WorldWideScience

Sample records for protein amylodogenic regions

  1. SCOWLP classification: Structural comparison and analysis of protein binding regions

    Directory of Open Access Journals (Sweden)

    Anders Gerd

    2008-01-01

    Full Text Available Abstract Background Detailed information about protein interactions is critical for our understanding of the principles governing protein recognition mechanisms. The structures of many proteins have been experimentally determined in complex with different ligands bound either in the same or different binding regions. Thus, the structural interactome requires the development of tools to classify protein binding regions. A proper classification may provide a general view of the regions that a protein uses to bind others and also facilitate a detailed comparative analysis of the interacting information for specific protein binding regions at atomic level. Such classification might be of potential use for deciphering protein interaction networks, understanding protein function, rational engineering and design. Description Protein binding regions (PBRs might be ideally described as well-defined separated regions that share no interacting residues one another. However, PBRs are often irregular, discontinuous and can share a wide range of interacting residues among them. The criteria to define an individual binding region can be often arbitrary and may differ from other binding regions within a protein family. Therefore, the rational behind protein interface classification should aim to fulfil the requirements of the analysis to be performed. We extract detailed interaction information of protein domains, peptides and interfacial solvent from the SCOWLP database and we classify the PBRs of each domain family. For this purpose, we define a similarity index based on the overlapping of interacting residues mapped in pair-wise structural alignments. We perform our classification with agglomerative hierarchical clustering using the complete-linkage method. Our classification is calculated at different similarity cut-offs to allow flexibility in the analysis of PBRs, feature especially interesting for those protein families with conflictive binding regions

  2. Modeling disordered regions in proteins using Rosetta.

    Directory of Open Access Journals (Sweden)

    Ray Yu-Ruei Wang

    Full Text Available Protein structure prediction methods such as Rosetta search for the lowest energy conformation of the polypeptide chain. However, the experimentally observed native state is at a minimum of the free energy, rather than the energy. The neglect of the missing configurational entropy contribution to the free energy can be partially justified by the assumption that the entropies of alternative folded states, while very much less than unfolded states, are not too different from one another, and hence can be to a first approximation neglected when searching for the lowest free energy state. The shortcomings of current structure prediction methods may be due in part to the breakdown of this assumption. Particularly problematic are proteins with significant disordered regions which do not populate single low energy conformations even in the native state. We describe two approaches within the Rosetta structure modeling methodology for treating such regions. The first does not require advance knowledge of the regions likely to be disordered; instead these are identified by minimizing a simple free energy function used previously to model protein folding landscapes and transition states. In this model, residues can be either completely ordered or completely disordered; they are considered disordered if the gain in entropy outweighs the loss of favorable energetic interactions with the rest of the protein chain. The second approach requires identification in advance of the disordered regions either from sequence alone using for example the DISOPRED server or from experimental data such as NMR chemical shifts. During Rosetta structure prediction calculations the disordered regions make only unfavorable repulsive contributions to the total energy. We find that the second approach has greater practical utility and illustrate this with examples from de novo structure prediction, NMR structure calculation, and comparative modeling.

  3. Rampant adaptive evolution in regions of proteins with unknown function in Drosophila simulans.

    Directory of Open Access Journals (Sweden)

    Alisha K Holloway

    2007-10-01

    Full Text Available Adaptive protein evolution is pervasive in Drosophila. Genomic studies, thus far, have analyzed each protein as a single entity. However, the targets of adaptive events may be localized to particular parts of proteins, such as protein domains or regions involved in protein folding. We compared the population genetic mechanisms driving sequence polymorphism and divergence in defined protein domains and non-domain regions. Interestingly, we find that non-domain regions of proteins are more frequent targets of directional selection. Protein domains are also evolving under directional selection, but appear to be under stronger purifying selection than non-domain regions. Non-domain regions of proteins clearly play a major role in adaptive protein evolution on a genomic scale and merit future investigations of their functional properties.

  4. The isoelectric region of proteins: a systematic analysis.

    Directory of Open Access Journals (Sweden)

    Michael Widmann

    Full Text Available BACKGROUND: Binding of proteins in ion exchange chromatography is dominated by electrostatic interactions and can be tuned by adjusting pH and ionic strength of the solvent. Therefore, the isoelectric region (IER, the pH region of almost zero charge near the pI, has been used to predict the binding properties of proteins. PRINCIPAL FINDINGS: Usually the IER is small and binding and elution is carried out at pH values near to the pI. However, some proteins with an extended IER have been shown to bind and elute far away from its pI. To analyze factors that mediate the size of the IER and to identify proteins with an extended IER, two protein families consisting of more than 7000 proteins were systematically investigated. Most proteins were found to have a small IER and thus are expected to bind or elute near to their pI, while only a small fraction of less than 2% had a large IER. CONCLUSIONS: Only four factors, the number of histidines, the pI, the number of titratable amino acids and the ratio of acidic to basic residues, are sufficient to reliably classify proteins by their IER based on their sequence only, and thus to predict their binding and elution behaviour in ion exchange chromatography.

  5. Protein-protein docking using region-based 3D Zernike descriptors.

    Science.gov (United States)

    Venkatraman, Vishwesh; Yang, Yifeng D; Sael, Lee; Kihara, Daisuke

    2009-12-09

    Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-alphaRMSD 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for protein docking prediction. Rigorous benchmark studies show that our docking approach has a superior performance compared to existing methods.

  6. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  7. Expected packing density allows prediction of both amyloidogenic and disordered regions in protein chains

    Energy Technology Data Exchange (ETDEWEB)

    Galzitskaya, Oxana V; Garbuzynskiy, Sergiy O; Lobanov, Michail Yu [Institute of Protein Research, Russian Academy of Sciences, 142290, Pushchino, Moscow Region (Russian Federation)

    2007-07-18

    The determination of factors that influence conformational changes in proteins is very important for the identification of potentially amyloidogenic and disordered regions in polypeptide chains. In our work we introduce a new parameter, mean packing density, to detect both amyloidogenic and disordered regions in a protein sequence. It has been shown that regions with strong expected packing density are responsible for amyloid formation. Our predictions are consistent with known disease-related amyloidogenic regions for 9 of 12 amyloid-forming proteins and peptides in which the positions of amyloidogenic regions have been revealed experimentally. Our findings support the concept that the mechanism of formation of amyloid fibrils is similar for different peptides and proteins. Moreover, we have demonstrated that regions with weak expected packing density are responsible for the appearance of disordered regions. Our method has been tested on datasets of globular proteins and long disordered protein segments, and it shows improved performance over other widely used methods. Thus, we demonstrate that the expected packing density is a useful value for predicting both disordered and amyloidogenic regions of a protein based on sequence alone. Our results are important for understanding the structural characteristics of protein folding and misfolding.

  8. Protein-protein docking using region-based 3D Zernike descriptors

    Directory of Open Access Journals (Sweden)

    Sael Lee

    2009-12-01

    Full Text Available Abstract Background Protein-protein interactions are a pivotal component of many biological processes and mediate a variety of functions. Knowing the tertiary structure of a protein complex is therefore essential for understanding the interaction mechanism. However, experimental techniques to solve the structure of the complex are often found to be difficult. To this end, computational protein-protein docking approaches can provide a useful alternative to address this issue. Prediction of docking conformations relies on methods that effectively capture shape features of the participating proteins while giving due consideration to conformational changes that may occur. Results We present a novel protein docking algorithm based on the use of 3D Zernike descriptors as regional features of molecular shape. The key motivation of using these descriptors is their invariance to transformation, in addition to a compact representation of local surface shape characteristics. Docking decoys are generated using geometric hashing, which are then ranked by a scoring function that incorporates a buried surface area and a novel geometric complementarity term based on normals associated with the 3D Zernike shape description. Our docking algorithm was tested on both bound and unbound cases in the ZDOCK benchmark 2.0 dataset. In 74% of the bound docking predictions, our method was able to find a near-native solution (interface C-αRMSD ≤ 2.5 Å within the top 1000 ranks. For unbound docking, among the 60 complexes for which our algorithm returned at least one hit, 60% of the cases were ranked within the top 2000. Comparison with existing shape-based docking algorithms shows that our method has a better performance than the others in unbound docking while remaining competitive for bound docking cases. Conclusion We show for the first time that the 3D Zernike descriptors are adept in capturing shape complementarity at the protein-protein interface and useful for

  9. Genome-scale prediction of proteins with long intrinsically disordered regions.

    Science.gov (United States)

    Peng, Zhenling; Mizianty, Marcin J; Kurgan, Lukasz

    2014-01-01

    Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/. Copyright © 2013 Wiley Periodicals, Inc.

  10. Aggregation propensity of critical regions of the protein Tau

    Science.gov (United States)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  11. Discrete Ramanujan transform for distinguishing the protein coding regions from other regions.

    Science.gov (United States)

    Hua, Wei; Wang, Jiasong; Zhao, Jian

    2014-01-01

    Based on the study of Ramanujan sum and Ramanujan coefficient, this paper suggests the concepts of discrete Ramanujan transform and spectrum. Using Voss numerical representation, one maps a symbolic DNA strand as a numerical DNA sequence, and deduces the discrete Ramanujan spectrum of the numerical DNA sequence. It is well known that of discrete Fourier power spectrum of protein coding sequence has an important feature of 3-base periodicity, which is widely used for DNA sequence analysis by the technique of discrete Fourier transform. It is performed by testing the signal-to-noise ratio at frequency N/3 as a criterion for the analysis, where N is the length of the sequence. The results presented in this paper show that the property of 3-base periodicity can be only identified as a prominent spike of the discrete Ramanujan spectrum at period 3 for the protein coding regions. The signal-to-noise ratio for discrete Ramanujan spectrum is defined for numerical measurement. Therefore, the discrete Ramanujan spectrum and the signal-to-noise ratio of a DNA sequence can be used for distinguishing the protein coding regions from the noncoding regions. All the exon and intron sequences in whole chromosomes 1, 2, 3 and 4 of Caenorhabditis elegans have been tested and the histograms and tables from the computational results illustrate the reliability of our method. In addition, we have analyzed theoretically and gotten the conclusion that the algorithm for calculating discrete Ramanujan spectrum owns the lower computational complexity and higher computational accuracy. The computational experiments show that the technique by using discrete Ramanujan spectrum for classifying different DNA sequences is a fast and effective method. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs

    Directory of Open Access Journals (Sweden)

    Ruan Jishou

    2007-04-01

    Full Text Available Abstract Background Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP; the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction. Results The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are

  13. Distribution of protein components of wheat from different regions

    African Journals Online (AJOL)

    kesiena

    2012-06-07

    Jun 7, 2012 ... The distribution of wheat protein components in different regions was researched to ..... properties of wheat gliadins II. effects on dynamic rheoligical ... fractions properties of wheat dough depending on molecular size and.

  14. GBA manager: an online tool for querying low-complexity regions in proteins.

    Science.gov (United States)

    Bandyopadhyay, Nirmalya; Kahveci, Tamer

    2010-01-01

    Abstract We developed GBA Manager, an online software that facilitates the Graph-Based Algorithm (GBA) we proposed in our earlier work. GBA identifies the low-complexity regions (LCR) of protein sequences. GBA exploits a similarity matrix, such as BLOSUM62, to compute the complexity of the subsequences of the input protein sequence. It uses a graph-based algorithm to accurately compute the regions that have low complexities. GBA Manager is a user friendly web-service that enables online querying of protein sequences using GBA. In addition to querying capabilities of the existing GBA algorithm, GBA Manager computes the p-values of the LCR identified. The p-value gives an estimate of the possibility that the region appears by chance. GBA Manager presents the output in three different understandable formats. GBA Manager is freely accessible at http://bioinformatics.cise.ufl.edu/GBA/GBA.htm .

  15. Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean

    Directory of Open Access Journals (Sweden)

    Puji eLestari

    2013-06-01

    Full Text Available Understanding several modes of duplication contributing on the present genome structure is getting an attention because it could be related to numerous agronomically important traits. Since soybean serves as a rich protein source for animal feeds and human consumption, breeding efforts in soybean have been directed toward enhancing seed protein content. The publicly available soybean sequences and its genomically featured elements facilitate comprehending of quantitative trait loci (QTL for seed protein content in concordance with homeologous regions in soybean genome. Although parts of chromosome (Chr 20 and Chr 10 showed synteny, QTLs for seed protein content present only on Chr 20. Using comparative analysis of gene contents in recently duplicated genomic regions harboring QTL for protein/oil content on Chrs 20 and 10, a total of 27 genes are present in duplicated regions of both chromosomes. Notably, 4 tandem duplicates of the putative homeobox protein 22 (HB22 are present only on Chr 20 and this Medicago truncatula homolog expressed in endosperm at seed filling stage. These tandem duplicates could contribute on the protein/oil QTL of Chr 20. Our study suggests that non-shared gene contents within the duplicated genomic regions might lead to absence/presence of QTL related to protein/oil content.

  16. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  17. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  18. Disease-associated mutations disrupt functionally important regions of intrinsic protein disorder.

    Directory of Open Access Journals (Sweden)

    Vladimir Vacic

    Full Text Available The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs and regions (IDRs in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7-2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study

  19. High genetic diversity in the coat protein and 3' untranslated regions

    Indian Academy of Sciences (India)

    The 3′ terminal region consisting of the coat protein (CP) coding sequence and 3′ untranslated region (3′UTR) was cloned and sequenced from seven isolates. Sequence comparisons revealed considerable genetic diversity among the isolates in their CP and 3′UTR, making CdMV one of the highly variable members ...

  20. Definition of IgG- and albumin-binding regions of streptococcal protein G.

    Science.gov (United States)

    Akerström, B; Nielsen, E; Björck, L

    1987-10-05

    Protein G, the immunoglobin G-binding surface protein of group C and G streptococci, also binds serum albumin. The albumin-binding site on protein G is distinct from the immunoglobulin G-binding site. By mild acid hydrolysis of the papain-liberated protein G fragment (35 kDa), a 28-kDa fragment was produced which retained full immunoglobulin G-binding activity (determined by Scatchard plotting) but had lost all albumin-binding capacity. A protein G (65 kDa), isolated after cloning and expression of the protein G gene in Escherichia coli, had comparable affinity to immunoglobulin G (5-10 X 10(10)M-1), but much higher affinity to albumin than the 35- and 28-kDa protein G fragments (31, 2.6, and 0 X 10(9)M-1, respectively). The amino-terminal amino acid sequences of the 65-, 35-, and 28-kDa fragments allowed us to exactly locate the three fragments in an overall sequence map of protein G, based on the partial gene sequences published by Guss et al. (Guss, B., Eliasson, M., Olsson, A., Uhlen, M., Frej, A.-K., Jörnvall, H., Flock, J.-I., and Lindberg, M. (1986) EMBO J. 5, 1567-1575) and Fahnestock et al. (Fahnestock, S. R., Alexander, P., Nagle, J., and Filpula, D. (1986) J. Bacteriol. 167, 870-880). In this map could then be deduced the location of three homologous albumin-binding regions and three homologous immunoglobulin G-binding regions.

  1. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    Science.gov (United States)

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Functional dissection of Streptococcus pyogenes M5 protein: the hypervariable region is essential for virulence.

    Directory of Open Access Journals (Sweden)

    Johan Waldemarsson

    Full Text Available The surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here. Mixed infection experiments with wild type bacteria demonstrated that mutants lacking the N-terminal hypervariable region (HVR or the Fg-binding B-repeat region were strongly attenuated, while a mutant lacking the conserved C-repeats was only slightly attenuated. Because the HVR of M5 is not required for phagocytosis resistance, our data imply that this HVR plays a major but unknown role during acute infection. The B-repeat region is required for phagocytosis resistance and specifically binds Fg, suggesting that it promotes virulence by binding Fg. However, B-repeat mutants were attenuated even in Fg-deficient mice, implying that the B-repeats may have a second function, in addition to Fg-binding. These data demonstrate that two distinct M5 regions, including the HVR, are essential to virulence during the early stages of an infection. In particular, our data provide the first in vivo evidence that the HVR of an M protein plays a major role in virulence, focusing interest on the molecular role of this region.

  3. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    Wyrwicz, Lucjan S; Koczyk, Grzegorz; Rychlewski, Leszek; Plewczynski, Dariusz

    2007-01-01

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  4. DeepCNF-D: Predicting Protein Order/Disorder Regions by Weighted Deep Convolutional Neural Fields

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2015-07-01

    Full Text Available Intrinsically disordered proteins or protein regions are involved in key biological processes including regulation of transcription, signal transduction, and alternative splicing. Accurately predicting order/disorder regions ab initio from the protein sequence is a prerequisite step for further analysis of functions and mechanisms for these disordered regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional Neural Fields, to improve the accuracy of order/disorder prediction by exploiting the long-range sequential information and the interdependency between adjacent order/disorder labels and by assigning different weights for each label during training and prediction to solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single ab initio predictors.

  5. Direct ATP photolabeling of Escherichia coli recA proteins: identification of regions required for ATP binding

    International Nuclear Information System (INIS)

    Banks, G.R.; Sedgwick, S.G.

    1986-01-01

    When the Escherichia coli RecA protein is UV irradiated in the presence of [alpha- 32 P]ATP, a labeled protein--ATP adduct is formed. All the experimental evidence indicates that, in forming such an adduct, the ATP becomes specifically immobilized in the catalytically relevant ATP binding site. The adduct can also be identified after irradiation of E. coli cell lysates in a similar manner. This direct ATP photolabeling of RecA proteins has been used to identify regions of the polypeptide chain involved in the binding of ATP. The photolabeling of a RecA protein that lacks wild-type carboxy-terminal amino acids is not detectable. A RecA protein in which the amino-terminal sequence NH2-Ala-Ile-Asp-Glu-Asn- is replaced by NH2-Thr-Met-Ile-Thr-Asn-Ser-Ser-Ser- is only about 5% as efficiently photolabeled as the wild-type protein. Both of these RecA protein constructions, however, contain all the elements previously implicated, directly or indirectly, in the binding of ATP. ATP-photolabeled RecA protein has also been chemically cleaved at specific amino acids in order to identify regions of the polypeptide chain to which the nucleotide becomes covalently photolinked. The evidence is consistent with a region comprising amino acids 116-170. Thus, this work and that of others suggest that several disparate regions of the unfolded polypeptide chain may combine to form the ATP binding site upon protein folding or may influence binding through long-range effects

  6. DisoMCS: Accurately Predicting Protein Intrinsically Disordered Regions Using a Multi-Class Conservative Score Approach.

    Directory of Open Access Journals (Sweden)

    Zhiheng Wang

    Full Text Available The precise prediction of protein intrinsically disordered regions, which play a crucial role in biological procedures, is a necessary prerequisite to further the understanding of the principles and mechanisms of protein function. Here, we propose a novel predictor, DisoMCS, which is a more accurate predictor of protein intrinsically disordered regions. The DisoMCS bases on an original multi-class conservative score (MCS obtained by sequence-order/disorder alignment. Initially, near-disorder regions are defined on fragments located at both the terminus of an ordered region connecting a disordered region. Then the multi-class conservative score is generated by sequence alignment against a known structure database and represented as order, near-disorder and disorder conservative scores. The MCS of each amino acid has three elements: order, near-disorder and disorder profiles. Finally, the MCS is exploited as features to identify disordered regions in sequences. DisoMCS utilizes a non-redundant data set as the training set, MCS and predicted secondary structure as features, and a conditional random field as the classification algorithm. In predicted near-disorder regions a residue is determined as an order or a disorder according to the optimized decision threshold. DisoMCS was evaluated by cross-validation, large-scale prediction, independent tests and CASP (Critical Assessment of Techniques for Protein Structure Prediction tests. All results confirmed that DisoMCS was very competitive in terms of accuracy of prediction when compared with well-established publicly available disordered region predictors. It also indicated our approach was more accurate when a query has higher homologous with the knowledge database.The DisoMCS is available at http://cal.tongji.edu.cn/disorder/.

  7. Hypothyroidism coordinately and transiently affects myelin protein gene expression in most rat brain regions during postnatal development.

    Science.gov (United States)

    Ibarrola, N; Rodríguez-Peña, A

    1997-03-28

    To assess the role of thyroid hormone on myelin gene expression, we have studied the effect of hypothyroidism on the mRNA steady state levels for the major myelin protein genes: myelin basic protein (MBP), proteolipid protein (PLP), myelin-associated glycoprotein (MAG) and 2':3'-cyclic nucleotide 3'-phosphodiesterase (CNP) in different rat brain regions, during the first postnatal month. We found that hypothyroidism reduces the levels of every myelin protein transcript, with striking differences between the different brain regions. Thus, in the more caudal regions, the effect of hypothyroidism was extremely modest, being only evident at the earlier stages of myelination. In contrast, in the striatum and the cerebral cortex the important decrease in the myelin protein transcripts is maintained beyond the first postnatal month. Therefore, thyroid hormone modulates in a synchronous fashion the expression of the myelin genes and the length of its effect depends on the brain region. On the other hand, hyperthyroidism leads to an increase of the major myelin protein transcripts above control values. Finally, lack of thyroid hormone does not change the expression of the oligodendrocyte progenitor-specific gene, the platelet derived growth factor receptor alpha.

  8. Protein profiles of serum, brain regions and hypophyses of pubertal ...

    African Journals Online (AJOL)

    The effects of dietary fumonisin B1 (FB1 ), a toxin produced mainly by Fusarium verticillioides and F. proliferatum that grow on maize worldwide, on protein profiles of serum, brain regions and hypophyses were studied in 24 male Large White weanling pigs randomly divided into four groups (n = 6). In a completely ...

  9. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis.

    Science.gov (United States)

    Hu, Wen; Wu, Feng; Zhang, Yanchong; Gong, Cheng-Xin; Iqbal, Khalid; Liu, Fei

    2017-01-01

    Microtubule-associated protein tau is hyperphosphorylated and aggregated in affected neurons in Alzheimer disease (AD) brains. The tau pathology starts from the entorhinal cortex (EC), spreads to the hippocampus and frontal and temporal cortices, and finally to all isocortex areas, but the cerebellum is spared from tau lesions. The molecular basis of differential vulnerability of different brain regions to tau pathology is not understood. In the present study, we analyzed brain regional expressions of tau and tau pathology-related proteins. We found that tau was hyperphosphorylated at multiple sites in the frontal cortex (FC), but not in the cerebellum, from AD brain. The level of tau expression in the cerebellum was about 1/4 of that seen in the frontal and temporal cortices in human brain. In the rat brain, the expression level of tau with three microtubule-binding repeats (3R-tau) was comparable in the hippocampus, EC, FC, parietal-temporal cortex (PTC), occipital-temporal cortex (OTC), striatum, thalamus, olfactory bulb (OB) and cerebellum. However, the expression level of 4R-tau was the highest in the EC and the lowest in the cerebellum. Tau phosphatases, kinases, microtubule-related proteins and other tau pathology-related proteins were also expressed in a region-specific manner in the rat brain. These results suggest that higher levels of tau and tau kinases in the EC and low levels of these proteins in the cerebellum may accounts for the vulnerability and resistance of these representative brain regions to the development of tau pathology, respectively. The present study provides the regional expression profiles of tau and tau pathology-related proteins in the brain, which may help understand the brain regional vulnerability to tau pathology in neurodegenerative tauopathies.

  10. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  11. Junction region of EWS-FLI1 fusion protein has a dominant negative effect in Ewing's sarcoma in vitro.

    Science.gov (United States)

    Jully, Babu; Vijayalakshmi, Ramshankar; Gopal, Gopisetty; Sabitha, Kesavan; Rajkumar, Thangarajan

    2012-11-12

    Ewing's sarcoma is a malignancy characterized by a specific 11:22 chromosomal translocation which generates a novel EWS-FLI1 fusion protein functioning as an aberrant transcription factor. In the present study, we have further characterized the junction region of the EWS-FLI1 fusion protein. In-silico model of EWS-FLI1 fusion protein was analysed for ligand binding sites, and a putative region (amino acid (aa) 251-343 of the type 1 fusion protein) in the vicinity of the fusion junction was cloned and expressed using bacterial expression. The recombinant protein was characterized by Circular Dichroism (CD). We then expressed aa 251-280 ectopically in Ewing's sarcoma cell-line and its effect on cell proliferation, tumorigenicity and expression of EWS-FLI1 target genes were analysed. Our modelling analysis indicated that Junction region (aa 251-343) encompasses potential ligand biding sites in the EWS-FLI1 protein and when expressed in bacteria was present as soluble form. Ectopically expressing this region in Ewing's sarcoma cells inhibited tumorigenicity, and EWS-FLI1 target genes indicating a dominant negative biological effect. Junction region can be exploited further as target for drug development in future to specifically target EWS-FLI1 in Ewing's Sarcoma.

  12. OPAL: prediction of MoRF regions in intrinsically disordered protein sequences.

    Science.gov (United States)

    Sharma, Ronesh; Raicar, Gaurav; Tsunoda, Tatsuhiko; Patil, Ashwini; Sharma, Alok

    2018-06-01

    Intrinsically disordered proteins lack stable 3-dimensional structure and play a crucial role in performing various biological functions. Key to their biological function are the molecular recognition features (MoRFs) located within long disordered regions. Computationally identifying these MoRFs from disordered protein sequences is a challenging task. In this study, we present a new MoRF predictor, OPAL, to identify MoRFs in disordered protein sequences. OPAL utilizes two independent sources of information computed using different component predictors. The scores are processed and combined using common averaging method. The first score is computed using a component MoRF predictor which utilizes composition and sequence similarity of MoRF and non-MoRF regions to detect MoRFs. The second score is calculated using half-sphere exposure (HSE), solvent accessible surface area (ASA) and backbone angle information of the disordered protein sequence, using information from the amino acid properties of flanks surrounding the MoRFs to distinguish MoRF and non-MoRF residues. OPAL is evaluated using test sets that were previously used to evaluate MoRF predictors, MoRFpred, MoRFchibi and MoRFchibi-web. The results demonstrate that OPAL outperforms all the available MoRF predictors and is the most accurate predictor available for MoRF prediction. It is available at http://www.alok-ai-lab.com/tools/opal/. ashwini@hgc.jp or alok.sharma@griffith.edu.au. Supplementary data are available at Bioinformatics online.

  13. Region-specific differences in bioenergetic proteins and protein response to acute high fat diet in brains of low and high capacity runner rats.

    Science.gov (United States)

    Gan, Li; Ma, Delin; Li, Min; Yang, Fu-Chen; Rogers, Robert S; Wheatley, Joshua L; Koch, Lauren G; Britton, Steven L; Thyfault, John P; Geiger, Paige C; Stanford, John A

    2018-05-01

    Aerobic capacity is a strong predictor of mortality. Low capacity runner (LCR) rats exhibit reduced mitochondrial function in peripheral organs. A high fat diet (HFD) can worsen metabolic phenotype in LCR rats. Little is known about metabolic changes in the brains of these rats, however. This study examined protein markers of mitochondrial function and metabolism as a function of aerobic running capacity and an acute HFD in four brain regions: the striatum, hippocampus, hypothalamus, and substantia nigra. After 3 days HFD or chow diets, we measured peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1-α), nuclear respiratory factors 1 (Nrf-1), mitochondrial transcription factor A (TFAM), and phosphorylated (activated) AMP-activated protein kinase (p-AMPK) protein levels in the four brain regions. LCR rats exhibited lower levels of mitochondrial proteins (PGC1-α, Nrf-1, TFAM), and greater p-AMPK, in striatum, but not in the other brain regions. Mitochondrial protein levels were greater in HFD LCR striatum, while p-AMPK was lower in this group. Markers of lower mitochondrial biogenesis and increased metabolic demand were limited to the LCR striatum, which nevertheless maintained the capacity to respond to an acute HFD challenge. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Engineering Aromatic-Aromatic Interactions To Nucleate Folding in Intrinsically Disordered Regions of Proteins.

    Science.gov (United States)

    Balakrishnan, Swati; Sarma, Siddhartha P

    2017-08-22

    Aromatic interactions are an important force in protein folding as they combine the stability of a hydrophobic interaction with the selectivity of a hydrogen bond. Much of our understanding of aromatic interactions comes from "bioinformatics" based analyses of protein structures and from the contribution of these interactions to stabilizing secondary structure motifs in model peptides. In this study, the structural consequences of aromatic interactions on protein folding have been explored in engineered mutants of the molten globule protein apo-cytochrome b 5 . Structural changes from disorder to order due to aromatic interactions in two variants of the protein, viz., WF-cytb5 and FF-cytb5, result in significant long-range secondary and tertiary structure. The results show that 54 and 52% of the residues in WF-cytb5 and FF-cytb5, respectively, occupy ordered regions versus 26% in apo-cytochrome b 5 . The interactions between the aromatic groups are offset-stacked and edge-to-face for the Trp-Phe and Phe-Phe mutants, respectively. Urea denaturation studies indicate that both mutants have a C m higher than that of apo-cytochrome b 5 and are more stable to chaotropic agents than apo-cytochrome b 5 . The introduction of these aromatic residues also results in "trimer" interactions with existing aromatic groups, reaffirming the selectivity of the aromatic interactions. These studies provide insights into the aromatic interactions that drive disorder-to-order transitions in intrinsically disordered regions of proteins and will aid in de novo protein design beyond small peptide scaffolds.

  15. Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Sung; Saunders, Adam M.; Hamaoka, Brent Y.; Beachy, Philip A.; Leahy, Daniel J. (Stanford-MED); (JHU)

    2011-09-20

    Glypicans are heparan sulfate proteoglycans that modulate the signaling of multiple growth factors active during animal development, and loss of glypican function is associated with widespread developmental abnormalities. Glypicans consist of a conserved, approximately 45-kDa N-terminal protein core region followed by a stalk region that is tethered to the cell membrane by a glycosyl-phosphatidylinositol anchor. The stalk regions are predicted to be random coil but contain a variable number of attachment sites for heparan sulfate chains. Both the N-terminal protein core and the heparan sulfate attachments are important for glypican function. We report here the 2.4-{angstrom} crystal structure of the N-terminal protein core region of the Drosophila glypican Dally-like (Dlp). This structure reveals an elongated, {alpha}-helical fold for glypican core regions that does not appear homologous to any known structure. The Dlp core protein is required for normal responsiveness to Hedgehog (Hh) signals, and we identify a localized region on the Dlp surface important for mediating its function in Hh signaling. Purified Dlp protein core does not, however, interact appreciably with either Hh or an Hh:Ihog complex.

  16. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  17. Localization of a Region in the Fusion Protein of Avian Metapneumovirus That Modulates Cell-Cell Fusion

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M.; Iorio, Ronald M.

    2012-01-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented. PMID:22915815

  18. Localization of a region in the fusion protein of avian metapneumovirus that modulates cell-cell fusion.

    Science.gov (United States)

    Wei, Yongwei; Feng, Kurtis; Yao, Xiangjie; Cai, Hui; Li, Junan; Mirza, Anne M; Iorio, Ronald M; Li, Jianrong

    2012-11-01

    The genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae includes two members, human metapneumovirus (hMPV) and avian metapneumovirus (aMPV), causing respiratory tract infections in humans and birds, respectively. Paramyxoviruses enter host cells by fusing the viral envelope with a host cell membrane. Membrane fusion of hMPV appears to be unique, in that fusion of some hMPV strains requires low pH. Here, we show that the fusion (F) proteins of aMPV promote fusion in the absence of the attachment protein and low pH is not required. Furthermore, there are notable differences in cell-cell fusion among aMPV subtypes. Trypsin was required for cell-cell fusion induced by subtype B but not subtypes A and C. The F protein of aMPV subtype A was highly fusogenic, whereas those from subtypes B and C were not. By construction and evaluation of chimeric F proteins composed of domains from the F proteins of subtypes A and B, we localized a region composed of amino acid residues 170 to 338 in the F protein that is responsible for the hyperfusogenic phenotype of the F from subtype A. Further mutagenesis analysis revealed that residues R295, G297, and K323 in this region collectively contributed to the hyperfusogenicity. Taken together, we have identified a region in the aMPV F protein that modulates the extent of membrane fusion. A model for fusion consistent with these data is presented.

  19. Junction region of EWS-FLI1 fusion protein has a dominant negative effect in Ewing’s Sarcoma in vitro

    International Nuclear Information System (INIS)

    Jully, Babu; Vijayalakshmi, Ramshankar; Gopal, Gopisetty; Sabitha, Kesavan; Rajkumar, Thangarajan

    2012-01-01

    Ewing’s sarcoma is a malignancy characterized by a specific 11:22 chromosomal translocation which generates a novel EWS-FLI1 fusion protein functioning as an aberrant transcription factor. In the present study, we have further characterized the junction region of the EWS-FLI1 fusion protein. In-silico model of EWS-FLI1 fusion protein was analysed for ligand binding sites, and a putative region (amino acid (aa) 251–343 of the type 1 fusion protein) in the vicinity of the fusion junction was cloned and expressed using bacterial expression. The recombinant protein was characterized by Circular Dichroism (CD). We then expressed aa 251–280 ectopically in Ewing’s sarcoma cell-line and its effect on cell proliferation, tumorigenicity and expression of EWS-FLI1 target genes were analysed. Our modelling analysis indicated that Junction region (aa 251–343) encompasses potential ligand biding sites in the EWS-FLI1 protein and when expressed in bacteria was present as soluble form. Ectopically expressing this region in Ewing’s sarcoma cells inhibited tumorigenicity, and EWS-FLI1 target genes indicating a dominant negative biological effect. Junction region can be exploited further as target for drug development in future to specifically target EWS-FLI1 in Ewing’s Sarcoma

  20. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    Science.gov (United States)

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  1. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins.

    Science.gov (United States)

    Pradhan, Mohan R; Pal, Arumay; Hu, Zhongqiao; Kannan, Srinivasaraghavan; Chee Keong, Kwoh; Lane, David P; Verma, Chandra S

    2016-02-01

    Aggregation is an irreversible form of protein complexation and often toxic to cells. The process entails partial or major unfolding that is largely driven by hydration. We model the role of hydration in aggregation using "Dehydrons." "Dehydrons" are unsatisfied backbone hydrogen bonds in proteins that seek shielding from water molecules by associating with ligands or proteins. We find that the residues at aggregation interfaces have hydrated backbones, and in contrast to other forms of protein-protein interactions, are under less evolutionary pressure to be conserved. Combining evolutionary conservation of residues and extent of backbone hydration allows us to distinguish regions on proteins associated with aggregation (non-conserved dehydron-residues) from other interaction interfaces (conserved dehydron-residues). This novel feature can complement the existing strategies used to investigate protein aggregation/complexation. © 2015 Wiley Periodicals, Inc.

  2. The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.

    Science.gov (United States)

    Kolobova, Elena; Roland, Joseph T; Lapierre, Lynne A; Williams, Janice A; Mason, Twila A; Goldenring, James R

    2017-12-15

    Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.

  3. Sequential assignment of proline-rich regions in proteins: Application to modular binding domain complexes

    International Nuclear Information System (INIS)

    Kanelis, Voula; Donaldson, Logan; Muhandiram, D.R.; Rotin, Daniela; Forman-Kay, Julie D.; Kay, Lewis E.

    2000-01-01

    Many protein-protein interactions involve amino acid sequences containing proline-rich motifs and even poly-proline stretches. The lack of amide protons in such regions complicates assignment, since 1 HN-based triple-resonance assignment strategies cannot be employed. Two such systems that we are currently studying include an SH2 domain from the protein Crk with a region containing 9 prolines in a 14 amino acid sequence, as well as a WW domain that interacts with a proline-rich target. A modified version of the HACAN pulse scheme, originally described by Bax and co-workers [Wang et al. (1995) J. Biomol. NMR, 5, 376-382], and an experiment which correlates the intra-residue 1 H α , 13 C α / 13 C β chemical shifts with the 15 N shift of the subsequent residue are presented and applied to the two systems listed above, allowing sequential assignment of the molecules

  4. Interaction study of rice stripe virus proteins reveals a region of the nucleocapsid protein (NP) required for NP self-interaction and nuclear localization.

    Science.gov (United States)

    Lian, Sen; Cho, Won Kyong; Jo, Yeonhwa; Kim, Sang-Min; Kim, Kook-Hyung

    2014-04-01

    Rice stripe virus (RSV), which belongs to the genus Tenuivirus, is an emergent virus problem. The RSV genome is composed of four single-strand RNAs (RNA1-RNA4) and encodes seven proteins. We investigated interactions between six of the RSV proteins by yeast-two hybrid (Y2H) assay in vitro and by bimolecular fluorescence complementation (BiFC) in planta. Y2H identified self-interaction of the nucleocapsid protein (NP) and NS3, while BiFC revealed self-interaction of NP, NS3, and NCP. To identify regions(s) and/or crucial amino acid (aa) residues required for NP self-interaction, we generated various truncated and aa substitution mutants. Y2H assay showed that the N-terminal region of NP (aa 1-56) is necessary for NP self-interaction. Further analysis with substitution mutants demonstrated that additional aa residues located at 42-47 affected their interaction with full-length NP. These results indicate that the N-terminal region (aa 1-36 and 42-47) is required for NP self-interaction. BiFC and co-localization studies showed that the region required for NP self-interaction is also required for NP localization at the nucleus. Overall, our results indicate that the N-terminal region (aa 1-47) of the NP is important for NP self-interaction and that six aa residues (42-47) are essential for both NP self-interaction and nuclear localization. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. An evolutionary model for protein-coding regions with conserved RNA structure

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Forsberg, Roald; Meyer, Irmtraud Margret

    2004-01-01

    in the RNA structure. The overlap of these fundamental dependencies is sufficient to cause "contagious" context dependencies which cascade across many nucleotide sites. Such large-scale dependencies challenge the use of traditional phylogenetic models in evolutionary inference because they explicitly assume...... components of traditional phylogenetic models. We applied this to a data set of full-genome sequences from the hepatitis C virus where five RNA structures are mapped within the coding region. This allowed us to partition the effects of selection on different structural elements and to test various hypotheses......Here we present a model of nucleotide substitution in protein-coding regions that also encode the formation of conserved RNA structures. In such regions, apparent evolutionary context dependencies exist, both between nucleotides occupying the same codon and between nucleotides forming a base pair...

  6. Biophysical properties of regions flanking the bHLH-Zip motif in the p22 Max protein

    International Nuclear Information System (INIS)

    Pursglove, Sharon E.; Fladvad, Malin; Bellanda, Massimo; Moshref, Ahmad; Henriksson, Marie; Carey, Jannette; Sunnerhagen, Maria

    2004-01-01

    The Max protein is the central dimerization partner in the Myc-Max-Mad network of transcriptional regulators, and a founding structural member of the family of basic-helix-loop-helix (bHLH)-leucine zipper (Zip) proteins. Biologically important regions flanking its bHLH-Zip motif have been disordered or absent in crystal structures. The present study shows that these regions are resistant to proteolysis in both the presence and absence of DNA, and that Max dimers containing both flanking regions have significantly higher helix content as measured by circular dichroism than that predicted from the crystal structures. Nuclear magnetic resonance measurements in the absence of DNA also support the inferred structural order. Deletion of both flanking regions is required to achieve maximal DNA affinity as measured by EMSA. Thus, the previously observed functionalities of these Max regions in DNA binding, phosphorylation, and apoptosis are suggested to be linked to structural properties

  7. Different regions of the newcastle disease virus fusion protein modulate pathogenicity.

    Directory of Open Access Journals (Sweden)

    Sandra Heiden

    Full Text Available Newcastle disease virus (NDV, also designated as Avian paramyxovirus type 1 (APMV-1, is the causative agent of a notifiable disease of poultry but it exhibits different pathogenicity dependent on the virus strain. The molecular basis for this variability is not fully understood. The efficiency of activation of the fusion protein (F is determined by presence or absence of a polybasic amino acid sequence at an internal proteolytic cleavage site which is a major determinant of NDV virulence. However, other determinants of pathogenicity must exist since APMV-1 of high (velogenic, intermediate (mesogenic and low (lentogenic virulence specify a polybasic F cleavage site. We aimed at elucidation of additional virulence determinants by constructing a recombinant virus that consists of a lentogenic NDV Clone 30 backbone and the F protein gene from a mesogenic pigeon paramyxovirus-1 (PPMV-1 isolate with an intracerebral pathogenicity index (ICPI of 1.1 specifying the polybasic sequence R-R-K-K-R*F motif at the cleavage site. The resulting virus was characterized by an ICPI of 0.6, indicating a lentogenic pathotype. In contrast, alteration of the cleavage site G-R-Q-G-R*L of the lentogenic Clone 30 to R-R-K-K-R*F resulted in a recombinant virus with an ICPI of 1.36 which was higher than that of parental PPMV-1. Substitution of different regions of the F protein of Clone 30 by those of PPMV-1, while maintaining the polybasic amino acid sequence at the F cleavage site, resulted in recombinant viruses with ICPIs ranging from 0.59 to 1.36 suggesting that virulence is modulated by regions of the F protein other than the polybasic cleavage site.

  8. Truncation of the C-terminal region of Toscana Virus NSs protein is critical for interferon-β antagonism and protein stability.

    Science.gov (United States)

    Gori Savellini, Gianni; Gandolfo, Claudia; Cusi, Maria Grazia

    2015-12-01

    Toscana Virus (TOSV) is a Phlebovirus responsible for central nervous system (CNS) injury in humans. The TOSV non-structural protein (NSs), which interacting with RIG-I leads to its degradation, was analysed in the C terminus fragment in order to identify its functional domains. To this aim, two C-terminal truncated NSs proteins, Δ1C-NSs (aa 1-284) and Δ2C-NSs (aa 1-287) were tested. Only Δ1C-NSs did not present any inhibitory effect on RIG-I and it showed a greater stability than the whole NSs protein. Moreover, the deletion of the TLQ aa sequence interposed between the two ΔC constructs caused a greater accumulation of the protein with a weak inhibitory effect on RIG-I, indicating some involvement of these amino acids in the NSs activity. Nevertheless, all the truncated proteins were still able to interact with RIG-I, suggesting that the domains responsible for RIG-I signaling and RIG-I interaction are mapped on different regions of the protein. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR).

    Science.gov (United States)

    Gomez, Sandra; Adalid-Peralta, Laura; Palafox-Fonseca, Hector; Cantu-Robles, Vito Adrian; Soberón, Xavier; Sciutto, Edda; Fragoso, Gladis; Bobes, Raúl J; Laclette, Juan P; Yauner, Luis del Pozo; Ochoa-Leyva, Adrián

    2015-05-19

    Excretory/Secretory (ES) proteins play an important role in the host-parasite interactions. Experimental identification of ES proteins is time-consuming and expensive. Alternative bioinformatics approaches are cost-effective and can be used to prioritize the experimental analysis of therapeutic targets for parasitic diseases. Here we predicted and functionally annotated the ES proteins in T. solium genome using an integration of bioinformatics tools. Additionally, we developed a novel measurement to evaluate the potential antigenicity of T. solium secretome using sequence length and number of antigenic regions of ES proteins. This measurement was formalized as the Abundance of Antigenic Regions (AAR) value. AAR value for secretome showed a similar value to that obtained for a set of experimentally determined antigenic proteins and was different to the calculated value for the non-ES proteins of T. solium genome. Furthermore, we calculated the AAR values for known helminth secretomes and they were similar to that obtained for T. solium. The results reveal the utility of AAR value as a novel genomic measurement to evaluate the potential antigenicity of secretomes. This comprehensive analysis of T. solium secretome provides functional information for future experimental studies, including the identification of novel ES proteins of therapeutic, diagnosis and immunological interest.

  10. Preferential 5-Methylcytosine Oxidation in the Linker Region of Reconstituted Positioned Nucleosomes by Tet1 Protein.

    Science.gov (United States)

    Kizaki, Seiichiro; Zou, Tingting; Li, Yue; Han, Yong-Woon; Suzuki, Yuki; Harada, Yoshie; Sugiyama, Hiroshi

    2016-11-07

    Tet (ten-eleven translocation) family proteins oxidize 5-methylcytosine (mC) to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), and are suggested to be involved in the active DNA demethylation pathway. In this study, we reconstituted positioned mononucleosomes using CpG-methylated 382 bp DNA containing the Widom 601 sequence and recombinant histone octamer, and subjected the nucleosome to treatment with Tet1 protein. The sites of oxidized methylcytosine were identified by bisulfite sequencing. We found that, for the oxidation reaction, Tet1 protein prefers mCs located in the linker region of the nucleosome compared with those located in the core region. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene

    International Nuclear Information System (INIS)

    Shannon, M.F.; Gamble, J.R.; Vadas, M.A.

    1988-01-01

    The gene for human granulocyte/macrophage colony-stimulating factor (GM-CSF) is expressed in a tissue-specific as well as an activation-dependent manner. The interaction of nuclear proteins with the promoter region of the GM-CSF gene that is likely to be responsible for this pattern of GM-CSF expression was investigated. The authors show that nuclear proteins interact with DNA fragments from the GM-CSF promoter in a cell-specific manner. A region spanning two cytokine-specific sequences, cytokine 1 (CK-1, 5', GAGATTCCAC 3') and cytokine 2 (CK-2, 5' TCAGGTA 3') bound two nuclear proteins from GM-CSF-expressing cells in gel retardation assays. NF-GMb was inducible with phorbol 12-myristate 13-acetate and accompanied induction of GM-CSF message. NF-GMb was absent in cell lines not producing GM-CSF, some of which had other distinct binding proteins. NF-GMa and NF-GMb eluted from a heparin-Sepharose column at 0.3 and 0.6 M KCl, respectively. They hypothesize that the sequences CK-1 and CK-2 bind specific proteins and regulate GM-CSF transcription

  12. PENGKLONAN DAN PERUNUTAN NUKLEOTIDA GEN SELUBUNG PROTEIN DAN 3’UTR (untranslated region PEANUT STRIPE VIRUS

    Directory of Open Access Journals (Sweden)

    Hasriadi Mat Akin

    2011-10-01

    Full Text Available Cloning and sequencing of coat protein gene and 3’UTR (untranslated region of peanut stripe virus. The cDNA of 3' terminal of peanut stripe virus genomic RNA was cloned and sequenced. The cDNA was ligated with plasmid vector pGEM-T Easy and transformed to competent cells of Escherichia coli. The 3' terminal of PstV genomic RNA contained 1195 nucleotides (nts.  The region included the nucleotide sequences of NIb (nuclear inclusion body (129 nts, CP gene (coat protein gene (861 nts, and 3'UTR (untranslated region (205 nts. The nucleotide sequence of a CP gene contained one long uninterrupted open reading frame (ORF without a start codon, which ended a UAG stop codon. The 287 amino acid residues of PStV coat protein were predicted from the CP gene.  The amino acid was analyzed for the presence of consensus polyprotein cleavage site for maturation of potyvirus polyprotein.  A putative cleavage site was found at position 43 (Q/S following the Valine (V residue at -4 position.  This isolate of PstV can be expected to be aphid transmissible because the coat protein contained a DAG triplet at position 53-55.

  13. High abundance of Serine/Threonine-rich regions predicted to be hyper-O-glycosylated in the secretory proteins coded by eight fungal genomes

    Directory of Open Access Journals (Sweden)

    González Mario

    2012-09-01

    Full Text Available Abstract Background O-glycosylation of secretory proteins has been found to be an important factor in fungal biology and virulence. It consists in the addition of short glycosidic chains to Ser or Thr residues in the protein backbone via O-glycosidic bonds. Secretory proteins in fungi frequently display Ser/Thr rich regions that could be sites of extensive O-glycosylation. We have analyzed in silico the complete sets of putatively secretory proteins coded by eight fungal genomes (Botrytis cinerea, Magnaporthe grisea, Sclerotinia sclerotiorum, Ustilago maydis, Aspergillus nidulans, Neurospora crassa, Trichoderma reesei, and Saccharomyces cerevisiae in search of Ser/Thr-rich regions as well as regions predicted to be highly O-glycosylated by NetOGlyc (http://www.cbs.dtu.dk. Results By comparison with experimental data, NetOGlyc was found to overestimate the number of O-glycosylation sites in fungi by a factor of 1.5, but to be quite reliable in the prediction of highly O-glycosylated regions. About half of secretory proteins have at least one Ser/Thr-rich region, with a Ser/Thr content of at least 40% over an average length of 40 amino acids. Most secretory proteins in filamentous fungi were predicted to be O-glycosylated, sometimes in dozens or even hundreds of sites. Residues predicted to be O-glycosylated have a tendency to be grouped together forming hyper-O-glycosylated regions of varying length. Conclusions About one fourth of secretory fungal proteins were predicted to have at least one hyper-O-glycosylated region, which consists of 45 amino acids on average and displays at least one O-glycosylated Ser or Thr every four residues. These putative highly O-glycosylated regions can be found anywhere along the proteins but have a slight tendency to be at either one of the two ends.

  14. Comparing side chain packing in soluble proteins, protein-protein interfaces, and transmembrane proteins.

    Science.gov (United States)

    Gaines, J C; Acebes, S; Virrueta, A; Butler, M; Regan, L; O'Hern, C S

    2018-05-01

    We compare side chain prediction and packing of core and non-core regions of soluble proteins, protein-protein interfaces, and transmembrane proteins. We first identified or created comparable databases of high-resolution crystal structures of these 3 protein classes. We show that the solvent-inaccessible cores of the 3 classes of proteins are equally densely packed. As a result, the side chains of core residues at protein-protein interfaces and in the membrane-exposed regions of transmembrane proteins can be predicted by the hard-sphere plus stereochemical constraint model with the same high prediction accuracies (>90%) as core residues in soluble proteins. We also find that for all 3 classes of proteins, as one moves away from the solvent-inaccessible core, the packing fraction decreases as the solvent accessibility increases. However, the side chain predictability remains high (80% within 30°) up to a relative solvent accessibility, rSASA≲0.3, for all 3 protein classes. Our results show that ≈40% of the interface regions in protein complexes are "core", that is, densely packed with side chain conformations that can be accurately predicted using the hard-sphere model. We propose packing fraction as a metric that can be used to distinguish real protein-protein interactions from designed, non-binding, decoys. Our results also show that cores of membrane proteins are the same as cores of soluble proteins. Thus, the computational methods we are developing for the analysis of the effect of hydrophobic core mutations in soluble proteins will be equally applicable to analyses of mutations in membrane proteins. © 2018 Wiley Periodicals, Inc.

  15. Regional distribution of serotonin transporter protein in postmortem human brain

    International Nuclear Information System (INIS)

    Kish, Stephen J.; Furukawa, Yoshiaki; Chang Lijan; Tong Junchao; Ginovart, Nathalie; Wilson, Alan; Houle, Sylvain; Meyer, Jeffrey H.

