallenge with the same drug combination led to a second episode of acute severe encephalopathy. Conclusion We speculate that this adverse reaction may be directly related to the effect of angiotensin II on the excretion of blood ammonia. Therefore, we suggest that patients with liver cirrhosis and portal hypertension are at risk of developing clinically relevant encephalopathy when angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker combination therapy is administered, thus indicating the need for a careful clinical follow-up. In addition, the incidence of this serious side-effect should be rigorously evaluated in all patients with liver cirrhosis administered with this common treatment combination.

  16. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  17. Spectrum of mutations in the renin-angiotensin system genes in autosomal recessive renal tubular dysgenesis

    DEFF Research Database (Denmark)

    Gribouval, Olivier; Morinière, Vincent; Pawtowski, Audrey

    2012-01-01

    , pulmonary hypoplasia, and refractory arterial hypotension. The disease is linked to mutations in the genes encoding several components of the renin-angiotensin system (RAS): AGT (angiotensinogen), REN (renin), ACE (angiotensin-converting enzyme), and AGTR1 (angiotensin II receptor type 1). Here, we review...... the series of 54 distinct mutations identified in 48 unrelated families. Most of them are novel and ACE mutations are the most frequent, observed in two-thirds of families (64.6%). The severity of the clinical course was similar whatever the mutated gene, which underlines the importance of a functional RAS...

  18. No effect of angiotensin II AT(2)-receptor antagonist PD 123319 on cerebral blood flow autoregulation

    DEFF Research Database (Denmark)

    Estrup, T M; Paulson, O B; Strandgaard, S

    2001-01-01

    Blockade of the renin-angiotensin system with angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin AT1-receptor antagonists shift the limits of autoregulation of cerebral blood flow (CBF) towards lower blood pressure (BP). The role of AT2-receptors in the regulation of the cerebral...... group. CBF was measured by the intracarotid 133xenon injection method and BP was raised by noradrenaline infusion and lowered by controlled haemorrhage in separate groups of rats. The limits of autoregulation were determined by computed least-sum-of-squares analysis. PD 123319 did not influence baseline...

  19. [Assessment of the utilization of angiotensin receptor blockers in hypertension].

    Science.gov (United States)

    Peña Cabia, S; Ricote Lobera, I; Santos Mena, B; Hidalgo Correas, F J; Climent Florez, B; García Díaz, B

    2013-01-01

    To assess the degree in which the utilization of angiotensin receptor blockers (ARBs) in our Healthcare Area fits the criteria proposed by the Autonomous Community of Madrid (CAM) before setting «Plan de Actuación de ARA-II» («Action Plan ARA-II»). To study the indications for which are prescribed and to identify those factors that can show influence in prescription. Drug utilization study of the type indication-prescription, descriptive and transversal, for which ARBs-treated and hypertensive patients admitted to a University General Hospital for a study period of 3 months were selected. Based on the clinical situations summarized in the CAM Document «Criterios para establecer el lugar en la terapéutica de los antagonistas de los receptores de la angiotensina II» («Criteria for the place of angiotensin receptor blockers in the therapeutic»), a percentage of patients with «appropriate prescription» and «inadequate prescription« of ARBs was calculated and analyzed in order to determine if the age and the sex were related to the type of prescription or the main indications for which they had been prescribed. Out of the 153 patients included in the study, 67.3% had a «inadequate prescription«, 47.6% of them due to an ARBs prescription as the first drug inhibitor of the reninangiotensin- aldosterone system and 34.0% owing to a poor control of blood pressure with angiotensin-converting enzyme inhibitors (ACEi). There were no statistically significant differences found either by age or sex in the type of prescription or in the main indications for which they were prescribed. The adequacy of the criteria for the utilisation of ARBs Document occurred in 32.7% of cases. In addition, factors such as age and sex did not seem to affect the type of prescription. Misconceptions of superiority of ARBs versus ACEi were evidenced as well. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.

  20. Study of signal transduction mechanism of angiotensin 2 receptor by means of site-directed mutagenesis; Bui totsuzen hen'iho wo mochiita anjiotenshin 2 reseputa no joho dentatsu kiko no kaimei

    Energy Technology Data Exchange (ETDEWEB)

    Yamano, Yoshiaki [Tottori University, Tottori (Japan). Faculty of Agriculture

    1998-12-16

    The renin-angiotensin system (RAS) plays an important role in the regulation of blood pressure. In order to clarify the signaling mechanism mediated by angiotensin 2 receptor, Gq-protein binding amino acid residues of this receptor were clarified by site-directed mutagenesis study. Amino acid residues in the carboxyl tail region were changed by alanines, individually. These mutated receptors were expressed stably in CHO cells, and GTP effect and second messenger molecules were determined, and three residues (Y 312, F313 and L 314) in this region were determined to be concerned for the binding of Gq protein. The other signaling systems, Gi, MAP kinase, JAK-STAT mediated, were reported to be concerned for this receptor. Novel drags for high blood pressure therapy would be explored by clarifying these signaling mechanisms. (author)

  1. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Intravital Imaging Reveals Angiotensin II–Induced Transcytosis of Albumin by Podocytes

    Science.gov (United States)

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph

    2016-01-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (Palbumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II–infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function. PMID:26116357

  3. Intravital Imaging Reveals Angiotensin II-Induced Transcytosis of Albumin by Podocytes.

    Science.gov (United States)

    Schießl, Ina Maria; Hammer, Anna; Kattler, Veronika; Gess, Bernhard; Theilig, Franziska; Witzgall, Ralph; Castrop, Hayo

    2016-03-01

    Albuminuria is a hallmark of kidney disease of various etiologies and usually caused by deterioration of glomerular filtration barrier integrity. We recently showed that angiotensin II (Ang II) acutely increases albumin filtration in the healthy kidney. Here, we used intravital microscopy to assess the effects of Ang II on podocyte function in rats. Acute infusion of 30, 60, or 80 ng/kg per minute Ang II enhanced the endocytosis of albumin by activation of the type 1 Ang II receptor and resulted in an average (±SEM) of 3.7±2.2, 72.3±18.6 (Palbumin-containing vesicles per glomerulus, respectively, compared with none at baseline or 10 ng/kg per minute Ang II. Immunostaining of Ang II-infused kidneys confirmed the presence of albumin-containing vesicles, which colocalized with megalin, in podocin-positive cells. Furthermore, podocyte endocytosis of albumin was markedly reduced in the presence of gentamicin, a competitive inhibitor of megalin-dependent endocytosis. Ang II infusion increased the concentration of albumin in the subpodocyte space, a potential source for endocytic protein uptake, and gentamicin further increased this concentration. Some endocytic vesicles were acidified and colocalized with LysoTracker. Most vesicles migrated from the capillary to the apical aspect of the podocyte and were eventually released into the urinary space. This transcytosis accounted for approximately 10% of total albumin filtration. In summary, the transcellular transport of proteins across the podocyte constitutes a new pathway of glomerular protein filtration. Ang II enhances the endocytosis and transcytosis of plasma albumin by podocytes, which may eventually impair podocyte function. Copyright © 2016 by the American Society of Nephrology.

  4. Differential control of collagen synthesis by the sympathetic and renin-angiotensin systems in the rat left ventricle.

    Science.gov (United States)

    Dab, Houcine; Hachani, Rafik; Hodroj, Wassim; Sakly, Mohsen; Bricca, Giampiero; Kacem, Kamel

    2009-12-03

    In the present study, we tested the hypothesis of the indirect (via the sympathetic nervous system (SNS)) and direct (via AT1 receptors) contributions of Angiotensin II (Ang II) on the synthesis of collagen types I and III in the left ventricle (LV) in vivo. Sympathectomy and blockade of the Ang II receptor AT1 were performed alone or in combination in normotensive rats. The mRNA and protein synthesis of collagen types I and III were examined by Q-RT-PCR and immunoblotting in the LV. Collagen types I and III mRNA were decreased respectively by 53% and 22% after sympathectomy and only collagen type I mRNA was increased by 52% after AT1 receptor blockade. mRNA was not changed for collagen type I but was decreased by 25% for collagen type III after double treatment. Only collagen protein type III was decreased after sympathectomy by 12%, but collagen proteins were increased respectively for types I and III by 145% and 52% after AT1 receptor blockade and by 45% and 60% after double treatment. Deducted interpretations from our experimental approach suggest that Ang II stimulates indirectly (via SNS) and inhibits directly (via AT1 receptors) the collagen type I at transcriptional and protein levels. For collagen type III, it stimulates indirectly the transcription and inhibited directly the protein level. Therefore, the Ang II regulates collagen synthesis differently through indirect and direct pathways.

  5. Role of Renin-Angiotensin system and oxidative stress on vascular inflammation in insulin resistence model.

    Science.gov (United States)

    Renna, N F; Lembo, C; Diez, E; Miatello, R M

    2013-01-01

    (1) This study aims to demonstrate the causal involvement of renin angiotensin system (RAS) and oxidative stress (OS) on vascular inflammation in an experimental model of metabolic syndrome (MS) achieved by fructose administration to spontaneously hypertensive rats (FFHR) during 12 weeks. (2) Chronic treatment with candesartan (C) (10 mg/kg per day for the last 6 weeks) or 4OH-Tempol (T) (10(-3) mmol/L in drinking water for the last 6 weeks) reversed the increment in metabolic variables and systolic blood pressure. In addition, chronic C treatment reverted cardiovascular remodeling but not T. (3) Furthermore, chronic treatment with C was able to completely reverse the expression of NF-κB and VCAM-1, but T only reduced the expression. C reduced the expression of proatherogenic cytokines as CINC2, CINC3, VEGF, Leptin, TNF-alpha, and MCP-1 and also significantly reduced MIP-3, beta-NGF, and INF-gamma in vascular tissue in this experimental model. T was not able to substantially modify the expression of these cytokines. (4) The data suggest the involvement of RAS in the expression of inflammatory proteins at different vascular levels, allowing the creation of a microenvironment suitable for the creation, perpetuation, growth, and destabilization of vascular injury.

  6. Role of Renin-Angiotensin System and Oxidative Stress on Vascular Inflammation in Insulin Resistence Model

    Directory of Open Access Journals (Sweden)

    N. F. Renna

    2013-01-01

    Full Text Available (1 This study aims to demonstrate the causal involvement of renin angiotensin system (RAS and oxidative stress (OS on vascular inflammation in an experimental model of metabolic syndrome (MS achieved by fructose administration to spontaneously hypertensive rats (FFHR during 12 weeks. (2 Chronic treatment with candesartan (C (10 mg/kg per day for the last 6 weeks or 4OH-Tempol (T (10−3 mmol/L in drinking water for the last 6 weeks reversed the increment in metabolic variables and systolic blood pressure. In addition, chronic C treatment reverted cardiovascular remodeling but not T. (3 Furthermore, chronic treatment with C was able to completely reverse the expression of NF-κB and VCAM-1, but T only reduced the expression. C reduced the expression of proatherogenic cytokines as CINC2, CINC3, VEGF, Leptin, TNF-alpha, and MCP-1 and also significantly reduced MIP-3, beta-NGF, and INF-gamma in vascular tissue in this experimental model. T was not able to substantially modify the expression of these cytokines. (4 The data suggest the involvement of RAS in the expression of inflammatory proteins at different vascular levels, allowing the creation of a microenvironment suitable for the creation, perpetuation, growth, and destabilization of vascular injury.

  7. Angiotensin II type 1 receptor blockers increase tolerance of cells to copper and cisplatin

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-10-01

    Full Text Available The human pathology Wilson disease (WD is characterized by toxic copper (Cu accumulation in brain and liver, resulting in, among other indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an effort to identify novel compounds that can alleviate Cu-induced toxicity, we screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast screen. We identified 2 members of the drug class of Angiotensin II Type 1 receptor blockers (ARBs that could increase yeast tolerance to Cu, namely Candesartan and Losartan. Subsequently, we show that specific ARBs can increase yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin (Cp. The latter also induces mitochondrial dysfunction and apoptosis in mammalian cells. We further demonstrate that specific ARBs can prevent the prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilexetil being the ARB which demonstrated most pronounced reduction of apoptosis-related markers. Next, we tested the sensitivity of a selection of yeast knockout mutants affected in detoxification of reactive oxygen species (ROS and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of major ROS-detoxifying proteins. Finally, we show that specific ARBs can increase mammalian cell tolerance to Cu, as well as decrease the prevalence of Cu-induced apoptotic markers. All the above point to the potential of ARBs in preventing Cu-induced toxicity in yeast and mammalian cells.

  8. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ai-Lan [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ou, Cai-Wen [The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); He, Zhao-Chu [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Liu, Qi-Cai [Experimental Medical Research Center, Guangzhou Medical University, Guangzhou (China); Dong, Qi [Department of Physiology, Guangzhou Medical University, Guangzhou (China); Chen, Min-Sheng [Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China)

    2012-10-15

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [{sup 3}H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

  9. Angiotensin-converting enzyme in Spodoptera littoralis: molecular characterization, expression and activity profile during development.

    Science.gov (United States)

    Lemeire, Els; Vanholme, Bartel; Van Leeuwen, Thomas; Van Camp, John; Smagghe, Guy

    2008-02-01

    The characterization of the full-length angiotensin-converting enzyme (ACE) cDNA sequence of the lepidopteran Spodoptera littoralis is reported in this study. The predicted open reading frame encodes a 647 amino acids long protein (SlACE) and shows 63.6% identity with the Bombyx mori ACE sequence. A 3D-model, consisting of 26 alpha-helices and three beta-sheets, was predicted for the sequence. SlACE expression was studied in the embryonic, larval and pupal stages of S. littoralis and in different tissues of the last larval stage by reverse-transcribed PCR. This revealed that the gene is expressed throughout the life cycle and especially in brain, gut and fat body tissue of the last stage. These results are in agreement with a role of ACE in the metabolism of neuropeptides and gut hormones. In addition, ACE activity has been studied in more detail during development, making use of a fluorescent assay. High ACE peptidase activity coincides with every transition state, from embryo to larva, from larva to larva and from larva to pupa. A peak value in activity occurs during the early pupal stage. These results indicate the importance of SlACE during metamorphosis and reveal the high correlation of ACE activity with the insect's development, which is regulated by growth and developmental hormones.

  10. Distinct angiotensin II receptor in primary cultures of glial cells from rat brain

    International Nuclear Information System (INIS)

    Raizada, M.K.; Phillips, M.I.; Crews, F.T.; Sumners, C.

    1987-01-01

    Angiotensin II (Ang-II) has profound effects on the brain. Receptors for Ang-II have been demonstrated on neurons, but no relationship between glial cells and Agn-II has been established. Glial cells (from the hypothalamus and brain stem of 1-day-old rat brains) in primary culture have been used to demonstrate the presence of specific Ang-II receptors. Binding of 125 I-Ang-II to glial cultures was rapid, reversible, saturable, and specific for Ang-II. The rank order of potency of 125 I-Ang-II binding was determined. Scatchard analysis revealed a homogeneous population of high-affinity binding sites with a B/sub max/ of 110 fmol/mg of protein. Light-microscopic autoradiography of 125 I-Ang-II binding supported the kinetic data, documenting specific Ang-II receptors on the glial cells. Ang-II stimulated a dose-dependent hydrolysis of phosphatidylinositols in glial cells, an effect mediated by Ang-II receptors. However, Ang-II failed to influence [ 3 H] norepinephrine uptake, and catecholamines failed to regulate Ang-II receptors, effects that occur in neurons. These observations demonstrate the presence of specific Ang-II receptors on the glial cells in primary cultures derived from normotensive rat brain. The receptors are kinetically similar to, but functionally distinct from, the neuronal Ang-II receptors

  11. Induction of human adiponectin gene transcription by telmisartan, angiotensin receptor blocker, independently on PPAR-γ activation

    International Nuclear Information System (INIS)

    Moriuchi, Akie; Yamasaki, Hironori; Shimamura, Mika; Kita, Atsushi; Kuwahara, Hironaga; Fujishima, Keiichiro; Satoh, Tsuyoshi; Fukushima, Keiko; Fukushima, Tetsuya; Hayakawa, Takao; Mizuguchi, Hiroyuki; Nagayama, Yuji; Abiru, Norio; Kawasaki, Eiji; Eguchi, Katsumi

    2007-01-01

    Adiponectin, an adipose tissue-specific plasma protein, has been shown to ameliorate insulin resistance and inhibit the process of atherosclerosis. Recently, several reports have stated that angiotensin type 1 receptor blockers (ARBs), increase adiponectin plasma level, and ameliorate insulin resistance. Telmisartan, a subclass of ARBs, has been shown to be a partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ, and to increase the plasma adiponectin level. However, the transcriptional regulation of the human adiponectin gene by telmisartan has not been determined yet. To elucidate the effect of telmisartan on adiponectin, the stimulatory regulation of human adiponectin gene by telmisartan was investigated in 3T3-L1 adipocytes, utilizing adenovirus-mediated luciferase reporter gene-transferring technique. This study indicates that telmisartan may stimulate adiponectin transcription independent of PPAR-γ

  12. Interaction of angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase M (CPM) - a new function of ACE.

    Science.gov (United States)

    Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn

    2008-12-01

    Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.

  13. Edaravone inhibits pressure overload-induced cardiac fibrosis and dysfunction by reducing expression of angiotensin II AT1 receptor

    Directory of Open Access Journals (Sweden)

    Zhang WW

    2017-10-01

    Full Text Available Wei-Wei Zhang,1,2 Feng Bai,1 Jin Wang,1 Rong-Hua Zheng,1 Li-Wang Yang,1 Erskine A James,3 Zhi-Qing Zhao1,4 1Department of Physiology, Shanxi Medical University, 2Department of Anesthesiology, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi, China; 3Department of Internal Medicine, Navicent Health, Macon, 4Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA Abstract: Angiotensin II (Ang II is known to be involved in the progression of ventricular dysfunction and heart failure by eliciting cardiac fibrosis. The purpose of this study was to demonstrate whether treatment with an antioxidant compound, edaravone, reduces cardiac fibrosis and improves ventricular function by inhibiting Ang II AT1 receptor. The study was conducted in a rat model of transverse aortic constriction (TAC. In control, rats were subjected to 8 weeks of TAC. In treated rats, edaravone (10 mg/kg/day or Ang II AT1 receptor blocker, telmisartan (10 mg/kg/day was administered by intraperitoneal injection or gastric gavage, respectively, during TAC. Relative to the animals with TAC, edaravone reduced myocardial malonaldehyde level and increased superoxide dismutase activity. Protein level of the AT1 receptor was reduced and the AT2 receptor was upregulated, as evidenced by the reduced ratio of AT1 over AT2 receptor (0.57±0.2 vs 3.16±0.39, p<0.05 and less locally expressed AT1 receptor in the myocardium. Furthermore, the protein level of angiotensin converting enzyme 2 was upregulated. In coincidence with these changes, edaravone significantly decreased the populations of macrophages and myofibroblasts in the myocardium, which were accompanied by reduced levels of transforming growth factor beta 1 and Smad2/3. Collagen I synthesis was inhibited and collagen-rich fibrosis was attenuated. Relative to the TAC group, cardiac systolic function was preserved, as shown by increased left ventricular systolic pressure (204±51 vs 110±19

  14. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    Science.gov (United States)

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  15. The renin-angiotensin system and aging in the kidney.

    Science.gov (United States)

    Yoon, Hye Eun; Choi, Bum Soon

    2014-05-01

    Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and functional changes in the aging kidney and age-related renal injury, and describes the underlying mechanisms of RAS-related renal aging. An improved understanding of the renal aging process may lead to better individualized care of the elderly and improved renal survival in age-related diseases.

  16. Prospects for angiotensin receptor blockers in diabetic retinopathy

    DEFF Research Database (Denmark)

    Sjølie, Anne Katrin

    2007-01-01

    Retinopathy is the most common microvascular complication of diabetes mellitus, and is an important cause of blindness worldwide. Clinical trials have demonstrated that tight metabolic control inhibits the progression of retinopathy. Good blood pressure control has been shown to be protective...... in type 2 diabetes, and it may also reduce proliferative retinopathy in type 1 diabetes. However, such control is often difficult to achieve in clinical practice, and may be associated with problems such as hypoglycaemia. New therapies are therefore needed to reduce the risk of retinopathy....... There is growing evidence that the renin-angiotensin system (RAS) plays an important role in the pathogenesis of diabetic retinopathy, and this has led to interest in RAS inhibitors as agents to prevent retinopathy. Several trials have suggested that ACE inhibitor therapy can inhibit progression of retinopathy...

  17. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    International Nuclear Information System (INIS)

    Zhao, Zhuo; Wang, Hao; Lin, Marina; Groban, Leanne

    2015-01-01

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression

  18. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons

  19. GPR30 decreases cardiac chymase/angiotensin II by inhibiting local mast cell number

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhuo [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Department of Cardiology, Jinan Central Hospital, Affiliated with Shandong University, 105 Jiefang Road, Jinan, 250013 (China); Wang, Hao; Lin, Marina [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Groban, Leanne, E-mail: lgroban@wakehealth.edu [Department of Anesthesiology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27159-1009 (United States); Hypertension and Vascular Disease Center, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States); Office of Women in Medicine and Science, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157 (United States)

    2015-03-27

    Chronic activation of the novel estrogen receptor GPR30 by its agonist G1 mitigates the adverse effects of estrogen (E2) loss on cardiac structure and function. Using the ovariectomized (OVX) mRen2.Lewis rat, an E2-sensitive model of diastolic dysfunction, we found that E2 status is inversely correlated with local cardiac angiotensin II (Ang II) levels, likely via Ang I/chymase-mediated production. Since chymase is released from cardiac mast cells during stress (e.g., volume/pressure overload, inflammation), we hypothesized that GPR30-related cardioprotection after E2 loss might occur through its opposing actions on cardiac mast cell proliferation and chymase production. Using real-time quantitative PCR, immunohistochemistry, and immunoblot analysis, we found mast cell number, chymase expression, and cardiac Ang II levels were significantly increased in the hearts of OVX-compared to ovary-intact mRen2.Lewis rats and the GPR30 agonist G1 (50 mg/kg/day, s.c.) administered for 2 weeks limited the adverse effects of estrogen loss. In vitro studies revealed that GPR30 receptors are expressed in the RBL-2H3 mast cell line and G1 inhibits serum-induced cell proliferation in a dose-dependent manner, as determined by cell counting, BrdU incorporation assay, and Ki-67 staining. Using specific antagonists to estrogen receptors, blockage of GPR30, but not ERα or ERβ, attenuated the inhibitory effects of estrogen on BrdU incorporation in RBL-2H3 cells. Further study of the mechanism underlying the effect on cell proliferation showed that G1 inhibits cyclin-dependent kinase 1 (CDK1) mRNA and protein expression in RBL-2H3 cells in a dose-dependent manner. - Highlights: • GPR30 activation limits mast cell number in hearts from OVX mRen2.Lewis rats. • GPR30 activation decreases cardiac chymase/angiotensin II after estrogen loss. • GPR30 activation inhibits RBL-2H3 mast cell proliferation and CDK1 expression.

  20. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury.

    Science.gov (United States)

    Cao, Shuo; Wu, Rong

    2012-12-01

    Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentrations of TGF-β1, angiotensin II, and aldosterone were determined via enzyme-linked immunosorbent assay. Statistical differences were observed in the expression levels of angiotensin II and aldosterone between the non-irradiation and irradiation groups. Moreover, the expression level of the angiotensin II-aldosterone system increased with increasing doses, and the difference was still observed as time progressed. Angiotensin II-aldosterone system has an important pathophysiological function in the progression of RILI.

  1. Expression of Angiotensin II and Aldosterone in Radiation-induced Lung Injury

    International Nuclear Information System (INIS)

    Cao, Shuo; Wu, Rong

    2012-01-01

    Radiation-induced lung injury (RILI) is the most common, dose-limiting complication in thoracic malignancy radiotherapy. Considering its negative impact on patients and restrictions to efficacy, the mechanism of RILI was studied. Wistar rats were locally irradiated with a single dose of 0, 16, and 20 Gy to the right half of the lung to establish a lung injury model. Two and six months after irradiation, the right half of the rat lung tissue was removed, and the concentrations of TGF-β1, angiotensin II, and aldosterone were determined via enzyme-linked immunosorbent assay. Statistical differences were observed in the expression levels of angiotensin II and aldosterone between the non-irradiation and irradiation groups. Moreover, the expression level of the angiotensin II-aldosterone system increased with increasing doses, and the difference was still observed as time progressed. Angiotensin II-aldosterone system has an important pathophysiological function in the progression of RILI

  2. Use of angiotensin II receptor blockers in children- a review of ...

    African Journals Online (AJOL)

    2015-05-19

    May 19, 2015 ... sex and height, whereas hypertension is defined as SBP and/or DBP persistently ... strated the efficacy of angiotensin receptor blockers in ... An open-label, multicenter, single-dose study was ..... sure among school children of.

  3. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    International Nuclear Information System (INIS)

    Nosal, A.; Schleissner, L.A.; Mishkin, F.S.; Lieberman, J.

    1979-01-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. It was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis

  4. Angiotensin-I-converting enzyme and gallium scan in noninvasive evaluation of sarcoidosis

    Energy Technology Data Exchange (ETDEWEB)

    Nosal, A. (Harbor General Hospital, Torrance, CA); Schleissner, L.A.; Mishkin, F.S.; Lieberman, J.

    1979-03-01

    Angiotensin-converting enzyme assays and gallium-scan results were obtained from 27 patients with biopsy-proven, clinically active sarcoidosis. Twenty-three of these patients had elevated converting enzyme levels, and 22 had positive gallium-scan results. Three of four patients with normal or borderline-elevated levels of angiotensin-converting enzyme also had positive gallium-scan results. Of 156 nonsarcoid patients (pulmonary and other diseases), 27 were found to have elevated serum converting enzyme levels, and 25 of these had negative gallium-scan results. These results indicate that the combination of an assay of angiotensin-converting enzyme and gallium scan increases diagnostic specificity from 83% to 99% without sacrificing sensitivity. It was concluded that the concurrent use of angiotensin-converting enzyme assay and gallium scan is of value in the diagnosis of sarcoidosis.

  5. Effects of dual renin-angiotensin system blockade on proteinuria in a ...

    African Journals Online (AJOL)

    Kidney diseases manifesting as proteinuria or elevated creatinine are increasingly prevalent complications of HIV infection. We report the effects of dual renin-angiotensin system blockade on proteinuria in a hypertensive black African HIV-infected patient.

  6. Adverse drug reactions of angiotensin converting enzyme inhibitors : towards precision medicine

    NARCIS (Netherlands)

    Mahmoud Pour, S.H.

    2016-01-01

    Worldwide, millions of patients with cardiovascular diseases are treated with angiotensin converting enzyme inhibitors (ACEIs) according to the international treatment guidelines. Although this class of medications is generally well tolerated, adverse drug reactions (ADRs) may prevent their use in

  7. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension.

    Science.gov (United States)

    Sun, Jia-Cen; Liu, Bing; Zhang, Ru-Wen; Jiao, Pei-Lei; Tan, Xing; Wang, Yang-Kai; Wang, Wei-Zhong

    2018-01-01

    Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R) in the rostral ventrolateral medulla (RVLM). β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR), and further determine the effect of β-arrestin1 on AT1R expression in the RVLM. Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1) into the RVLM of WKY and SHR. Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly ( P Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol). Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α. Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.

  8. Fetal betamethasone exposure attenuates angiotensin-(1-7)-Mas receptor expression in the dorsal medulla of adult sheep.

    Science.gov (United States)

    Marshall, Allyson C; Shaltout, Hossam A; Nautiyal, Manisha; Rose, James C; Chappell, Mark C; Diz, Debra I

    2013-06-01

    Glucocorticoids including betamethasone (BM) are routinely administered to women entering into early preterm labor to facilitate fetal lung development and decrease infant mortality; however, fetal steroid exposure may lead to deleterious long term consequences. In a sheep model of fetal programming, BM-exposed (BMX) offspring exhibit elevated mean arterial pressure (MAP) and decreased baroreflex sensitivity (BRS) for control of heart rate by 0.5-years of age associated with changes in the circulating and renal renin-angiotensin systems (RAS). In the brain solitary tract nucleus, angiotensin (Ang) II actions through the AT1 receptor oppose the beneficial actions of Ang-(1-7) at the Mas receptor for BRS regulation. Therefore, we examined Ang peptides, angiotensinogen (Aogen), and receptor expression in this brain region of exposed and control offspring of 0.5- and 1.8-years of age. Mas protein expression was significantly lower (>40%) in the dorsal medulla of BMX animals at both ages; however, AT1 receptor expression was not changed. BMX offspring exhibited a higher ratio of Ang II to Ang-(1-7) (2.30±0.36 versus 0.99±0.28; p<0.01) and Ang II to Ang I at 0.5-years. Although total Aogen was unchanged, Ang I-intact Aogen was lower in 0.5-year BMX animals (0.78±0.06 vs. 1.94±0.41; p<0.05) suggesting a greater degree of enzymatic processing of the precursor protein in exposed animals. We conclude that in utero BM exposure promotes an imbalance in the central RAS pathways of Ang II and Ang-(1-7) that may contribute to the elevated MAP and lower BRS in this model. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat.

    Directory of Open Access Journals (Sweden)

    Irina Bogdarina

    2010-02-01

    Full Text Available Adverse events in pregnancy may 'programme' offspring for the later development of cardiovascular disease and hypertension. Previously, using a rodent model of programmed hypertension we have demonstrated the role of the renin-angiotensin system in this process. More recently we showed that a maternal low protein diet resulted in undermethylation of the At1b angiotensin receptor promoter and the early overexpression of this gene in the adrenal of offspring. Here, we investigate the hypothesis that maternal glucocorticoid modulates this effect on fetal DNA methylation and gene expression. We investigated whether treatment of rat dams with the 11beta-hydroxylase inhibitor metyrapone, could prevent the epigenetic and gene expression changes we observed. Offspring of mothers subjected to a low protein diet in pregnancy showed reduced adrenal Agtr1b methylation and increased adrenal gene expression as we observed previously. Treatment of mothers with metyrapone for the first 14 days of pregnancy reversed these changes and prevented the appearance of hypertension in the offspring at 4 weeks of age. As a control for non-specific effects of programmed hypertension we studied offspring of mothers treated with dexamethasone from day 15 of pregnancy and showed that, whilst they had raised blood pressure, they failed to show any evidence of Agtr1b methylation or increase in gene expression. We conclude that maternal glucocorticoid in early pregnancy may induce changes in methylation and expression of the Agtr1b gene as these are clearly reversed by an 11 beta-hydroxylase inhibitor. However in later pregnancy a converse effect with dexamethasone could not be demonstrated and this may reflect either an alternative mechanism of this glucocorticoid or a stage-specific influence.

  10. Overexpression of ß-Arrestin1 in the Rostral Ventrolateral Medulla Downregulates Angiotensin Receptor and Lowers Blood Pressure in Hypertension

    Directory of Open Access Journals (Sweden)

    Jia-Cen Sun

    2018-03-01

    Full Text Available Background: Hypertension is characterized by sympathetic overactivity, which is associated with an enhancement in angiotensin receptor type I (AT1R in the rostral ventrolateral medulla (RVLM. β-arrestin1, a canonical scaffold protein, has been suggested to show a negative effect on G protein-coupled receptors via its internalization and desensitization and/or the biased signaling pathway. The major objectives of the present study were to observe the effect of β-arrestin1 overexpression in the RVLM on cardiovascular regulation in spontaneously hypertensive rats (SHR, and further determine the effect of β-arrestin1 on AT1R expression in the RVLM.Methods: The animal model of β-arrestin1 overexpression was induced by bilateral injection of adeno-associated virus containing Arrb1 gene (AAV-Arrb1 into the RVLM of WKY and SHR.Results: β-arrestin1 was expressed on the pre-sympathetic neurons in the RVLM, and its expression in the RVLM was significantly (P < 0.05 downregulated by an average of 64% in SHR than WKY. Overexpression of β-arrestin1 in SHR significantly decreased baseline levels of blood pressure and renal sympathetic nerve activity, and attenuated cardiovascular effects induced by RVLM injection of angiotensin II (100 pmol. Furthermore, β-arrestin1 overexpression in the RVLM significantly reduced the expression of AT1R by 65% and NF-κB p65 phosphorylation by 66% in SHR. It was confirmed that β-arrestin1 overexpression in the RVLM led to an enhancement of interaction between β-arrestin1 and IκB-α.Conclusion: Overexpression of β-arrestin1 in the RVLM reduces BP and sympathetic outflow in hypertension, which may be associated with NFκB-mediated AT1R downregulation.

  11. Increased insulin-stimulated expression of arterial angiotensinogen and angiotensin type 1 receptor in patients with type 2 diabetes mellitus and atheroma.