    2005-01-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met

  16. Regional distribution of serotonin transporter protein in postmortem human brain

    Energy Technology Data Exchange (ETDEWEB)

    Kish, Stephen J. [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)]. E-mail: Stephen_Kish@CAMH.net; Furukawa, Yoshiaki [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Chang Lijan [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Tong Junchao [Human Neurochemical Pathology Laboratory, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Ginovart, Nathalie [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Wilson, Alan [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Houle, Sylvain [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada); Meyer, Jeffrey H. [PET Centre, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8 (Canada)

    2005-02-01

    Introduction: The primary approach in assessing the status of brain serotonin neurons in human conditions such as major depression and exposure to the illicit drug ecstasy has been the use of neuroimaging procedures involving radiotracers that bind to the serotonin transporter (SERT). However, there has been no consistency in the selection of a 'SERT-free' reference region for the estimation of free and nonspecific binding, as occipital cortex, cerebellum and white matter have all been employed. Objective and Methods: To identify areas of human brain that might have very low SERT levels, we measured, by a semiquantitative Western blotting procedure, SERT protein immunoreactivity throughout the postmortem brain of seven normal adult subjects. Results: Serotonin transporter could be quantitated in all examined brain areas. However, the SERT concentration in cerebellar cortex and white matter were only at trace values, being approximately 20% of average cerebral cortex and 5% of average striatum values. Conclusion: Although none of the examined brain areas are completely free of SERT, human cerebellar cortex has low SERT binding as compared to other examined brain regions, with the exception of white matter. Since the cerebellar cortical SERT binding is not zero, this region will not be a suitable reference region for SERT radioligands with very low free and nonspecific binding. For SERT radioligands with reasonably high free and nonspecific binding, the cerebellar cortex should be a useful reference region, provided other necessary radioligand assumptions are met.

  17. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    DEFF Research Database (Denmark)

    Rossin, Elizabeth J.; Hansen, Kasper Lage; Raychaudhuri, Soumya

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these r......Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed...... in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein-protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more...... that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non...

  18. Comparative In silico Study of Sex-Determining Region Y (SRY) Protein Sequences Involved in Sex-Determining.

    Science.gov (United States)

    Vakili Azghandi, Masoume; Nasiri, Mohammadreza; Shamsa, Ali; Jalali, Mohsen; Shariati, Mohammad Mahdi

    2016-04-01

    The SRY gene (SRY) provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/) and MEGA6 softwares. The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale) and Tursiopsaduncus (dolphin) have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee) have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  19. Identification of T1D susceptibility genes within the MHC region by combining protein interaction networks and SNP genotyping data

    DEFF Research Database (Denmark)

    Brorsson, C.; Hansen, Niclas Tue; Hansen, Kasper Lage

    2009-01-01

    genes. We have developed a novel method that combines single nucleotide polymorphism (SNP) genotyping data with protein-protein interaction (ppi) networks to identify disease-associated network modules enriched for proteins encoded from the MHC region. Approximately 2500 SNPs located in the 4 Mb MHC......To develop novel methods for identifying new genes that contribute to the risk of developing type 1 diabetes within the Major Histocompatibility Complex (MHC) region on chromosome 6, independently of the known linkage disequilibrium (LD) between human leucocyte antigen (HLA)-DRB1, -DQA1, -DQB1...... region were analysed in 1000 affected offspring trios generated by the Type 1 Diabetes Genetics Consortium (T1DGC). The most associated SNP in each gene was chosen and genes were mapped to ppi networks for identification of interaction partners. The association testing and resulting interacting protein...

  20. Targeting the middle region of CP4-EPSPS protein for its traceability in highly processed soy-related products.

    Science.gov (United States)

    Wu, Honghong; Wang, Xiaofu; Zhou, Xinghu; Zhang, Yihua; Huang, Ming; He, Jian; Shen, Wenbiao

    2017-09-01

    Transgenic components in genetically modified organisms consist not only of the transgenic genes, but also the transgenic protein. However, compared with transgenic DNA, less attention has been paid to the detection of expressed protein, especially those degraded from genetically modified soybean after food processing. In this study, the full length 5-enolpyruvyl-shikimate-3-phosphate synthase (CP4-EPSPS, 47.6 kD) protein was probed with the SC-16 (S19-R33) and the DC-16 (D219-K233) polyclonal antibodies in immunoblots. Both antibodies were able to detect the full length CP4-EPSPS and its residues in soy powder made from Roundup-Ready soybeans after heating and microwaving treatments which also reduced the molecular weight of the protein to 45.8 and 38.7 kD, respectively. Taken together the immunoblot results suggest that the middle region of the CP4-EPSPS protein possessed better stability than its N-terminal during thermal processing. This deduction was further validated by autoclave treatment, where a 37.4 kD residue of the protein was recognized by DC-16. A similar result was obtained in processed smoked sausage containing Roundup Ready soybean protein isolate (as an extender). The additional use of a further polyclonal antibody CK-17 (C372-K388), showed that compared with only the one signal for CP4-EPSPS detected by the SC-16 and CK-17 antibodies, the DC-16 middle region antibody detected four signals for CP4-EPSPS from five market sourced soy protein concentrates. Taken together, the study suggested that the middle region of CP4-EPSPS was more useful than the N- and C-terminal for tracing transgenic CP4-EPSPS protein and its remnants in highly processed soy-related products.

  1. Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Gaba, V.; Canaani, O.; Malkin, S.; Mattoo, A.K.; Edelman, M.

    1989-01-01

    A component of the photosystem II reaction center, the 32-kDa protein, is rapidly turned over in the light. The mechanism of its light-dependent metabolism is largely unknown. We quantified the rate of 32-kDa protein degradation over a broad spectral range (UV, visible, and far red). The quantum yield for degradation was highest in the UVB (280-320 nm) region. Spectral evidence demonstrates two distinctly different photosensitizers for 32-kDa protein degradation. The data implicate the bulk photosynthetic pigments (primarily chlorophyll) in the visible and far red regions, and plastoquinone (in one or more of its redox states) in the UV region. A significant portion of 32-kDa protein degradation in sunlight is attributed to UVB irradiance

  2. The N-terminal, polybasic region is critical for prion protein neuroprotective activity.

    Directory of Open Access Journals (Sweden)

    Jessie A Turnbaugh

    Full Text Available Several lines of evidence suggest that the normal form of the prion protein, PrP(C, exerts a neuroprotective activity against cellular stress or toxicity. One of the clearest examples of such activity is the ability of wild-type PrP(C to suppress the spontaneous neurodegenerative phenotype of transgenic mice expressing a deleted form of PrP (Δ32-134, called F35. To define domains of PrP involved in its neuroprotective activity, we have analyzed the ability of several deletion mutants of PrP (Δ23-31, Δ23-111, and Δ23-134 to rescue the phenotype of Tg(F35 mice. Surprisingly, all of these mutants displayed greatly diminished rescue activity, although Δ23-31 PrP partially suppressed neuronal loss when expressed at very high levels. Our results pinpoint the N-terminal, polybasic domain as a critical determinant of PrP(C neuroprotective activity, and suggest that identification of molecules interacting with this region will provide important clues regarding the normal function of the protein. Small molecule ligands targeting this region may also represent useful therapeutic agents for treatment of prion diseases.

  3. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2.

    Science.gov (United States)

    Liu, Mengjie; Duan, Liangwei; Wang, Meifang; Zeng, Hongmei; Liu, Xinqi; Qiu, Dewen

    2016-01-01

    The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  4. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2

    Directory of Open Access Journals (Sweden)

    Mengjie Liu

    2016-07-01

    Full Text Available The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The 3-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI. To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and 8 truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.

  5. Identifying the adaptive mechanism in globular proteins: Fluctuations in densely packed regions manipulate flexible parts

    Science.gov (United States)

    Yilmaz, Lutfu Safak; Atilgan, Ali Rana

    2000-09-01

    A low-resolution structural model based on the packing geometry of α-carbons is utilized to establish a connection between the flexible and rigid parts of a folded protein. The former commonly recognizes a complementing molecule for making a complex, while the latter manipulates the necessary conformational change for binding. We attempt analytically to distinguish this control architecture that intrinsically exists in globular proteins. First with two-dimensional simple models, then for a native protein, bovine pancreatic trypsin inhibitor, we explicitly demonstrate that inserting fluctuations in tertiary contacts supported by the stable core, one can regulate the displacement of residues on loop regions. The positional fluctuations of the flexible regions are annihilated by the rest of the protein in conformity with the Le Chatelier-Braun principle. The results indicate that the distortion of the principal nonbonded contacts between highly packed residues is accompanied by that of the slavery fluctuations that are widely distributed over the native structure. These positional arrangements do not appear in a reciprocal relation between a perturbation and the associated response; the effect of a movement of residue i on residue j is not equal to that of the same movement of residue j on residue i.

  6. Proteomic analysis of proteins expressing in regions of rat brain by a combination of SDS-PAGE with nano-liquid chromatography-quadrupole-time of flight tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    Maekawa Tsuyoshi

    2010-07-01

    Full Text Available Abstract Background Most biological functions controlled by the brain and their related disorders are closely associated with activation in specific regions of the brain. Neuroproteomics has been applied to the analysis of whole brain, and the general pattern of protein expression in all regions has been elucidated. However, the comprehensive proteome of each brain region remains unclear. Results In this study, we carried out comparative proteomics of six regions of the adult rat brain: thalamus, hippocampus, frontal cortex, parietal cortex, occipital cortex, and amygdala using semi-quantitative analysis by Mascot Score of the identified proteins. In order to identify efficiently the proteins that are present in the brain, the proteins were separated by a combination of SDS-PAGE on a C18 column-equipped nano-liquid chromatograph, and analyzed by quadrupole-time of flight-tandem-mass spectrometry. The proteomic data show 2,909 peptides in the rat brain, with more than 200 identified as region-abundant proteins by semi-quantitative analysis. The regions containing the identified proteins are membrane (20.0%, cytoplasm (19.5%, mitochondrion (17.1%, cytoskeleton (8.2%, nucleus (4.7%, extracellular region (3.3%, and other (18.0%. Of the identified proteins, the expressions of glial fibrillary acidic protein, GABA transporter 3, Septin 5, heat shock protein 90, synaptotagmin, heat shock protein 70, and pyruvate kinase were confirmed by immunoblotting. We examined the distributions in rat brain of GABA transporter 3, glial fibrillary acidic protein, and heat shock protein 70 by immunohistochemistry, and found that the proteins are localized around the regions observed by proteomic analysis and immunoblotting. IPA analysis indicates that pathways closely related to the biological functions of each region may be activated in rat brain. Conclusions These observations indicate that proteomics in each region of adult rat brain may provide a novel way to

  7. C-terminal region of herpes simplex virus ICP8 protein needed for intranuclear localization

    International Nuclear Information System (INIS)

    Taylor, Travis J; Knipe, David M.

    2003-01-01

    The herpes simplex virus single-stranded DNA-binding protein, ICP8, localizes initially to structures in the nucleus called prereplicative sites. As replication proceeds, these sites mature into large globular structures called replication compartments. The details of what signals or proteins are involved in the redistribution of viral and cellular proteins within the nucleus between prereplicative sites and replication compartments are poorly understood; however, we showed previously that the dominant-negative d105 ICP8 does not localize to prereplicative sites and prevents the localization of other viral proteins to prereplicative sites (J. Virol. 74 (2000) 10122). Within the residues deleted in d105 (1083 to 1168), we identified a region between amino acid residues 1080 and 1135 that was predicted by computer models to contain two α-helices, one with considerable amphipathic nature. We used site-specific and random mutagenesis techniques to identify residues or structures within this region that are required for proper ICP8 localization within the nucleus. Proline substitutions in the predicted helix generated ICP8 molecules that did not localize to prereplicative sites and acted as dominant-negative inhibitors. Other substitutions that altered the charged residues in the predicted α-helix to alanine or leucine residues had little or no effect on ICP8 intranuclear localization. The predicted α-helix was dispensable for the interaction of ICP8 with the U L 9 origin-binding protein. We propose that this C-terminal α-helix is required for localization of ICP8 to prereplicative sites by binding viral or cellular factors that target or retain ICP8 at specific intranuclear sites

  8. Comparative In silico Study of Sex-Determining Region Y (SRY Protein Sequences Involved in Sex-Determining

    Directory of Open Access Journals (Sweden)

    Masoume Vakili Azghandi

    2016-05-01

    Full Text Available Background: The SRY gene (SRY provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Methods: Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/ and MEGA6 softwares. Results: The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale and Tursiopsaduncus (dolphin have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. Conclusion: These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  9. Proteomic Identification of Altered Cerebral Proteins in the Complex Regional Pain Syndrome Animal Model

    Directory of Open Access Journals (Sweden)

    Francis Sahngun Nahm

    2014-01-01

    Full Text Available Background. Complex regional pain syndrome (CRPS is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP model, a novel experimental model of CRPS. Materials and Methods. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Conclusion. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  10. Proteomic identification of altered cerebral proteins in the complex regional pain syndrome animal model.

    Science.gov (United States)

    Nahm, Francis Sahngun; Park, Zee-Yong; Nahm, Sang-Soep; Kim, Yong Chul; Lee, Pyung Bok

    2014-01-01

    Complex regional pain syndrome (CRPS) is a rare but debilitating pain disorder. Although the exact pathophysiology of CRPS is not fully understood, central and peripheral mechanisms might be involved in the development of this disorder. To reveal the central mechanism of CRPS, we conducted a proteomic analysis of rat cerebrum using the chronic postischemia pain (CPIP) model, a novel experimental model of CRPS. After generating the CPIP animal model, we performed a proteomic analysis of the rat cerebrum using a multidimensional protein identification technology, and screened the proteins differentially expressed between the CPIP and control groups. Results. A total of 155 proteins were differentially expressed between the CPIP and control groups: 125 increased and 30 decreased; expressions of proteins related to cell signaling, synaptic plasticity, regulation of cell proliferation, and cytoskeletal formation were increased in the CPIP group. However, proenkephalin A, cereblon, and neuroserpin were decreased in CPIP group. Altered expression of cerebral proteins in the CPIP model indicates cerebral involvement in the pathogenesis of CRPS. Further study is required to elucidate the roles of these proteins in the development and maintenance of CRPS.

  11. Covalent protein modification with ISG15 via a conserved cysteine in the hinge region.

    Directory of Open Access Journals (Sweden)

    Veronika N Bade

    Full Text Available The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls, ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation. ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no

  12. Transforming p21 ras protein: flexibility in the major variable region linking the catalytic and membrane-anchoring domains

    DEFF Research Database (Denmark)

    Willumsen, B M; Papageorge, A G; Hubbert, N

    1985-01-01

    or increasing it to 50 amino acids has relatively little effect on the capacity of the gene to induce morphological transformation of NIH 3T3 cells. Assays of GTP binding, GTPase and autophosphorylating activities of such mutant v-rasH-encoded proteins synthesized in bacteria indicated that the sequences...... that is required for post-translational processing, membrane localization and transforming activity of the proteins. We have now used the viral oncogene (v-rasH) of Harvey sarcoma virus to study the major variable region by deleting or duplicating parts of the gene. Reducing this region to five amino acids...... that encode these biochemical activities are located upstream from the major variable region. In the context of transformation, we propose that the region of sequence heterogeneity serves principally to connect the N-terminal catalytic domain with amino acids at the C terminus that are required to anchor...

  13. A Legionella pneumophila effector protein encoded in a region of genomic plasticity binds to Dot/Icm-modified vacuoles.

    Directory of Open Access Journals (Sweden)

    Shira Ninio

    2009-01-01

    Full Text Available Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.

  14. Lateral mobility of plasma membrane proteins in dividing eggs of the loach (Misgurnus fossilis): Regional differences and changes during the cell cycle.

    Science.gov (United States)

    Bozhkova, V P; Budayova, M; Kvasnicka, P; Cigankova, N; Chorvat, D

    1994-12-01

    Regional differences in lateral diffusion rates of fluorescence-labeled proteins have been studied in the plasma membrane of dividing eggs of the loach (Misgurnus fossilis) by fluorescence recovery after photobleaching (FRAP). Apparent animal-vegetal differences in fluorescence intensity, lateral diffusion coefficients, and fractions of mobile proteins have been found, with all these quantities being higher in the animal pole region than in the yolk region. Cyclic changes in protein diffusion coefficients and mobile fractions during the first few cell cycles have also been recorded. Soon after the end of a cleavage, the diffusion coefficient reaches its minimal value and increases rapidly before the next cleavage.

  15. The PLAC1-homology region of the ZP domain is sufficient for protein polymerisation

    Directory of Open Access Journals (Sweden)

    Litscher Eveline S

    2006-04-01

    Full Text Available Abstract Background Hundreds of extracellular proteins polymerise into filaments and matrices by using zona pellucida (ZP domains. ZP domain proteins perform highly diverse functions, ranging from structural to receptorial, and mutations in their genes are responsible for a number of severe human diseases. Recently, PLAC1, Oosp1-3, Papillote and CG16798 proteins were identified that share sequence homology with the N-terminal half of the ZP domain (ZP-N, but not with its C-terminal half (ZP-C. The functional significance of this partial conservation is unknown. Results By exploiting a highly engineered bacterial strain, we expressed in soluble form the PLAC1-homology region of mammalian sperm receptor ZP3 as a fusion to maltose binding protein. Mass spectrometry showed that the 4 conserved Cys residues within the ZP-N moiety of the fusion protein adopt the same disulfide bond connectivity as in full-length native ZP3, indicating that it is correctly folded, and electron microscopy and biochemical analyses revealed that it assembles into filaments. Conclusion These findings provide a function for PLAC1-like proteins and, by showing that ZP-N is a biologically active folding unit, prompt a re-evaluation of the architecture of the ZP domain and its polymers. Furthermore, they suggest that ZP-C might play a regulatory role in the assembly of ZP domain protein complexes.

  16. Identification of Common Epitopes on a Conserved Region of NSs Proteins Among Tospoviruses of Watermelon silver mottle virus Serogroup.

    Science.gov (United States)

    Chen, Tsung-Chi; Huang, Ching-Wen; Kuo, Yan-Wen; Liu, Fang-Lin; Yuan, Chao-Hsiu Hsuan; Hsu, Hei-Ti; Yeh, Shyi-Dong

    2006-12-01

    ABSTRACT The NSs protein of Watermelon silver mottle virus (WSMoV) was expressed by a Zucchini yellow mosaic virus (ZYMV) vector in squash. The expressed NSs protein with a histidine tag and an additional NIa protease cleavage sequence was isolated by Ni(2+)-NTA resins as a free-form protein and further eluted after sodium dodecyl sulfate-polyacrylamide gel electrophoresis for production of rabbit antiserum and mouse monoclonal antibodies (MAbs). The rabbit antiserum strongly reacted with the NSs crude antigen of WSMoV and weakly reacted with that of a high-temperature-recovered gloxinia isolate (HT-1) of Capsicum chlorosis virus (CaCV), but not with that of Calla lily chlorotic spot virus (CCSV). In contrast, the MAbs reacted strongly with all crude NSs antigens of WSMoV, CaCV, and CCSV. Various deletions of the NSs open reading frame were constructed and expressed by ZYMV vector. Results indicate that all three MAbs target the 89- to 125-amino-acid (aa) region of WSMoV NSs protein. Two indispensable residues of cysteine and lysine were essential for MAbs recognition. Sequence comparison of the deduced MAbs-recognized region with the reported tospoviral NSs proteins revealed the presence of a consensus sequence VRKPGVKNTGCKFTMHNQIFNPN (denoted WNSscon), at the 98- to 120-aa position of NSs proteins, sharing 86 to 100% identities among those of WSMoV, CaCV, CCSV, and Peanut bud necrosis virus. A synthetic WNSscon peptide reacted with the MAbs and verified that the epitopes are present in the 98- to 120-aa region of WSMoV NSs protein. The WSMoV sero-group-specific NSs MAbs provide a means for reliable identification of tospoviruses in this large serogroup.

  17. The hypervariable region of Streptococcus pyogenes M protein escapes antibody attack by antigenic variation and weak immunogenicity

    DEFF Research Database (Denmark)

    Lannergård, Jonas; Gustafsson, Caj Ulrik Mattias; Waldemarsson, Johan

    2011-01-01

    Sequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion...

  18. Targets of DNA-binding proteins in bacterial promoter regions present enhanced probabilities for spontaneous thermal openings

    International Nuclear Information System (INIS)

    Apostolaki, Angeliki; Kalosakas, George

    2011-01-01

    We mapped promoter regions of double-stranded DNA with respect to the probabilities of appearance of relatively large bubble openings exclusively due to thermal fluctuations at physiological temperatures. We analyzed five well-studied promoter regions of procaryotic type and found a spatial correlation between the binding sites of transcription factors and the position of peaks in the probability pattern of large thermal openings. Other distinct peaks of the calculated patterns correlate with potential binding sites of DNA-binding proteins. These results suggest that a DNA molecule would more frequently expose the bases that participate in contacts with proteins, which would probably enhance the probability of the latter to reach their targets. It also stands for using this method as a means to analyze DNA sequences based on their intrinsic thermal properties

  19. Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species.

    Science.gov (United States)

    Yu, Meng; Stevens, Vicky; Berry, Jody D; Crameri, Gary; McEachern, Jennifer; Tu, Changchun; Shi, Zhengli; Liang, Guodong; Weingartl, Hana; Cardosa, Jane; Eaton, Bryan T; Wang, Lin-Fa

    2008-02-29

    Knowledge of immunodominant regions in major viral antigens is important for rational design of effective vaccines and diagnostic tests. Although there have been many reports of such work done for SARS-CoV, these were mainly focused on the immune responses of humans and mice. In this study, we aim to search for and compare immunodominant regions of the spike (S) and nucleocapsid (N) proteins which are recognized by sera from different animal species, including mouse, rat, rabbit, civet, pig and horse. Twelve overlapping recombinant protein fragments were produced in Escherichia coli, six each for the S and N proteins, which covered the entire coding region of the two proteins. Using a membrane-strip based Western blot approach, the reactivity of each antigen fragment against a panel of animal sera was determined. Immunodominant regions containing linear epitopes, which reacted with sera from all the species tested, were identified for both proteins. The S3 fragment (aa 402-622) and the N4 fragment (aa 220-336) were the most immunodominant among the six S and N fragments, respectively. Antibodies raised against the S3 fragment were able to block the binding of a panel of S-specific monoclonal antibodies (mAb) to SARS-CoV in ELISA, further demonstrating the immunodominance of this region. Based on these findings, one-step competition ELISAs were established which were able to detect SARS-CoV antibodies from human and at least seven different animal species. Considering that a large number of animal species are known to be susceptible to SARS-CoV, these assays will be a useful tool to trace the origin and transmission of SARS-CoV and to minimise the risk of animal-to-human transmission.

  20. Identifying Floppy and Rigid Regions in Proteins

    Science.gov (United States)

    Jacobs, D. J.; Thorpe, M. F.; Kuhn, L. A.

    1998-03-01

    In proteins it is possible to separate hard covalent forces involving bond lengths and bond angles from other weak forces. We model the microstructure of the protein as a generic bar-joint truss framework, where the hard covalent forces and strong hydrogen bonds are regarded as rigid bar constraints. We study the mechanical stability of proteins using FIRST (Floppy Inclusions and Rigid Substructure Topography) based on a recently developed combinatorial constraint counting algorithm (the 3D Pebble Game), which is a generalization of the 2D pebble game (D. J. Jacobs and M. F. Thorpe, ``Generic Rigidity: The Pebble Game'', Phys. Rev. Lett.) 75, 4051-4054 (1995) for the special class of bond-bending networks (D. J. Jacobs, "Generic Rigidity in Three Dimensional Bond-bending Networks", Preprint Aug (1997)). This approach is useful in identifying rigid motifs and flexible linkages in proteins, and thereby determines the essential degrees of freedom. We will show some preliminary results from the FIRST analysis on the myohemerythrin and lyozyme proteins.

  1. Development and characterization of polyclonal antibodies against the linker region of the telomere-binding protein TRF2

    Directory of Open Access Journals (Sweden)

    Nadya V. Ilicheva

    2018-03-01

    Full Text Available Background: TRF2 (telomeric repeat binding factor 2 is an essential component of the telomere-binding protein complex shelterin. TRF2 induces the formation of a special structure of telomeric DNA and counteracts activation of DNA damage-response pathways telomeres. TRF2 has a poorly characterized linker region (udTRF2 between its homodimerization and DNA-binding domains. Some lines of evidence have shown that this region could be involved in TRF2 interaction with nuclear lamina. Results: In this study, the fragment of the TERF2 gene encoding udTRF2 domain of telomere-binding protein TRF2 was produced by PCR and cloned into the pET32a vector. The resulting plasmid pET32a-udTRF2 was used for the expression of the recombinant udTRF2 in E. coli RosettaBlue (DE3. The protein was isolated and purified using ammonium sulfate precipitation followed by ion-exchange chromatography. The purified recombinant protein udTRF2 was injected into guinea pigs to generate polyclonal antibodies. The ability of anti-udTRF2 antibodies to bind endogenous TRF2 in human skin fibroblasts was tested by western blotting and immunofluorescent staining. Conclusions: In this study, the recombinant protein udTRF2 and antibodies to it were generated. Both protein and antibodies will provide a useful tool for investigation of the functions of the udTRF2 domain and its role in the interaction between TRF2 and nuclear lamina. Keywords: Chromosomes, Molecular cloning, Nuclear lamina, Nucleoprotein complexes, Polyclonal antibodies, Recombinant polypeptide, Shelterin, Telomere-binding protein TRF2, Telomeres, Telomeric DNA, TTAGGG repeats

  2. Bactericidal activity of M protein conserved region antibodies against group A streptococcal isolates from the Northern Thai population

    Directory of Open Access Journals (Sweden)

    Pruksachatkunakorn Chulabhorn

    2006-08-01

    Full Text Available Abstract Background Most group A streptococcal (GAS vaccine strategies have focused on the surface M protein, a major virulence factor of GAS. The amino-terminus of the M protein elicits antibodies, that are both opsonic and protective, but which are type specific. J14, a chimeric peptide that contains 14 amino acids from the M protein conserved C-region at the carboxy-terminus, offers the possibility of a vaccine which will elicit protective opsonic antibodies against multiple different GAS strains. In this study, we searched for J14 and J14-like sequences and the number of their repeats in the C-region of the M protein from GAS strains isolated from the Northern Thai population. Then, we examined the bactericidal activity of J14, J14.1, J14-R1 and J14-R2 antisera against multiple Thai GAS strains. Results The emm genes of GAS isolates were sequenced and grouped as 14 different J14-types. The most diversity of J14-types was found in the C1-repeat. The J14.1 type was the major sequence in the C2 and C3-repeats. We have shown that antisera raised against the M protein conserved C-repeat region peptides, J14, J14.1, J14-R1 and J14-R2, commonly found in GAS isolates from the Northern Thai population, are able to kill GAS of multiple different emm types derived from an endemic area. The mean percent of bactericidal activities for all J14 and J14-like peptide antisera against GAS isolates were more than 70%. The mean percent of bactericidal activity was highest for J14 antisera followed by J14-R2, J14.1 and J14-R1 antisera. Conclusion Our study demonstrated that antisera raised against the M protein conserved C-repeat region are able to kill multiple different strains of GAS isolated from the Northern Thai population. Therefore, the four conserved "J14" peptides have the potential to be used as GAS vaccine candidates to prevent streptococcal infections in an endemic area.

  3. Characterization of the regions from E. coli 16 S RNA covalently linked to ribosomal proteins S4 and S20 after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Ehresmann, B.; Backendorf, C.; Ehresmann, C.; Ebel, J.P.

    1977-01-01

    The use of ultraviolet irradiation to form photochemical covalent bonds between the 16 S RNA and a ribosomal protein is a reliable method to check RNA regions which are interacting with the protein. This technique was successfully used to covalently link RNA or DNA and specific proteins in several cases. In the case of ribosome, it has been shown that the irradiation of 30 S and 50 S subunits using high doses of ultraviolet light allowed the covalent binding of almost all of the ribosomal proteins to the 16 S or 23 S RNAs. Using mild conditions, only proteins S7 and L4 could be covalently linked to the 16 S and 23 S RNAs, respectively, and the 16 S RNA region linked to protein S7 has now been characterized. The specificity of the photoreaction was demonstrated earlier and the tryptic peptides from proteins S4 and S7, photochemically linked to the 16 S RNA complexes, were identified. A report is presented on the sequences of the RNA regions which can be photochemically linked to proteins S4 and S7 after ultraviolet irradiation of the specific S4-16 S RNA and 20 S-16 S RNA complexes

  4. Butane-1,2,3,4-tetraol-based amphiphilic stereoisomers for membrane protein study: importance of chirality in the linker region

    DEFF Research Database (Denmark)

    Das, Manabendra; Du, Yang; Mortensen, Jonas S.

    2017-01-01

    of the targeted membrane proteins depending on the chirality of the linker region. These findings indicate an important role for detergent stereochemistry in membrane protein stabilization. In addition, we generally observed enhanced detergent efficacy with increasing alkyl chain length, reinforcing...

  5. Markov analysis of alpha-helical, beta-sheet and random coil regions of proteins

    International Nuclear Information System (INIS)

    Macchiato, M.; Tramontano, A.

    1983-01-01

    The rules up to now used to predict the spatial configuration of proteins from their primary structure are mostly based on the recurrence analysis of some doublets, triplets and so on of contiguous amino acids, but they do not take into account the correlation characteristics of the whole amino acid sequence. A statistical analysis of amino acid sequences for the alpha-helical, beta-sheet and random coil regions of about twenty proteins with known secondary structure by considering correlations effects has been carried out. The obtained results demonstrate that these sequences are at least a second-order Markov chain, i.e. they appear as if they were generated by a source that remembers at least the two aminoacids before the one being generated and that these two previous symbols influence the present choice

  6. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions.

    Science.gov (United States)

    Bloom, M E; Martin, D A; Oie, K L; Huhtanen, M E; Costello, F; Wolfinbarger, J B; Hayes, S F; Agbandje-McKenna, M

    1997-01-01

    The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins

  7. Sub-nanoscale surface ruggedness provides a water-tight seal for exposed regions in soluble protein structure.

    Directory of Open Access Journals (Sweden)

    Erica Schulz

    2010-09-01

    Full Text Available Soluble proteins must maintain backbone hydrogen bonds (BHBs water-tight to ensure structural integrity. This protection is often achieved by burying the BHBs or wrapping them through intermolecular associations. On the other hand, water has low coordination resilience, with loss of hydrogen-bonding partnerships carrying significant thermodynamic cost. Thus, a core problem in structural biology is whether natural design actually exploits the water coordination stiffness to seal the backbone in regions that are exposed to the solvent. This work explores the molecular design features that make this type of seal operative, focusing on the side-chain arrangements that shield the protein backbone. We show that an efficient sealing is achieved by adapting the sub-nanoscale surface topography to the stringency of water coordination: an exposed BHB may be kept dry if the local concave curvature is small enough to impede formation of the coordination shell of a penetrating water molecule. Examination of an exhaustive database of uncomplexed proteins reveals that exposed BHBs invariably occur within such sub-nanoscale cavities in native folds, while this level of local ruggedness is absent in other regions. By contrast, BHB exposure in misfolded proteins occurs with larger local curvature promoting backbone hydration and consequently, structure disruption. These findings unravel physical constraints fitting a spatially dependent least-action for water coordination, introduce a molecular design concept, and herald the advent of water-tight peptide-based materials with sufficient backbone exposure to remain flexible.

  8. AHM1, a Novel Type of Nuclear Matrix–Localized, MAR Binding Protein with a Single AT Hook and a J Domain–Homologous Region

    Science.gov (United States)

    Morisawa, Gaku; Han-yama, Atsushi; Moda, Ichiro; Tamai, Atsushi; Iwabuchi, Masaki; Meshi, Tetsuo

    2000-01-01

    Interactions between the nuclear matrix and special regions of chromosomal DNA called matrix attachment regions (MARs) have been implicated in various nuclear functions. We have identified a novel protein from wheat, AT hook–containing MAR binding protein1 (AHM1), that binds preferentially to MARs. A multidomain protein, AHM1 has the special combination of a J domain–homologous region and a Zn finger–like motif (a J-Z array) and an AT hook. For MAR binding, the AT hook at the C terminus was essential, and an internal portion containing the Zn finger–like motif was additionally required in vivo. AHM1 was found in the nuclear matrix fraction and was localized in the nucleoplasm. AHM1 fused to green fluorescent protein had a speckled distribution pattern inside the nucleus. AHM1 is most likely a nuclear matrix component that functions between intranuclear framework and MARs. J-Z arrays can be found in a group of (hypothetical) proteins in plants, which may share some functions, presumably to recruit specific Hsp70 partners as co-chaperones. PMID:11041885

  9. Evolutionarily conserved regions of the human c-myc protein can be uncoupled from transforming activity

    International Nuclear Information System (INIS)

    Sarid, J.; Halazonetis, T.D.; Murphy, W.; Leder, P.

    1987-01-01

    The myc family of oncogenes contains coding sequences that have been preserved in different species for over 400 million years. This conservation (which implies functional selection) is broadly represented throughout the C-terminal portion of the human c-myc protein but is largely restricted to three cluster of amino acid sequences in the N-terminal region. The authors have examined the role that the latter three regions of the c-myc protein might play in the transforming function of the c-myc gene. Several mutations, deletions and frameshifts, were introduced into the c-myc gene, and these mutant genes were tested for their ability to collaborate with the EJ-ras oncogene to transform rat embryo fibroblasts. Complete elimination of the first two N-terminal conserved segments abolished transforming activity. In contrast, genes altered in a portion of the second or the entire third conserved segment retained their transforming activity. Thus, the latter two segments are not required for the transformation process, suggesting that they serve another function related only to the normal expression of the c-myc gene

  10. Positive selection neighboring functionally essential sites and disease-implicated regions of mammalian reproductive proteins.

    LENUS (Irish Health Repository)

    Morgan, Claire C

    2010-01-01

    ABSTRACT: BACKGROUND: Reproductive proteins are central to the continuation of all mammalian species. The evolution of these proteins has been greatly influenced by environmental pressures induced by pathogens, rival sperm, sexual selection and sexual conflict. Positive selection has been demonstrated in many of these proteins with particular focus on primate lineages. However, the mammalia are a diverse group in terms of mating habits, population sizes and germ line generation times. We have examined the selective pressures at work on a number of novel reproductive proteins across a wide variety of mammalia. RESULTS: We show that selective pressures on reproductive proteins are highly varied. Of the 10 genes analyzed in detail, all contain signatures of positive selection either across specific sites or in specific lineages or a combination of both. Our analysis of SP56 and Col1a1 are entirely novel and the results show positively selected sites present in each gene. Our findings for the Col1a1 gene are suggestive of a link between positive selection and severe disease type. We find evidence in our dataset to suggest that interacting proteins are evolving in symphony: most likely to maintain interacting functionality. CONCLUSION: Our in silico analyses show positively selected sites are occurring near catalytically important regions suggesting selective pressure to maximize efficient fertilization. In those cases where a mechanism of protein function is not fully understood, the sites presented here represent ideal candidates for mutational study. This work has highlighted the widespread rate heterogeneity in mutational rates across the mammalia and specifically has shown that the evolution of reproductive proteins is highly varied depending on the species and interacting partners. We have shown that positive selection and disease are closely linked in the Col1a1 gene.

  11. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    International Nuclear Information System (INIS)

    Bienz, K.; Egger, D.; Troxler, M.; Pasamontes, L.

    1990-01-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but did not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed

  12. Role of N-terminal 28-amino-acid region of Rhizopus oryzae lipase in directing proteins to secretory pathway of Aspergillus oryzae.

    Science.gov (United States)

    Hama, Shinji; Tamalampudi, Sriappareddy; Shindo, Naoki; Numata, Takao; Yamaji, Hideki; Fukuda, Hideki; Kondo, Akihiko

    2008-07-01

    To develop a new approach for improving heterologous protein production in Aspergillus oryzae, we focused on the functional role of the N-terminal region of Rhizopus oryzae lipase (ROL). Several N-terminal deletion variants of ROL were expressed in A. oryzae. Interestingly, a segment of 28 amino acids from the C-terminal region of the propeptide (N28) was found to be critical for secretion of ROL into the culture medium. To further investigate the role of N28, the ROL secretory process was visualized in vivo using ROL-green fluorescent protein (GFP) fusion proteins. In cells producing ROL with N28, fluorescence observations showed that the fusion proteins are transported through endoplasmic reticulum (ER), Golgi, and cell wall, which is one of the typical secretory processes in a eukaryotic cell. Because the expression of the mature ROL-GFP fusion protein induced fluorescence accumulation without its translocation into the ER, N28 is considered to play a crucial role in protein transport. When N28 was inserted between the secretion signal and GFP, fluorescence observations showed that GFP, which is originally a cytoplasmic protein, was efficiently translocated into the ER of A. oryzae, resulting in an enhanced secretion of mature GFP after proteolytic cleavage of N28. These findings suggest that N28 facilitates protein translocation into ER and can be a promising candidate for improving heterologous protein production in A. oryzae.

  13. Lateral Organization of Influenza Virus Proteins in the Budozone Region of the Plasma Membrane.

    Science.gov (United States)

    Leser, George P; Lamb, Robert A

    2017-05-01

    between viral proteins in the plasma membrane. Some proteins, such as HA and M2, inherently cocluster within the membrane, although M2 is found mostly at the periphery of regions of HA, consistent with the proposed role of M2 in scission at the end of budding. The association between some pairs of influenza virus proteins, such as M2 and NP, appears to be brokered by additional influenza virus proteins, in this case M1. HA and NA, while raft associated, reside in distinct domains, reflecting their distributions in the viral membrane. Copyright © 2017 American Society for Microbiology.

  14. Intrinsically disordered regions may lower the hydration free energy in proteins: a case study of nudix hydrolase in the bacterium Deinococcus radiodurans.

    Directory of Open Access Journals (Sweden)

    Omar Awile

    Full Text Available The proteome of the radiation- and desiccation-resistant bacterium D. radiodurans features a group of proteins that contain significant intrinsically disordered regions that are not present in non-extremophile homologues. Interestingly, this group includes a number of housekeeping and repair proteins such as DNA polymerase III, nudix hydrolase and rotamase. Here, we focus on a member of the nudix hydrolase family from D. radiodurans possessing low-complexity N- and C-terminal tails, which exhibit sequence signatures of intrinsic disorder and have unknown function. The enzyme catalyzes the hydrolysis of oxidatively damaged and mutagenic nucleotides, and it is thought to play an important role in D. radiodurans during the recovery phase after exposure to ionizing radiation or desiccation. We use molecular dynamics simulations to study the dynamics of the protein, and study its hydration free energy using the GB/SA formalism. We show that the presence of disordered tails significantly decreases the hydration free energy of the whole protein. We hypothesize that the tails increase the chances of the protein to be located in the remaining water patches in the desiccated cell, where it is protected from the desiccation effects and can function normally. We extrapolate this to other intrinsically disordered regions in proteins, and propose a novel function for them: intrinsically disordered regions increase the "surface-properties" of the folded domains they are attached to, making them on the whole more hydrophilic and potentially influencing, in this way, their localization and cellular activity.

  15. Cloning and expression of the coding regions of the heat shock proteins HSP10 and HSP16 from Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    VIVIAN WILHELM

    2003-01-01

    Full Text Available The genes encoding the heat shock proteins HSP10 and HSP16 of the salmon pathogen Piscirickettsia salmonis have been isolated and sequenced. The HSP10 coding sequence is located in an open reading frame of 291 base pairs encoding 96 aminoacids. The HSP16 coding region was isolated as a 471 base pair fragment encoding a protein of 156 aminoacids. The deduced aminoacid sequences of both proteins show a significant homology to the respective protein from other prokaryotic organisms. Both proteins were expressed in E. coli as fusion proteins with thioredoxin and purified by chromatography on Ni-column. A rabbit serum against P. salmonis total proteins reacts with the recombinant HSP10 and HSP16 proteins. Similar reactivity was determined by ELISA using serum from salmon infected with P. salmonis. The possibility of formulating a vaccine containing these two proteins is discussed

  16. Preliminary structural studies on the leucine-zipper homology region of the human protein Bap31

    International Nuclear Information System (INIS)

    Mukasa, Takashi; Santelli, Eugenio; Reed, John C.; Pascual, Jaime

    2007-01-01

    A leucine-zipper with properties as apoptotic regulator in the ER has been crystallized. X-ray data to 2.5 Å resolution were collected, molecular replacement solutions were identified and refinement has been started. B-cell receptor-associated protein 31 (Bap31) is an integral membrane protein located in the endoplasmic reticulum (ER) that participates in the transport and quality control of membrane proteins and plays a role in determining cell sensitivity to ER stress and apoptosis. Its cytoplasmic region contains two target sites for caspase cleavage in certain apoptotic pathways. Here, the subcloning, expression, purification and crystallization of the Homo sapiens Bap31 leucine-zipper C-terminal fragment, which spans residues Gly160–Glu246, are reported. An N-terminally His-tagged protein was overexpressed in Escherichia coli and purified by chromatographic methods. X-ray diffraction data were collected in-house to 2.5 Å resolution. Crystals belong to space group P6 1 22/P6 5 22, with unit-cell parameters a = b = 70.7, c = 80.6 Å. Data analysis indicates the presence of one molecule per asymmetric unit

  17. Preliminary structural studies on the leucine-zipper homology region of the human protein Bap31

    Energy Technology Data Exchange (ETDEWEB)

    Mukasa, Takashi; Santelli, Eugenio [Program on Infectious Diseases, Center for Inflammation and Infectious Diseases, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Reed, John C. [Program on Apoptosis, Cancer Center, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States); Pascual, Jaime, E-mail: pascual@burnham.org [Program on Infectious Diseases, Center for Inflammation and Infectious Diseases, The Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037 (United States)

    2007-04-01

    A leucine-zipper with properties as apoptotic regulator in the ER has been crystallized. X-ray data to 2.5 Å resolution were collected, molecular replacement solutions were identified and refinement has been started. B-cell receptor-associated protein 31 (Bap31) is an integral membrane protein located in the endoplasmic reticulum (ER) that participates in the transport and quality control of membrane proteins and plays a role in determining cell sensitivity to ER stress and apoptosis. Its cytoplasmic region contains two target sites for caspase cleavage in certain apoptotic pathways. Here, the subcloning, expression, purification and crystallization of the Homo sapiens Bap31 leucine-zipper C-terminal fragment, which spans residues Gly160–Glu246, are reported. An N-terminally His-tagged protein was overexpressed in Escherichia coli and purified by chromatographic methods. X-ray diffraction data were collected in-house to 2.5 Å resolution. Crystals belong to space group P6{sub 1}22/P6{sub 5}22, with unit-cell parameters a = b = 70.7, c = 80.6 Å. Data analysis indicates the presence of one molecule per asymmetric unit.

  18. Influence of the Leader protein coding region of foot-and-mouth disease virus on virus replication

    DEFF Research Database (Denmark)

    Belsham, Graham

    2013-01-01

    The foot-and-mouth disease virus (FMDV) Leader (L) protein is produced in two forms, Lab and Lb, differing only at their amino-termini, due to the use of separate initiation codons, usually 84 nt apart. It has been shown previously, and confirmed here, that precise deletion of the Lab coding......, in the context of the virus lacking the Lb coding region, was also tolerated by the virus within BHK cells. However, precise loss of the Lb coding sequence alone blocked FMDV replication in primary bovine thyroid cells. Thus, the requirement for the Leader protein coding sequences is highly dependent...... on the nature and extent of the residual Leader protein sequences and on the host cell system used. FMDVs precisely lacking Lb and with the Lab initiation codon modified may represent safer seed viruses for vaccine production....

  19. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions.

    Science.gov (United States)

    Gonzalez, Juan A; Konishi, Yotaro; Bruno, Marcela; Valoy, Mariana; Prado, Fernando E

    2012-04-01

    Quinoa is a good source of protein and can be used as a nutritional ingredient in food products. This study analyses how much growing region and/or seasonal climate might affect grain yield and nutritional quality of quinoa seeds. Seeds of ten quinoa cultivars from the Andean highlands (Bolivia/Argentina site) and Argentinean Northwest (Encalilla site) were analysed for seed yield, protein content and amino acid composition. Grain yields of five cultivars growing at Encalilla were higher, and four were lower, compared with data from the Bolivia/Argentina site. Protein contents ranged from 91.5 to 155.3 and from 96.2 to 154.6 g kg(-1) dry mass for Encalilla and Bolivia/Argentina seeds respectively, while essential amino acid concentrations ranged from 179.9 to 357.2 and from 233.7 to 374.5 g kg(-1) protein respectively. Significant positive correlations were found between the content of essential amino acids and protein percentage. It appears that there are clear variations in seed yield, total protein content and amino acid composition among cultivars from the two sites. Essential amino acid composition was more affected than grain yield and protein level. The study revealed that both environmental and climatic factors influence the nutritional composition of quinoa cultivars growing in different agroecological regions. Copyright © 2011 Society of Chemical Industry.

  20. Effect of pH on the hinge region of influenza viral protein: a combined constant pH and well-tempered molecular dynamics study

    Science.gov (United States)

    Pathak, Arup Kumar

    2018-05-01

    Despite the knowledge that the influenza protein, hemagglutinin, undergoes a large conformational change at low pH during the process of fusion with the host cell, its molecular mechanism remains elusive. The present constant pH molecular dynamics (CpHMD) study identifies the residues responsible for large conformational change in acidic condition. Based on the pKa calculations, it is predicted that His-106 is much more responsible for the large conformational change than any other residues in the hinge region of hemagglutinin protein. Potential of mean force profile from well-tempered meta-dynamics (WT-MtD) simulation is also generated along the folding pathway by considering radius of gyration (R gyr) as a collective variable (CV). It is very clear from the present WT-MtD study, that the initial bending starts at that hinge region, which may trigger other conformational changes. Both the protein–protein and protein–water HB time correlation functions are monitored along the folding pathway. The protein–protein (full or hinge region) HB time correlation functions are always found to be stronger than those of the protein–water time correlation functions. The dynamical balance between protein–protein and protein–water HB interactions favors the stabilization of the folded state.

  1. Regional differences in endothelial cell cytoskeleton, junctional proteins and phosphorylated tyrosine labeling in the porcine vortex vein system.

    Science.gov (United States)

    Tan, Priscilla Ern Zhi; Yu, Paula K; Yang, Hongfang; Cringle, Stephen J; Yu, Dao-Yi

    2018-07-01

    We previously demonstrated endothelial phenotype heterogeneity in the vortex vein system. This study is to further determine whether regional differences are present in the cytoskeleton, junctional proteins and phosphorylated tyrosine labeling within the system. The vortex vein system of twenty porcine eyes was perfused with labels for f-actin, claudin-5, VE-Cadherin, phosphorylated tyrosine and nucleic acid. The endothelial cells of eight different regions (choroidal veins, pre-ampulla, anterior ampulla, mid-ampulla, posterior ampulla, post-ampulla, intra-scleral canal and the extra-ocular vortex vein) were studied using confocal microscopy. There were regional differences in the endothelial cell structures. Cytoskeleton labeling was relatively even in intensity throughout Regions 1 to 6. Overall VE-Cadherin had a non-uniform distribution and thicker width endothelial cell border staining than claudin-5. Progressing downstream there was an increased variation in thickness of VE-cadherin labeling. There was an overlap in phosphorylated tyrosine and VE-Cadherin labeling in the post-ampulla, intra-scleral canal and extra-ocular vortex vein. Intramural cells were observed that were immune-positive for VE-Cadherin and phosphorylated tyrosine. There were significant differences in the number of intramural cells in different regions. Significant regional differences with endothelial cell labeling of cytoskeleton, junction proteins, and phosphorylated tyrosine were found within the vortex vein system. These findings support existing data on endothelial cell phenotype heterogeneity, and may aid in the knowledge of venous pathologies by understanding regions of vulnerability to endothelial damage within the vortex vein system. It could be valuable to further investigate and characterize the VE-cadherin and phosphotyrosine immune-positive intramural cells. Copyright © 2018. Published by Elsevier Ltd.

  2. Preclinical assessment of viral vectored and protein vaccines targeting the Duffy-binding protein region II of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Simone C de Cassan

    2015-07-01

    Full Text Available Malaria vaccine development has largely focused on Plasmodium falciparum; however a reawakening to the importance of P. vivax has spurred efforts to develop vaccines against this difficult to treat and at times severe form of relapsing malaria, which constitutes a significant proportion of human malaria cases worldwide. The almost complete dependence of P. vivax red blood cell invasion on the interaction of the P. vivax Duffy-binding protein region II (PvDBP_RII with the human Duffy antigen receptor for chemokines (DARC, makes this antigen an attractive vaccine candidate against blood-stage P. vivax. Here, we generated both preclinical and clinically-compatible adenoviral and poxviral vectored vaccine candidates expressing the Salvador I allele of PvDBP_RII – including human adenovirus serotype 5 (HAdV5, chimpanzee adenovirus serotype 63 (ChAd63 and modified vaccinia virus Ankara (MVA vectors. We report on the antibody and T cell immunogenicity of these vaccines in mice or rabbits, either used alone in a viral vectored prime-boost regime, or in ‘mixed-modality’ adenovirus prime – protein-in-adjuvant boost regimes (using a recombinant protein PvDBP_RII protein antigen formulated in Montanide®ISA720 or Abisco®100 adjuvants. Antibodies induced by these regimes were found to bind to native parasite antigen from P. vivax infected Thai patients and were capable of inhibiting the binding of PvDBP_RII to its receptor DARC using an in vitro binding inhibition assay. In recent years, recombinant ChAd63 and MVA vectors have been quickly translated into human clinical trials for numerous antigens from P. falciparum as well as a growing number of other pathogens. The vectors reported here are immunogenic in small animals, elicit antibodies against PvDBP_RII and have recently entered clinical trials which will provide the first assessment of the safety and immunogenicity of the PvDBP_RII antigen in humans.

  3. Proteins Encoded in Genomic Regions Associated with Immune-Mediated Disease Physically Interact and Suggest Underlying Biology

    Science.gov (United States)

    Rossin, Elizabeth J.; Lage, Kasper; Raychaudhuri, Soumya; Xavier, Ramnik J.; Tatar, Diana; Benita, Yair

    2011-01-01

    Genome-wide association studies (GWAS) have defined over 150 genomic regions unequivocally containing variation predisposing to immune-mediated disease. Inferring disease biology from these observations, however, hinges on our ability to discover the molecular processes being perturbed by these risk variants. It has previously been observed that different genes harboring causal mutations for the same Mendelian disease often physically interact. We sought to evaluate the degree to which this is true of genes within strongly associated loci in complex disease. Using sets of loci defined in rheumatoid arthritis (RA) and Crohn's disease (CD) GWAS, we build protein–protein interaction (PPI) networks for genes within associated loci and find abundant physical interactions between protein products of associated genes. We apply multiple permutation approaches to show that these networks are more densely connected than chance expectation. To confirm biological relevance, we show that the components of the networks tend to be expressed in similar tissues relevant to the phenotypes in question, suggesting the network indicates common underlying processes perturbed by risk loci. Furthermore, we show that the RA and CD networks have predictive power by demonstrating that proteins in these networks, not encoded in the confirmed list of disease associated loci, are significantly enriched for association to the phenotypes in question in extended GWAS analysis. Finally, we test our method in 3 non-immune traits to assess its applicability to complex traits in general. We find that genes in loci associated to height and lipid levels assemble into significantly connected networks but did not detect excess connectivity among Type 2 Diabetes (T2D) loci beyond chance. Taken together, our results constitute evidence that, for many of the complex diseases studied here, common genetic associations implicate regions encoding proteins that physically interact in a preferential manner, in

  4. Why are proteins with glutamine- and asparagine-rich regions associated with protein misfolding diseases?

    Energy Technology Data Exchange (ETDEWEB)

    Cruzeiro, Leonor [CCMAR and FCT, University of Algarve, Campus de Gambelas, 8000 Faro (Portugal)

    2005-12-21

    The possibility that vibrational excited states (VESs) are the drivers of protein folding and function (the VES hypothesis) is explored to explain the reason why Gln- and Asn-rich proteins are associated with degenerative diseases. The Davydov/Scott model is extended to describe energy transfer from the water solution to the protein and vice versa. Computer simulations show that, on average, Gln and Asn residues lead to an initial larger absorption of energy from the environment to the protein, something that can explain the greater structural instability of prions. The sporadic, inherited and infectious character of prion diseases is discussed in the light of the VES hypothesis. An alternative treatment for prion diseases is suggested.

  5. Lost region in amyloid precursor protein (APP) through TALEN-mediated genome editing alters mitochondrial morphology.

    Science.gov (United States)

    Wang, Yajie; Wu, Fengyi; Pan, Haining; Zheng, Wenzhong; Feng, Chi; Wang, Yunfu; Deng, Zixin; Wang, Lianrong; Luo, Jie; Chen, Shi

    2016-02-29

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) deposition in the brain. Aβ plaques are produced through sequential β/γ cleavage of amyloid precursor protein (APP), of which there are three main APP isoforms: APP695, APP751 and APP770. KPI-APPs (APP751 and APP770) are known to be elevated in AD, but the reason remains unclear. Transcription activator-like (TAL) effector nucleases (TALENs) induce mutations with high efficiency at specific genomic loci, and it is thus possible to knock out specific regions using TALENs. In this study, we designed and expressed TALENs specific for the C-terminus of APP in HeLa cells, in which KPI-APPs are predominantly expressed. The KPI-APP mutants lack a 12-aa region that encompasses a 5-aa trans-membrane (TM) region and 7-aa juxta-membrane (JM) region. The mutated KPI-APPs exhibited decreased mitochondrial localization. In addition, mitochondrial morphology was altered, resulting in an increase in spherical mitochondria in the mutant cells through the disruption of the balance between fission and fusion. Mitochondrial dysfunction, including decreased ATP levels, disrupted mitochondrial membrane potential, increased ROS generation and impaired mitochondrial dehydrogenase activity, was also found. These results suggest that specific regions of KPI-APPs are important for mitochondrial localization and function.

  6. Factor H Binds to the Hypervariable Region of Many Streptococcus pyogenes M Proteins but Does Not Promote Phagocytosis Resistance or Acute Virulence

    Science.gov (United States)

    Kristensen, Bodil M.; Olsen, John E.; Harris, Claire L.; Ufret-Vincenty, Rafael L.; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. PMID:23637608

  7. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence.

    Directory of Open Access Journals (Sweden)

    Mattias C U Gustafsson

    Full Text Available Many pathogens express a surface protein that binds the human complement regulator factor H (FH, as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems.

  8. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein-Protein Interactions.

    Science.gov (United States)

    Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin

    2017-10-13

    Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  9. Alignment of non-covalent interactions at protein-protein interfaces.

    Directory of Open Access Journals (Sweden)

    Hongbo Zhu

    Full Text Available BACKGROUND: The study and comparison of protein-protein interfaces is essential for the understanding of the mechanisms of interaction between proteins. While there are many methods for comparing protein structures and protein binding sites, so far no methods have been reported for comparing the geometry of non-covalent interactions occurring at protein-protein interfaces. METHODOLOGY/PRINCIPAL FINDINGS: Here we present a method for aligning non-covalent interactions between different protein-protein interfaces. The method aligns the vector representations of van der Waals interactions and hydrogen bonds based on their geometry. The method has been applied to a dataset which comprises a variety of protein-protein interfaces. The alignments are consistent to a large extent with the results obtained using two other complementary approaches. In addition, we apply the method to three examples of protein mimicry. The method successfully aligns respective interfaces and allows for recognizing conserved interface regions. CONCLUSIONS/SIGNIFICANCE: The Galinter method has been validated in the comparison of interfaces in which homologous subunits are involved, including cases of mimicry. The method is also applicable to comparing interfaces involving non-peptidic compounds. Galinter assists users in identifying local interface regions with similar patterns of non-covalent interactions. This is particularly relevant to the investigation of the molecular basis of interaction mimicry.

  10. Actin capping protein and its inhibitor CARMIL: how intrinsically disordered regions function

    International Nuclear Information System (INIS)

    Takeda, Shuichi; Maéda, Yuichiro; Koike, Ryotaro; Ota, Motonori; Nitanai, Yasushi; Minakata, Shiho

    2011-01-01

    The actin capping protein (CP) tightly binds to the barbed end of actin filaments to block further elongation. The β-tentacle in CP is an important region that ensures stable interaction with actin filaments. CARMIL inhibits the interaction of CP with actin filaments via the C-terminal portion containing the CP-binding motif, located in an intrinsically disordered region. We have proposed an allosteric inhibition model in which CARMIL suppresses CP by the population shift mechanism. Here, we solved a crystal structure of CP in complex with a CARMIL-derived peptide, CA32. The new structure clearly represents the α-helical form of the β-tentacle that was invisible in other CP/CARMIL peptide complex structures. In addition, we exhaustively performed a normal mode analysis with the elastic network model on all available crystal structures of the CP/CARMIL peptide complexes, including the new structure. We concluded that the CP-binding motif is necessary and sufficient for altering the fluctuation of CP, which is essential for attenuating the barbed-end-capping activity along the population shift mechanism. The roles and functions of the β-tentacle and the CP-binding motif are discussed in terms of their intrinsically disordered nature

  11. Mapping of nuclear import signal and importin α3 binding regions of 52K protein of bovine adenovirus-3

    International Nuclear Information System (INIS)

    Paterson, Carolyn P.; Ayalew, Lisanework E.; Tikoo, Suresh K.

    2012-01-01

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ( 105 RKR 107 ) of the identified domain (amino acids 102 GMPRKRVLT 110 ) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin α/β-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin α3. Although deletion of amino acid 102–110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90–133 are required for interaction with importin-α3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin α3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.

  12. Impairment of interferon regulatory factor-3 activation by hepatitis C virus core protein basic amino acid region 1.

    Science.gov (United States)

    Inoue, Kazuaki; Tsukiyama-Kohara, Kyoko; Matsuda, Chiho; Yoneyama, Mitsutoshi; Fujita, Takashi; Kuge, Shusuke; Yoshiba, Makoto; Kohara, Michinori

    2012-11-30

    Interferon regulatory factor-3 (IRF-3), a key transcriptional factor in the type I interferon system, is frequently impaired by hepatitis C virus (HCV), in order to establish persistent infection. However, the exact mechanism by which the virus establishes persistent infection has not been fully understood yet. The present study aimed to investigate the effects of various HCV proteins on IRF-3 activation, and elucidate the underlying mechanisms. To achieve this, full-length HCV and HCV subgenomic constructs corresponding to structural and each of the nonstructural proteins were transiently transfected into HepG2 cells. IFN-β induction, plaque formation, and IRF-3 dimerization were elicited by Newcastle disease virus (NDV) infection. The expressions of IRF-3 homodimer and its monomer, Ser386-phosphorylated IRF-3, and HCV core protein were detected by immunofluorescence and western blotting. IFN-β mRNA expression was quantified by real-time PCR (RT-PCR), and IRF-3 activity was measured by the levels of IRF-3 dimerization and phosphorylation, induced by NDV infection or polyriboinosinic:polyribocytidylic acid [poly(I:C)]. Switching of the expression of the complete HCV genome as well as the core proteins, E1, E2, and NS2, suppressed IFN-β mRNA levels and IRF-3 dimerization, induced by NDV infection. Our study revealed a crucial region of the HCV core protein, basic amino acid region 1 (BR1), to inhibit IRF-3 dimerization as well as its phosphorylation induced by NDV infection and poly (I:C), thus interfering with IRF-3 activation. Therefore, our study suggests that rescue of the IRF-3 pathway impairment may be an effective treatment for HCV infection. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Mitogen-activated protein kinase phosphatase-1 modulates regional effects of injurious mechanical ventilation in rodent lungs.

    Science.gov (United States)

    Park, Moo Suk; He, Qianbin; Edwards, Michael G; Sergew, Amen; Riches, David W H; Albert, Richard K; Douglas, Ivor S

    2012-07-01

    Mechanical ventilation induces heterogeneous lung injury by mitogen-activated protein kinase (MAPK) and nuclear factor-κB. Mechanisms regulating regional injury and protective effects of prone positioning are unclear. To determine the key regulators of the lung regional protective effects of prone positioning in rodent lungs exposed to injurious ventilation. Adult rats were ventilated with high (18 ml/kg, positive end-expiratory pressure [PEEP] 0) or low Vt (6 ml/kg; PEEP 3 cm H(2)O; 3 h) in supine or prone position. Dorsal-caudal lung mRNA was analyzed by microarray and MAPK phosphatases (MKP)-1 quantitative polymerase chain reaction. MKP-1(-/-) or wild-type mice were ventilated with very high (24 ml/kg; PEEP 0) or low Vt (6-7 ml/kg; PEEP 3 cm H(2)O). The MKP-1 regulator PG490-88 (MRx-108; 0.75 mg/kg) or phosphate-buffered saline was administered preventilation. Injury was assessed by lung mechanics, bronchioalveolar lavage cell counts, protein content, and lung injury scoring. Immunoblotting for MKP-1, and IκBα and cytokine ELISAs were performed on lung lysates. Prone positioning was protective against injurious ventilation in rats. Expression profiling demonstrated MKP-1 20-fold higher in rats ventilated prone rather than supine and regional reduction in p38 and c-jun N-terminal kinase activation. MKP-1(-/-) mice experienced amplified injury. PG490-88 improved static lung compliance and injury scores, reduced bronchioalveolar lavage cell counts and cytokine levels, and induced MKP-1 and IκBα. Injurious ventilation induces MAPK in an MKP-1-dependent fashion. Prone positioning is protective and induces MKP-1. PG490-88 induced MKP-1 and was protective against high Vt in a nuclear factor-κB-dependent manner. MKP-1 is a potential target for modulating regional effects of injurious ventilation.

  14. Oligomeric protein structure networks: insights into protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Brinda KV

    2005-12-01

    Full Text Available Abstract Background Protein-protein association is essential for a variety of cellular processes and hence a large number of investigations are being carried out to understand the principles of protein-protein interactions. In this study, oligomeric protein structures are viewed from a network perspective to obtain new insights into protein association. Structure graphs of proteins have been constructed from a non-redundant set of protein oligomer crystal structures by considering amino acid residues as nodes and the edges are based on the strength of the non-covalent interactions between the residues. The analysis of such networks has been carried out in terms of amino acid clusters and hubs (highly connected residues with special emphasis to protein interfaces. Results A variety of interactions such as hydrogen bond, salt bridges, aromatic and hydrophobic interactions, which occur at the interfaces are identified in a consolidated manner as amino acid clusters at the interface, from this study. Moreover, the characterization of the highly connected hub-forming residues at the interfaces and their comparison with the hubs from the non-interface regions and the non-hubs in the interface regions show that there is a predominance of charged interactions at the interfaces. Further, strong and weak interfaces are identified on the basis of the interaction strength between amino acid residues and the sizes of the interface clusters, which also show that many protein interfaces are stronger than their monomeric protein cores. The interface strengths evaluated based on the interface clusters and hubs also correlate well with experimentally determined dissociation constants for known complexes. Finally, the interface hubs identified using the present method correlate very well with experimentally determined hotspots in the interfaces of protein complexes obtained from the Alanine Scanning Energetics database (ASEdb. A few predictions of interface hot

  15. Phisiological and biochemical characteristics of protein and lipid exchanges of maple and chestnut seeds from different regions of Dnepropetrovsk city technogenic pollution

    Directory of Open Access Journals (Sweden)

    I. O. Filonik

    2015-04-01

    Full Text Available The indexes of protein and lipid exchanges - the content of proteins, lipase activity, level of lipids and their composition, component composition of free fatty acids in the maple and chestnut seeds from several sites of Dnepropetrovsk technical pollution were investigated. The revealed figures can be used as biomarkers of anthropogenic pollution in industrial region.

  16. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  17. Mapping of immunogenic and protein-interacting regions at the surface of the seven-bladed β-propeller domain of the HIV-1 cellular interactor EED

    Directory of Open Access Journals (Sweden)

    Gouet Patrice

    2008-02-01

    Full Text Available Abstract Background The human EED protein, a member of the superfamily of Polycomb group proteins, is involved in multiple cellular protein complexes. Its C-terminal domain, which is common to the four EED isoforms, contains seven repeats of a canonical WD-40 motif. EED is an interactor of three HIV-1 proteins, matrix (MA, integrase (IN and Nef. An antiviral activity has been found to be associated with isoforms EED3 and EED4 at the late stage of HIV-1 replication, due to a negative effect on virus assembly and genomic RNA packaging. The aim of the present study was to determine the regions of the EED C-terminal core domain which were accessible and available to protein interactions, using three-dimensional (3D protein homology modelling with a WD-40 protein of known structure, and epitope mapping of anti-EED antibodies. Results Our data suggested that the C-terminal domain of EED was folded as a seven-bladed β-propeller protein. During the completion of our work, crystallographic data of EED became available from co-crystals of the EED C-terminal core with the N-terminal domain of its cellular partner EZH2. Our 3D-model was in good congruence with the refined structural model determined from crystallographic data, except for a unique α-helix in the fourth β-blade. More importantly, the position of flexible loops and accessible β-strands on the β-propeller was consistent with our mapping of immunogenic epitopes and sites of interaction with HIV-1 MA and IN. Certain immunoreactive regions were found to overlap with the EZH2, MA and IN binding sites, confirming their accessibility and reactivity at the surface of EED. Crystal structure of EED showed that the two discrete regions of interaction with MA and IN did not overlap with each other, nor with the EZH2 binding pocket, but were contiguous, and formed a continuous binding groove running along the lateral face of the β-propeller. Conclusion Identification of antibody-, MA-, IN- and EZH2

  18. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    Energy Technology Data Exchange (ETDEWEB)

    Dalmasso, Enrique Agustin [Univ. of California, Berkeley, CA (United States)

    1992-04-01

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodies correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.

  19. ChIP-seq Analysis in R (CSAR): An R package for the statistical detection of protein-bound genomic regions

    NARCIS (Netherlands)

    Muino, J.M.; Kaufmann, K.; Ham, van R.C.H.J.; Angenent, G.C.; Krajewski, P.

    2011-01-01

    Background In vivo detection of protein-bound genomic regions can be achieved by combining chromatin-immunoprecipitation with next-generation sequencing technology (ChIP-seq). The large amount of sequence data produced by this method needs to be analyzed in a statistically proper and computationally

  20. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification.

    Directory of Open Access Journals (Sweden)

    Nicolás Sarute

    Full Text Available Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.

  1. The fusion protein signal-peptide-coding region of canine distemper virus: a useful tool for phylogenetic reconstruction and lineage identification.

    Science.gov (United States)

    Sarute, Nicolás; Calderón, Marina Gallo; Pérez, Ruben; La Torre, José; Hernández, Martín; Francia, Lourdes; Panzera, Yanina

    2013-01-01

    Canine distemper virus (CDV; Paramyxoviridae, Morbillivirus) is the etiologic agent of a multisystemic infectious disease affecting all terrestrial carnivore families with high incidence and mortality in domestic dogs. Sequence analysis of the hemagglutinin (H) gene has been widely employed to characterize field strains, permitting the identification of nine CDV lineages worldwide. Recently, it has been established that the sequences of the fusion protein signal-peptide (Fsp) coding region are extremely variable, suggesting that analysis of its sequence might be useful for strain characterization studies. However, the divergence of Fsp sequences among worldwide strains and its phylogenetic resolution has not yet been evaluated. We constructed datasets containing the Fsp-coding region and H gene sequences of the same strains belonging to eight CDV lineages. Both datasets were used to evaluate their phylogenetic resolution. The phylogenetic analysis revealed that both datasets clustered the same strains into eight different branches, corresponding to CDV lineages. The inter-lineage amino acid divergence was fourfold greater for the Fsp peptide than for the H protein. The likelihood mapping revealed that both datasets display strong phylogenetic signals in the region of well-resolved topologies. These features indicate that Fsp-coding region sequence analysis is suitable for evolutionary studies as it allows for straightforward identification of CDV lineages.

  2. The N-terminal region of eukaryotic translation initiation factor 5A signals to nuclear localization of the protein

    International Nuclear Information System (INIS)

    Parreiras-e-Silva, Lucas T.; Gomes, Marcelo D.; Oliveira, Eduardo B.; Costa-Neto, Claudio M.

    2007-01-01

    The eukaryotic translation initiation factor 5A (eIF5A) is a ubiquitous protein of eukaryotic and archaeal organisms which undergoes hypusination, a unique post-translational modification. We have generated a polyclonal antibody against murine eIF5A, which in immunocytochemical assays in B16-F10 cells revealed that the endogenous protein is preferentially localized to the nuclear region. We therefore analyzed possible structural features present in eIF5A proteins that could be responsible for that characteristic. Multiple sequence alignment analysis of eIF5A proteins from different eukaryotic and archaeal organisms showed that the former sequences have an extended N-terminal segment. We have then performed in silico prediction analyses and constructed different truncated forms of murine eIF5A to verify any possible role that the N-terminal extension might have in determining the subcellular localization of the eIF5A in eukaryotic organisms. Our results indicate that the N-terminal extension of the eukaryotic eIF5A contributes in signaling this protein to nuclear localization, despite of bearing no structural similarity with classical nuclear localization signals

  3. Mapping of nuclear import signal and importin {alpha}3 binding regions of 52K protein of bovine adenovirus-3

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, Carolyn P.; Ayalew, Lisanework E. [Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada (Canada); Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada (Canada); Tikoo, Suresh K., E-mail: suresh.tik@usask.ca [Vaccine and Infectious Disease Organization-International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, SK S7N 5E3 Canada (Canada); Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK S7N 5E3 S7N 5B4 Canada (Canada); School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada (Canada)

    2012-10-10

    The L1 region of bovine adenovirus (BAdV)-3 encodes a non-structural protein designated 52K. Anti-52K serum detected a protein of 40 kDa, which localized to the nucleus but not to the nucleolus in BAdV-3-infected or transfected cells. Analysis of mutant 52K proteins suggested that three basic residues ({sup 105}RKR{sup 107}) of the identified domain (amino acids {sup 102}GMPRKRVLT{sup 110}) are essential for nuclear localization of 52K. The nuclear import of a GST-52K fusion protein utilizes the classical importin {alpha}/{beta}-dependent nuclear transport pathway. The 52K protein is preferentially bound to the cellular nuclear import receptor importin {alpha}3. Although deletion of amino acid 102-110 is sufficient to abrogate the nuclear localization of 52K, amino acid 90-133 are required for interaction with importin-{alpha}3 and localizing a cytoplasmic protein to the nucleus. These results suggest that 52K contains a bipartite NLS, which preferentially utilize an importin {alpha}3 nuclear import receptor-mediated pathway to transport 52K to the nucleus.

  4. The effects of threonine phosphorylation on the stability and dynamics of the central molecular switch region of 18.5-kDa myelin basic protein.

    Directory of Open Access Journals (Sweden)

    Kenrick A Vassall

    Full Text Available The classic isoforms of myelin basic protein (MBP are essential for the formation and maintenance of myelin in the central nervous system of higher vertebrates. The protein is involved in all facets of the development, compaction, and stabilization of the multilamellar myelin sheath, and also interacts with cytoskeletal and signaling proteins. The predominant 18.5-kDa isoform of MBP is an intrinsically-disordered protein that is a candidate auto-antigen in the human demyelinating disease multiple sclerosis. A highly-conserved central segment within classic MBP consists of a proline-rich region (murine 18.5-kDa sequence -T92-P93-R94-T95-P96-P97-P98-S99- containing a putative SH3-ligand, adjacent to a region that forms an amphipathic α-helix (P82-I90 upon interaction with membranes, or under membrane-mimetic conditions. The T92 and T95 residues within the proline-rich region can be post-translationally modified through phosphorylation by mitogen-activated protein (MAP kinases. Here, we have investigated the structure of the α-helical and proline-rich regions in dilute aqueous buffer, and have evaluated the effects of phosphorylation at T92 and T95 on the stability and dynamics of the α-helical region, by utilizing four 36-residue peptides (S72-S107 with differing phosphorylation status. Nuclear magnetic resonance spectroscopy reveals that both the α-helical as well as the proline-rich regions are disordered in aqueous buffer, whereas they are both structured in a lipid environment (cf., Ahmed et al., Biochemistry 51, 7475-9487, 2012. Thermodynamic analysis of trifluoroethanol-titration curves monitored by circular dichroism spectroscopy reveals that phosphorylation, especially at residue T92, impedes formation of the amphipathic α-helix. This conclusion is supported by molecular dynamics simulations, which further illustrate that phosphorylation reduces the folding reversibility of the α-helix upon temperature perturbation and affect the

  5. NMR characterisation of the minimal interacting regions of centrosomal proteins 4.1R and NuMA1: effect of phosphorylation

    Directory of Open Access Journals (Sweden)

    Bruix Marta

    2010-01-01

    Full Text Available Abstract Background Some functions of 4.1R in non-erythroid cells are directly related with its distinct sub-cellular localisation during cell cycle phases. During mitosis, 4.1R is implicated in cell cycle progression and spindle pole formation, and co-localizes with NuMA1. However, during interphase 4.1R is located in the nucleus and only partially co-localizes with NuMA1. Results We have characterized by NMR the structural features of the C-terminal domain of 4.1R and those of the minimal region (the last 64 residues involved in the interaction with NuMA1. This subdomain behaves as an intrinsically unfolded protein containing a central region with helical tendency. The specific residues implicated in the interaction with NuMA1 have been mapped by NMR titrations and involve the N-terminal and central helical regions. The segment of NuMA1 that interacts with 4.1R is phosphorylated during mitosis. Interestingly, NMR data indicates that the phosphorylation of NuMA1 interacting peptide provokes a change in the interaction mechanism. In this case, the recognition occurs through the central helical region as well as through the C-terminal region of the subdomain meanwhile the N-terminal region do not interact. Conclusions These changes in the interaction derived from the phosphorylation state of NuMA1 suggest that phosphorylation can act as subtle mechanism of temporal and spatial regulation of the complex 4.1R-NuMA1 and therefore of the processes where both proteins play a role.

  6. The C-terminal region of the non-structural protein 2B from Hepatitis A Virus demonstrates lipid-specific viroporin-like activity

    Science.gov (United States)

    Shukla, Ashutosh; Dey, Debajit; Banerjee, Kamalika; Nain, Anshu; Banerjee, Manidipa

    2015-10-01

    Viroporins are virally encoded, membrane-active proteins, which enhance viral replication and assist in egress of viruses from host cells. The 2B proteins in the picornaviridae family are known to have viroporin-like properties, and play critical roles during virus replication. The 2B protein of Hepatitis A Virus (2B), an unusual picornavirus, is somewhat dissimilar from its analogues in several respects. HAV 2B is approximately 2.5 times the length of other 2B proteins, and does not disrupt calcium homeostasis or glycoprotein trafficking. Additionally, its membrane penetrating properties are not yet clearly established. Here we show that the membrane interacting activity of HAV 2B is localized in its C-terminal region, which contains an alpha-helical hairpin motif. We show that this region is capable of forming small pores in membranes and demonstrates lipid specific activity, which partially rationalizes the intracellular localization of full-length 2B. Using a combination of biochemical assays and molecular dynamics simulation studies, we also show that HAV 2B demonstrates a marked propensity to dimerize in a crowded environment, and probably interacts with membranes in a multimeric form, a hallmark of other picornavirus viroporins. In sum, our study clearly establishes HAV 2B as a bona fide viroporin in the picornaviridae family.

  7. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  8. Characterization of Staphylococcus aureus Primosomal DnaD Protein: Highly Conserved C-Terminal Region Is Crucial for ssDNA and PriA Helicase Binding but Not for DnaA Protein-Binding and Self-Tetramerization.

    Directory of Open Access Journals (Sweden)

    Yen-Hua Huang

    Full Text Available The role of DnaD in the recruitment of replicative helicase has been identified. However, knowledge of the DNA, PriA, and DnaA binding mechanism of this protein for the DnaA- and PriA-directed replication primosome assemblies is limited. We characterized the DNA-binding properties of DnaD from Staphylococcus aureus (SaDnaD and analyzed its interactions with SaPriA and SaDnaA. The gel filtration chromatography analysis of purified SaDnaD and its deletion mutant proteins (SaDnaD1-195, SaDnaD1-200 and SaDnaD1-204 showed a stable tetramer in solution. This finding indicates that the C-terminal region aa 196-228 is not crucial for SaDnaD oligomerization. SaDnaD forms distinct complexes with ssDNA of different lengths. In fluorescence titrations, SaDnaD bound to ssDNA with a binding-site size of approximately 32 nt. A stable complex of SaDnaD1-195, SaDnaD1-200, and SaDnaD1-204 with ssDNA dT40 was undetectable, indicating that the C-terminal region of SaDnaD (particularly aa 205-228 is crucial for ssDNA binding. The SPR results revealed that SaDnaD1-195 can interact with SaDnaA but not with SaPriA, which may indicate that DnaD has different binding sites for PriA and DnaA. Both SaDnaD and SaDnaDY176A mutant proteins, but not SaDnaD1-195, can significantly stimulate the ATPase activity of SaPriA. Hence, the stimulation effect mainly resulted from direct contact within the protein-protein interaction, not via the DNA-protein interaction. Kinetic studies revealed that the SaDnaD-SaPriA interaction increases the Vmax of the SaPriA ATPase fivefold without significantly affecting the Km. These results indicate that the conserved C-terminal region is crucial for ssDNA and PriA helicase binding, but not for DnaA protein-binding and self-tetramerization.

  9. A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process

    Directory of Open Access Journals (Sweden)

    El Sawaf Gamal

    2009-07-01

    Full Text Available Abstract Background The E1 protein of Hepatitis C Virus (HCV can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP, and a C-terminal domain (CT comprising two segments, a pre-anchor and a trans-membrane (TM region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1. Results Two computational approaches were applied. The first one is based on the co-evolution paradigm of interacting peptides and consequently on the correlation between the distance matrices generated by the sequence alignment method applied to FP and CT primary structures, respectively. In spite of the relatively low random genetic drift between genotypes, co-evolution analysis of sequences from five HCV genotypes revealed a greater correlation between the FP and CT domains than respect to a control HCV sequence from Core protein, so giving a clear, albeit still inconclusive, support to the physical interaction hypothesis. The second approach relies upon a non-linear signal analysis method widely used in protein science called Recurrence Quantification Analysis (RQA. This method allows for a direct comparison of domains for the presence of common hydrophobicity patterns, on which the physical interaction is based upon. RQA greatly strengthened the reliability of the hypothesis by the scoring of a lot of cross-recurrences between FP and CT peptides hydrophobicity patterning largely outnumbering chance expectations and pointing to putative interaction sites. Intriguingly, mutations in the CT

  10. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    Science.gov (United States)

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    Science.gov (United States)

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  12. The relationship between protein synthesis and protein degradation in object recognition memory.

    Science.gov (United States)

    Furini, Cristiane R G; Myskiw, Jociane de C; Schmidt, Bianca E; Zinn, Carolina G; Peixoto, Patricia B; Pereira, Luiza D; Izquierdo, Ivan

    2015-11-01

    For decades there has been a consensus that de novo protein synthesis is necessary for long-term memory. A second round of protein synthesis has been described for both extinction and reconsolidation following an unreinforced test session. Recently, it was shown that consolidation and reconsolidation depend not only on protein synthesis but also on protein degradation by the ubiquitin-proteasome system (UPS), a major mechanism responsible for protein turnover. However, the involvement of UPS on consolidation and reconsolidation of object recognition memory remains unknown. Here we investigate in the CA1 region of the dorsal hippocampus the involvement of UPS-mediated protein degradation in consolidation and reconsolidation of object recognition memory. Animals with infusion cannulae stereotaxically implanted in the CA1 region of the dorsal hippocampus, were exposed to an object recognition task. The UPS inhibitor β-Lactacystin did not affect the consolidation and the reconsolidation of object recognition memory at doses known to affect other forms of memory (inhibitory avoidance, spatial learning in a water maze) while the protein synthesis inhibitor anisomycin impaired the consolidation and the reconsolidation of the object recognition memory. However, β-Lactacystin was able to reverse the impairment caused by anisomycin on the reconsolidation process in the CA1 region of the hippocampus. Therefore, it is possible to postulate a direct link between protein degradation and protein synthesis during the reconsolidation of the object recognition memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Protection against syphilis correlates with specificity of antibodies to the variable regions of Treponema pallidum repeat protein K.

    Science.gov (United States)

    Morgan, Cecilia A; Lukehart, Sheila A; Van Voorhis, Wesley C

    2003-10-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V regions. Immunization with TprK confers significant protection against infection with the homologous strain. We hypothesize that the antigenic diversity of TprK is involved in immune evasion, which contributes to the lack of heterologous protection. Here, using the rabbit model, we show a correlation between limited heterologous protection and tprK diversity in the challenge inoculum. We demonstrate that antibody responses to the V regions of one TprK molecule show limited cross-reactivity with heterologous TprK V regions.

  14. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...

  15. Amino acids and proteins

    Science.gov (United States)

    A balanced, safe diet with proteins is important to meet nutritional requirements. Proteins occur in animal as well as vegetable products in important quantities. In some countries, many people obtain much of their protein from animal products. In other regions, the major portion of dietary protein ...

  16. The conserved 12-amino acid stretch in the inter-bromodomain region of BET family proteins functions as a nuclear localization signal.

    Science.gov (United States)

    Fukazawa, Hidesuke; Masumi, Atsuko

    2012-01-01

    The bromodomain and extraterminal (BET) family is a group of chromatin-binding proteins characterized by two bromodomains, an extraterminal (ET) domain, and several other conserved regions of unknown function. In humans, the BET family consists of four members, BRD2, BRD3, BRD4 and BRDT, that all normally localize to the nucleus. We identified a 12-amino acid stretch in the inter-bromodomain region that is perfectly conserved among the BET family members. We deleted these residues and expressed the mutant proteins in HEK293T cells to investigate the function of this motif. We found that the deletion of this motif alters the localization of BET proteins. Mutated BRD3 and BRD4 were excluded from the nucleus, and BRDT was found to be diffused throughout the nucleus and cytoplasm. Although the mutant BRD2 remained predominantly in the nucleus, a punctate distribution was also observed in the cytosol. It has been reported that a conserved motif between the second bromodomain and the ET domain serves as a nuclear localization signal for BRD2. Nevertheless, BET mutants lacking the reported nuclear localization signal motif but retaining the 12-amino acid stretch resided in the nucleus. Furthermore, these mutants were diffused throughout the cytoplasm when the 12 residues were removed. These results indicate that the conserved amino acid stretch in the inter-bromodomain region of the BET family functions as a nuclear localization signal.

  17. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  18. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  19. Synapsin I (protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia

    International Nuclear Information System (INIS)

    Adolfsson, R.; Alafuzoff, I.; Winblad, B.; Perdahl, E.; Albert, K.A.; Nestler, E.J.; Greengard, P.

    1984-01-01

    Synapsin I (Protein I), a neuron-specfic phosphoprotein enriched in presynaptic nerve terminals, has been used as a quantitative marker for the density of nerve terminals in five brain regions (caudate nucleus, cingulate gyrus, hippocampus, mesencephalon and putamen) from patients who had suffered from Alzheimer disease/senile dementia of Alzheimer type (AD/SDAT), from patients with multi-infarct dementia (MID), and from agematched controls. Samples were obtained at autopsy. Lower levels of Synapsin I were observed in the hippocampus of patients with AD/SDAT but not with MID. There were no significant differences in Synapsin I levels between patients and controls in any of the other four brain regions examined. (Author)

  20. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    Science.gov (United States)

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  1. The Asia 2 specific signal peptide region and other domains in fusion protein genes characterized Asia 1 and Asia 2 canine distemper viruses

    Science.gov (United States)

    Sultan, Serageldeen; Charoenvisal, Nataya; Lan, Nguyen Thi; Yamaguchi, Ryoji; Maeda, Ken; Kai, Kazushige

    2009-01-01

    Background Although the presence of Asia 2 group of canine distemper virus (CDV) was known by the sequencing and phylogenetic analysis of hemagglutinin (H) gene, the fusion (F) protein gene sequence of Asia 2 group had not been identified. So, the sequence analysis of F gene was carried out to elucidate the genotypic varaitons among Asian isolates. Results The phylogenetic analysis of F and H gene sequences from fourteen CDV isolates obtained from diseased dogs in Japan and Thailand indicated that the F genes had a new initiation codon and extra 27 nucleotides upstream of the usual open reading frame (ORF) and the F proteins had extra 9 amino acids at the N-terminal position only in Asia 2 isolates. On the contrary, the Asia 1 isolates had three extra putative N-glycosylation sites (two sites in the signal peptide region and one site in the F1 region) except for two strains of Th12 and Ac96I (two sites in signal peptide region) adding to four putative N-glycosylation sites that were conserved among all Asian isolates and Onderstepoort strain. In addition to this difference in N-glycosylation sites, the signal peptide region had a great diversity between Asia 1 and Asia 2 isolates. Also, characteristic amino acids were detected for some strains. Conclusion Asia 2 isolates were distinguished from other CDV lineages by the extra 27 nucleotide sequence. The signal peptide region of F gene gives a remarkable differentiation between Asia 1 and Asia 2 isolates. Strains Th12 and Ac96I were differentiated from other Asia 1 strains by the F protein glycosylation sites. PMID:19807927

  2. CRA-1 uncovers a double-strand break-dependent pathway promoting the assembly of central region proteins on chromosome axes during C. elegans meiosis.

    Science.gov (United States)

    Smolikov, Sarit; Schild-Prüfert, Kristina; Colaiácovo, Mónica P

    2008-06-06

    The synaptonemal complex (SC), a tripartite proteinaceous structure that forms between homologous chromosomes during meiosis, is crucial for faithful chromosome segregation. Here we identify CRA-1, a novel and conserved protein that is required for the assembly of the central region of the SC during C. elegans meiosis. In the absence of CRA-1, central region components fail to extensively localize onto chromosomes at early prophase and instead mostly surround the chromatin at this stage. Later in prophase, central region proteins polymerize along chromosome axes, but for the most part fail to connect the axes of paired homologous chromosomes. This defect results in an inability to stabilize homologous pairing interactions, altered double-strand break (DSB) repair progression, and a lack of chiasmata. Surprisingly, DSB formation and repair are required to promote the polymerization of the central region components along meiotic chromosome axes in cra-1 mutants. In the absence of both CRA-1 and any one of the C. elegans homologs of SPO11, MRE11, RAD51, or MSH5, the polymerization observed along chromosome axes is perturbed, resulting in the formation of aggregates of the SC central region proteins. While radiation-induced DSBs rescue this polymerization in cra-1; spo-11 mutants, they fail to do so in cra-1; mre-11, cra-1; rad-51, and cra-1; msh-5 mutants. Taken together, our studies place CRA-1 as a key component in promoting the assembly of a tripartite SC structure. Moreover, they reveal a scenario in which DSB formation and repair can drive the polymerization of SC components along chromosome axes in C. elegans.

  3. The Central Conserved Region (CCR) of Respiratory Syncytial Virus (RSV) G Protein Modulates Host miRNA Expression and Alters the Cellular Response to Infection.

    Science.gov (United States)

    Bakre, Abhijeet A; Harcourt, Jennifer L; Haynes, Lia M; Anderson, Larry J; Tripp, Ralph A

    2017-07-03

    Respiratory Syncytial Virus (RSV) infects respiratory epithelial cells and deregulates host gene expression by many mechanisms including expression of RSV G protein (RSV G). RSV G protein encodes a central conserved region (CCR) containing a CX3C motif that functions as a fractalkine mimic. Disruption of the CX3C motif (a.a. 182-186) located in the CCR of the G protein has been shown to affect G protein function in vitro and the severity of RSV disease pathogenesis in vivo. We show that infection of polarized Calu3 respiratory cells with recombinant RSV having point mutations in Cys173 and 176 (C173/176S) (rA2-GC12), or Cys186 (C186S) (rA2-GC4) is associated with a decline in the integrity of polarized Calu-3 cultures and decreased virus production. This is accompanied with downregulation of miRNAs let-7f and miR-24 and upregulation of interferon lambda (IFNλ), a primary antiviral cytokine for RSV in rA2-GC12/rA2-GC4 infected cells. These results suggest that residues in the cysteine noose region of RSV G protein can modulate IFN λ expression accompanied by downregulation of miRNAs, and are important for RSV G protein function and targeting.

  4. Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence

    DEFF Research Database (Denmark)

    Gustafsson, Caj Ulrik Mattias; Lannergård, Jonas; Nilsson, Olof Rickard

    2013-01-01

    Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against...... represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited...... to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed...

  5. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    Science.gov (United States)

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  6. Sequence diversity of the C-terminal region of Plasmodium falciparum merozoite surface protein 1 in southern Iran.

    Science.gov (United States)

    Zamani, Zahra; Razavi, Mohammad Reza; Sadeghi, Sedigheh; Naddaf, Saeed; Pourfallah, Fatemeh; Mirkhani, Fatemeh; Arjmand, Mohammad; Feizhaddad, Hossein; Rad, Mina Ebrahimi; Ebrahimi Rad, Mina; Tameemi, Marzieh; Assmar, Mehdi

    2009-01-01

    The C-terminal region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum is a strong vaccine candidate as it is associated with immunity to the parasite. This corresponds approximately to the conserved 17th block of the gene and is composed of two EGF- like domains. These domains exhibit only four single amino acid substitutions which show several potential variants in this region of the gene. As the variations might be important for a regional vaccine design, a study was carried out to determine the variations present in P. falciparum isolates from southern Iran. Besides the usual E-T-S-R-L and the Q-K-N-G-F types, we found Q-T-S-R-L, E-K-N-G-F, E-T-S-G-L, Z-T-S-G-L and Z-T-S-R-L types, where Z was E or Q signifying the presence of mixed clones in single isolates.

  7. Crystal Structure of the Carboxy-Terminal Region of the Bacteriophage T4 Proximal Long Tail Fiber Protein Gp34

    Directory of Open Access Journals (Sweden)

    Meritxell Granell

    2017-06-01

    Full Text Available Long tail fibers of bacteriophage T4 are formed by proteins gp34, gp35, gp36, and gp37, with gp34 located at the phage-proximal end and gp37 at the phage-distal, receptor-binding end. We have solved the structure of the carboxy-terminal region of gp34, consisting of amino acids 894–1289, by single-wavelength anomalous diffraction and extended the structure to amino acids 744–1289 using data collected from crystals containing longer gp34-fragments. The structure reveals three repeats of a mixed α-β fibrous domain in residues 744 to 877. A triple-helical neck connects to an extended triple β-helix domain (amino acids 900–1127 punctuated by two β-prism domains. Next, a β-prism domain decorated with short helices and extended β-helices is present (residues 1146–1238, while the C-terminal end is capped with another short β-helical region and three β-hairpins. The structure provides insight into the stability of the fibrous gp34 protein.

  8. An AU-rich element in the 3{prime} untranslated region of the spinach chloroplast petD gene participates in sequence-specific RNA-protein complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiuyun; Adams, C.C.; Usack, L. [Cornell Univ., Ithaca, NY (United States)] [and others

    1995-04-01

    In chloroplasts, the 3{prime} untranslated regions of most mRNAs contain a stem-loop-forming inverted repeat (IR) sequence that is required for mRNA stability and correct 3{prime}-end formation. The IR regions of several mRNAs are also known to bind chloroplast proteins, as judged from in vitro gel mobility shift and UV cross-linking assays, and these RNA-protein interactions may be involved in the regulation of chloroplast mRNA processing and/or stability. Here we describe in detail the RNA and protein components that are involved in 3{prime} IR-containing RNA (3{prime} IR-RNA)-protein complex formation for the spinach chloroplast petD gene, which encodes subunit IV of the cytochrome b{sub 6}/f complex. We show that the complex contains 55-, 41-, and 29-kDa RNA-binding proteins (ribonucleoproteins [RNPs]). These proteins together protect a 90-nucleotide segment of RNA from RNase T{sub 1} digestion; this RNA contains the IR and downstream flanking sequences. Competition experiments using 3{prime} IR-RNAs from the psbA or rbcL gene demonstrate that the RNPs have a strong specificity for the petD sequence. Site-directed mutagenesis was carried out to define the RNA sequence elements required for complex formation. These studies identified an 8-nucleotide AU-rich sequence downstream of the IR; mutations within this sequence had moderate to severe effects on RNA-protein complex formation. Although other similar sequences are present in the petD 3{prime} untranslated region, only a single copy, which we have termed box II, appears to be essential for in vivo protein binding. In addition, the IR itself is necessary for optimal complex formation. These two sequence elements together with an RNP complex may direct correct 3{prime}-end processing and/or influence the stability of petD mRNA in chloroplasts. 48 refs., 9 figs., 2 tabs.

  9. Mapping of the gene encoding the. beta. -amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.; Gardiner, K.; Kao, F.T.; Tanzi, R.; Watkins, P.; Gusella, J.F. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (USA))

    1988-11-01

    The gene encoding the {beta}-amyloid precursor protein has been assigned to human chromosome 21, as has a gene responsible for at least some cases of familial Alzheimer disease. Linkage studies strongly suggest that the {beta}-amyloid precursor protein and the product corresponding to familial Alzheimer disease are from two genes, or at least that several million base pairs of DNA separate the markers. The precise location of the {beta}-amyloid precursor protein gene on chromosome 21 has not yet been determined. Here the authors show, by using a somatic-cell/hybrid-cell mapping panel, in situ hybridization, and transverse-alternating-field electrophoresis, that the {beta}-amyloid precursor protein gene is located on chromosome 21 very near the 21q21/21q/22 border and probably within the region of chromosome 21 that, when trisomic, results in Down syndrome.

  10. Identification of the promoter region required for human adiponectin gene transcription: Association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α

    International Nuclear Information System (INIS)

    Kita, Atsushi; Yamasaki, Hironori; Kuwahara, Hironaga; Moriuchi, Akie; Fukushima, Keiko; Kobayashi, Masakazu; Fukushima, Tetsuya; Takahashi, Ryoko; Abiru, Norio; Uotani, Shigeo; Kawasaki, Eiji; Eguchi, Katsumi

    2005-01-01

    Adiponectin, an adipose tissue-specific plasma protein, is involved in insulin sensitizing and has anti-atherosclerotic properties. Plasma levels of adiponectin are decreased in obese individuals and patients with type 2 diabetes with insulin resistance. Tumor necrosis factor-α (TNF-α) decreases the expression of adiponectin in adipocytes. The aims of the present study were: (1) to identify the promoter region responsible for basal transcription of the human adiponectin gene, and (2) to investigate the mechanism by which adiponectin was regulated by TNF-α. The human adiponectin promoter (2.1 kb) was isolated and used for luciferase reporter analysis by transient transfection into 3T3-L1 adipocytes. Deletion analysis demonstrated that the promoter region from -676 to +41 was sufficient for basal transcriptional activity. Mutation analysis of putative response elements for sterol regulatory element binding protein (SREBP) (-431 to -423) and CCAAT/enhancer binding protein (C/EBP) (-230 to -224) showed that both elements were required for basal promoter activity. Adiponectin transcription was increased 3-fold in cells that over-expressed constitutively active C/EBP-β. Electrophoretic mobility shift assay, using nuclear extract from 3T3-L1 cells and the -258 to -199 region as a probe, demonstrated specific DNA-protein binding, which was abolished by TNF-α treatment. The present data indicate that the putative response elements for SREBP and C/EBP are required for human adiponectin promoter activity, and that suppression by TNF-α may, at least in part, be associated with inactivation of C/EBP-β

  11. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis.

    Science.gov (United States)

    Iwasaki, T; Yamaguchi-Shinozaki, K; Shinozaki, K

    1995-05-20

    In Arabidopsis thaliana, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) but the gene does not include any sequence corresponding to the consensus ABA-responsive element (ABRE), RYACGTGGYR, in its promoter region. The cis-regulatory region of the rd22 promoter was identified by monitoring the expression of beta-glucuronidase (GUS) activity in leaves of transgenic tobacco plants transformed with chimeric gene fusions constructed between 5'-deleted promoters of rd22 and the coding region of the GUS reporter gene. A 67-bp nucleotide fragment corresponding to positions -207 to -141 of the rd22 promoter conferred responsiveness to dehydration and ABA on a non-responsive promoter. The 67-bp fragment contains the sequences of the recognition sites for some transcription factors, such as MYC, MYB, and GT-1. The fact that accumulation of rd22 mRNA requires protein synthesis raises the possibility that the expression of rd22 might be regulated by one of these trans-acting protein factors whose de novo synthesis is induced by dehydration or ABA. Although the structure of the RD22 protein is very similar to that of a non-storage seed protein, USP, of Vicia faba, the expression of the GUS gene driven by the rd22 promoter in non-stressed transgenic Arabidopsis plants was found mainly in flowers and bolted stems rather than in seeds.

  12. Antimicrobial activity of human prion protein is mediated by its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Mukesh Pasupuleti

    Full Text Available BACKGROUND: Cellular prion-related protein (PrP(c is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c, and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing recombinant PrP and N- and C-terminally truncated variants, as well as overlapping peptide 20mers, demonstrated that the antimicrobial activity is mediated by the unstructured N-terminal part of the protein. Synthetic peptides of the N-terminus of PrP killed the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, and the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida parapsilosis. Fluorescence studies of peptide-treated bacteria, paired with analysis of peptide effects on liposomes, showed that the peptides exerted membrane-breaking effects similar to those seen after treatment with the "classical" human antimicrobial peptide LL-37. In contrast to LL-37, however, no marked helix induction was detected for the PrP-derived peptides in presence of negatively charged (bacteria-mimicking liposomes. PrP furthermore showed an inducible expression during wounding of human skin ex vivo and in vivo, as well as stimulation of keratinocytes with TGF-alpha in vitro. CONCLUSIONS: The demonstration of an antimicrobial activity of PrP, localisation of its activity to the N-terminal and heparin-binding region, combined with results showing an increased expression of PrP during wounding, indicate that PrPs could have a previously undisclosed role in host defense.

  13. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2015-01-01

    Full Text Available Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.

  14. Roles of the conserved cytoplasmic region and non-conserved carboxy-terminal region of SecE in Escherichia coli protein translocase.

    Science.gov (United States)

    Kontinen, V P; Yamanaka, M; Nishiyama, K; Tokuda, H

    1996-06-01

    SecE, an essential membrane component of the Escherichia coli protein translocase, consists of 127 amino acid residues. Only a part of the second putative cytoplasmic region comprising some 13 residues is essential for the SecE function as long as the proper topological arrangement is retained. The Trp84 and Pro85 residues of this region are conserved in all eubacterial SecE homologues. The conservation of positively charged residues corresponding to Arg80 and Lys81 is also substantial. We deleted or replaced these residues to assess their roles in the SecE function. Deletion of the Arg80-Lys81 dipeptide did not abolish the SecE function whereas that of Trp84 or Pro85 caused a loss of the function. Strikingly, however, replacement of Pro85 with either Gly, Ser, or Ala, and that of Trp84 with Lys did not abolish the SecE function. These results indicate that the strong conservation of these residues does not reflect their obligatory requirement for the SecE function. A chimeric SecE possessing the cytoplasmic region of the E. coli SecE and the following region of the Bacillus subtilis SecE was able to form the translocation machinery together with SecA, SecY, and SecG. Although a Leu to Arg mutation at position 108 has been thought to cause a loss of signal recognition fidelity and thereby suppress a signal sequence defect, the same mutation at position 111 caused a complete loss of the function. The levels of SecY and SecG in the secEcsE501 mutant, which expresses SecE at a decreased level and is sensitive to low temperature, increased upon the expression of functional SecE derivatives, irrespective of the site of mutation, suggesting that the levels of SecY and SecG are co-operatively determined by the level of functional, but not non-functional, SecE. Based on these results, the SecE function in the translocase is discussed.

  15. Regional differences in mu and kappa opioid receptor G-protein activation in brain in male and female prairie voles.

    Science.gov (United States)

    Martin, T J; Sexton, T; Kim, S A; Severino, A L; Peters, C M; Young, L J; Childers, S R

    2015-12-17

    Prairie voles are unusual mammals in that, like humans, they are capable of forming socially monogamous pair bonds, display biparental care, and engage in alloparental behaviors. Both mu and kappa opioid receptors are involved in behaviors that either establish and maintain, or result from pair bond formation in these animals. Mu and kappa opioid receptors both utilize inhibitory G-proteins in signal transduction mechanisms, however the efficacy by which these receptor subtypes stimulate G-protein signaling across the prairie vole neuraxis is not known. Utilizing [(35)S]GTPγS autoradiography, we characterized the efficacy of G-protein stimulation in coronal sections throughout male and female prairie vole brains by [D-Ala2,NMe-Phe4,Gly-ol5]-enkephalin (DAMGO) and U50,488H, selective mu and kappa opioid agonists, respectively. DAMGO stimulation was highest in the forebrain, similar to that found with other rodent species. U-50,488H produced greater stimulation in prairie voles than is typically seen in mice and rats, particularly in select forebrain areas. DAMGO produced higher stimulation in the core versus the shell of the nucleus accumbens (NAc) in females, while the distribution of U-50,488H stimulation was the opposite. There were no gender differences for U50,488H stimulation of G-protein activity across the regions examined, while DAMGO stimulation was greater in sections from females compared to those from males for NAc core, entopeduncular nucleus, and hippocampus. These data suggest that the kappa opioid system may be more sensitive to manipulation in prairie voles compared to mice and rats, and that female prairie voles may be more sensitive to mu agonists in select brain regions than males. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Structure-sequence based analysis for identification of conserved regions in proteins

    Science.gov (United States)

    Zemla, Adam T; Zhou, Carol E; Lam, Marisa W; Smith, Jason R; Pardes, Elizabeth

    2013-05-28

    Disclosed are computational methods, and associated hardware and software products for scoring conservation in a protein structure based on a computationally identified family or cluster of protein structures. A method of computationally identifying a family or cluster of protein structures in also disclosed herein.