    Science.gov (United States)

    Hodroj, Wassim; Legedz, Liliana; Foudi, Nabil; Cerutti, Catherine; Bourdillon, Marie-Claude; Feugier, Patrick; Beylot, Michel; Randon, Jacques; Bricca, Giampiero

    2007-03-01

    Because inhibition of the renin-angiotensin system (RAS) reduces the onset of type 2 diabetes (T2D) and prevents atherosclerosis, we investigated the expression of RAS in the arterial wall of T2D and nondiabetic (CTR) patients. mRNA and protein levels of angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and AT1 receptor (AT1R) were determined in carotid atheroma plaque, nearby macroscopically intact tissue (MIT), and in vascular smooth muscle cells (VSMCs) before and after insulin stimulation from 21 T2D and 22 CTR patients. AGT and ACE mRNA and their protein levels were 2- to 3-fold higher in atheroma and in MIT of T2D patients. VSMCs from T2D patients had respectively 2.5- and 5-fold higher AGT and AT1R mRNA and protein contents. Insulin induced an increase in AGT and AT1R mRNA with similar ED50. These responses were blocked by PD98059, an inhibitor of MAP-kinase in the two groups whereas wortmannin, an inhibitor of PI3-kinase, partially prevented the response in CTR patients. Phosphorylated ERK1-2 was 4-fold higher in MIT from T2D than from CTR patients. The arterial RAS is upregulated in T2D patients, which can be partly explained by an hyperactivation of the ERK1-2 pathway by insulin.

  12. Prevention of atrial fibrillation by Renin-Angiotensin system inhibition a meta-analysis

    DEFF Research Database (Denmark)

    Schneider, Markus; Hua, Tsushung A; Böhm, Michael

    2010-01-01

    The authors reviewed published clinical trial data on the effects of renin-angiotensin system (RAS) inhibition for the prevention of atrial fibrillation (AF), aiming to define when RAS inhibition is most effective.......The authors reviewed published clinical trial data on the effects of renin-angiotensin system (RAS) inhibition for the prevention of atrial fibrillation (AF), aiming to define when RAS inhibition is most effective....

  13. Macrophage-to-sensory neuron crosstalk mediated by Angiotensin II type-2 receptor elicits neuropathic pain

    OpenAIRE

    Krause, Eric; Shepherd, Andrew; Mickle, Aaron; Copits, Bryan; Karlsson, Pall; Kadunganattil, Suraj; Golden, Judith; Tadinada, Satya; Mack, Madison; Haroutounian, Simon; De Kloet, Annette; Samineni, Vijay; Valtcheva, Manouela; Mcilvried, Lisa; Sheahan, Tayler

    2017-01-01

    Peripheral nerve damage initiates a complex series of cellular and structural processes that culminate in chronic neuropathic pain. Our study defines local angiotensin signaling via activation of the Angiotensin II (Ang II) type-2 receptor (AT2R) on macrophages as the critical trigger of neuropathic pain. An AT2R-selective antagonist attenuates neuropathic, but not inflammatory pain hypersensitivity in mice, and requires the cell damage-sensing ion channel transient receptor potential family-...

  14. Increased Angiotensin II Sensitivity Contributes to Microvascular Dysfunction in Women Who Have Had Preeclampsia.

    Science.gov (United States)

    Stanhewicz, Anna E; Jandu, Sandeep; Santhanam, Lakshmi; Alexander, Lacy M

    2017-08-01

    Women who have had preeclampsia have increased cardiovascular disease risk; however, the mechanism(s) responsible for this association remain unclear. Microvascular damage sustained during a preeclamptic pregnancy may persist postpartum. The putative mechanisms mediating this dysfunction include a reduction in NO-dependent dilation and an increased sensitivity to angiotensin II. In this study, we evaluated endothelium-dependent dilation, angiotensin II sensitivity, and the therapeutic effect of angiotensin II receptor blockade (losartan) on endothelium-dependent dilation in vivo in the microvasculature of women with a history of preeclampsia (n=12) and control women who had a healthy pregnancy (n=12). We hypothesized that preeclampsia would have (1) reduced endothelium-dependent dilation, (2) reduced NO-mediated dilation, and (3) increased sensitivity to angiotensin II. We further hypothesized that localized losartan would increase endothelium-dependent vasodilation in preeclampsia. We assessed microvascular endothelium-dependent vasodilator function by measurement of cutaneous vascular conductance responses to graded infusion of acetylcholine (acetylcholine; 10 -7 -102 mmol/L) and a standardized local heating protocol in control sites and sites treated with 15 mmol/L L-NAME ( N G -nitro-l-arginine methyl ester; NO-synthase inhibitor) or 43 µmol/L losartan. Further, we assessed microvascular vasoconstrictor sensitivity to angiotensin II (10 -20 -10 -4 mol/L). Preeclampsia had significantly reduced endothelium-dependent dilation (-0.3±0.5 versus -1.0±0.4 log EC50 ; P Preeclampsia also had augmented vasoconstrictor sensitivity to angiotensin II (-10.2±1.3 versus -8.3±0.5; P =0.006). Angiotensin II type I receptor inhibition augmented endothelium-dependent vasodilation and NO-dependent dilation in preeclampsia but had no effect in healthy pregnancy. These data suggest that women who have had preeclampsia have persistent microvascular dysfunction postpartum

  15. The effect of a heptapeptide angiotensin analogue on aldosterone secretion in the rabbit

    International Nuclear Information System (INIS)

    Neusy, A.J.; Steele, J.M. Jr.; Lowenstein, J.

    1980-01-01

    To investigate the effects of the heptapeptide analogue, 7 Ile A III on angiotensin II and angiotensin III, the mean blood pressure, the plasma reninactivity, and the plasma aldosteron concentration were measured under various circumstances (dexamethasan infusion, 7 Ile A III addition, bleeding). The measurements were carried out by means of RIA. The adrenal, renal, and vascular reactions to the competitive blockade are discussed with reference to the results obtained. (orig.) [de

  16. Angiotensin-converting enzyme and its clinical significance--a review.

    OpenAIRE

    Studdy, P R; Lapworth, R; Bird, R

    1983-01-01

    There have been considerable advances in understanding the metabolic role of the endothelial lining cells of the blood vessels. Angiotensin-converting enzyme activity is concentrated in these cells, especially those lining the pulmonary circulation. The enzyme exerts control over systemic vascular tone indirectly through the powerful pressor effect of angiotensin II. A number of therapeutic agents are now available which directly inhibit converting enzyme activity and thereby effect a reducti...

  17. NMR study of the possible interaction in solution of angiotensin II with a peptide encoded by angiotensin II complementary RNA

    International Nuclear Information System (INIS)

    Eaton, H.L.; Fesik, S.W.; Austin, R.E.; Martin, S.F.

    1989-01-01

    The potential binding of angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) (AII) to a peptide encoded by its complementary RNA (Lys-Gly-Val-Asp-Val-Try-Ala-Val) (IIA) has been studied by monitoring the 1 H NMR spectrum of IIA in aqueous phosphate or Tris·HCl buffer ( 2 H 2 O) as it is titrated with AII. For molar ratios of AII/IIA ranging from 0.2 to 1.8, the NMR spectra are unchanged as compared to the spectra of the isolated peptides. Based on these findings, the K d for the putative biomolecular complex of the two peptides under these conditions is calculated to be >10 -4 M. This result does not support the suggestion of Elton et al. that AII and IIA engage in high-affinity binding (K d ∼ 5 x 10 -8 M) with each other

  18. Renin angiotensin system blockage associates with insertion/deletion polymorphism of angiotensin-converting enzyme in patients with hypertensive emergency.

    Science.gov (United States)

    Vilela-Martin, José F; Vaz-de-Melo, Renan O; Cosenso-Martin, Luciana N; Kuniyoshi, Cristina H; Yugar-Toledo, Juan C; Pinhel, Marcela A S; de Souza, Gisele F; Souza, Dorotéia R S; Pimenta, Eduardo; Moreno, Heitor; Cipullo, José P

    2013-09-01

    Hypertensive crisis (HC) stands out as a form of acute elevation of blood pressure (BP). It can manifest itself as hypertensive emergency (HE) or hypertensive urgency (HU), which is usually accompanied with levels of diastolic BP ≥120 mmHg. Angiotensin-converting enzyme (ACE) gene insertion/deletion (I/D) polymorphism may influence manifestations of HC. Thus, this study evaluated the influence of ACE I/D polymorphism in individuals with HC. A total of 187 patients admitted with HC (HU [n=69] and HE [n=118]) and 75 normotensive individuals were included in the study. Peripheral blood was drawn for a biochemical and genetic analysis of the ACE I/D polymorphism by Polymerase Chain Reaction. HC group showed higher systolic BP, body mass index (BMI), glycemia, creatinine, and lower high-density lipoprotein (HDL) cholesterol compared with normotensive individuals. The use of renin-angiotensin system (RAS) blockers was more frequent in the HU group than in the HE group (p=0.020). The II genotype was more predominant in normotensive and HU individuals than among HE individuals (18.7%, 11.6%, and 2.5%, respectively; p=0.004). Higher BMI and glycemia were associated with HC in the logistic regression model. ACE II genotype (odds ratio [OR] 0.14; 95% confidence interval [CI] 0.04-0.51) and HDL cholesterol were protective for the development of HE. ACE II genotype was present in the HU group, compared with the HE group (OR 0.18; 95% CI 0.04-0.88). This study shows an association between the low prevalence of ACE I/D polymorphism II genotype and a greater occurrence of HE in Brazilian individuals. The lower blockage of RAS, which was detected in the HE group, may interact with the low frequency of II genotype, conferring an increased risk for HE.

  19. Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers reduced dementia risk in patients with diabetes mellitus and hypertension.

    Science.gov (United States)

    Kuan, Yi-Chun; Huang, Kuang-Wei; Yen, Der-Jen; Hu, Chaur-Jong; Lin, Cheng-Li; Kao, Chia-Hung

    2016-10-01

    The effects of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) on dementia risk in patients with type 2 diabetes mellitus (DM) and hypertension remain unknown. We investigated the effects of ACEIs and ARBs on dementia risk in patients with type 2 DM and hypertension. We conducted a cohort study by using the Taiwan National Health Insurance Research Database. We included 2377 patients receiving ACEIs and 1780 patients receiving ARBs in the ACEI and ARB cohorts, respectively. We included a comparable number of patients not receiving ACEIs and ARBs as controls in the non-ACEI and non-ARB cohorts through propensity score matching. The effect of ACEIs and ARBs on dementia risk was estimated through multivariate Cox proportional hazard regression after adjustment for several confounding factors. During the 12-year follow-up period, compared with the non-ACEI cohort, all-cause dementia risk decreased by 26% in the ACEI cohort [hazard ratio (HR)=0.74, 95% confidence interval (CI)=0.56-0.96]. The all-cause dementia risk was nearly 40% lower in the ARB cohort than in the non-ARB cohort (HR=0.60, 95% CI=0.37-0.97). These drugs prevented the occurrence of vascular dementia (VD), however, this effect was nonsignificant for Alzheimer's dementia (AD). Treatment duration- and dosage-related protection effects on dementia occurrence were observed. ACEIs and ARBs may effectively prevent all-cause dementia, particularly VD, in patients with type 2 DM and hypertension. Moreover, compared with ACEIs, ARBs appear to be more advantageous in dementia prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Empirical and bioinformatic characterization of buffalo (Bubalus bubalis) colostrum whey peptides & their angiotensin I-converting enzyme inhibition.

    Science.gov (United States)

    Ashok, N R; Aparna, H S

    2017-08-01

    Whey based peptides are well known for their nutritional and multifunctional properties. In this context, whey proteins from buffalo colostrum & milk were digested by in vitro simulation digestion and analyzed by nano-LC-MS/MS. Functional protein association networks, gene annotations and localization of identified proteins were carried out. An ACE inhibitory peptide sorted from the library was custom synthesized and an in vitro ACE assay was performed. The study led to the identification of 74 small peptides which were clustered into 5 gene functional groups and majority of them were secretory proteins. Among the identified peptides, majority of them were found identical to angiotensin I-converting enzyme (ACE) inhibitors, antioxidant, antimicrobial, immunomodulatory and opioidal peptides. An octapeptide (m/z - 902.51, IQKVAGTW) synthesized was found to inhibit ACE with an IC 50 of 300±2µM. The present investigation thus establishes newer vista for food derived peptides having ACE inhibitory potential for nutraceutical or therapeutic applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Role of the renin-angiotensin system, renal sympathetic nerve system, and oxidative stress in chronic foot shock-induced hypertension in rats.

    Science.gov (United States)

    Dong, Tao; Chen, Jing-Wei; Tian, Li-Li; Wang, Lin-Hui; Jiang, Ren-Di; Zhang, Zhe; Xu, Jian-Bing; Zhao, Xiao-Dong; Zhu, Wei; Wang, Guo-Qing; Sun, Wan-Ping; Zhang, Guo-Xing

    2015-01-01

    The renin-angiotensin system (RAS) and renal sympathetic nerve system (RSNS) are involved in the development of hypertension. The present study is designed to explore the possible roles of the RAS and the RSNS in foot shock-induced hypertension. Male Sprague-Dawley rats were divided into six groups: control, foot shock, RSNS denervation, denervation plus foot shock, Captopril (angiotensin I converting enzyme inhibitor, ACE inhibitor) plus foot shock, and Tempol (superoxide dismutase mimetic) plus foot shock. Rats received foot shock for 14 days. We measured the quantity of thiobarbituric acid reactive substances (TBARS), corticosterone, renin, and angiotensin II (Ang II) in plasma, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and renal noradrenaline content. RAS component mRNA and protein levels were quantified in the cerebral cortex and hypothalamus. The two week foot shock treatment significantly increased systolic blood pressure, which was accompanied by an increase in angiotensinogen, renin, ACE1, and AT1a mRNA and protein expression in the cerebral cortex and hypothalamus, an increase of the plasma concentrations of renin, Ang II, corticosterone, and TBARS, as well as a decrease in plasma SOD and GSH-Px activities. Systolic blood pressure increase was suppressed by denervation of the RSNS or treatment with Captopril or Tempol. Interestingly, denervation or Tempol treatment both decreased main RAS components not only in the circulatory system, but also in the central nervous system. In addition, decreased antioxidant levels and increased TBARS and corticosterone levels were also partially restored by denervation or treatment with Tempol or Captopril. RAS, RSNS and oxidative stress reciprocally potentiate to play important roles in the development of foot shock-induced hypertension.

  2. Polyphenol-Rich Blackcurrant Juice Prevents Endothelial Dysfunction in the Mesenteric Artery of Cirrhotic Rats with Portal Hypertension: Role of Oxidative Stress and the Angiotensin System.

    Science.gov (United States)

    Rashid, Sherzad; Idris-Khodja, Noureddine; Auger, Cyril; Kevers, Claire; Pincemail, Joël; Alhosin, Mahmoud; Boehm, Nelly; Oswald-Mammosser, Monique; Schini-Kerth, Valérie B

    2018-04-01

    Chronic liver diseases with portal hypertension are characterized by a progressive vasodilatation, endothelial dysfunction, and NADPH oxidase-derived vascular oxidative stress, which have been suggested to involve the angiotensin system. This study evaluated the possibility that oral intake of polyphenol-rich blackcurrant juice (PRBJ), a rich natural source of antioxidants, prevents endothelial dysfunction in a rat model of cirrhosis induced by chronic bile duct ligation (CBDL), and, if so, determined the underlying mechanism. Male Wistar rats received either control drinking water or water containing 60 mg/kg gallic acid equivalents of PRBJ for 3 weeks before undergoing surgery with CBDL or sham surgery. After 4 weeks, vascular reactivity was assessed in mesenteric artery rings using organ chambers. Both the acetylcholine-induced nitric oxide (NO)- and endothelium-dependent hyperpolarization (EDH)-mediated relaxations in mesenteric artery rings were significantly reduced in CBDL rats compared to sham rats. An increased level of oxidative stress and expression of NADPH oxidase subunits, COX-2, NOS, and of the vascular angiotensin system are observed in arterial sections in the CBDL group. Chronic intake of PRBJ prevented the CBDL-induced impaired EDH-mediated relaxation, oxidative stress, and expression of the different target proteins in the arterial wall. In addition, PRBJ prevented the CBDL-induced increase in the plasma level of proinflammatory cytokines (interleukin [IL]-1α, monocyte chemotactic protein 1, and tumor necrosis factor α) and the decrease of the anti-inflammatory cytokine, IL-4. Altogether, these observations indicate that regular ingestion of PRBJ prevents the CBDL-induced endothelial dysfunction in the mesenteric artery most likely by normalizing the level of vascular oxidative stress and the angiotensin system.

  3. Emerging Role of Angiotensin Type 2 Receptor (AT2R)/Akt/NO Pathway in Vascular Smooth Muscle Cell in the Hyperthyroidism

    Science.gov (United States)

    Carrillo-Sepúlveda, Maria Alícia; Ceravolo, Graziela S.; Furstenau, Cristina R.; Monteiro, Priscilla de Souza; Bruno-Fortes, Zuleica; Carvalho, Maria Helena; Laurindo, Francisco R.; Tostes, Rita C.; Webb, R. Clinton; Barreto-Chaves, Maria Luiza M.

    2013-01-01

    Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium. PMID:23637941

  4. Emerging role of angiotensin type 2 receptor (AT2R/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism.

    Directory of Open Access Journals (Sweden)

    Maria Alícia Carrillo-Sepúlveda

    Full Text Available Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3 that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R, a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper. These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC. Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII, which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.

  5. Angiotensin II-induced arterial thickening, fibrosis and stiffening involves elevated arginase function.

    Directory of Open Access Journals (Sweden)

    Anil Bhatta

    Full Text Available Arterial stiffness (AS is an independent risk factor for cardiovascular morbidity/mortality. Smooth muscle cell (SMC proliferation and increased collagen synthesis are key features in development of AS. Arginase (ARG, an enzyme implicated in many cardiovascular diseases, can compete with nitric oxide (NO synthase for their common substrate, L-arginine. Increased arginase can also provide ornithine for synthesis of polyamines via ornithine decarboxylase (ODC and proline/collagen via ornithine aminotransferase (OAT, leading to vascular cell proliferation and collagen formation, respectively. We hypothesized that elevated arginase activity is involved in Ang II-induced arterial thickening, fibrosis, and stiffness and that limiting its activity can prevent these changes.We tested this by studies in mice lacking one copy of the ARG1 gene that were treated with angiotensin II (Ang II, 4 weeks. Studies were also performed in rat aortic Ang II-treated SMC. In WT mice treated with Ang II, we observed aortic stiffening (pulse wave velocity and aortic and coronary fibrosis and thickening that were associated with increases in ARG1 and ODC expression/activity, proliferating cell nuclear antigen, hydroxyproline levels, and collagen 1 protein expression. ARG1 deletion prevented each of these alterations. Furthermore, exposure of SMC to Ang II (1 μM, 48 hrs increased ARG1 expression, ARG activity, ODC mRNA and activity, cell proliferation, collagen 1 protein expression and hydroxyproline content. Treatment with ABH prevented these changes.Arginase 1 is crucially involved in Ang II-induced SMC proliferation and arterial fibrosis and stiffness and represents a promising therapeutic target.

  6. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough.

    Science.gov (United States)

    Grilo, Antonio; Sáez-Rosas, María P; Santos-Morano, Juan; Sánchez, Elena; Moreno-Rey, Concha; Real, Luis M; Ramírez-Lorca, Reposo; Sáez, María E

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) are the first selected drugs for hypertensive patients because of its protective properties against heart and kidney diseases. Persistent cough is a common adverse reaction associated with ACEi, which can bind to the treatment cessation, but its etiology remains an unresolved issue. The most accepted mechanism is that the inhibition of ACEi increases kinins levels, resulting in the activation of proinflammatory mechanisms and nitric oxide generation. However, relatively little is known about the genetic susceptibility to ACEi-induced cough in hypertensive patients. We carried out a monogenic association analysis of 39 polymorphisms and haplotypes in genes encoding key proteins related to ACEi activity with the occurrence of ACEi-induced cough. We also carried out a digenic association analysis and investigated the existence of epistatic interactions between the analyzed polymorphisms using a logistic regression procedure. Finally, we investigated the predictive value of the identified associations for ACEi-induced cough. We found that genetic polymorphisms in MME [rs2016848, P=0.002, odds ratio (OR)=1.795], BDKRB2 (rs8012552, P=0.012, OR=1.609), PTGER3 (rs11209716, P=0.002, OR=0.565), and ACE (rs4344) genes are associated with ACEi-related cough. For the latter, the effect is sex specific, having a protective effect in males (P=0.027, OR=0.560) and increasing the risk in females (P=0.031, OR=1.847). In addition, genetic interactions between peptidases involved in kinins levels (CPN1 and XPNPEP1) and proteins related to prostaglandin metabolism (PTGIS and PTGIR) strongly modify the risk of ACEi-induced cough presentation (0.102≤OR≤0.384 for protective combinations and 2.732≤OR≤7.216 for risk combinations). These results are consistent with the hypothesis that the mechanism of cough is related to the accumulation of bradykinin, substance P, and prostaglandins.

  7. Heme oxygenase-1 gene expression modulates angiotensin II-induced increase in blood pressure.

    Science.gov (United States)

    Yang, Liming; Quan, Shuo; Nasjletti, Alberto; Laniado-Schwartzman, Michal; Abraham, Nader G

    2004-06-01

    The heme-heme oxygenase (HO) system has been implicated in the regulation of vascular reactivity and blood pressure. This study examines the notion that overexpression of HO decreases pressor responsiveness to angiotensin II (Ang II). Five-day-old Sprague-Dawley rats received an intraleft ventricular injection of approximately 5x10(9) cfu/mL of retroviruses containing human HO-1 sense (LSN-HHO-1), rat HO-1 antisense (LSN-RHO-1-AS), or control retrovirus (LXSN). Three months later, rats were instrumented with femoral arterial and venous catheters for mean arterial pressure (MAP) determination and Ang II administration, respectively. Rats injected with LSN-HHO-1, but not with LXSN, expressed human HO-1 mRNA and protein in several tissues. BP increased with administration of Ang II in rats expressing and not expressing human HO-1. However, the Ang II-induced pressor response (mm Hg) in LSN-HHO-1 rats (16+/-3, 27+/-3, and 38+/-3 at 0.5, 2, and 10 ng) was surpassed (PHHO-1 rats with the HO inhibitor tin mesoporphyrin (SnMP) enhanced (P<0.05) the Ang II-induced pressor response to a level not different from that observed in LXSN rats. Rats injected with LSN-RHO-1-AS showed a decrease in renal HO-1 protein expression and HO activity relative to control LXSN rats. Administration of Ang II (0.1 to 2 ng) caused small (4 to 5 mm Hg) but significant increases in MAP in rats injected with LSN-RHO-1-AS (P<0.05) compared with rats injected with LXSN. These data demonstrate that overexpression of HO-1 brings about a reduction in pressor responsiveness to Ang II, which is most likely due to increased generation of an HO-1 product, presumably CO, with the ability to inhibit vascular reactivity to constrictor stimuli.

  8. Contribution to the study of proteins and peptides structure by hydrogen isotopic exchange

    International Nuclear Information System (INIS)

    Nabedryk-Viala, Eliane.

    1978-01-01

    Development of hydrogen exchange measurement methods to study the structure and the molecular interaction of globular protein molecules in aqueous solution (ribonuclease A, cytochrome c, coupling factors of chloroplasts), in peptide hormones in trifluoroethanol solution (angiotensin II, corticotropin) and in proteins of membranes (rhodopsin) [fr

  9. Predominance of AT1 Blockade Over Mas–Mediated Angiotensin-(1–7) Mechanisms in the Regulation of Blood Pressure and Renin–Angiotensin System in mRen2.Lewis Rats

    Science.gov (United States)

    2013-01-01

    BACKGROUND We investigated whether the antihypertensive actions of the angiotensin II (Ang II) receptor (AT1-R) blocker, olmesartan medoxomil, may in part be mediated by increased Ang-(1–7) in the absence of significant changes in plasma Ang II. METHODS mRen2.Lewis congenic hypertensive rats were administered either a vehicle (n = 14) or olmesartan (0.5mg/kg/day; n = 14) by osmotic minipumps. Two weeks later, rats from both groups were further randomized to receive either the mas receptor antagonist A-779 (0.5mg/kg/day; n = 7 per group) or its vehicle (n = 7 per group) for the next 4 weeks. Blood pressure was monitored by telemetry, and circulating and tissue components of the renin–angiotensin system (RAS) were measured at the completion of the experiments. RESULTS Antihypertensive effects of olmesartan were associated with an increase in plasma renin concentration, plasma Ang I, Ang II, and Ang-(1–7), whereas serum aldosterone levels and kidney Ang II content were reduced. Preserved Ang-(1–7) content in kidneys was associated with increases of ACE2 protein but not activity and no changes on serum and kidney ACE activity. There was no change in cardiac peptide levels after olmesartan treatment. The antihypertensive effects of olmesartan were not altered by concomitant administration of the Ang-(1–7) receptor antagonist except for a mild further increase in plasma renin concentration. CONCLUSIONS Our study highlights the independent regulation of RAS among plasma, heart, and kidney tissue in response to AT1-R blockade. Ang-(1–7) through the mas receptor does not mediate long-term effects of olmesartan besides counterbalancing renin release in response to AT1-R blockade. PMID:23459599

  10. The Impact of Age-Related Dysregulation of the Angiotensin System on Mitochondrial Redox Balance

    Directory of Open Access Journals (Sweden)

    Ramya eVajapey

    2014-11-01

    Full Text Available Aging is associated with the accumulation of various deleterious changes in cells. According to the free radical and mitochondrial theory of aging, mitochondria initiate most of the deleterious changes in aging and govern life span. The failure of mitochondrial reduction-oxidation (redox homeostasis and the formation of excessive free radicals are tightly linked to dysregulation in the Renin Angiotensin System (RAS. A main rate-controlling step in RAS is renin, an enzyme that hydrolyzes angiotensinogen to generate angiotensin I. Angiotensin I is further converted to Angiotensin II (Ang II by angiotensin-converting enzyme (ACE. Ang II binds with equal affinity to two main angiotensin receptors—type 1 (AT1R and type 2 (AT2R. The binding of Ang II to AT1R activates NADPH oxidase, which leads to increased generation of cytoplasmic reactive oxygen species (ROS. This Ang II-AT1R–NADPH-ROS signal triggers the opening of mitochondrial KATP channels and mitochondrial ROS production in a positive feedback loop. Furthermore, RAS has been implicated in the decrease of many of ROS scavenging enzymes, thereby leading to detrimental levels of free radicals in the cell.AT2R is less understood, but evidence supports an anti-oxidative and mitochondria-protective function for AT2R. The overlap between age related changes in RAS and mitochondria, and the consequences of this overlap on age-related diseases are quite complex. RAS dysregulation has been implicated in many pathological conditions due to its contribution to mitochondrial dysfunction. Decreased age-related, renal and cardiac mitochondrial dysfunction was seen in patients treated with angiotensin receptor blockers. The aim of this review is to: (a report the most recent information elucidating the role of RAS in mitochondrial redox hemostasis and (b discuss the effect of age-related activation of RAS on generation of free radicals.

  11. Differential clinical profile of candesartan compared to other angiotensin receptor blockers

    Directory of Open Access Journals (Sweden)

    Zimlichman R

    2011-12-01

    Full Text Available Relu Cernes1,2, Margarita Mashavi1,3, Reuven Zimlichman1,31The Brunner Institute for Cardiovascular Research, Wolfson Medical Center and Tel Aviv University, Tel Aviv, Israel; 2Department of Nephrology, Wolfson Medical Center, Holon, Israel; 3Department of Medicine, Wolfson Medical Center, Holon, IsraelAbstract: The advantages of blood pressure (BP control on the risks of heart failure and stroke are well established. The renin-angiotensin system plays an important role in volume homeostasis and BP regulation and is a target for several groups of antihypertensive drugs. Angiotensin II receptor blockers represent a major class of antihypertensive compounds. Candesartan cilexetil is an angiotensin II type 1 (AT[1] receptor antagonist (angiotensin receptor blocker [ARB] that inhibits the actions of angiotensin II on the renin-angiotensin-aldosterone system. Oral candesartan 8–32 mg once daily is recommended for the treatment of adult patients with hypertension. Clinical trials have demonstrated that candesartan cilexetil is an effective agent in reducing the risk of cardiovascular mortality, stroke, heart failure, arterial stiffness, renal failure, retinopathy, and migraine in different populations of adult patients including patients with coexisting type 2 diabetes, metabolic syndrome, or kidney impairment. Clinical evidence confirmed that candesartan cilexetil provides better antihypertensive efficacy than losartan and is at least as effective as telmisartan and valsartan. Candesartan cilexetil, one of the current market leaders in BP treatment, is a highly selective compound with high potency, a long duration of action, and a tolerability profile similar to placebo. The most important and recent data from clinical trials regarding candesartan cilexetil will be reviewed in this article.Keywords: angiotensin receptor blockers, candesartan, candesartan cilexetil, clinical trials, efficacy studies, safety, blood pressure

  12. Can intradermal administration of angiotensin II influence human heat loss responses during whole body heat stress?

    Science.gov (United States)

    Fujii, Naoto; Meade, Robert D; Paull, Gabrielle; McGinn, Ryan; Foudil-bey, Imane; Akbari, Pegah; Kenny, Glen P

    2015-05-01

    It is unclear if angiotensin II, which can increase the production of reactive oxygen species (oxidative stress), modulates heat loss responses of cutaneous blood flow and sweating. We tested the hypothesis that angiotensin II-induced increases in oxidative stress impair cutaneous perfusion and sweating during rest and exercise in the heat. Eleven young (24 ± 4 yr) healthy adults performed two 30-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C). The first and second exercises were followed by a 20- and 40-min recovery. Four microdialysis fibers were placed in the forearm skin for continuous administration of either: 1) lactated Ringer (control), 2) 10 μM angiotensin II, 3) 10 mM ascorbate (an antioxidant), or 4) a combination of 10 μM angiotensin II + 10 mM ascorbate. Cutaneous vascular conductance (CVC; laser-Doppler perfusion units/mean arterial pressure) and sweating (ventilated capsule) were evaluated at each skin site. Compared with control, angiotensin II reduced both CVC and sweating at baseline resting and during each recovery in the heat (all P 0.05). When ascorbate was coinfused with angiotensin II, the effect of angiotensin II on sweating was abolished (all P > 0.05); however, its effect on CVC at baseline resting and during each recovery remained intact (all P stress, while it impairs sweating through increasing oxidative stress during exposure to an ambient heat stress before and following exercise. Copyright © 2015 the American Physiological Society.

  13. Deficiency of Nox2 prevents angiotensin II-induced inward remodeling in cerebral arterioles

    Directory of Open Access Journals (Sweden)

    Siu-Lung eChan

    2013-06-01

    Full Text Available Angiotensin II is an important determinant of inward remodeling in cerebral arterioles. Many of the vascular effects of angiotensin II are mediated by reactive oxygen species generated from homologues of NADPH oxidase with Nox2 predominating in small arteries and arterioles. Therefore, we tested the hypothesis that superoxide generated by Nox2 plays a role in angiotensin II-induced cerebral arteriolar remodeling. We examined Nox2-deficient and wild-type mice in which a pressor or a non-pressor dose of angiotensin II (1000 or 200 ng/kg/day or saline was infused for 4 weeks via osmotic minipumps. Systolic arterial pressure was measured by a tail-cuff method. Pressure and diameter of cerebral arterioles were measured through an open cranial window in anesthetized mice. Cross-sectional area (by histology and superoxide level (by hydroethidine staining of cerebral arterioles were determined ex vivo. The pressor, but not the non-pressor, dose of angiotensin II significantly increased systolic arterial pressure in both wild-type and Nox2-deficient mice. Both doses of angiotensin II increased superoxide levels and significantly reduced external diameter in maximally dilated cerebral arterioles in wild-type mice. Increased superoxide and inward remodeling were prevented in Nox2-deficient mice. Moreover, only the pressor dose of AngII increased cross-sectional area of arteriolar wall in wild-type mice and was prevented in Nox2-deficient mice. In conclusion, superoxide derived from Nox2-containing NADPH oxidase plays an important role in angiotensin II-mediated inward remodeling in cerebral arterioles. This effect appears to be independent of pressure and different from that of hypertrophy.

  14. Angiotensin-(1-7): A Novel Peptide to Treat Hypertension and Nephropathy in Diabetes?

    Science.gov (United States)

    Padda, Ranjit Singh; Shi, Yixuan; Lo, Chao-Sheng; Zhang, Shao-Ling; Chan, John S D

    2015-10-14

    The renin-angiotensin system (RAS) plays a pivotal role in mammalian homeostasis physiology. The RAS can be delineated into a classical RAS (the pressor arm) including angiotensinogen (Agt), renin, angiotensin-converting enzyme (ACE), angiotensin II (Ang II) and angiotensin type 1 receptor (AT1R), and a counterbalancing novel RAS (the depressor arm) including Agt, renin, angiotensin-converting enzyme-2 (ACE-2), angiotensin-(1-7) (Ang 1-7) and Ang 1-7 receptor (or Mas receptor (MasR)). Hyperglycemia (diabetes) induces severe tissue oxidative stress, which stimulates the pressor arm of the renal RAS axis and leads to an increase in ACE/ACE-2 ratio, with excessive formation of Ang II. There is a growing body of evidence for beneficial effects of the depressor arm of RAS (ACE-2/Ang 1-7/MasR) axis in diabetes, hypertension and several other diseased conditions. Evidence from in vitro, in vivo and clinical studies reflects anti-oxidant, anti-fibrotic, and anti-inflammatory properties of Ang 1-7. Most of the currently available therapies only target suppression of the pressor arm of RAS with angiotensin receptor blockers (ARBs) and ACE inhibitors (ACEi). However, it is time to consider simultaneous activation of the depressor arm for more effective outcomes. This review summarizes the recent updates on the protective role of Ang 1-7 in hypertension and kidney injury in diabetes, as well as the possible underlying mechanism(s) of Ang 1-7 action, suggesting that the ACE-2/Ang 1-7/MasR axis can be developed as a therapeutic target for the treatment of diabetes-induced hypertension and renal damage.