  17. Effects of mutants in bHLH region on structure stability and protein-DNA binding energy in DECs.

    Science.gov (United States)

    Kong, Yi; Wang, Zhen; Jia, Yanfei; Li, Ping; Hao, Shuhua; Wang, Yunshan

    2017-07-01

    The human DEC subfamily contains two highly conserved members belonging to basic helix-loop-helix (bHLH) transcription factors. This conserved family is spread widely among various species with the function of regulating various crucial molecular signaling pathways. Due to the significance of DECs for important biological processes, their relationship with diseases and the lack of experimentally proven structures, we have implemented a comparative modeling for the bHLH region of DECs as homodimers with themselves and heterodimers with HES-1. Three mutants with predicted roles in reducing intramolecular binding (H57A, R65A, and LL7879AA in DEC1 and LL7071AA in DEC2) were investigated on DEC monomers. Molecular dynamics (MD) simulations were also employed to evaluate the behavior of the mutant molecules in aqueous solution. The monomer was divided into subregions for accurate investigation. The fluctuation in the basic region of mutants was higher than that of wild-type molecules. The binding energy value between protein and DNA obviously increased in the homodimer harboring R65A mutants, which led to more unstable status between protein and DNA. Thus, the mutant R65A interfered DNA-binding affinity. A study on the spatial structures of wild-type and mutant DECs may facilitate functional prediction for mutation effects and dynamic behavior under various conditions and may ultimately help in targeted drug design.

  18. Identification of DNA-binding proteins that interact with the 5'-flanking region of the human D-amino acid oxidase gene by pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry.

    Science.gov (United States)

    Tran, Diem Hong; Shishido, Yuji; Chung, Seong Pil; Trinh, Huong Thi Thanh; Yorita, Kazuko; Sakai, Takashi; Fukui, Kiyoshi

    2015-12-10

    D-Amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids and is expected to be a promising therapeutic target of schizophrenia and glioblastoma. The study of DNA-binding proteins has yielded much information in the regulation of transcription and other biological processes. However, proteins interacting with DAO gene have not been elucidated. Our assessment of human DAO promoter activity using luciferase reporter system indicated the 5'-flanking region of this gene (-4289 bp from transcription initiation site) has a regulatory sequence for gene expression, which is regulated by multi-protein complexes interacting with this region. By using pull-down assay coupled with two-dimensional gel electrophoresis and mass spectrometry, we identified six proteins binding to the 5'-flanking region of the human DAO gene (zinc finger C2HC domain-containing protein 1A; histidine-tRNA ligase, cytoplasmic; molybdenum cofactor biosynthesis protein; 60S ribosomal protein L37; calponin-1; calmodulin binding protein and heterogeneous nuclear ribonucleoprotein A2/B1). These preliminary results will contribute to the advance in the understanding of the potential factors associated with the regulatory mechanism of DAO expression. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Avoiding acidic region streaking in two-dimensional gel electrophoresis: case study with two bacterial whole cell protein extracts.

    Science.gov (United States)

    Roy, Arnab; Varshney, Umesh; Pal, Debnath

    2014-09-01

    Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.

  20. Deciphering RNA-Recognition Patterns of Intrinsically Disordered Proteins

    Directory of Open Access Journals (Sweden)

    Ambuj Srivastava

    2018-05-01

    Full Text Available Intrinsically disordered regions (IDRs and protein (IDPs are highly flexible owing to their lack of well-defined structures. A subset of such proteins interacts with various substrates; including RNA; frequently adopting regular structures in the final complex. In this work; we have analysed a dataset of protein–RNA complexes undergoing disorder-to-order transition (DOT upon binding. We found that DOT regions are generally small in size (less than 3 residues for RNA binding proteins. Like structured proteins; positively charged residues are found to interact with RNA molecules; indicating the dominance of electrostatic and cation-π interactions. However, a comparison of binding frequency shows that interface hydrophobic and aromatic residues have more interactions in only DOT regions than in a protein. Further; DOT regions have significantly higher exposure to water than their structured counterparts. Interactions of DOT regions with RNA increase the sheet formation with minor changes in helix forming residues. We have computed the interaction energy for amino acids–nucleotide pairs; which showed the preference of His–G; Asn–U and Ser–U at for the interface of DOT regions. This study provides insights to understand protein–RNA interactions and the results could also be used for developing a tool for identifying DOT regions in RNA binding proteins.

  1. Synapsin I (Protein I) in different brain regions in senile dementia of Alzheimer type and in multiinfarct dementia. [Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Adolfsson, R; Alafuzoff, I; Winblad, B [Umeaa Univ. (Sweden); Perdahl, E; Albert, K A; Nestler, E J; Greengard, P [Rockefeller Univ., New York (USA)

    1984-01-01

    Synapsin I (Protein I), a neuron-specfic phosphoprotein enriched in presynaptic nerve terminals, has been used as a quantitative marker for the density of nerve terminals in five brain regions (caudate nucleus, cingulate gyrus, hippocampus, mesencephalon and putamen) from patients who had suffered from Alzheimer disease/senile dementia of Alzheimer type (AD/SDAT), from patients with multi-infarct dementia (MID), and from agematched controls. Samples were obtained at autopsy. Lower levels of Synapsin I were observed in the hippocampus of patients with AD/SDAT but not with MID. There were no significant differences in Synapsin I levels between patients and controls in any of the other four brain regions examined.

  2. The NS3 proteins of global strains of bluetongue virus evolve into regional topotypes through negative (purifying) selection.

    Science.gov (United States)

    Balasuriya, U B R; Nadler, S A; Wilson, W C; Pritchard, L I; Smythe, A B; Savini, G; Monaco, F; De Santis, P; Zhang, N; Tabachnick, W J; Maclachlan, N J

    2008-01-01

    Comparison of the deduced amino acid sequences of the genes (S10) encoding the NS3 protein of 137 strains of bluetongue virus (BTV) from Africa, the Americas, Asia, Australia and the Mediterranean Basin showed limited variation. Common to all NS3 sequences were potential glycosylation sites at amino acid residues 63 and 150 and a cysteine at residue 137, whereas a cysteine at residue 181 was not conserved. The PPXY and PS/TAP late-domain motifs were conserved in all but three of the viruses. Phylogenetic analyses of these same sequences yielded two principal clades that grouped the viruses irrespective of their serotype or year of isolation (1900-2003). All viruses from Asia and Australia were grouped in one clade, whereas those from the other regions were present in both clades. Each clade segregated into distinct subclades that included viruses from single or multiple regions, and the S10 genes of some field viruses were identical to those of live-attenuated BTV vaccines. There was no evidence of positive selection on the S10 gene as assessed by reconstruction of ancestral codon states on the phylogeny, rather the functional constraints of the NS3 protein are expressed through substantial negative (purifying) selection.

  3. Total protein and cholesterol concentrations in brain regions of male ...

    African Journals Online (AJOL)

    The results showed similarities (P>0.05) between the treatments in total protein concentrations in the cerebral cortex, medulla, hypothalamus, amygdala, mesencephalon and hippocampus. Total protein concentrations however differed significantly between diets (P<0.05) in the cerebellum and pons varoli with the lowest ...

  4. An overlapping region between the two terminal folding units of the outer surface protein A (OspA) controls its folding behavior.

    Science.gov (United States)

    Makabe, Koki; Nakamura, Takashi; Dhar, Debanjan; Ikura, Teikichi; Koide, Shohei; Kuwajima, Kunihiro

    2018-04-27

    Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding-unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions. Copyright © 2018. Published by Elsevier Ltd.

  5. Complement activating soluble pattern recognition molecules with collagen-like regions, mannan-binding lectin, ficolins and associated proteins

    DEFF Research Database (Denmark)

    Thiel, Steffen

    2007-01-01

    Mannan-binding lectin (MBL), L-ficolin, M-ficolin and H-ficolin are all complement activating soluble pattern recognition molecules with recognition domains linked to collagen-like regions. All four may form complexes with four structurally related proteins, the three MBL-associated serine...... proteases (MASPs), MASP-1, MASP-2 and MASP-3, and a smaller MBL-associated protein (MAp19). The four recognition molecules recognize patterns of carbohydrate or acetyl-group containing ligands. After binding to the relevant targets all four are able to activate the complement system. We thus have a system...... where four different and/or overlapping patterns of microbial origin or patterns of altered-self may be recognized, but in all cases the signalling molecules, the MASPs, are shared. MASP-1 and MASP-3 are formed from one gene, MASP1/3, by alternative splicing generating two different mRNAs from a single...

  6. The Importance of the KR-Rich Region of the Coat Protein of Ourmia melon virus for Host Specificity, Tissue Tropism, and Interference With Antiviral Defense.

    Science.gov (United States)

    Rossi, Marika; Vallino, Marta; Abbà, Simona; Ciuffo, Marina; Balestrini, Raffaella; Genre, Andrea; Turina, Massimo

    2015-01-01

    The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.

  7. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases.

    Science.gov (United States)

    Shen, S H; Bastien, L; Posner, B I; Chrétien, P

    1991-08-22

    The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.

  8. Sequence-specific capture of protein-DNA complexes for mass spectrometric protein identification.

    Directory of Open Access Journals (Sweden)

    Cheng-Hsien Wu

    Full Text Available The regulation of gene transcription is fundamental to the existence of complex multicellular organisms such as humans. Although it is widely recognized that much of gene regulation is controlled by gene-specific protein-DNA interactions, there presently exists little in the way of tools to identify proteins that interact with the genome at locations of interest. We have developed a novel strategy to address this problem, which we refer to as GENECAPP, for Global ExoNuclease-based Enrichment of Chromatin-Associated Proteins for Proteomics. In this approach, formaldehyde cross-linking is employed to covalently link DNA to its associated proteins; subsequent fragmentation of the DNA, followed by exonuclease digestion, produces a single-stranded region of the DNA that enables sequence-specific hybridization capture of the protein-DNA complex on a solid support. Mass spectrometric (MS analysis of the captured proteins is then used for their identification and/or quantification. We show here the development and optimization of GENECAPP for an in vitro model system, comprised of the murine insulin-like growth factor-binding protein 1 (IGFBP1 promoter region and FoxO1, a member of the forkhead rhabdomyosarcoma (FoxO subfamily of transcription factors, which binds specifically to the IGFBP1 promoter. This novel strategy provides a powerful tool for studies of protein-DNA and protein-protein interactions.

  9. Structural deformation upon protein-protein interaction: a structural alphabet approach.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Lecornet, Hélène; Camproux, Anne-Claude

    2008-02-28

    In a number of protein-protein complexes, the 3D structures of bound and unbound partners significantly differ, supporting the induced fit hypothesis for protein-protein binding. In this study, we explore the induced fit modifications on a set of 124 proteins available in both bound and unbound forms, in terms of local structure. The local structure is described thanks to a structural alphabet of 27 structural letters that allows a detailed description of the backbone. Using a control set to distinguish induced fit from experimental error and natural protein flexibility, we show that the fraction of structural letters modified upon binding is significantly greater than in the control set (36% versus 28%). This proportion is even greater in the interface regions (41%). Interface regions preferentially involve coils. Our analysis further reveals that some structural letters in coil are not favored in the interface. We show that certain structural letters in coil are particularly subject to modifications at the interface, and that the severity of structural change also varies. These information are used to derive a structural letter substitution matrix that summarizes the local structural changes observed in our data set. We also illustrate the usefulness of our approach to identify common binding motifs in unrelated proteins. Our study provides qualitative information about induced fit. These results could be of help for flexible docking.

  10. Structural deformation upon protein-protein interaction: A structural alphabet approach

    Directory of Open Access Journals (Sweden)

    Lecornet Hélène

    2008-02-01

    Full Text Available Abstract Background In a number of protein-protein complexes, the 3D structures of bound and unbound partners significantly differ, supporting the induced fit hypothesis for protein-protein binding. Results In this study, we explore the induced fit modifications on a set of 124 proteins available in both bound and unbound forms, in terms of local structure. The local structure is described thanks to a structural alphabet of 27 structural letters that allows a detailed description of the backbone. Using a control set to distinguish induced fit from experimental error and natural protein flexibility, we show that the fraction of structural letters modified upon binding is significantly greater than in the control set (36% versus 28%. This proportion is even greater in the interface regions (41%. Interface regions preferentially involve coils. Our analysis further reveals that some structural letters in coil are not favored in the interface. We show that certain structural letters in coil are particularly subject to modifications at the interface, and that the severity of structural change also varies. These information are used to derive a structural letter substitution matrix that summarizes the local structural changes observed in our data set. We also illustrate the usefulness of our approach to identify common binding motifs in unrelated proteins. Conclusion Our study provides qualitative information about induced fit. These results could be of help for flexible docking.

  11. ProteinShop: A tool for interactive protein manipulation and steering

    Energy Technology Data Exchange (ETDEWEB)

    Crivelli, Silvia; Kreylos, Oliver; Max, Nelson; Hamann, Bernd; Bethel, Wes

    2004-05-25

    We describe ProteinShop, a new visualization tool that streamlines and simplifies the process of determining optimal protein folds. ProteinShop may be used at different stages of a protein structure prediction process. First, it can create protein configurations containing secondary structures specified by the user. Second, it can interactively manipulate protein fragments to achieve desired folds by adjusting the dihedral angles of selected coil regions using an Inverse Kinematics method. Last, it serves as a visual framework to monitor and steer a protein structure prediction process that may be running on a remote machine. ProteinShop was used to create initial configurations for a protein structure prediction method developed by a team that competed in CASP5. ProteinShop's use accelerated the process of generating initial configurations, reducing the time required from days to hours. This paper describes the structure of ProteinShop and discusses its main features.

  12. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  13. Identification of membrane proteins by tandem mass spectrometry of protein ions

    Science.gov (United States)

    Carroll, Joe; Altman, Matthew C.; Fearnley, Ian M.; Walker, John E.

    2007-01-01

    The most common way of identifying proteins in proteomic analyses is to use short segments of sequence (“tags”) determined by mass spectrometric analysis of proteolytic fragments. The approach is effective with globular proteins and with membrane proteins with significant polar segments between membrane-spanning α-helices, but it is ineffective with other hydrophobic proteins where protease cleavage sites are either infrequent or absent. By developing methods to purify hydrophobic proteins in organic solvents and by fragmenting ions of these proteins by collision induced dissociation with argon, we have shown that partial sequences of many membrane proteins can be deduced easily by manual inspection. The spectra from small proteolipids (1–4 transmembrane α-helices) are dominated usually by fragment ions arising from internal amide cleavages, from which internal sequences can be obtained, whereas the spectra from larger membrane proteins (5–18 transmembrane α-helices) often contain fragment ions from N- and/or C-terminal parts yielding sequences in those regions. With these techniques, we have, for example, identified an abundant protein of unknown function from inner membranes of mitochondria that to our knowledge has escaped detection in proteomic studies, and we have produced sequences from 10 of 13 proteins encoded in mitochondrial DNA. They include the ND6 subunit of complex I, the last of its 45 subunits to be analyzed. The procedures have the potential to be developed further, for example by using newly introduced methods for protein ion dissociation to induce fragmentation of internal regions of large membrane proteins, which may remain partially folded in the gas phase. PMID:17720804

  14. Protein-Protein Docking in Drug Design and Discovery.

    Science.gov (United States)

    Kaczor, Agnieszka A; Bartuzi, Damian; Stępniewski, Tomasz Maciej; Matosiuk, Dariusz; Selent, Jana

    2018-01-01

    Protein-protein interactions (PPIs) are responsible for a number of key physiological processes in the living cells and underlie the pathomechanism of many diseases. Nowadays, along with the concept of so-called "hot spots" in protein-protein interactions, which are well-defined interface regions responsible for most of the binding energy, these interfaces can be targeted with modulators. In order to apply structure-based design techniques to design PPIs modulators, a three-dimensional structure of protein complex has to be available. In this context in silico approaches, in particular protein-protein docking, are a valuable complement to experimental methods for elucidating 3D structure of protein complexes. Protein-protein docking is easy to use and does not require significant computer resources and time (in contrast to molecular dynamics) and it results in 3D structure of a protein complex (in contrast to sequence-based methods of predicting binding interfaces). However, protein-protein docking cannot address all the aspects of protein dynamics, in particular the global conformational changes during protein complex formation. In spite of this fact, protein-protein docking is widely used to model complexes of water-soluble proteins and less commonly to predict structures of transmembrane protein assemblies, including dimers and oligomers of G protein-coupled receptors (GPCRs). In this chapter we review the principles of protein-protein docking, available algorithms and software and discuss the recent examples, benefits, and drawbacks of protein-protein docking application to water-soluble proteins, membrane anchoring and transmembrane proteins, including GPCRs.

  15. Fc-fusion Proteins in Therapy: An Updated View.

    Science.gov (United States)

    Jafari, Reza; Zolbanin, Naime M; Rafatpanah, Houshang; Majidi, Jafar; Kazemi, Tohid

    2017-01-01

    Fc-fusion proteins are composed of Fc region of IgG antibody (Hinge-CH2-CH3) and a desired linked protein. Fc region of Fc-fusion proteins can bind to neonatal Fc receptor (FcRn) thereby rescuing it from degradation. The first therapeutic Fc-fusion protein was introduced for the treatment of AIDS. The molecular designing is the first stage in production of Fc-fusion proteins. The amino acid residues in the Fc region and linked protein are very important in the bioactivity and affinity of the fusion proteins. Although, therapeutic monoclonal antibodies are the top selling biologics but the application of therapeutic Fc-fusion proteins in clinic is in progress and among these medications Etanercept is the most effective in therapy. At present, eleven Fc-fusion proteins have been approved by FDA. There are novel Fc-fusion proteins which are in pre-clinical and clinical development. In this article, we review the molecular and biological characteristics of Fc-fusion proteins and then further discuss the features of novel therapeutic Fc-fusion proteins. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Binary classification of protein molecules into intrinsically disordered and ordered segments

    Directory of Open Access Journals (Sweden)

    Gojobori Takashi

    2011-06-01

    Full Text Available Abstract Background Although structural domains in proteins (SDs are important, half of the regions in the human proteome are currently left with no SD assignments. These unassigned regions consist not only of novel SDs, but also of intrinsically disordered (ID regions since proteins, especially those in eukaryotes, generally contain a significant fraction of ID regions. As ID regions can be inferred from amino acid sequences, a method that combines SD and ID region assignments can determine the fractions of SDs and ID regions in any proteome. Results In contrast to other available ID prediction programs that merely identify likely ID regions, the DICHOT system we previously developed classifies the entire protein sequence into SDs and ID regions. Application of DICHOT to the human proteome revealed that residue-wise ID regions constitute 35%, SDs with similarity to PDB structures comprise 52%, while SDs with no similarity to PDB structures account for the remaining 13%. The last group consists of novel structural domains, termed cryptic domains, which serve as good targets of structural genomics. The DICHOT method applied to the proteomes of other model organisms indicated that eukaryotes generally have high ID contents, while prokaryotes do not. In human proteins, ID contents differ among subcellular localizations: nuclear proteins had the highest residue-wise ID fraction (47%, while mitochondrial proteins exhibited the lowest (13%. Phosphorylation and O-linked glycosylation sites were found to be located preferentially in ID regions. As O-linked glycans are attached to residues in the extracellular regions of proteins, the modification is likely to protect the ID regions from proteolytic cleavage in the extracellular environment. Alternative splicing events tend to occur more frequently in ID regions. We interpret this as evidence that natural selection is operating at the protein level in alternative splicing. Conclusions We classified

  17. Protection against Syphilis Correlates with Specificity of Antibodies to the Variable Regions of Treponema pallidum Repeat Protein K

    OpenAIRE

    Morgan, Cecilia A.; Lukehart, Sheila A.; Van Voorhis, Wesley C.

    2003-01-01

    Syphilis has been recognized as a disease since the late 1400s, yet there is no practical vaccine available. One impediment to the development of a vaccine is the lack of understanding of multiple reinfections in humans despite the development of robust immune responses during the first episode. It has been shown that the Treponema pallidum repeat protein K (TprK) differs in seven discrete variable (V) regions in isolates and that the antibody response during infection is directed to these V ...

  18. Canine serum protein patterns using high-resolution electrophoresis (HRE).

    Science.gov (United States)

    Abate, O; Zanatta, R; Malisano, T; Dotta, U

    2000-03-01

    Serum protein values were determined in 26 healthy dogs using agarose gel electrophoresis (SPE), splitting the electrophoretic separation into six regions: albumin, alpha(1), alpha(2), beta(1), beta(2)and gamma globulins. High-resolution electrophoresis (HRE) was used to separate single proteins. Serum proteins from dogs (26 healthy and 20 affected by various diseases) were then characterized by electrophoretic immunofixation (IFE) and Sudan black staining on HRE film. Haemoglobin and normal canine plasma and serum were used to identify haptoglobin and fibrinogen, respectively. In the standard pattern, determined by HRE, the following proteins were identified: albumin, alpha(1)-lipoprotein (alpha(1)-region), haptoglobin and alpha(2)-macroglobulin (alpha(2)-region), beta -lipoprotein and C3 (beta(1)-region), transferrin and IgM (beta(2)-region), IgG (mostly in gamma -region and partly in beta(2)-region). The HRE pattern shown by healthy dogs could be compared with those of dogs affected by various diseases to obtain clinical information. Copyright 2000 Harcourt Publishers Ltd.

  19. Sequence of the amino-terminal region of rat liver ribosomal proteins S4, S6, S8, L6, L7a, L18, L27, L30, L37, L37a, and L39.

    Science.gov (United States)

    Wittmann-Liebold, B; Geissler, A W; Lin, A; Wool, I G

    1979-01-01

    The sequence of the amino-terminal region of eleven rat liver ribosomal proteins--S4, S6, S8, L6, L7a, L18, L27, L30, L37a, and L39--was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.

  20. Bioinformatic Analysis of Deleterious Non-Synonymous Single Nucleotide Polymorphisms (nsSNPs in the Coding Regions of Human Prion Protein Gene (PRNP

    Directory of Open Access Journals (Sweden)

    Kourosh Bamdad

    2016-12-01

    Full Text Available Background & Objective: Single nucleotide polymorphisms are the cause of genetic variation to living organisms. Single nucleotide polymorphisms alter residues in the protein sequence. In this investigation, the relationship between prion protein gene polymorphisms and its relevance to pathogenicity was studied. Material & Method: Amino acid sequence of the main isoform from the human prion protein gene (PRNP was extracted from UniProt database and evaluated by FoldAmyloid and AmylPred servers. All non-synonymous single nucleotide polymorphisms (nsSNPs from SNP database (dbSNP were further analyzed by bioinformatics servers including SIFT, PolyPhen-2, I-Mutant-3.0, PANTHER, SNPs & GO, PHD-SNP, Meta-SNP, and MutPred to determine the most damaging nsSNPs. Results: The results of the first structure analyses by FoldAmyloid and AmylPerd servers implied that regions including 5-15, 174-178, 180-184, 211-217, and 240-252 were the most sensitive parts of the protein sequence to amyloidosis. Screening all nsSNPs of the main protein isoform using bioinformatic servers revealed that substitution of Aspartic acid with Valine at position 178 (ID code: rs11538766 was the most deleterious nsSNP in the protein structure. Conclusion:  Substitution of the Aspartic acid with Valine at position 178 (D178V was the most pathogenic mutation in the human prion protein gene. Analyses from the MutPred server also showed that beta-sheets’ increment in the secondary structure was the main reason behind the molecular mechanism of the prion protein aggregation.

  1. Understanding Protein-Protein Interactions Using Local Structural Features

    DEFF Research Database (Denmark)

    Planas-Iglesias, Joan; Bonet, Jaume; García-García, Javier

    2013-01-01

    Protein-protein interactions (PPIs) play a relevant role among the different functions of a cell. Identifying the PPI network of a given organism (interactome) is useful to shed light on the key molecular mechanisms within a biological system. In this work, we show the role of structural features...... interacting and non-interacting protein pairs to classify the structural features that sustain the binding (or non-binding) behavior. Our study indicates that not only the interacting region but also the rest of the protein surface are important for the interaction fate. The interpretation...... to score the likelihood of the interaction between two proteins and to develop a method for the prediction of PPIs. We have tested our method on several sets with unbalanced ratios of interactions and non-interactions to simulate real conditions, obtaining accuracies higher than 25% in the most unfavorable...

  2. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions.

    Science.gov (United States)

    Yamaguchi, Yoshitaka; Miyata, Hironori; Uchiyama, Keiji; Ootsuyama, Akira; Inubushi, Sachiko; Mori, Tsuyoshi; Muramatsu, Naomi; Katamine, Shigeru; Sakaguchi, Suehiro

    2012-01-01

    Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

  3. Using evolutionary tools to refine the new hypervariable region 3 within the envelope 2 protein of hepatitis C virus.

    Science.gov (United States)

    Torres-Puente, Manuela; Cuevas, José M; Jiménez-Hernández, Nuria; Bracho, María Alma; García-Robles, Inmaculada; Wrobel, Borys; Carnicer, Fernando; del Olmo, Juan; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-01-01

    The envelope 2 protein of hepatitis C virus (HCV) presents three hypervariable regions, named HVR1, HVR2 and HVR3, in which the presence of antigenic sites has been described. Genetic variability in these regions may reflect the generation of escape mutants as a consequence of the immune response. Therefore, these regions would tend to accumulate amino acid changes along the infection process, an effect that could be accelerated by antiviral treatments. In this study, we have analyzed the E1-E2 region of 23 HCV patients non-responders to antiviral treatment, 7 of which were infected with subtype 1a, 15 with subtype 1b, and 1 with a new HCV-1 subtype, before and after 6 and/or 12 months of peg-interferon+ribavirin treatment. We have sequenced about 100 clones from each sample, analyzing a total of 4906 sequences. A detailed analysis of the evolutionary forces acting along the genome region studied confirmed the existence of the three hypervariable regions, characterized by significant changes in amino acid composition between samples taken at different times from the same patient and a high number of sites evolving under positive selection. Moreover, for the recently described HVR3, our results suggest that its location could be restricted to residues 434-450, instead of the originally postulated 431-466.

  4. Interplay between chaperones and protein disorder promotes the evolution of protein networks.

    Directory of Open Access Journals (Sweden)

    Sebastian Pechmann

    2014-06-01

    Full Text Available Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the

  5. Cytoskeletal protein translation and expression in the rat brain are stressor-dependent and region-specific.

    Directory of Open Access Journals (Sweden)

    Petra Sántha

    Full Text Available Stress is an integral component of life that can sometimes cause a critical overload, depending on the qualitative and quantitative natures of the stressors. The involvement of actin, the predominant component of dendritic integrity, is a plausible candidate factor in stress-induced neuronal cytoskeletal changes. The major aim of this study was to compare the effects of three different stress conditions on the transcription and translation of actin-related cytoskeletal genes in the rat brain. Male Wistar rats were exposed to one or other of the frequently used models of physical stress, i.e. electric foot shock stress (EFSS, forced swimming stress (FSS, or psychosocial stress (PSS for periods of 3, 7, 14, or 21 days. The relative mRNA and protein expressions of β-actin, cofilin and mitogen-activated protein kinase 1 (MAPK-1 were determined by qRT- PCR and western blotting from hippocampus and frontal cortex samples. Stressor-specific alterations in both β-actin and cofilin expression levels were seen after stress. These alterations were most pronounced in response to EFSS, and exhibited a U-shaped time course. FSS led to a significant β-actin mRNA expression elevation in the hippocampus and the frontal cortex after 3 and 7 days, respectively, without any subsequent change. PSS did not cause any change in β-actin or cofilin mRNA or protein expression in the examined brain regions. EFSS, FSS and PSS had no effect on the expression of MAPK-1 mRNA at any tested time point. These findings indicate a very delicate, stress type-dependent regulation of neuronal cytoskeletal components in the rat hippocampus and frontal cortex.

  6. C-terminal region of MAP7 domain containing protein 3 (MAP7D3 promotes microtubule polymerization by binding at the C-terminal tail of tubulin.

    Directory of Open Access Journals (Sweden)

    Saroj Yadav

    Full Text Available MAP7 domain containing protein 3 (MAP7D3, a newly identified microtubule associated protein, has been shown to promote microtubule assembly and stability. Its microtubule binding region has been reported to consist of two coiled coil motifs located at the N-terminus. It possesses a MAP7 domain near the C-terminus and belongs to the microtubule associated protein 7 (MAP7 family. The MAP7 domain of MAP7 protein has been shown to bind to kinesin-1; however, the role of MAP7 domain in MAP7D3 remains unknown. Based on the bioinformatics analysis of MAP7D3, we hypothesized that the MAP7 domain of MAP7D3 may have microtubule binding activity. Indeed, we found that MAP7 domain of MAP7D3 bound to microtubules as well as enhanced the assembly of microtubules in vitro. Interestingly, a longer fragment MDCT that contained the MAP7 domain (MD with the C-terminal tail (CT of the protein promoted microtubule polymerization to a greater extent than MD and CT individually. MDCT stabilized microtubules against dilution induced disassembly. MDCT bound to reconstituted microtubules with an apparent dissociation constant of 3.0 ± 0.5 µM. An immunostaining experiment showed that MDCT localized along the length of the preassembled microtubules. Competition experiments with tau indicated that MDCT shares its binding site on microtubules with tau. Further, we present evidence indicating that MDCT binds to the C-terminal tail of tubulin. In addition, MDCT could bind to tubulin in HeLa cell extract. Here, we report a microtubule binding region in the C-terminal region of MAP7D3 that may have a role in regulating microtubule assembly dynamics.

  7. Pseudo-polyprotein translated from the full-length ORF1 of capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication.

    Science.gov (United States)

    Hirata, Hisae; Yamaji, Yasuyuki; Komatsu, Ken; Kagiwada, Satoshi; Oshima, Kenro; Okano, Yukari; Takahashi, Shuichiro; Ugaki, Masashi; Namba, Shigetou

    2010-09-01

    The first open-reading frame (ORF) of the genus Capillovirus encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP), while other viruses in the family Flexiviridae have separate ORFs encoding these proteins. To investigate the role of the full-length ORF1 polyprotein of capillovirus, we generated truncation mutants of ORF1 of apple stem grooving virus by inserting a termination codon into the variable region located between the putative Rep- and CP-coding regions. These mutants were capable of systemic infection, although their pathogenicity was attenuated. In vitro translation of ORF1 produced both the full-length polyprotein and the smaller Rep protein. The results of in vivo reporter assays suggested that the mechanism of this early termination is a ribosomal -1 frame-shift occurring downstream from the conserved Rep domains. The mechanism of capillovirus gene expression and the very close evolutionary relationship between the genera Capillovirus and Trichovirus are discussed. Copyright (c) 2010. Published by Elsevier B.V.

  8. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein

    Science.gov (United States)

    Cloix, Catherine; Kaiserli, Eirini; Heilmann, Monika; Baxter, Katherine J.; Brown, Bobby A.; O’Hara, Andrew; Smith, Brian O.; Christie, John M.; Jenkins, Gareth I.

    2012-01-01

    UV-B light initiates photomorphogenic responses in plants. Arabidopsis UV RESISTANCE LOCUS8 (UVR8) specifically mediates these responses by functioning as a UV-B photoreceptor. UV-B exposure converts UVR8 from a dimer to a monomer, stimulates the rapid accumulation of UVR8 in the nucleus, where it binds to chromatin, and induces interaction of UVR8 with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 to control photomorphogenic UV-B responses. Although the crystal structure of UVR8 reveals the basis of photoreception, it does not show how UVR8 initiates signaling through interaction with COP1. Here we report that a region of 27 amino acids from the C terminus of UVR8 (C27) mediates the interaction with COP1. The C27 region is necessary for UVR8 function in the regulation of gene expression and hypocotyl growth suppression in Arabidopsis. However, UVR8 lacking C27 still undergoes UV-B–induced monomerization in both yeast and plant protein extracts, accumulates in the nucleus in response to UV-B, and interacts with chromatin at the UVR8-regulated ELONGATED HYPOCOTYL5 (HY5) gene. The UV-B–dependent interaction of UVR8 and COP1 is reproduced in yeast cells and we show that C27 is both necessary and sufficient for the interaction of UVR8 with the WD40 domain of COP1. Furthermore, we show that C27 interacts in yeast with the REPRESSOR OF UV-B PHOTOMORPHOGENESIS proteins, RUP1 and RUP2, which are negative regulators of UVR8 function. Hence the C27 region has a key role in UVR8 function. PMID:22988111

  9. Computational design of protein interactions: designing proteins that neutralize influenza by inhibiting its hemagglutinin surface protein

    Science.gov (United States)

    Fleishman, Sarel

    2012-02-01

    Molecular recognition underlies all life processes. Design of interactions not seen in nature is a test of our understanding of molecular recognition and could unlock the vast potential of subtle control over molecular interaction networks, allowing the design of novel diagnostics and therapeutics for basic and applied research. We developed the first general method for designing protein interactions. The method starts by computing a region of high affinity interactions between dismembered amino acid residues and the target surface and then identifying proteins that can harbor these residues. Designs are tested experimentally for binding the target surface and successful ones are affinity matured using yeast cell surface display. Applied to the conserved stem region of influenza hemagglutinin we designed two unrelated proteins that, following affinity maturation, bound hemagglutinin at subnanomolar dissociation constants. Co-crystal structures of hemagglutinin bound to the two designed binders were within 1Angstrom RMSd of their models, validating the accuracy of the design strategy. One of the designed proteins inhibits the conformational changes that underlie hemagglutinin's cell-invasion functions and blocks virus infectivity in cell culture, suggesting that such proteins may in future serve as diagnostics and antivirals against a wide range of pathogenic influenza strains. We have used this method to obtain experimentally validated binders of several other target proteins, demonstrating the generality of the approach. We discuss the combination of modeling and high-throughput characterization of design variants which has been key to the success of this approach, as well as how we have used the data obtained in this project to enhance our understanding of molecular recognition. References: Science 332:816 JMB, in press Protein Sci 20:753

  10. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Directory of Open Access Journals (Sweden)

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  11. CORAL: aligning conserved core regions across domain families.

    Science.gov (United States)

    Fong, Jessica H; Marchler-Bauer, Aron

    2009-08-01

    Homologous protein families share highly conserved sequence and structure regions that are frequent targets for comparative analysis of related proteins and families. Many protein families, such as the curated domain families in the Conserved Domain Database (CDD), exhibit similar structural cores. To improve accuracy in aligning such protein families, we propose a profile-profile method CORAL that aligns individual core regions as gap-free units. CORAL computes optimal local alignment of two profiles with heuristics to preserve continuity within core regions. We benchmarked its performance on curated domains in CDD, which have pre-defined core regions, against COMPASS, HHalign and PSI-BLAST, using structure superpositions and comprehensive curator-optimized alignments as standards of truth. CORAL improves alignment accuracy on core regions over general profile methods, returning a balanced score of 0.57 for over 80% of all domain families in CDD, compared with the highest balanced score of 0.45 from other methods. Further, CORAL provides E-values to aid in detecting homologous protein families and, by respecting block boundaries, produces alignments with improved 'readability' that facilitate manual refinement. CORAL will be included in future versions of the NCBI Cn3D/CDTree software, which can be downloaded at http://www.ncbi.nlm.nih.gov/Structure/cdtree/cdtree.shtml. Supplementary data are available at Bioinformatics online.

  12. Force Spectroscopy of the Plasmodium falciparum Vaccine Candidate Circumsporozoite Protein Suggests a Mechanically Pliable Repeat Region.

    Science.gov (United States)

    Patra, Aditya Prasad; Sharma, Shobhona; Ainavarapu, Sri Rama Koti

    2017-02-10

    The most effective vaccine candidate of malaria is based on the Plasmodium falciparum circumsporozoite protein (CSP), a major surface protein implicated in the structural strength, motility, and immune evasion properties of the infective sporozoites. It is suspected that reversible conformational changes of CSP are required for infection of the mammalian host, but the detailed structure and dynamic properties of CSP remain incompletely understood, limiting our understanding of its function in the infection. Here, we report the structural and mechanical properties of the CSP studied using single-molecule force spectroscopy on several constructs, one including the central region of CSP, which is rich in NANP amino acid repeats (CSP rep ), and a second consisting of a near full-length sequence without the signal and anchor hydrophobic domains (CSP ΔHP ). Our results show that the CSP rep is heterogeneous, with 40% of molecules requiring virtually no mechanical force to unfold (<10 piconewtons (pN)), suggesting that these molecules are mechanically compliant and perhaps act as entropic springs, whereas the remaining 60% are partially structured with low mechanical resistance (∼70 pN). CSP ΔHP having multiple force peaks suggests specifically folded domains, with two major populations possibly indicating the open and collapsed forms. Our findings suggest that the overall low mechanical resistance of the repeat region, exposed on the outer surface of the sporozoites, combined with the flexible full-length conformations of CSP, may provide the sporozoites not only with immune evasion properties, but also with lubricating capacity required during its navigation through the mosquito and vertebrate host tissues. We anticipate that these findings would further assist in the design and development of future malarial vaccines. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. HotRegion: a database of predicted hot spot clusters.

    Science.gov (United States)

    Cukuroglu, Engin; Gursoy, Attila; Keskin, Ozlem

    2012-01-01

    Hot spots are energetically important residues at protein interfaces and they are not randomly distributed across the interface but rather clustered. These clustered hot spots form hot regions. Hot regions are important for the stability of protein complexes, as well as providing specificity to binding sites. We propose a database called HotRegion, which provides the hot region information of the interfaces by using predicted hot spot residues, and structural properties of these interface residues such as pair potentials of interface residues, accessible surface area (ASA) and relative ASA values of interface residues of both monomer and complex forms of proteins. Also, the 3D visualization of the interface and interactions among hot spot residues are provided. HotRegion is accessible at http://prism.ccbb.ku.edu.tr/hotregion.

  14. Identification of the antigenic region of Neospora caninum dense granule protein 7 using ELISA.

    Science.gov (United States)

    Abdelbaky, Hanan H; Fereig, Ragab M; Nishikawa, Yoshifumi

    2018-06-26

    Dense granule protein 7 (NcGRA7) is a potent diagnostic antigen of Neospora caninum. Some studies have reported on the difficult expression, low yield, and variable degree of solubility of recombinant NcGRA7. We aimed to unravel the possible causes for these issues and tested NcGRA7 antigenicity in enzyme linked immunosorbent assays (ELISAs). The NcGRA7 coding sequence (217 amino acids) was split into five amino acid regions: NcGRA7m (27-217), NcGRA7m3 (27-160), NcGRA7m4 (27-135), NcGRA7m5 (161-190), and NcGRA7m6 (188-217). Three fragments, NcGRA7m, NcGRA7m3 and NcGRA7m4, exhibited high antigenic properties when tested against experimentally-infected mice and dog sera by ELISA. High levels of IgG2 antibodies against NcGRA7m were observed in field dog sera. In experimentally and naturally-infected cattle, the N. caninum-specific sera only reacted with NcGRA7m, indicating that this antigenic region differs among the three animal species. This study presents valuable information about the antigenic properties and topology of NcGRA7, and highlights its suitability for diagnostic purposes. Copyright © 2018. Published by Elsevier B.V.

  15. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  16. Specific protein supplementation using soya, casein or whey differentially affects regional gut growth and luminal growth factor bioactivity in rats; implications for the treatment of gut injury and stimulating repair.

    Science.gov (United States)

    Marchbank, Tania; Mandir, Nikki; Calnan, Denis; Goodlad, Robert A; Podas, Theo; Playford, Raymond J

    2018-01-24

    Modulation of regional growth within specific segments of the bowel may have clinical value for several gastrointestinal conditions. We therefore examined the effects of different dietary protein sources on regional gut growth and luminal growth factor bioactivity as potential therapies. Rats were fed for 14 days on isonitrogenous and isocaloric diets comprising elemental diet (ED) alone (which is known to cause gut atrophy), ED supplemented with casein or whey or a soya protein-rich feed. Effects on regional gut growth and intraluminal growth factor activity were then determined. Despite calorie intake being similar in all groups, soya rich feed caused 20% extra total body weight gain. Stomach weight was highest on soya and casein diets. Soya enhanced diet caused greatest increase in small intestinal weight and preserved luminal growth factor activity at levels sufficient to increase proliferation in vitro. Regional small intestinal proliferation was highest in proximal segment in ED fed animals whereas distal small intestine proliferation was greater in soya fed animals. Colonic weight and proliferation throughout the colon was higher in animals receiving soya or whey supplemented feeds. We conclude that specific protein supplementation with either soya, casein or whey may be beneficial to rest or increase growth in different regions of the bowel through mechanisms that include differentially affecting luminal growth factor bioactivity. These results have implications for targeting specific regions of the bowel for conditions such as Crohn's disease and chemotherapy.

  17. The dehydrogenase region of the NADPH oxidase component Nox2 acts as a protein disulfide isomerase (PDI) resembling PDIA3 with a role in the binding of the activator protein p67phox

    Science.gov (United States)

    Bechor, Edna; Dahan, Iris; Fradin, Tanya; Berdichevsky, Yevgeny; Zahavi, Anat; Rafalowski, Meirav; Federman-Gross, Aya; Pick, Edgar

    2015-02-01

    The superoxide (O2.-)-generating NADPH oxidase of phagocytes consists of a membrane component, cytochrome b558 (a heterodimer of Nox2 and p22phox), and four cytosolic components, p47phox, p67phox, p40phox, and Rac. The catalytic component, responsible for O2.- generation, is Nox2. It is activated by the interaction of the dehydrogenase region (DHR) of Nox2 with the cytosolic components, principally with p67phox. Using a peptide-protein binding assay, we found that Nox2 peptides containing a 369CysGlyCys371 triad (CGC) bound p67phox with high affinity, dependent upon the establishment of a disulfide bond between the two cysteines. Serially truncated recombinant Nox2 DHR proteins bound p67phox only when they comprised the CGC triad. CGC resembles the catalytic motif (CGHC) of protein disulfide isomerases (PDIs). This led to the hypothesis that Nox2 establishes disulfide bonds with p67phox via a thiol-dilsulfide exchange reaction and, thus, functions as a PDI. Evidence for this was provided by the following: 1. Recombinant Nox2 protein, which contained the CGC triad, exhibited PDI-like disulfide reductase activity; 2. Truncation of Nox2 C-terminal to the CGC triad or mutating C369 and C371 to R, resulted in loss of PDI activity; 3. Comparison of the sequence of the DHR of Nox2 with PDI family members revealed three small regions of homology with PDIA3; 4. Two monoclonal anti-Nox2 antibodies, with epitopes corresponding to regions of Nox2/PDIA3 homology, reacted with PDIA3 but not with PDIA1; 5. A polyclonal anti-PDIA3 (but not an anti-PDIA1) antibody reacted with Nox2; 6. p67phox, in which all cysteines were mutated to serines, lost its ability to bind to a Nox2 peptide containing the CGC triad and had an impaired capacity to support oxidase activity in vitro. We propose a model of oxidase assembly in which binding of p67phox to Nox2 via disulfide bonds, by virtue of the intrinsic PDI activity of Nox2, stabilizes the primary interaction between the two components.

  18. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus' molecule 1 protein.

    Science.gov (United States)

    Petty, Tom J; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D; Thore, Stéphane

    2010-08-01

    Of the known epigenetic control regulators found in plants, the Morpheus' molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to approximately 3.2 A resolution. They belonged to the trigonal space group P3(1)21 (or P3(2)21), with unit-cell parameters a=85.64, c=292.74 A. Structure determination is ongoing.

  19. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein

    Science.gov (United States)

    Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane

    2010-01-01

    Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3121 (or P3221), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing. PMID:20693667

  20. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein.

    Science.gov (United States)

    Farci, P; Shimoda, A; Wong, D; Cabezon, T; De Gioannis, D; Strazzera, A; Shimizu, Y; Shapiro, M; Alter, H J; Purcell, R H

    1996-12-24

    The identification of the neutralization domains of hepatitis C virus (HCV) is essential for the development of an effective vaccine. Here, we show that the hypervariable region 1 (HVR1) of the envelope 2 (E2) protein is a critical neutralization domain of HCV. Neutralization of HCV in vitro was attempted with a rabbit hyperimmune serum raised against a homologous synthetic peptide derived from the HVR1 of the E2 protein, and the residual infectivity was evaluated by inoculation of HCV-seronegative chimpanzees. The source of HCV was plasma obtained from a patient (H) during the acute phase of posttransfusion non-A, non-B hepatitis, which had been titered for infectivity in chimpanzees. The anti-HVR1 antiserum induced protection against homologous HCV infection in chimpanzees, but not against the emergence of neutralization escape mutants that were found to be already present in the complex viral quasispecies of the inoculum. The finding that HVR1 can elicit protective immunity opens new perspectives for the development of effective preventive strategies. However, the identification of the most variable region of HCV as a critical neutralization domain poses a major challenge for the development of a broadly reactive vaccine against HCV.

  1. Expression, crystallization and preliminary X-ray diffraction analysis of the CMM2 region of the Arabidopsis thaliana Morpheus’ molecule 1 protein

    International Nuclear Information System (INIS)

    Petty, Tom J.; Nishimura, Taisuke; Emamzadah, Soheila; Gabus, Caroline; Paszkowski, Jerzy; Halazonetis, Thanos D.; Thore, Stéphane

    2010-01-01

    In order to investigate its function in transcriptional gene silencing, the highly conserved motif 2 from A. thaliana Morpheus’ molecule 1 protein was expressed, purified and crystallized. X-ray diffraction analysis is reported to a resolution of 3.2 Å. Of the known epigenetic control regulators found in plants, the Morpheus’ molecule 1 (MOM1) protein is atypical in that the deletion of MOM1 does not affect the level of epigenetic marks controlling the transcriptional status of the genome. A short 197-amino-acid fragment of the MOM1 protein sequence can complement MOM1 deletion when coupled to a nuclear localization signal, suggesting that this region contains a functional domain that compensates for the loss of the full-length protein. Numerous constructs centred on the highly conserved MOM1 motif 2 (CMM2) present in these 197 residues have been generated and expressed in Escherichia coli. Following purification and crystallization screening, diamond-shaped single crystals were obtained that diffracted to ∼3.2 Å resolution. They belonged to the trigonal space group P3 1 21 (or P3 2 21), with unit-cell parameters a = 85.64, c = 292.74 Å. Structure determination is ongoing

  2. Immunogenicity of Recombinant Proteins Consisting of Plasmodium vivax Circumsporozoite Protein Allelic Variant-Derived Epitopes Fused with Salmonella enterica Serovar Typhimurium Flagellin

    Science.gov (United States)

    Leal, Monica Teixeira Andrade; Camacho, Ariane Guglielmi Ariza; Teixeira, Laís Helena; Bargieri, Daniel Youssef; Soares, Irene Silva; Tararam, Cibele Aparecida

    2013-01-01

    A Plasmodium falciparum circumsporozoite protein (CSP)-based recombinant fusion vaccine is the first malaria vaccine to reach phase III clinical trials. Resistance to infection correlated with the production of antibodies to the immunodominant central repeat region of the CSP. In contrast to P. falciparum, vaccine development against the CSP of Plasmodium vivax malaria is far behind. Based on this gap in our knowledge, we generated a recombinant chimeric protein containing the immunodominant central repeat regions of the P. vivax CSP fused to Salmonella enterica serovar Typhimurium-derived flagellin (FliC) to activate the innate immune system. The recombinant proteins that were generated contained repeat regions derived from each of the 3 different allelic variants of the P. vivax CSP or a fusion of regions derived from each of the 3 allelic forms. Mice were subcutaneously immunized with the fusion proteins alone or in combination with the Toll-like receptor 3 (TLR-3) agonist poly(I·C), and the anti-CSP serum IgG response was measured. Immunization with a mixture of the 3 recombinant proteins, each containing immunodominant epitopes derived from a single allelic variant, rather than a single recombinant protein carrying a fusion of regions derived from each of 3 allelic forms elicited a stronger immune response. This response was independent of TLR-4 but required TLR-5/MyD88 activation. Antibody titers significantly increased when poly(I·C) was used as an adjuvant with a mixture of the 3 recombinant proteins. These recombinant fusion proteins are novel candidates for the development of an effective malaria vaccine against P. vivax. PMID:23863502

  3. A systematic evaluation of protein kinase a-a-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P|info:eu-repo/dai/nl/341566551; van der Heyden, Marcel A G; Kok, Bart; Heck, Albert J R|info:eu-repo/dai/nl/105189332; Scholten, Arjen|info:eu-repo/dai/nl/313939780

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  4. A systematic evaluation of protein kinase A-A-kinase anchoring protein interaction motifs

    NARCIS (Netherlands)

    Burgers, Pepijn P; van der Heyden, MAG; Kok, Bart; Heck, Albert J R; Scholten, Arjen

    2015-01-01

    Protein kinase A (PKA) in vertebrates is localized to specific locations in the cell via A-kinase anchoring proteins (AKAPs). The regulatory subunits of the four PKA isoforms (RIα, RIβ, RIIα, and RIIβ) each form a homodimer, and their dimerization domain interacts with a small helical region present

  5. Quantifying the molecular origins of opposite solvent effects on protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Vincent Vagenende

    Full Text Available Although the nature of solvent-protein interactions is generally weak and non-specific, addition of cosolvents such as denaturants and osmolytes strengthens protein-protein interactions for some proteins, whereas it weakens protein-protein interactions for others. This is exemplified by the puzzling observation that addition of glycerol oppositely affects the association constants of two antibodies, D1.3 and D44.1, with lysozyme. To resolve this conundrum, we develop a methodology based on the thermodynamic principles of preferential interaction theory and the quantitative characterization of local protein solvation from molecular dynamics simulations. We find that changes of preferential solvent interactions at the protein-protein interface quantitatively account for the opposite effects of glycerol on the antibody-antigen association constants. Detailed characterization of local protein solvation in the free and associated protein states reveals how opposite solvent effects on protein-protein interactions depend on the extent of dewetting of the protein-protein contact region and on structural changes that alter cooperative solvent-protein interactions at the periphery of the protein-protein interface. These results demonstrate the direct relationship between macroscopic solvent effects on protein-protein interactions and atom-scale solvent-protein interactions, and establish a general methodology for predicting and understanding solvent effects on protein-protein interactions in diverse biological environments.

  6. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    Science.gov (United States)

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  7. The Inner Nuclear Membrane Protein Nemp1 Is a New Type of RanGTP-Binding Protein in Eukaryotes.