  15. Angiotensin Converting Enzyme Inhibitor Has a Protective Effect on Decompression Sickness in Rats

    Directory of Open Access Journals (Sweden)

    Aleksandra Mazur

    2018-03-01

    Full Text Available Introduction: Commercial divers, high altitude pilots, and astronauts are exposed to some inherent risk of decompression sickness (DCS, though the mechanisms that trigger are still unclear. It has been previously showed that diving may induce increased levels of serum angiotensin converting enzyme. The renin angiotensin aldosterone system (RAAS is one of the most important regulators of blood pressure and fluid volume. The purpose of the present study was to control the influence of angiotensin II on the appearance of DCS.Methods: Sprague Dawley rats have been pre-treated with inhibitor of angiotensin II receptor type 1 (losartan; 10 mg/kg, angiotensin-converting enzyme (ACE inhibitor (enalapril; 10 mg/kg, and calcium-entry blocker (nifedipine; 20 mg/kg. The experimental groups were treated for 4 weeks before exposure to hyperbaric pressure while controls were not treated. Seventy-five rats were subjected to a simulated dive at 1000 kPa absolute pressure for 45 min before starting decompression. Clinical assessment took place over a period of 60 min after surfacing. Blood samples were collected for measurements of TBARS, interleukin 6 (IL-6, angiotensin II (ANG II and ACE.Results: The diving protocol induced 60% DCS in non-treated animals. This ratio was significantly decreased after treatment with enalapril, but not other vasoactive drugs. Enalapril did not change ANG II or ACE concentration, while losartant decreased post dive level of ACE but not ANG II. None of the treatment modified the effect of diving on TBARS and IL-6 values.Conclusion: Results suggests that the rennin angiotensin system is involved in a process of triggering DCS but this has to be further investigated. However, a vasorelaxation mediated process, which potentially could increase the load of inert gas during hyperbaric exposure, and antioxidant properties were excluded by our results.

  16. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure

    DEFF Research Database (Denmark)

    McMurray, John J V; Packer, Milton; Desai, Akshay S

    2013-01-01

    and natriuresis, inhibit abnormal growth, suppress the RAAS and sympathetic nervous system, and augment parasympathetic activity. The best understood of these mediators are the natriuretic peptides which are metabolized by the enzyme neprilysin. LCZ696 belongs to a new class of drugs, the angiotensin receptor...

  17. Strain differences in angiotensin-converting enzyme and angiotensin II type I receptor expression. Possible implications for experimental chronic renal transplant failure

    NARCIS (Netherlands)

    Smit-van Oosten, A; Henning, RH; van Goor, H

    Background The Fisher to Lewis (F-L) model of renal transplantation (Rtx) is widely used. Rtx from F to L without immunosuppressive treatment results in 50% survival, whereas L to F results in survival rates similar to syngrafts. When treated with an angiotensin-converting enzyme (ACE) inhibitor or

  18. Angiotensin-converting enzyme and angiotensin II receptor subtype 2 genotypes in type 1 diabetes and severe hypoglycaemia requiring emergency treatment: a case cohort study

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik; Nielsen, Søren L; Akram, Kamran

    2009-01-01

    AIMS: In type 1 diabetes, individual susceptibility to severe hypoglycaemia is likely to be influenced by genetic factors. We have previously reported an association of the deletion (D-) allele of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D) polymorphism and the A-allele of th...

  19. High-resolution crystal structures of Drosophila melanogaster angiotensin-converting enzyme in complex with novel inhibitors and antihypertensive drugs.

    Science.gov (United States)

    Akif, Mohd; Georgiadis, Dimitris; Mahajan, Aman; Dive, Vincent; Sturrock, Edward D; Isaac, R Elwyn; Acharya, K Ravi

    2010-07-16

    Angiotensin I-converting enzyme (ACE), one of the central components of the renin-angiotensin system, is a key therapeutic target for the treatment of hypertension and cardiovascular disorders. Human somatic ACE (sACE) has two homologous domains (N and C). The N- and C-domain catalytic sites have different activities toward various substrates. Moreover, some of the undesirable side effects of the currently available and widely used ACE inhibitors may arise from their targeting both domains leading to defects in other pathways. In addition, structural studies have shown that although both these domains have much in common at the inhibitor binding site, there are significant differences and these are greater at the peptide binding sites than regions distal to the active site. As a model system, we have used an ACE homologue from Drosophila melanogaster (AnCE, a single domain protein with ACE activity) to study ACE inhibitor binding. In an extensive study, we present high-resolution structures for native AnCE and in complex with six known antihypertensive drugs, a novel C-domain sACE specific inhibitor, lisW-S, and two sACE domain-specific phosphinic peptidyl inhibitors, RXPA380 and RXP407 (i.e., nine structures). These structures show detailed binding features of the inhibitors and highlight subtle changes in the orientation of side chains at different binding pockets in the active site in comparison with the active site of N- and C-domains of sACE. This study provides information about the structure-activity relationships that could be utilized for designing new inhibitors with improved domain selectivity for sACE. 2010 Elsevier Ltd. All rights reserved.

  20. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats

    Directory of Open Access Journals (Sweden)

    Pang XF

    2015-11-01

    Full Text Available Xue-Fen Pang,1 Li-Hui Zhang,2 Feng Bai,1 Ning-Ping Wang,3 Ron E Garner,3 Robert J McKallip,4 Zhi-Qing Zhao1,3 1Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 2Department of Cardiology, Shanxi Academy of Medical Sciences and Shanxi Dayi Hospital, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China; 3Department of Basic Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA; 4Division of Basic Biomedical Sciences, Mercer University School of Medicine, Macon, GA, USA Abstract: Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II receptors and angiotensin-converting enzyme 2 (ACE2. Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1 receptor was reduced, and the Ang II type 2 (AT2 receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02% vs in the Ang II group (0.7±0.03%, P<0.05. These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was

  1. Analysis of responses to angiotensin II in the mouse

    Directory of Open Access Journals (Sweden)

    Trinity J Bivalacqua

    2001-03-01

    Full Text Available Responses to angiotensin II (Ang II were investigated in anaesthetised CD1 mice. Injections of Ang II caused dose-related increases in systemic arterial pressure that were antagonised by candesartan. Responses to Ang II were not altered by PD 123319. At the lowest dose studied (20 µg/kg i.v., the inhibitory effects of candesartan were competitive, whereas at the highest dose (100 µg/kg i.v., the dose-response curve for Ang II was shifted to the right in a non-parallel manner. The inhibitory effects of candesartan were selective and were similar in animals pretreated with enalaprilat to reduce endogenous Ang II production. Pressor responses to Ang II were not altered by propranolol, phentolamine or atropine, but were enhanced by hexamethonium. Increases in total peripheral resistance were inhibited by the AT1-receptor antagonist (ARB but were not altered by AT2-receptor, alpha- or beta-receptor antagonists. These results suggest that pressor responses to Ang II are mediated by AT 1-receptors, are buffered by the baroreceptors, are not modulated by effects on AT2receptors, and that activation of the sympathetic nervous system plays little role in mediating rapid haemodynamic responses to the peptide in anaesthetised mice.

  2. Angiotensin Receptor Blockers: Cardiovascular Protection in the Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Prakash C Deedwania

    2006-03-01

    Full Text Available It is well recognised that the metabolic syndrome, a constellation of risk factors including obesity, hypertension, insulin resistance and dyslipidaemia, is associated with an increased risk of cardiovascular complications and the development of Type 2 diabetes. Consequently, timely identification and management of all components of the metabolic syndrome is warranted. In particular, guidelines have emphasised the importance of targeting elevated blood pressure (BP and dyslipidaemia as a method of reducing global cardiovascular risk.Findings from the Valsartan Antihypertensive Long-term Use Evaluation (VALUE trial show that the angiotensin receptor blocker, valsartan, reduces cardiovascular events and the development of Type 2 diabetes in high-risk individuals. This profile is being further explored in the ongoing Nateglinide And Valsartan in Impaired Glucose Tolerance Outcomes Research (NAVIGATOR trial.Given the potential advantages to patients and physicians of tackling more than one of the components of the metabolic syndrome, antihypertensive agents such as valsartan would appear to be an important addition to the management of vulnerable patients at high risk of cardiovascular events.

  3. Stimultion by angiotensin of prostacyclin biosynthesis in rats and dogs.

    Science.gov (United States)

    Dusting, G J; Mullins, E M

    1980-01-01

    1. Stimulation of prostanoid release by angiotensins (AI and AII) in rat isolated mesenteric vasculature and in the circulation of anaesthetized dogs has been investigated by bioassay. 2. AI and AII released a PGI2-like substance into rat mesenteric effluent and arterial blood of dogs; PGE2, PGF2 alpha, or TXA2 were not detected. 3. AI stimulated PGI2 release in both systems largely as a result of its conversion to AII, since PGI2 release was much reduced after treatment with captorpril. 3. AI stimulated PGI2 release in both systems largely as a result of its conversion to AII, since PGI2 release was much reduced after treatment with captopril. 4. Intravenous AII (0.02-1.0 microgram kg-1min-1) in dogs released PGI2 mainly from the lungs since right atrial blood contained much less than arterial blood. 5. Indomethacin (1 microgram/ml) abolished AII-induced PGI2 release from the memestery preparation, but intravenous idomethacin (10 mg/kg), meclofenamate (2 mg/kg) or aspirin (100 mg/kg) did not eliminate the pulmonary source of PGI2 in dogs. These findings highlight the dangers of assuming in vivo treatment with cyclo-oxygenase inhibitors abolished biosynthesis of all prostanoids.

  4. Inhibition of tissue angiotensin converting enzyme. Quantitation by autoradiography

    International Nuclear Information System (INIS)

    Sakaguchi, K.; Chai, S.Y.; Jackson, B.; Johnston, C.I.; Mendelsohn, F.A.

    1988-01-01

    Inhibition of angiotensin converting enzyme (ACE) in serum and tissues of rats was studied after administration of lisinopril, an ACE inhibitor. Tissue ACE was assessed by quantitative in vitro autoradiography using the ACE inhibitor [ 125 I]351A, as a ligand, and serum ACE was measured by a fluorimetric method. Following oral administration of lisinopril (10 mg/kg), serum ACE activity was acutely reduced but recovered gradually over 24 hours. Four hours after lisinopril administration, ACE activity was markedly inhibited in kidney (11% of control level), adrenal (8%), duodenum (8%), and lung (33%; p less than 0.05). In contrast, ACE in testis was little altered by lisinopril (96%). In brain, ACE activity was markedly reduced 4 hours after lisinopril administration in the circumventricular organs, including the subfornical organ (16-22%) and organum vasculosum of the lamina terminalis (7%; p less than 0.05). In other areas of the brain, including the choroid plexus and caudate putamen, ACE activity was unchanged. Twenty-four hours after administration, ACE activity in peripheral tissues and the circumventricular organs of the brain had only partially recovered toward control levels, as it was still below 50% of control activity levels. These results establish that lisinopril has differential effects on inhibiting ACE in different tissues and suggest that the prolonged tissue ACE inhibition after a single oral dose of lisinopril may reflect targets involved in the hypotensive action of ACE inhibitors

  5. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II

    International Nuclear Information System (INIS)

    Sumners, C.; Shalit, S.L.; Kalberg, C.J.; Raizada, M.K.

    1987-01-01

    In this study the authors have examined the actions of angiotensin II (ANG II) on catecholamine metabolism in neuronal brain cell cultures prepared from the hypothalamus and brain stem. Neuronal cultures prepared from the brains of 1-day-old Sprague-Dawley rats exhibit specific neuronal uptake mechanisms for both norepinephrine (NE) and dopamine (DA), and also monoamine oxidase (MAO) and catechol O-methyltransferase (COMT) activity. Separate neuronal uptake sites for NE and DA were identified by using specific neuronal uptake inhibitors for each amine. In previous studies, they determined that ANG II (10 nM-1 μM) stimulates increased neuronal [ 3 H]NE uptake by acting as specific receptors. They have confirmed these results here and in addition have shown that ANG II has not significant effects on neuronal [ 3 H]DA uptake. These results suggest that the actions of ANG II are restricted to the NE transporter in neuronal cultures. It is possible that ANG II stimulates the intraneuronal metabolism of at least part of the NE that is taken up, because the peptide stimulates MAO activity, an effect mediated by specific ANG II receptors. ANG II had no effect on COMT activity in neuronal cultures. Therefore, the use of neuronal cultures of hypothalamus and brain stem they have determined that ANG II can specifically alter NE metabolism in these areas, while apparently not altering DA metabolism

  6. Role of serum angiotensin converting enzyme in sarcoidosis.

    Science.gov (United States)

    Khan, A H; Ghani, F; Khan, A; Khan, M A; Khurshid, M

    1998-05-01

    This study was conducted to determine the role of Serum Angiotensin Converting Enzyme (SACE) as a marker in the differential diagnosis of pulmonary diseases and prognosis of sarcoidosis. A retrospective analysis of 113 medical records of patients at The Aga Khan University Hospital, with laboratory investigation for SACE was performed. Among 113 patients, 51 cases were found to have sarcoidosis, 44 of them had SACE levels greater than 52 IU/L (mean ACE 104.44). SACE levels were also found elevated in other clinical conditions like tuberculosis (mean 58.64 IU/L), but the enzyme level were less (p 0.04) than those found in sarcoidosis (mean (92.97 IU/L). SACE activity was found to be considerably lower in other chronic lung diseases such as, fibrosing alveolitis (mean 43.98 IU/L), interstitial lung disease (mean 42.11 IU/L) and chronic obstructive lung disease (mean 40.85 IU/L). Twenty patients of sarcoidosis, who received steroid treatment subsequently showed a decline in the SACE levels. SACE is a useful marker in differential diagnosis as 37.2% cases of sarcoidosis compared to only 9.09% of tuberculosis had SACE levels greater than 100 IU/L. In addition, our data also suggest that serum ACE is useful for the diagnosis as well as monitoring prognosis in sarcoidosis.

  7. Epitope mapping of the domains of human angiotensin converting enzyme.

    Science.gov (United States)

    Kugaevskaya, Elena V; Kolesanova, Ekaterina F; Kozin, Sergey A; Veselovsky, Alexander V; Dedinsky, Ilya R; Elisseeva, Yulia E

    2006-06-01

    Somatic angiotensin converting enzyme (sACE), contains in its single chain two homologous domains (called N- and C-domains), each bearing a functional zinc-dependent active site. The present study aims to define the differences between two sACE domains and to localize experimentally revealed antigenic determinants (B-epitopes) in the recently determined three-dimensional structure of testicular tACE. The predicted linear antigenic determinants of human sACE were determined by peptide scanning ("PEPSCAN") approach. Essential difference was demonstrated between locations of the epitopes in the N- and C-domains. Comparison of arrangement of epitopes in the human domains with the corresponding sequences of some mammalian sACEs enabled to classify the revealed antigenic determinants as variable or conserved areas. The location of antigenic determinants with respect to various structural elements and to functionally important sites of the human sACE C-domain was estimated. The majority of antigenic sites of the C-domain were located at the irregular elements and at the boundaries of secondary structure elements. The data show structural differences between the sACE domains. The experimentally revealed antigenic determinants were in agreement with the recently determined crystal tACE structure. New potential applications are open to successfully produce mono-specific and group-specific antipeptide antibodies.

  8. Interactive Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers or Their Combination on Survival of Hemodialysis Patients

    Science.gov (United States)

    Kido, Ryo; Akizawa, Tadao; Fukagawa, Masafumi; Onishi, Yoshihiro; Yamaguchi, Takuhiro; Fukuhara, Shunichi

    2018-01-01

    Background Does the use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers individually or as a combination confer a survival benefit in hemodialysis patients? The answer to this question is yet unclear. Methods We performed a case-cohort study using data from the Mineral and Bone Disorder Outcomes Study for Japanese CKD stage 5D patients (MBD-5D), a 3-year multicenter prospective case-cohort study, including 8,229 hemodialysis patients registered from 86 facilities in Japan. All patients had secondary hyperparathyroidism, a condition defined as a parathyroid hormone level ≥180 pg/mL and/or receiving vitamin D receptor activators. We compared all-cause mortality rates between those receiving ACEI, ARB, and their combination and non-users with interaction testing. We used marginal structural Poisson regression (causal model) to estimate the causal effect and interaction adjusted for possible time-dependent confounding. Cardiovascular mortality was also evaluated. Results Among 3,762 randomly sampled subcohort patients, those taking ACEI, ARB, and their combination at baseline accounted for 4.0, 31.6, and 3.8%, respectively. Over 3 years, 1,226 all-cause and 462 cardiovascular deaths occurred. Compared to non-users, ARB-alone users had a lower all-cause mortality rate (adjusted incident rate ratio [aIRR] 0.62, 95% CI 0.50–0.76), whereas ACEI-alone users showed a statistically similar rate (aIRR 1.01, 95% CI 0.57–1.77). On the contrary, combination users had a greater mortality rate (aIRR 2.56, 95% CI 1.22–5.37), showing significant interaction (p = 0.03). Analysis for cardiovascular mortality showed similar results. Conclusion Among hemodialysis patients with secondary hyperparathyroidism, unlike ACEI use, ARB use was associated with greater survival than non-use. Conversely, combination use was associated with greater mortality. Controlled trials are warranted to verify the causality factors of these associations. PMID:29161689

  9. Natriuretic peptide receptor-C activation attenuates angiotensin II-induced enhanced oxidative stress and hyperproliferation of aortic vascular smooth muscle cells.

    Science.gov (United States)

    Madiraju, Padma; Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2018-02-07

    We showed previously that natriuretic peptide receptor-C (NPR-C) agonist, C-ANP 4-23 , attenuated the enhanced expression of Giα proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) through the inhibition of enhanced oxidative stress. Since the enhanced levels of endogenous angiotensin II (Ang II) contribute to the overexpression of Giα proteins and augmented oxidative stress in VSMC from SHR, the present study was undertaken to investigate if C-ANP 4-23 could also attenuate angiotensin II (Ang II)-induced oxidative stress and associated signaling. Ang II treatment of aortic VSMC augmented the levels of superoxide anion (O 2 - ), NADPH oxidase activity, and the expression of NADPH oxidase subunits and C-ANP 4-23 treatment attenuated all these to control levels. In addition, Ang II-induced enhanced levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyl content were also attenuated toward control levels by C-ANP 4-23 treatment. On the other hand, Ang II inhibited the levels of nitric oxide (NO) and augmented the levels of peroxynitrite (OONO - ) in VSMC which were restored to control levels by C-ANP 4-23 treatment. Furthermore, C-ANP 4-23 treatment attenuated Ang II-induced enhanced expression of Giα proteins, phosphorylation of p38, JNK, and ERK 1,2 as well as hyperproliferation of VSMC as determined by DNA synthesis, and metabolic activity. These results indicate that C-ANP 4-23 , via the activation of NPR-C, attenuates Ang II-induced enhanced nitroxidative stress, overexpression of Giα proteins, increased activation of the p38/JNK/ERK 1,2 signaling pathways, and hyperproliferation of VSMC. It may be suggested that C-ANP 4-23 could be used as a therapeutic agent in the treatment of vascular remodeling associated with hypertension and atherosclerosis.

  10. Heart Failure Therapeutics on the Basis of a Biased Ligand of the Angiotensin-2 Type 1 Receptor Rationale and Design of the BLAST-AHF Study (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure)

    NARCIS (Netherlands)

    Felker, G. Michael; Butler, Javed; Collins, Sean P.; Cotter, Gad; Davison, Beth A.; Ezekowitz, Justin A.; Filippatos, Gerasimos; Levy, Phillip D.; Metra, Marco; Ponikowski, Piotr; Soergel, David G.; Teerlink, John R.; Violin, Jonathan D.; Voors, Adriaan A.; Pang, Peter S.

    The BLAST-AHF (Biased Ligand of the Angiotensin Receptor Study in Acute Heart Failure) study is designed to test the efficacy and safety of TRV027, a novel biased ligand of the angiotensin-2 type 1 receptor, in patients with acute heart failure (AHF). AHF remains a major public health problem, and

  11. Neuroprotective Mechanisms of the ACE2-Angiotensin-(1-7)-Mas Axis in Stroke

    DEFF Research Database (Denmark)

    Bennion, Douglas M; Haltigan, Emily; Regenhardt, Robert W

    2015-01-01

    The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that desc......The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings...... that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II...... complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting....

  12. Spiral CT during pharmacoangiography with angiotensin II in patients with pancreatic disease. Technique and diagnostic efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, C.; Mihara, N.; Hosomi, N.; Inoue, E.; Fujita, M. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Diagnostic Radiology; Ohigashi, H.; Ishikawa, O. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Surgery; Nakaizumi, A. [Osaka Medical Center for Cancer and Cardiovascular Deseases (Japan). Dept. of Internal Medicine; Ishiguro, S. [Osaka Medical Center for Cancer and Cardiovascular Diseases (Japan). Dept. of Pathology

    1998-03-01

    Purpose: To compare the diagnostic efficacy of pancreatic pharmacoangiographic CT using angiotensin II with conventional angiographic CT. Material and Methods: Eighteen patients with space-occupying pancreatic disease were examined in this study. Pharmacoangiographic CT was performed with a 1-3-{mu}/6-ml solution of angiotensin II injected through a catheter into the celiac artery during spiral CT. Results: In 17 of the 18 (94%) patients, the area of pancreatic parenchymal enhancement was the same or larger at pharmacoangiographic CT than at conventional angiographic CT. The attenuation value of the pancreatic parenchyma was significantly increased at pharmacoangiographic CT (p=0.0010). Although the attenuation value of tumors was also increased on images obtained after the injection of angiotensin II, the tumor-to-pancreas contrast was significantly greater at pharmacoangiographic CT (p=0.0479). The mean differences in attenuation between tumor and pancreas at angiographic CT with and without angiotensin II were respectively 182 HU and 115 HU. Conclusion: Pharmacoangiographic CT with angiotensin II proved superior to conventional angiographic CT in the diagnosis of pancreatic disease. We therefore recommend it as a supplementary technique at the angiographic examination of patients with suspected pancreatic tumor. (orig.).

  13. Regulation of the renin–angiotensin system in coronary atherosclerosis: A review of the literature

    Directory of Open Access Journals (Sweden)

    Ramadan A Hammoud

    2008-01-01

    Full Text Available Ramadan A Hammoud, Christopher S Vaccari, Sameer H Nagamia, Bobby V KhanEmory University School of Medicine, Division of Cardiology, Grady Memorial Hospital Vascular Research Laboratory, Atlanta, Georgia, USAAbstract: Activation of the renin–angiotensin system (RAS is significant in the pathogenesis of cardiovascular disease and specifically coronary atherosclerosis. There is strong evidence that the RAS has effects on the mechanisms of action of atherosclerosis, including fibrinolytic balance, endothelial function, and plaque stability. Pharmacological inhibition of the renin angiotensin system includes angiotensin converting enzyme (ACE inhibitors, angiotensin receptor blockers (ARBs, and renin inhibitors. These agents have clinical benefits in reducing morbidity and mortality in the management of hypertension. In addition, ACE inhibitors and ARBs have shown to be effective in the management of congestive heart failure and acute myocardial infarction. This review article discusses the biochemical and molecular mechanisms involving the RAS in coronary atherosclerosis as well as the effects of RAS inhibition in clinical studies involving coronary atherosclerosis.Keywords: angiotensin II, atherosclerosis, endothelium, inflammation, vasculature

  14. Perioperative changes of serum cortisol and plasma angiotensin II levels in patients undergoing thoracotomy for malignancy

    International Nuclear Information System (INIS)

    Tian Runhua; Lun Limin; Li Yusheng; Yu Yunyun; Li Xin; Zheng Chunxi

    2006-01-01

    Objective: To investigate the perioperative changes of serum stress hormones cortisol and plasma angiotensin II in patients undergoing thoracotomy for malignancy. Methods: Serum cortisol and plasma angiotensin II levels were measured with RIA repeatedly in 35 thoracotomy patients operated for malignancy before operation, 1 h after starting operation, at the end of operation, and one day later, Heart rate and blood pressure were constantly monitored during operation. Results: The serum levels of cortisol and plasma angiotensin-II rose gradually during operation with significant differences among the measurements (P < 0. 001 -0.05), No age-difference for the measurements was observed except for a higher systolic pressure in patients over 60. Heart rates at 1 h were positively correlated with 1 h angiotensin-II levels. Heart rates at the end of operation were positively correlated with the cortisol and angiotensin-II levels at that time. Conclusion: The serum levels of these stress hormones rose significantly during the operation. Stress responses in older patients were adequate, yet the higher levels of stress hormones might bring more adverse effect in elderly people, especially cognition impairment. Smooth anaesthesia and adequate post-operative analgesia would lessen the stress effect, providing more ideal recovery, especially for the older patients. (authors)

  15. Reduced glomerular angiotensin II receptor density in diabetes mellitus in the rat: time course and mechanism

    International Nuclear Information System (INIS)

    Wilkes, B.M.

    1987-01-01

    Glomerular angiotensin II receptors are reduced in number in early diabetes mellitus, which may contribute to hyperfiltration and glomerular injury. The time course and role of the renin-angiotensin-aldosterone system in the pathogenesis of the receptor abnormality were studied in male Sprague-Dawley rats made diabetic with streptozotocin (65 mg, iv). Glomerular angiotensin II receptors were measured by Scatchard analysis; insulin, renin activity, angiotensin II, and aldosterone were measured by RIA. Diabetes mellitus was documented at 24 h by a rise in plasma glucose (vehicle-injected control, 133 +/- 4; diabetic, 482 +/- 22 mg/dl and a fall in plasma insulin (control, 53.1 +/- 5.7; diabetic, 35.6 +/- 4.0 microIU/ml. At 24 h glomerular angiotensin II receptor density was decreased by 26.5% in diabetic rats (control, 75.5 +/- 9.6 X 10(6); diabetic, 55.5 +/- 8.3 X 10(6) receptors/glomerulus. Receptor occupancy could not explain the defect, because there was reduced binding in diabetic glomeruli after pretreatment with 3 M MgCl 2 , a maneuver that caused dissociation of previously bound hormone. There was a progressive return of the receptor density toward normal over the 60 days following induction of diabetes, with diabetic glomeruli measuring 22.7%, 14.8%, and 3.7% fewer receptors than age-matched controls at 11 days, 1 month, and 2 months, respectively

  16. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism.

    Science.gov (United States)

    Kobori, H; Ichihara, A; Suzuki, H; Takenaka, T; Miyashita, Y; Hayashi, M; Saruta, T

    1997-08-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was only partially inhibited by sympathetic denervation. Radioimmunoassays and reverse transcription-polymerase chain reaction revealed increased cardiac levels of renin (33%) and angiotensin II (53%) and enhanced cardiac expression of renin mRNA (225%) in the hyperthyroid groups. These increases were unaffected by sympathetic denervation or 24-h bilateral nephrectomy. In addition, losartan and nicardipine decreased systolic blood pressure to the same extent, but only losartan caused regression of thyroxine-induced cardiac hypertrophy. These results suggest that thyroid hormone activates the cardiac renin-angiotensin system without involving the sympathetic nervous system or the circulating renin-angiotensin system; the activated renin-angiotensin system contributes to cardiac hypertrophy in hyperthyroidism.

  17. Angiotensin II receptor one (AT1) mediates dextrose induced endoplasmic reticulum stress and superoxide production in human coronary artery endothelial cells.

    Science.gov (United States)

    Haas, Michael J; Onstead-Haas, Luisa; Lee, Tracey; Torfah, Maisoon; Mooradian, Arshag D

    2016-10-01

    Renin-angiotensin-aldosterone system (RAAS) has been implicated in diabetes-related vascular complications partly through oxidative stress. To determine the role of angiotensin II receptor subtype one (AT1) in dextrose induced endoplasmic reticulum (ER) stress, another cellular stress implicated in vascular disease. Human coronary artery endothelial cells with or without AT1 receptor knock down were treated with 27.5mM dextrose for 24h in the presence of various pharmacologic blockers of RAAS and ER stress and superoxide (SO) production were measured. Transfection of cells with AT1 antisense RNA knocked down cellular AT1 by approximately 80%. The ER stress was measured using the placental alkaline phosphatase (ES-TRAP) assay and western blot analysis of glucose regulated protein 78 (GRP78), c-jun-N-terminal kinase 1 (JNK1), phospho-JNK1, eukaryotic translation initiation factor 2α (eIF2α) and phospho-eIF2α measurements. Superoxide (SO) generation was measured using the superoxide-reactive probe 2-methyl-6-(4-methoxyphenyl)-3,7-dihydroimidazo[1,2-A]pyrazin-3-one hydrochloride (MCLA) chemiluminescence. In cells with AT1 knock down, dextrose induced ER stress was significantly blunted and treatment with 27.5mM dextrose resulted in significantly smaller increase in SO production compared to 27.5mM dextrose treated and sham transfected cells. Dextrose induced ER stress was reduced with pharmacologic blockers of AT1 (losartan and candesartan) and mineralocorticoid receptor blocker (spironolactone) but not with angiotensin converting enzyme inhibitors (captopril and lisinopril). The dextrose induced SO generation was inhibited by all pharmacologic blockers of RAAS tested. The results indicate that dextrose induced ER stress and SO production in endothelial cells are mediated at least partly through AT1 receptor activation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. [The effects of renin-angiotensin system blockade on the liver steatosis in rats on long-term high-fat diet].

    Science.gov (United States)

    Chen, Ying-Hua; Yuan, Li; Chen, Yuan-Yuan; Qi, Cui-Juan

    2008-03-01

    To observe the relationship between liver steatosis in rats with long-term high-caloric and high-fat diet and the expression of angiotensinogen (AGT), uncoupling protein 2 (UCP-2) and transforming growth factor beta1 (TGFbeta1). Then angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB) drugs were given to investigate whether rennin-angiotensin system (RAS) blockade can mitigate the liver steatosis and to probe its mechanisms. Forty male Wistar rats were divided into normal control group (NC group, n = 10), high-calorie and high-fat fed group (HF group, n = 10), ARB treated group (AR group, n = 10) and ACEI treated group (AE group, n = 10). Rats were fed with high-calorie and high-fat diet and given RAS inhibitor drugs (valsartan 40 mg/kg to the AR group and perindopril 4 mg/kg to the AE group) for eight weeks. Serum TG, free fatty acids (FFAs) lever and the fat content in liver were then measured with biochemical tests; insulin resistance was evaluated with euglycemic hyperinsulinemia clamp technique, the expression of UCP-2 and TGFbeta1 in liver tissue were examined with immunohistochemical staining and AGT mRNA, UCP-2 mRNA and TGFbeta1 mRNA were tested with RT-PCR. With the administration of RAS inhibitor drugs, following changes were observed. The levels of TG and FFAs and the fat content in liver decreased (P liver steatosis, inflammation and fibrosis were mitigated. The levels of UCP-2 decreased by 36.5% (P liver injury of long term high-fat fed rats and have a protective effect on liver. The mechanism may be associated with the effects of improved insulin resistance, the interaction within RAS and the down-regulation of UCP-2 and TGFbeta1 in liver tissue.

  19. Expression and role of the angiotensin II AT2 receptor in human prostate tissue: in search of a new therapeutic option for prostate cancer.

    Science.gov (United States)

    Guimond, Marie-Odile; Battista, Marie-Claude; Nikjouitavabi, Fatemeh; Carmel, Maude; Barres, Véronique; Doueik, Alexandre A; Fazli, Ladan; Gleave, Martin; Sabbagh, Robert; Gallo-Payet, Nicole

    2013-07-01

    Evidence shows that angiotensin II type 1 receptor (AT1R) blockers may be associated with improved outcome in prostate cancer patients. It has been proposed that part of this effect could be due to angiotensin II type 2 receptor (AT2R) activation, the only active angiotensin II receptor in this situation. This study aimed to characterize the localization and expression of AT2R in prostate tissues and to assess its role on cell morphology and number in prostatic epithelial cells in primary culture. AT2R and its AT2R-interacting protein (ATIP) expression were assessed on non-tumoral and tumoral human prostate using tissue microarray immunohistochemistry, binding assay, and Western blotting. AT2R effect on cell number was measured in primary cultures of epithelial cells from non-tumoral human prostate. AT2R was localized at the level of the acinar epithelial layer and its expression decreased in cancers with a Gleason score 6 or higher. In contrast, ATIP expression increased with cancer progression. Treatment of primary cell cultures from non-tumoral prostate tissues with C21/M024, a selective AT2R agonist, alone or in co-incubation with losartan, an AT1R antagonist, significantly decreased cell number compared to untreated cells. AT2R and ATIP are present in non-tumoral human prostate tissues and differentially regulated according to Gleason score. The decrease in non-tumoral prostate cell number upon selective AT2R stimulation suggests that AT2R may have a protective role against prostate cancer development. Treatment with a selective AT2R agonist could represent a new approach for prostate cancer prevention or for patients on active surveillance. Copyright © 2013 Wiley Periodicals, Inc.

  20. Fenofibrate Therapy Restores Antioxidant Protection and Improves Myocardial Insulin Resistance in a Rat Model of Metabolic Syndrome and Myocardial Ischemia: The Role of Angiotensin II

    Directory of Open Access Journals (Sweden)

    Luz Ibarra-Lara

    2016-12-01

    Full Text Available Renin-angiotensin system (RAS activation promotes oxidative stress which increases the risk of cardiac dysfunction in metabolic syndrome (MetS and favors local insulin resistance. Fibrates regulate RAS improving MetS, type-2 diabetes and cardiovascular diseases. We studied the effect of fenofibrate treatment on the myocardic signaling pathway of Angiotensin II (Ang II/Angiotensin II type 1 receptor (AT1 and its relationship with oxidative stress and myocardial insulin resistance in MetS rats under heart ischemia. Control and MetS rats were assigned to the following groups: (a sham; (b vehicle-treated myocardial infarction (MI (MI-V; and (c fenofibrate-treated myocardial infarction (MI-F. Treatment with fenofibrate significantly reduced triglycerides, non-high density lipoprotein cholesterol (non-HDL-C, insulin levels and insulin resistance index (HOMA-IR in MetS animals. MetS and MI increased Ang II concentration and AT1 expression, favored myocardial oxidative stress (high levels of malondialdehyde, overexpression of nicotinamide adenine dinucleotide phosphate (NADPH oxidase 4 (NOX4, decreased total antioxidant capacity and diminished expression of superoxide dismutase (SOD1, SOD2 and catalase and inhibited expression of the insulin signaling cascade: phosphatidylinositol 3-kinase (PI3K/protein kinase B (PkB, also known as Akt/Glut-4/endothelial nitric oxide synthase (eNOS. In conclusion, fenofibrate treatment favors an antioxidant environment as a consequence of a reduction of the Ang II/AT1/NOX4 signaling pathway, reestablishing the cardiac insulin signaling pathway. This might optimize cardiac metabolism and improve the vasodilator function during myocardial ischemia.

  1. Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure.

    Science.gov (United States)

    Wei, Shun-Guang; Yu, Yang; Weiss, Robert M; Felder, Robert B

    2016-10-01

    We previously reported that endoplasmic reticulum (ER) stress is induced in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN) of heart failure (HF) rats and is reduced by inhibition of mitogen-activated protein kinase (MAPK) signaling. The present study further examined the relationship between brain MAPK signaling, ER stress, and sympathetic excitation in HF. Sham-operated (Sham) and HF rats received a 4-wk intracerebroventricular (ICV) infusion of vehicle (Veh) or the ER stress inhibitor tauroursodeoxycholic acid (TUDCA, 10 μg/day). Lower mRNA levels of the ER stress biomarkers GRP78, ATF6, ATF4, and XBP-1s in the SFO and PVN of TUDCA-treated HF rats validated the efficacy of the TUDCA dose. The elevated levels of phosphorylated p44/42 and p38 MAPK in SFO and PVN of Veh-treated HF rats, compared with Sham rats, were significantly reduced in TUDCA-treated HF rats as shown by Western blot and immunofluorescent staining. Plasma norepinephrine levels were higher in Veh-treated HF rats, compared with Veh-treated Sham rats, and were significantly lower in the TUDCA-treated HF rats. TUDCA-treated HF rats also had lower mRNA levels for angiotensin converting enzyme, angiotensin II type 1 receptor, tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and NF-κB p65, and a higher mRNA level of IκB-α, in the SFO and PVN than Veh-treated HF rats. These data suggest that ER stress contributes to the augmented sympathetic activity in HF by inducing MAPK signaling, thereby promoting inflammation and renin-angiotensin system activity in key cardiovascular regulatory regions of the brain.

  2. Angiotensin IV possibly acts through PKMzeta in the hippocampus to regulate cognitive memory in rats.

    Science.gov (United States)

    Chow, Lok-Hi; Tao, Pao-Luh; Chen, Yuan-Hao; Lin, Yu-Hui; Huang, Eagle Yi-Kung

    2015-10-01

    Ang IV is an endogenous peptide generated from the degradation of angiotensin II. Ang IV was found to enhance learning and memory in CNS. PKMzeta was identified to be a fragment of PKCzeta (protein kinase Czeta). Its continuous activation was demonstrated to be correlated with the formation of memory in the hippocampus. Therefore, we investigated whether PKMzeta participates in the effects of Ang IV on memory. We first examined the effect of Ang IV on non-spatial memory/cognition in modified object recognition test in rats. Our data showed that Ang IV could increase the exploration time on novel object. The co-administration of ZIP (PKMzeta inhibitor) with Ang IV significantly blocked the effect by Ang IV. The effects of Ang IV on hippocampal LTP at the CA1 region were also evaluated. Ang IV significantly increased the amplitude and slope of the EPSPs, which was consistent with other reports. Surprisingly, instead of potentiating LTP, Ang IV caused a failed maintenance of LTP. Moreover, there was no quantitative change in PKMzeta induced by Ang IV and/or ZIP after behavioral experiments. Taken together, our data re-confirmed the finding of the positive effect of Ang IV to enhance memory/cognition. The increased strength of EPSPs with Ang IV could also have certain functional relevance. Since the behavioral results suggested the involvement of PKMzeta, we hypothesized that the enhancement of memory/cognition by Ang IV may rely on an increase in PKMzeta activity. Overall, the present study provided important advances in our understanding of the action of Ang IV in the hippocampus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A ROLE OF ANGIOTENSIN-CONVERTING ENZYME IN CHRONIC OBSTRUCTIVE PULMONARY DISEASE SUMMARY

    Directory of Open Access Journals (Sweden)

    N. D. Elshin

    2017-01-01

    Full Text Available Activation of angiotensin-converting enzyme (ACE is observed in lung tissues, induced sputum (IS, and, to a lesser extent in blood serum. Vascular hypertension is noted in 40 % of patients with chronic obstructive pulmonary disease (COPD. Therefore, many COPD patients receive ACE inhibitor therapy. Studies of ACE production by specific protein levels or ACE1 gene expression may represent sufficient clinical interest in COPD and upon its treatment using hypotensive drugs.The objective of the work was to study the normal ACE1 expression in control persons and COPD patients, and to assess correlations between the АСЕ1 genotypes and clinical parameters in patients with COPD.Materials and methods. The study included 124 patients with grade II-III COPD. ACE1 activity in blood leukocytes was determined by means of qPCR using fluorescent probes. As a reference gene for data normalization, the GAPDH gene was selected. The data on gene expression were evaluated according to the ∆∆Cq method. The insertion/deletion (I/D polymorphism of the АСЕ1 gene was determined with standard PCR technique according to the amplicon length after their detecting in agarose gel.Results. We have found a significantly increased AСЕ1 gene expression among patients with COPD upon exacerbation and after treatment, compared to control group. Frequencies of I/D genotypes and АСЕ1 gene alleles did not differ significantly between total group of patients and comparison groups, thus showing no association between this polymorphism and COPD risk. In combined sample group (95 tests, the D/D genotype has shown a moderate, but significant correlation with ACE1 mRNA expression in peripheral blood leukocytes.

  4. Angiotensin II inhibits the Na+-K+ pump via PKC-dependent activation of NADPH oxidase.

    Science.gov (United States)

    White, Caroline N; Figtree, Gemma A; Liu, Chia-Chi; Garcia, Alvaro; Hamilton, Elisha J; Chia, Karin K M; Rasmussen, Helge H

    2009-04-01

    The sarcolemmal Na(+)-K(+) pump, pivotal in cardiac myocyte function, is inhibited by angiotensin II (ANG II). Since ANG II activates NADPH oxidase, we tested the hypothesis that NADPH oxidase mediates the pump inhibition. Exposure to 100 nmol/l ANG II increased superoxide-sensitive fluorescence of isolated rabbit ventricular myocytes. The increase was abolished by pegylated superoxide dismutase (SOD), by the NADPH oxidase inhibitor apocynin, and by myristolated inhibitory peptide to epsilon-protein kinase C (epsilonPKC), previously implicated in ANG II-induced Na(+)-K(+) pump inhibition. A role for epsilonPKC was also supported by an ANG II-induced increase in coimmunoprecipitation of epsilonPKC with the receptor for the activated kinase and with the cytosolic p47(phox) subunit of NADPH oxidase. ANG II decreased electrogenic Na(+)-K(+) pump current in voltage-clamped myocytes. The decrease was abolished by SOD, by the gp91ds inhibitory peptide that blocks assembly and activation of NADPH oxidase, and by epsilonPKC inhibitory peptide. Since colocalization should facilitate NADPH oxidase-dependent regulation of the Na(+)-K(+) pump, we examined whether there is physical association between the pump subunits and NADPH oxidase. The alpha(1)-subunit coimmunoprecipitated with caveolin 3 and with membrane-associated p22(phox) and cytosolic p47(phox) NADPH oxidase subunits at baseline. ANG II had no effect on alpha(1)/caveolin 3 or alpha(1)/p22(phox) interaction, but it increased alpha(1)/p47(phox) coimmunoprecipitation. We conclude that ANG II inhibits the Na(+)-K(+) pump via PKC-dependent NADPH oxidase activation.

  5. Imminent angiotensin-converting enzyme inhibitor from microbial source for cancer therapy

    Directory of Open Access Journals (Sweden)

    Lida Ebrahimi

    2017-01-01

    Full Text Available Background: Drugs targeting Angiotensin I-converting enzyme (ACE have been used broadly in cancer chemotherapy. The recent past coupled with our results demonstrates the effective use of ACE inhibitors (ACEi as anticancer agents, and they are potentially relevant in deriving new inhibitors. Methods: Bacterial strains were isolated from cow milk collected in Coimbatore, Tamil Nadu, India and plated on nutrient agar medium. The identity of the strain was ascertained by 16s rRNA gene sequencing method and was submitted to the NCBI GenBank nucleotide database. Various substrates were screened for ACEi production by the fermentation with the isolated strain. ACEi was purified by sequential steps of ethanol precipitation, ion exchange column chromatography and gel filtration column chromatography. The apparent molecular mass was determined by SDS-PAGE. The anticancer property was analyzed by studying the cytotoxicity effects of ACEi using Breast cancer MCF-7 cell lines Results: The isolate coded as BUCTL09 was selected and identified as Micrococcus luteus. Among the seven substrates, only beef extract fermented broth showed an inhibition of 79% and was reported as the best substrate. The peptide was purified and molecular mass was determined. The IC50 value of peptide was found to be 59.5 μg/ ml. The purified peptide has demonstrated to induce apoptosis of cancer cell.Conclusions: The results of this study revealed that Peptide has been determined as an active compound that inhibited the activity of ACE. These properties indicate the possibilities of the use of purified protein as a potent anticancer agent.

  6. Somatic isoform of angiotensin I-converting enzyme in the pathology of testicular germ cell tumors.

    Science.gov (United States)

    Franke, F E; Pauls, K; Kerkman, L; Steger, K; Klonisch, T; Metzger, R; Alhenc-Gelas, F; Burkhardt, E; Bergmann, M; Danilov, S M

    2000-12-01

    Retained fetal expression of angiotensin I-converting enzyme (ACE, CD143) has recently been shown in intratubular germ cell neoplasms (IGCN) and invasive germ cell tumors (GCT), suggesting the somatic isoform (sACE) as a characteristic component of neoplastic germ cells. We analyzed the distribution of sACE in 159 testicular GCT, including 87 IGCN. sACE protein was determined by immunohistochemistry (MAb CG2) on routinely formalin-fixed and paraffin-embedded tissue sections, supplemented by mRNA expression analysis using in situ hybridization. These data were compared with those obtained by germ cell/placental alkaline phosphatases (PIAP; MAbs PL8-F6 and 8A9) employing an uniform score system for the evaluation of immunoreactivity (IRS; possible values from 0 to 12). Expression of sACE and PIAP was found in all 87 analyzed IGCN (IRS > 4, median IRS of 12). Heterogeneous staining patterns were not related to the type of adjacent GCT but correlated with low expression in adjacent seminomas (P =.032 for sACE; P =.005 for PIAP). Both sACE and PIAP often showed a decreased and more heterogeneous but still moderate expression in 91 classic seminomas (median IRS of 8) and were completely absent in tumor cells of spermatocytic seminomas. Despite all similarities, we found sACE and PIAP differently regulated during GCT progression. This was documented by a well-preserved expression of either sACE or PIAP or both in all classic seminomas, low PIAP immunoreactivity in metastasis of seminomas, and completely diverging expression patterns in nonseminomatous GCT. Our findings underline the close molecular relationship between IGCN and seminoma, and suggest sACE as an appropriate marker for seminomatous differentiated tumors. HUM PATHOL 31:1466-1476. Copyright 2000 by W.B. Saunders Company

  7. Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system

    DEFF Research Database (Denmark)

    Filice, Mariacristina; Amelio, Daniela; Garofalo, Filippo

    2017-01-01

    Angiotensin II (AngII), the principal effector of the Renin-Angiotensin System (RAS), plays an important role in controlling mammalian cardiac morpho-functional remodelling. In the eel Anguilla anguilla, one month administration of AngII improves cardiac performance and influences the expression ...

  8. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S.; Krause, T.; van Geel, P. P.; Willenbrock, R.; Pagel, I.; Pinto, Y. M.; Buikema, H.; van Gilst, W. H.; Lindschau, C.; Paul, M.; Inagami, T.; Ganten, D.; Urata, H.

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT1 receptors. However, the role of myocardial AT1 receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  9. Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy

    NARCIS (Netherlands)

    Hoffmann, S; van Geel, PP; Willenbrock, R; Pagel, [No Value; Pinto, YM; Buikema, H; van Gilst, WH; Lindschau, C; Paul, M; Inagami, T; Ganten, D; Urata, H

    2001-01-01

    Angiotensin II is known to stimulate cardiac hypertrophy and contractility. Most angiotensin II effects are mediated via membrane bound AT(1) receptors. However, the role of myocardial AT(1) receptors in cardiac hypertrophy and contractility is still rarely defined. To address the hypothesis that

  10. Pharmacodynamic Impact of Carboxylesterase 1 Gene Variants in Patients with Congestive Heart Failure Treated with Angiotensin-Converting Enzyme Inhibitors

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Bie, Peter; Ferrero, Laura

    2016-01-01

    BACKGROUND: Variation in the carboxylesterase 1 gene (CES1) may contribute to the efficacy of ACEIs. Accordingly, we examined the impact of CES1 variants on plasma angiotensin II (ATII)/angiotensin I (ATI) ratio in patients with congestive heart failure (CHF) that underwent ACEI dose titrations. ...

  11. Meta-analysis of genome-wide association studies on the intolerance of angiotensin-converting enzyme inhibitors

    NARCIS (Netherlands)

    Mahmoudpour, Seyed H.; Veluchamy, Abirami; Siddiqui, Moneeza K.; Asselbergs, Folkert W.; Souverein, Patrick C.; De Keyser, Catherine E.; Hofman, Albert; Lang, Chim C.; Doney, Alexander S.F.; Stricker, Bruno H.; De Boer, Anthonius; Maitland-Van Der Zee, Anke H.; Palmer, Colin N.A.

    2017-01-01

    Objectives To identify single nucleotide polymorphisms (SNPs) associated with switching from an angiotensin-converting enzyme (ACE)-inhibitor to an angiotensin receptor blocker. Methods Two cohorts of patients starting ACE-inhibitors were identified within the Rotterdam Study in the Netherlands and

  12. Inhibition of angiotensin II-induced facilitation of sympathetic neurotransmission in the pithed rat: a comparison between losartan, irbesartan, telmisartan, and captopril

    NARCIS (Netherlands)

    Balt, J. C.; Mathy, M. J.; Pfaffendorf, M.; van Zwieten, P. A.

    2001-01-01

    Numerous studies have shown that angiotensin II enhances sympathetic nervous transmission. The objective of the present study was to quantify the inhibitory effect of the angiotensin II type 1 (AT1) receptor blockers losartan, irbesartan and telmisartan and the angiotensin converting enzyme (ACE)

  13. Angiotensin-I-Converting Enzyme (ACE Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Isuru Wijesekara

    2010-03-01

    Full Text Available Hypertension or high blood pressure is one of the major independent risk factors for cardiovascular diseases. Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE plays an important physiological role in regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, the inhibition of ACE activity is a major target in the prevention of hypertension. Recently, the search for natural ACE inhibitors as alternatives to synthetic drugs is of great interest to prevent several side effects and a number of novel compounds such as bioactive peptides, chitooligosaccharide derivatives (COS and phlorotannins have been derived from marine organisms as potential ACE inhibitors. These inhibitory derivatives can be developed as nutraceuticals and pharmaceuticals with potential to prevent hypertension. Hence, the aim of this review is to discuss the marine-derived ACE inhibitors and their future prospects as novel therapeutic drug candidates for treat hypertension.

  14. Functional interactions between 7TM receptors in the renin-angiotensin system--dimerization or crosstalk?

    DEFF Research Database (Denmark)

    Lyngsø, Christina; Erikstrup, Niels; Hansen, Jakob L

    2008-01-01

    . The importance of the RAS is clearly emphasised by the widespread use of drugs targeting this system in clinical practice. These include, renin inhibitors, angiotensin II receptor type I blockers, and inhibitors of the angiotensin converting enzyme. Some of the important effectors within the system are 7...... be important for receptor function, and in the development of cardiovascular diseases. This is very significant, since "dimers" may provide pharmacologists with novel targets for improved drug therapy. However, we know that 7TM receptors can mediate signals as monomeric units, and so far it has been very......The Renin-Angiotensin System (RAS) is important for the regulation of cardiovascular physiology, where it controls blood pressure, and salt- and water homeostasis. Dysregulation of RAS can lead to severe diseases including hypertension, diabetic nephropathy, and cardiac arrhythmia, and -failure...

  15. Targeting renin-angiotensin system in malignant hypertension in atypical hemolytic uremic syndrome

    Directory of Open Access Journals (Sweden)

    V Raghunathan

    2017-01-01

    Full Text Available Hypertension is common in hemolytic uremic syndrome (HUS and often difficult to control. Local renin-angiotensin activation is believed to be an important part of thrombotic microangiopathy, leading to a vicious cycle of progressive renal injury and intractable hypertension. This has been demonstrated in vitro via enhanced tissue factor expression on glomerular endothelial cells which is enhanced by angiotensin II. We report two pediatric cases of atypical HUS with severe refractory malignant hypertension, in which we targeted the renin-angiotensin system by using intravenous (IV enalaprilat, oral aliskiren, and oral enalapril with quick and dramatic response of blood pressure. Both drugs, aliskiren and IV enalaprilat, were effective in controlling hypertension refractory to multiple antihypertensive medications. These appear to be promising alternatives in the treatment of severe atypical HUS-induced hypertension and hypertensive emergency.

  16. Angiotensin-II type 1 receptor gene polymorphism and diabetic microangiopathy

    DEFF Research Database (Denmark)

    Tarnow, L; Cambien, Francois; Rossing, P

    1996-01-01

    with proliferative retinopathy and without diabetic retinopathy was found either: 77 (50%) / 66 (42%) / 13 (8%) vs. 42 (63%) / 22 (33%) / 3 (4%) had AA/AC/CC genotypes, respectively. CONCLUSIONS: The A1166-->C polymorphism in the angiotensin-II type 1 receptor gene does not contribute to the genetic susceptibility...... is present particularly in vascular smooth muscle cells, myocardium and the kidney. A transversion of adenine to cytosine at nucleotide position 1166 in the gene coding for the angiotensin-II type 1 receptor has been associated with hypertension in the non-diabetic population. METHODS: We studied...... the relationship between the A1166-->C polymorphism in the angiotensin-II type 1 receptor gene in patients with insulin dependent diabetes mellitus (IDDM) and diabetic nephropathy (121 men, 77 women, age 41 +/- 10 years, diabetes duration 27 +/- 8 years) and in IDDM patients with normoalbuminuria (116 men, 74...

  17. Reduction of regurgitation in aortic insufficiency by inhibition of the renin/angiotensin conversion enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Reske, S.N.; Heck, I.; Mattern, H.

    1984-10-01

    The effect of captopril-mediated afterload reduction on regurgitation was investigated in 10 patients with aortic insufficiency. Regurgitation was quantitated by the regurgitation fraction and the relation of regurgitant volume to end-diastolic volume, which were derived from gated radionuclide ventriculography. 19 patients with coronary artery disease and no evidence of valvular heart disease served as controls. In patients with coronary artery disease no significant reguration was found. In patients with aortic regurgitation the blood concentration of angiotensin I increased whereas that of angiotensin II decreased significantly after captopril-medication; thus, the conversion of angiotensin I to II was reduced to about 50% of the control value. Whereas blood pressure and heart rate did not change significantly, the regurgitation fraction and the normalized regurgitant volume were significantly reduced. The ejection fraction remained essentially unchanged. These findings suggest a favorable influence of captopril-induced afterload reduction on hemodynamics in aortic regurgitation.

  18. Radioimmunoassay of renin-angiotensin-aldosterone in patients with adrenal tumors

    International Nuclear Information System (INIS)

    Slavnov, V.N.; Yakovlev, A.A.; Yugrinov, O.G.; Gandzha, T.I.

    1983-01-01

    The results are presented of a study of the renin-angiotensin-aldosterone system in 89 patients with aldosteronoma, corticosteroma, pheochromocytoma and hypertension. Radioimmunoassay was used to measure aldosterone concentration and renin activity in the peripheral blood and blood from vena cava inferior, the renal and adrenal veins, the circadian cycle of their content and the responsiveness of the glomerular zone of the adrenal cortex and the juxtaglomerular renal system under the influence of lasix intake and the change over from a horizontal into vertical position. Patients with adrenal tumors have shown disorders of renin-angiotensin-aldosterone function. Radioimmunoassay of the renin-angiotensin-aldosterone system promotes early detection of adrenal tumors in the general population of patients with hypertension and can be used for control over therapeutic efficacy

  19. Assessment of 105 Patients with Angiotensin Converting Enzyme-Inhibitor Induced Angioedema

    DEFF Research Database (Denmark)

    Rasmussen, Eva Rye; von Buchwald, Christian; Wadelius, Mia

    2017-01-01

    Objective. To asses a cohort of 105 consecutive patients with angiotensin converting enzyme-inhibitor induced angioedema with regard to demographics, risk factors, family history of angioedema, hospitalization, airway management, outcome, and use of diagnostic codes used for the condition. Study...... gender was associated with a significantly higher risk of angiotensin converting enzyme-inhibitor induced angioedema. 6.7% had a positive family history of angioedema. Diabetes seemed to be a protective factor with regard to angioedema. 95% experienced angioedema of the head and neck. 4.7% needed...... Design. Cohort study. Methods. This was a retrospective cohort study of 105 patients with angiotensin converting enzyme-inhibitor induced angioedema in the period 1995-2014. Results. The cohort consisted of 67 females and 38 males (F : M ratio 1.8), with a mean age of 63 [range 26-86] years. Female...

  20. Molecular Mechanisms Underlying Renin-Angiotensin-Aldosterone System Mediated Regulation of BK Channels

    Directory of Open Access Journals (Sweden)

    Zhen-Ye Zhang

    2017-09-01

    Full Text Available Large-conductance calcium-activated potassium channels (BK channels belong to a family of Ca2+-sensitive voltage-dependent potassium channels and play a vital role in various physiological activities in the human body. The renin-angiotensin-aldosterone system is acknowledged as being vital in the body's hormone system and plays a fundamental role in the maintenance of water and electrolyte balance and blood pressure regulation. There is growing evidence that the renin-angiotensin-aldosterone system has profound influences on the expression and bioactivity of BK channels. In this review, we focus on the molecular mechanisms underlying the regulation of BK channels mediated by the renin-angiotensin-aldosterone system and its potential as a target for clinical drugs.

  1. The effect of an angiotensin-converting enzyme inhibitor on water and electrolyte balance in water-restricted sheep

    Directory of Open Access Journals (Sweden)

    R.A. Meintjies

    1999-07-01

    Full Text Available The importance of angiotensin II in the regulation of water and electrolyte balance in sheep is questionable. In this trial the effects of an angiotensin-converting enzyme (ACE inhibitor were quantified in sheep on restricted water intake. Comparing the phase of water restriction only with that of water restriction plus ACE inhibition, significant increases were observed during the latter phase in urine volume, sodium and potassium excretion via the urine, sodium concentration in the plasma and osmolar clearance. Urine osmolarity decreased with inhibition of angiotensin II formation while variables such as water, sodium and potassium loss via the faeces were unaffected. Most of the renal effects of ACE inhibition, except the increase in urinary potassium excretion, were explicable in terms of the established functions of angiotensin II. Furthermore, results of this trial indicate that angiotensin II has no significant effect on the intestine in regulating water and electrolyte excretion via the faeces.

  2. Identification and characterisation of the angiotensin converting enzyme-3 (ACE3 gene: a novel mammalian homologue of ACE

    Directory of Open Access Journals (Sweden)

    Phelan Anne

    2007-06-01

    Full Text Available Abstract Background Mammalian angiotensin converting enzyme (ACE plays a key role in blood pressure regulation. Although multiple ACE-like proteins exist in non-mammalian organisms, to date only one other ACE homologue, ACE2, has been identified in mammals. Results Here we report the identification and characterisation of the gene encoding a third homologue of ACE, termed ACE3, in several mammalian genomes. The ACE3 gene is located on the same chromosome downstream of the ACE gene. Multiple sequence alignment and molecular modelling have been employed to characterise the predicted ACE3 protein. In mouse, rat, cow and dog, the predicted protein has mutations in some of the critical residues involved in catalysis, including the catalytic Glu in the HEXXH zinc binding motif which is Gln, and ESTs or reverse-transcription PCR indicate that the gene is expressed. In humans, the predicted ACE3 protein has an intact HEXXH motif, but there are other deletions and insertions in the gene and no ESTs have been identified. Conclusion In the genomes of several mammalian species there is a gene that encodes a novel, single domain ACE-like protein, ACE3. In mouse, rat, cow and dog ACE3, the catalytic Glu is replaced by Gln in the putative zinc binding motif, indicating that in these species ACE3 would lack catalytic activity as a zinc metalloprotease. In humans, no evidence was found that the ACE3 gene is expressed and the presence of deletions and insertions in the sequence indicate that ACE3 is a pseudogene.

  3. Angiotensin II Removes Kidney Resistance Conferred by Ischemic Preconditioning

    Directory of Open Access Journals (Sweden)

    Hee-Seong Jang

    2014-01-01

    Full Text Available Ischemic preconditioning (IPC by ischemia/reperfusion (I/R renders resistance to the kidney. Strong IPC triggers kidney fibrosis, which is involved in angiotensin II (AngII and its type 1 receptor (AT1R signaling. Here, we investigated the role of AngII/AT1R signal pathway in the resistance of IPC kidneys to subsequent I/R injury. IPC of kidneys was generated by 30 minutes of bilateral renal ischemia and 8 days of reperfusion. Sham-operation was performed to generate control (non-IPC mice. To examine the roles of AngII and AT1R in IPC kidneys to subsequent I/R, IPC kidneys were subjected to either 30 minutes of bilateral kidney ischemia or sham-operation following treatment with AngII, losartan (AT1R blocker, or AngII plus losartan. IPC kidneys showed fibrotic changes, decreased AngII, and increased AT1R expression. I/R dramatically increased plasma creatinine concentrations in non-IPC mice, but not in IPC mice. AngII treatment in IPC mice resulted in enhanced morphological damage, oxidative stress, and inflammatory responses, with functional impairment, whereas losartan treatment reversed these effects. However, AngII treatment in non-IPC mice did not change I/R-induced injury. AngII abolished the resistance of IPC kidneys to subsequent I/R via the enhancement of oxidative stress and inflammatory responses, suggesting that the AngII/AT1R signaling pathway is associated with outcome in injury-experienced kidney.

  4. Polymorphism of angiotensin-converting enzyme gene in sarcoidosis.

    Science.gov (United States)

    Arbustini, E; Grasso, M; Leo, G; Tinelli, C; Fasani, R; Diegoli, M; Banchieri, N; Cipriani, A; Gorrini, M; Semenzato, G; Luisetti, M

    1996-02-01

    Sarcoidosis is the disease in which increased levels of serum Angiotensin-converting enzyme (sACE) are most often detected. It has recently been shown that the deletion (D) or the insertion (I) of a 250bp-DNA fragment in the ACE gene accounts for three main ACE genotypes (i.e., II, ID, and DD) and for 47% of total phenotypic variance in sACE level. The aim of our work was to investigate whether or not patients with sarcoidosis have an increased incidence of those ACE genotypes coding for highest sACE levels and to investigate whether or not sACE level in sarcoidosis is related to ACE genotypes. We studied 61 unrelated patients with sarcoidosis (test group) and 80 unrelated healthy control subjects (control group). The ACE I and D alleles were detected with polymerase chain reaction on genomic DNA. In the control group we found an ACE genotype distribution that agreed with the Hardy-Weinberg proportion. The ACE genotype distribution was not significantly different in the test group. There was no correlation between ACE genotype and roentgenologic stage of sarcoidosis. Plotting the sACE level in the control group against ACE genotype, we found a trend of increasing mean sACE value according to the order II sACE values plotted against roentgenologic stage, according to the order Stage I sACE values in sarcoidosis according to both ACE genotype and roentgenologic stage would suggest that both mechanisms play a role in determining sACE level.

  5. Increased Sensitivity to Angiotensin II is Present Postpartum in Women with History of Hypertensive Pregnancy

    Science.gov (United States)

    Saxena, Aditi R.; Karumanchi, S. Ananth; Brown, Nancy J.; Royle, Caroline M.; McElrath, Thomas F.; Seely, Ellen W.

    2010-01-01

    Pregnancies complicated by new onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear if this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high and low sodium balance. Ten women had history of hypertensive pregnancy (five with preeclampsia; five with transient hypertension of pregnancy) and 15 women had history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone and soluble fms-like tyrosine kinase 1 (sFlt-1) levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 vs. 104 mmHg and 73 vs. 65 mmHg, respectively, ppregnancy had pressor response to salt loading, demonstrated by increase in systolic blood pressure on high salt diet. They also had greater systolic pressor response (10 vs. 2 mmHg, p=0.03), greater increase in aldosterone (56.8 vs. 30.8 ng/dL, p=0.03) and increase in sFlt-1 levels (11.0 vs. -18.9 pg/mL, p=0.02) after infusion of angiotensin II in low sodium balance, compared with controls. Thus, women with history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal and sFlt-1 responses to infused angiotensin II in low sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women. PMID:20308605

  6. Increased sensitivity to angiotensin II is present postpartum in women with a history of hypertensive pregnancy.

    Science.gov (United States)

    Saxena, Aditi R; Karumanchi, S Ananth; Brown, Nancy J; Royle, Caroline M; McElrath, Thomas F; Seely, Ellen W

    2010-05-01

    Pregnancies complicated by new-onset hypertension are associated with increased sensitivity to angiotensin II, but it is unclear whether this sensitivity persists postpartum. We studied pressor response to infused angiotensin II in 25 normotensive postpartum women in both high- and low-sodium balance. Ten women had a history of hypertensive pregnancy (5 with preeclampsia; 5 with transient hypertension of pregnancy), and 15 women had a history of uncomplicated, normotensive pregnancy. Systolic and diastolic blood pressures, aldosterone, and soluble fms-like tyrosine kinase 1 levels were measured before and after angiotensin II infusion in both dietary phases. In high sodium balance, women with a history of hypertensive pregnancy were normotensive but had significantly higher systolic and diastolic blood pressures than controls (115 versus 104 mm Hg and 73 versus 65 mm Hg, respectively; Ppregnancy had a pressor response to salt loading, demonstrated by an increase in systolic blood pressure on a high-salt diet. They also had greater systolic pressor response (10 versus 2 mm Hg; P=0.03), greater increase in aldosterone (56.8 versus 30.8 ng/dL; P=0.03), and increase in soluble fms-like tyrosine kinase 1 levels (11.0 versus -18.9 pg/mL; P=0.02) after infusion of angiotensin II in low-sodium balance compared with controls. Thus, women with a history of hypertensive pregnancy demonstrated salt sensitivity of blood pressure and had increased pressor, adrenal, and soluble fms-like tyrosine kinase 1 responses to infused angiotensin II in low-sodium balance. Increased sensitivity to angiotensin II observed during pregnancy in women with hypertensive pregnancy is present postpartum; this feature may contribute to future cardiovascular risk in these women.