    Directory of Open Access Journals (Sweden)

    Takashi Shibano

    Full Text Available The inner nuclear membrane (INM protein Nemp1/TMEM194A has previously been suggested to be involved in eye development in Xenopus, and contains two evolutionarily conserved sequences in the transmembrane domains (TMs and the C-terminal region, named region A and region B, respectively. To elucidate the molecular nature of Nemp1, we analyzed its interacting proteins through those conserved regions. First, we found that Nemp1 interacts with itself and lamin through the TMs and region A, respectively. Colocalization of Nemp1 and lamin at the INM suggests that the interaction with lamin participates in the INM localization of Nemp1. Secondly, through yeast two-hybrid screening using region B as bait, we identified the small GTPase Ran as a probable Nemp1-binding partner. GST pulldown and co-immunoprecipitation assays using region B and Ran mutants revealed that region B binds directly to the GTP-bound Ran through its effector domain. Immunostaining experiments using transfected COS-7 cells revealed that full-length Nemp1 recruits Ran near the nuclear envelope, suggesting a role for Nemp1 in the accumulation of RanGTP at the nuclear periphery. At the neurula-to-tailbud stages of Xenopus embryos, nemp1 expression overlapped with ran in several regions including the eye vesicles. Co-knockdown using antisense morpholino oligos for nemp1 and ran caused reduction of cell densities and severe eye defects more strongly than either single knockdown alone, suggesting their functional interaction. Finally we show that Arabidopsis thaliana Nemp1-orthologous proteins interact with A. thaliana Ran, suggesting their evolutionally conserved physical and functional interactions possibly in basic cellular functions including nuclear transportation. Taken together, we conclude that Nemp1 represents a new type of RanGTP-binding protein.

  8. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor β in HEK293 cells

    International Nuclear Information System (INIS)

    Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon; Kim, Jongsun; Paik, Seung R.; Chung, Kwang Chul

    2008-01-01

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor β, (PPARβ). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPARβ in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPARβ. Furthermore, PPARβ also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2

  9. Proximal Region of the Gene Encoding Cytadherence-Related Protein Permits Molecular Typing of Mycoplasma genitalium Clinical Strains by PCR-Restriction Fragment Length Polymorphism

    Science.gov (United States)

    Musatovova, Oxana; Herrera, Caleb; Baseman, Joel B.

    2006-01-01

    Restriction fragment length polymorphism (RFLP) analysis of the PCR-amplified proximal region of the gene encoding cytadherence accessory protein P110 (MG192) revealed DNA sequence divergences among 54 Mycoplasma genitalium clinical strains isolated from the genitourinary tracts of women attending a sexually transmitted disease-related health clinic, plus one from the respiratory tract and one from synovial fluid. Seven of 56 (12.5%) strains exhibited RFLPs following digestion of the proximal region with restriction endonuclease MboI or RsaI, or both. No sequence variability was detected in the distal portion of the gene. PMID:16455921

  10. Did androgen-binding protein paralogs undergo neo- and/or Subfunctionalization as the Abp gene region expanded in the mouse genome?

    Science.gov (United States)

    Karn, Robert C; Chung, Amanda G; Laukaitis, Christina M

    2014-01-01

    The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.

  11. The BRO proteins of Bombyx mori nucleopolyhedrovirus are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

    International Nuclear Information System (INIS)

    Kang, Won Kyung; Kurihara, Masaaki; Matsumoto, Shogo

    2006-01-01

    The BRO proteins of Bombyx mori nucleopolyhedrovirus (BmNPV) display a biphasic pattern of intracellular localization during infection. At early times, they reside in the nucleus but then show both cytoplasmic and nuclear localization as the infection proceeds. Therefore, we examined the possibility of nuclear export. Using inhibitors, we reveal that BmNPV BRO proteins shuttle between the nucleus and cytoplasm. Mutations on the leucine-rich region of BRO proteins resulted in nuclear accumulation of transiently expressed proteins, suggesting that this region functions as a CRM1-dependent nuclear export signal (NES). On the contrary, mutant BRO-D with an altered NES did not show nuclear accumulation in infected cells, although protein production seemed to be reduced. RT-PCR analysis showed that the lower level of protein production was due to a reduction in RNA synthesis. Taken together, our results suggest that BRO proteins are nucleocytoplasmic shuttling proteins that utilize the CRM1-mediated nuclear export pathway

  12. Endogenous RGS14 is a cytoplasmic-nuclear shuttling protein that localizes to juxtanuclear membranes and chromatin-rich regions of the nucleus

    Science.gov (United States)

    Hepler, John R.

    2017-01-01

    Regulator of G protein signaling 14 (RGS14) is a multifunctional scaffolding protein that integrates G protein and H-Ras/MAPkinase signaling pathways to regulate synaptic plasticity important for hippocampal learning and memory. However, to date, little is known about the subcellular distribution and roles of endogenous RGS14 in a neuronal cell line. Most of what is known about RGS14 cellular behavior is based on studies of tagged, recombinant RGS14 ectopically overexpressed in unnatural host cells. Here, we report for the first time a comprehensive assessment of the subcellular distribution and dynamic localization of endogenous RGS14 in rat B35 neuroblastoma cells. Using confocal imaging and 3D-structured illumination microscopy, we find that endogenous RGS14 localizes to subcellular compartments not previously recognized in studies of recombinant RGS14. RGS14 localization was observed most notably at juxtanuclear membranes encircling the nucleus, at nuclear pore complexes (NPC) on both sides of the nuclear envelope and within intranuclear membrane channels, and within both chromatin-poor and chromatin-rich regions of the nucleus in a cell cycle-dependent manner. In addition, a subset of nuclear RGS14 localized adjacent to active RNA polymerase II. Endogenous RGS14 was absent from the plasma membrane in resting cells; however, the protein could be trafficked to the plasma membrane from juxtanuclear membranes in endosomes derived from ER/Golgi, following constitutive activation of endogenous RGS14 G protein binding partners using AlF4¯. Finally, our findings show that endogenous RGS14 behaves as a cytoplasmic-nuclear shuttling protein confirming what has been shown previously for recombinant RGS14. Taken together, the findings highlight possible cellular roles for RGS14 not previously recognized that are distinct from the regulation of conventional GPCR-G protein signaling, in particular undefined roles for RGS14 in the nucleus. PMID:28934222

  13. Mercury Exposure: Protein Biomarkers of Mercury Exposure in Jaraqui Fish from the Amazon Region.

    Science.gov (United States)

    Vieira, José Cavalcante Souza; Braga, Camila Pereira; de Oliveira, Grasieli; Padilha, Cilene do Carmo Federici; de Moraes, Paula Martin; Zara, Luiz Fabricio; Leite, Aline de Lima; Buzalaf, Marília Afonso Rabelo; Padilha, Pedro de Magalhães

    2018-05-01

    This study presents data on the extraction and characterization of proteins associated with mercury in the muscle and liver tissues of jaraqui (Semaprochilodus spp.) from the Madeira River in the Brazilian Amazon. Protein fractionation was carried out by two-dimensional electrophoresis (2D-PAGE). Mercury determination in tissues, pellets, and protein spots was performed by graphite furnace atomic absorption spectrometry (GFAAS). Proteins in the spots that showed mercury were characterized by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The highest mercury concentrations were found in liver tissues and pellets (426 ± 6 and 277 ± 4 μg kg -1 ), followed by muscle tissues and pellets (132 ± 4 and 86 ± 1 μg kg -1 , respectively). Mercury quantification in the protein spots allowed us to propose stoichiometric ratios in the range of 1-4 mercury atoms per molecule of protein in the protein spots. The proteins characterized in the analysis by ESI-MS/MS were keratin, type II cytoskeletal 8, parvalbumin beta, parvalbumin-2, ubiquitin-40S ribosomal S27a, 39S ribosomal protein L36 mitochondrial, hemoglobin subunit beta, and hemoglobin subunit beta-A/B. The results suggest that proteins such as ubiquitin-40S ribosomal protein S27a, which have specific domains, possibly zinc finger, can be used as biomarkers of mercury, whereas mercury and zinc present characteristics of soft acids.

  14. Investigating homology between proteins using energetic profiles.

    Science.gov (United States)

    Wrabl, James O; Hilser, Vincent J

    2010-03-26

    Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding) and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved local stability, may

  15. Investigating homology between proteins using energetic profiles.

    Directory of Open Access Journals (Sweden)

    James O Wrabl

    2010-03-01

    Full Text Available Accumulated experimental observations demonstrate that protein stability is often preserved upon conservative point mutation. In contrast, less is known about the effects of large sequence or structure changes on the stability of a particular fold. Almost completely unknown is the degree to which stability of different regions of a protein is generally preserved throughout evolution. In this work, these questions are addressed through thermodynamic analysis of a large representative sample of protein fold space based on remote, yet accepted, homology. More than 3,000 proteins were computationally analyzed using the structural-thermodynamic algorithm COREX/BEST. Estimated position-specific stability (i.e., local Gibbs free energy of folding and its component enthalpy and entropy were quantitatively compared between all proteins in the sample according to all-vs.-all pairwise structural alignment. It was discovered that the local stabilities of homologous pairs were significantly more correlated than those of non-homologous pairs, indicating that local stability was indeed generally conserved throughout evolution. However, the position-specific enthalpy and entropy underlying stability were less correlated, suggesting that the overall regional stability of a protein was more important than the thermodynamic mechanism utilized to achieve that stability. Finally, two different types of statistically exceptional evolutionary structure-thermodynamic relationships were noted. First, many homologous proteins contained regions of similar thermodynamics despite localized structure change, suggesting a thermodynamic mechanism enabling evolutionary fold change. Second, some homologous proteins with extremely similar structures nonetheless exhibited different local stabilities, a phenomenon previously observed experimentally in this laboratory. These two observations, in conjunction with the principal conclusion that homologous proteins generally conserved

  16. The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region

    Directory of Open Access Journals (Sweden)

    Jordi Pujols

    2018-05-01

    Full Text Available Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1 protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.

  17. The Disordered C-Terminus of Yeast Hsf1 Contains a Cryptic Low-Complexity Amyloidogenic Region.

    Science.gov (United States)

    Pujols, Jordi; Santos, Jaime; Pallarès, Irantzu; Ventura, Salvador

    2018-05-06

    Response mechanisms to external stress rely on networks of proteins able to activate specific signaling pathways to ensure the maintenance of cell proteostasis. Many of the proteins mediating this kind of response contain intrinsically disordered regions, which lack a defined structure, but still are able to interact with a wide range of clients that modulate the protein function. Some of these interactions are mediated by specific short sequences embedded in the longer disordered regions. Because the physicochemical properties that promote functional and abnormal interactions are similar, it has been shown that, in globular proteins, aggregation-prone and binding regions tend to overlap. It could be that the same principle applies for disordered protein regions. In this context, we show here that a predicted low-complexity interacting region in the disordered C-terminus of the stress response master regulator heat shock factor 1 (Hsf1) protein corresponds to a cryptic amyloid region able to self-assemble into fibrillary structures resembling those found in neurodegenerative disorders.

  18. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian

    2010-01-16

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  19. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.

    KAUST Repository

    Schaefer, Christian; Schlessinger, Avner; Rost, Burkhard

    2010-01-01

    MOTIVATION: The mutation of amino acids often impacts protein function and structure. Mutations without negative effect sustain evolutionary pressure. We study a particular aspect of structural robustness with respect to mutations: regular protein secondary structure and natively unstructured (intrinsically disordered) regions. Is the formation of regular secondary structure an intrinsic feature of amino acid sequences, or is it a feature that is lost upon mutation and is maintained by evolution against the odds? Similarly, is disorder an intrinsic sequence feature or is it difficult to maintain? To tackle these questions, we in silico mutated native protein sequences into random sequence-like ensembles and monitored the change in predicted secondary structure and disorder. RESULTS: We established that by our coarse-grained measures for change, predictions and observations were similar, suggesting that our results were not biased by prediction mistakes. Changes in secondary structure and disorder predictions were linearly proportional to the change in sequence. Surprisingly, neither the content nor the length distribution for the predicted secondary structure changed substantially. Regions with long disorder behaved differently in that significantly fewer such regions were predicted after a few mutation steps. Our findings suggest that the formation of regular secondary structure is an intrinsic feature of random amino acid sequences, while the formation of long-disordered regions is not an intrinsic feature of proteins with disordered regions. Put differently, helices and strands appear to be maintained easily by evolution, whereas maintaining disordered regions appears difficult. Neutral mutations with respect to disorder are therefore very unlikely.

  20. Cytoplasmic protein binding to highly conserved sequences in the 3' untranslated region of mouse protamine 2 mRNA, a translationally regulated transcript of male germ cells

    International Nuclear Information System (INIS)

    Kwon, Y.K.; Hecht, N.B.

    1991-01-01

    The expression of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated translationally during male germ-cell development. The 3' untranslated region (UTR) of protamine 1 mRNA has been reported to control its time of translation. To understand the mechanisms controlling translation of the protamine mRNAs, we have sought to identify cis elements of the 3' UTR of protamine 2 mRNA that are recognized by cytoplasmic factors. From gel retardation assays, two sequence elements are shown to form specific RNA-protein complexes. Protein binding sites of the two complexes were determined by RNase T1 mapping, by blocking the putative binding sites with antisense oligonucleotides, and by competition assays. The sequences of these elements, located between nucleotides + 537 and + 572 in protamine 2 mRNA, are highly conserved among postmeiotic translationally regulated nuclear proteins of the mammalian testis. Two closely linked protein binding sites were detected. UV-crosslinking studies revealed that a protein of about 18 kDa binds to one of the conserved sequences. These data demonstrate specific protein binding to a highly conserved 3' UTR of translationally regulated testicular mRNA

  1. Structure and non-structure of centrosomal proteins.

    Science.gov (United States)

    Dos Santos, Helena G; Abia, David; Janowski, Robert; Mortuza, Gulnahar; Bertero, Michela G; Boutin, Maïlys; Guarín, Nayibe; Méndez-Giraldez, Raúl; Nuñez, Alfonso; Pedrero, Juan G; Redondo, Pilar; Sanz, María; Speroni, Silvia; Teichert, Florian; Bruix, Marta; Carazo, José M; Gonzalez, Cayetano; Reina, José; Valpuesta, José M; Vernos, Isabelle; Zabala, Juan C; Montoya, Guillermo; Coll, Miquel; Bastolla, Ugo; Serrano, Luis

    2013-01-01

    Here we perform a large-scale study of the structural properties and the expression of proteins that constitute the human Centrosome. Centrosomal proteins tend to be larger than generic human proteins (control set), since their genes contain in average more exons (20.3 versus 14.6). They are rich in predicted disordered regions, which cover 57% of their length, compared to 39% in the general human proteome. They also contain several regions that are dually predicted to be disordered and coiled-coil at the same time: 55 proteins (15%) contain disordered and coiled-coil fragments that cover more than 20% of their length. Helices prevail over strands in regions homologous to known structures (47% predicted helical residues against 17% predicted as strands), and even more in the whole centrosomal proteome (52% against 7%), while for control human proteins 34.5% of the residues are predicted as helical and 12.8% are predicted as strands. This difference is mainly due to residues predicted as disordered and helical (30% in centrosomal and 9.4% in control proteins), which may correspond to alpha-helix forming molecular recognition features (α-MoRFs). We performed expression assays for 120 full-length centrosomal proteins and 72 domain constructs that we have predicted to be globular. These full-length proteins are often insoluble: Only 39 out of 120 expressed proteins (32%) and 19 out of 72 domains (26%) were soluble. We built or retrieved structural models for 277 out of 361 human proteins whose centrosomal localization has been experimentally verified. We could not find any suitable structural template with more than 20% sequence identity for 84 centrosomal proteins (23%), for which around 74% of the residues are predicted to be disordered or coiled-coils. The three-dimensional models that we built are available at http://ub.cbm.uam.es/centrosome/models/index.php.

  2. A protein domain interaction interface database: InterPare

    Directory of Open Access Journals (Sweden)

    Lee Jungsul

    2005-08-01

    Full Text Available Abstract Background Most proteins function by interacting with other molecules. Their interaction interfaces are highly conserved throughout evolution to avoid undesirable interactions that lead to fatal disorders in cells. Rational drug discovery includes computational methods to identify the interaction sites of lead compounds to the target molecules. Identifying and classifying protein interaction interfaces on a large scale can help researchers discover drug targets more efficiently. Description We introduce a large-scale protein domain interaction interface database called InterPare http://interpare.net. It contains both inter-chain (between chains interfaces and intra-chain (within chain interfaces. InterPare uses three methods to detect interfaces: 1 the geometric distance method for checking the distance between atoms that belong to different domains, 2 Accessible Surface Area (ASA, a method for detecting the buried region of a protein that is detached from a solvent when forming multimers or complexes, and 3 the Voronoi diagram, a computational geometry method that uses a mathematical definition of interface regions. InterPare includes visualization tools to display protein interior, surface, and interaction interfaces. It also provides statistics such as the amino acid propensities of queried protein according to its interior, surface, and interface region. The atom coordinates that belong to interface, surface, and interior regions can be downloaded from the website. Conclusion InterPare is an open and public database server for protein interaction interface information. It contains the large-scale interface data for proteins whose 3D-structures are known. As of November 2004, there were 10,583 (Geometric distance, 10,431 (ASA, and 11,010 (Voronoi diagram entries in the Protein Data Bank (PDB containing interfaces, according to the above three methods. In the case of the geometric distance method, there are 31,620 inter-chain domain

  3. Chlamydia trachomatis Mip-like protein

    DEFF Research Database (Denmark)

    Lundemose, AG; Rousch, DA; Birkelund, Svend

    1992-01-01

    venereum (LGV) biovar) is presented. The sequence shows high similarity to the legionella Mip protein and its C-terminal region, like that of the legionella Mip, has high amino acid similarity to eukaryotic and prokaryotic FK506-binding proteins. The chlamydial mip-like gene was detected by polymerase...

  4. Diversity of T cell epitopes in Plasmodium falciparum circumsporozoite protein likely due to protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Nagesh R Aragam

    Full Text Available Circumsporozoite protein (CS is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates and Malawi (235 isolates, we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.

  5. Protein consensus-based surface engineering (ProCoS): a computer-assisted method for directed protein evolution.

    Science.gov (United States)

    Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich

    2016-12-01

    Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.

  6. Biases in Drosophila melanogaster protein trap screens

    Directory of Open Access Journals (Sweden)

    Müller Ilka

    2009-05-01

    Full Text Available Abstract Background The ability to localise or follow endogenous proteins in real time in vivo is of tremendous utility for cell biology or systems biology studies. Protein trap screens utilise the random genomic insertion of a transposon-borne artificial reporter exon (e.g. encoding the green fluorescent protein, GFP into an intron of an endogenous gene to generate a fluorescent fusion protein. Despite recent efforts aimed at achieving comprehensive coverage of the genes encoded in the Drosophila genome, the repertoire of genes that yield protein traps is still small. Results We analysed the collection of available protein trap lines in Drosophila melanogaster and identified potential biases that are likely to restrict genome coverage in protein trap screens. The protein trap screens investigated here primarily used P-element vectors and thus exhibit some of the same positional biases associated with this transposon that are evident from the comprehensive Drosophila Gene Disruption Project. We further found that protein trap target genes usually exhibit broad and persistent expression during embryonic development, which is likely to facilitate better detection. In addition, we investigated the likely influence of the GFP exon on host protein structure and found that protein trap insertions have a significant bias for exon-exon boundaries that encode disordered protein regions. 38.8% of GFP insertions land in disordered protein regions compared with only 23.4% in the case of non-trapping P-element insertions landing in coding sequence introns (p -4. Interestingly, even in cases where protein domains are predicted, protein trap insertions frequently occur in regions encoding surface exposed areas that are likely to be functionally neutral. Considering the various biases observed, we predict that less than one third of intron-containing genes are likely to be amenable to trapping by the existing methods. Conclusion Our analyses suggest that the

  7. Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins.

    Science.gov (United States)

    Wohlever, Matthew L; Mateja, Agnieszka; McGilvray, Philip T; Day, Kasey J; Keenan, Robert J

    2017-07-20

    Mislocalized tail-anchored (TA) proteins of the outer mitochondrial membrane are cleared by a newly identified quality control pathway involving the conserved eukaryotic protein Msp1 (ATAD1 in humans). Msp1 is a transmembrane AAA-ATPase, but its role in TA protein clearance is not known. Here, using purified components reconstituted into proteoliposomes, we show that Msp1 is both necessary and sufficient to drive the ATP-dependent extraction of TA proteins from the membrane. A crystal structure of the Msp1 cytosolic region modeled into a ring hexamer suggests that active Msp1 contains a conserved membrane-facing surface adjacent to a central pore. Structure-guided mutagenesis of the pore residues shows that they are critical for TA protein extraction in vitro and for functional complementation of an msp1 deletion in yeast. Together, these data provide a molecular framework for Msp1-dependent extraction of mislocalized TA proteins from the outer mitochondrial membrane. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dielectric spectra of proteins in conducting media

    International Nuclear Information System (INIS)

    Ruderman, G.; Xammar Oro, J.R. de

    1990-10-01

    Dielectric measurements of serum albumin and myoglobin in solutions of varying conductivities were performed. The results presented confirm that also for protein solutions, the Maxwell predictions of a threshold frequency in conducting materials holds. The threshold frequency of a serum albumin solution was experimentally determined. Attention should be recalled that, if the dielectric spectra of proteins solutions want to be measured, three distinct frequency regions are to be observed: a low frequency region, where the sample behaves like a conductor; an intermediate region centered around the threshold frequency, where the free charges partially screen the fixed ones; and a high frequency region where the sample behaves like a good dielectric. (author). 8 refs, 5 figs

  9. Differential regulation of genomic imprinting by TET proteins in embryonic stem cells.

    Science.gov (United States)

    Liu, Lizhi; Mao, Shi-Qing; Ray, Chelsea; Zhang, Yu; Bell, Fong T; Ng, Sheau-Fang; Xu, Guo-Liang; Li, Xiajun

    2015-09-01

    TET proteins have been found to play an important role in active demethylation at CpG sites in mammals. There are some reports implicating their functions in removal of DNA methylation imprint at the imprinted regions in the germline. However, it is not well established whether TET proteins can also be involved in demethylation of DNA methylation imprint in embryonic stem (ES) cells. Here we report that loss of TET proteins caused a significant increase in DNA methylation at the Igf2-H19 imprinted region in ES cells. We also observed a variable increase in DNA methylation at the Peg1 imprinted region in the ES clones devoid of TET proteins, in particular in the differentiated ES cells. By contrast, we did not observe a significant increase of DNA methylation imprint at the Peg3, Snrpn and Dlk1-Dio3 imprinted regions in ES cells lacking TET proteins. Interestingly, loss of TET proteins did not result in a significant increase of DNA methylation imprint at the Igf2-H19 and Peg1 imprinted regions in the embryoid bodies (EB). Therefore, TET proteins seem to be differentially involved in maintaining DNA methylation imprint at a subset of imprinted regions in ES cells and EBs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Solution structure and dynamics of melanoma inhibitory activity protein

    International Nuclear Information System (INIS)

    Lougheed, Julie C.; Domaille, Peter J.; Handel, Tracy M.

    2002-01-01

    Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 A over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 A over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures

  11. Protein nutrition and metabolism during early development of the chick embryo

    International Nuclear Information System (INIS)

    Klein, N.W.

    1976-01-01

    Cultures of intact early chick embryos have been used as a model system in which to study the nutrition and metabolism of proteins during early embryonic development. Previous studies have shown that these embryos require nutrient proteins for growth and development. The protein requirement was found to be specific in that at least two proteins were essential; one a transferrin (either conalbumin or yolk transferrin) and the other either ovalbumin or lipovitellin. Variations in the quantity or type of protein provided in the medium altered the growth of embryo regions through regionally specific changes in protein breakdown. This was confirmed through protein synthetic studies with isolated polyribosomes. More recently such variations in protein nutrition have been shown also to affect the actual patterns of proteins synthesized by regions of the embryo. These observed responses to protein nutrition have been difficult to reconcile with our observation that proteins as such did not reach the embryo proper but were first degraded to amine acids within the yolk-sac membrane. Studies on the synthesis of serum proteins by the yolk-sac membrane have provided a possible explanation in that the relative synthesis of individual serum proteins was dramatically influenced by the protein composition of the culture medium. We are currently attempting to demonstrate that serum proteins are indeed the mediators of the response of embryos to protein nutrition. (author)

  12. Age-dependent changes in the total protein concentrations in the ...

    African Journals Online (AJOL)

    related changes in total protein concentrations in ten regions of the pig brain and hypophyses from birth to 36 months of age. Age-related changes in protein concentrations in all the brain regions except the pons and cerebral cortex were not ...

  13. Purification and characterization of a soybean cell wall protein

    International Nuclear Information System (INIS)

    San Francisco, S.; Tierney, M.L.

    1989-01-01

    Plant cell wall composition is thought to reflect cellular responses to developmental and environmental signals. We have purified a 33 kDa protein from cell wall extracts of soybean seedlings which is most abundant in extracts from the hook region of the hypocotyl and is rich in proline and hydroxypyroline. In vivo 3 H-proline labelling of hypocotyl tissues indicates that the hook tissue is the predominant site for synthesis of this protein. In unwounded hook, label is incorporated into a 33 kDa protein, while in wounded hook this and additional proteins rich in proline are synthesized. Similarly treated cell wall extracts analyzed by Western blot analysis, using a polyclonal antibody raised against this 33kD protein, showed that the 33 kDa protein is most abundant in cell wall extracts from the hook region of unwounded seedlings and does not increase upon wounding. An immunologically related 35kD protein is also apparent in extracts from wounded hooks and appears to co-migrate with one of the labelled proteins extractable from this tissue. These data indicate that there are two related, proline-rich cell wall proteins in the hook region of soybean seedlings, one of which (33 kDa) is prominent during seedling development and another (35 kDa) which is wound inducible

  14. The Impact of the ‘Austrian’ Mutation of the Amyloid Precursor Protein Transmembrane Helix is Communicated to the Hinge Region

    DEFF Research Database (Denmark)

    Stelzer, Walter; Scharnagl, Christina; Leurs, Ulrike

    2016-01-01

    The transmembrane helix of the amyloid precursor protein is subject to proteolytic cleavages by γ-secretase at different sites resulting in Aβ peptides of different length and toxicity. A number of point mutations within this transmembrane helix alter the cleavage pattern thus enhancing production...... destabilizes amide hydrogen bonds in the hinge which connects dimerization and cleavage regions. Weaker intrahelical hydrogen bonds at the hinge may enhance helix bending and thereby affect recognition of the transmembrane substrate by the enzyme and/or presentation of its cleavage sites to the catalytic cleft....

  15. Ku proteins function as corepressors to regulate farnesoid X receptor-mediated gene expression

    International Nuclear Information System (INIS)

    Ohno, Masae; Kunimoto, Masaaki; Nishizuka, Makoto; Osada, Shigehiro; Imagawa, Masayoshi

    2009-01-01

    The farnesoid X receptor (FXR; NR1H4) is a member of the nuclear receptor superfamily and regulates the expression of genes involved in enterohepatic circulation and the metabolism of bile acids. Based on functional analyses, nuclear receptors are divided into regions A-F. To explore the cofactors interacting with FXR, we performed a pull-down assay using GST-fused to the N-terminal A/B region and the C region, which are required for the ligand-independent transactivation and DNA-binding, respectively, of FXR, and nuclear extracts from HeLa cells. We identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs), Ku80, and Ku70 as FXR associated factors. These proteins are known to have an important role in DNA repair, recombination, and transcription. DNA-PKcs mainly interacted with the A/B region of FXR, whereas the Ku proteins interacted with the C region and with the D region (hinge region). Chromatin immunoprecipitation assays revealed that the Ku proteins associated with FXR on the bile salt export pump (BSEP) promoter. Furthermore, we demonstrated that ectopic expression of the Ku proteins decreased the promoter activity and expression of BSEP gene mediated by FXR. These results suggest that the Ku proteins function as corepressors for FXR.

  16. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  17. Intersectin goes nuclear: secret life of an endocytic protein.

    Science.gov (United States)

    Alvisi, Gualtiero; Paolini, Lucia; Contarini, Andrea; Zambarda, Chiara; Di Antonio, Veronica; Colosini, Antonella; Mercandelli, Nicole; Timmoneri, Martina; Palù, Giorgio; Caimi, Luigi; Ricotta, Doris; Radeghieri, Annalisa

    2018-04-27

    Intersectin 1-short (ITSN1-s) is a 1220 amino acid ubiquitously expressed scaffold protein presenting a multidomain structure that allows to spatiotemporally regulate the functional interaction of a plethora of proteins. Besides its well-established role in endocytosis, ITSN1-s is involved in the regulation of cell signaling and is implicated in tumorigenesis processes, although the signaling pathways involved are still poorly understood. Here, we identify ITSN1-s as a nucleocytoplasmic trafficking protein. We show that, by binding to importin (IMP)α, a small fraction of ITSN1-s localizes in the cell nucleus at the steady state, where it preferentially associates with the nuclear envelope and interacts with lamin A/C. However, upon pharmacological ablation of chromosome region maintenance 1 (CRM-1)-dependent nuclear export pathway, the protein accumulates into the nucleus, thus revealing its moonlighting nature. Analysis of deletion mutants revealed that the coiled coil (CC) and Src homology (SH3) regions play the major role in its nucleocytoplasmic shuttling. While no evidence of nuclear localization signal (NLS) was detected in the CC region, a functional bipartite NLS was identified within the SH3D region of ITSN1-s (RKKNPGGWWEGELQARGKKRQIGW-1127), capable of conferring energy-dependent nuclear accumulation to reporter proteins and whose mutational ablation affects nuclear import of the whole SH3 region. Thus, ITSN1-s is an endocytic protein, which shuttles between the nucleus and the cytoplasm in a CRM-1- and IMPα-dependent fashion. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein

    NARCIS (Netherlands)

    Hateboer, G.; Timmers, H.T.M.; Rustgi, A.K.; Billaud, Marc; Veer, L.J. Van 't; Bernards, R.A.

    1993-01-01

    Using a protein binding assay, we show that the amino-teminal 204 amino acids of the c-Myc protein interact di y with a key component of the basal p tdon factor TFID, the TATA box-binding protein (TBP). Essentialy the same region of the c-Myc protein alo binds the product of the retinoblatoma

  19. AMPA: an automated web server for prediction of protein antimicrobial regions.

    Science.gov (United States)

    Torrent, Marc; Di Tommaso, Paolo; Pulido, David; Nogués, M Victòria; Notredame, Cedric; Boix, Ester; Andreu, David

    2012-01-01

    AMPA is a web application for assessing the antimicrobial domains of proteins, with a focus on the design on new antimicrobial drugs. The application provides fast discovery of antimicrobial patterns in proteins that can be used to develop new peptide-based drugs against pathogens. Results are shown in a user-friendly graphical interface and can be downloaded as raw data for later examination. AMPA is freely available on the web at http://tcoffee.crg.cat/apps/ampa. The source code is also available in the web. marc.torrent@upf.edu; david.andreu@upf.edu Supplementary data are available at Bioinformatics online.

  20. A protein that binds to the P1 origin core and the oriC 13mer region in a methylation-specific fashion is the product of the host seqA gene.

    Science.gov (United States)

    Brendler, T; Abeles, A; Austin, S

    1995-08-15

    The P1 plasmid replication origin P1oriR is controlled by methylation of four GATC adenine methylation sites within heptamer repeats. A comparable (13mer) region is present in the host origin, oriC. The two origins show comparable responses to methylation; negative control by recognition of hemimethylated DNA (sequestration) and a positive requirement for methylation for efficient function. We have isolated a host protein that recognizes the P1 origin region only when it is isolated from a strain proficient for adenine methylation. The substantially purified 22 kDa protein also binds to the 13mer region of oriC in a methylation-specific fashion. It proved to be the product of the seqA gene that acts in the negative control of oriC by sequestration. We conclude that the role of the SeqA protein in sequestration is to recognize the methylation state of P1oriR and oriC by direct DNA binding. Using synthetic substrates we show that SeqA binds exclusively to the hemimethylated forms of these origins forms that are the immediate products of replication in a methylation-proficient strain. We also show that the protein can recognize sequences with multiple GATC sites, irrespective of the surrounding sequence. The basis for origin specificity is primarily the persistence of hemimethylated forms that are over-represented in the natural. DNA preparations relative to controls.

  1. Protein Determinants of Meiotic DNA Break Hotspots

    Science.gov (United States)

    Fowler, Kyle R.; Gutiérrez-Velasco, Susana

    2013-01-01

    SUMMARY Meiotic recombination, crucial for proper chromosome segregation and genome evolution, is initiated by programmed DNA double-strand breaks (DSBs) in yeasts and likely all sexually reproducing species. In fission yeast, DSBs occur up to hundreds of times more frequently at special sites, called hotspots, than in other regions of the genome. What distinguishes hotspots from cold regions is an unsolved problem, although transcription factors determine some hotspots. We report the discovery that three coiled-coil proteins – Rec25, Rec27, and Mug20 – bind essentially all hotspots with unprecedented specificity even without DSB formation. These small proteins are components of linear elements, are related to synaptonemal complex proteins, and are essential for nearly all DSBs at most hotspots. Our results indicate these hotspot determinants activate or stabilize the DSB-forming protein Rec12 (Spo11 homolog) rather than promote its binding to hotspots. We propose a new paradigm for hotspot determination and crossover control by linear element proteins. PMID:23395004

  2. Dancing Protein Clouds: The Strange Biology and Chaotic Physics of Intrinsically Disordered Proteins.

    Science.gov (United States)

    Uversky, Vladimir N

    2016-03-25

    Biologically active but floppy proteins represent a new reality of modern protein science. These intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered and intrinsically disordered protein regions (IDPRs) constitute a noticeable part of any given proteome. Functionally, they complement ordered proteins, and their conformational flexibility and structural plasticity allow them to perform impossible tricks and be engaged in biological activities that are inaccessible to well folded proteins with their unique structures. The major goals of this minireview are to show that, despite their simplified amino acid sequences, IDPs/IDPRs are complex entities often resembling chaotic systems, are structurally and functionally heterogeneous, and can be considered an important part of the structure-function continuum. Furthermore, IDPs/IDPRs are everywhere, and are ubiquitously engaged in various interactions characterized by a wide spectrum of binding scenarios and an even wider spectrum of structural and functional outputs. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice.

    Science.gov (United States)

    Hara, Hideyuki; Miyata, Hironori; Das, Nandita Rani; Chida, Junji; Yoshimochi, Tatenobu; Uchiyama, Keiji; Watanabe, Hitomi; Kondoh, Gen; Yokoyama, Takashi; Sakaguchi, Suehiro

    2018-01-01

    Conformational conversion of the cellular isoform of prion protein, PrP C , into the abnormally folded, amyloidogenic isoform, PrP Sc , is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrP C into PrP Sc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/ Prnp 0 / 0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrP Sc ΔOR in their brains. We show here that Tg(PrPΔOR)/ Prnp 0 / 0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrP Sc ΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrP C into PrP Sc after infection with BSE prions. However, Tg(PrPΔOR)/ Prnp 0 / 0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrP Sc ΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/ Prnp 0 / 0 mice than PrP Sc in control wild-type mice. Taken together, these results indicate that the OR region of PrP C could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions. IMPORTANCE Structure-function relationship studies of PrP C conformational conversion into PrP Sc are worthwhile to understand the mechanism of the conversion of PrP C into PrP Sc We show here that, by inoculating Tg(PrPΔOR)/ Prnp 0 / 0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of

  4. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    Science.gov (United States)

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  5. CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation.

    Science.gov (United States)

    Thangakani, A Mary; Nagarajan, R; Kumar, Sandeep; Sakthivel, R; Velmurugan, D; Gromiha, M Michael

    2016-01-01

    Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer's and Parkinson's, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.

  6. Protein degradation and protein synthesis in long-term memory formation

    Directory of Open Access Journals (Sweden)

    Timothy J Jarome

    2014-06-01

    Full Text Available Long-term memory (LTM formation requires transient changes in the activity of intracellular signaling cascades that are thought to regulate new gene transcription and de novo protein synthesis in the brain. Consistent with this, protein synthesis inhibitors impair LTM for a variety of behavioral tasks when infused into the brain around the time of training or following memory retrieval, suggesting that protein synthesis is a critical step in LTM storage in the brain. However, evidence suggests that protein degradation mediated by the ubiquitin-proteasome system may also be a critical regulator of LTM formation and stability following retrieval. This requirement for increased protein degradation has been shown in the same brain regions in which protein synthesis is required for LTM storage. Additionally, increases in the phosphorylation of proteins involved in translational control parallel increases in protein polyubiquitination and the increased demand for protein degradation is regulated by intracellular signaling molecules thought to regulate protein synthesis during LTM formation. In some cases inhibiting proteasome activity can rescue memory impairments that result from pharmacological blockade of protein synthesis, suggesting that protein degradation may control the requirement for protein synthesis during the memory storage process. Results such as these suggest that protein degradation and synthesis are both critical for LTM formation and may interact to properly consolidate and store memories in the brain. Here, we review the evidence implicating protein synthesis and degradation in LTM storage and highlight the areas of overlap between these two opposing processes. We also discuss evidence suggesting these two processes may interact to properly form and store memories. LTM storage likely requires a coordinated regulation between protein degradation and synthesis at multiple sites in the mammalian brain.

  7. Dynamic nuclear polarization of membrane proteins: covalently bound spin-labels at protein–protein interfaces

    International Nuclear Information System (INIS)

    Wylie, Benjamin J.; Dzikovski, Boris G.; Pawsey, Shane; Caporini, Marc; Rosay, Melanie; Freed, Jack H.; McDermott, Ann E.

    2015-01-01

    We demonstrate that dynamic nuclear polarization of membrane proteins in lipid bilayers may be achieved using a novel polarizing agent: pairs of spin labels covalently bound to a protein of interest interacting at an intermolecular interaction surface. For gramicidin A, nitroxide tags attached to the N-terminal intermolecular interface region become proximal only when bimolecular channels forms in the membrane. We obtained signal enhancements of sixfold for the dimeric protein. The enhancement effect was comparable to that of a doubly tagged sample of gramicidin C, with intramolecular spin pairs. This approach could be a powerful and selective means for signal enhancement in membrane proteins, and for recognizing intermolecular interfaces

  8. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  9. Constant region of a kappa III immunoglobulin light chain as a major AL-amyloid protein

    DEFF Research Database (Denmark)

    Engvig, J P; Olsen, K E; Gislefoss, R E

    1998-01-01

    AL-amyloidoses are generally described as a group of disorders in which N-terminal fragments of monoclonal immunoglobulin light chains are transferred into amyloid fibrils. We have, by amino acid sequence analyses and immunological methods, characterized the Bence-Jones protein and the correspond......AL-amyloidoses are generally described as a group of disorders in which N-terminal fragments of monoclonal immunoglobulin light chains are transferred into amyloid fibrils. We have, by amino acid sequence analyses and immunological methods, characterized the Bence-Jones protein...... and the corresponding AL protein as a kappa III immunoglobulin light chain from material of a patient with systemic AL-amyloidosis presenting as a local inguinal tumour. The two proteins showed some unique features. The major part of the AL amyloid fibril protein consisted of C-terminal fragments of the Bence......-Jones protein. Furthermore, both the Bence-Jones protein and the AL protein were glycosylated, with possibly a glycosylation in the constant part of the light chain....

  10. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97

    DEFF Research Database (Denmark)

    Chi, Celestine Ngang; Bach, Anders; Engström, Åke

    2011-01-01

    The E6 protein of human papillomavirus exhibits complex interaction patterns with several host proteins and their roles in HPV mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor......, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues...

  11. Functional investigation of grass carp reovirus nonstructural protein NS80

    Directory of Open Access Journals (Sweden)

    Shao Ling

    2011-04-01

    Full Text Available Abstract Background Grass Carp Reovirus (GCRV, a highly virulent agent of aquatic animals, has an eleven segmented dsRNA genome encased in a multilayered capsid shell, which encodes twelve proteins including seven structural proteins (VP1-VP7, and five nonstructural proteins (NS80, NS38, NS31, NS26, and NS16. It has been suggested that the protein NS80 plays an important role in the viral replication cycle that is similar to that of its homologous protein μNS in the genus of Orthoreovirus. Results As a step to understanding the basis of the part played by NS80 in GCRV replication and particle assembly, we used the yeast two-hybrid (Y2H system to identify NS80 interactions with proteins NS38, VP4, and VP6 as well as NS80 and NS38 self-interactions, while no interactions appeared in the four protein pairs NS38-VP4, NS38-VP6, VP4-VP4, and VP4-VP6. Bioinformatic analyses of NS80 with its corresponding proteins were performed with all currently available homologous protein sequences in ARVs (avian reoviruses and MRVs (mammalian reoviruses to predict further potential functional domains of NS80 that are related to VFLS (viral factory-like structures formation and other roles in viral replication. Two conserved regions spanning from aa (amino acid residues of 388 to 433, and 562 to 580 were discovered in this study. The second conserved region with corresponding conserved residues Tyr565, His569, Cys571, Asn573, and Glu576 located between the two coiled-coils regions (aa ~513-550 and aa ~615-690 in carboxyl-proximal terminus were supposed to be essential to form VFLS, so that aa residues ranging from 513 to 742 of NS80 was inferred to be the smallest region that is necessary for forming VFLS. The function of the first conserved region including Ala395, Gly419, Asp421, Pro422, Leu438, and Leu443 residues is unclear, but one-third of the amino-terminal region might be species specific, dominating interactions with other viral components. Conclusions Our

  12. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  13. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  14. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region.

    Science.gov (United States)

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.

  15. A comprehensive software suite for protein family construction and functional site prediction.

    Directory of Open Access Journals (Sweden)

    David Renfrew Haft

    Full Text Available In functionally diverse protein families, conservation in short signature regions may outperform full-length sequence comparisons for identifying proteins that belong to a subgroup within which one specific aspect of their function is conserved. The SIMBAL workflow (Sites Inferred by Metabolic Background Assertion Labeling is a data-mining procedure for finding such signature regions. It begins by using clues from genomic context, such as co-occurrence or conserved gene neighborhoods, to build a useful training set from a large number of uncharacterized but mutually homologous proteins. When training set construction is successful, the YES partition is enriched in proteins that share function with the user's query sequence, while the NO partition is depleted. A selected query sequence is then mined for short signature regions whose closest matches overwhelmingly favor proteins from the YES partition. High-scoring signature regions typically contain key residues critical to functional specificity, so proteins with the highest sequence similarity across these regions tend to share the same function. The SIMBAL algorithm was described previously, but significant manual effort, expertise, and a supporting software infrastructure were required to prepare the requisite training sets. Here, we describe a new, distributable software suite that speeds up and simplifies the process for using SIMBAL, most notably by providing tools that automate training set construction. These tools have broad utility for comparative genomics, allowing for flexible collection of proteins or protein domains based on genomic context as well as homology, a capability that can greatly assist in protein family construction. Armed with this new software suite, SIMBAL can serve as a fast and powerful in silico alternative to direct experimentation for characterizing proteins and their functional interactions.

  16. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sánchez Claros, Carmen

    2012-06-08

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  17. Detecting mutually exclusive interactions in protein-protein interaction maps.

    KAUST Repository

    Sá nchez Claros, Carmen; Tramontano, Anna

    2012-01-01

    Comprehensive protein interaction maps can complement genetic and biochemical experiments and allow the formulation of new hypotheses to be tested in the system of interest. The computational analysis of the maps may help to focus on interesting cases and thereby to appropriately prioritize the validation experiments. We show here that, by automatically comparing and analyzing structurally similar regions of proteins of known structure interacting with a common partner, it is possible to identify mutually exclusive interactions present in the maps with a sensitivity of 70% and a specificity higher than 85% and that, in about three fourth of the correctly identified complexes, we also correctly recognize at least one residue (five on average) belonging to the interaction interface. Given the present and continuously increasing number of proteins of known structure, the requirement of the knowledge of the structure of the interacting proteins does not substantially impact on the coverage of our strategy that can be estimated to be around 25%. We also introduce here the Estrella server that embodies this strategy, is designed for users interested in validating specific hypotheses about the functional role of a protein-protein interaction and it also allows access to pre-computed data for seven organisms.

  18. p15PAF is an intrinsically disordered protein with nonrandom structural preferences at sites of interaction with other proteins.

    Science.gov (United States)

    De Biasio, Alfredo; Ibáñez de Opakua, Alain; Cordeiro, Tiago N; Villate, Maider; Merino, Nekane; Sibille, Nathalie; Lelli, Moreno; Diercks, Tammo; Bernadó, Pau; Blanco, Francisco J

    2014-02-18

    We present to our knowledge the first structural characterization of the proliferating-cell-nuclear-antigen-associated factor p15(PAF), showing that it is monomeric and intrinsically disordered in solution but has nonrandom conformational preferences at sites of protein-protein interactions. p15(PAF) is a 12 kDa nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15(PAF) gene is overexpressed in several types of human cancer. The nearly complete NMR backbone assignment of p15(PAF) allowed us to measure 86 N-H(N) residual dipolar couplings. Our residual dipolar coupling analysis reveals nonrandom conformational preferences in distinct regions, including the proliferating-cell-nuclear-antigen-interacting protein motif (PIP-box) and the KEN-box (recognized by the ubiquitin ligase that targets p15(PAF) for degradation). In accordance with these findings, analysis of the (15)N R2 relaxation rates shows a relatively reduced mobility for the residues in these regions. The agreement between the experimental small angle x-ray scattering curve of p15(PAF) and that computed from a statistical coil ensemble corrected for the presence of local secondary structural elements further validates our structural model for p15(PAF). The coincidence of these transiently structured regions with protein-protein interaction and posttranslational modification sites suggests a possible role for these structures as molecular recognition elements for p15(PAF). Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Surface display of the receptor-binding region of the Lactobacillus brevis S-layer protein in Lactococcus lactis provides nonadhesive lactococci with the ability to adhere to intestinal epithelial cells.

    Science.gov (United States)

    Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi

    2003-04-01

    Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.

  20. Comparative Molecular Dynamics Simulations of Mitogen-Activated Protein Kinase-Activated Protein Kinase 5

    Directory of Open Access Journals (Sweden)

    Inger Lindin

    2014-03-01

    Full Text Available The mitogen-activated protein kinase-activated protein kinase MK5 is a substrate of the mitogen-activated protein kinases p38, ERK3 and ERK4. Cell culture and animal studies have demonstrated that MK5 is involved in tumour suppression and promotion, embryogenesis, anxiety, cell motility and cell cycle regulation. In the present study, homology models of MK5 were used for molecular dynamics (MD simulations of: (1 MK5 alone; (2 MK5 in complex with an inhibitor; and (3 MK5 in complex with the interaction partner p38α. The calculations showed that the inhibitor occupied the active site and disrupted the intramolecular network of amino acids. However, intramolecular interactions consistent with an inactive protein kinase fold were not formed. MD with p38α showed that not only the p38 docking region, but also amino acids in the activation segment, αH helix, P-loop, regulatory phosphorylation region and the C-terminal of MK5 may be involved in forming a very stable MK5-p38α complex, and that p38α binding decreases the residual fluctuation of the MK5 model. Electrostatic Potential Surface (EPS calculations of MK5 and p38α showed that electrostatic interactions are important for recognition and binding.

  1. N-terminal segments modulate the α-helical propensities of the intrinsically disordered basic regions of bZIP proteins.

    Science.gov (United States)

    Das, Rahul K; Crick, Scott L; Pappu, Rohit V

    2012-02-17

    Basic region leucine zippers (bZIPs) are modular transcription factors that play key roles in eukaryotic gene regulation. The basic regions of bZIPs (bZIP-bRs) are necessary and sufficient for DNA binding and specificity. Bioinformatic predictions and spectroscopic studies suggest that unbound monomeric bZIP-bRs are uniformly disordered as isolated domains. Here, we test this assumption through a comparative characterization of conformational ensembles for 15 different bZIP-bRs using a combination of atomistic simulations and circular dichroism measurements. We find that bZIP-bRs have quantifiable preferences for α-helical conformations in their unbound monomeric forms. This helicity varies from one bZIP-bR to another despite a significant sequence similarity of the DNA binding motifs (DBMs). Our analysis reveals that intramolecular interactions between DBMs and eight-residue segments directly N-terminal to DBMs are the primary modulators of bZIP-bR helicities. We test the accuracy of this inference by designing chimeras of bZIP-bRs to have either increased or decreased overall helicities. Our results yield quantitative insights regarding the relationship between sequence and the degree of intrinsic disorder within bZIP-bRs, and might have general implications for other intrinsically disordered proteins. Understanding how natural sequence variations lead to modulation of disorder is likely to be important for understanding the evolution of specificity in molecular recognition through intrinsically disordered regions (IDRs). Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus

    DEFF Research Database (Denmark)

    Hansen, T S; Andreasen, P H; Dreisig, H

    1991-01-01

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 ...... by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.......We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63...... nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified...

  3. Genetic Diversity of Plasmodium falciparum Merozoite Surface Protein-1 Block 2 in Sites of Contrasting Altitudes and Malaria Endemicities in the Mount Cameroon Region

    OpenAIRE

    Wanji, Samuel; Kengne-Ouafo, Arnaud J.; Joan Eyong, Ebanga E.; Kimbi, Helen K.; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L.; Nana-Djeunga, Hugues C.; Bourguinat, Catherine; Sofeu-Feugaing, David D.; Charvet, Claude L.

    2012-01-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein–enzyme-linked immunosorbent a...

  4. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein

    Science.gov (United States)

    Lannergård, Jonas; Kristensen, Bodil M; Gustafsson, Mattias C U; Persson, Jenny J; Norrby-Teglund, Anna; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2015-01-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack. PMID:26175306

  5. Improved segmental isotope labeling of proteins and application to a larger protein

    International Nuclear Information System (INIS)

    Otomo, Takanori; Teruya, Kenta; Uegaki, Koichi; Yamazaki, Toshio; Kyogoku, Yoshimasa

    1999-01-01

    A new isotope labeling technique for peptide segments in a protein sample was recently established using the protein splicing element intein [Yamazaki et al. (1998) J. Am. Chem. Soc., 120, 5591-5592]. This method makes it possible to observe signals of a selected amino (N-) or carboxyl (C-) terminal region along a peptide chain. However, there is a problem with the yield of the segmentally labeled protein. In this paper, we report an increase in the yield of the protein that enables the production of sufficient amounts of segmentally 13 C/ 15 N-labeled protein samples. This was achieved by improvement of the expression level of the N-terminal fragment in cells and the efficiency of refolding into the active splicing conformation. The N-terminal fragment was expressed as a fused protein with the cellulose binding domain at its N-terminus, which was expressed as an insoluble peptide in cells and the expression level was increased. Incubation with 2.5 M urea and 50% glycerol increased the efficiency of the refolding greatly, thereby raising the final yields of the ligated proteins. The feasibility of application of the method to a high-molecular-weight protein was demonstrated by the results for a maltose binding protein consisting of 370 amino acids. All four examined joints in the maltose binding protein were successfully ligated to produce segmentally labeled protein samples

  6. Structural adaptations of proteins to different biological membranes

    Science.gov (United States)

    Pogozheva, Irina D.; Tristram-Nagle, Stephanie; Mosberg, Henry I.; Lomize, Andrei L.