  7. Dual Blockade of the Renin-angiotensin-aldosterone System in Type 2 Diabetic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Yan-Huan Feng

    2016-01-01

    Full Text Available Objective: To examine the efficacy and safety of dual blockade of the renin-angiotensin-aldosterone system (RAAS among patients with type 2 diabetic kidney disease. Data Sources: We searched the major literature repositories, including the Cochrane Central Register of Controlled Trials, MEDLINE and EMBASE, for randomized clinical trials published between January 1990 and October 2015 that compared the efficacy and safety of the use of dual blockade of the RAAS versus the use of monotherapy, without applying any language restrictions. Keywords for the searches included "diabetic nephropathy," "chronic kidney disease," "chronic renal insufficiency," "diabetes mellitus," "dual therapy," "combined therapy," "dual blockade," "renin-angiotensin system," "angiotensin-converting enzyme inhibitor," "angiotensin-receptor blocker," "aldosterone blockade," "selective aldosterone blockade," "renin inhibitor," "direct renin inhibitor," "mineralocorticoid receptor blocker," etc. Study Selection: The selected articles were carefully reviewed. We excluded randomized clinical trials in which the kidney damage of patients was related to diseases other than diabetes mellitus. Results: Combination treatment with an angiotensin-converting enzyme inhibitor supplemented by an angiotensin II receptor blocking agent is expected to provide a more complete blockade of the RAAS and a better control of hypertension. However, existing literature has presented mixed results, in particular, related to patient safety. In view of this, we conducted a comprehensive literature review in order to explain the rationale for dual blockade of the RAAS, and to discuss the pros and cons. Conclusions: Despite the negative results of some recent large-scale studies, it may be immature to declare that the dual blockade is a failure because of the complex nature of the RAAS surrounding its diversified functions and utility. Further trials are warranted to study the combination therapy as an

  8. High-intensity interval training has beneficial effects on cardiac remodeling through local renin-angiotensin system modulation in mice fed high-fat or high-fructose diets.

    Science.gov (United States)

    de Oliveira Sá, Guilherme; Dos Santos Neves, Vívian; de Oliveira Fraga, Shyrlei R; Souza-Mello, Vanessa; Barbosa-da-Silva, Sandra

    2017-11-15

    HIIT (high-intensity interval training) has the potential to reduce cardiometabolic risk factors, but the effects on cardiac remodeling and local RAS (renin-angiotensin system) in mice fed high-fat or high-fructose diets still need to be fully addressed. Sixty male C57BL/6 mice (12weeks old) were randomly divided into three groups, control (C), High-fat (HF), or High-fructose diet (HRU) and were monitored for eight weeks before being submitted to the HIIT. Each group was randomly assigned to 2 subgroups, one subgroup was started on a 12-week HIIT protocol (T=trained group), while the other subgroup remained non-exercised (NT=not-trained group). HIIT reduced BM and systolic blood pressure in high-fat groups, while enhanced insulin sensitivity after high-fat or high-fructose intake. Moreover, HIIT reduced left ventricular hypertrophy in HF-T and HFRU-T. Notably, HIIT modulated key factors in the local left ventricular renin-angiotensin-system (RAS): reduced protein expression of renin, ACE (Angiotensin-converting enzyme), and (Angiotensin type 2 receptor) AT2R in HF-T and HFRU-T groups but reduced (Angiotensin type 1 receptor) AT1R protein expression only in the high-fat trained group. HIIT modulated ACE2/Ang (1-7)/Mas receptor axis. ACE2 mRNA gene expression was enhanced in HF-T and HFRU-T groups, complying with elevated Mas (Mas proto-oncogene, G protein-coupled receptor) receptor mRNA gene expression after HIIT. This study shows the effectiveness of HIIT sessions in producing improvements in insulin sensitivity and mitigating LV hypertrophy, though hypertension was controlled only in the high-fat-fed submitted to HIIT protocol. Local RAS system in the heart mediates these findings and receptor MAS seems to play a pivotal role when it comes to the amelioration of cardiac structural and functional remodeling due to HIIT. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    International Nuclear Information System (INIS)

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-01-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  10. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yu-Ming, E-mail: ykang@mail.xjtu.edu.cn [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhang, Dong-Mei [Department of Physiology, Dalian Medical University, Dalian 116044 (China); Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Suo, Yu-Ping [Department of Obstetrics and Gynecology, Shanxi Provincial People' s Hospital, Taiyuan 030012 (China); Yue, Li-Ying [Department of Physiology and Pathophysiology, Xi' an Jiaotong University Cardiovascular Research Center, Xi' an Jiaotong University School of Medicine, Xi' an 710061 (China); Zhu, Guo-Qing [Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029 (China); Qin, Da-Nian, E-mail: dnqin@stu.edu.cn [Department of Physiology, Shantou University Medical College, Shantou 515041 (China)

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  11. Different angiotensin-converting enzyme inhibitors have similar clinical efficacy after myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, Morten L; Gislason, Gunnar H; Køber, Lars

    2008-01-01

    What is already known about this subject: Treatment with an angiotensin-converting enzyme (ACE) inhibitor benefits many patients with cardiovascular disease. ACE inhibitors are generally assumed to be equally effective, but this has never been fully verified in clinical trials. What this study adds...... important and not which ACE inhibitor is used. AIM: Therapy with angiotensin-converting enzyme (ACE) inhibitors is common after myocardial infarction (MI). Given the lack of randomized trials comparing different ACE inhibitors, the association among ACE inhibitors after MI in risk for mortality...

  12. ANALYSIS OF ANGIOTENSIN CONVERTING ENZYME (ACE GENE INSERTION/DELETION(I/DPOLYMORPHISM IN MIGRAINE

    Directory of Open Access Journals (Sweden)

    Saime Sezer

    2013-03-01

    In patient groups DD genotype frequency was 35.0%, ID genotype frequency was 45.5% and II genotype frequency 19.5% (0.322. Allelic frequencies was detected 57.75% for D allele, 42.25% for I allele in patients. There were no significant differences in genotype/allele frequencies of angiotensin converting enzyme gene polymorphism between patients with migraine and controls (p=0.474. Our results show that I/D polymorphism of angiotensin converting enzyme gene is not a risk factor for migraine. [J Contemp Med 2013; 3(1.000: 7-11

  13. Combined Angiotensin Receptor Modulation in the Management of Cardio-Metabolic Disorders

    DEFF Research Database (Denmark)

    Paulis, Ludovit; Foulquier, Sébastien; Namsolleck, Pawel

    2016-01-01

    Cardiovascular and metabolic disorders, such as hypertension, insulin resistance, dyslipidemia or obesity are linked with chronic low-grade inflammation and dysregulation of the renin-angiotensin system (RAS). Consequently, RAS inhibition by ACE inhibitors or angiotensin AT1 receptor (AT1R...... blockade abolishes the AT1R-linked RAS almost completely with subsequent risk of hypotension and hypotension-related events, i.e. syncope or renal dysfunction. Such complications might be especially prominent in patients with renal impairment or patients with isolated systolic hypertension and normal...

  14. The Relevance of the Renin-Angiotensin System in the Development of Drugs to Combat Preeclampsia

    Directory of Open Access Journals (Sweden)

    Norikazu Ueki

    2015-01-01

    Full Text Available Preeclampsia is a hypertensive disorder that occurs during pregnancy. It has an unknown etiology and affects approximately 5–8% of pregnancies worldwide. The pathophysiology of preeclampsia is not yet known, and preeclampsia has been called “a disease of theories.” The central symptom of preeclampsia is hypertension. However, the etiology of the hypertension is unknown. In this review, we analyze the molecular mechanisms of preeclampsia with a particular focus on the pathogenesis of the hypertension in preeclampsia and its association with the renin-angiotensin system. In addition, we propose potential alternative strategies to target the renin-angiotensin system, which is enhanced during pregnancy.

  15. Identification and molecular docking study of novel angiotensin-converting enzyme inhibitory peptides from Salmo salar using in silico methods.

    Science.gov (United States)

    Yu, Zhipeng; Chen, Yang; Zhao, Wenzhu; Li, Jianrong; Liu, Jingbo; Chen, Feng

    2018-01-25

    In order to circumvent some challenges of the classical approach, the in silico method has been applied to the discovery of angiotensin-converting enzyme (ACE) inhibitory peptides from food proteins. In this study, some convenient and efficient in silico tools were utilized to identify novel ACE inhibitory peptides from Salmo salar. Collagen from Salmo salar was digested in silico into hundreds of peptides. Results revealed that tetrapeptides PGAR and IGPR showed potent ACE inhibitory activity, with IC 50 values of 0.598 ± 0.12 and 0.43 ± 0.09 mmol L -1 , respectively. The molecular docking result showed that PGAR and IGPR interact with ACE mostly via hydrogen bonds and attractive charge. Peptide IGPR interacts with Zn + at the ACE active site, showing high inhibitory activity. Interaction with Zn + in ACE may lead to higher inhibitory activity of peptides, and Pi interactions may promote the effect of peptides on ACE. The in silico method can be an effective method to predict potent ACE inhibitory peptides from food proteins. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. Angiotensin I converting enzyme inhibitory activity and antihypertensive effect in spontaneously hypertensive rats of cobia (Rachycentron canadum) head papain hydrolysate.

    Science.gov (United States)

    Yang, Ping; Jiang, Yuchuan; Hong, Pengzhi; Cao, Wenhong

    2013-06-01

    Cobia head protein hydrolysate (CHPH) with angiotensin I converting enzyme (ACE) inhibitory activity was prepared with papain. The 3 kDa ultrafiltration filtrate CHPH-IV of the hydrolysate exerted a potent ACE inhibitory activity with IC50 being 0.24 mg/mL. The fractions with molecular weight located between 1749 Da and 173 Da represented up 66.96% of CHPH-IV, and those between 494 Da and 173 Da represented up 31.37% of CHPH-IV. It was found that the ACE inhibitory activity of CHPH-IV was intensified from IC50 0.24 mg/mL to 0.17 mg/mL after incubation with gastrointestinal proteases. The CHPH-IV significantly decreased the systolic blood pressure in a dose-dependent manner after oral administration to spontaneously hypertensive rats (SHR) at dose of 150 mg/kg, 600 mg/kg and 1200 mg/kg body weight. These results suggested that CHPH-IV from cobia head protein hydrolysate by papain could serve as a source of peptides with antihypertensive activity in functional food industry.

  17. The role of glycosylation and domain interactions in the thermal stability of human angiotensin-converting enzyme.

    Science.gov (United States)

    O'Neill, Hester G; Redelinghuys, Pierre; Schwager, Sylva L U; Sturrock, Edward D

    2008-09-01

    The N and C domains of somatic angiotensin-converting enzyme (sACE) differ in terms of their substrate specificity, inhibitor profiling, chloride dependency and thermal stability. The C domain is thermally less stable than sACE or the N domain. Since both domains are heavily glycosylated, the effect of glycosylation on their thermal stability was investigated by assessing their catalytic and physicochemical properties. Testis ACE (tACE) expressed in mammalian cells, mammalian cells in the presence of a glucosidase inhibitor and insect cells yielded proteins with altered catalytic and physicochemical properties, indicating that the more complex glycans confer greater thermal stabilization. Furthermore, a decrease in tACE and N-domain N-glycans using site-directed mutagenesis decreased their thermal stability, suggesting that certain N-glycans have an important effect on the protein's thermodynamic properties. Evaluation of the thermal stability of sACE domain swopover and domain duplication mutants, together with sACE expressed in insect cells, showed that the C domain contained in sACE is less dependent on glycosylation for thermal stabilization than a single C domain, indicating that stabilizing interactions between the two domains contribute to the thermal stability of sACE and are decreased in a C-domain-duplicating mutant.

  18. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    International Nuclear Information System (INIS)

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-01-01

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease

  19. In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate.

    Science.gov (United States)

    So, Pamela Berilyn T; Rubio, Peter; Lirio, Stephen; Macabeo, Allan Patrick; Huang, Hsi-Ya; Corpuz, Mary Jho-Anne T; Villaflores, Oliver B

    2016-09-01

    The anti-angiotensin I converting enzyme activity of box jellyfish, Chiropsalmus quadrigatus Haeckel venom hydrolysate was studied. The venom extract was obtained by centrifugation and ultrasonication. Protein concentration of 12.99 μg/mL was determined using Bradford assay. The pepsin and papain hydrolysate was tested for its toxicity by Limit test following the OECD Guideline 425 using 5 female Sprague-Dawley rats. Results showed that the hydrolysate is nontoxic with an LD50 above 2000 mg/kg. In vitro angiotensin I converting enzyme (ACE) inhibitory activity was determined using ACE kit-WST. Isolation of ACE inhibitory peptides using column chromatography with SP-Sephadex G-25 yielded 8 pooled fractions with fraction 3 (86.5%) exhibiting the highest activity. This was followed by reverse phase - high performance liquid chromatography (RP-HPLC) with an octadecyl silica column (Inertsil ODS-3) using methanol:water 15:85 at a flow rate of 1.0 mL/min. Among the 13 fractions separated with the RP-HPLC, fraction 3.5 exhibited the highest ACE inhibitory activity (84.1%). The peptide sequence ACPGPNPGRP (IC50 2.03 μM) from fraction 3.5 was identified using Matrix-assisted laser desorption/ionization with time-of-flight tandem mass spectroscopy analysis (MALDI-TOF/MS). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Renin-angiotensin system inhibition ameliorates CCl4-induced liver fibrosis in mice through the inactivation of nuclear transcription factor kappa B.

    Science.gov (United States)

    Saber, Sameh; Mahmoud, Amr A A; Helal, Noha S; El-Ahwany, Eman; Abdelghany, Rasha H

    2018-06-01

    Therapeutic interventions for liver fibrosis are still limited due to the complicated molecular pathogenesis. Renin-angiotensin system (RAS) seems to contribute to the development of hepatic fibrosis. Therefore, we aimed to examine the effect of RAS inhibition on CCl 4 -induced liver fibrosis. Mice were treated with silymarin (30 mg·kg -1 ), perindopril (1 mg·kg -1 ), fosinopril (2 mg·kg -1 ), or losartan (10 mg·kg -1 ). The administration of RAS inhibitors improved liver histology and decreased protein expression of alpha smooth muscle actin (α-SMA) and hepatic content of hydroxyproline. These effects found to be mediated via inactivation of nuclear transcription factor kappa B (NFκB) pathway by the inhibition of NFκB p65 phosphorylation at the Ser536 residue and phosphorylation-induced degradation of nuclear factor kappa-B inhibitor alpha (NFκBia) subsequently inhibited NFκB-induced TNF-α and TGF-β1, leading to lower levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and vascular endothelial growth factor (VEGF). We concluded that the tissue affinity of the angiotensin converting enzyme inhibitors (ACEIs) has no impact on its antifibrotic activity and that interfering the RAS either through the inhibition of ACE or the blockade of AT1R has the same therapeutic benefit. These results suggest RAS inhibitors as promising candidates for further clinical trials in the management of hepatic fibrosis.

  1. Renin-Angiotensin Inhibitors Decrease Recurrence after Transurethral Resection of Bladder Tumor in Patients with Nonmuscle Invasive Bladder Cancer.

    Science.gov (United States)

    Blute, Michael L; Rushmer, Timothy J; Shi, Fangfang; Fuller, Benjamin J; Abel, E Jason; Jarrard, David F; Downs, Tracy M

    2015-11-01

    Prior reports suggest that renin-angiotensin system inhibition may decrease nonmuscle invasive bladder cancer recurrence. We evaluated whether angiotensin converting enzyme inhibitor or angiotensin receptor blocker treatment at initial surgery was associated with decreased recurrence or progression in patients with nonmuscle invasive bladder cancer. Using an institutional bladder cancer database we identified 340 patients with data available on initial transurethral resection of bladder tumor. Progression was defined as an increase to stage T2. Cox proportional hazards models were used to evaluate associations with recurrence-free and progression-free survival. Median patient age was 69.6 years. During a median followup of 3 years (IQR 1.3-6.1) 200 patients (59%) had recurrence and 14 (4.1%) had stage progression. Of those patients 143 were receiving angiotensin converting enzyme inhibitor/angiotensin receptor blockers at the time of the first transurethral resection. On univariate analysis factors associated with improved recurrence-free survival included carcinoma in situ (p = 0.040), bacillus Calmette-Guérin therapy (p = 0.003) and angiotensin converting enzyme inhibitor/angiotensin receptor blocker therapy (p = 0.009). Multivariate analysis demonstrated that patients treated with bacillus Calmette-Guérin therapy (HR 0.68, 95% CI 0.47-0.87, p = 0.002) or angiotensin converting enzyme inhibitor/angiotensin receptor blocker therapy (HR 0.61, 95% CI 0.45-0.84, p = 0.005) were less likely to experience tumor recurrence. The 5-year recurrence-free survival rate was 45.6% for patients treated with angiotensin converting enzyme inhibitor/angiotensin receptor blockers and 28.1% in those not treated with angiotensin converting enzyme inhibitor/angiotensin receptor blockers (p = 0.009). Subgroup analysis was performed to evaluate nonmuscle invasive bladder cancer pathology (Ta, T1 and carcinoma in situ) in 85 patients on bacillus Calmette-Guérin therapy alone and in

  2. Dietary sodium deprivation evokes activation of brain regional neurons and down-regulation of angiotensin II type 1 receptor and angiotensin-convertion enzyme mRNA expression.

    Science.gov (United States)

    Lu, B; Yang, X J; Chen, K; Yang, D J; Yan, J Q

    2009-12-15

    Previous studies have indicated that the renin-angiotensin-aldosterone system (RAAS) is implicated in the induction of sodium appetite in rats and that different dietary sodium intakes influence the mRNA expression of central and peripheral RAAS components. To determine whether dietary sodium deprivation activates regional brain neurons related to sodium appetite, and changes their gene expression of RAAS components of rats, the present study examined the c-Fos expression after chronic exposure to low sodium diet, and determined the relationship between plasma and brain angiotensin I (ANG I), angiotensin II (ANG II) and aldosterone (ALD) levels and the sodium ingestive behavior variations, as well as the effects of prolonged dietary sodium deprivation on ANG II type 1 (AT1) and ANG II type 2 (AT2) receptors and angiotensin-convertion enzyme (ACE) mRNA levels in the involved brain regions using the method of real-time polymerase chain reaction (PCR). Results showed that the Fos immunoreactivity (Fos-ir) expression in forebrain areas such as subfornical organ (SFO), paraventricular hypothalamic nuclei (PVN), supraoptic nucleus (SON) and organum vasculosum laminae terminalis (OVLT) all increased significantly and that the levels of ANG I, ANG II and ALD also increased in plasma and forebrain in rats fed with low sodium diet. In contrast, AT1, ACE mRNA in PVN, SON and OVLT decreased significantly in dietary sodium depleted rats, while AT2 mRNA expression did not change in the examined areas. These results suggest that many brain areas are activated by increased levels of plasma and/or brain ANG II and ALD, which underlies the elevated preference for hypertonic salt solution after prolonged exposure to low sodium diet, and that the regional AT1 and ACE mRNA are down-regulated after dietary sodium deprivation, which may be mediated by increased ANG II in plasma and/or brain tissue.

  3. Reduced plasma levels of angiotensin-(1-7 and renin activity in preeclamptic patients are associated with the angiotensin I- converting enzyme deletion/deletion genotype

    Directory of Open Access Journals (Sweden)

    E.P. Velloso

    2007-04-01

    Full Text Available The relationship between preeclampsia and the renin-angiotensin system (RAS is poorly understood. Angiotensin I-converting enzyme (ACE is a key RAS component and plays an important role in blood pressure homeostasis by generating angiotensin II (Ang II and inactivating the vasodilator angiotensin-(1-7 (Ang-(1-7. ACE (I/D polymorphism is characterized by the insertion (I or deletion (D of a 287-bp fragment, leading to changes in ACE activity. In the present study, ACE (I/D polymorphism was correlated with plasma Ang-(1-7 levels and several RAS components in both preeclamptic (N = 20 and normotensive pregnant women (N = 20. The percentage of the ACE DD genotype (60% in the preeclamptic group was higher than that for the control group (35%; however, this percentage was not statistically significant (Fisher exact test = 2.86, d.f. = 2, P = 0.260. The highest plasma ACE activity was observed in the ACE DD preeclamptic women (58.1 ± 5.06 vs 27.6 ± 3.25 nmol Hip-His Leu-1 min-1 mL-1 in DD control patients; P = 0.0005. Plasma renin activity was markedly reduced in preeclampsia (0.81 ± 0.2 vs 3.43 ± 0.8 ng Ang I mL plasma-1 h-1 in DD normotensive patients; P = 0.0012. A reduced plasma level of Ang-(1-7 was also observed in preeclamptic women (15.6 ± 1.3 vs 22.7 ± 2.5 pg/mL in the DD control group; P = 0.0146. In contrast, plasma Ang II levels were unchanged in preeclamptic patients. The selective changes in the RAS described in the present study suggest that the ACE DD genotype may be used as a marker for susceptibility to preeclampsia.

  4. Reduced plasma levels of angiotensin-(1-7 and renin activity in preeclamptic patients are associated with the angiotensin I- converting enzyme deletion/deletion genotype

    Directory of Open Access Journals (Sweden)

    E.P. Velloso

    Full Text Available The relationship between preeclampsia and the renin-angiotensin system (RAS is poorly understood. Angiotensin I-converting enzyme (ACE is a key RAS component and plays an important role in blood pressure homeostasis by generating angiotensin II (Ang II and inactivating the vasodilator angiotensin-(1-7 (Ang-(1-7. ACE (I/D polymorphism is characterized by the insertion (I or deletion (D of a 287-bp fragment, leading to changes in ACE activity. In the present study, ACE (I/D polymorphism was correlated with plasma Ang-(1-7 levels and several RAS components in both preeclamptic (N = 20 and normotensive pregnant women (N = 20. The percentage of the ACE DD genotype (60% in the preeclamptic group was higher than that for the control group (35%; however, this percentage was not statistically significant (Fisher exact test = 2.86, d.f. = 2, P = 0.260. The highest plasma ACE activity was observed in the ACE DD preeclamptic women (58.1 ± 5.06 vs 27.6 ± 3.25 nmol Hip-His Leu-1 min-1 mL-1 in DD control patients; P = 0.0005. Plasma renin activity was markedly reduced in preeclampsia (0.81 ± 0.2 vs 3.43 ± 0.8 ng Ang I mL plasma-1 h-1 in DD normotensive patients; P = 0.0012. A reduced plasma level of Ang-(1-7 was also observed in preeclamptic women (15.6 ± 1.3 vs 22.7 ± 2.5 pg/mL in the DD control group; P = 0.0146. In contrast, plasma Ang II levels were unchanged in preeclamptic patients. The selective changes in the RAS described in the present study suggest that the ACE DD genotype may be used as a marker for susceptibility to preeclampsia.

  5. Angiotensin II upregulates the expression of placental growth factor in human vascular endothelial cells and smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Guo Yingqiang

    2010-05-01

    Full Text Available Abstract Background Atherosclerosis is now recognized as a chronic inflammatory disease. Angiotensin II (Ang II is a critical factor in inflammatory responses, which promotes the pathogenesis of atherosclerosis. Placental growth factor (PlGF is a member of the vascular endothelial growth factor (VEGF family cytokines and is associated with inflammatory progress of atherosclerosis. However, the potential link between PlGF and Ang II has not been investigated. In the current study, whether Ang II could regulate PlGF expression, and the effect of PlGF on cell proliferation, was investigated in human vascular endothelial cells (VECs and smooth muscle cells (VSMCs. Results In growth-arrested human VECs and VSMCs, Ang II induced PlGF mRNA expression after 4 hour treatment, and peaked at 24 hours. 10-6 mol/L Ang II increased PlGF protein production after 8 hour treatment, and peaked at 24 hours. Stimulation with Ang II also induced mRNA expression of VEGF receptor-1 and -2(VEGFR-1 and -2 in these cells. The Ang II type I receptor (AT1R antagonist blocked Ang II-induced PlGF gene expression and protein production. Several intracellular signals elicited by Ang II were involved in PlGF synthesis, including activation of protein kinase C, extracellular signal-regulated kinase 1/2 (ERK1/2 and PI3-kinase. A neutralizing antibody against PlGF partially inhibited the Ang II-induced proliferation of VECs and VSMCs. However, this antibody showed little effect on the basal proliferation in these cells, whereas blocking antibody of VEGF could suppress both basal and Ang II-induced proliferation in VECs and VSMCs. Conclusion Our results showed for the first time that Ang II could induce the gene expression and protein production of PlGF in VECs and VSMCs, which might play an important role in the pathogenesis of vascular inflammation and atherosclerosis.

  6. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    Energy Technology Data Exchange (ETDEWEB)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N. (Sepulveda Veterans Administration, CA (USA))

    1991-05-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.

  7. Angiotensin 2 directly increases rabbit renal brush-border membrane sodium transport: Presence of local signal transduction system

    International Nuclear Information System (INIS)

    Morduchowicz, G.A.; Sheikh-Hamad, D.; Dwyer, B.E.; Stern, N.; Jo, O.D.; Yanagawa, N.

    1991-01-01

    In the present study, the authors have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10(-11)-10(-7) M) was found to stimulate 22Na+ uptake by the isolated BBM vesicles directly. All did not affect the Na(+)-dependent BBM glucose uptake, and the effect of AII on BBM 22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system. In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-beta S or PTX abolished, the effects of AII on BBM PLA and 22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM 22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM 22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM 22Na+ uptake. In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation

  8. Pharmacokinetic/Pharmacodynamic Modeling of Renin-Angiotensin Aldosterone Biomarkers Following Angiotensin-Converting Enzyme (ACE) Inhibition Therapy with Benazepril in Dogs.

    Science.gov (United States)

    Mochel, Jonathan P; Fink, Martin; Peyrou, Mathieu; Soubret, Antoine; Giraudel, Jérôme M; Danhof, Meindert

    2015-06-01

    The objective of this research was to provide a comprehensive description of the effect of benazepril on the dynamics of the renin-angiotensin aldosterone system (RAAS) in dogs. Blood specimens for renin activity (RA), angiotensin II (AII), and aldosterone (ALD) quantitation in plasma were drawn from 12 healthy adult beagle dogs randomly allocated to 2 treatment groups: (i) benazepril 5 mg PO, q24 h (n: 6) and (ii) placebo (n: 6), in a cross-over design. A mechanism-based pharmacokinetic/pharmacodynamic model, which includes the periodic nature of RA, AII, and ALD during placebo treatment and the subsequent changes in dynamics following repeated dosing with benazepril, was developed. The disposition kinetics of benazepril active metabolite, benazeprilat, was characterized using a saturable binding model to the angiotensin converting enzyme. The modulatory effect of benazeprilat on the RAAS was described using a combination of immediate response models. Our data show that benazepril noticeably influences the dynamics of the renin cascade, resulting in a substantial decrease in AII and ALD, while increasing RA throughout the observation span. The model provides a quantitative framework for better understanding the effect of ACE inhibition on the dynamics of the systemic RAAS in dogs.

  9. Fimasartan, a Novel Angiotensin-Receptor Blocker, Protects against Renal Inflammation and Fibrosis in Mice with Unilateral Ureteral Obstruction: the Possible Role of Nrf2

    Science.gov (United States)

    Kim, Soojeong; Kim, Sung Jun; Yoon, Hye Eun; Chung, Sungjin; Choi, Bum Soon; Park, Cheol Whee; Shin, Seok Joon

    2015-01-01

    Objectives: A newly developed angiotensin II receptor blocker, fimasartan, is effective in lowering blood pressure through its action on the renin-angiotensin system. Renal interstitial fibrosis, believed to be due to oxidative injury, is an end-stage process in the progression of chronic kidney disease. Nuclear factor erythroid 2-related factor 2 (Nrf2) is known to regulate cellular oxidative stress and induce expression of antioxidant genes. In this study we investigated the role of Nrf2 in fimasartan-mediated antioxidant effects in mice with renal fibrosis induced by unilateral ureteral obstruction (UUO). Materials and Methods: UUO was induced surgically in mice, followed by either no treatment with fimasartan or the intraperitoneal administration of fimasartan (3 mg/kg/day). On day 7, we evaluated the changes in the renin-angiotensin system (RAS) and the expression of Nrf2 and its downstream antioxidant genes, as well as renal inflammation, apoptosis, and fibrosis in the obstructed kidneys. The effect of fimasartan on the Nrf2 pathway was also investigated in HK-2 cells stimulated by tumor necrosis factor-α. Results: The mice with surgically induced UUO showed increased renal inflammation and fibrosis as evidenced by histopathologic findings and total collagen content in the kidney. These effects were attenuated in the obstructed kidneys of the fimasartan-treated mice. Fimasartan treatment inhibited RAS activation and the expression of Nox1, Nox2, and Nox4. In contrast, fimasartan upregulated the renal expression of Nrf2 and its downstream signaling molecules (such as NQO1; HO-1; GSTa2 and GSTm3). Furthermore, it increased the expression of antioxidant enzymes, including CuSOD, MnSOD, and catalase. The fimasartan-treated mice had significantly less apoptosis on TUNEL staining, with decreased levels of pro-apoptotic protein and increased levels of anti-apoptotic protein. In the HK-2 cells, fimasartan treatment inhibited RAS activation, decreased expression of

  10. Pericardial Parietal Mesothelial Cells: Source of the Angiotensin-Converting-Enzyme of the Bovine Pericardial Fluid

    Directory of Open Access Journals (Sweden)

    Ilsione Ribeiro de Sousa Filho

    Full Text Available Abstract Background: Angiotensin II (Ang II, the primary effector hormone of the renin-angiotensin system (RAS, acts systemically or locally, being produced by the action of angiotensin-converting-enzyme (ACE on angiotensin I. Although several tissue RASs, such as cardiac RAS, have been described, little is known about the presence of an RAS in the pericardial fluid and its possible sources. Locally produced Ang II has paracrine and autocrine effects, inducing left ventricular hypertrophy, fibrosis, heart failure and cardiac dysfunction. Because of the difficulties inherent in human pericardial fluid collection, appropriate experimental models are useful to obtain data regarding the characteristics of the pericardial fluid and surrounding tissues. Objectives: To evidence the presence of constituents of the Ang II production paths in bovine pericardial fluid and parietal pericardium. Methods: Albumin-free crude extracts of bovine pericardial fluid, immunoprecipitated with anti-ACE antibody, were submitted to electrophoresis (SDS-PAGE and gels stained with coomassie blue. Duplicates of gels were probed with anti-ACE antibody. In the pericardial membranes, ACE was detected by use of immunofluorescence. Results: Immunodetection on nitrocellulose membranes showed a 146-KDa ACE isoform in the bovine pericardial fluid. On the pericardial membrane sections, ACE was immunolocalized in the mesothelial layer. Conclusions: The ACE isoform in the bovine pericardial fluid and parietal pericardium should account at least partially for the production of Ang II in the pericardial space, and should be considered when assessing the cardiac RAS.

  11. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers

    DEFF Research Database (Denmark)

    Lambers Heerspink, Hiddo J; Holtkamp, Frank A; Parving, Hans-Henrik

    2012-01-01

    Dietary sodium restriction has been shown to enhance the short-term response of blood pressure and albuminuria to angiotensin receptor blockers (ARBs). Whether this also enhances the long-term renal and cardiovascular protective effects of ARBs is unknown. Here we conducted a post-hoc analysis of...

  12. Over-expression of angiotensin converting enzyme-1 augments cardiac hypertrophy in transgenic rats

    NARCIS (Netherlands)

    Tian, Xiao-Li; Pinto, Yigal Martin; Costerousse, Olivier; Franz, Wolfgang M.; Lippoldt, Andrea; Hoffmann, Sigrid; Unger, Thomas; Paul, Martin

    2004-01-01

    Increased cardiac angiotensin converting enzyme-1 (ACE1) is found in individuals who carry a deletion in intron 16 of ACE1 gene or in individuals who suffer from cardiac disorders, such as hypertrophy. However, whether a single increase in ACE1 expression leads to spontaneous cardiac defects remains

  13. Natural products inhibitors of the angiotensin converting enzyme (ACE: a review between 1980 - 2000

    Directory of Open Access Journals (Sweden)

    José M. Barbosa-Filho

    Full Text Available Inhibition of Angiotensin Converting Enzyme (ACE is a modern therapeutic target in the treatment of hypertension. Within the enzyme cascade of the renin-angiotensin system, ACE removes histidyl-leucine from angiotensin I to form the physiologically active octapeptide angiotensin II, one of the most potent known vasoconstrictors. Therefore, a rationale for treating hypertension would be to administer drugs or natural compounds which selectively inhibit ACE. The present work constitutes a review of the literature of plants and chemically defined molecules from natural sources with in vitro anti-hypertensive potential based on the inhibition of ACE. The review refers to 321 plants, the parts utilized, type of extract and whether they are active or not. It includes also the names of 158 compounds isolated from higher plants, marine sponges and algae, fungi and snake venom. Some aspects of recent research with natural products directed to produce anti-hypertensive drugs are discussed. In this review, 148 references were cited.

  14. Erratum Aldosterone synthase C-344T, angiotensin II type 1 receptor ...

    Indian Academy of Sciences (India)

    Aldosterone synthase C-344T, angiotensin II type 1 receptor A1166C and 11-β hydroxysteroid dehydrogenase G534A gene polymorphisms and essential hypertension in the population of Odisha, India. Manisha Patnaik, Pallabi Pati, Surendra N. Swain, Manoj K. Mohapatra, Bhagirathi Dwibedi, Shantanu K. Kar.

  15. Vasopressin and angiotensin II stimulate oxygen uptake in the perfused rat hindlimb

    DEFF Research Database (Denmark)

    Colquhoun, E Q; Hettiarachchi, M; Ye, J M

    1988-01-01

    Vasopressin and angiotensin II markedly stimulated oxygen uptake in the perfused rat hindlimb. The increase due to each agent approached 70% of the basal rate, and was greater than that produced by a maximal concentration of norepinephrine. Half-maximal stimulation occurred at 60 pM vasopressin, 0...

  16. Angiotensin-converting enzyme inhibitor treatment and the development of urinary tract infection

    NARCIS (Netherlands)

    Pouwels, Koen; Visser, Sipke; Bos, Jens; Hak, Eelko

    2013-01-01

    Background: Angiotensin-converting enzyme inhibitors (ACEi) can reduce the urine output, especially when treatment is started. Since bacterial clearance from the urinary tract is dependent on the urine output, it was hypothesized that ACEi may also increase the risk of urinary tract infections

  17. Angiotensin II Protects Primary Rat Hepatocytes against Bile Salt-Induced Apoptosis

    NARCIS (Netherlands)

    Karimian, Golnar; Buist-Homan, Manon; Mikus, Bojana; Henning, Robert H.; Faber, Klaas Nico; Moshage, Han

    2012-01-01

    Angiotensin II (AT-II) is a pro-fibrotic compound that acts via membrane-bound receptors (AT-1R/AT-2R) and thereby activates hepatic stellate cells (HSCs). AT-II receptor blockers (ARBs) are thus important candidates in the treatment of liver fibrosis. However, multiple case reports suggest that

  18. Expression of the Components of the Renin-Angiotensin System in Venous Malformation

    Directory of Open Access Journals (Sweden)

    Sam eSiljee

    2016-05-01

    Full Text Available Background Venous malformation (VM is the most common form of vascular malformation, consisting of a network of thin-walled ectatic venous channels with deficient or absent media. This study investigated the expression of the components of the renin-angiotensin system (RAS, namely (prorenin receptor (PRR, angiotensin converting enzyme (ACE, angiotensin II receptor 1 (ATIIR1 and angiotensin II receptor 2 (AIITR2 in subcutaneous (SC and intramuscular (IM VM. Materials and Methods SC (n=7 and IM (n=7 VM were analyzed for the expression of PRR, ACE, ATIIR1, and ATIIR2 using 3,3-diaminobenzidine (DAB and immunofluorescent (IF immunohistochemical (IHC staining and NanoString gene expression analysis. Results IHC staining showed expression of PRR, ACE, ATIIR1 and faint expression of ATIIR2 in the endothelium of SC and IM VM. Furthermore, ATIIR2 was expressed by cells away from the endothelium in both SC and IM VM lesions examined. NanoString analysis demonstrated the presence of PRR, ACE and ATIIR1 but not ATIIR2.Conclusions The presence of PRR, ACE, ATIIR1 and potentially ATIIR2, in both SC and IM VM suggests a role for the RAS in the biology of VM. This novel finding may lead to a mechanism-based therapy for VM.

  19. Structural adaptation to ischemia in skeletal muscle: effects of blockers of the renin-angiotensin system

    NARCIS (Netherlands)

    Scheidegger, K. J.; Nelissen-Vrancken, M. H.; Leenders, P. J.; Daemen, M. J.; Smits, J. F.; Wood, J. M.

    1997-01-01

    To investigate the effects of long-term treatment with blockers of the renin-angiotensin system on capillarization and growth of fibers in ischemic hind-limb muscles and in muscles under normal growth conditions. Ischemia was induced by partial ligation of the left common iliac artery. Ischemia

  20. Renin-angiotensin system: an old player with novel functions in skeletal muscle.

    Science.gov (United States)

    Cabello-Verrugio, Claudio; Morales, María Gabriela; Rivera, Juan Carlos; Cabrera, Daniel; Simon, Felipe

    2015-05-01

    Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy-associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin-angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin-converting enzyme (ACE), angiotensin II (Ang-II), and Ang-II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1-7 [Ang (1-7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter-regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle. © 2015 Wiley Periodicals, Inc.

  1. Direct stimulation of angiotensin II type 2 receptor enhances spatial memory

    DEFF Research Database (Denmark)

    Jing, Fei; Mogi, Masaki; Sakata, Akiko

    2012-01-01

    We examined the possibility that direct stimulation of the angiotensin II type 2 (AT(2)) receptor by a newly generated direct AT(2) receptor agonist, Compound 21 (C21), enhances cognitive function. Treatment with C21 intraperitoneal injection for 2 weeks significantly enhanced cognitive function...

  2. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo.

    Science.gov (United States)

    Fuglsang, Anders; Rattray, Fergal P; Nilsson, Dan; Nyborg, Niels C B

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus, were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test strains in this study, in general, produce inhibitory substances in varying amounts. Using a spectrophotometric assay based on amino group derivatization with ortho-phthaldialdehyde as a measure of relative peptide content, it was shown that there is a significant correlation between peptide formation and ACE inhibition, indicating that peptide measurement constitutes a convenient selection method. The effect of active fermentates on in vivo ACE activity was demonstrated in normotensive rats. The pressor effect of angiotensin I (0.3 microg/kg) upon intravenous injection was significantly lower when rats were pre-fed with milks fermented using two strains of Lactobacillus helveticus. An increased response to bradykinin (10 microg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise to an inhibition of ACE. The inhibition in vivo was low compared to what can be achieved with classical ACE inhibitors. The clinical relevance of this finding is discussed. This work is the first in which an effect of fermented milk on ACE in vivo has been demonstrated, measured as decreased ability to convert angiotensin I to angiotensin II.

  3. Angiotensin-I converting enzyme gene and I/D polymorphism ...

    Indian Academy of Sciences (India)

    Angiotensin-I converting enzyme gene and I/D polymorphism distribution in the Greek population and a comparison with other European populations. Sekerli Eleni Katsanidis Dimitrios Papadopoulou Vaya Makedou Areti Vavatsi Norma Gatzola Magdalini. Research Note Volume 87 Issue 1 April 2008 pp 91-93 ...

  4. Remission of post-transplant focal segmental glomerulosclerosis with angiotensin receptor blockers

    Directory of Open Access Journals (Sweden)

    S B Bansal

    2017-01-01

    Full Text Available Recurrence of focal segmental glomerulosclerosis (FSGS is common after kidney transplantation. Plasmapheresis (PP is considered to be the most effective treatment; however, results are variable and relapse is common after stopping plasmapheresis. Here, we report an unusual case of recurrent FSGS, who achieved complete remission with angiotensin receptor blocker therapy.

  5. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond

    Directory of Open Access Journals (Sweden)

    Singh JSS

    2015-06-01

    Full Text Available Jagdeep SS Singh, Chim C Lang Division of Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK Abstract: Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction. Keywords: heart failure, angiotensin receptor-neprilysin inhibitor, heart failure with preserved ejection fraction, nesiritide, candoxatril, omapatrilat, hypertension, renal impairment, myocardial infarction

  6. Angiotensin-converting enzyme gene I/D polymorphism in Pakistani ...

    African Journals Online (AJOL)

    hope&shola

    two were the cases of antiphospholipid syndrome. Parsa et al. (2002) conducted an association of 3 polymor- phisms in angiotensin-converting enzyme including I/D polymorphism and 2 polymorphisms were associated with systemic lupus erythematosus and Lupus Nephritis among non-Caucasians that includes Hispanic, ...

  7. The role of local renin-angiotensin system in arterial chemoreceptors in sleep-breathing disorders

    Directory of Open Access Journals (Sweden)

    Man Lung eFung

    2014-09-01

    Full Text Available The renin-angiotensin system (RAS plays pivotal roles in the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Experimental studies have demonstrated a locally expressed RAS in the carotid body, which is functional significant in the effect of angiotensin peptides on the regulation of the activity of peripheral chemoreceptors and the chemoreflex. The physiological and pathophysiological implications of the RAS in the carotid body have been proposed upon recent studies showing a significant upregulation of the RAS expression under hypoxic conditions relevant to altitude acclimation and sleep apnea and also in animal model of heart failure. Specifically, the increased expression of angiotensinogen, angiotensin-converting enzyme and angiotensin AT1 receptors plays significant roles in the augmented carotid chemoreceptor activity and inflammation of the carotid body. This review aims to summarize these results with highlights on the pathophysiological function of the RAS under hypoxic conditions. It is concluded that the maladaptive changes of the RAS in the carotid body plays a pathogenic role in sleep apnea and heart failure, which could potentially be a therapeutic target for the treatment of the pathophysiological consequence of sleep apnea.

  8. Use of Antihypertensive Drugs and Ischemic Stroke Severity - Is There a Role for Angiotensin-II?

    NARCIS (Netherlands)

    Hwong, Wen Yea; Bots, Michiel L.; Selvarajah, Sharmini; Aziz, Zariah Abdul; Sidek, Norsima Nazifah; Spiering, Wilko; Kappelle, L. Jaap; Vaartjes, Ilonca

    2016-01-01

    BACKGROUND: The increase in angiotensin II (Ang II) formation by selected antihypertensive drugs is said to exhibit neuroprotective properties, but this translation into improvement in clinical outcomes has been inconclusive. We undertook a study to investigate the relationship between types of

  9. Angiotensin-converting enzyme inhibitor use and protection against pneumonia in patients with diabetes

    NARCIS (Netherlands)

    van de Garde, Ewoudt M W; Souverein, Patrick C; Hak, Eelko; Deneer, Vera H M; van den Bosch, Jules M M; Leufkens, Hubert G M

    OBJECTIVES: Because of the high risk of pneumonia in patients with diabetes, we aimed to assess the effect of angiotensin-converting enzyme (ACE) inhibitor use on the occurrence of pneumonia in a general population of patients with diabetes. METHODS: The study population comprised all patients in

  10. Centrally Mediated Cardiovascular Actions of the Angiotensin II Type 2 Receptor

    DEFF Research Database (Denmark)

    Steckelings, U Muscha; Kloet, Annette de; Sumners, Colin

    2017-01-01

    Sustained increases in the activity of the sympathetic neural pathways that exit the brain and which increase blood pressure (BP) are a major underlying factor in resistant hypertension. Recently available information on the occurrence of angiotensin II type 2 receptors (AT2Rs) within or adjacent...

  11. The angiotensin type 2 receptor agonist Compound 21 elicits cerebroprotection in endothelin-1 induced ischemic stroke

    DEFF Research Database (Denmark)

    Joseph, Jason P; Mecca, Adam P; Regenhardt, Robert W

    2014-01-01

    Evidence indicates that angiotensin II type 2 receptors (AT2R) exert cerebroprotective actions during stroke. A selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exert beneficial effects in models of cardiac and renal disease, as well as hemorrhagic stroke. Here, we hypothe...

  12. THE MECHANISM AND DIAGNOSTIC-VALUE OF ANGIOTENSIN-I CONVERTING ENZYME-INHIBITION RENOGRAPHY

    NARCIS (Netherlands)

    DEZEEUW, D; JONKER, GJ; HOVINGA, TKK; BEEKHUIS, H; PIERS, DA; HUISMAN, RM; DEJONG, PE

    1991-01-01

    The effect of angiotensin converting enzyme (ACE) inhibition on the sensitivity of radionuclide renography in the diagnosis of a unilateral renal artery stenosis was tested both in a conscious dog model and in the human situation. ACE inhibition (10 mg enalaprilic acid, intravenously) markedly

  13. Isolation of an angiotensin converting enzyme (ACE) inhibitor from Olea europea and Olea lancea

    DEFF Research Database (Denmark)

    Hansen, K; Adsersen, A.; Brøgger Christensen, S.

    1996-01-01

    The aqueous extract of the leaves of Olea europea and Olea lancea both inhibited Angiotensin Converting Enzyme (ACE) in vitro. A bioassay-directed fractionation resulted in the isolation of a strong ACE-inhibitor namely the secoiridoid 2-(3,4-dihydroxyphenyl)ethyl 4-formyl-3-(2-oxoethyl)-4E...

  14. Oral contraceptives, angiotensin-dependent renal vasoconstriction, and risk of diabetic nephropathy

    DEFF Research Database (Denmark)

    Ahmed, Sofia B; Hovind, Peter; Parving, Hans-Henrik

    2005-01-01

    OBJECTIVE: Diabetes, the leading cause of end-stage renal disease in the U.S., is believed to involve activation of the renin angiotensin system (RAS) as a risk factor for nephropathy. RAS activation occurs in healthy women using oral contraceptives (OCs), but the effects of OC use on the diabeti...

  15. Angiotensin receptor blockade in acute stroke. The Scandinavian Candesartan Acute Stroke Trial

    DEFF Research Database (Denmark)

    Sandset, Else Charlotte; Murray, Gordon; Boysen, Gudrun

    2010-01-01

    BACKGROUND: Elevated blood pressure following acute stroke is common, and yet early antihypertensive treatment is controversial. ACCESS suggested a beneficial effect of the angiotensin receptor blocker candesartan in the acute phase of stroke, but these findings need to be confirmed in new, large...

  16. Overexpression of angiotensin-converting enzyme in myelomonocytic cells enhances the immune response [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kenneth E. Bernstein

    2016-03-01

    Full Text Available Angiotensin-converting enzyme (ACE converts angiotensin I to the vasoconstrictor angiotensin II and thereby plays an important role in blood pressure control. However, ACE is relatively non-specific in its substrate specificity and cleaves many other peptides. Recent analysis of mice overexpressing ACE in monocytes, macrophages, and other myelomonocytic cells shows that these animals have a marked increase in resistance to experimental melanoma and to infection by Listeria monocytogenes or methicillin-resistant Staphylococcus aureus (MRSA. Several other measures of immune responsiveness, including antibody production, are enhanced in these animals. These studies complement a variety of studies indicating an important role of ACE in the immune response.

  17. The angiotensin II type 2 receptor agonist Compound 21 is protective in experimental diabetes-associated atherosclerosis

    DEFF Research Database (Denmark)

    Chow, Bryna S M; Koulis, Christine; Krishnaswamy, Pooja

    2016-01-01

    AIMS/HYPOTHESIS: Angiotensin II is well-recognised to be a key mediator in driving the pathological events of diabetes-associated atherosclerosis via signalling through its angiotensin II type 1 receptor (AT1R) subtype. However, its actions via the angiotensin II type 2 receptor (AT2R) subtype...... are still poorly understood. This study is the first to investigate the role of the novel selective AT2R agonist, Compound 21 (C21) in an experimental model of diabetes-associated atherosclerosis (DAA). METHODS: Streptozotocin-induced diabetic Apoe-knockout mice were treated with vehicle (0.1 mol/l citrate...

  18. Severe hypoglycaemia in type 1 diabetes: impact of the renin-angiotensin system and other risk factors

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, Ulrik

    2009-01-01

    this thesis was conducted to assess the significance of severe hypoglycaemia as a clinical problem in the type 1 diabetic population, to evaluate the impact of known risk factors on occurrence of severe hypoglycaemia, and to identify new markers that could contribute to improved prediction of, and inspire...... targets and thereby open for prevention of severe hypoglycaemia. Furthermore, subjects with elevated renin-angiotensin system activity and a high rate of severe hypoglycaemia might benefit from pharmacological blockade of the renin-angiotensin system by ACE inhibitors or angiotensin II receptor blockers...

  19. Distortion of maternal-fetal angiotensin II type 1 receptor allele transmission in pre-eclampsia.

    Science.gov (United States)

    Morgan, L; Crawshaw, S; Baker, P N; Brookfield, J F; Broughton Pipkin, F; Kalsheker, N

    1998-01-01

    OBJECTIVE: To investigate the fetal angiotensin II type 1 receptor genotype in pre-eclampsia. DESIGN: Case-control study. POPULATION: Forty-one maternal-fetal pairs from pre-eclamptic pregnancies and 80 maternal-fetal pairs from normotensive pregnancies. METHODS: Maternal and fetal DNA was genotyped at three diallelic polymorphisms, at nucleotides 573, 1062, and 1166, in the coding exon of the angiotensin II type 1 receptor gene, and at a dinucleotide repeat polymorphism in its 3' flanking region. RESULTS: Allele and genotype frequencies at the four polymorphic regions investigated did not differ between pre-eclamptic and normotensive groups, in either fetal or maternal samples. Mothers heterozygous for the dinucleotide repeat allele designated A4 transmitted this allele to the fetus in 15 of 18 informative pre-eclamptic pregnancies and in eight of 26 normotensive pregnancies. This was greater than the expected probability in pre-eclamptic pregnancies (p=0.04) and less than expected in normotensive pregnancies (p<0.005). The 573T variant, which is in partial linkage disequilibrium with the A4 allele, showed a similar distortion of maternal-fetal transmission. CONCLUSION: Angiotensin II type 1 receptor gene expression in the fetus may contribute to the aetiology of pre-eclampsia. It is unclear whether susceptibility is conferred by the fetal genotype acting alone, or by allele sharing by mother and fetus. Possible mechanisms for the effect of the angiotensin II type 1 receptor gene are suggested by the association of the 573T variant with low levels of surface receptor expression on platelets. If receptor expression is similarly genetically determined in the placenta, responsiveness to angiotensin II may be affected, with the potential to influence placentation or placental prostaglandin secretion. PMID:9719367

  20. Purification and characterization of angiotensin-1 converting enzyme

    African Journals Online (AJOL)

    user

    2013-04-10

    Apr 10, 2013 ... 2Aquaculture Industry Division, SSFRI, National Fisheries Research and Development Institute ... 0.3 μM, respectively, which acts as a competitive inhibitor to ACE. ... and Gobbetti, 1998), milk protein (Gobbetti et al., 2000),.

  1. KARAKTERISTIK FISIK, KIMIA, MIKROBIOLOGI WHEY KEFIR DAN AKTIVITASNYA TERHADAP PENGHAMBATAN ANGIOTENSIN CONVERTING ENZYME (ACE [Physical, Chemical and Microbiological Characteristics of Whey Kefir and Its Angiotensin Converting Enzyme (ACE Inhibitory Activity

    Directory of Open Access Journals (Sweden)

    Andi Febrisiantosa*

    2013-12-01

    Full Text Available This study was conducted to evaluate the characteristics of whey-based kefir products and their activity to inhibit the angiotensin converting enzyme (ACE. Kefir was produced by using many types of whey, namely SK: skim milk based kefir (control; WK: gouda cheese whey based kefir; and WKB: commercial whey powder based kefir. The experimental design was a completely randomized design. Each treatment was conducted in triplicates. Kefirs were evaluated for physical and chemical properties (pH, total titratable acidity, viscosity, protein, fat, lactose, and alcohol, microbiological (lactic acid bacteria and yeast population, peptide concentration, ACE inhibition, IC50 and Inhibition Efficiency Ratio (IER. The results showed that the types of whey used for kefir productions significantly affected the physical and chemical characteristics of the products (p0.05. The peptide concentration and ACE inhibitory activity of WK, 1.54±0.02 mg/mL and 73.07±0.91%, was significantly higher (p0.05 from the control (47.19±0.09% per mg/mL but was significantly higher (p<0.05 than that of WKB (45.75±0.18% per mg/mL. This research indicated that whey kefir is a potential source of bioactive peptide for antihypertention agent.

  2. Two Novel Bioactive Peptides from Antarctic Krill with Dual Angiotensin Converting Enzyme and Dipeptidyl Peptidase IV Inhibitory Activities.

    Science.gov (United States)

    Ji, Wei; Zhang, Chaohua; Ji, Hongwu

    2017-07-01

    Inhibition of dipeptidyl peptidase IV (DPP-IV) and angiotensin converting enzyme (ACE) are considered useful in managing 2 often associated conditions: diabetes and hypertension. In this study, corolase PP was used to hydrolyze Antarctic krill protein. The hydrolysate (AKH) was isolated by ultrafiltration and purified by size-exclusion chromatography, ion exchange chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC) sequentially. The in vitro inhibitory activities of all AKHs and several fractions obtained against ACE and DPP-IV were assessed. Two peptides, purified with dual-strength inhibitory activity against ACE and DPP-IV, were identified by TOF-MS/MS. Results indicated that not all fractions exhibited dual inhibitory activities of ACE and DPP-IV. The purified peptide Lys-Val-Glu-Pro-Leu-Pro had half-maximal inhibitory concentrations (IC 50 ) of 0.93±0.05 and 0.73±0.04 mg/mL against ACE and DPP-IV, respectively. The other peptide Pro-Ala-Leu had IC 50 values of 0.64±0.05 and 0.88±0.03 mg/mL against ACE and DPP-IV, respectively. This study firstly reported the sequences of dual bioactive peptides from Antarctic krill proteins, further provided new insights into the bioactive peptides responsible for the ACE and DPP-IV inhibitory activities from the Antarctic krill protein hydrolysate to manage hypertension and diabetes. © 2017 Institute of Food Technologists®.

  3. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    Energy Technology Data Exchange (ETDEWEB)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.; Yang, Fen

    2014-05-15

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1 in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.

  4. Angiotensin II receptor blocker ameliorates stress-induced adipose tissue inflammation and insulin resistance.

    Directory of Open Access Journals (Sweden)

    Motoharu Hayashi

    Full Text Available A strong causal link exists between psychological stress and insulin resistance as well with hypertension. Meanwhile, stress-related responses play critical roles in glucose metabolism in hypertensive patients. As clinical trials suggest that angiotensin-receptor blocker delays the onset of diabetes in hypertensive patients, we investigated the effects of irbesartan on stress-induced adipose tissue inflammation and insulin resistance. C57BL/6J mice were subjected to 2-week intermittent restraint stress and orally treated with vehicle, 3 and 10 mg/kg/day irbesartan. The plasma concentrations of lipid and proinflammatory cytokines [Monocyte Chemoattractant Protein-1 (MCP-1, tumor necrosis factor-α, and interleukin-6] were assessed with enzyme-linked immunosorbent assay. Monocyte/macrophage accumulation in inguinal white adipose tissue (WAT was observed with CD11b-positive cell counts and mRNA expressions of CD68 and F4/80 using immunohistochemistry and RT-PCR methods respectively. The mRNA levels of angiotensinogen, proinflammatory cytokines shown above, and adiponectin in WAT were also assessed with RT-PCR method. Glucose metabolism was assessed by glucose tolerance tests (GTTs and insulin tolerance tests, and mRNA expression of insulin receptor substrate-1 (IRS-1 and glucose transporter 4 (GLUT4 in WAT. Restraint stress increased monocyte accumulation, plasma free fatty acids, expression of angiotensinogen and proinflammatory cytokines including MCP-1, and reduced adiponectin. Irbesartan reduced stress-induced monocyte accumulation in WAT in a dose dependent manner. Irbesartan treatment also suppressed induction of adipose angiotensinogen and proinflammatory cytokines in WAT and blood, and reversed changes in adiponectin expression. Notably, irbesartan suppressed stress-induced reduction in adipose tissue weight and free fatty acid release, and improved insulin tolerance with restoration of IRS-1 and GLUT4 mRNA expressions in WAT. The results

  5. The effect of structural motifs on the ectodomain shedding of human angiotensin-converting enzyme.

    Science.gov (United States)

    Conrad, Nailah; Schwager, Sylva L U; Carmona, Adriana K; Sturrock, Edward D

    2016-12-02

    Somatic angiotensin converting enzyme (sACE) is comprised of two homologous domains (N and C domains), whereas the smaller germinal isoform (tACE) is identical to the C domain. Both isozymes share an identical stalk, transmembrane and cytoplasmic domain, and undergo ectodomain shedding by an as yet unknown protease. Here we present evidence for the role of regions distal and proximal to the cleavage site in human ACE shedding. First, because of intrinsic differences between the N and C domains, discrete secondary structures (α-helix 7 and 8) on the surface of tACE were replaced with their N domain counterparts. Surprisingly, neither α-helix 7 nor α-helix 8 proved to be an absolute requirement for shedding. In the proximal ectodomain of tACE residues H 610 -L 614 were mutated to alanines and this resulted in a decrease in ACE shedding. An N-terminal extension of this mutation caused a reduction in cellular ACE activity. More importantly, it affected the processing of the protein to the membrane, resulting in expression of an underglycosylated form of ACE. When E 608 -H 614 was mutated to the homologous region of the N domain, processing was normal and shedding only moderately decreased suggesting that this region is more crucial for the processing of ACE than it is for regulating shedding. Finally, to determine whether glycosylation of the asparagine proximal to the Pro1199-Leu polymorphism in sACE affected shedding, the equivalent P 623 L mutation in tACE was investigated. The P 623 L tACE mutant showed an increase in shedding and MALDI MS analysis of a tryptic digest indicated that N 620 WT was glycosylated. The absence of an N-linked glycan at N 620 , resulted in an even greater increase in shedding. Thus, the conformational flexibility that the leucine confers to the stalk, is increased by the lack of glycosylation reducing access of the sheddase to the cleavage site. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme.

    Science.gov (United States)

    Larmuth, Kate M; Masuyer, Geoffrey; Douglas, Ross G; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D

    2016-03-01

    Angiotensin-1-converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N-domain in complex with Aβ fragments. For the physiological Aβ(1-16) peptide, a novel ACE cleavage site was found at His14-Gln15. Furthermore, Aβ(1-16) was preferentially cleaved by the individual N-domain; however, the presence of an inactive C-domain in full-length somatic ACE (sACE) greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Aβ(4-10)Q and Aβ(4-10)Y, underwent endoproteolytic cleavage at the Asp7-Ser8 bond with all ACE constructs showing greater catalytic efficiency for Aβ(4-10)Y. Surprisingly, in contrast to Aβ(1-16) and Aβ(4-10)Q, sACE showed positive domain cooperativity and the double C-domain (CC-sACE) construct no cooperativity towards Aβ(4-10)Y. The structures of the Aβ peptide-ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C-terminal P2' position to the S2' pocket and recognizes the main chain of the P1' peptide. It is likely that N-domain selectivity for the amyloid peptide is conferred through the N-domain specific S2' residue Thr358. Additionally, the N-domain can accommodate larger substrates through movement of the N-terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain selectivity are more pronounced with the truncated domains compared to the more physiological full-length forms. The atomic coordinates and structure factors for N-domain ACE with Aβ peptides 4-10 (5AM8), 10-16 (5AM9), 1-16 (5AMA), 35-42 (5AMB) and (4-10)Y (5AMC) complexes have been deposited in the

  7. Targeted Catalytic Inactivation of Angiotensin Converting Enzyme by Lisinopril-Coupled Transition Metal Chelates

    Science.gov (United States)

    Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.

    2012-01-01

    A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein

  8. Targeted catalytic inactivation of angiotensin converting enzyme by lisinopril-coupled transition-metal chelates.

    Science.gov (United States)

    Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A

    2012-02-22

    A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the

  9. Surgery-induced hippocampal angiotensin II elevation causes blood-brain barrier disruption via MMP/TIMP in aged rats

    Directory of Open Access Journals (Sweden)

    Zhengqian eLi

    2016-04-01

    Full Text Available Reversible BBB disruption has been uniformly reported in several animal models of postoperative cognitive dysfunction (POCD. Nevertheless, the precise mechanism underlying this occurrence remains unclear. Using an aged rat model of POCD, we investigated the dynamic changes in expression of molecules involved in BBB disintegration, matrix metalloproteinase-2 (MMP-2 and -9 (MMP-9, as well as three of their endogenous tissue inhibitors (TIMP-1, -2, -3, and tried to establish the correlation between MMP/TIMP balance and surgery-induced hippocampal BBB disruption. We validated the increased hippocampal expression of angiotensin II (Ang II and Ang II receptor type 1 (AT1 after surgery. We also found MMP/TIMP imbalance as early as 6 h after surgery, together with increased BBB permeability and decreased expression of Occludin and zonula occludens-1 (ZO-1, as well as increased basal lamina protein laminin at 24 h postsurgery. The AT1 antagonist candesartan restored MMP/TIMP equilibrium and modulated expression of Occludin and laminin, but not ZO-1, thereby improving BBB permeability. These events were accompanied by suppression of the surgery-induced canonical nuclear factor-κB (NF-κB activation cascade. Nevertheless, AT1 antagonism did not affect nuclear receptor peroxisome proliferator-activated receptor-γ expression. Collectively, these findings suggest that surgery-induced Ang II release impairs BBB integrity by activating NF-κB signaling and disrupting downstream MMP/TIMP balance via AT1 receptor.

  10. Resveratrol prevents angiotensin II-induced hypertrophy of vascular smooth muscle cells through the transactivation of growth factor receptors.

    Science.gov (United States)

    Hossain, Ekhtear; Anand-Srivastava, Madhu B

    2017-08-01

    We previously showed that augmented levels of endogenous angiotensin II (AngII) contribute to vascular smooth muscle cell (VSMC) hypertrophy through the transactivation of growth factor receptors in spontaneously hypertensive rats. Resveratrol (RV), a polyphenolic component of red wine, has also been shown to attenuate AngII-evoked VSMC hypertrophy; however, the molecular mechanism mediating this response is obscure. The present study was therefore undertaken to examine whether RV could prevent AngII-induced VSMC hypertrophy through the transactivation of growth factor receptor and associated signaling pathways. AngII treatment of VSMC enhanced the protein synthesis that was attenuated towards control levels by RV pretreatment as well as by the inhibitors of NADPH oxidase, c-Src, and growth factor receptors. Furthermore, RV pretreatment also inhibited enhanced levels of superoxide anion, NADPH oxidase activity, increased expression of NADPH oxidase subunits, and phosphorylation of c-Src, EGF-R, PDGE-R, ERK1/2, and AKT1/2. In conclusion, these results indicate that RV attenuates AngII-induced VSMC hypertrophy through the inhibition of enhanced oxidative stress and activation of c-Src, growth factor receptors, and MAPK/AKT signaling. We suggest that RV could be used as a therapeutic agent in the treatment of vascular complications associated with hypertension and hypertrophy.

  11. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system.

    Directory of Open Access Journals (Sweden)

    Sônia de Fátima Soto

    Full Text Available Female Wistar rats were exposed to filtered air (F or to concentrated fine particulate matter (P for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR.Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII and its receptors AT1 (AT1R and AT2 (AT2R were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group.Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.

  12. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis.

    Science.gov (United States)

    Lin, Kai; Zhang, Lan-Wei; Han, Xue; Xin, Liang; Meng, Zhao-Xu; Gong, Pi-Min; Cheng, Da-You

    2018-07-15

    Yak milk casein was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are the angiotensin I-converting enzyme (ACE) inhibitory peptides. First, yak milk casein has high homology with cow milk casein by homologous analysis. The potential of yak milk casein for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in yak milk casein sequences. Then, an in silico proteolysis using single or combined enzymes to obtained ACE inhibitory peptides was investigated. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis derived ACE inhibitory peptides are non-cytotoxic. Overall, the present study highlights a in silico proteolysis approach to assist the yak milk casein releasing ACE inhibitory peptides and provides a guidance for the actual hydrolysis of proteins for the production of bioactive peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Role of MicroRNAs in Renin-Angiotensin-Aldosterone System-Mediated Cardiovascular Inflammation and Remodeling

    Directory of Open Access Journals (Sweden)

    Maricica Pacurari

    2015-01-01

    Full Text Available MicroRNAs are endogenous regulators of gene expression either by inhibiting translation or protein degradation. Recent studies indicate that microRNAs play a role in cardiovascular disease and renin-angiotensin-aldosterone system- (RAAS- mediated cardiovascular inflammation, either as mediators or being targeted by RAAS pharmacological inhibitors. The exact role(s of microRNAs in RAAS-mediated cardiovascular inflammation and remodeling is/are still in early stage of investigation. However, few microRNAs have been shown to play a role in RAAS signaling, particularly miR-155, miR-146a/b, miR-132/122, and miR-483-3p. Identification of specific microRNAs and their targets and elucidating microRNA-regulated mechanisms associated RAS-mediated cardiovascular inflammation and remodeling might lead to the development of novel pharmacological strategies to target RAAS-mediated vascular pathologies. This paper reviews microRNAs role in inflammatory factors mediating cardiovascular inflammation and RAAS genes and the effect of RAAS pharmacological inhibition on microRNAs and the resolution of RAAS-mediated cardiovascular inflammation and remodeling. Also, this paper discusses the advances on microRNAs-based therapeutic approaches that may be important in targeting RAAS signaling.

  14. Physiological regulation of extracellular matrix collagen and elastin in the arterial wall of rats by noradrenergic tone and angiotensin II.

    Science.gov (United States)

    Dab, Houcine; Kacem, Kamel; Hachani, Rafik; Dhaouadi, Nadra; Hodroj, Wassim; Sakly, Mohsen; Randon, Jacques; Bricca, Giampiero

    2012-03-01

    The interactions between the effects of the sympathetic nervous system (SNS) and angiotensin II (ANG II) on vascular extracellular matrix (ECM) synthesis were determined in rats. The mRNA and protein content of collagen I, collagen III and elastin in the abdominal aorta (AA) and femoral artery (FA) was investigated in Wistar-Kyoto rats treated for 5 weeks with guanethidine, a sympathoplegic, losartan, an ANG II AT1 receptor (AT1R) blocker, or both. The effects of noradrenaline (NE) and ANG II on collagen III and elastin mRNA, and the receptor involved, were tested in cultured vascular smooth muscle cells (VSMCs) in vitro. Guanethidine increased collagen types I and III and decreased elastin, while losartan had an opposite effect, although without effect on collagen III. The combination of treatments abrogated changes induced by simple treatment with collagen I and elastin, but increased collagen III mRNA in AA and not in FA. NE stimulated collagen III mRNA via β receptors and elastin via α1 and α2 receptors. ANG II stimulated collagen III but inhibited elastin mRNA via AT1R. Overall, SNS and ANG II exert opposite and antagonistic effects on major components of ECM in the vascular wall. This may be of relevance for the choice of a therapeutic strategy in vascular diseases.