    2013-01-01

    To gain insight into adaptations of proteins to their membranes, intrinsic hydrophobic thicknesses, distributions of different chemical groups and profiles of hydrogen-bonding capacities (α and β) and the dipolarity/polarizability parameter (π*) were calculated for lipid-facing surfaces of 460 integral α-helical, β-barrel and peripheral proteins from eight types of biomembranes. For comparison, polarity profiles were also calculated for ten artificial lipid bilayers that have been previously studied by neutron and X-ray scattering. Estimated hydrophobic thicknesses are 30-31 Å for proteins from endoplasmic reticulum, thylakoid, and various bacterial plasma membranes, but differ for proteins from outer bacterial, inner mitochondrial and eukaryotic plasma membranes (23.9, 28.6 and 33.5 Å, respectively). Protein and lipid polarity parameters abruptly change in the lipid carbonyl zone that matches the calculated hydrophobic boundaries. Maxima of positively charged protein groups correspond to the location of lipid phosphates at 20-22 Å distances from the membrane center. Locations of Tyr atoms coincide with hydrophobic boundaries, while distributions maxima of Trp rings are shifted by 3-4 Å toward the membrane center. Distributions of Trp atoms indicate the presence of two 5-8 Å-wide midpolar regions with intermediate π* values within the hydrocarbon core, whose size and symmetry depend on the lipid composition of membrane leaflets. Midpolar regions are especially asymmetric in outer bacterial membranes and cell membranes of mesophilic but not hyperthermophilic archaebacteria, indicating the larger width of the central nonpolar region in the later case. In artificial lipid bilayers, midpolar regions are observed up to the level of acyl chain double bonds. PMID:23811361

  7. A computational model of the LGI1 protein suggests a common binding site for ADAM proteins.

    Directory of Open Access Journals (Sweden)

    Emanuela Leonardi

    Full Text Available Mutations of human leucine-rich glioma inactivated (LGI1 gene encoding the epitempin protein cause autosomal dominant temporal lateral epilepsy (ADTLE, a rare familial partial epileptic syndrome. The LGI1 gene seems to have a role on the transmission of neuronal messages but the exact molecular mechanism remains unclear. In contrast to other genes involved in epileptic disorders, epitempin shows no homology with known ion channel genes but contains two domains, composed of repeated structural units, known to mediate protein-protein interactions.A three dimensional in silico model of the two epitempin domains was built to predict the structure-function relationship and propose a functional model integrating previous experimental findings. Conserved and electrostatic charged regions of the model surface suggest a possible arrangement between the two domains and identifies a possible ADAM protein binding site in the β-propeller domain and another protein binding site in the leucine-rich repeat domain. The functional model indicates that epitempin could mediate the interaction between proteins localized to different synaptic sides in a static way, by forming a dimer, or in a dynamic way, by binding proteins at different times.The model was also used to predict effects of known disease-causing missense mutations. Most of the variants are predicted to alter protein folding while several other map to functional surface regions. In agreement with experimental evidence, this suggests that non-secreted LGI1 mutants could be retained within the cell by quality control mechanisms or by altering interactions required for the secretion process.

  8. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    proteins: Erbb3, a multi interface, and Raf1, a single interface hub. The results reveal that affinity of interactions of the multi-interface hub tends to be higher than that of the single-interface hub. These findings might be important in obtaining new targets in cancer as well as finding the details of specific binding regions of putative cancer drug candidates.

  9. The PMDB Protein Model Database

    Science.gov (United States)

    Castrignanò, Tiziana; De Meo, Paolo D'Onorio; Cozzetto, Domenico; Talamo, Ivano Giuseppe; Tramontano, Anna

    2006-01-01

    The Protein Model Database (PMDB) is a public resource aimed at storing manually built 3D models of proteins. The database is designed to provide access to models published in the scientific literature, together with validating experimental data. It is a relational database and it currently contains >74 000 models for ∼240 proteins. The system is accessible at and allows predictors to submit models along with related supporting evidence and users to download them through a simple and intuitive interface. Users can navigate in the database and retrieve models referring to the same target protein or to different regions of the same protein. Each model is assigned a unique identifier that allows interested users to directly access the data. PMID:16381873

  10. In Search of Functional Advantages of Knots in Proteins.

    Science.gov (United States)

    Dabrowski-Tumanski, Pawel; Stasiak, Andrzej; Sulkowska, Joanna I

    2016-01-01

    We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whereas their solvent accessibility was decreased. Interestingly, the active sites within these knotted proteins preferentially located in the regions with increased number of contacts that also have increased thermal stability and decreased solvent accessibility. Our results suggest that knotting of polypeptide chains provides a favourable environment for the active sites observed in knotted proteins. Some knotted proteins have homologues without a knot. Interestingly, these unknotted homologues form local entanglements that retain structural characteristics of the knotted cores.

  11. InterProSurf: a web server for predicting interacting sites on protein surfaces

    Science.gov (United States)

    Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner

    2009-01-01

    Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856

  12. Specific DNA binding of a potential transcriptional regulator, inosine 5'-monophosphate dehydrogenase-related protein VII, to the promoter region of a methyl coenzyme m reductase I-encoding operon retrieved from Methanothermobacter thermautotrophicus strain DeltaH.

    Science.gov (United States)

    Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi

    2008-10-01

    Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.

  13. Cloning of human genes encoding novel G protein-coupled receptors

    Energy Technology Data Exchange (ETDEWEB)

    Marchese, A.; Docherty, J.M.; Heiber, M. [Univ. of Toronto, (Canada)] [and others

    1994-10-01

    We report the isolation and characterization of several novel human genes encoding G protein-coupled receptors. Each of the receptors contained the familiar seven transmembrane topography and most closely resembled peptide binding receptors. Gene GPR1 encoded a receptor protein that is intronless in the coding region and that shared identity (43% in the transmembrane regions) with the opioid receptors. Northern blot analysis revealed that GPR1 transcripts were expressed in the human hippocampus, and the gene was localized to chromosome 15q21.6. Gene GPR2 encoded a protein that most closely resembled an interleukin-8 receptor (51% in the transmembrane regions), and this gene, not expressed in the six brain regions examined, was localized to chromosome 17q2.1-q21.3. A third gene, GPR3, showed identity (56% in the transmembrane regions) with a previously characterized cDNA clone from rat and was localized to chromosome 1p35-p36.1. 31 refs., 5 figs., 1 tab.

  14. A genome-wide association study of seed protein and oil content in soybean.

    Science.gov (United States)

    Hwang, Eun-Young; Song, Qijian; Jia, Gaofeng; Specht, James E; Hyten, David L; Costa, Jose; Cregan, Perry B

    2014-01-02

    Association analysis is an alternative to conventional family-based methods to detect the location of gene(s) or quantitative trait loci (QTL) and provides relatively high resolution in terms of defining the genome position of a gene or QTL. Seed protein and oil concentration are quantitative traits which are determined by the interaction among many genes with small to moderate genetic effects and their interaction with the environment. In this study, a genome-wide association study (GWAS) was performed to identify quantitative trait loci (QTL) controlling seed protein and oil concentration in 298 soybean germplasm accessions exhibiting a wide range of seed protein and oil content. A total of 55,159 single nucleotide polymorphisms (SNPs) were genotyped using various methods including Illumina Infinium and GoldenGate assays and 31,954 markers with minor allele frequency >0.10 were used to estimate linkage disequilibrium (LD) in heterochromatic and euchromatic regions. In euchromatic regions, the mean LD (r2) rapidly declined to 0.2 within 360 Kbp, whereas the mean LD declined to 0.2 at 9,600 Kbp in heterochromatic regions. The GWAS results identified 40 SNPs in 17 different genomic regions significantly associated with seed protein. Of these, the five SNPs with the highest associations and seven adjacent SNPs were located in the 27.6-30.0 Mbp region of Gm20. A major seed protein QTL has been previously mapped to the same location and potential candidate genes have recently been identified in this region. The GWAS results also detected 25 SNPs in 13 different genomic regions associated with seed oil. Of these markers, seven SNPs had a significant association with both protein and oil. This research indicated that GWAS not only identified most of the previously reported QTL controlling seed protein and oil, but also resulted in narrower genomic regions than the regions reported as containing these QTL. The narrower GWAS-defined genome regions will allow more precise

  15. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.

    Science.gov (United States)

    Parra, R Gonzalo; Schafer, Nicholas P; Radusky, Leandro G; Tsai, Min-Yeh; Guzovsky, A Brenda; Wolynes, Peter G; Ferreiro, Diego U

    2016-07-08

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Functions of intrinsic disorder in transmembrane proteins

    DEFF Research Database (Denmark)

    Kjaergaard, Magnus; Kragelund, Birthe B.

    2017-01-01

    Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane...... receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like...... mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding...

  17. The epsins define a family of proteins that interact with components of the clathrin coat and contain a new protein module

    DEFF Research Database (Denmark)

    Rosenthal, J A; Chen, H; Slepnev, V I

    1999-01-01

    Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries. E...... fluorescent protein-epsin 2 mislocalizes components of the clathrin coat and inhibits clathrin-mediated endocytosis. The epsins define a new protein family implicated in membrane dynamics at the cell surface.......Epsin (epsin 1) is an interacting partner for the EH domain-containing region of Eps15 and has been implicated in conjunction with Eps15 in clathrin-mediated endocytosis. We report here the characterization of a similar protein (epsin 2), which we have cloned from human and rat brain libraries...

  18. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces.

    Science.gov (United States)

    Zerbe, Brandon S; Hall, David R; Vajda, Sandor; Whitty, Adrian; Kozakov, Dima

    2012-08-27

    In the context of protein-protein interactions, the term "hot spot" refers to a residue or cluster of residues that makes a major contribution to the binding free energy, as determined by alanine scanning mutagenesis. In contrast, in pharmaceutical research, a hot spot is a site on a target protein that has high propensity for ligand binding and hence is potentially important for drug discovery. Here we examine the relationship between these two hot spot concepts by comparing alanine scanning data for a set of 15 proteins with results from mapping the protein surfaces for sites that can bind fragment-sized small molecules. We find the two types of hot spots are largely complementary; the residues protruding into hot spot regions identified by computational mapping or experimental fragment screening are almost always themselves hot spot residues as defined by alanine scanning experiments. Conversely, a residue that is found by alanine scanning to contribute little to binding rarely interacts with hot spot regions on the partner protein identified by fragment mapping. In spite of the strong correlation between the two hot spot concepts, they fundamentally differ, however. In particular, while identification of a hot spot by alanine scanning establishes the potential to generate substantial interaction energy with a binding partner, there are additional topological requirements to be a hot spot for small molecule binding. Hence, only a minority of hot spots identified by alanine scanning represent sites that are potentially useful for small inhibitor binding, and it is this subset that is identified by experimental or computational fragment screening.

  19. Pro-region engineering for improved yeast display and secretion of brain derived neurotrophic factor.

    Science.gov (United States)

    Burns, Michael L; Malott, Thomas M; Metcalf, Kevin J; Puguh, Arthya; Chan, Jonah R; Shusta, Eric V

    2016-03-01

    Brain derived neurotrophic factor (BDNF) is a promising therapeutic candidate for a variety of neurological diseases. However, it is difficult to produce as a recombinant protein. In its native mammalian context, BDNF is first produced as a pro-protein with subsequent proteolytic removal of the pro-region to yield mature BDNF protein. Therefore, in an attempt to improve yeast as a host for heterologous BDNF production, the BDNF pro-region was first evaluated for its effects on BDNF surface display and secretion. Addition of the wild-type pro-region to yeast BDNF production constructs improved BDNF folding both as a surface-displayed and secreted protein in terms of binding its natural receptors TrkB and p75, but titers remained low. Looking to further enhance the chaperone-like functions provided by the pro-region, two rounds of directed evolution were performed, yielding mutated pro-regions that further improved the display and secretion properties of BDNF. Subsequent optimization of the protease recognition site was used to control whether the produced protein was in pro- or mature BDNF forms. Taken together, we have demonstrated an effective strategy for improving BDNF compatibility with yeast protein engineering and secretion platforms. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. (II.) Seven compounds containing 2 or 3 sulfate residues.

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Harada, T.; Sugahara, K.

    1992-01-01

    Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols were obtained from the carbohydrate-protein linkage region and six of them contain 0 or 1

  1. Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins.

    Science.gov (United States)

    Scott, David J

    2016-12-01

    Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments.

  2. Identification of FUSE-binding proteins as interacting partners of TIA proteins

    International Nuclear Information System (INIS)

    Rothe, Francoise; Gueydan, Cyril; Bellefroid, Eric; Huez, Georges; Kruys, Veronique

    2006-01-01

    TIA-1 and TIAR are closely related RNA-binding proteins involved in several mechanisms of RNA metabolism, including alternative hnRNA splicing and mRNA translation regulation. In particular, TIA-1 represses tumor necrosis factor (TNF) mRNA translation by binding to the AU-rich element (ARE) present in the mRNA 3' untranslated region. Here, we demonstrate that TIA proteins interact with FUSE-binding proteins (FBPs) and that fbp genes are co-expressed with tia genes during Xenopus embryogenesis. FBPs participate in various steps of RNA processing and degradation. In Cos cells, FBPs co-localize with TIA proteins in the nucleus and migrate into TIA-enriched cytoplasmic granules upon oxidative stress. Overexpression of FBP2-KH3 RNA-binding domain fused to EGFP induces the specific sequestration of TIA proteins in cytoplasmic foci, thereby precluding their nuclear accumulation. In cytosolic RAW 264.7 macrophage extracts, FBPs are found associated in EMSA to the TIA-1/TNF-ARE complex. Together, our results indicate that TIA and FBP proteins may thus be relevant biological involved in common events of RNA metabolism occurring both in the nucleus and the cytoplasm

  3. Templated Biomineralization on Self-Assembled Protein Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Subburaman,K.; Pernodet, N.; Kwak, S.; DiMasi, E.; Ge, S.; Zaitsev, V.; Ba, X.; Yang, N.; Rafailovich, M.

    2006-01-01

    Biological mineralization of tissues in living organisms relies on proteins that preferentially nucleate minerals and control their growth. This process is often referred to as 'templating', but this term has become generic, denoting various proposed mineral-organic interactions including both chemical and structural affinities. Here, we present an approach using self-assembled networks of elastin and fibronectin fibers, similar to the extracellular matrix. When induced onto negatively charged sulfonated polystyrene surfaces, these proteins form fiber networks of {approx}10-{mu}m spacing, leaving open regions of disorganized protein between them. We introduce an atomic force microscopy-based technique to measure the elastic modulus of both structured and disorganized protein before and during calcium carbonate mineralization. Mineral-induced thickening and stiffening of the protein fibers during early stages of mineralization is clearly demonstrated, well before discrete mineral crystals are large enough to image by atomic force microscopy. Calcium carbonate stiffens the protein fibers selectively without affecting the regions between them, emphasizing interactions between the mineral and the organized protein fibers. Late-stage observations by optical microscopy and secondary ion mass spectroscopy reveal that Ca is concentrated along the protein fibers and that crystals form preferentially on the fiber crossings. We demonstrate that organized versus unstructured proteins can be assembled mere nanometers apart and probed in identical environments, where mineralization is proved to require the structural organization imposed by fibrillogenesis of the extracellular matrix.

  4. Heterogeneity of proteins expressed by Brazilian Sporothrix schenckii isolates.

    Science.gov (United States)

    Fernandes, Geisa Ferreira; Do Amaral, Cristiane Candida; Sasaki, Alexandre; Godoy, Patrício Martinez; De Camargo, Zoilo Pires

    2009-12-01

    The profiles of proteins present in the exoantigens of Brazilian Sporothrix schenckii isolates were studied and compared by electrophoresis (SDS-PAGE). Thirteen isolates from five different regions of Brazil (1,000 to 2,000 km apart) and ten from a more limited region (200 to 400 km apart within the state of São Paulo) were cultured in Sabouraud, M199 and minimum (MM) media. Qualitative and quantitative differences in the expression of proteins, which varied according to the medium and the isolate, were observed. Fractions with the same MW but varying in intensity were detected, as well as fractions present in 1 isolate but absent in others. Dendrograms were constructed and isolates grouped based on the fractions obtained, irrespective of the intensity. The results showed that Brazilian S. schenckii isolates express different protein profiles, a feature also present in isolates from a more restricted region. The exoantigens were found to have a maximum of 15 protein fractions, ranging in MW from 19-220 KDaltons depending on the medium used for the cultures. These data show the great heterogeneity of Brazilian S. schenckii protein expression.

  5. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  6. Binding Direction-Based Two-Dimensional Flattened Contact Area Computing Algorithm for Protein–Protein Interactions

    Directory of Open Access Journals (Sweden)

    Beom Sik Kang

    2017-10-01

    Full Text Available Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.

  7. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  8. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  9. Identification of a hypothetical membrane protein interactor of ...

    Indian Academy of Sciences (India)

    Unknown

    characterized earlier through co-precipitation studies us- ing antibodies against this conserved carboxyl-terminal region (Rich and Steitz 1987). Protein P0 is also involved at the eEF2 elongation factor-binding domain, as demon- strated in yeast (Justice et al 1999). The P0 protein, and not P1 and P2 proteins, is essential for ...

  10. CalA, a Cyanobacterial AbrB Protein, Interacts with the Upstream Region of hypC and Acts as a Repressor of Its Transcription in the Cyanobacterium Nostoc sp. Strain PCC 7120▿ †

    Science.gov (United States)

    Agervald, Åsa; Zhang, Xiaohui; Stensjö, Karin; Devine, Ellenor; Lindblad, Peter

    2010-01-01

    The filamentous, heterocystous, nitrogen-fixing cyanobacterium Nostoc sp. strain PCC 7120 may contain, depending on growth conditions, up to two hydrogenases directly involved in hydrogen metabolism. HypC is one out of at least seven auxiliary gene products required for synthesis of a functional hydrogenase, specifically involved in the maturation of the large subunit. In this study we present a protein, CalA (Alr0946 in the genome), belonging to the transcription regulator family AbrB, which in protein-DNA assays was found to interact with the upstream region of hypC. Transcriptional investigations showed that calA is cotranscribed with the downstream gene alr0947, which encodes a putative protease from the abortive infection superfamily, Abi. CalA was shown to interact specifically not only with the upstream region of hypC but also with its own upstream region, acting as a repressor on hypC. The bidirectional hydrogenase activity was significantly downregulated when CalA was overexpressed, demonstrating a correlation with the transcription factor, either direct or indirect. In silico studies showed that homologues to both CalA and Alr0947 are highly conserved proteins within cyanobacteria with very similar physical organizations of the corresponding structural genes. Possible functions of the cotranscribed downstream protein Alr0947 are presented. In addition, we present a three-dimensional (3D) model of the DNA binding domain of CalA and putative DNA binding mechanisms are discussed. PMID:20023111

  11. Sequence variability is correlated with weak immunogenicity in Streptococcus pyogenes M protein.

    Science.gov (United States)

    Lannergård, Jonas; Kristensen, Bodil M; Gustafsson, Mattias C U; Persson, Jenny J; Norrby-Teglund, Anna; Stålhammar-Carlemalm, Margaretha; Lindahl, Gunnar

    2015-10-01

    The M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood. Here, we studied the antibody response to different regions of the classical M1 and M5 proteins, in which not only the HVR but also the adjacent fibrinogen-binding B repeat region exhibits extensive sequence divergence. Analysis of antisera from S. pyogenes-infected patients, infected mice, and immunized mice showed that both the HVR and the B repeat region elicited weak antibody responses, while the conserved carboxy-terminal part was immunodominant. Thus, we identified a correlation between sequence variability and weak immunogenicity for M protein regions. A potential explanation for the weak immunogenicity was provided by the demonstration that protease digestion selectively eliminated the HVR-B part from whole M protein-expressing bacteria. These data support a coherent model, in which the entire variable HVR-B part evades antibody attack, not only by sequence variability but also by weak immunogenicity resulting from protease attack. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins

    Directory of Open Access Journals (Sweden)

    Elisa E. Figueroa-Angulo

    2015-11-01

    Full Text Available Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs that interact with an iron responsive element (IRE located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  13. RNA-Binding Proteins in Trichomonas vaginalis: Atypical Multifunctional Proteins.

    Science.gov (United States)

    Figueroa-Angulo, Elisa E; Calla-Choque, Jaeson S; Mancilla-Olea, Maria Inocente; Arroyo, Rossana

    2015-11-26

    Iron homeostasis is highly regulated in vertebrates through a regulatory system mediated by RNA-protein interactions between the iron regulatory proteins (IRPs) that interact with an iron responsive element (IRE) located in certain mRNAs, dubbed the IRE-IRP regulatory system. Trichomonas vaginalis, the causal agent of trichomoniasis, presents high iron dependency to regulate its growth, metabolism, and virulence properties. Although T. vaginalis lacks IRPs or proteins with aconitase activity, possesses gene expression mechanisms of iron regulation at the transcriptional and posttranscriptional levels. However, only one gene with iron regulation at the transcriptional level has been described. Recently, our research group described an iron posttranscriptional regulatory mechanism in the T. vaginalis tvcp4 and tvcp12 cysteine proteinase mRNAs. The tvcp4 and tvcp12 mRNAs have a stem-loop structure in the 5'-coding region or in the 3'-UTR, respectively that interacts with T. vaginalis multifunctional proteins HSP70, α-Actinin, and Actin under iron starvation condition, causing translation inhibition or mRNA stabilization similar to the previously characterized IRE-IRP system in eukaryotes. Herein, we summarize recent progress and shed some light on atypical RNA-binding proteins that may participate in the iron posttranscriptional regulation in T. vaginalis.

  14. Genetic diversity of Plasmodium falciparum merozoite surface protein-1 block 2 in sites of contrasting altitudes and malaria endemicities in the Mount Cameroon region.

    Science.gov (United States)

    Wanji, Samuel; Kengne-Ouafo, Arnaud J; Eyong, Ebanga E Joan; Kimbi, Helen K; Tendongfor, Nicholas; Ndamukong-Nyanga, Judith L; Nana-Djeunga, Hugues C; Bourguinat, Catherine; Sofeu-Feugaing, David D; Charvet, Claude L

    2012-05-01

    The present study analyzed the relationship between the genetic diversity of Plasmodium falciparum and parasitologic/entomologic indices in the Mount Cameroon region by using merozoite surface protein 1 as a genetic marker. Blood samples were collected from asymptomatic children from three altitude zones (high, intermediate, and low). Parasitologic and entomologic indices were determined by microscopy and landing catch mosquito collection/circumsporozoite protein-enzyme-linked immunosorbent assay, respectively. A total of 142 randomly selected P. falciparum-positive blood samples were genotyped by using a nested polymerase chain reaction-based technique. K-1 polymerase chain reaction products were also sequenced. As opposed to high altitude, the highest malaria prevalence (70.65%) and entomologic inoculation rate (2.43 infective/bites/night) were recorded at a low altitude site. Seven (18.91%), 22 (36.66%), and 19 (42.22%) samples from high, intermediate, and low altitudes, respectively, contained multiclonal infections. A new K-1 polymorphism was identified. This study shows a positive non-linear association between low/intermediate altitude (high malaria transmission) and an increase in P. falciparum merozoite surface protein 1 block 2 polymorphisms.

  15. Content of intrinsic disorder influences the outcome of cell-free protein synthesis.

    Science.gov (United States)

    Tokmakov, Alexander A; Kurotani, Atsushi; Ikeda, Mariko; Terazawa, Yumiko; Shirouzu, Mikako; Stefanov, Vasily; Sakurai, Tetsuya; Yokoyama, Shigeyuki

    2015-09-11

    Cell-free protein synthesis is used to produce proteins with various structural traits. Recent bioinformatics analyses indicate that more than half of eukaryotic proteins possess long intrinsically disordered regions. However, no systematic study concerning the connection between intrinsic disorder and expression success of cell-free protein synthesis has been presented until now. To address this issue, we examined correlations of the experimentally observed cell-free protein expression yields with the contents of intrinsic disorder bioinformatically predicted in the expressed sequences. This analysis revealed strong relationships between intrinsic disorder and protein amenability to heterologous cell-free expression. On the one hand, elevated disorder content was associated with the increased ratio of soluble expression. On the other hand, overall propensity for detectable protein expression decreased with disorder content. We further demonstrated that these tendencies are rooted in some distinct features of intrinsically disordered regions, such as low hydrophobicity, elevated surface accessibility and high abundance of sequence motifs for proteolytic degradation, including sites of ubiquitination and PEST sequences. Our findings suggest that identification of intrinsically disordered regions in the expressed amino acid sequences can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

  16. Tetrahymena thermophila acidic ribosomal protein L37 contains an archaebacterial type of C-terminus.

    Science.gov (United States)

    Hansen, T S; Andreasen, P H; Dreisig, H; Højrup, P; Nielsen, H; Engberg, J; Kristiansen, K

    1991-09-15

    We have cloned and characterized a Tetrahymena thermophila macronuclear gene (L37) encoding the acidic ribosomal protein (A-protein) L37. The gene contains a single intron located in the 3'-part of the coding region. Two major and three minor transcription start points (tsp) were mapped 39 to 63 nucleotides upstream from the translational start codon. The uppermost tsp mapped to the first T in a putative T. thermophila RNA polymerase II initiator element, TATAA. The coding region of L37 predicts a protein of 109 amino acid (aa) residues. A substantial part of the deduced aa sequence was verified by protein sequencing. The T. thermophila L37 clearly belongs to the P1-type family of eukaryotic A-proteins, but the C-terminal region has the hallmarks of archaebacterial A-proteins.

  17. Accelerated degradation of the D2 protein of photosystem II under ultraviolet radiation

    International Nuclear Information System (INIS)

    Jansen, M.A.K.; Edelman, M.; Greenberg, B.M.; Gaba, V.

    1996-01-01

    The D2 protein of photosystem II is relatively stable in vivo under photosynthetic active radiation, but its degradation accelerates under UVB radiation. Little is known about accelerated D2 protein degradation. We characterized wavelength dependence and sensitivity toward photosystem II inhibitors. The in vivo D2 degradation spectrum resembles the pattern for the rapidly turning over D1 protein of photosystem II, with rates being maximal in the UVB region. We propose that D2 degradation, like D1 degradation, is activated by distinct photosensitizers in the UVB and visible regions of the spectrum. In both wavelength regions, photosystem II inhibitors that are known to be targeted to the D1 protein affect D2 degradation. This suggests that degradation of the two proteins is coupled, D2 degradation being influenced by events occurring at the Q B niche on the D1 protein. (Author)

  18. Nucleotide sequence of the Escherichia coli pyrE gene and of the DNA in front of the protein-coding region

    DEFF Research Database (Denmark)

    Poulsen, Peter; Jensen, Kaj Frank; Valentin-Hansen, Poul

    1983-01-01

    leader segment in front of the protein-coding region. This leader contains a structure with features characteristic for a (translated?) rho-independent transcriptional terminator, which is preceded by a cluster of uridylate residues. This indicates that the frequency of pyrE transcription is regulated......Orotate phosphoribosyltransferase (EC 2.4.2.10) was purified to electrophoretic homogeneity from a strain of Escherichia coli containing the pyrE gene cloned on a multicopy plasmid. The relative molecular masses (Mr) of the native enzyme and its subunit were estimated by means of gel filtration...

  19. A Multi-Region Magnetoimpedance-Based Bio-Analytical System for Ultrasensitive Simultaneous Determination of Cardiac Biomarkers Myoglobin and C-Reactive Protein.

    Science.gov (United States)

    Yang, Zhen; Wang, Huanhuan; Guo, Pengfei; Ding, Yuanyuan; Lei, Chong; Luo, Yongsong

    2018-06-01

    Cardiac biomarkers (CBs) are substances that appear in the blood when the heart is damaged or stressed. Measurements of the level of CBs can be used in course of diagnostics or monitoring the state of the health of group risk persons. A multi-region bio-analytical system (MRBAS) based on magnetoimpedance (MI) changes was proposed for ultrasensitive simultaneous detection of CBs myoglobin (Mb) and C-reactive protein (CRP). The microfluidic device was designed and developed using standard microfabrication techniques for their usage in different regions, which were pre-modified with specific antibody for specified detection. Mb and CRP antigens labels attached to commercial Dynabeads with selected concentrations were trapped in different detection regions. The MI response of the triple sensitive element was carefully evaluated in initial state and in the presence of biomarkers. The results showed that the MI-based bio-sensing system had high selectivity and sensitivity for detection of CBs. Compared with the control region, ultrasensitive detections of CRP and Mb were accomplished with the detection limits of 1.0 pg/mL and 0.1 pg/mL, respectively. The linear detection range contained low concentration detection area and high concentration detection area, which were 1 pg/mL⁻10 ng/mL, 10⁻100 ng/mL for CRP, and 0.1 pg/mL⁻1 ng/mL, 1 n/mL⁻80 ng/mL for Mb. The measurement technique presented here provides a new methodology for multi-target biomolecules rapid testing.

  20. BRICHOS - a superfamily of multidomain proteins with diverse functions

    Directory of Open Access Journals (Sweden)

    Johansson Jan

    2009-09-01

    Full Text Available Abstract Background The BRICHOS domain has been found in 8 protein families with a wide range of functions and a variety of disease associations, such as respiratory distress syndrome, dementia and cancer. The domain itself is thought to have a chaperone function, and indeed three of the families are associated with amyloid formation, but its structure and many of its functional properties are still unknown. Findings The proteins in the BRICHOS superfamily have four regions with distinct properties. We have analysed the BRICHOS proteins focusing on sequence conservation, amino acid residue properties, native disorder and secondary structure predictions. Residue conservation shows large variations between the regions, and the spread of residue conservation between different families can vary greatly within the regions. The secondary structure predictions for the BRICHOS proteins show remarkable coherence even where sequence conservation is low, and there seems to be little native disorder. Conclusions The greatly variant rates of conservation indicates different functional constraints among the regions and among the families. We present three previously unknown BRICHOS families; group A, which may be ancestral to the ITM2 families; group B, which is a close relative to the gastrokine families, and group C, which appears to be a truly novel, disjoint BRICHOS family. The C-terminal region of group C has nearly identical sequences in all species ranging from fish to man and is seemingly unique to this family, indicating critical functional or structural properties.

  1. Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins.

    Science.gov (United States)

    Marangon, Matteo; Van Sluyter, Steven C; Waters, Elizabeth J; Menz, Robert I

    2014-01-01

    Grape thaumatin-like proteins (TLPs) play roles in plant-pathogen interactions and can cause protein haze in white wine unless removed prior to bottling. Different isoforms of TLPs have different hazing potential and aggregation behavior. Here we present the elucidation of the molecular structures of three grape TLPs that display different hazing potential. The three TLPs have very similar structures despite belonging to two different classes (F2/4JRU is a thaumatin-like protein while I/4L5H and H2/4MBT are VVTL1), and having different unfolding temperatures (56 vs. 62°C), with protein F2/4JRU being heat unstable and forming haze, while I/4L5H does not. These differences in properties are attributable to the conformation of a single loop and the amino acid composition of its flanking regions.

  2. Trans-acting translational regulatory RNA binding proteins.

    Science.gov (United States)

    Harvey, Robert F; Smith, Tom S; Mulroney, Thomas; Queiroz, Rayner M L; Pizzinga, Mariavittoria; Dezi, Veronica; Villenueva, Eneko; Ramakrishna, Manasa; Lilley, Kathryn S; Willis, Anne E

    2018-05-01

    The canonical molecular machinery required for global mRNA translation and its control has been well defined, with distinct sets of proteins involved in the processes of translation initiation, elongation and termination. Additionally, noncanonical, trans-acting regulatory RNA-binding proteins (RBPs) are necessary to provide mRNA-specific translation, and these interact with 5' and 3' untranslated regions and coding regions of mRNA to regulate ribosome recruitment and transit. Recently it has also been demonstrated that trans-acting ribosomal proteins direct the translation of specific mRNAs. Importantly, it has been shown that subsets of RBPs often work in concert, forming distinct regulatory complexes upon different cellular perturbation, creating an RBP combinatorial code, which through the translation of specific subsets of mRNAs, dictate cell fate. With the development of new methodologies, a plethora of novel RNA binding proteins have recently been identified, although the function of many of these proteins within mRNA translation is unknown. In this review we will discuss these methodologies and their shortcomings when applied to the study of translation, which need to be addressed to enable a better understanding of trans-acting translational regulatory proteins. Moreover, we discuss the protein domains that are responsible for RNA binding as well as the RNA motifs to which they bind, and the role of trans-acting ribosomal proteins in directing the translation of specific mRNAs. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Translation > Translation Regulation Translation > Translation Mechanisms. © 2018 Medical Research Council and University of Cambridge. WIREs RNA published by Wiley Periodicals, Inc.

  3. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice

    NARCIS (Netherlands)

    Chen, Y.; Sun, A.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2014-01-01

    Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we

  4. Protein-membrane interaction and fatty acid transfer from intestinal fatty acid-binding protein to membranes. Support for a multistep process.

    Science.gov (United States)

    Falomir-Lockhart, Lisandro J; Laborde, Lisandro; Kahn, Peter C; Storch, Judith; Córsico, Betina

    2006-05-19

    Fatty acid transfer from intestinal fatty acid-binding protein (IFABP) to phospholipid membranes occurs during protein-membrane collisions. Electrostatic interactions involving the alpha-helical "portal" region of the protein have been shown to be of great importance. In the present study, the role of specific lysine residues in the alpha-helical region of IFABP was directly examined. A series of point mutants in rat IFABP was engineered in which the lysine positive charges in this domain were eliminated or reversed. Using a fluorescence resonance energy transfer assay, we analyzed the rates and mechanism of fatty acid transfer from wild type and mutant proteins to acceptor membranes. Most of the alpha-helical domain mutants showed slower absolute fatty acid transfer rates to zwitterionic membranes, with substitution of one of the lysines of the alpha2 helix, Lys27, resulting in a particularly dramatic decrease in the fatty acid transfer rate. Sensitivity to negatively charged phospholipid membranes was also reduced, with charge reversal mutants in the alpha2 helix the most affected. The results support the hypothesis that the portal region undergoes a conformational change during protein-membrane interaction, which leads to release of the bound fatty acid to the membrane and that the alpha2 segment is of particular importance in the establishment of charge-charge interactions between IFABP and membranes. Cross-linking experiments with a phospholipid-photoactivable reagent underscored the importance of charge-charge interactions, showing that the physical interaction between wild-type intestinal fatty acid-binding protein and phospholipid membranes is enhanced by electrostatic interactions. Protein-membrane interactions were also found to be enhanced by the presence of ligand, suggesting different collisional complex structures for holo- and apo-IFABP.

  5. A conserved phenylalanine as a relay between the α5 helix and the GDP binding region of heterotrimeric Gi protein α subunit.

    Science.gov (United States)

    Kaya, Ali I; Lokits, Alyssa D; Gilbert, James A; Iverson, Tina M; Meiler, Jens; Hamm, Heidi E

    2014-08-29

    G protein activation by G protein-coupled receptors is one of the critical steps for many cellular signal transduction pathways. Previously, we and other groups reported that the α5 helix in the G protein α subunit plays a major role during this activation process. However, the precise signaling pathway between the α5 helix and the guanosine diphosphate (GDP) binding pocket remains elusive. Here, using structural, biochemical, and computational techniques, we probed different residues around the α5 helix for their role in signaling. Our data showed that perturbing the Phe-336 residue disturbs hydrophobic interactions with the β2-β3 strands and α1 helix, leading to high basal nucleotide exchange. However, mutations in β strands β5 and β6 do not perturb G protein activation. We have highlighted critical residues that leverage Phe-336 as a relay. Conformational changes are transmitted starting from Phe-336 via β2-β3/α1 to Switch I and the phosphate binding loop, decreasing the stability of the GDP binding pocket and triggering nucleotide release. When the α1 and α5 helices were cross-linked, inhibiting the receptor-mediated displacement of the C-terminal α5 helix, mutation of Phe-336 still leads to high basal exchange rates. This suggests that unlike receptor-mediated activation, helix 5 rotation and translocation are not necessary for GDP release from the α subunit. Rather, destabilization of the backdoor region of the Gα subunit is sufficient for triggering the activation process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1993-01-01

    RNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S r......The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S r......)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there....

  7. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae.

    Science.gov (United States)

    Kurotani, Atsushi; Sakurai, Tetsuya

    2015-08-20

    Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  8. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae

    Directory of Open Access Journals (Sweden)

    Atsushi Kurotani

    2015-08-01

    Full Text Available Recent proteome analyses have reported that intrinsically disordered regions (IDRs of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.

  9. Anaplasma marginale major surface protein 2 CD4+-T-cell epitopes are evenly distributed in conserved and hypervariable regions (HVR), whereas linear B-cell epitopes are predominantly located in the HVR.

    Science.gov (United States)

    Abbott, Jeffrey R; Palmer, Guy H; Howard, Chris J; Hope, Jayne C; Brown, Wendy C

    2004-12-01

    Organisms in the genus Anaplasma express an immunodominant major surface protein 2 (MSP2), composed of a central hypervariable region (HVR) flanked by highly conserved regions. Throughout Anaplasma marginale infection, recombination results in the sequential appearance of novel MSP2 variants and subsequent control of rickettsemia by the immune response, leading to persistent infection. To determine whether immune evasion and selection for variant organisms is associated with a predominant response against HVR epitopes, T-cell and linear B-cell epitopes were localized by measuring peripheral blood gamma interferon-secreting cells, proliferation, and antibody binding to 27 overlapping peptides spanning MSP2 in 16 cattle. Similar numbers of MSP2-specific CD4(+) T-cell epitopes eliciting responses of similar magnitude were found in conserved and hypervariable regions. T-cell epitope clusters recognized by the majority of animals were identified in the HVR (amino acids [aa] 171 to 229) and conserved regions (aa 101 to 170 and 272 to 361). In contrast, linear B-cell epitopes were concentrated in the HVR, residing within hydrophilic sequences. The pattern of recognition of epitope clusters by T cells and of HVR epitopes by B cells is consistent with the influence of protein structure on epitope recognition.

  10. Identification of key residues for protein conformational transition using elastic network model.

    Science.gov (United States)

    Su, Ji Guo; Xu, Xian Jin; Li, Chun Hua; Chen, Wei Zu; Wang, Cun Xin

    2011-11-07

    Proteins usually undergo conformational transitions between structurally disparate states to fulfill their functions. The large-scale allosteric conformational transitions are believed to involve some key residues that mediate the conformational movements between different regions of the protein. In the present work, a thermodynamic method based on the elastic network model is proposed to predict the key residues involved in protein conformational transitions. In our method, the key functional sites are identified as the residues whose perturbations largely influence the free energy difference between the protein states before and after transition. Two proteins, nucleotide binding domain of the heat shock protein 70 and human/rat DNA polymerase β, are used as case studies to identify the critical residues responsible for their open-closed conformational transitions. The results show that the functionally important residues mainly locate at the following regions for these two proteins: (1) the bridging point at the interface between the subdomains that control the opening and closure of the binding cleft; (2) the hinge region between different subdomains, which mediates the cooperative motions between the corresponding subdomains; and (3) the substrate binding sites. The similarity in the positions of the key residues for these two proteins may indicate a common mechanism in their conformational transitions.

  11. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Science.gov (United States)

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  12. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    Directory of Open Access Journals (Sweden)

    Mihaly Varadi

    Full Text Available Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  13. Identification and modification of dynamical regions in proteins for alteration of enzyme catalytic effect

    Science.gov (United States)

    Agarwal, Pratul K.

    2013-04-09

    A method for analysis, control, and manipulation for improvement of the chemical reaction rate of a protein-mediated reaction is provided. Enzymes, which typically comprise protein molecules, are very efficient catalysts that enhance chemical reaction rates by many orders of magnitude. Enzymes are widely used for a number of functions in chemical, biochemical, pharmaceutical, and other purposes. The method identifies key protein vibration modes that control the chemical reaction rate of the protein-mediated reaction, providing identification of the factors that enable the enzymes to achieve the high rate of reaction enhancement. By controlling these factors, the function of enzymes may be modulated, i.e., the activity can either be increased for faster enzyme reaction or it can be decreased when a slower enzyme is desired. This method provides an inexpensive and efficient solution by utilizing computer simulations, in combination with available experimental data, to build suitable models and investigate the enzyme activity.

  14. Naturally-acquired humoral immune responses against the N- and C-termini of the Plasmodium vivax MSP1 protein in endemic regions of Brazil and Papua New Guinea using a multiplex assay

    Directory of Open Access Journals (Sweden)

    Alonso Pedro L

    2010-01-01

    Full Text Available Abstract Background Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. Methods Glutathione S-transferase (GST and GST-fusion proteins representing the N- terminus of the merozoite surface protein 1 of P. vivax, PvMSP1-N, and the C-terminus, PvMSP1-C, were covalently coupled to BioPlex carboxylated beads. Recombinant proteins and coupled beads were used, respectively, in ELISA and Bioplex assays using immune sera of P. vivax patients from Brazil and PNG to determine IgG and subclass responses. Concordances between the two methods in the seropositivity responses were evaluated using the Kappa statistic and the Spearman's rank correlation. Results The results using this methodology were compared with the classical microtitre enzyme-linked immnosorbent assay (ELISA, showing that the assay was sensitive, reproducible and had good concordance with ELISA; yet, further research into different statistical analyses seems desirable before claiming conclusive results exclusively based on multiplex assays. As expected, results demonstrated that PvMSP1 was immunogenic in natural infections of patients from different endemic regions of Brazil and Papua New Guinea (PNG, and that age correlated only with antibodies against the C-terminus part of the molecule. Furthermore, the IgG subclass profiles were different in these endemic regions having IgG3 predominantly recognizing PvMSP1 in Brazil and IgG1 predominantly recognizing PvMSP1 in PNG. Conclusions This study validates the use of the multiplex assay to measure naturally-acquired IgG antibodies against the merozoite surface protein 1 of P. vivax.

  15. Antimicrobial Activity of Human Prion Protein Is Mediated by Its N-Terminal Region

    OpenAIRE

    Pasupuleti, Mukesh; Roupe, Markus; Rydeng?rd, Victoria; Surewicz, Krystyna; Surewicz, Witold K.; Chalupka, Anna; Malmsten, Martin; S?rensen, Ole E.; Schmidtchen, Artur

    2009-01-01

    BACKGROUND: Cellular prion-related protein (PrP(c)) is a cell-surface protein that is ubiquitously expressed in the human body. The multifunctionality of PrP(c), and presence of an exposed cationic and heparin-binding N-terminus, a feature characterizing many antimicrobial peptides, made us hypothesize that PrP(c) could exert antimicrobial activity. METHODOLOGY AND PRINCIPAL FINDINGS: Intact recombinant PrP exerted antibacterial and antifungal effects at normal and low pH. Studies employing r...

  16. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  17. Prediction of beta-turns in proteins using the first-order Markov models.

    Science.gov (United States)

    Lin, Thy-Hou; Wang, Ging-Ming; Wang, Yen-Tseng

    2002-01-01

    We present a method based on the first-order Markov models for predicting simple beta-turns and loops containing multiple turns in proteins. Sequences of 338 proteins in a database are divided using the published turn criteria into the following three regions, namely, the turn, the boundary, and the nonturn ones. A transition probability matrix is constructed for either the turn or the nonturn region using the weighted transition probabilities computed for dipeptides identified from each region. There are two such matrices constructed for the boundary region since the transition probabilities for dipeptides immediately preceding or following a turn are different. The window used for scanning a protein sequence from amino (N-) to carboxyl (C-) terminal is a hexapeptide since the transition probability computed for a turn tetrapeptide is capped at both the N- and C- termini with a boundary transition probability indexed respectively from the two boundary transition matrices. A sum of the averaged product of the transition probabilities of all the hexapeptides involving each residue is computed. This is then weighted with a probability computed from assuming that all the hexapeptides are from the nonturn region to give the final prediction quantity. Both simple beta-turns and loops containing multiple turns in a protein are then identified by the rising of the prediction quantity computed. The performance of the prediction scheme or the percentage (%) of correct prediction is evaluated through computation of Matthews correlation coefficients for each protein predicted. It is found that the prediction method is capable of giving prediction results with better correlation between the percent of correct prediction and the Matthews correlation coefficients for a group of test proteins as compared with those predicted using some secondary structural prediction methods. The prediction accuracy for about 40% of proteins in the database or 50% of proteins in the test set is

  18. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  19. Achievements and Challenges in Computational Protein Design.

    Science.gov (United States)

    Samish, Ilan

    2017-01-01

    Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents the plethora of CPD approaches with the hope of providing a "CPD 101". These reflect on the broader structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic differential approaches towards different protein regions, (4) identification of key hot-spot residues and the relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects, (6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential designs. Future challenges also include dissemination of CPD software to the general use of life-sciences researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein structure and function and the relationships between the two along with the application of such know-how for the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.

  20. Structure of haze forming proteins in white wines: Vitis vinifera thaumatin-like proteins.

    Directory of Open Access Journals (Sweden)

    Matteo Marangon

    Full Text Available Grape thaumatin-like proteins (TLPs play roles in plant-pathogen interactions and can cause protein haze in white wine unless removed prior to bottling. Different isoforms of TLPs have different hazing potential and aggregation behavior. Here we present the elucidation of the molecular structures of three grape TLPs that display different hazing potential. The three TLPs have very similar structures despite belonging to two different classes (F2/4JRU is a thaumatin-like protein while I/4L5H and H2/4MBT are VVTL1, and having different unfolding temperatures (56 vs. 62°C, with protein F2/4JRU being heat unstable and forming haze, while I/4L5H does not. These differences in properties are attributable to the conformation of a single loop and the amino acid composition of its flanking regions.

  1. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.

    Science.gov (United States)

    Bogomolov, Andrey; Belikova, Valeria; Galyanin, Vladislav; Melenteva, Anastasiia; Meyer, Hans

    2017-05-15

    New technique of diffuse reflectance spectroscopic analysis of milk fat and total protein content in the visible (Vis) and adjacent near infrared (NIR) region (400-995nm) has been developed and tested. Sample analysis was performed through a probe having eight 200-µm fiber channels forming a linear array. One of the end fibers was used for the illumination and other seven - for the spectroscopic detection of diffusely reflected light. One of the detection channels was used as a reference to normalize the spectra and to convert them into absorbance-equivalent units. The method has been tested experimentally using a designed sample set prepared from industrial raw milk standards with widely varying fat and protein content. To increase the modelling robustness all milk samples were measured in three different homogenization degrees. Comprehensive data analysis has shown the advantage of combining both spectral and spatial resolution in the same measurement and revealed the most relevant channels and wavelength regions. The modelling accuracy was further improved using joint variable selection and preprocessing optimization method based on the genetic algorithm. The root mean-square errors of different validation methods were below 0.10% for fat and below 0.08% for total protein content. Based on the present experimental data, it was computationally shown that the full-spectrum analysis in this method can be replaced by a sensor measurement at several specific wavelengths, for instance, using light-emitting diodes (LEDs) for illumination. Two optimal sensor configurations have been suggested: with nine LEDs for the analysis of fat and seven - for protein content. Both simulated sensors exhibit nearly the same component determination accuracy as corresponding full-spectrum analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Efficient prediction of human protein-protein interactions at a global scale.

    Science.gov (United States)

    Schoenrock, Andrew; Samanfar, Bahram; Pitre, Sylvain; Hooshyar, Mohsen; Jin, Ke; Phillips, Charles A; Wang, Hui; Phanse, Sadhna; Omidi, Katayoun; Gui, Yuan; Alamgir, Md; Wong, Alex; Barrenäs, Fredrik; Babu, Mohan; Benson, Mikael; Langston, Michael A; Green, James R; Dehne, Frank; Golshani, Ashkan

    2014-12-10

    Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.

  3. Genetic diversity of the 3ꞌ and 5ꞌ untranslated regions of the ...

    African Journals Online (AJOL)

    Heat stress proteins are important factors in protecting cells against environmental stress. The HSP70.1 gene is one of the most important members of the heat stress protein family, which is essential for life, production and reproduction. In this study, partial regions of HSP70.1 (3ꞌ and 5ꞌ untranslated regions (UTRs)) were ...

  4. Formation of truncated proteins and high-molecular-mass aggregates upon soft illumination of photosynthetic proteins

    DEFF Research Database (Denmark)

    Rinalducci, Sara; Campostrini, Natascia; Antonioli, Paolo

    2005-01-01

    Different spot profiles were observed in 2D gel electrophoresis of thylakoid membranes performed either under complete darkness or by leaving the sample for a short time to low visible light. In the latter case, a large number of new spots with lower molecular masses, ranging between 15,000 and 25......,000 Da, were observed, and high-molecular-mass aggregates, seen as a smearing in the upper part of the gel, appeared in the region around 250 kDa. Identification of protein(s) contained in these new spots by MS/MS revealed that most of them are simply truncated proteins deriving from native ones...

  5. Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India

    Directory of Open Access Journals (Sweden)

    Bharti Praveen K

    2012-03-01

    Full Text Available Abstract Background Malaria continues to be a significant health problem in India. Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic. The genetic diversity of P. falciparum merozoite surface protein-1 (MSP-1 has been extensively studied from various parts of the world. However, limited data are available from India. The aim of the present study was a molecular characterization of block 2 region of MSP-1 gene from the tribal-dominated, forested region of Madhya Pradesh. Methods DNA sequencing analysis was carried out in 71 field isolates collected between July 2005 to November 2005 and in 98 field isolates collected from July 2009 to December 2009. Alleles identified by DNA sequencing were aligned with the strain 3D7 and polymorphism analysis was done by using Edit Sequence tool (DNASTAR. Results The malaria positivity was 26% in 2005, which rose to 29% in 2009 and P. falciparum prevalence was also increased from 72% in 2005 to 81% in 2009. The overall allelic prevalence was higher in K1 (51% followed by MAD20 (28% and RO33 (21% in 2005 while in 2009, RO33 was highest (40% followed by K1 (36% and MAD20 (24%. Conclusions The present study reports extensive genetic variations and dynamic evolution of block 2 region of MSP-1 in central India. Characterization of antigenic diversity in vaccine candidate antigens are valuable for future vaccine trials as well as understanding the population dynamics of P. falciparum parasites in this area.

  6. Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein

    International Nuclear Information System (INIS)

    Pearson, Margot N.; Rohrmann, George F.

    2004-01-01

    The predicted Env protein of insect retroviruses (errantiviruses) is related to the envelope fusion protein of a major division of the Baculoviridae. The highest degree of homology is found in a region that contains a furin cleavage site in the baculovirus proteins and an adjacent sequence that has the properties of a fusion peptide. In this investigation, the homologous region in the Env protein of the gypsy retrovirus of Drosophila melanogaster (DmegypV) was investigated. Alteration of the predicted DmegypV Env proteinase cleavage site from RIAR to AIAR significantly reduced cleavage of Env in both Spodoptera frugiperda (Sf-9) and D. melanogaster (S2) cell lines. When the predicted DmegypV Env cleavage site RIAR was substituted for the cleavage sequence RRKR in the Lymantria dispar nucleopolyhedrovirus fusion protein (LD130) sequence, cleavage of the hybrid LD130 molecules still occurred, although at a reduced level. The conserved 21-amino acid sequence just downstream of the cleavage site, which is thought to be the fusion peptide in LD130, was also characterized. When this sequence from DmegypV Env was substituted for the homologous sequence in LD130, cleavage still occurred, but no fusion was observed in either cell type. In addition, although a DmegypV-Env-green fluorescent protein construct localized to cell membranes, no cell fusion was observed

  7. Alteration of lysine 178 in the hinge region of the Escherichia coli ada protein interferes with activation of ada, but not alkA, transcription.

    OpenAIRE

    Saget, B M; Shevell, D E; Walker, G C

    1995-01-01

    The ada gene of Escherichia coli K-12 encodes the 39-kDa Ada protein, which consists of two domains joined by a hinge region that is sensitive to proteolytic cleavage in vitro. The amino-terminal domain has a DNA methyltransferase activity that repairs the S-diastereoisomer of methylphosphotriesters while the carboxyl-terminal domain has a DNA methyltransferase activity that repairs O6-methylguanine and O4-methylthymine lesions. Transfer of a methyl group to Cys-69 by repair of a methylphosph...

  8. WildSpan: mining structured motifs from protein sequences

    Directory of Open Access Journals (Sweden)

    Chen Chien-Yu

    2011-03-01

    Full Text Available Abstract Background Automatic extraction of motifs from biological sequences is an important research problem in study of molecular biology. For proteins, it is desired to discover sequence motifs containing a large number of wildcard symbols, as the residues associated with functional sites are usually largely separated in sequences. Discovering such patterns is time-consuming because abundant combinations exist when long gaps (a gap consists of one or more successive wildcards are considered. Mining algorithms often employ constraints to narrow down the search space in order to increase efficiency. However, improper constraint models might degrade the sensitivity and specificity of the motifs discovered by computational methods. We previously proposed a new constraint model to handle large wildcard regions for discovering functional motifs of proteins. The patterns that satisfy the proposed constraint model are called W-patterns. A W-pattern is a structured motif that groups motif symbols into pattern blocks interleaved with large irregular gaps. Considering large gaps reflects the fact that functional residues are not always from a single region of protein sequences, and restricting motif symbols into clusters corresponds to the observation that short motifs are frequently present within protein families. To efficiently discover W-patterns for large-scale sequence annotation and function prediction, this paper first formally introduces the problem to solve and proposes an algorithm named WildSpan (sequential pattern mining across large wildcard regions that incorporates several pruning strategies to largely reduce the mining cost. Results WildSpan is shown to efficiently find W-patterns containing conserved residues that are far separated in sequences. We conducted experiments with two mining strategies, protein-based and family-based mining, to evaluate the usefulness of W-patterns and performance of WildSpan. The protein-based mining mode

  9. Sound of proteins

    DEFF Research Database (Denmark)

    2007-01-01

    In my group we work with Molecular Dynamics to model several different proteins and protein systems. We submit our modelled molecules to changes in temperature, changes in solvent composition and even external pulling forces. To analyze our simulation results we have so far used visual inspection...... and statistical analysis of the resulting molecular trajectories (as everybody else!). However, recently I started assigning a particular sound frequency to each amino acid in the protein, and by setting the amplitude of each frequency according to the movement amplitude we can "hear" whenever two aminoacids...... example of soundfile was obtained from using Steered Molecular Dynamics for stretching the neck region of the scallop myosin molecule (in rigor, PDB-id: 1SR6), in such a way as to cause a rotation of the myosin head. Myosin is the molecule responsible for producing the force during muscle contraction...

  10. Pericentriolar Targeting of the Mouse Mammary Tumor Virus GAG Protein.

    Directory of Open Access Journals (Sweden)

    Guangzhi Zhang

    Full Text Available The Gag protein of the mouse mammary tumor virus (MMTV is the chief determinant of subcellular targeting. Electron microscopy studies show that MMTV Gag forms capsids within the cytoplasm and assembles as immature particles with MMTV RNA and the Y box binding protein-1, required for centrosome maturation. Other betaretroviruses, such as Mason-Pfizer monkey retrovirus (M-PMV, assemble adjacent to the pericentriolar region because of a cytoplasmic targeting and retention signal in the Matrix protein. Previous studies suggest that the MMTV Matrix protein may also harbor a similar cytoplasmic targeting and retention signal. Herein, we show that a substantial fraction of MMTV Gag localizes to the pericentriolar region. This was observed in HEK293T, HeLa human cell lines and the mouse derived NMuMG mammary gland cells. Moreover, MMTV capsids were observed adjacent to centrioles when expressed from plasmids encoding either MMTV Gag alone, Gag-Pro-Pol or full-length virus. We found that the cytoplasmic targeting and retention signal in the MMTV Matrix protein was sufficient for pericentriolar targeting, whereas mutation of the glutamine to alanine at position 56 (D56/A resulted in plasma membrane localization, similar to previous observations from mutational studies of M-PMV Gag. Furthermore, transmission electron microscopy studies showed that MMTV capsids accumulate around centrioles suggesting that, similar to M-PMV, the pericentriolar region may be a site for MMTV assembly. Together, the data imply that MMTV Gag targets the pericentriolar region as a result of the MMTV cytoplasmic targeting and retention signal, possibly aided by the Y box protein-1 required for the assembly of centrosomal microtubules.

  11. Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity.

    Science.gov (United States)

    Kuang, Y; Garcia-Higuera, I; Moran, A; Mondoux, M; Digweed, M; D'Andrea, A D

    2000-09-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with eight complementation groups. Four of the FA genes have been cloned, and at least three of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a nuclear complex, required for the maintenance of normal chromosome stability. In the current study, mutant forms of the FANCA and FANCG proteins have been generated and analyzed with respect to protein complex formation, nuclear translocation, and functional activity. The results demonstrate that the amino terminal two-thirds of FANCG (FANCG amino acids 1-428) binds to the amino terminal nuclear localization signal (NLS) of the FANCA protein. On the basis of 2-hybrid analysis, the FANCA/FANCG binding is a direct protein-protein interaction. Interestingly, a truncated mutant form of the FANCG protein, lacking the carboxy terminus, binds in a complex with FANCA and translocates to the nucleus; however, this mutant protein fails to bind to FANCC and fails to correct the mitomycin C sensitivity of an FA-G cell line. Taken together, these results demonstrate that binding of FANCG to the amino terminal FANCA NLS sequence is necessary but not sufficient for the functional activity of FANCG. Additional amino acid sequences at the carboxy terminus of FANCG are required for the binding of FANCC in the complex. (Blood. 2000;96:1625-1632)

  12. Identification of actin binding protein, ABP-280, as a binding partner of human Lnk adaptor protein.

    Science.gov (United States)

    He, X; Li, Y; Schembri-King, J; Jakes, S; Hayashi, J

    2000-08-01

    Human Lnk (hLnk) is an adaptor protein with multiple functional domains that regulates T cell activation signaling. In order to identify cellular Lnk binding partners, a yeast two-hybrid screening of human spleen cDNA library was carried out using human hLnk as bait. A polypeptide sequence identical to the C-terminal segment of the actin binding protein (ABP-280) was identified as a hLnk binding protein. The expressed hLnk and the FLAG tagged C-terminal 673 amino acid residues of ABP-280 or the endogenous ABP-280 in COS-7 cells could be co-immunoprecipitated using antibodies either to hLnk, FLAG or ABP-280, respectively. Furthermore, immunofluorescence confocal microscope showed that hLnk and ABP-280 co-localized at the plasma membrane and at juxtanuclear region of COS-7 cells. In Jurkat cells, the endogenous hLnk also associates with the endogenous ABP-280 indicating that the association of these two proteins is physiological. The interacting domains of both proteins were mapped using yeast two-hybrid assays. Our results indicate that hLnk binds to the residues 2006-2454 (repeats 19-23C) of ABP-280. The domain in hLnk that associates with ABP-280 was mapped to an interdomain region of 56 amino acids between pleckstrin homology and Src homology 2 domains. These results suggest that hLnk may exert its regulatory role through its association with ABP-280.

  13. HyCCAPP as a tool to characterize promoter DNA-protein interactions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Guillen-Ahlers, Hector; Rao, Prahlad K; Levenstein, Mark E; Kennedy-Darling, Julia; Perumalla, Danu S; Jadhav, Avinash Y L; Glenn, Jeremy P; Ludwig-Kubinski, Amy; Drigalenko, Eugene; Montoya, Maria J; Göring, Harald H; Anderson, Corianna D; Scalf, Mark; Gildersleeve, Heidi I S; Cole, Regina; Greene, Alexandra M; Oduro, Akua K; Lazarova, Katarina; Cesnik, Anthony J; Barfknecht, Jared; Cirillo, Lisa A; Gasch, Audrey P; Shortreed, Michael R; Smith, Lloyd M; Olivier, Michael

    2016-06-01

    Currently available methods for interrogating DNA-protein interactions at individual genomic loci have significant limitations, and make it difficult to work with unmodified cells or examine single-copy regions without specific antibodies. In this study, we describe a physiological application of the Hybridization Capture of Chromatin-Associated Proteins for Proteomics (HyCCAPP) methodology we have developed. Both novel and known locus-specific DNA-protein interactions were identified at the ENO2 and GAL1 promoter regions of Saccharomyces cerevisiae, and revealed subgroups of proteins present in significantly different levels at the loci in cells grown on glucose versus galactose as the carbon source. Results were validated using chromatin immunoprecipitation. Overall, our analysis demonstrates that HyCCAPP is an effective and flexible technology that does not require specific antibodies nor prior knowledge of locally occurring DNA-protein interactions and can now be used to identify changes in protein interactions at target regions in the genome in response to physiological challenges. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Small Proteins Can No Longer Be Ignored

    Science.gov (United States)

    Storz, Gisela; Wolf, Yuri I.; Ramamurthi, Kumaran S.

    2014-01-01

    Small proteins, here defined as proteins of 50 amino acids or less in the absence of processing, have traditionally been overlooked due to challenges in their annotation and biochemical detection. In the past several years however, increasing numbers of small proteins have been identified either through the realization that mutations in “intergenic” regions actually are within unannotated small protein genes, or through the discovery that some small, regulatory RNAs (sRNAs) encode small proteins. These insights together with comparative sequence analysis indicate that tens if not hundreds of small proteins are synthesized in a given organism. This review will summarize what has been learned about the functions of several of these bacterial small proteins, most of which act at the membrane, illustrating the astonishing range of processes in which the small proteins act and pointing to several general conclusions. Important questions for future studies of these overlooked proteins also will be discussed. PMID:24606146

  15. Genetic Diversity, Natural Selection and Haplotype Grouping of Plasmodium knowlesi Gamma Protein Region II (PkγRII): Comparison with the Duffy Binding Protein (PkDBPαRII).

    Science.gov (United States)

    Fong, Mun Yik; Rashdi, Sarah A A; Yusof, Ruhani; Lau, Yee Ling

    2016-01-01

    Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII) and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII) is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative) selection. The present study aimed to determine whether similar phenomena occur in PkγRII. Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright's FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3). A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes

  16. Genetic Diversity, Natural Selection and Haplotype Grouping of Plasmodium knowlesi Gamma Protein Region II (PkγRII: Comparison with the Duffy Binding Protein (PkDBPαRII.

    Directory of Open Access Journals (Sweden)

    Mun Yik Fong

    Full Text Available Plasmodium knowlesi is a simian malaria parasite that has been reported to cause malaria in humans in Southeast Asia. This parasite invades the erythrocytes of humans and of its natural host, the macaque Macaca fascicularis, via interaction between the Duffy binding protein region II (PkDBPαRII and the Duffy antigen receptor on the host erythrocytes. In contrast, the P. knowlesi gamma protein region II (PkγRII is not involved in the invasion of P. knowlesi into humans. PkγRII, however, mediates the invasion of P. knowlesi into the erythrocytes of M. mulata, a non-natural host of P. knowlesi via a hitherto unknown receptor. The haplotypes of PkDBPαRII in P. knowlesi isolates from Peninsular Malaysia and North Borneo have been shown to be genetically distinct and geographically clustered. Also, the PkDBPαRII was observed to be undergoing purifying (negative selection. The present study aimed to determine whether similar phenomena occur in PkγRII.Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00 programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright's FST fixation index in DnaSP (version 5.10.00. Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3.A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd and nucleotide diversity (π with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative selection, geographical clustering of

  17. The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.

    Directory of Open Access Journals (Sweden)

    Ari Morgenthau

    Full Text Available Lactoferrin binding protein B (LbpB is a bi-lobed membrane bound lipoprotein that is part of the lactoferrin receptor complex in a variety of Gram-negative pathogens. Despite high sequence diversity among LbpBs from various strains and species, a cluster of negatively charged amino acids is invariably present in the protein's C-terminal lobe in all species except Moraxella bovis. The function of LbpB in iron acquisition has yet to be experimentally demonstrated, whereas in vitro studies have shown that LbpB confers protection against lactoferricin, a short cationic antimicrobial peptide released from the N- terminus of lactoferrin. In this study we demonstrate that the negatively charged regions can be removed from the Neisseria meningitidis LbpB without compromising stability, and this results in the inability of LbpB to protect against the bactericidal effects of lactoferricin. The release of LbpB from the cell surface by the autotransporter NalP reduces the protection against lactoferricin in the in vitro killing assay, attributed to removal of LbpB during washing steps, but is unlikely to have a similar impact in vivo. The protective effect of the negatively charged polysaccharide capsule in the killing assay was less than the protection conferred by LbpB, suggesting that LbpB plays a major role in protection against cationic antimicrobial peptides in vivo. The selective release of LbpB by NalP has been proposed to be a mechanism for evading the adaptive immune response, by reducing the antibody binding to the cell surface, but may also provide insights into the primary function of LbpB in vivo. Although TbpB and LbpB have been shown to be major targets of the human immune response, the selective release of LbpB suggests that unlike TbpB, LbpB may not be essential for iron acquisition, but important for protection against cationic antimicrobial peptides.

  18. Modular organization of proteins containing C1q-like globular domain.

    Science.gov (United States)

    Kishore, U; Reid, K B

    1999-05-01

    The first step in the activation of the classical pathway of complement cascade by immune complexes involves the binding of the six globular heads of C1q to the Fc regions of immunoglobulin G (IgG) or immunoglobulin M (IgM). The globular heads of C1q are located C-terminal to the six triple-helical stalks present in the molecule, each head is considered to be composed of the C-terminal halves (3 x 135 residues) of one A-, one B- and one C-chain. It is not known if the C-terminal globular regions, present in each of the three types of chains, are independently folded modules (with each chain having distinct binding properties towards immunoglobulins) or whether the different binding functions of C1q are dependent upon a globular structure which relies on contributions from all three chains. Recent reports of recombinant production and characterisation of soluble globular head regions of all the three chains indicate that the globular regions of C1q may adopt a modular organization, i.e., each globular head of C1q may be composed of three, structurally and functionally, independent domains, thus retaining multivalency in the form of a heterotrimer. Modules of the same type as the C1q C-terminal module are also found in a variety of noncomplement proteins that include the C-terminal regions of the human type VIII and type X collagens, precerebellin, the chipmunk hibernation proteins, the human endothelial cell protein, multimerin, the serum protein, Acrp-30 which is secreted from mouse adipocytes, and the sunfish inner-ear specific structural protein. The C1q molecule is the only one of these proteins for which, to date, a function has been ascribed to the module. The existence of a shared structural region between C1q and certain collagens may suggest an evolutionarily common ancestral precursor. Various structural and biochemical data suggest that these modules may be responsible for multimerisation through patches of aromatic residues within them.

  19. Avian papillomaviruses: the parrot Psittacus erithacus papillomavirus (PePV genome has a unique organization of the early protein region and is phylogenetically related to the chaffinch papillomavirus

    Directory of Open Access Journals (Sweden)

    Jenson A Bennett

    2002-07-01

    Full Text Available Abstract Background An avian papillomavirus genome has been cloned from a cutaneous exophytic papilloma from an African grey parrot (Psittacus erithacus. The nucleotide sequence, genome organization, and phylogenetic position of the Psittacus erithacus papillomavirus (PePV were determined. This PePV sequence represents the first complete avian papillomavirus genome defined. Results The PePV genome (7304 basepairs differs from other papillomaviruses, in that it has a unique organization of the early protein region lacking classical E6 and E7 open reading frames. Phylogenetic comparison of the PePV sequence with partial E1 and L1 sequences of the chaffinch (Fringilla coelebs papillomavirus (FPV reveals that these two avian papillomaviruses form a monophyletic cluster with a common branch that originates near the unresolved center of the papillomavirus evolutionary tree. Conclusions The PePV genome has a unique layout of the early protein region which represents a novel prototypic genomic organization for avian papillomaviruses. The close relationship between PePV and FPV, and between their Psittaciformes and Passeriformes hosts, supports the hypothesis that papillomaviruses have co-evolved and speciated together with their host species throughout evolution.

  20. Protein biosynthesis in isolated human scalp hair follicles.

    Science.gov (United States)

    Vermorken, A J; Weterings, P J; Bloemendal, H

    1979-02-15

    The present study demonstrates that protein biosynthesis can be studied in single isolated human scalp hair follicles. The matrix and the sheath are the main regions where amino acids are built in. Incorporation is linear for at least five hours. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble and a urea-insoluble fraction. Product analysis has been performed on the first two fractions, revealing different protein patterns.

  1. Multiple structure-intrinsic disorder interactions regulate and coordinate Hox protein function

    Science.gov (United States)

    Bondos, Sarah

    During animal development, Hox transcription factors determine fate of developing tissues to generate diverse organs and appendages. Hox proteins are famous for their bizarre mutant phenotypes, such as replacing antennae with legs. Clearly, the functions of individual Hox proteins must be distinct and reliable in vivo, or the organism risks malformation or death. However, within the Hox protein family, the DNA-binding homeodomains are highly conserved and the amino acids that contact DNA are nearly invariant. These observations raise the question: How do different Hox proteins correctly identify their distinct target genes using a common DNA binding domain? One possible means to modulate DNA binding is through the influence of the non-homeodomain protein regions, which differ significantly among Hox proteins. However genetic approaches never detected intra-protein interactions, and early biochemical attempts were hindered because the special features of ``intrinsically disordered'' sequences were not appreciated. We propose the first-ever structural model of a Hox protein to explain how specific contacts between distant, intrinsically disordered regions of the protein and the homeodomain regulate DNA binding and coordinate this activity with other Hox molecular functions.

  2. Distribution and Evolution of Yersinia Leucine-Rich Repeat Proteins

    Science.gov (United States)

    Hu, Yueming; Huang, He; Hui, Xinjie; Cheng, Xi; White, Aaron P.

    2016-01-01

    Leucine-rich repeat (LRR) proteins are widely distributed in bacteria, playing important roles in various protein-protein interaction processes. In Yersinia, the well-characterized type III secreted effector YopM also belongs to the LRR protein family and is encoded by virulence plasmids. However, little has been known about other LRR members encoded by Yersinia genomes or their evolution. In this study, the Yersinia LRR proteins were comprehensively screened, categorized, and compared. The LRR proteins encoded by chromosomes (LRR1 proteins) appeared to be more similar to each other and different from those encoded by plasmids (LRR2 proteins) with regard to repeat-unit length, amino acid composition profile, and gene expression regulation circuits. LRR1 proteins were also different from LRR2 proteins in that the LRR1 proteins contained an E3 ligase domain (NEL domain) in the C-terminal region or an NEL domain-encoding nucleotide relic in flanking genomic sequences. The LRR1 protein-encoding genes (LRR1 genes) varied dramatically and were categorized into 4 subgroups (a to d), with the LRR1a to -c genes evolving from the same ancestor and LRR1d genes evolving from another ancestor. The consensus and ancestor repeat-unit sequences were inferred for different LRR1 protein subgroups by use of a maximum parsimony modeling strategy. Structural modeling disclosed very similar repeat-unit structures between LRR1 and LRR2 proteins despite the different unit lengths and amino acid compositions. Structural constraints may serve as the driving force to explain the observed mutations in the LRR regions. This study suggests that there may be functional variation and lays the foundation for future experiments investigating the functions of the chromosomally encoded LRR proteins of Yersinia. PMID:27217422

  3. The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins.

    Science.gov (United States)

    Dijk, J; van den Broek, R; Nasiulas, G; Beck, A; Reinhardt, R; Wittmann-Liebold, B

    1987-08-01

    The amino-terminal sequence of ribosomal protein L10 from Halobacterium marismortui has been determined up to residue 54, using both a liquid- and a gas-phase sequenator. The two sequences are in good agreement. The protein is clearly homologous to protein HcuL10 from the related strain Halobacterium cutirubrum. Furthermore, a weaker but distinct homology to ribosomal protein L6 from Escherichia coli and Bacillus stearothermophilus can be detected. In addition to 7 identical amino acids in the first 36 residues in all four sequences a number of conservative replacements occurs, of mainly hydrophobic amino acids. In this common region the pattern of conserved amino acids suggests the presence of a beta-alpha fold as it occurs in ribosomal proteins L12 and L30. Furthermore, several potential cases of homology to other ribosomal components of the three ur-kingdoms have been found.

  4. Changes in predicted protein disorder tendency may contribute to disease risk

    Directory of Open Access Journals (Sweden)

    Hu Yang

    2011-12-01

    Full Text Available Abstract Background Recent studies suggest that many proteins or regions of proteins lack 3D structure. Defined as intrinsically disordered proteins, these proteins/peptides are functionally important. Recent advances in next generation sequencing technologies enable genome-wide identification of novel nucleotide variations in a specific population or cohort. Results Using the exonic single nucleotide variations (SNVs identified in the 1,000 Genomes Project and distributed by the Genetic Analysis Workshop 17, we systematically analysed the genetic and predicted disorder potential features of the non-synonymous variations. The result of experiments suggests that a significant change in the tendency of a protein region to be structured or disordered caused by SNVs may lead to malfunction of such a protein and contribute to disease risk. Conclusions After validation with functional SNVs on the traits distributed by GAW17, we conclude that it is valuable to consider structure/disorder tendencies while prioritizing and predicting mechanistic effects arising from novel genetic variations.

  5. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A.

    Directory of Open Access Journals (Sweden)

    Margarita Zayas

    2016-01-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein (NS5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI and two intrinsically disordered domains (DII and DIII interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2. We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core-RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i SC-dependent recruitment of replication complexes to core protein and (ii BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.

  6. Depletion of WRN protein causes RACK1 to activate several protein kinase C isoforms

    DEFF Research Database (Denmark)

    Massip, L; Garand, C; Labbé, A

    2010-01-01

    show that a knock down of the WRN protein in normal human fibroblasts induces phosphorylation and activation of several protein kinase C (PKC) enzymes. Using a tandem affinity purification strategy, we found that WRN physically and functionally interacts with receptor for activated C-kinase 1 (RACK1......), a highly conserved anchoring protein involved in various biological processes, such as cell growth and proliferation. RACK1 binds strongly to the RQC domain of WRN and weakly to its acidic repeat region. Purified RACK1 has no impact on the helicase activity of WRN, but selectively inhibits WRN exonuclease...... activity in vitro. Interestingly, knocking down RACK1 increased the cellular frequency of DNA breaks. Depletion of the WRN protein in return caused a fraction of nuclear RACK1 to translocate out of the nucleus to bind and activate PKCdelta and PKCbetaII in the membrane fraction of cells. In contrast...

  7. Receptor-interacting protein (RIP) kinase family

    OpenAIRE

    Zhang, Duanwu; Lin, Juan; Han, Jiahuai

    2010-01-01

    Receptor-interacting protein (RIP) kinases are a group of threonine/serine protein kinases with a relatively conserved kinase domain but distinct non-kinase regions. A number of different domain structures, such as death and caspase activation and recruitment domain (CARD) domains, were found in different RIP family members, and these domains should be keys in determining the specific function of each RIP kinase. It is known that RIP kinases participate in different biological processes, incl...

  8. Glucose metabolism in different regions of the rat brain under hypokinetic stress influence

    Science.gov (United States)

    Konitzer, K.; Voigt, S.

    1980-01-01

    Glucose metabolism in rats kept under long term hypokinetic stress was studied in 7 brain regions. Determination was made of the regional levels of glucose, lactate, glutamate, glutamine, aspartate, gamma-aminobutyrate and the incorporation of C-14 from plasma glucose into these metabolites, in glycogen and protein. From the content and activity data the regional glucose flux was approximated quantitatively. Under normal conditions the activity gradient cortex and frontal pole cerebellum, thalamus and mesencephalon, hypothalamus and pons and medulla is identical with that of the regional blood supply (measured with I131 serum albumin as the blood marker). Within the first days of immobilization a functional hypoxia occurred in all brain regions and the utilization of cycle amino acids for protein synthesis was strongly diminished. After the first week of stress the capillary volumes of all regions increased, aerobic glucose metabolism was enhanced (factors 1.3 - 2.0) and the incorporation of glucose C-14 via cycle amino acids into protein was considerably potentiated. The metabolic parameters normalized between the 7th and 11th week of stress. Blood supply and metabolic rate increased most in the hypothalamus.

  9. fLPS: Fast discovery of compositional biases for the protein universe.

    Science.gov (United States)

    Harrison, Paul M

    2017-11-13

    Proteins often contain regions that are compositionally biased (CB), i.e., they are made from a small subset of amino-acid residue types. These CB regions can be functionally important, e.g., the prion-forming and prion-like regions that are rich in asparagine and glutamine residues. Here I report a new program fLPS that can rapidly annotate CB regions. It discovers both single-residue and multiple-residue biases. It works through a process of probability minimization. First, contigs are constructed for each amino-acid type out of sequence windows with a low degree of bias; second, these contigs are searched exhaustively for low-probability subsequences (LPSs); third, such LPSs are iteratively assessed for merger into possible multiple-residue biases. At each of these stages, efficiency measures are taken to avoid or delay probability calculations unless/until they are necessary. On a current desktop workstation, the fLPS algorithm can annotate the biased regions of the yeast proteome (>5700 sequences) in 65 million sequences) in as little as ~1 h, which is >2 times faster than the commonly used program SEG, using default parameters. fLPS discovers both shorter CB regions (of the sort that are often termed 'low-complexity sequence'), and milder biases that may only be detectable over long tracts of sequence. fLPS can readily handle very large protein data sets, such as might come from metagenomics projects. It is useful in searching for proteins with similar CB regions, and for making functional inferences about CB regions for a protein of interest. The fLPS package is available from: http://biology.mcgill.ca/faculty/harrison/flps.html , or https://github.com/pmharrison/flps , or is a supplement to this article.

  10. Brain region specific mitophagy capacity could contribute to selective neuronal vulnerability in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Zabel Claus

    2011-09-01

    Full Text Available Abstract Parkinson's disease (PD is histologically well defined by its characteristic degeneration of dopaminergic neurons in the substantia nigra pars compacta. Remarkably, divergent PD-related mutations can generate comparable brain region specific pathologies. This indicates that some intrinsic region-specificity respecting differential neuron vulnerability exists, which codetermines the disease progression. To gain insight into the pathomechanism of PD, we investigated protein expression and protein oxidation patterns of three different brain regions in a PD mouse model, the PINK1 knockout mice (PINK1-KO, in comparison to wild type control mice. The dysfunction of PINK1 presumably affects mitochondrial turnover by disturbing mitochondrial autophagic pathways. The three brain regions investigated are the midbrain, which is the location of substantia nigra; striatum, the major efferent region of substantia nigra; and cerebral cortex, which is more distal to PD pathology. In all three regions, mitochondrial proteins responsible for energy metabolism and membrane potential were significantly altered in the PINK1-KO mice, but with very different region specific accents in terms of up/down-regulations. This suggests that disturbed mitophagy presumably induced by PINK1 knockout has heterogeneous impacts on different brain regions. Specifically, the midbrain tissue seems to be most severely hit by defective mitochondrial turnover, whereas cortex and striatum could compensate for mitophagy nonfunction by feedback stimulation of other catabolic programs. In addition, cerebral cortex tissues showed the mildest level of protein oxidation in both PINK1-KO and wild type mice, indicating either a better oxidative protection or less reactive oxygen species (ROS pressure in this brain region. Ultra-structural histological examination in normal mouse brain revealed higher incidences of mitophagy vacuoles in cerebral cortex than in striatum and substantia

  11. An N-terminal Region of Mot-2 Binds to p53 In Vitro

    Directory of Open Access Journals (Sweden)

    Sunil C. Kaul

    2001-01-01

    Full Text Available The mouse mot-2 protein was earlier shown to bind to the tumor suppressor protein, p53. The mot-2 binding site of p53 was mapped to C-terminal amino acid residues 312–352, which includes the cytoplasmic sequestration domain. In the present study, we have found that both mot-1 and mot-2 bind to p53 in vitro. By using His-tagged deletion mutant proteins, the p53-binding domain of mot-2 was mapped to its Nterminal amino acid residues 253–282, which are identical in mot-1 and mot-2 proteins. Some peptides containing the p53-binding region of mot-2 were able to compete with the full-length protein for p53 binding. The data provided rationale for in vitro binding of mot-1 and mot-2 proteins to p53 and supported the conclusion that inability of mot-1 protein to bind p53 in vivo depends on secondary structure or its binding to other cellular factors. Most interestingly, the p53-binding region of mot-2 was common to its MKT-077, a cationic dye that exhibits antitumor activity, binding region. Therefore it is most likely that MKT-077-induced nuclear translocation and restoration of wild-type p53 function in transformed cells takes place by a competitional mechanism.

  12. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.

    1989-01-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  13. Multiple-Localization and Hub Proteins

    Science.gov (United States)

    Ota, Motonori; Gonja, Hideki; Koike, Ryotaro; Fukuchi, Satoshi

    2016-01-01

    Protein-protein interactions are fundamental for all biological phenomena, and protein-protein interaction networks provide a global view of the interactions. The hub proteins, with many interaction partners, play vital roles in the networks. We investigated the subcellular localizations of proteins in the human network, and found that the ones localized in multiple subcellular compartments, especially the nucleus/cytoplasm proteins (NCP), the cytoplasm/cell membrane proteins (CMP), and the nucleus/cytoplasm/cell membrane proteins (NCMP), tend to be hubs. Examinations of keywords suggested that among NCP, those related to post-translational modifications and transcription functions are the major contributors to the large number of interactions. These types of proteins are characterized by a multi-domain architecture and intrinsic disorder. A survey of the typical hub proteins with prominent numbers of interaction partners in the type revealed that most are either transcription factors or co-regulators involved in signaling pathways. They translocate from the cytoplasm to the nucleus, triggered by the phosphorylation and/or ubiquitination of intrinsically disordered regions. Among CMP and NCMP, the contributors to the numerous interactions are related to either kinase or ubiquitin ligase activity. Many of them reside on the cytoplasmic side of the cell membrane, and act as the upstream regulators of signaling pathways. Overall, these hub proteins function to transfer external signals to the nucleus, through the cell membrane and the cytoplasm. Our analysis suggests that multiple-localization is a crucial concept to characterize groups of hub proteins and their biological functions in cellular information processing. PMID:27285823

  14. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse; Zaher, Manal S.; Hamdan, Samir

    2018-01-01

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  15. PCNA Structure and Interactions with Partner Proteins

    KAUST Repository

    Oke, Muse

    2018-01-29

    Proliferating cell nuclear antigen (PCNA) consists of three identical monomers that topologically encircle double-stranded DNA. PCNA stimulates the processivity of DNA polymerase δ and, to a less extent, the intrinsically highly processive DNA polymerase ε. It also functions as a platform that recruits and coordinates the activities of a large number of DNA processing proteins. Emerging structural and biochemical studies suggest that the nature of PCNA-partner proteins interactions is complex. A hydrophobic groove at the front side of PCNA serves as a primary docking site for the consensus PIP box motifs present in many PCNA-binding partners. Sequences that immediately flank the PIP box motif or regions that are distant from it could also interact with the hydrophobic groove and other regions of PCNA. Posttranslational modifications on the backside of PCNA could add another dimension to its interaction with partner proteins. An encounter of PCNA with different DNA structures might also be involved in coordinating its interactions. Finally, the ability of PCNA to bind up to three proteins while topologically linked to DNA suggests that it would be a versatile toolbox in many different DNA processing reactions.

  16. Novel Xylene-Linked Maltoside Amphiphiles (XMAs) for Membrane Protein Stabilisation

    DEFF Research Database (Denmark)

    Cho, Kyung Ho; Du, Yang; Scull, Nicola J

    2015-01-01

    Membrane proteins are key functional players in biological systems. These biomacromolecules contain both hydrophilic and hydrophobic regions and thus amphipathic molecules are necessary to extract membrane proteins from their native lipid environments and stabilise them in aqueous solutions...

  17. Quantitative analysis of the interaction between the envelope protein domains and the core protein of human hepatitis B virus

    International Nuclear Information System (INIS)

    Choi, Kyoung-Jae; Lim, Chun-Woo; Yoon, Moon-Young; Ahn, Byung-Yoon; Yu, Yeon Gyu

    2004-01-01

    Interaction between preformed nucleocapsids and viral envelope proteins is critical for the assembly of virus particles in infected cells. The pre-S1 and pre-S2 and cytosolic regions of the human hepatitis B virus envelope protein had been implicated in the interaction with the core protein of nucleocapsids. The binding affinities of specific subdomains of the envelope protein to the core protein were quantitatively measured by both ELISA and BIAcore assay. While a marginal binding was detected with the pre-S1 or pre-S2, the core protein showed high affinities to pre-S with apparent dissociation constants (K D app ) of 7.3 ± 0.9 and 8.2 ± 0.4 μM by ELISA and BIAcore assay, respectively. The circular dichroism analysis suggested that conformational change occurs in pre-S through interaction with core protein. These results substantiate the importance of specific envelope domains in virion assembly, and demonstrate that the interaction between viral proteins can be quantitatively measured in vitro

  18. Shifts in renin-angiotensin system components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa region of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Qian, Xiaobing; Lin, Leilei; Zong, Yao; Yuan, Yongguang; Dong, Yanmin; Fu, Yue; Shao, Wanwen; Li, Yujie; Gao, Qianying

    2018-03-01

    This study aimed to analyse shifts in renin-angiotensin system (RAS) components, angiogenesis, and oxidative stress-related protein expression in the lamina cribrosa (LC) region in streptozotocin (STZ)-induced diabetic mice. Six months after diabetes induction, the retinal vessels of male C57BL/6 J mice were observed by colour photography, fundus fluorescein angiography (FFA), and immunofluorescent staining following incubation with CD31. Immunofluorescence for glial fibrillary acidic protein (GFAP), alpha-smooth muscle actin (α-SMA),and NG2 was also performed. Angiotensin-converting enzyme 1 (ACE1), angiotensin II type I receptor (AT1R), renin, hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR2), and haeme oxygenase 1 (HO-1) expression levels were confirmed by immunohistochemical and western blotting analyses. Compared with control mice, diabetic mice had significantly higher blood glucose concentrations (p diabetic mice; however, immunostaining of whole-mount retinas revealed an increased number of retinal vessels. Furthermore, histopathological staining showed significant reduction in the whole retinal thickness. GFAP expression was slightly higher, whereas fewer NG2 + pericytes were observed in diabetic mice than in control mice. ACE1, AT1R, renin, HIF-1α, VEGF, VEGFR2, and HO-1 expression were up-regulated in the LC of the STZ-induced diabetic mice. Collectively, ACE 1, AT1R, HIF-1α, VEGF, VEGFR2, and HO-1 activation in the LC region in diabetic mice may be involved in diabetes via the RAS and induction of angiogenesis and oxidative stress.

  19. Roles of beta-turns in protein folding: from peptide models to protein engineering.

    Science.gov (United States)

    Marcelino, Anna Marie C; Gierasch, Lila M

    2008-05-01

    Reverse turns are a major class of protein secondary structure; they represent sites of chain reversal and thus sites where the globular character of a protein is created. It has been speculated for many years that turns may nucleate the formation of structure in protein folding, as their propensity to occur will favor the approximation of their flanking regions and their general tendency to be hydrophilic will favor their disposition at the solvent-accessible surface. Reverse turns are local features, and it is therefore not surprising that their structural properties have been extensively studied using peptide models. In this article, we review research on peptide models of turns to test the hypothesis that the propensities of turns to form in short peptides will relate to the roles of corresponding sequences in protein folding. Turns with significant stability as isolated entities should actively promote the folding of a protein, and by contrast, turn sequences that merely allow the chain to adopt conformations required for chain reversal are predicted to be passive in the folding mechanism. We discuss results of protein engineering studies of the roles of turn residues in folding mechanisms. Factors that correlate with the importance of turns in folding indeed include their intrinsic stability, as well as their topological context and their participation in hydrophobic networks within the protein's structure.

  20. Juvenile Hippocampal CA2 Region Expresses Aggrecan

    Directory of Open Access Journals (Sweden)

    Asako Noguchi

    2017-05-01

    Full Text Available Perineuronal nets (PNNs are distributed primarily around inhibitory interneurons in the hippocampus, such as parvalbumin-positive interneurons. PNNs are also present around excitatory neurons in some brain regions and prevent plasticity in these neurons. A recent study demonstrated that PNNs also exist around mouse hippocampal pyramidal cells, which are the principle type of excitatory neurons, in the CA2 subregion and modulate the excitability and plasticity of these neurons. However, the development of PNNs in the CA2 region during postnatal maturation was not fully investigated. This study found that a main component of PNNs, aggrecan, existed in the pyramidal cell layer of the putative CA2 subarea prior to the appearance of the CA2 region, which was defined by the CA2 marker protein regulator of G protein signaling 14 (RGS14. We also found that aggrecan immunoreactivity was more evident in the anterior sections of the CA2 area than the posterior sections, which suggests that the function of CA2 PNNs varies along the anterior-posterior axis.

  1. Fast loop modeling for protein structures

    Science.gov (United States)

    Zhang, Jiong; Nguyen, Son; Shang, Yi; Xu, Dong; Kosztin, Ioan

    2015-03-01

    X-ray crystallography is the main method for determining 3D protein structures. In many cases, however, flexible loop regions of proteins cannot be resolved by this approach. This leads to incomplete structures in the protein data bank, preventing further computational study and analysis of these proteins. For instance, all-atom molecular dynamics (MD) simulation studies of structure-function relationship require complete protein structures. To address this shortcoming, we have developed and implemented an efficient computational method for building missing protein loops. The method is database driven and uses deep learning and multi-dimensional scaling algorithms. We have implemented the method as a simple stand-alone program, which can also be used as a plugin in existing molecular modeling software, e.g., VMD. The quality and stability of the generated structures are assessed and tested via energy scoring functions and by equilibrium MD simulations. The proposed method can also be used in template-based protein structure prediction. Work supported by the National Institutes of Health [R01 GM100701]. Computer time was provided by the University of Missouri Bioinformatics Consortium.

  2. Organization of functional domains in the docking protein p130Cas

    International Nuclear Information System (INIS)

    Nasertorabi, Fariborz; Garcia-Guzman, Miguel; Briknarova, Klara; Larsen, Elise; Havert, Marnie L.; Vuori, Kristiina; Ely, Kathryn R.

    2004-01-01

    The docking protein p130Cas becomes phosphorylated upon cell adhesion to extracellular matrix proteins, and is thought to play an essential role in cell transformation. Cas transmits signals through interactions with the Src-homology 3 (SH3) and Src-homology 2 domains of FAK or v-Crk signaling molecules, or with 14-3-3 protein, as well as phosphatases PTP1B and PTP-PEST. The large (130 kDa), multi-domain Cas molecule contains an SH3 domain, a Src-binding domain, a serine-rich protein interaction region, and a C-terminal region that participates in protein interactions implicated in antiestrogen resistance in breast cancer. In this study, as part of a long-term goal to examine the protein interactions of Cas by X-ray crystallography and nuclear magnetic resonance spectroscopy, molecular constructs were designed to express two adjacent domains, the serine-rich domain and the Src-binding domain, that each participate in intermolecular contacts dependent on protein phosphorylation. The protein products are soluble, homogeneous, monodisperse, and highly suitable for structural studies to define the role of Cas in integrin-mediated cell signaling

  3. Induction of complement proteins in a mouse model for cerebral microvascular Aβ deposition

    Directory of Open Access Journals (Sweden)

    DeFilippis Kelly

    2007-09-01

    Full Text Available Abstract The deposition of amyloid β-protein (Aβ in cerebral vasculature, known as cerebral amyloid angiopathy (CAA, is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the Aβ peptide have been linked to the increase of vascular Aβ deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-β precursor protein transgenic mice harboring two CAA Aβ mutations (Dutch E693Q and Iowa D694N that mimic the prevalent cerebral microvascular Aβ deposition observed in those patients, and the Swedish mutations (K670N/M671L to increase Aβ production. In these Tg-SwDI mice, we have reported predominant fibrillar Aβ along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular Aβ in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular Aβ. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus, C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular Aβ deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular Aβ deposition that is

  4. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    Science.gov (United States)

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  5. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2015-07-01

    Full Text Available Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  6. High resolution NMR spectroscopy of nanocrystalline proteins at ultra-high magnetic field

    International Nuclear Information System (INIS)

    Sperling, Lindsay J.; Nieuwkoop, Andrew J.; Lipton, Andrew S.; Berthold, Deborah A.; Rienstra, Chad M.

    2010-01-01

    Magic-angle spinning (MAS) solid-state NMR (SSNMR) spectroscopy of uniformly- 13 C, 15 N labeled protein samples provides insight into atomic-resolution chemistry and structure. Data collection efficiency has advanced remarkably in the last decade; however, the study of larger proteins is still challenged by relatively low resolution in comparison to solution NMR. In this study, we present a systematic analysis of SSNMR protein spectra acquired at 11.7, 17.6 and 21.1 Tesla ( 1 H frequencies of 500, 750, and 900 MHz). For two protein systems-GB1, a 6 kDa nanocrystalline protein and DsbA, a 21 kDa nanocrystalline protein-line narrowing is demonstrated in all spectral regions with increasing field. Resolution enhancement is greatest in the aliphatic region, including methine, methylene and methyl sites. The resolution for GB1 increases markedly as a function of field, and for DsbA, resolution in the C-C region increases by 42%, according to the number of peaks that can be uniquely picked and integrated in the 900 MHz spectra when compared to the 500 MHz spectra. Additionally, chemical exchange is uniquely observed in the highest field spectra for at least two isoleucine Cδ1 sites in DsbA. These results further illustrate the benefits of high-field MAS SSNMR spectroscopy for protein structural studies.

  7. Cellular Handling of Protein Aggregates by Disaggregation Machines.

    Science.gov (United States)

    Mogk, Axel; Bukau, Bernd; Kampinga, Harm H

    2018-01-18

    Both acute proteotoxic stresses that unfold proteins and expression of disease-causing mutant proteins that expose aggregation-prone regions can promote protein aggregation. Protein aggregates can interfere with cellular processes and deplete factors crucial for protein homeostasis. To cope with these challenges, cells are equipped with diverse folding and degradation activities to rescue or eliminate aggregated proteins. Here, we review the different chaperone disaggregation machines and their mechanisms of action. In all these machines, the coating of protein aggregates by Hsp70 chaperones represents the conserved, initializing step. In bacteria, fungi, and plants, Hsp70 recruits and activates Hsp100 disaggregases to extract aggregated proteins. In the cytosol of metazoa, Hsp70 is empowered by a specific cast of J-protein and Hsp110 co-chaperones allowing for standalone disaggregation activity. Both types of disaggregation machines are supported by small Hsps that sequester misfolded proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Polypeptide structure and encoding location of the adenovirus serotype 2 late, nonstructural 33K protein

    International Nuclear Information System (INIS)

    Oosterom-Dragon, E.A.; Anderson, C.W.

    1983-01-01

    Radiochemical microsequence analysis of selected tryptic peptides of the adenovirus type 2 33K nonstructural protein has revealed the precise region of the genomic nucleotide sequence that encodes this protein. The initiation codon for the 33K protein lies 606 nucleotides to the right of the EcoRI restriction site at 70.7 map units and 281 nucleotides to the left of the postulated carboxyterminal codon of the adenovirus 100K protein. The coding regions for these two proteins thus overlap; however, the 33K protein is derived from the +1 frame with respect to the postulated 100K reading frame. Our results contradict an earlier published report suggesting that these two proteins share extensive amino acid sequence homology. The published nucleotide sequence of the Ad2 EcoRI-F fragment (70.7 to 75.9 map units) cannot accomodate in a single reading frame the peptide sequences of the 33K protein that we have determined. Sequence analysis of DNA fragments derived from virus has confirmed the published nucleotide sequence in all critical regions with respect to the coding region for the 33K protein. Consequently, our data are only consistent with the existence of an mRNA splice within the coding for 33K. Consensus donor and acceptor splice sequences have been located that would predict the removal of 202 nucleotides from the transcripts for the 33K protein. Removal of these nucleotides would explain the structure of a peptide that cannot otherwise be directly encoded by the EcoRI-F fragment. Identification of the precise splice points by peptide sequencing has permitted a prediction of the complete amino acid sequence for the 33K protein

  9. The role of matricellular proteins in glaucoma.

    LENUS (Irish Health Repository)

    Wallace, Deborah M

    2014-07-01

    Glaucoma is an optic neuropathy affecting approximately 60million people worldwide and is the second most common cause of irreversible blindness. Elevated intraocular pressure (IOP) is the main risk factor for developing glaucoma and is caused by impaired aqueous humor drainage through the trabecular meshwork (TM) and Schlemm\\'s canal (SC). In primary open angle glaucoma (POAG), this elevation in IOP in turn leads to deformation at the optic nerve head (ONH) specifically at the lamina cribrosa (LC) region where there is also a deposition of extracellular matrix (ECM) molecules such as collagen and fibronectin. Matricellular proteins are non-structural secreted glycoproteins that help cells communicate with their surrounding ECM. This family of proteins includes connective tissue growth factor (CTGF), also known as CCN2, thrombospondins (TSPs), secreted protein acidic and rich in cysteine (SPARC), periostin, osteonectin, and Tenascin-C and -X and other ECM proteins. All members appear to play a role in fibrosis and increased ECM deposition. Most are widely expressed in tissues particularly in the TM and ONH and deficiency of TSP1 and SPARC have been shown to lower IOP in mouse models of glaucoma through enhanced outflow facility. The role of these proteins in glaucoma is emerging as some have an association with the pathophysiology of the TM and LC regions and might therefore be potential targets for therapeutic intervention in glaucoma.

  10. Conserved region at the COOH terminus of human immunodeficiency virus gp120 envelope protein contains an immunodominant epitope

    International Nuclear Information System (INIS)

    Palker, T.J.; Matthews, T.J.; Clark, M.E.

    1987-01-01

    A highly immunogenic epitope from a conserved COOH-terminal region of the human immunodeficiency virus (HIV) gp120 envelope protein has been identified with antisera from HIV-seropositive subjects and a synthetic peptide (SP-22) containing 15 amino acids from this region (Ala-Pro-Thr-Lys-Ala-Lys-Arg-Arg-Val-Val-Gln-Arg-Glu-Lys-Arg). Peptide SP-22 absorbed up to 100% of anti-gp120 antibody reactivity from select HIV + patient sera in immunoblot assays and up to 79% of serum anti-gp120 antibody reactivity in competition RIA. In RIA, 45% of HIV-seropositive subjects had antibodies that bound to peptide SP-22. Human anti-SP-22 antibodies that bound to and were eluted from an SP-22 affinity column reacted with gp120 in RIA and immunoblot assays but did not neutralize HIV or inhibit HIV-induced syncytium formation in vitro, even though these antibodies comprised 70% of all anti-gp120 antibodies in the test serum. In contrast, the remaining 30% of SP-22 nonreactive anti-gp120 antibodies did not react with gp120 in immunoblot assays but did react in RIA and neutralized HIV in vitro. Thus, ≅ 50% of HIV-seropositive patients make high titers of nonneutralizing antibodies to an immunodominant antigen on gp120 defined by SP-22. Moreover, the COOH terminus of gp120 contains the major antigen or antigens identified by human anti-gp120 antibodies in immunoblot assays

  11. In Search of Functional Advantages of Knots in Proteins.

    OpenAIRE

    Dabrowski-Tumanski, P.; Stasiak, A.; Sulkowska, J.I.

    2016-01-01

    We analysed the structure of deeply knotted proteins representing three unrelated families of knotted proteins. We looked at the correlation between positions of knotted cores in these proteins and such local structural characteristics as the number of intra-chain contacts, structural stability and solvent accessibility. We observed that the knotted cores and especially their borders showed strong enrichment in the number of contacts. These regions showed also increased thermal stability, whe...

  12. Refining intra-protein contact prediction by graph analysis

    Directory of Open Access Journals (Sweden)

    Eyal Eran

    2007-05-01

    Full Text Available Abstract Background Accurate prediction of intra-protein residue contacts from sequence information will allow the prediction of protein structures. Basic predictions of such specific contacts can be further refined by jointly analyzing predicted contacts, and by adding information on the relative positions of contacts in the protein primary sequence. Results We introduce a method for graph analysis refinement of intra-protein contacts, termed GARP. Our previously presented intra-contact prediction method by means of pair-to-pair substitution matrix (P2PConPred was used to test the GARP method. In our approach, the top contact predictions obtained by a basic prediction method were used as edges to create a weighted graph. The edges were scored by a mutual clustering coefficient that identifies highly connected graph regions, and by the density of edges between the sequence regions of the edge nodes. A test set of 57 proteins with known structures was used to determine contacts. GARP improves the accuracy of the P2PConPred basic prediction method in whole proteins from 12% to 18%. Conclusion Using a simple approach we increased the contact prediction accuracy of a basic method by 1.5 times. Our graph approach is simple to implement, can be used with various basic prediction methods, and can provide input for further downstream analyses.

  13. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    Science.gov (United States)

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  14. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.

    Science.gov (United States)

    Komar, Dorota N; Mouriz, Alfonso; Jarillo, José A; Piñeiro, Manuel

    2016-01-14

    Intricate gene regulatory networks orchestrate biological processes and developmental transitions in plants. Selective transcriptional activation and silencing of genes mediate the response of plants to environmental signals and developmental cues. Therefore, insights into the mechanisms that control plant gene expression are essential to gain a deep understanding of how biological processes are regulated in plants. The chromatin immunoprecipitation (ChIP) technique described here is a procedure to identify the DNA-binding sites of proteins in genes or genomic regions of the model species Arabidopsis thaliana. The interactions with DNA of proteins of interest such as transcription factors, chromatin proteins or posttranslationally modified versions of histones can be efficiently analyzed with the ChIP protocol. This method is based on the fixation of protein-DNA interactions in vivo, random fragmentation of chromatin, immunoprecipitation of protein-DNA complexes with specific antibodies, and quantification of the DNA associated with the protein of interest by PCR techniques. The use of this methodology in Arabidopsis has contributed significantly to unveil transcriptional regulatory mechanisms that control a variety of plant biological processes. This approach allowed the identification of the binding sites of the Arabidopsis chromatin protein EBS to regulatory regions of the master gene of flowering FT. The impact of this protein in the accumulation of particular histone marks in the genomic region of FT was also revealed through ChIP analysis.