  15. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  16. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-δ/AMPK pathway.

    Science.gov (United States)

    Feng, Xiaoli; Luo, Zhidan; Ma, Liqun; Ma, Shuangtao; Yang, Dachun; Zhao, Zhigang; Yan, Zhencheng; He, Hongbo; Cao, Tingbing; Liu, Daoyan; Zhu, Zhiming

    2011-07-01

    Clinical trials have shown that angiotensin II receptor blockers reduce the new onset of diabetes in hypertensives; however, the underlying mechanisms remain unknown. We investigated the effects of telmisartan on peroxisome proliferator activated receptor γ (PPAR-δ) and the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in cultured myotubes, as well as on the running endurance of wild-type and PPAR-δ-deficient mice. Administration of telmisartan up-regulated levels of PPAR-δ and phospho-AMPKα in cultured myotubes. However, PPAR-δ gene deficiency completely abolished the telmisartan effect on phospho-AMPKαin vitro. Chronic administration of telmisartan remarkably prevented weight gain, enhanced running endurance and post-exercise oxygen consumption, and increased slow-twitch skeletal muscle fibres in wild-type mice, but these effects were absent in PPAR-δ-deficient mice. The mechanism is involved in PPAR-δ-mediated stimulation of the AMPK pathway. Compared to the control mice, phospho-AMPKα level in skeletal muscle was up-regulated in mice treated with telmisartan. In contrast, phospho-AMPKα expression in skeletal muscle was unchanged in PPAR-δ-deficient mice treated with telmisartan. These findings highlight the ability of telmisartan to improve skeletal muscle function, and they implicate PPAR-δ as a potential therapeutic target for the prevention of type 2 diabetes. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  17. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  18. Inhibition of angiotensin I converting enzyme by subtilisin NAT (nattokinase) in natto, a Japanese traditional fermented food.

    Science.gov (United States)

    Murakami, Keiko; Yamanaka, Naoki; Ohnishi, Katsunori; Fukayama, Minoru; Yoshino, Masataka

    2012-06-01

    Angiotensin I converting enzyme (ACE) was inhibited by the culture medium of Bacillus subtilis subsp. natto, which ferments boiled soy beans to natto, a Japanese traditional food. Subtilisin NAT (nattokinase) produced by B. subtilis also inhibited ACE, and the inhibition was markedly stimulated by heat treatment of subtilisin at 120 °C for 15 min. Inhibition of ACE by subtilisin was of a mixed type: the decrease in V(max) and the increase in K(m) value. SDS-polyacrylamide gel electrophoresis showed that heat treatment of subtilisin caused inactivation with fragmentation of the enzyme protein into small peptides. The inhibitory action of subtilisin was not due to an enzymatic action of protease, but may be ascribed to the potent ACE-inhibitory peptides such as LY and FY, amino acid sequences in subtilisin. HPLC-MS analysis of heat-inactivated subtilisin confirmed that LY and FY were liberated by fragmentation of the enzyme. Inhibition of ACE by subtilisin and its degradation peptides such as LY and FY may participate in the suppression of blood pressure by ingestion of natto.

  19. Active peptides from skate (Okamejei kenojei) skin gelatin diminish angiotensin-I converting enzyme activity and intracellular free radical-mediated oxidation.

    Science.gov (United States)

    Ngo, Dai-Hung; Ryu, BoMi; Kim, Se-Kwon

    2014-01-15

    Skin gelatin of skate (Okamejei kenojei) was hydrolyzed using Alcalase, flavourzyme, Neutrase and protamex. It was found that the Alcalase hydrolysate exhibited the highest angiotensin-I converting enzyme (ACE) inhibitory activity. Then, Alcalase hydrolysate was further hydrolyzed with protease and separated by an ultrafiltration membrane system. Finally, two peptides responsible for ACE inhibitory activity were identified to be MVGSAPGVL (829Da) and LGPLGHQ (720Da), with IC50 values of 3.09 and 4.22μM, respectively. Moreover, the free radical-scavenging activity of the purified peptides was determined in human endothelial cells. In addition, the antioxidative mechanism of the purified peptides was evaluated by protein and gene expression levels of antioxidant enzymes. The current study demonstrated that the peptides derived from skate skin gelatin could be used in the food industry as functional ingredients with potent antihypertensive and antioxidant benefits. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Angiotensin II increases CTGF expression via MAPKs/TGF-{beta}1/TRAF6 pathway in atrial fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Jun [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Liu, Xu, E-mail: xkliuxu@yahoo.cn [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Wang, Quan-xing, E-mail: shmywqx@126.com [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Tan, Hong-wei [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China); Guo, Meng [National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai (China); Jiang, Wei-feng; Zhou, Li [Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiaotong University School of medicine, Shanghai (China)

    2012-10-01

    The activation of transforming growth factor-{beta}1(TGF-{beta}1)/Smad signaling pathway and increased expression of connective tissue growth factor (CTGF) induced by angiotensin II (AngII) have been proposed as a mechanism for atrial fibrosis. However, whether TGF{beta}1/non-Smad signaling pathways involved in AngII-induced fibrogenetic factor expression remained unknown. Recently tumor necrosis factor receptor associated factor 6 (TRAF6)/TGF{beta}-associated kinase 1 (TAK1) has been shown to be crucial for the activation of TGF-{beta}1/non-Smad signaling pathways. In the present study, we explored the role of TGF-{beta}1/TRAF6 pathway in AngII-induced CTGF expression in cultured adult atrial fibroblasts. AngII (1 {mu}M) provoked the activation of P38 mitogen activated protein kinase (P38 MAPK), extracellular signal-regulated kinase 1/2(ERK1/2) and c-Jun NH(2)-terminal kinase (JNK). AngII (1 {mu}M) also promoted TGF{beta}1, TRAF6, CTGF expression and TAK1 phosphorylation, which were suppressed by angiotensin type I receptor antagonist (Losartan) as well as p38 MAPK inhibitor (SB202190), ERK1/2 inhibitor (PD98059) and JNK inhibitor (SP600125). Meanwhile, both TGF{beta}1 antibody and TRAF6 siRNA decreased the stimulatory effect of AngII on TRAF6, CTGF expression and TAK1 phosphorylation, which also attenuated AngII-induced atrial fibroblasts proliferation. In summary, the MAPKs/TGF{beta}1/TRAF6 pathway is an important signaling pathway in AngII-induced CTGF expression, and inhibition of TRAF6 may therefore represent a new target for reversing Ang II-induced atrial fibrosis. -- Highlights: Black-Right-Pointing-Pointer MAPKs/TGF{beta}1/TRAF6 participates in AngII-induced CTGF expression in atrial fibroblasts. Black-Right-Pointing-Pointer TGF{beta}1/TRAF6 participates in AngII-induced atrial fibroblasts proliferation. Black-Right-Pointing-Pointer TRAF6 may represent a new target for reversing Ang II-induced atrial fibrosis.

  1. Reporter mouse strain provides a novel look at angiotensin type-2 receptor distribution in the central nervous system.

    Science.gov (United States)

    de Kloet, Annette D; Wang, Lei; Ludin, Jacob A; Smith, Justin A; Pioquinto, David J; Hiller, Helmut; Steckelings, U Muscha; Scheuer, Deborah A; Sumners, Colin; Krause, Eric G

    2016-03-01

    Angiotensin-II acts at its type-1 receptor (AT1R) in the brain to regulate body fluid homeostasis, sympathetic outflow and blood pressure. However, the role of the angiotensin type-2 receptor (AT2R) in the neural control of these processes has received far less attention, largely because of limited ability to effectively localize these receptors at a cellular level in the brain. The present studies combine the use of a bacterial artificial chromosome transgenic AT2R-enhanced green fluorescent protein (eGFP) reporter mouse with recent advances in in situ hybridization (ISH) to circumvent this obstacle. Dual immunohistochemistry (IHC)/ISH studies conducted in AT2R-eGFP reporter mice found that eGFP and AT2R mRNA were highly co-localized within the brain. Qualitative analysis of eGFP immunoreactivity in the brain then revealed localization to neurons within nuclei that regulate blood pressure, metabolism, and fluid balance (e.g., NTS and median preoptic nucleus [MnPO]), as well as limbic and cortical areas known to impact stress responding and mood. Subsequently, dual IHC/ISH studies uncovered the phenotype of specific populations of AT2R-eGFP cells. For example, within the NTS, AT2R-eGFP neurons primarily express glutamic acid decarboxylase-1 (80.3 ± 2.8 %), while a smaller subset express vesicular glutamate transporter-2 (18.2 ± 2.9 %) or AT1R (8.7 ± 1.0 %). No co-localization was observed with tyrosine hydroxylase in the NTS. Although AT2R-eGFP neurons were not observed within the paraventricular nucleus (PVN) of the hypothalamus, eGFP immunoreactivity is localized to efferents terminating in the PVN and within GABAergic neurons surrounding this nucleus. These studies demonstrate that central AT2R are positioned to regulate blood pressure, metabolism, and stress responses.

  2. Genetic variation and activity of the renin-angiotensin system and severe hypoglycemia in type 1 diabetes

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U.; Dhamrait, S.S.; Sethi, A.A.

    2008-01-01

    BACKGROUND: The deletion-allele of the angiotensin-converting enzyme (ACE) gene and elevated ACE activity are associated with increased risk of severe hypoglycemia in type 1 diabetes. We explored whether genetic and phenotypic variations in other components of the renin-angiotensin system...... are similarly associated. METHODS: Episodes of severe hypoglycemia were recorded in 171 consecutive type 1 diabetic outpatients during a 1-year follow-up. Participants were characterized at baseline by gene polymorphisms in angiotensinogen, ACE, angiotensin-II receptor types 1 (AT1R) and 2 (AT2R), and by plasma...... associate with high risk of severe hypoglycemia in type 1 diabetes. A potential preventive effect of renin-angiotensin system blocking drugs in patients with recurrent severe hypoglycemia merits further investigation Udgivelsesdato: 2008/3...

  3. Tachyphylaxis of juxtaglomerular epithelioid cells to angiotensin II. Differences between the electrical membrane response and renin secretion

    DEFF Research Database (Denmark)

    Bührle, C P; Hackenthal, E; Nobiling, R

    1987-01-01

    A study has been made of desensitization of the depolarizing response to angiotensin II of juxtaglomerular epithelioid and vascular smooth muscle cells in the mouse kidney afferent arteriole, of media cells from the mesenteric artery as well as of cultured smooth muscle and mesangial cells. In all...... cell types, desensitization to this effect of angiotensin II was observed. There was no cross-desensitization between angiotensin II and other depolarizing agonists. Hence, it is concluded that this desensitization is specific, i.e. of the tachyphylaxis type. Substances interfering with receptor...... recycling, such as chloroquine and monensin, did not block the recovery of the cells from desensitization after removal of the octapeptide. Desensitization to the action of angiotensin II was also observed with respect to its vasoconstrictor effect in the isolated perfused rat kidney. In contrast...

  4. Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

    DEFF Research Database (Denmark)

    L.S., Bislev; T., Sikjaer; L., Rolighed

    2015-01-01

    Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the reninnullangiotensinnullaldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD......). In addition to increased PTH levels, low vitamin D levels may also directly increase risk of CVD, as vitamin D, itself, has been shown to inhibit the RAAS. Angiotensin II, aldosterone and cortisol all negatively impact bone health. Hyperaldosteronism is associated with a reversible secondary...... hyperparathyroidism due to increased renal calcium excretion. Moreover, the angiotensin II receptor is expressed by human parathyroid tissue, and angiotensin may therefore directly stimulates PTH secretion. An increased bone loss is found in patients with hyperaldosteronism. The angiotensin II receptor seems main...

  5. Angiotensin infusion effects on left ventricular function. Assessment in normal subjects and in patients with coronary disease.

    Science.gov (United States)

    Bianco, J A; Laskey, W K; Makey, D G; Shafer, R B

    1980-02-01

    Radionuclide multigating of the cardiac cycle was employed to assess effects of angiotensin infusion on left ventricular function. In six normal subjects, angiotensin infusion decreased heart rate (HR) from 72 +/- SEM 2 to 57 +/- 2 beats/min (P less than 0.001); while systolic blood pressure (BP) increased from 119 +/- 2 to 178 +/- 1 mm Hg (P less than 0.001), and ejection fraction (EF) declined from 58 +/- 1 to 47 +/- 2 percent (P less than 0.05). In contrast, in 11 normal subjects, supine exercise increased HR and systolic BP by 55 and 49 percent, whereas EF increased from 64 +/- 1 to 71 +/- 1 (P less than 0.001). In ten patients with CAD, angiotensin infusion produced no change in HR, increased systolic BP by 34 percent, and decreased EF by 11 percent. Angiotensin infusion induced left ventricular depression in normal subjects and in patients with CAD. It cannot substitute for exercise in intervention radionuclide ventriculography.

  6. The Fifth Transmembrane Domain of Angiotensin II Type 1 Receptor Participates in the Formation of the Ligand-binding Pocket and Undergoes a Counterclockwise Rotation upon Receptor Activation*

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S.; Holleran, Brian J.; Morin, Marie-Ève; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-01-01

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT1) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT1 receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT1, N200C-AT1, I201C-AT1, G203C-AT1, and F204C-AT1 mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT1 receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT1 receptor background. Indeed, mutant I201C-N111G-AT1 became more sensitive to MTSEA, whereas mutant G203C-N111G-AT1 lost some sensitivity. Our results suggest that constitutive activation of AT1 receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side. PMID:19773549

  7. The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.

    Science.gov (United States)

    Domazet, Ivana; Martin, Stéphane S; Holleran, Brian J; Morin, Marie-Eve; Lacasse, Patrick; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2009-11-13

    The octapeptide hormone angiotensin II exerts a wide variety of cardiovascular effects through the activation of the angiotensin II Type 1 (AT(1)) receptor, which belongs to the G protein-coupled receptor superfamily. Like other G protein- coupled receptors, the AT(1) receptor possesses seven transmembrane domains that provide structural support for the formation of the ligand-binding pocket. The role of the fifth transmembrane domain (TMD5) was investigated using the substituted cysteine accessibility method. All of the residues within Thr-190 to Leu-217 region were mutated one at a time to cysteine, and after expression in COS-7 cells, the mutant receptors were treated with the sulfhydryl-specific alkylating agent methanethiosulfonate-ethylammonium (MTSEA). MTSEA reacts selectively with water-accessible, free sulfhydryl groups of endogenous or introduced point mutation cysteines. If a cysteine is found in the binding pocket, the covalent modification will affect the binding kinetics of the ligand. MTSEA substantially decreased the binding affinity of L197C-AT(1), N200C-AT(1), I201C-AT(1), G203C-AT(1), and F204C-AT(1) mutant receptors, which suggests that these residues orient themselves within the water-accessible binding pocket of the AT(1) receptor. Interestingly, this pattern of acquired MTSEA sensitivity was altered for TMD5 reporter cysteines engineered in a constitutively active N111G-AT(1) receptor background. Indeed, mutant I201C-N111G-AT(1) became more sensitive to MTSEA, whereas mutant G203C-N111G-AT(1) lost some sensitivity. Our results suggest that constitutive activation of AT(1) receptor causes an apparent counterclockwise rotation of TMD5 as viewed from the extracellular side.

  8. Exercise Protects Against Defective Insulin Signaling and Insulin Resistance of Glucose Transport in Skeletal Muscle of Angiotensin II-Infused Rat

    Directory of Open Access Journals (Sweden)

    Juthamard Surapongchai

    2018-04-01

    Full Text Available Objectives: The present study investigated the impact of voluntary exercise on insulin-stimulated glucose transport and the protein expression and phosphorylation status of the signaling molecules known to be involved in the glucose transport process in the soleus muscle as well as other cardiometabolic risks in a rat model with insulin resistance syndrome induced by chronic angiotensin II (ANGII infusion.Materials and Methods: Male Sprague-Dawley rats were assigned to sedentary or voluntary wheel running (VWR groups. Following a 6-week period, rats in each group were subdivided and subcutaneously administered either normal saline or ANGII at 100 ng/kg/min for 14 days. Blood pressure, glucose tolerance, insulin-stimulated glucose transport and signaling proteins, including insulin receptor (IR, insulin receptor substrate 1 (IRS-1, Akt, Akt substrate of 160 kDa (AS160, AMPKα, c-Jun NH2-terminal kinase (JNK, p38 MAPK, angiotensin converting enzyme (ACE, ANGII type 1 receptor (AT1R, ACE2, Mas receptor (MasR and oxidative stress marker in the soleus muscle, were evaluated.Results: Exercise protected against the insulin resistance of glucose transport and defective insulin signaling molecules in the soleus muscle; this effect was associated with a significant increase in AMPK Thr172 (43% and decreases in oxidative stress marker (31% and insulin-induced p38 MAPK Thr180/Tyr182 (45% and SAPK/JNK Thr183/Tyr185 (25%, without significant changes in expression of AT1R, AT2R, ACE, ACE2, and MasR when compared to the sedentary rats given ANGII infusion. At the systemic level, VWR significantly decreased body weight, fat weight, and systolic blood pressure as well as improved serum lipid profiles.Conclusion: Voluntary exercise can alleviate insulin resistance of glucose transport and impaired insulin signaling molecules in the soleus muscle and improve whole-body insulin sensitivity in rats chronically administered with ANGII.

  9. The absence of protective effect of candesartan and angiotensin IV in the moderate brain injury in rats

    International Nuclear Information System (INIS)

    Nasser, M.; Botelle, L.; Javellaud, J.; Oudart, N.; Achard, J-M

    2012-01-01

    Background: angiotensin receptor blockers (ARB) are protective in various models of experimental ischemic stroke. This protective effect is mediated by the stimulation of non-AT1 receptors by angiotensin II and angiotensin IV. Since traumatic brain injury shares with ischemic cerebral injury several common mechanisms, we examined if a pretreatment with the ARB candesartan, or a post-treatment with angiotensin IV are also protective in a rat model of blunt traumatic brain injury (TBI). Methods :adults Sprague Dawley rats were treated for five days with candesartan (0.5 mg/kg/day) or saline by gavage prior to the induction of diffuse moderate TBI using the impact-acceleration model. Two others groups of rats were treated by a daily intraperitoneal injection of angiotensin IV (1.5 mg/kg/day) or saline for five days following TBI. Overall neurological insult were assessed daily by measuring the neurological score. Sensitive deficits (scotch test) and sensorimotor deficits (beam-walking test) were evaluated daily from day 1 to 7 and at day 15; cognitive impairment (object recognition test) was evaluated at day 15. Results : TBI induced significant sensitive and sensorimotor deficits that were maximal at day 1 and spontaneously improved with time. At day 15, traumatised animals had a marked alteration of the working memory. Neither treatment with candesartan, angiotensin IV or with erythropoietin decreased the severity of the initial sensorimotor deficits, nor accelerate the recovery rate. Candesartan, angiotensin IV had likewise no protective effect on the cognitive deficit evaluated to day 15. Conclusion: pretreatment with candesartan and post-treatment with angiotensin IV are both ineffective to protect against sensorimotor and c ognitive impairment in a rat model of impact-acceleration TBI. (author)

  10. Auto-inhibitory regulation of angiotensin II functionality in hamster aorta during the early phases of dyslipidemia.

    Science.gov (United States)

    Pereira, Priscila Cristina; Pernomian, Larissa; Côco, Hariane; Gomes, Mayara Santos; Franco, João José; Marchi, Kátia Colombo; Hipólito, Ulisses Vilela; Uyemura, Sergio Akira; Tirapelli, Carlos Renato; de Oliveira, Ana Maria

    2016-06-15

    Emerging data point the crosstalk between dyslipidemia and renin-angiotensin system (RAS). Advanced dyslipidemia is described to induce RAS activation in the vasculature. However, the interplay between early dyslipidemia and the RAS remains unexplored. Knowing that hamsters and humans have a similar lipid profile, we investigated the effects of early and advanced dyslipidemia on angiotensin II-induced contraction. Cumulative concentration-response curves for angiotensin II (1.0pmol/l to 1.0µmol/l) were obtained in the hamster thoracic aorta. We also investigated the modulatory action of NAD(P)H oxidase on angiotensin II-induced contraction using ML171 (Nox-1 inhibitor, 0.5µmol/l) and VAS2870 (Nox-4 inhibitor, 5µmol/l). Early dyslipidemia was detected in hamsters treated with a cholesterol-rich diet for 15 days. Early dyslipidemia decreased the contraction induced by angiotensin II and the concentration of Nox-4-derived hydrogen peroxide. Advanced dyslipidemia, observed in hamsters treated with cholesterol-rich diet for 30 days, restored the contractile response induced by angiotensin II by compensatory mechanism that involves Nox-4-mediated oxidative stress. The hyporresponsiveness to angiotensin II may be an auto-inhibitory regulation of the angiotensinergic function during early dyslipidemia in an attempt to reduce the effects of the upregulation of the vascular RAS during the advanced stages of atherogenesis. The recovery of vascular angiotensin II functionality during the advanced phases of dyslipidemia is the result of the upregulation of redox-pro-inflammatory pathway that might be most likely involved in atherogenesis progression rather than in the recovery of vascular function. Taken together, our findings show the early phase of dyslipidemia may be the most favorable moment for effective atheroprotective therapeutic interventions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Serum creatinine elevation after renin-angiotensin system blockade and long term cardiorenal risks: cohort study.

    Science.gov (United States)

    Schmidt, Morten; Mansfield, Kathryn E; Bhaskaran, Krishnan; Nitsch, Dorothea; Sørensen, Henrik Toft; Smeeth, Liam; Tomlinson, Laurie A

    2017-03-09

    Objective  To examine long term cardiorenal outcomes associated with increased concentrations of creatinine after the start of angiotensin converting enzyme inhibitor/angiotensin receptor blocker treatment. Design  Population based cohort study using electronic health records from the Clinical Practice Research Datalink and Hospital Episode Statistics. Setting  UK primary care, 1997-2014. Participants  Patients starting treatment with angiotensin converting enzyme inhibitors or angiotensin receptor blockers (n=122 363). Main outcome measures  Poisson regression was used to compare rates of end stage renal disease, myocardial infarction, heart failure, and death among patients with creatinine increases of 30% or more after starting treatment against those without such increases, and for each 10% increase in creatinine. Analyses were adjusted for age, sex, calendar period, socioeconomic status, lifestyle factors, chronic kidney disease, diabetes, cardiovascular comorbidities, and use of other antihypertensive drugs and non-steroidal anti-inflammatory drugs. Results  Among the 2078 (1.7%) patients with creatinine increases of 30% or more, a higher proportion were female, were elderly, had cardiorenal comorbidity, and used non-steroidal anti-inflammatory drugs, loop diuretics, or potassium sparing diuretics. Creatinine increases of 30% or more were associated with an increased adjusted incidence rate ratio for all outcomes, compared with increases of less than 30%: 3.43 (95% confidence interval 2.40 to 4.91) for end stage renal disease, 1.46 (1.16 to 1.84) for myocardial infarction, 1.37 (1.14 to 1.65) for heart failure, and 1.84 (1.65 to 2.05) for death. The detailed categorisation of increases in creatinine concentrations (creatinine increases of less than 30% were also associated with increased incidence rate ratios for all outcomes, including death (1.15 (1.09 to 1.22) for increases of 10-19% and 1.35 (1.23 to 1.49) for increases of 20-29%, using creatinine

  12. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system.

    Science.gov (United States)

    Wang, Lei; Zhu, Qing; Lu, Aihua; Liu, Xiaofen; Zhang, Linlin; Xu, Chuanming; Liu, Xiyang; Li, Haobo; Yang, Tianxin

    2017-09-01

    Butyrate, a short-chain fatty acid, is the end product of the fermentation of complex carbohydrates by the gut microbiota. Recently, sodium butyrate (NaBu) has been found to play a protective role in a number of chronic diseases. However, it is still unclear whether NaBu has a therapeutic potential in hypertension. The present study was aimed to investigate the role of NaBu in angiotensin II (Ang II)-induced hypertension and to further explore the underlying mechanism. Ang II was infused into uninephrectomized Sprague-Dawley rats with or without intramedullary infusion of NaBu for 14 days. Mean arterial blood pressure was recorded by the telemetry system. Renal tissues, serum samples, and 24-h urine samples were collected to examine renal injury and the regulation of the (pro)renin receptor (PRR) and renin. Intramedullary infusion of NaBu in Sprague-Dawley rats lowered the Ang II-induced mean arterial pressure from 129 ± 6 mmHg to 108 ± 4 mmHg (P renal injury, including urinary albumin, glomerulosclerosis, and renal fibrosis, as well as the expression of inflammatory mediators tumor necrosis factor α, interleukin 6. The renal expression of PRR, angiotensinogen, angiotensin I-converting enzyme and the urinary excretion of soluble PRR, renin, and angiotensinogen were all increased by Ang II infusion but decreased by NaBu treatment. In cultured innermedullary collecting duct cells, NaBu treatment attenuated Ang II-induced expression of PRR and renin. These results demonstrate that NaBu exerts an antihypertensive action, likely by suppressing the PRR-mediated intrarenal renin-angiotensin system.

  13. Brain angiotensin-(1-7)/Mas axis: A new target to reduce the cardiovascular risk to emotional stress.

    Science.gov (United States)

    Fontes, Marco Antônio Peliky; Martins Lima, Augusto; Santos, Robson Augusto Souza dos

    2016-04-01

    Emotional stress is now considered a risk factor for several diseases including cardiac arrhythmias and hypertension. It is well known that the activation of neuroendocrine and autonomic mechanisms features the response to emotional stress. However, its link to cardiovascular diseases and the regulatory mechanisms involved remain to be further comprehended. The renin-angiotensin system (RAS) plays an important role in homeostasis on all body systems. Specifically in the brain, the RAS regulates a number of physiological aspects. Recent data indicate that the activation of angiotensin-converting enzyme/angiotensin II/AT1 receptor axis facilitates the emotional stress responses. On the other hand, growing evidence indicates that its counterregulatory axis, the angiotensin-converting enzyme 2 (ACE2)/(Ang)iotensin-(1-7)/Mas axis, reduces anxiety and attenuates the physiological responses to emotional stress. The present review focuses on angiotensin-(1-7)/Mas axis as a promising target to attenuate the physiological response to emotional stress reducing the risk of cardiovascular diseases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis in the dog.

    Science.gov (United States)

    Anderson, W P; Johnston, C I; Korner, P I

    1979-01-01

    1. The acute renal haemodynamic and renin-angiotensin system responses to graded renal artery stenosis were studied in chronically instrumented, unanaesthetized dogs. 2. Stenosis was induced over 30 sec by inflation of a cuff around the renal artery to lower distal pressure to 60, 40 or 20 mmHg, with stenosis maintained for 1 hr. This resulted in an immediate fall in renal vascular resistance, but over the next 5--30 min both resistance and renal artery pressure were restored back towards prestenosis values. Only transient increases in systemic arterial blood pressure and plasma renin and angiotensin levels were seen with the two milder stenoses. Despite restoration of renal artery pressure, renal blood flow remained reduced at all grades of stenosis. 3. Pre-treatment with angiotensin I converting enzyme inhibitor or sarosine1, isoleucone8 angiotensin II greatly attenuated or abolished the restoration of renal artery pressure and renal vascular resistance after stenosis, and plasma renin and angiotensin II levels remained high. Renal dilatation was indefinitely maintained, but the normal restoration of resistance and pressure could be simulated by infusing angiotensin II into the renal artery. 4. The effective resistance to blood flow by the stenosis did not remain constant but varied with changes in the renal vascular resistance. PMID:219182

  15. A comparative study of the prevalence of hyperkalemia with the use of angiotensin-converting enzyme inhibitors versus angiotensin receptor blockers

    Directory of Open Access Journals (Sweden)

    Seyed Ali Sadjadi

    2009-07-01

    Full Text Available Seyed Ali Sadjadi1, James I McMillan1, Navin Jaipaul1, Patricia Blakely1, Su Su Hline21Section of Nephrology (111N, Jerry L Pettis Memorial Veterans Medical Center, Loma Linda, CA, USA; 2Divison of Nephrology, Loma Linda University Medical Center, Loma Linda, CA, USABackground and objectives: Angiotensin-converting enzyme inhibitors (ACEI and angiotensin receptor blockers (ARB are increasingly used in a variety of settings including heart failure, renal failure, arterial hypertension, and diabetic nephropathy. The objective of this study was to investigate the prevalence of hyperkalemia with ACEI and ARB use, in a population of the United States veterans.Design, settings, material, and measurements: Retrospective observational cohort study of 1163 patients on ACEIs and 1168 patients on ARBs in a single Veterans Affairs Medical Center. Electronic medical records were reviewed over a 12-month period with data collected on various demographic, laboratory, comorbidity, and medication related variables. Results: Hyperkalemia (>5 mEq/L was observed in 20.4% of patients on ACEIs and 31.0% on ARBs. Severe hyperkalemia (6 mEq/L or higher, was observed in 0.8% of ACEI and 2.8% of ARB users. In univariate logistic regression analyses, diabetes mellitus; serum glucose, total carbon dioxide content, creatinine, and estimated glomerular filtration rate (GFR were significantly associated with hyperkalemia. ARB use, when compared to ACEI, was associated with a 42% increase in odds of hyperkalemia (odds ratio [OR] = 1.42; p = 0.001 in a model including adjustment for GFR and a 56% increase in odds of hyperkalemia (OR = 1.56; p < 0.001 in a model including adjustment for serum creatinine.Conclusions: Hyperkalemia, associated with the use of ACEIs and ARBs, is usually mild and severe hyperkalemia is rare. Hyperkalemia is more common with ARBs than ACEIs. ARB use, when compared to ACEI use, may significantly and independently be associated with increased odds of

  16. Renin-angiotensin II-aldosterone system blockers and time to renal replacement therapy in children with CKD.

    Science.gov (United States)

    Abraham, Alison G; Betoko, Aisha; Fadrowski, Jeffrey J; Pierce, Christopher; Furth, Susan L; Warady, Bradley A; Muñoz, Alvaro

    2017-04-01

    Clinical care decisions to treat chronic kidney disease (CKD) in a growing child must often be made without the benefit of evidence from clinical trials. We used observational data from the Chronic Kidney Disease in Children cohort to estimate the effectiveness of renin-angiotensin II-aldosterone system blockade (RAAS) to delay renal replacement therapy (RRT) in children with CKD. A total of 851 participants (median age: 11 years, median glomerular filtration rate [GFR]: 52 ml/min/1.73 m 2 , median urine protein to creatinine ratio: 0.35 mg/mg) were included. RAAS use was reported at annual study visits. Both Cox proportional hazards models with time-varying RAAS exposure and Cox marginal structural models (MSM) were used to evaluate the effect of RAAS use on time to RRT. Analyses were adjusted or weighted to control for age, male sex, glomerular diagnosis, GFR, nephrotic range proteinuria, anemia, elevated blood pressure, acidosis, elevated phosphate and elevated potassium. There were 217 RRT events over a 4.1-year median follow-up. At baseline, 472 children (55 %) were prevalent RAAS users, who were more likely to be older, have a glomerular etiology, have higher urine protein, be anemic, have elevated serum phosphate and potassium, take more medications, but less likely to have elevated blood pressure, compared with non-users. RAAS use was found to reduce the risk of RRT by 21 % (hazard ratio: 0.79) to 37 % (hazard ratio: 0.63) from standard regression adjustment and MSM models, respectively. These results support inferences from adult studies of a substantial benefit of RAAS use in pediatric CKD patients.

  17. ADAMTS-7 Expression Increases in the Early Stage of Angiotensin II-Induced Renal Injury in Elderly Mice

    Directory of Open Access Journals (Sweden)

    Yan-Xiang Gao

    2014-03-01

    Full Text Available Background/Aims: We investigated the recently described family of proteinases, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTs, and matrix metalloproteinases (MMPs as inflammatory mediators in inflammatory kidney damage by studying ADAMTS-1, -4, and -7 and MMP-9 expression in elderly mouse kidneys after angiotensin II (Ang II administration. Methods: Ang II (2.5 µg/kg/min or norepinephrine (8.3 µg/kg/min was subcutaneously infused in old mice. Renal injury was assessed by hematoxylin-eosin staining, 24-h albuminuria, and immunohistochemistry to evaluate inflammatory cell markers. The mRNA and protein expression of ADAMTS-1, -4, and -7 and MMP-9 were determined using real-time PCR, Western blot, and immunohistochemistry 3 days after Ang II or norepinephrine administration. Results: Elderly mice in the Ang II group developed hypertension and pathological kidney damage. The mRNA and protein levels of ADAMTS-7 in the Ang II group were 3.3 ± 1.1 (P = 0.019 and 1.6 ± 0.1 (P = 0.047 vs. 1.0 ± 0.1 and 1.0 ± 0.1 in the control group on day 3. In contrast, treatment with the hypertensive agent norepinephrine did not lead to obvious renal damage or an increase in renal ADAMTS-7 expression. Conclusions: Renal ADAMTS-7 expression was induced by Ang II in elderly mice. The overexpression of ADATMTS-7 might contribute to early inflammatory kidney damage associated with aging.

  18. Two distinct calmodulin binding sites in the third intracellular loop and carboxyl tail of angiotensin II (AT(1A receptor.

    Directory of Open Access Journals (Sweden)

    Renwen Zhang

    Full Text Available In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT(1A, at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214-231 and carboxyl tail of the receptor (ct, 302-317. We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT(1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca²⁺-dependent fashion. The former is a 1-12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219 for alanine in i3, and phenylalanine (F309 or F313 for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT(1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor.

  19. Two Distinct Calmodulin Binding Sites in the Third Intracellular Loop and Carboxyl Tail of Angiotensin II (AT1A) Receptor

    Science.gov (United States)

    Zhang, Renwen; Liu, Zhijie; Qu, Youxing; Xu, Ying; Yang, Qing

    2013-01-01

    In this study, we present data that support the presence of two distinct calmodulin binding sites within the angiotensin II receptor (AT1A), at juxtamembrane regions of the N-terminus of the third intracellular loop (i3, amino acids 214–231) and carboxyl tail of the receptor (ct, 302–317). We used bioluminescence resonance energy transfer assays to document interactions of calmodulin with the AT1A holo-receptor and GST-fusion protein pull-downs to demonstrate that i3 and ct interact with calmodulin in a Ca2+-dependent fashion. The former is a 1–12 motif and the latter belongs to 1-5-10 calmodulin binding motif. The apparent Kd of calmodulin for i3 is 177.0±9.1 nM, and for ct is 79.4±7.9 nM as assessed by dansyl-calmodulin fluorescence. Replacement of the tryptophan (W219) for alanine in i3, and phenylalanine (F309 or F313) for alanine in ct reduced their binding affinities for calmodulin, as predicted by computer docking simulations. Exogenously applied calmodulin attenuated interactions between G protein βγ subunits and i3 and ct, somewhat more so for ct than i3. Mutations W219A, F309A, and F313A did not alter Gβγ binding, but reduced the ability of calmodulin to compete with Gβγ, suggesting that calmodulin and Gβγ have overlapping, but not identical, binding requirements for i3 and ct. Calmodulin interference with the Gβγ binding to i3 and ct regions of the AT1A receptor strongly suggests that calmodulin plays critical roles in regulating Gβγ-dependent signaling of the receptor. PMID:23755207

  20. Recombinant erythropoietin acutely decreases renal perfusion and decouples the renin-angiotensin-aldosterone system

    DEFF Research Database (Denmark)

    Aachmann-Andersen, Niels J.; Christensen, Soren J.; Lisbjerg, Kristian

    2018-01-01

    The effect of recombinant erythropoietin (rhEPO) on renal and systemic hemodynamics was evaluated in a randomized double-blinded, cross-over study. Sixteen healthy subjects were tested with placebo, or low-dose rhEPO for 2 weeks, or high-dose rhEPO for 3 days. Subjects refrained from excessive salt...... that seems to decouple the activity of the renin-angiotensin-aldosterone system from changes in renal hemodynamics. This may serve as a negative feed-back mechanism on endogenous synthesis of EPO when circulating levels of EPO are high. These results demonstrates for the first time in humans a direct effect...... of rhEPO on renal hemodynamics and a decoupling of the renin-angiotensin-aldosterone system....

  1. The renin-angiotensin system; development and differentiation of the renal medulla

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Robdrup Tinning, Anne; Marcussen, Niels

    2013-01-01

    on mechanisms of postnatal development the renal medulla and putting medullary developmental lesions into perspective with regard to the programming effect. Moreover, the renin-angiotensin system is critically involved in mammalian kidney development and signaling disorders give rise to developmental renal...... disturbances reaching into adulthood. A review of current knowledge of the role of the renin-angiotensin system for renal medullary development will be given. Acta Physiologica © 2013 Scandinavian Physiological Society....... lesions that has been associated with hypertension later in life. A consistent finding in both experimental animal models and in human case reports is atrophy of the renal medulla with developmental lesions to both medullary nephron segments and vascular development with concomitant functional...

  2. General approaches to structure-activity relationships illustrated by recent data on angiotensin II

    International Nuclear Information System (INIS)

    Fromageot, P.; Fermandjian, S.; Greff, D.; Meyer, P.

    1975-01-01

    Molecular conformations of angiotensin in trifluoroethanol and hexafluoroisopropanol solutions were studied by circular dichroism. The molecule is organized by intramolecular forces, which implies doubling-up of the molecule onto itself. Hence the definition cross-beta proposed for this model. Examination of the peptide fragments of the hormone shows that those belonging to the C-terminal series play a capital part in the establishment of the beta conformation of angiotensin. The ratio of the intramolecular forces varies with any disturbance of the medium, leading to conformational changes. Increasing the polarity of the solvent, and/or its acidity modifies the balance of forces. The C-terminal fragments of the molecule is that containing the functional groups essential to the biological activity [fr

  3. No significant effect of angiotensin II receptor blockade on intermediate cardiovascular end points in hemodialysis patients

    DEFF Research Database (Denmark)

    Peters, Christian Daugaard; Kjaergaard, Krista D; Jensen, Jens D

    2014-01-01

    Agents blocking the renin-angiotensin-aldosterone system are frequently used in patients with end-stage renal disease, but whether they exert beneficial cardiovascular effects is unclear. Here the long-term effects of the angiotensin II receptor blocker, irbesartan, were studied in hemodialysis......, and residual renal function. Brachial blood pressure decreased significantly in both groups, but there was no significant difference between placebo and irbesartan. Use of additional antihypertensive medication, ultrafiltration volume, and dialysis dosage were not different. Intermediate cardiovascular end...... points such as central aortic blood pressure, carotid-femoral pulse wave velocity, left ventricular mass index, N-terminal brain natriuretic prohormone, heart rate variability, and plasma catecholamines were not significantly affected by irbesartan treatment. Changes in systolic blood pressure during...

  4. A combined role of calcium channel blockers and angiotensin receptor blockers in stroke prevention

    Directory of Open Access Journals (Sweden)

    Ji-Guang Wang

    2009-07-01

    Full Text Available Ji-Guang WangCentre for Epidemiological Studies and Clinical Trials, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, ChinaAbstract: Stroke is a leading cause of death and disability worldwide. The importance of lowering blood pressure for reducing the risk of stroke is well established. However, not all the benefits of antihypertensive treatments in stroke can be accounted for by reductions in BP and there may be differences between antihypertensive classes as to which provides optimal protection. Dihydropyridine calcium channel blockers, such as amlodipine, and angiotensin receptor blockers, such as valsartan, represent the two antihypertensive drug classes with the strongest supportive data for the prevention of stroke. Therefore, when combination therapy is required, a combination of these two antihypertensive classes represents a logical approach.Keywords: stroke, angiotensin, calcium channel, cerebrovascular, hypertension, blood pressure

  5. Angiotensin II Type 2 Receptor Agonist Experts Sustained Neuroprotective Effects In Aged Rats

    DEFF Research Database (Denmark)

    Sumners, Colin; Isenberg, Jacob; Harmel, Allison

    2016-01-01

    OBJECTIVE: The renin angiotensin system is a promising target for stroke neuroprotection and therapy through activation of angiotensin type II receptors (AT2R). The selective non-peptide AT2R agonist, Compound 21 (C21), has been shown to exhibit neuroprotection and improve stroke outcomes...... in preclinical studies, effects that likely involve neurotropic actions. However, these beneficial actions of C21 have not been demonstrated to occur beyond 1 week post stroke. The objective of this study was to determine if systemic administration of C21 would exert sustained neuroprotective effects in aged...... min), 24 h, and 48 h after stroke. Infarct size was assessed by magnetic resonance imaging at 21 days post MCAO. Animals received blinded neurological exams at 4 h, 24 h, 72 h, 7d, 14d, and 21d post-MCAO. RESULTS: Systemic treatment with C21 after stroke significantly improved neurological function...

  6. Influence of Angiotensin-Aldosterone System on Ultrasound of Joints in Patients with Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    O.B. Komarova

    2014-02-01

    Full Text Available In patients with rheumatoid arthritis and high level of angiotensin II in the blood at ultrasound of joints there are often being detected effusion in the joint cavity, hypervascularization of synovium with 2–3 points and tenosynovitis characterizing inflammatory exudative processes. In patients with high level of aldosterone, hyperplasia of synovium, presence of pannus and bone and cartilage erosions, indicating proliferative-destructive processes, were predominated. Identified correlations show that with increasing levels of angiotensin II in the blood increases the intensity of the vascularization of the synovial membrane, joint effusion, and an increase in the concentration of aldosterone in the blood affects the synovial thickness indicators, the presence of pannus and bone erosions amount.

  7. Activity of angiotensin-converting enzyme and risk of severe hypoglycaemia in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Agerholm-Larsen, Birgit; Pramming, S

    2001-01-01

    BACKGROUND: The insertion (I) allele of the angiotensin-converting-enzyme (ACE) gene occurs at increased frequency in endurance athletes. This association suggests that low ACE activity is favourable for performance in conditions with limited substrate availability. Such conditions occur in endur......BACKGROUND: The insertion (I) allele of the angiotensin-converting-enzyme (ACE) gene occurs at increased frequency in endurance athletes. This association suggests that low ACE activity is favourable for performance in conditions with limited substrate availability. Such conditions occur...... by diabetes history, degree of hypoglycaemia awareness, measurement of C-peptide, haemoglobin A(1c), and serum ACE concentrations, and determination of ACE genotype. FINDINGS: Patients with the DD genotype had a relative risk of severe hypoglycaemia in the preceding 2 years of 3.2 (95% CI 1.4-7.4) compared...

  8. Statin Treatment in Hypercholesterolemic Men Does Not Attenuate Angiotensin II-Induced Venoconstriction

    Science.gov (United States)

    Schindler, Christoph; Guenther, Kristina; Hermann, Cosima; Ferrario, Carlos M.; Schroeder, Christoph; Haufe, Sven

    2014-01-01

    Experimental studies suggested that statins attenuate vascular AT1 receptor responsiveness. Moreover, the augmented excessive pressor response to systemic angiotensin II infusions in hypercholesterolemic patients was normalized with statin treatment. In 12 hypercholesterolemic patients, we tested the hypothesis that statin treatment attenuates angiotensin II-mediated vasoconstriction in hand veins assessed by a linear variable differential transducer. Subjects ingested daily doses of either atorvastatin (40 mg) or positive control irbesartan (150 mg) for 30 days in a randomized and cross-over fashion. Ang II–induced venoconstriction at minute 4 averaged 59%±10% before and 28%±9% after irbesartan (mean ± SEM; Pblood pressure buffering reflexes. Trial Registration ClinicalTrials.gov NCT00154024 PMID:25264877

  9. Pharmacogenetic Risk Stratification in Angiotensin-Converting Enzyme Inhibitor-Treated Patients with Congestive Heart Failure

    DEFF Research Database (Denmark)

    Nelveg-Kristensen, Karl Emil; Busk Madsen, Majbritt; Torp-Pedersen, Christian

    2015-01-01

    BACKGROUND: Evidence for pharmacogenetic risk stratification of angiotensin-converting enzyme inhibitor (ACEI) treatment is limited. Therefore, in a cohort of ACEI-treated patients with congestive heart failure (CHF), we investigated the predictive value of two pharmacogenetic scores...... SNPs of the angiotensin-converting enzyme gene (rs4343) and ABO blood group genes (rs495828 and rs8176746). METHODS: Danish patients with CHF enrolled in the previously reported Echocardiography and Heart Outcome Study were included. Subjects were genotyped and categorized according to pharmacogenetic.......05 [95% CI 0.79-1.40]), respectively. CONCLUSIONS: We found no association between either of the analyzed pharmacogenetic scores and fatal outcomes in ACEI-treated patients with CHF....

  10. Prediction of severe hypoglycaemia by angiotensin-converting enzyme activity and genotype in type 1 diabetes

    DEFF Research Database (Denmark)

    Pedersen-Bjerggaard, U.; Agerholm-Larsen, B.; Pramming, S.

    2003-01-01

    AIMS/HYPOTHESIS: We have previously shown a strong relationship between high angiotensin-converting enzyme (ACE) activity, presence of the deletion (D) allele of the ACEgene and recall of severe hypoglycaemic events in patients with Type 1 diabetes. This study was carried out to assess...... this relationship prospectively. METHODS: We followed 171 adult outpatients with Type 1 diabetes in a one-year observational study with the recording of severe hypoglycaemia. Participants were characterised by serum ACE activity and ACE genotype and not treated with ACE inhibitors or angiotensin II receptor...... antagonists. RESULTS: There was a positive relationship between serum ACE activity and rate of severe hypoglycaemia with a 2.7 times higher rate in the fourth quartile of ACE activity compared to the first quartile (p=0.0007). A similar relationship was observed for the subset of episodes with coma (2.9 times...

  11. The angiotensin converting enzyme (ACE) inhibitor, captopril disrupts the motility activation of sperm from the silkworm, Bombyx mori.

    Science.gov (United States)

    Nagaoka, Sumiharu; Kawasaki, Saori; Kawasaki, Hideki; Kamei, Kaeko

    2017-11-01

    Angiotensin I-converting enzyme (also known as peptidyl dicarboxypeptidase A, ACE, and EC 3.4.15.1), which is found in a wide range of organisms, cleaves C-terminal dipeptides from relatively short oligopeptides. Mammalian ACE plays an important role in the regulation of blood pressure. However, the precise physiological functions of insect ACE homologs have not been understood. As part of our effort to elucidate new physiological roles of insect ACE, we herein report a soluble ACE protein in male reproductive secretions from the silkmoth, Bombyx mori. Seminal vesicle sperm are quiescent in vitro, but vigorous motility is activated by treatment with either a glandula (g.) prostatica homogenate or trypsin in vitro. When seminal vesicle sperm were pre-incubated with captopril, a strong and specific inhibitor of mammalian ACE, and then stimulated to initiate motility by the addition of the g. prostatica homogenate or trypsin, the overall level of acquired motility was reduced in an inhibitor-concentration-dependent manner. In the course of this project, we detected ACE-related carboxypeptidase activity that was inhibited by captopril in both the vesicular (v.) seminalis of the noncopulative male reproductive tract and in the spermatophore that forms in the female bursa copulatrix at the time of mating, just as in an earlier report on the tomato moth, Lacanobia oleracea, which belongs to a different lepidopteran species (Ekbote et al., 2003a). Two distinct genes encoding ACE-like proteins were identified by analysis of B. mori cDNA, and were named BmAcer and BmAcer2, respectively [the former was previously reported by Quan et al. (2001) and the latter was first isolated in this paper]. RT-qPCR and Western blot analyses indicated that the BmAcer2 was predominantly produced in v. seminalis and transferred to the spermatophore during copulation, while the BmAcer was not detected in the adult male reproductive organs. A recombinant protein of BmAcer2 (devoid of a signal

  12. The renin-angiotensin system is upregulated in the cortex and hippocampus of patients with temporal lobe epilepsy related to mesial temporal sclerosis

    OpenAIRE

    Arganaraz, Gustavo Adolfo [UNIFESP; Konno, Ana Carla [UNIFESP; Perosa, Sandra Regina [UNIFESP; Santiago, Joselita Ferreira Carvalho [UNIFESP; Boim, Mirian A. [UNIFESP; Vidotti, Daniela Berguio [UNIFESP; Varella, Pedro Paulo Vasconcellos [UNIFESP; Costa, Luciana Gilbert [UNIFESP; Canzian, Mauro; Porcionatto, Marimelia Aparecida [UNIFESP; Yacubian, Elza Marcia [UNIFESP; Sakamoto, Americo Ceiki [UNIFESP; Carrete, Henrique [UNIFESP; Centeno, Ricardo Silva [UNIFESP; Amado, Debora [UNIFESP

    2008-01-01

    Purpose: As reported by several authors, angiotensin II (AngII) is a proinflammatory molecule that stimulates the release of inflammatory cytokines and activates nuclear factor kappa B (NF kappa B), being also associated with the increase of cellular oxidative stress. Its production depends on the activity of the angiotensin converting enzyme (ACE) that hydrolyzes the inactive precursor angiotensin I (AngI) into AngII. It has been suggested that AngII underlies the physiopathological mechanis...

  13. Renal hemodynamics and renin-angiotensin system activity in humans with multifocal renal artery fibromuscular dysplasia.

    Science.gov (United States)

    van Twist, Daan J L; Houben, Alphons J H M; de Haan, Michiel W; de Leeuw, Peter W; Kroon, Abraham A

    2016-06-01

    Fibromuscular dysplasia (FMD) is the second most common cause of renovascular hypertension. Nonetheless, knowledge on the renal microvasculature and renin-angiotensin system (RAS) activity in kidneys with FMD is scarce. Given the fairly good results of revascularization, we hypothesized that the renal microvasculature and RAS are relatively spared in kidneys with FMD. In 58 hypertensive patients with multifocal renal artery FMD (off medication) and 116 matched controls with essential hypertension, we measured renal blood flow (Xenon washout method) per kidney and drew blood samples from the aorta and both renal veins to determine renin secretion and glomerular filtration rate per kidney. We found that renal blood flow and glomerular filtration rate in FMD were comparable to those in controls. Although systemic renin levels were somewhat higher in FMD, renal renin secretion was not elevated. Moreover, in patients with unilateral FMD, no differences between the affected and unaffected kidney were observed with regard to renal blood flow, glomerular filtration rate, or renin secretion. In men, renin levels and renin secretion were higher as compared with women. The renal blood flow response to RAS modulation (by intrarenal infusion of angiotensin II, angiotensin-(1-7), an angiotensin II type 1 receptor blocker, or a nitric oxide synthase blocker) was also comparable between FMD and controls. Renal blood flow, glomerular filtration, and the response to vasoactive substances in kidneys with multifocal FMD are comparable to patients with essential hypertension, suggesting that microvascular function is relatively spared. Renin secretion was not increased and the response to RAS modulation was not affected in kidneys with FMD.

  14. Pathological involvement of chymase-dependent angiotensin II formation in the development of cardiovascular disease

    OpenAIRE

    Hidenori Urata

    2000-01-01

    Summary Chymase is a potent and specific angiotensin II (Ang II)-forming enzyme in vitro. There is also strong evidence to suggest its importance in vivo. Recent clinical studies have suggested that high serum cholesterol levels are associated with increased vascular chymase activity and this may assist in the development of atherosclerosis. This clinical finding has been reproduced in hamster models. Studies with transgenic mice overexpressing the human chymase gene suggest a direct associat...

  15. Hemodynamic, morphometric and autonomic patterns in hypertensive rats - renin-angiotensin system modulation

    Directory of Open Access Journals (Sweden)

    Fernanda S. Zamo

    2010-01-01

    Full Text Available BACKGROUND: Spontaneously hypertensive rats develop left ventricular hypertrophy, increased blood pressure and blood pressure variability, which are important determinants of heart damage, like the activation of renin-angiotensin system. AIMS: To investigate the effects of the time-course of hypertension over 1 hemodynamic and autonomic patterns (blood pressure; blood pressure variability; heart rate; 2 left ventricular hypertrophy; and 3 local and systemic Renin-angiotensin system of the spontaneously hypertensive rats. METHODS: Male spontaneously hypertensive rats were randomized into two groups: young (n=13 and adult (n=12. Hemodynamic signals (blood pressure, heart rate, blood pressure variability (BPV and spectral analysis of the autonomic components of blood pressure were analyzed. LEFT ventricular hypertrophy was measured by the ratio of LV mass to body weight (mg/g, by myocyte diameter (μm and by relative fibrosis area (RFA, %. ACE and ACE2 activities were measured by fluorometry (UF/min, and plasma renin activity (PRA was assessed by a radioimmunoassay (ng/mL/h. Cardiac gene expressions of Agt, Ace and Ace2 were quantified by RT-PCR (AU. RESULTS: The time-course of hypertension in spontaneously hypertensive rats increased BPV and reduced the alpha index in adult spontaneously hypertensive rats. Adult rats showed increases in left ventricular hypertrophy and in RFA. Compared to young spontaneously hypertensive rats, adult spontaneously hypertensive rats had lower cardiac ACE and ACE2 activities, and high levels of PRA. No change was observed in gene expression of Renin-angiotensin system components. CONCLUSIONS: The observed autonomic dysfunction and modulation of Renin-angiotensin system activity are contributing factors to end-organ damage in hypertension and could be interacting. Our findings suggest that the management of hypertensive disease must start before blood pressure reaches the highest stable levels and the consequent

  16. Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia

    OpenAIRE

    Messadi, Erij; Vincent, Marie-Pascale; Griol-Charhbili, Violaine; Mandet, Chantal; Colucci, Juliana; Krege, John H.; Bruneval, Patrick; Bouby, Nadine; Smithies, Oliver; Alhenc-Gelas, François; Richer, Christine

    2010-01-01

    Angiotensin I-converting enzyme (ACE; kininase II) levels in humans are genetically determined. ACE levels have been linked to risk of myocardial infarction, but the association has been inconsistent, and the causality underlying it remains undocumented. We tested the hypothesis that genetic variation in ACE levels influences myocardial tolerance to ischemia. We studied ischemia-reperfusion injury in mice bearing 1 (ACE1c), 2 (ACE2c, wild type), or 3 (ACE3c) functional copies of the ACE gene ...

  17. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases.

    Science.gov (United States)

    Tan, Wan Shun Daniel; Liao, Wupeng; Zhou, Shuo; Mei, Dan; Wong, Wai-Shiu Fred

    2017-12-27

    The renin-angiotensin system (RAS) plays a major role in regulating electrolyte balance and blood pressure. RAS has also been implicated in the regulation of inflammation, proliferation and fibrosis in pulmonary diseases such as asthma, acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and pulmonary arterial hypertension (PAH). Current therapeutics suffer from some drawbacks like steroid resistance, limited efficacies and side effects. Novel intervention is definitely needed to offer optimal therapeutic strategy and clinical outcome. This review compiles and analyses recent investigations targeting RAS for the treatment of inflammatory lung diseases. Inhibition of the upstream angiotensin (Ang) I/Ang II/angiotensin receptor type 1 (AT 1 R) pathway and activation of the downstream angiotensin-converting enzyme 2 (ACE2)/Ang (1-7)/Mas receptor pathway are two feasible strategies demonstrating efficacies in various pulmonary disease models. More recent studies favor the development of targeting the downstream ACE2/Ang (1-7)/Mas receptor pathway, in which diminazene aceturate, an ACE2 activator, GSK2586881, a recombinant ACE2, and AV0991, a Mas receptor agonist, showed much potential for further development. As the pathogenesis of pulmonary diseases is so complex that RAS modulation may be used alone or in combination with existing drugs like corticosteroids, pirfenidone/nintedanib or endothelin receptor antagonists for different pulmonary diseases. Personalized medicine through genetic screening and phenotyping for angiotensinogen or ACE would aid treatment especially for non-responsive patients. This review serves to provide an update on the latest development in the field of RAS targeting for pulmonary diseases, and offer some insights into future direction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Marketing research on the angiotensin-converting enzyme inhibitors antihypertensive medicines

    OpenAIRE

    BOBOIA, ANAMARIA; GRIGORESCU, MARIUS RARE?; TURCU - ?TIOLIC?, ADINA

    2017-01-01

    Background and aims The research aimed at investigating sales trends of angiotensin-converting enzyme inhibitors antihypertensive medicines, both in terms of quantity and value, in ten community pharmacies, for a period of three years. The research on the antihypertensive medicines consumption is important for highlighting the ever increasing impact of hypertension among the population. Methods The methods used in this research were the following: marketing research, method of sampling, descr...

  19. The role of renin angiotensin system intervention in stage B heart failure.

    LENUS (Irish Health Repository)

    Collier, Patrick

    2012-04-01

    This article outlines the link between the renin angiotensin aldosterone system (RAAS) and various forms of cardiomyopathy, and also reviews the understanding of the effectiveness of RAAS intervention in this phase of ventricular dysfunction. The authors focus their discussion predominantly on patients who have had previous myocardial infarction or those who have left ventricular hypertrophy and also briefly discuss the role of RAAS activation and intervention in patients with alcoholic cardiomyopathy.

  20. The effect of angiotensin converting enzyme genotype on aerobic capacity following high intensity interval training

    OpenAIRE

    Goddard, N; Baker, M.D; Higgins, T; Cobbold, C

    2014-01-01

    Obesity increases the risk of developing type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). Physical activity can reduce T2DM and CVD risk, and increase aerobic capacity, a significant predictor of all-cause mortality and morbidity. High intensity interval training (HIIT) produces similar improvements in aerobic capacity to continuous moderate exercise (CME). Different genotypes of angiotensin converting enzyme (ACE) have been implicated in improving aerobic capacity and theref...

  1. Role of the renin-angiotensin system in cardiac hypertrophy induced in rats by hyperthyroidism

    OpenAIRE

    KOBORI, HIROYUKI; ICHIHARA, ATSUHIRO; SUZUKI, HIROMICHI; TAKENAKA, TSUNEO; MIYASHITA, YUTAKA; HAYASHI, MATSUHIKO; SARUTA, TAKAO

    1997-01-01

    This study was conducted to examine whether the renin-angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy without involving the sympathetic nervous system. Sprague-Dawley rats were divided into control-innervated, control-denervated, hyperthyroid-innervated, and hyperthyroid-denervated groups using intraperitoneal injections of thyroxine and 6-hydroxydopamine. After 8 wk, the heart-to-body weight ratio increased in hyperthyroid groups (63%), and this increase was onl...

  2. Reduced plasma noradrenaline during angiotensin II-induced acute hypertension in man

    DEFF Research Database (Denmark)

    Henriksen, J H; Kastrup, J; Christensen, N J

    1985-01-01

    1. Plasma noradrenaline and adrenaline concentrations were measured in ten subjects before, during and after intravenous infusion of angiotensin II (ANG II) in order to determine the sympathoadrenal response of ANG II challenge in man. In five subjects ganglionic blockade was additionally performed...... by intravenous infusion of trimethaphan. 2. During ANG II infusion mean arterial blood pressure increased by 30% (P adrenaline decreased less. 3. During ganglionic blockade plasma noradrenaline decreased significantly (P

  3. Effect of deafferentation of the rat tongue on plasma corticosterone, aldosterone, angiotensin and ACTH levels

    International Nuclear Information System (INIS)

    Polyntsev, Yu.V.; Serova, O.N.

    1987-01-01

    The effect of deafferentation of the tongue on the plasma level of hormones involved in regulation of the sodium ion level -- aldosterone, corticosterone, ACTH, and angiotensin -- was studied. Plasma hormone levels were determined by radioimmunoassay. The results indicate the important role of orosensory and taste perception in the processes of regulation of the sodium balance in the body. The experiments in this study were conducted on rats

  4. Relationship between changed alveolar-capillary permeability and angiotensin converting enzyme activity in serum in sarcoidosis.

    OpenAIRE

    Eklund, A; Blaschke, E

    1986-01-01

    The effect of altered alveolar-capillary permeability on angiotensin converting enzyme (ACE) activity in serum (SACE) was studied in 45 patients with sarcoidosis and 21 healthy controls. In sarcoidosis increased albumin concentrations in the bronchoalveolar lavage fluid (L albumin) and increased ratios of L albumin to albumin in serum (S albumin) indicated an increased permeability of the alveolar-capillary membrane. ACE activity in the lavage fluid (LACE) was correlated with the number of al...

  5. Association between Angiotensin-Converting Enzyme Inhibitors and Troponin in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Luiz Minuzzo

    2014-12-01

    Full Text Available Background: Cardiovascular disease is the leading cause of mortality in the western world and its treatment should be optimized to decrease severe adverse events. Objective: To determine the effect of previous use of angiotensin-converting enzyme inhibitors on cardiac troponin I measurement in patients with acute coronary syndrome without ST-segment elevation and evaluate clinical outcomes at 180 days. Methods: Prospective, observational study, carried out in a tertiary center, in patients with acute coronary syndrome without ST-segment elevation. Clinical, electrocardiographic and laboratory variables were analyzed, with emphasis on previous use of angiotensin-converting enzyme inhibitors and cardiac troponin I. The Pearson chi-square tests (Pereira or Fisher's exact test (Armitage were used, as well as the non-parametric Mann-Whitney's test. Variables with significance levels of 0.5 ng / mL were high blood glucose at admission (p = 0.0034 and ST-segment depression ≥ 0.5 mm in one or more leads (p = 0.0016. The use of angiotensin-converting inhibitors prior to hospitalization was associated with troponin ≤ 0.5 ng / mL (p = 0.0482. The C-statistics for this model was 0.77. Conclusion: This study showed a correlation between prior use of angiotensin-converting enzyme inhibitors and reduction in the myocardial necrosis marker troponin I in patients admitted for acute coronary syndrome without ST-segment elevation. However, there are no data available yet to state that this reduction could lead to fewer severe clinical events such as death and re-infarction at 180 days.

  6. Pharmacological properties of angiotensin II antagonists: Examining all the therapeutic implications

    Directory of Open Access Journals (Sweden)

    Thomas Unger

    2001-06-01

    Full Text Available Angiotensin II (Ang II, the effector peptide of the renin-angiotensin system (RAS, exerts a variety of actions in physiological blood pressure and body fluid regulation, and is implicated as a major pathogenic factor in the development of cardiovascular disease. Inhibition of the RAS, via treatment with the angiotensin-converting enzyme inhibitors (ACE-I, or more recently the Ang II AT1-receptor blockers (ARBs, has been used as a therapeutic approach to the treatment of hypertension and other cardiovascular dysfunction. Evidence from animal and clinical studies shows that the antihypertensive and overall organ-protective actions of the ARBs are similar to those of ACE-I. However, as the ARBs selectively block the AT1-receptor, which is responsible for the known cardiovascular actions of Ang II, leave the AT2-receptor unopposed and do not interfere with the breakdown of bradykinin, there is the potential for beneficial effects in hypertensive patients with cardiovascular diseases such as left ventricular hypertrophy. Furthermore, there may be additional benefits when the ARBs are combined with ACE-I in such patients. Animal studies contribute to the elucidation and understanding of the role of AT1- and AT2-receptors in the cardiovascular system, and may help in the design of clinical studies aimed at investigating the effects of ACE-I, ARBs, and their combination, on cardiovascular outcomes in hypertensive patients.

  7. Inhibition of angiotensin-converting enzyme increases oestradiol production in ewes submitted to oestrous synchronization protocol.

    Science.gov (United States)

    Costa, A s; Junior, A S; Viana, G E N; Muratori, M C S; Reis, A M; Costa, A P R

    2014-10-01

    This study aimed at evaluating the effects of angiotensin-converting enzyme inhibitor (enalapril) and angiotensin II antagonist (valsartan) on the oestradiol and progesterone production in ewes submitted to oestrous synchronization protocol. The animals were weighed and randomly divided into three groups (n = 7). A pre-experiment conducted to verify the effectiveness and toxicity of enalapril (0.5 mg/kg LW) and valsartan (2.2 mg/kg LW) showed that, in the doses used, these drugs were effective in reducing blood pressure without producing toxic effects. In the experiment, all animals were subjected to oestrous synchronization protocol during 12 days. On D10, D11 and D12, animals received saline, enalapril or valsartan (same doses of the pre-experiment), according to the group randomly divided. The hormonal analysis showed an increase in oestradiol on the last day of the protocol (D12) in animals that received enalapril (p progesterone in any of the treatments. It is concluded that valsartan and enalapril are safe and effective subcutaneously for use in sheep and that the angiotensin-converting enzyme (ACE) inhibition with enalapril leads to an increase in oestradiol production near ovulation without changing the concentration of progesterone. This shows that ACE inhibition may be a useful tool in reproductive biotechnologies involving induction and synchronization of oestrus and ovulation in sheep. © 2014 Blackwell Verlag GmbH.

  8. Role of the renin-angiotensin system in hepatic fibrosis and portal hypertension.

    Science.gov (United States)

    Shim, Kwang Yong; Eom, Young Woo; Kim, Moon Young; Kang, Seong Hee; Baik, Soon Koo

    2018-05-01

    The renin-angiotensin system (RAS) is an important regulator of cirrhosis and portal hypertension. As hepatic fibrosis progresses, levels of the RAS components angiotensin (Ang) II, Ang-(1-7), angiotensin-converting enzyme (ACE), and Ang II type 1 receptor (AT1R) are increased. The primary effector Ang II regulates vasoconstriction, sodium homoeostasis, fibrosis, cell proliferation, and inflammation in various diseases, including liver cirrhosis, through the ACE/Ang II/AT1R axis in the classical RAS. The ACE2/Ang-(1-7)/Mas receptor and ACE2/Ang-(1-9)/AT2R axes make up the alternative RAS and promote vasodilation, antigrowth, proapoptotic, and anti-inflammatory effects; thus, countering the effects of the classical RAS axis to reduce hepatic fibrogenesis and portal hypertension. Patients with portal hypertension have been treated with RAS antagonists such as ACE inhibitors, Ang receptor blockers, and aldosterone antagonists, with very promising hemodynamic results. In this review, we examine the RAS, its roles in hepatic fibrosis and portal hypertension, and current therapeutic approaches based on the use of RAS antagonists in patients with portal hypertension.

  9. Involvement of Renin-Angiotensin System in Retinopathy of Prematurity - A Possible Target for Therapeutic Intervention.

    Directory of Open Access Journals (Sweden)

    Madhu Nath

    Full Text Available Examining the Retinal Renin Angiotensin System (RRAS in the ROP neonates and analyzing the possibility of modulating the RRAS to prevent the progression in Oxygen Induced Retinopathy (OIR model.Vitreous of ROP patients (n = 44, median age 5.5 months was quantified