  15. Tuning protein expression using synonymous codon libraries targeted to the 5' mRNA coding region

    DEFF Research Database (Denmark)

    Goltermann, Lise; Borch Jensen, Martin; Bentin, Thomas

    2011-01-01

    intermediate expression levels of green fluorescent protein in Escherichia coli. At least in one case, no apparent effect on protein stability was observed, pointing to RNA level effects as the principal reason for the observed expression differences. Targeting a synonymous codon library to the 5' coding...

  16. 1-D and 2-D electrophoresis protein profiles of the scorpion venom from Brotheas amazonicus

    Energy Technology Data Exchange (ETDEWEB)

    Higa, A.M.; Noronha, M.D.N. [Universidade do Estado do Amazonas (UEA), Manaus, AM (Brazil). Rede Proteomica do Amazonas (Proteam). Lab. de Genomica e Proteomica; Rocha-Oliveira, F.; Lopez-Lozano, J.L.L. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Pos-Graduacao em Biotecnologia

    2008-07-01

    Full text: Introduction: Scorpions venoms show specific neurotoxins to insect or mammals. These toxins are very important molecular tools to development of news drugs or bioinsecticides. Brotheas amazonicus scorpion is an endemic specie in Amazonian Rain Forest, but your venom do not show toxicity in humans. Information about biological specific activity on insect of this venom is not known yet. Objectives: Molecular protein toxins profiles of the venom from Brotheas amazonicus scorpion by 1-D and 2-D electrophoresis methods to detected toxins with potential biotech applications. Results: Several spots 'families' with {approx} 60, 70 and 80 kDa were detected in gel acidic region with pI {approx} 4,5 - 6 range, in the same region 1-D zimography showed proteolytic activity on gelatin and fibrinogen and proteolytic activity was inhibited by PMSF, suggesting scorpion serine proteinases. 50 kDa proteins were detected with pI {approx} 6,5 - 7 range. In 23 - 50 kDa gel acid region were observed some proteins. In 23 - 14 kDa gel acidic region were detected proteins with pI 4 - 7 range. 1-D Tris-tricine gel showed proteins with {approx} 7 kDa, suggesting scorpion neurotoxins. In gel basic region only 14 kDa proteins were observed with pI {approx} 9 - 10 range. Conclusion: Molecular profile of the scorpion venom from B. amazonicus showed proteins with high and low molecular masses, mainly with acidic pI. Proteolytic activity suggest serine proteinases with high molecular masses and 7 kDa proteins in B. amazonicus venom suggest scorpion neurotoxins. Purification and molecular characterization of these toxins are in course.

  17. 1-D and 2-D electrophoresis protein profiles of the scorpion venom from Brotheas amazonicus

    International Nuclear Information System (INIS)

    Higa, A.M.; Noronha, M.D.N.; Rocha-Oliveira, F.; Lopez-Lozano, J.L.L.

    2008-01-01

    Full text: Introduction: Scorpions venoms show specific neurotoxins to insect or mammals. These toxins are very important molecular tools to development of news drugs or bioinsecticides. Brotheas amazonicus scorpion is an endemic specie in Amazonian Rain Forest, but your venom do not show toxicity in humans. Information about biological specific activity on insect of this venom is not known yet. Objectives: Molecular protein toxins profiles of the venom from Brotheas amazonicus scorpion by 1-D and 2-D electrophoresis methods to detected toxins with potential biotech applications. Results: Several spots 'families' with ∼ 60, 70 and 80 kDa were detected in gel acidic region with pI ∼ 4,5 - 6 range, in the same region 1-D zimography showed proteolytic activity on gelatin and fibrinogen and proteolytic activity was inhibited by PMSF, suggesting scorpion serine proteinases. 50 kDa proteins were detected with pI ∼ 6,5 - 7 range. In 23 - 50 kDa gel acid region were observed some proteins. In 23 - 14 kDa gel acidic region were detected proteins with pI 4 - 7 range. 1-D Tris-tricine gel showed proteins with ∼ 7 kDa, suggesting scorpion neurotoxins. In gel basic region only 14 kDa proteins were observed with pI ∼ 9 - 10 range. Conclusion: Molecular profile of the scorpion venom from B. amazonicus showed proteins with high and low molecular masses, mainly with acidic pI. Proteolytic activity suggest serine proteinases with high molecular masses and 7 kDa proteins in B. amazonicus venom suggest scorpion neurotoxins. Purification and molecular characterization of these toxins are in course

  18. Chlamydia trachomatis Mip-like protein

    DEFF Research Database (Denmark)

    Lundemose, AG; Rousch, DA; Birkelund, Svend

    1992-01-01

    A 27 kDa Chlamydia trachomatis Mip-like protein with homology of a 175-amino-acid C-terminal fragment to the surface-exposed Legionella pneumophila mip-gene product has previously been described. In this paper the entire chlamydia Mip-like sequence of C. trachomatis serovar L2 (lymphogranuloma...... venereum (LGV) biovar) is presented. The sequence shows high similarity to the legionella Mip protein and its C-terminal region, like that of the legionella Mip, has high amino acid similarity to eukaryotic and prokaryotic FK506-binding proteins. The chlamydial mip-like gene was detected by polymerase...... chain reaction (PCR) in other C. trachomatis serovars and by sequencing of the mip-like genes of serovars B and E (trachoma biovar) was shown to be highly conserved within the two major biovars of C. trachomatis. Monoclonal and polyclonal antibodies raised against the recombinant Mip-like protein failed...

  19. Rapid comparison of properties on protein surface.

    Science.gov (United States)

    Sael, Lee; La, David; Li, Bin; Rustamov, Raif; Kihara, Daisuke

    2008-10-01

    The mapping of physicochemical characteristics onto the surface of a protein provides crucial insights into its function and evolution. This information can be further used in the characterization and identification of similarities within protein surface regions. We propose a novel method which quantitatively compares global and local properties on the protein surface. We have tested the method on comparison of electrostatic potentials and hydrophobicity. The method is based on 3D Zernike descriptors, which provides a compact representation of a given property defined on a protein surface. Compactness and rotational invariance of this descriptor enable fast comparison suitable for database searches. The usefulness of this method is exemplified by studying several protein families including globins, thermophilic and mesophilic proteins, and active sites of TIM beta/alpha barrel proteins. In all the cases studied, the descriptor is able to cluster proteins into functionally relevant groups. The proposed approach can also be easily extended to other surface properties. This protein surface-based approach will add a new way of viewing and comparing proteins to conventional methods, which compare proteins in terms of their primary sequence or tertiary structure.

  20. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  1. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer.

    Science.gov (United States)

    Chen, Shuai; Wang, Han; Huang, Yu-Fan; Li, Ming-Li; Cheng, Jiang-Hong; Hu, Peng; Lu, Chuan-Hui; Zhang, Ya; Liu, Na; Tzeng, Chi-Meng; Zhang, Zhi-Ming

    2017-07-19

    The WW domain is composed of 38 to 40 semi-conserved amino acids shared with structural, regulatory, and signaling proteins. WW domain-binding protein 2 (WBP2), as a binding partner of WW domain protein, interacts with several WW-domain-containing proteins, such as Yes kinase-associated protein (Yap), paired box gene 8 (Pax8), WW-domain-containing transcription regulator protein 1 (TAZ), and WW-domain-containing oxidoreductase (WWOX) through its PPxY motifs within C-terminal region, and further triggers the downstream signaling pathway in vitro and in vivo. Studies have confirmed that phosphorylated form of WBP2 can move into nuclei and activate the transcription of estrogen receptor (ER) and progesterone receptor (PR), whose expression were the indicators of breast cancer development, indicating that WBP2 may participate in the progression of breast cancer. Both overexpression of WBP2 and activation of tyrosine phosphorylation upregulate the signal cascades in the cross-regulation of the Wnt and ER signaling pathways in breast cancer. Following the binding of WBP2 to the WW domain region of TAZ which can accelerate migration, invasion and is required for the transformed phenotypes of breast cancer cells, the transformation of epithelial to mesenchymal of MCF10A is activated, suggesting that WBP2 is a key player in regulating cell migration. When WBP2 binds with WWOX, a tumor suppressor, ER transactivation and tumor growth can be suppressed. Thus, WBP2 may serve as a molecular on/off switch that controls the crosstalk between E2, WWOX, Wnt, TAZ, and other oncogenic signaling pathways. This review interprets the relationship between WBP2 and breast cancer, and provides comprehensive views about the function of WBP2 in the regulation of the pathogenesis of breast cancer and endocrine therapy in breast cancer treatment.

  2. IN-MACA-MCC: Integrated Multiple Attractor Cellular Automata with Modified Clonal Classifier for Human Protein Coding and Promoter Prediction

    Directory of Open Access Journals (Sweden)

    Kiran Sree Pokkuluri

    2014-01-01

    Full Text Available Protein coding and promoter region predictions are very important challenges of bioinformatics (Attwood and Teresa, 2000. The identification of these regions plays a crucial role in understanding the genes. Many novel computational and mathematical methods are introduced as well as existing methods that are getting refined for predicting both of the regions separately; still there is a scope for improvement. We propose a classifier that is built with MACA (multiple attractor cellular automata and MCC (modified clonal classifier to predict both regions with a single classifier. The proposed classifier is trained and tested with Fickett and Tung (1992 datasets for protein coding region prediction for DNA sequences of lengths 54, 108, and 162. This classifier is trained and tested with MMCRI datasets for protein coding region prediction for DNA sequences of lengths 252 and 354. The proposed classifier is trained and tested with promoter sequences from DBTSS (Yamashita et al., 2006 dataset and nonpromoters from EID (Saxonov et al., 2000 and UTRdb (Pesole et al., 2002 datasets. The proposed model can predict both regions with an average accuracy of 90.5% for promoter and 89.6% for protein coding region predictions. The specificity and sensitivity values of promoter and protein coding region predictions are 0.89 and 0.92, respectively.

  3. Consensus coding sequence (CCDS) database: a standardized set of human and mouse protein-coding regions supported by expert curation.

    Science.gov (United States)

    Pujar, Shashikant; O'Leary, Nuala A; Farrell, Catherine M; Loveland, Jane E; Mudge, Jonathan M; Wallin, Craig; Girón, Carlos G; Diekhans, Mark; Barnes, If; Bennett, Ruth; Berry, Andrew E; Cox, Eric; Davidson, Claire; Goldfarb, Tamara; Gonzalez, Jose M; Hunt, Toby; Jackson, John; Joardar, Vinita; Kay, Mike P; Kodali, Vamsi K; Martin, Fergal J; McAndrews, Monica; McGarvey, Kelly M; Murphy, Michael; Rajput, Bhanu; Rangwala, Sanjida H; Riddick, Lillian D; Seal, Ruth L; Suner, Marie-Marthe; Webb, David; Zhu, Sophia; Aken, Bronwen L; Bruford, Elspeth A; Bult, Carol J; Frankish, Adam; Murphy, Terence; Pruitt, Kim D

    2018-01-04

    The Consensus Coding Sequence (CCDS) project provides a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assembly in genome annotations produced independently by NCBI and the Ensembl group at EMBL-EBI. This dataset is the product of an international collaboration that includes NCBI, Ensembl, HUGO Gene Nomenclature Committee, Mouse Genome Informatics and University of California, Santa Cruz. Identically annotated coding regions, which are generated using an automated pipeline and pass multiple quality assurance checks, are assigned a stable and tracked identifier (CCDS ID). Additionally, coordinated manual review by expert curators from the CCDS collaboration helps in maintaining the integrity and high quality of the dataset. The CCDS data are available through an interactive web page (https://www.ncbi.nlm.nih.gov/CCDS/CcdsBrowse.cgi) and an FTP site (ftp://ftp.ncbi.nlm.nih.gov/pub/CCDS/). In this paper, we outline the ongoing work, growth and stability of the CCDS dataset and provide updates on new collaboration members and new features added to the CCDS user interface. We also present expert curation scenarios, with specific examples highlighting the importance of an accurate reference genome assembly and the crucial role played by input from the research community. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  4. Bound water at protein-protein interfaces: partners, roles and hydrophobic bubbles as a conserved motif.

    Directory of Open Access Journals (Sweden)

    Mostafa H Ahmed

    Full Text Available There is a great interest in understanding and exploiting protein-protein associations as new routes for treating human disease. However, these associations are difficult to structurally characterize or model although the number of X-ray structures for protein-protein complexes is expanding. One feature of these complexes that has received little attention is the role of water molecules in the interfacial region.A data set of 4741 water molecules abstracted from 179 high-resolution (≤ 2.30 Å X-ray crystal structures of protein-protein complexes was analyzed with a suite of modeling tools based on the HINT forcefield and hydrogen-bonding geometry. A metric termed Relevance was used to classify the general roles of the water molecules.The water molecules were found to be involved in: a (bridging interactions with both proteins (21%, b favorable interactions with only one protein (53%, and c no interactions with either protein (26%. This trend is shown to be independent of the crystallographic resolution. Interactions with residue backbones are consistent for all classes and account for 21.5% of all interactions. Interactions with polar residues are significantly more common for the first group and interactions with non-polar residues dominate the last group. Waters interacting with both proteins stabilize on average the proteins' interaction (-0.46 kcal mol(-1, but the overall average contribution of a single water to the protein-protein interaction energy is unfavorable (+0.03 kcal mol(-1. Analysis of the waters without favorable interactions with either protein suggests that this is a conserved phenomenon: 42% of these waters have SASA ≤ 10 Å(2 and are thus largely buried, and 69% of these are within predominantly hydrophobic environments or "hydrophobic bubbles". Such water molecules may have an important biological purpose in mediating protein-protein interactions.

  5. Quantifying the mechanisms of domain gain in animal proteins.

    Science.gov (United States)

    Buljan, Marija; Frankish, Adam; Bateman, Alex

    2010-01-01

    Protein domains are protein regions that are shared among different proteins and are frequently functionally and structurally independent from the rest of the protein. Novel domain combinations have a major role in evolutionary innovation. However, the relative contributions of the different molecular mechanisms that underlie domain gains in animals are still unknown. By using animal gene phylogenies we were able to identify a set of high confidence domain gain events and by looking at their coding DNA investigate the causative mechanisms. Here we show that the major mechanism for gains of new domains in metazoan proteins is likely to be gene fusion through joining of exons from adjacent genes, possibly mediated by non-allelic homologous recombination. Retroposition and insertion of exons into ancestral introns through intronic recombination are, in contrast to previous expectations, only minor contributors to domain gains and have accounted for less than 1% and 10% of high confidence domain gain events, respectively. Additionally, exonization of previously non-coding regions appears to be an important mechanism for addition of disordered segments to proteins. We observe that gene duplication has preceded domain gain in at least 80% of the gain events. The interplay of gene duplication and domain gain demonstrates an important mechanism for fast neofunctionalization of genes.

  6. Characterization of seed storage protein patterns of Heliotropium digynum.

    Science.gov (United States)

    Alwhibi, Mona Soliman

    2017-09-01

    Heliotropium digynum , is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8) software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir'iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  7. Imaging mass spectrometry in papillary thyroid carcinoma for the identification and validation of biomarker proteins.

    Science.gov (United States)

    Min, Kyueng-Whan; Bang, Joo-Young; Kim, Kwang Pyo; Kim, Wan-Seop; Lee, Sang Hwa; Shanta, Selina Rahman; Lee, Jeong Hwa; Hong, Ji Hye; Lim, So Dug; Yoo, Young-Bum; Na, Chan-Hyun

    2014-07-01

    Direct tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization and time-of-flight (MALDI-TOF) mass spectrometry has become increasingly important in biology and medicine, because this technology can detect the relative abundance and spatial distribution of interesting proteins in tissues. Five thyroid cancer samples, along with normal tissue, were sliced and transferred onto conductive glass slides. After laser scanning by MALDI-TOF equipped with a smart beam laser, images were created for individual masses and proteins were classified at 200-µm spatial resolution. Based on the spatial distribution, region-specific proteins on a tumor lesion could be identified by protein extraction from tumor tissue and analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using all the spectral data at each spot, various intensities of a specific peak were detected in the tumor and normal regions of the thyroid. Differences in the molecular weights of expressed proteins between tumor and normal regions were analyzed using unsupervised and supervised clustering. To verify the presence of discovered proteins through IMS, we identified ribosomal protein P2, which is specific for cancer. We have demonstrated the feasibility of IMS as a useful tool for the analysis of tissue sections, and identified the tumor-specific protein ribosomal protein P2.

  8. Conformational analysis of g protein-coupled receptor signaling by hydrogen/deuterium exchange mass spectrometry.

    Science.gov (United States)

    Li, Sheng; Lee, Su Youn; Chung, Ka Young

    2015-01-01

    Conformational change and protein-protein interactions are two major mechanisms of membrane protein signal transduction, including G protein-coupled receptors (GPCRs). Upon agonist binding, GPCRs change conformation, resulting in interaction with downstream signaling molecules such as G proteins. To understand the precise signaling mechanism, studies have investigated the structural mechanism of GPCR signaling using X-ray crystallography, nuclear magnetic resonance (NMR), or electron paramagnetic resonance. In addition to these techniques, hydrogen/deuterium exchange mass spectrometry (HDX-MS) has recently been used in GPCR studies. HDX-MS measures the rate at which peptide amide hydrogens exchange with deuterium in the solvent. Exposed or flexible regions have higher exchange rates and excluded or ordered regions have lower exchange rates. Therefore, HDX-MS is a useful tool for studying protein-protein interfaces and conformational changes after protein activation or protein-protein interactions. Although HDX-MS does not give high-resolution structures, it analyzes protein conformations that are difficult to study with X-ray crystallography or NMR. Furthermore, conformational information from HDX-MS can help in the crystallization of X-ray crystallography by suggesting highly flexible regions. Interactions between GPCRs and downstream signaling molecules are not easily analyzed by X-ray crystallography or NMR because of the large size of the GPCR-signaling molecule complexes, hydrophobicity, and flexibility of GPCRs. HDX-MS could be useful for analyzing the conformational mechanism of GPCR signaling. In this chapter, we discuss details of HDX-MS for analyzing GPCRs using the β2AR-G protein complex as a model system. © 2015 Elsevier Inc. All rights reserved.

  9. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts.

    Science.gov (United States)

    Carbonell, Alberto; Maliogka, Varvara I; Pérez, José de Jesús; Salvador, Beatriz; León, David San; García, Juan Antonio; Simón-Mateo, Carmen

    2013-10-01

    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.

  10. Tumor protein D52 expression is post-transcriptionally regulated by T-cell intercellular antigen (TIA) 1 and TIA-related protein via mRNA stability.

    Science.gov (United States)

    Motohashi, Hiromi; Mukudai, Yoshiki; Ito, Chihiro; Kato, Kosuke; Shimane, Toshikazu; Kondo, Seiji; Shirota, Tatsuo

    2017-05-04

    Although tumor protein D52 (TPD52) family proteins were first identified nearly 20 years ago, their molecular regulatory mechanisms remain unclear. Therefore, we investigated the post-transcriptional regulation of TPD52 family genes. An RNA immunoprecipitation (RIP) assay showed the potential binding ability of TPD52 family mRNAs to several RNA-binding proteins, and an RNA degradation assay revealed that TPD52 is subject to more prominent post-transcriptional regulation than are TPD53 and TPD54. We subsequently focused on the 3'-untranslated region (3'-UTR) of TPD52 as a cis -acting element in post-transcriptional gene regulation. Several deletion mutants of the 3'-UTR of TPD52 mRNA were constructed and ligated to the 3'-end of a reporter green fluorescence protein gene. An RNA degradation assay revealed that a minimal cis -acting region, located in the 78-280 region of the 5'-proximal region of the 3'-UTR, stabilized the reporter mRNA. Biotin pull-down and RIP assays revealed specific binding of the region to T-cell intracellular antigen 1 (TIA-1) and TIA-1-related protein (TIAR). Knockdown of TIA-1/TIAR decreased not only the expression, but also the stability of TPD52 mRNA; it also decreased the expression and stability of the reporter gene ligated to the 3'-end of the 78-280 fragment. Stimulation of transforming growth factor-β and epidermal growth factor decreased the binding ability of these factors, resulting in decreased mRNA stability. These results indicate that the 78-280 fragment and TIA-1/TIAR concordantly contribute to mRNA stability as a cis -acting element and trans -acting factor(s), respectively. Thus, we here report the specific interactions between these elements in the post-transcriptional regulation of the TPD52 gene. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Annotation of the protein coding regions of the equine genome

    DEFF Research Database (Denmark)

    Hestand, Matthew S.; Kalbfleisch, Theodore S.; Coleman, Stephen J.

    2015-01-01

    Current gene annotation of the horse genome is largely derived from in silico predictions and cross-species alignments. Only a small number of genes are annotated based on equine EST and mRNA sequences. To expand the number of equine genes annotated from equine experimental evidence, we sequenced m...... and appear to be small errors in the equine reference genome, since they are also identified as homozygous variants by genomic DNA resequencing of the reference horse. Taken together, we provide a resource of equine mRNA structures and protein coding variants that will enhance equine and cross...

  12. Characterization of radiation-induced proteins in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Tanaka, A.; Watanabe, H.; Nozawa, R.; Hu, Q.; Kitayama, S.

    1992-01-01

    Induction of proteins after gamma-irradiation in Deinococcus radiodurans were investigated. 10 proteins were induced and about 15 proteins were reduced after irradiation with 6kGy. These proteins were classified to four groups by responses to gamma-rays, UV light, mitomycin C(MMC) treatment and heating. Additional studies were carried out for the characterization of two induced proteins. One protein was induced by gamma-rays, UV light as well as heating. This protein appeared to be a glycoprotein from its reaction with lectin. From the amino acid sequences of N-terminal and internal region, it was found that this protein is homologous to EF-Tu protein of E. coli. Meanwhile the other protein was induced not only by gamma-rays but also by UV light and MMC treatment. This protein seems to be a new enzyme as it has no homology to the known proteins which have ever been analyzed. No accumulations of these two proteins were observed in radiation sensitive strain of D. radiodurans and in both of E. coli and Bacillus pumilus, suggesting that induction of these two proteins would be specific for high resistant strain. (author)

  13. Conformational dynamics data bank: a database for conformational dynamics of proteins and supramolecular protein assemblies.

    Science.gov (United States)

    Kim, Do-Nyun; Altschuler, Josiah; Strong, Campbell; McGill, Gaël; Bathe, Mark

    2011-01-01

    The conformational dynamics data bank (CDDB, http://www.cdyn.org) is a database that aims to provide comprehensive results on the conformational dynamics of high molecular weight proteins and protein assemblies. Analysis is performed using a recently introduced coarse-grained computational approach that is applied to the majority of structures present in the electron microscopy data bank (EMDB). Results include equilibrium thermal fluctuations and elastic strain energy distributions that identify rigid versus flexible protein domains generally, as well as those associated with specific functional transitions, and correlations in molecular motions that identify molecular regions that are highly coupled dynamically, with implications for allosteric mechanisms. A practical web-based search interface enables users to easily collect conformational dynamics data in various formats. The data bank is maintained and updated automatically to include conformational dynamics results for new structural entries as they become available in the EMDB. The CDDB complements static structural information to facilitate the investigation and interpretation of the biological function of proteins and protein assemblies essential to cell function.

  14. Gcn4-Mediator Specificity Is Mediated by a Large and Dynamic Fuzzy Protein-Protein Complex.

    Science.gov (United States)

    Tuttle, Lisa M; Pacheco, Derek; Warfield, Linda; Luo, Jie; Ranish, Jeff; Hahn, Steven; Klevit, Rachel E

    2018-03-20

    Transcription activation domains (ADs) are inherently disordered proteins that often target multiple coactivator complexes, but the specificity of these interactions is not understood. Efficient transcription activation by yeast Gcn4 requires its tandem ADs and four activator-binding domains (ABDs) on its target, the Mediator subunit Med15. Multiple ABDs are a common feature of coactivator complexes. We find that the large Gcn4-Med15 complex is heterogeneous and contains nearly all possible AD-ABD interactions. Gcn4-Med15 forms via a dynamic fuzzy protein-protein interface, where ADs bind the ABDs in multiple orientations via hydrophobic regions that gain helicity. This combinatorial mechanism allows individual low-affinity and specificity interactions to generate a biologically functional, specific, and higher affinity complex despite lacking a defined protein-protein interface. This binding strategy is likely representative of many activators that target multiple coactivators, as it allows great flexibility in combinations of activators that can cooperate to regulate genes with variable coactivator requirements. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. The 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide is a DnaK-like protein

    DEFF Research Database (Denmark)

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1990-01-01

    ,980-base-pair open reading frame revealed 94% homology with a 75-kilodalton protein from C. trachomatis serovar D and 57% homology with the DnaK proteins of E. coli and of Bacillus megaterium, while amino acid homology with human heat shock protein 70 (hsp70) was 42%. The promoter region was identified......The gene coding for the 75-kilodalton cytoplasmic Chlamydia trachomatis L2 polypeptide has been cloned in Escherichia coli, and the nucleotide sequence has been determined. The cloned DNA fragment contained the coding region as well as the putative promoter. The deduced amino acid sequence of the 1...... by computer search and by primer extension of mRNA synthesized in recombinant E. coli. The promoter region which differed from the putative promoter region in serovar D was shown to be a mixed promoter type in which the -10 region showed a regular TATA box configuration while the -35 region showed high...

  16. Oxidative Unfolding of the Rubredoxin Domain and the Natively Disordered N-terminal Region Regulate the Catalytic Activity of Mycobacterium tuberculosis Protein Kinase G.

    Science.gov (United States)

    Wittwer, Matthias; Luo, Qi; Kaila, Ville R I; Dames, Sonja A

    2016-12-30

    Mycobacterium tuberculosis escapes killing in human macrophages by secreting protein kinase G (PknG). PknG intercepts host signaling to prevent fusion of the phagosome engulfing the mycobacteria with the lysosome and, thus, their degradation. The N-terminal NORS (no regulatory secondary structure) region of PknG (approximately residues 1-75) has been shown to play a role in PknG regulation by (auto)phosphorylation, whereas the following rubredoxin-like metal-binding motif (RD, residues ∼74-147) has been shown to interact tightly with the subsequent catalytic domain (approximately residues 148-420) to mediate its redox regulation. Deletions or mutations in NORS or the redox-sensitive RD significantly decrease PknG survival function. Based on combined NMR spectroscopy, in vitro kinase assay, and molecular dynamics simulation data, we provide novel insights into the regulatory roles of the N-terminal regions. The NORS region is indeed natively disordered and rather dynamic. Consistent with most earlier data, autophosphorylation occurs in our assays only when the NORS region is present and, thus, in the NORS region. Phosphorylation of it results only in local conformational changes and does not induce interactions with the subsequent RD. Although the reduced, metal-bound RD makes tight interactions with the following catalytic domain in the published crystal structures, it can also fold in its absence. Our data further suggest that oxidation-induced unfolding of the RD regulates substrate access to the catalytic domain and, thereby, PknG function under different redox conditions, e.g. when exposed to increased levels of reactive oxidative species in host macrophages. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Rational redesign of neutral endopeptidase binding to merlin and moesin proteins

    Science.gov (United States)

    Niv, Masha Y; Iida, Katsuyuki; Zheng, Rong; Horiguchi, Akio; Shen, Ruoqian; Nanus, David M

    2009-01-01

    Neutral endopeptidase (NEP) is a 90- to 110-kDa cell-surface peptidase that is normally expressed by numerous tissues but whose expression is lost or reduced in a variety of malignancies. The anti-tumorigenic function of NEP is mediated not only by its catalytic activity but also through direct protein–protein interactions of its cytosolic region with several binding partners, including Lyn kinase, PTEN, and ezrin/radixin/moesin (ERM) proteins. We have previously shown that mutation of the K19K20K21 basic cluster in NEPs' cytosolic region to residues QNI disrupts binding to the ERM proteins. Here we show that the ERM-related protein merlin (NF2) does not bind NEP or its cytosolic region. Using experimental data, threading, and sequence analysis, we predicted the involvement of moesin residues E159Q160 in binding to the NEP cytosolic domain. Mutation of these residues to NL (to mimic the corresponding N159L160 residues in the nonbinder merlin) disrupted moesin binding to NEP. Mutation of residues N159L160Y161K162M163 in merlin to the corresponding moesin residues resulted in NEP binding to merlin. This engineered NEP peptide–merlin interaction was diminished by the QNI mutation in NEP, supporting the role of the NEP basic cluster in binding. We thus identified the region of interaction between NEP and moesin, and engineered merlin into a NEP-binding protein. These data form the basis for further exploration of the details of NEP-ERM binding and function. PMID:19388049

  18. Fragments of the constant region of immunoglobulin light chains are constituents of AL-amyloid proteins

    DEFF Research Database (Denmark)

    Olsen, K E; Sletten, K; Westermark, Per

    1998-01-01

    Immunoglobulin light chains are the precursor proteins of AL-amyloidosis. In the fibril formation process properties of the variable part of the immunoglobulin light chains are believed to be of major importance. In this work it is shown that fragments of the constant part of the immunoglobulin l...... light chain are a constituent of the AL-amyloid proteins of kappa type. A specific antiserum has identified these fragments in gel filtration fractions where the absorbance approached the base line after the main retarded peak. The fragments are small and have been overlooked previously......Immunoglobulin light chains are the precursor proteins of AL-amyloidosis. In the fibril formation process properties of the variable part of the immunoglobulin light chains are believed to be of major importance. In this work it is shown that fragments of the constant part of the immunoglobulin...... in the purification process. The significance of the constant part in AL-proteins is unclear, but adds new aspects to the discussion of pre- or post-fibrillogenic cleavage of the immunoglobulin light chains....

  19. Human neuroglobin protein in cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Whalen Gail

    2005-02-01

    Full Text Available Abstract Background Neuroglobin is a hexacoordinated member of the globin family of proteins. It is predominantly localized to various brain regions and retina where it may play a role in protection against ischemia and nitric oxide-induced neural injury. Cerebrospinal fluid was collected from 12 chronic regional or systemic pain and 5 control subjects. Proteins were precipitated by addition of 50% 0.2 N acetic acid, 50% ethanol, 0.02% sodium bisulfite. The pellet was extensively digested with trypsin. Peptides were separated by capillary liquid chromatography using a gradient from 95% water to 95% acetonitrile in 0.2% formic acid, and eluted through a nanoelectrospray ionization interface into a quadrapole – time-of-flight dual mass spectrometer (QToF2, Waters, Milford, MA. Peptides were sequenced (PepSeq, MassLynx v3.5 and proteins identified using MASCOT ®. Results Six different neuroglobin peptides were identified in various combinations in 3 of 9 female pain subjects, but none in male pain, or female or male control subjects. Conclusion This is the first description of neuroglobin in cerebrospinal fluid. The mechanism(s leading to its release in chronic pain states remain to be defined.

  20. [A case of IgA2-lambda type M-protein that IgA concentration differs from the values of M-protein by serum protein electrophoresis].

    Science.gov (United States)

    Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K

    2001-07-01

    We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.

  1. The nucleotide sequence of human transition protein 1 cDNA

    Energy Technology Data Exchange (ETDEWEB)

    Luerssen, H; Hoyer-Fender, S; Engel, W [Universitaet Goettingen (West Germany)

    1988-08-11

    The authors have screened a human testis cDNA library with an oligonucleotide of 81 mer prepared according to a part of the published nucleotide sequence of the rat transition protein TP 1. They have isolated a cDNA clone with the length of 441 bp containing the coding region of 162 bp for human transition protein 1. There is about 84% homology in the coding region of the sequence compared to rat. The human cDNA-clone encodes a polypeptide of 54 amino acids of which 7 are different to that of rat.

  2. Mapping of Mitochondrial RNA-Protein Interactions by Digital RNase Footprinting

    Directory of Open Access Journals (Sweden)

    Ganqiang Liu

    2013-11-01

    Full Text Available Human mitochondrial DNA is transcribed as long polycistronic transcripts that encompass each strand of the genome and are processed subsequently into mature mRNAs, tRNAs, and rRNAs, necessitating widespread posttranscriptional regulation. Here, we establish methods for massively parallel sequencing and analyses of RNase-accessible regions of human mitochondrial RNA and thereby identify specific regions within mitochondrial transcripts that are bound by proteins. This approach provides a range of insights into the contribution of RNA-binding proteins to the regulation of mitochondrial gene expression.

  3. Identification of a third protein 4.1 tumor suppressor, protein 4.1R, in meningioma pathogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Victoria A.; Li, Wen; Gascard, Philippe; Perry, Arie; Mohandas, Narla; Gutmann, David H.

    2003-06-11

    Meningiomas are common tumors of the central nervous system, however, the mechanisms under lying their pathogenesis are largely undefined. Two members of the Protein 4.1 super family, the neuro fibromatosis 2 (NF2) gene product (merlin/schwannomin) and Protein 4.1B have been implicated as meningioma tumor suppressors. In this report, we demonstrate that another Protein 4.1 family member, Protein 4.1R, also functions as a meningioma tumor suppressor. Based on the assignment of the Protein 4.1R gene to chromosome 1p32-36, a common region of deletion observed in meningiomas, we analyzed Protein 4.1R expression in meningioma cell lines and surgical tumor specimens. We observed loss of Protein 4.1R protein expression in two meningioma cell lines (IOMM-Lee, CH157-MN) by Western blotting as well as in 6 of 15 sporadic meningioma as by immuno histo chemistry (IHC). Analysis of a subset of these sporadic meningiomas by fluorescent in situ hybridization (FISH) with a Protein 4.1R specific probe demonstrated 100 percent concordance with the IHC results. In support of a meningioma tumor suppressor function, over expression of Protein 4.1R resulted in suppression of IOMM-Lee and CH157MN cell proliferation. Similar to the Protein 4.1B and merlin meningioma tumor suppressors, Protein 4.1R localization in the membrane fraction increased significantly under conditions of growth arrest in vitro. Lastly, Protein 4.1R interacted with some known merlin/Protein 4.1B interactors such as CD44 and bII-spectrin, but did not associate with the Protein 4.1B interactors 14-3-3 and PRMT3 or the merlin binding proteins SCHIP-1 and HRS. Collectively, these results suggest that Protein 4.1R functions as an important tumor suppressor important in the molecular pathogenesis of meningioma.

  4. Sequence motifs in MADS transcription factors responsible for specificity and diversification of protein-protein interaction.

    Directory of Open Access Journals (Sweden)

    Aalt D J van Dijk

    Full Text Available Protein sequences encompass tertiary structures and contain information about specific molecular interactions, which in turn determine biological functions of proteins. Knowledge about how protein sequences define interaction specificity is largely missing, in particular for paralogous protein families with high sequence similarity, such as the plant MADS domain transcription factor family. In comparison to the situation in mammalian species, this important family of transcription regulators has expanded enormously in plant species and contains over 100 members in the model plant species Arabidopsis thaliana. Here, we provide insight into the mechanisms that determine protein-protein interaction specificity for the Arabidopsis MADS domain transcription factor family, using an integrated computational and experimental approach. Plant MADS proteins have highly similar amino acid sequences, but their dimerization patterns vary substantially. Our computational analysis uncovered small sequence regions that explain observed differences in dimerization patterns with reasonable accuracy. Furthermore, we show the usefulness of the method for prediction of MADS domain transcription factor interaction networks in other plant species. Introduction of mutations in the predicted interaction motifs demonstrated that single amino acid mutations can have a large effect and lead to loss or gain of specific interactions. In addition, various performed bioinformatics analyses shed light on the way evolution has shaped MADS domain transcription factor interaction specificity. Identified protein-protein interaction motifs appeared to be strongly conserved among orthologs, indicating their evolutionary importance. We also provide evidence that mutations in these motifs can be a source for sub- or neo-functionalization. The analyses presented here take us a step forward in understanding protein-protein interactions and the interplay between protein sequences and

  5. Structural characterization of Mumps virus fusion protein core

    International Nuclear Information System (INIS)

    Liu Yueyong; Xu Yanhui; Lou Zhiyong; Zhu Jieqing; Hu Xuebo; Gao, George F.; Qiu Bingsheng; Rao Zihe; Tien, Po

    2006-01-01

    The fusion proteins of enveloped viruses mediating the fusion between the viral and cellular membranes comprise two discontinuous heptad repeat (HR) domains located at the ectodomain of the enveloped glycoproteins. The crystal structure of the fusion protein core of Mumps virus (MuV) was determined at 2.2 A resolution. The complex is a six-helix bundle in which three HR1 peptides form a central highly hydrophobic coiled-coil and three HR2 peptides pack against the hydrophobic grooves on the surface of central coiled-coil in an oblique antiparallel manner. Fusion core of MuV, like those of simian virus 5 and human respiratory syncytium virus, forms typical 3-4-4-4-3 spacing. The similar charecterization in HR1 regions, as well as the existence of O-X-O motif in extended regions of HR2 helix, suggests a basic rule for the formation of the fusion core of viral fusion proteins

  6. Exploration of Protein Conformational Change with PELE and Meta-Dynamics.

    Science.gov (United States)

    Cossins, Benjamin P; Hosseini, Ali; Guallar, Victor

    2012-03-13

    Atomistic molecular simulation methods are now able to explore complex protein or protein-ligand dynamical space in a tractable way with methods such as meta-dynamics or adaptive biasing force. However, many of these methods either require a careful selection of reaction coordinates or the knowledge of an initial pathway of some kind. Thus, it is important that effective methods are developed to produce this pathway data in an efficient fashion. PELE, a proven protein-ligand sampling code, has been developed to provide rapid protein sampling in highly flexible cases, using a reduced network model eigen problem approach. The resulting method is able to rapidly sample configuration space with very general driving information. When applied to ubiquitin, PELE was able to reproduce RMSD and average force data found in molecular dynamics simulations. PELE was also applied to explore the opening/closing transition of T4 lysozyme. A meta-dynamics exploration using a low energy pathway validated that the configurations explored by PELE represent the most populated regions of phase space. PELE and meta-dynamics explorations also discovered a low free energy region where a large cross-domain helix of T4 lysozyme is broken in two. There is previous NMR evidence for the validity of this unfolded helix region.

  7. Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins

    DEFF Research Database (Denmark)

    Seeger, Michael; Hartmann-Petersen, Rasmus; Wilkinson, Caroline R M

    2003-01-01

    Fission yeast Rhp23 and Pus1 represent two families of multiubiquitin chain-binding proteins that associate with the proteasome. We show that both proteins bind to different regions of the proteasome subunit Mts4. The binding site for Pus1 was mapped to a cluster of repetitive sequences also found...... in the proteasome subunit SpRpn2 and the anaphase-promoting complex/cyclosome (APC/C) subunit Cut4. The putative role of Pus1 as a factor involved in allocation of ubiquitinylated substrates for the proteasome is discussed....

  8. Interaction between a plasma membrane-localized ankyrin-repeat protein ITN1 and a nuclear protein RTV1

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hikaru [Department of Bioproduction, Faculty of Bioindustry, Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 093-2422 (Japan); Sakata, Keiko; Kusumi, Kensuke [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Kojima, Mikiko; Sakakibara, Hitoshi [RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045 (Japan); Iba, Koh, E-mail: koibascb@kyushu-u.org [Department of Biology, Faculty of Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer ITN1, a plasma membrane ankyrin protein, interacts with a nuclear DNA-binding protein RTV1. Black-Right-Pointing-Pointer The nuclear transport of RTV1 is partially inhibited by interaction with ITN1. Black-Right-Pointing-Pointer RTV1 can promote the nuclear localization of ITN1. Black-Right-Pointing-Pointer Both overexpression of RTV1 and the lack of ITN1 increase salicylic acids sensitivity in plants. -- Abstract: The increased tolerance to NaCl 1 (ITN1) protein is a plasma membrane (PM)-localized protein involved in responses to NaCl stress in Arabidopsis. The predicted structure of ITN1 is composed of multiple transmembrane regions and an ankyrin-repeat domain that is known to mediate protein-protein interactions. To elucidate the molecular functions of ITN1, we searched for interacting partners using a yeast two-hybrid assay, and a nuclear-localized DNA-binding protein, RTV1, was identified as a candidate. Bimolecular fluorescence complementation analysis revealed that RTV1 interacted with ITN1 at the PM and nuclei in vivo. RTV1 tagged with red fluorescent protein localized to nuclei and ITN1 tagged with green fluorescent protein localized to PM; however, both proteins localized to both nuclei and the PM when co-expressed. These findings suggest that RTV1 and ITN1 regulate the subcellular localization of each other.

  9. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  10. The homeodomain protein ladybird late regulates synthesis of milk proteins during pregnancy in the tsetse fly (Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Geoffrey M Attardo

    2014-04-01

    Full Text Available Regulation of tissue and development specific gene expression patterns underlies the functional specialization of organs in multi-cellular organisms. In the viviparous tsetse fly (Glossina, the female accessory gland is specialized to generate nutrients in the form of a milk-like secretion to support growth of intrauterine larva. Multiple milk protein genes are expressed specifically in the female accessory gland and are tightly linked with larval development. Disruption of milk protein synthesis deprives developing larvae of nutrients and results in extended larval development and/or in abortion. The ability to cause such a disruption could be utilized as a tsetse control strategy. Here we identify and delineate the regulatory sequence of a major milk protein gene (milk gland protein 1:mgp1 by utilizing a combination of molecular techniques in tsetse, Drosophila transgenics, transcriptomics and in silico sequence analyses. The function of this promoter is conserved between tsetse and Drosophila. In transgenic Drosophila the mgp1 promoter directs reporter gene expression in a tissue and stage specific manner orthologous to that of Glossina. Analysis of the minimal required regulatory region of mgp1, and the regulatory regions of other Glossina milk proteins identified putative homeodomain protein binding sites as the sole common feature. Annotation and expression analysis of Glossina homeodomain proteins identified ladybird late (lbl as being accessory gland/fat body specific and differentially expressed between lactating/non-lactating flies. Knockdown of lbl in tsetse resulted in a significant reduction in transcript abundance of multiple milk protein genes and in a significant loss of fecundity. The role of Lbl in adult reproductive physiology is previously unknown. These results suggest that Lbl is part of a conserved reproductive regulatory system that could have implications beyond tsetse to other vector insects such as mosquitoes. This

  11. Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus

    Energy Technology Data Exchange (ETDEWEB)

    Horie, Ryo; Yoneda, Misako, E-mail: yone@ims.u-tokyo.ac.jp; Uchida, Shotaro; Sato, Hiroki; Kai, Chieko

    2016-10-15

    Nipah virus (NiV) causes severe encephalitis in humans, with high mortality. NiV nonstructural C protein (NiV-C) is essential for its pathogenicity, but its functions are unclear. In this study, we focused on NiV-C trafficking in cells and found that it localizes predominantly in the cytoplasm but partly in the nucleus. An analysis of NiV-C mutants showed that amino acids 2, 21–24 and 110–139 of NiV-C are important for its localization in the cytoplasm. Inhibitor treatment indicates that the nuclear export determinant is not a classical CRM1-dependent nuclear export signal. We also determined that amino acids 60–75 and 72–75 were important for nuclear localization of NiV-C. Furthermore, NiV-C mutants that had lost their capacity for nuclear localization inhibited the interferon (IFN) response more strongly than complete NiV-C. These results indicate that the IFN-antagonist activity of NiV-C occurs in the cytoplasm. -- Highlights: •Nipah virus (NiV) infection resulted in high mortality, but effective treatment has not been established. •Several reports revealed that NiV nonstructural C protein (NiV-C) was essential for NiV pathogenicity, however, whole of NiV-C function is still unknown. •Although nonstructural C proteins of other Paramyxoviruses are expressed in similar mechanism and exert similar activity, subcellular localization and cellular targets are different. In this study, we evaluated the subcellular localization of NiV-C. •To our knowledge, this is the first report showing that NiV-C shuttles between the nucleus and cytoplasm. We also clarified that NiV-C has nuclear export signal and nuclear localization signal using NiV-C deleted, alanine substitution mutants and enhanced green fluorescent protein (EGFP) fused proteins. •And we also showed that interferon (IFN) antagonist activity of NiV-C related to its subcellular localization. Our results indicate that NiV-C exert IFN antagonist activity in the cytoplasm.

  12. Evolution and structural organization of the C proteins of paramyxovirinae.

    Directory of Open Access Journals (Sweden)

    Michael K Lo

    Full Text Available The phosphoprotein (P gene of most Paramyxovirinae encodes several proteins in overlapping frames: P and V, which share a common N-terminus (PNT, and C, which overlaps PNT. Overlapping genes are of particular interest because they encode proteins originated de novo, some of which have unknown structural folds, challenging the notion that nature utilizes only a limited, well-mapped area of fold space. The C proteins cluster in three groups, comprising measles, Nipah, and Sendai virus. We predicted that all C proteins have a similar organization: a variable, disordered N-terminus and a conserved, α-helical C-terminus. We confirmed this predicted organization by biophysically characterizing recombinant C proteins from Tupaia paramyxovirus (measles group and human parainfluenza virus 1 (Sendai group. We also found that the C of the measles and Nipah groups have statistically significant sequence similarity, indicating a common origin. Although the C of the Sendai group lack sequence similarity with them, we speculate that they also have a common origin, given their similar genomic location and structural organization. Since C is dispensable for viral replication, unlike PNT, we hypothesize that C may have originated de novo by overprinting PNT in the ancestor of Paramyxovirinae. Intriguingly, in measles virus and Nipah virus, PNT encodes STAT1-binding sites that overlap different regions of the C-terminus of C, indicating they have probably originated independently. This arrangement, in which the same genetic region encodes simultaneously a crucial functional motif (a STAT1-binding site and a highly constrained region (the C-terminus of C, seems paradoxical, since it should severely reduce the ability of the virus to adapt. The fact that it originated twice suggests that it must be balanced by an evolutionary advantage, perhaps from reducing the size of the genetic region vulnerable to mutations.

  13. Baculovirus display of fusion protein of Peste des petits ruminants virus and hemagglutination protein of Rinderpest virus and immunogenicity of the displayed proteins in mouse model

    International Nuclear Information System (INIS)

    Masmudur Rahman, Md.; Shaila, M.S.; Gopinathan, Karumathil P.

    2003-01-01

    Recombinant Bombyx mori nucleopolyhedroviruses (BmNPV) displaying the immunodominant ectodomains of fusion glycoprotein (F) of Peste des petitis ruminants virus (PPRV) and the hemagglutinin protein (H) of Rinderpest virus (RPV), on the budded virions as well as the surface of the infected host cells have been constructed. The F and H protein sequences were inserted in-frame within the amino-terminal region of BmNPV envelope glycoprotein GP64 expressing under the strong viral polyhedrin (polh) promoter. We improved the recombinant virus selection in BmNPV by incorporating the green fluorescent protein gene (gfp) as selection marker under a separate promoter within the transfer cassette harboring the desired genes. Following infection of the insect larvae or the host-derived BmN cells with these recombinant BmNPVs, the expressed GP64 fusion proteins were displayed on the host cell surface and the budded virions. The antigenic epitopes of the recombinant proteins were properly displayed and the recombinant virus particles induced immune response in mice against PPRV or RPV

  14. Identification of conserved regions and residues within Hedgehog acyltransferase critical for palmitoylation of Sonic Hedgehog.

    Directory of Open Access Journals (Sweden)

    John A Buglino

    2010-06-01

    Full Text Available Sonic hedgehog (Shh is a palmitoylated protein that plays key roles in mammalian development and human cancers. Palmitoylation of Shh is required for effective long and short range Shh-mediated signaling. Attachment of palmitate to Shh is catalyzed by Hedgehog acyltransferase (Hhat, a member of the membrane bound O-acyl transferase (MBOAT family of multipass membrane proteins. The extremely hydrophobic composition of MBOAT proteins has limited their biochemical characterization. Except for mutagenesis of two conserved residues, there has been no structure-function analysis of Hhat, and the regions of the protein required for Shh palmitoylation are unknown.Here we undertake a systematic approach to identify residues within Hhat that are required for protein stability and/or enzymatic activity. We also identify a second, novel MBOAT homology region (residues 196-234 that is required for Hhat activity. In total, ten deletion mutants and eleven point mutants were generated and analyzed. Truncations at the N- and C-termini of Hhat yielded inactive proteins with reduced stability. Four Hhat mutants with deletions within predicted loop regions and five point mutants retained stability but lost palmitoylation activity. We purified two point mutants, W378A and H379A, with defective Hhat activity. Kinetic analyses revealed alterations in apparent K(m and V(max for Shh and/or palmitoyl CoA, changes that likely explain the catalytic defects observed for these mutants.This study has pinpointed specific regions and multiple residues that regulate Hhat stability and catalysis. Our findings should be applicable to other MBOAT proteins that mediate lipid modification of Wnt proteins and ghrelin, and should serve as a model for understanding how secreted morphogens are modified by palmitoyl acyltransferases.

  15. Fabrication of Self-Cleaning, Reusable Titania Templates for Nanometer and Micrometer Scale Protein Patterning.

    Science.gov (United States)

    Moxey, Mark; Johnson, Alexander; El-Zubir, Osama; Cartron, Michael; Dinachali, Saman Safari; Hunter, C Neil; Saifullah, Mohammad S M; Chong, Karen S L; Leggett, Graham J

    2015-06-23

    The photocatalytic self-cleaning characteristics of titania facilitate the fabrication of reuseable templates for protein nanopatterning. Titania nanostructures were fabricated over square centimeter areas by interferometric lithography (IL) and nanoimprint lithography (NIL). With the use of a Lloyd's mirror two-beam interferometer, self-assembled monolayers of alkylphosphonates adsorbed on the native oxide of a Ti film were patterned by photocatalytic nanolithography. In regions exposed to a maximum in the interferogram, the monolayer was removed by photocatalytic oxidation. In regions exposed to an intensity minimum, the monolayer remained intact. After exposure, the sample was etched in piranha solution to yield Ti nanostructures with widths as small as 30 nm. NIL was performed by using a silicon stamp to imprint a spin-cast film of titanium dioxide resin; after calcination and reactive ion etching, TiO2 nanopillars were formed. For both fabrication techniques, subsequent adsorption of an oligo(ethylene glycol) functionalized trichlorosilane yielded an entirely passive, protein-resistant surface. Near-UV exposure caused removal of this protein-resistant film from the titania regions by photocatalytic degradation, leaving the passivating silane film intact on the silicon dioxide regions. Proteins labeled with fluorescent dyes were adsorbed to the titanium dioxide regions, yielding nanopatterns with bright fluorescence. Subsequent near-UV irradiation of the samples removed the protein from the titanium dioxide nanostructures by photocatalytic degradation facilitating the adsorption of a different protein. The process was repeated multiple times. These simple methods appear to yield durable, reuseable samples that may be of value to laboratories that require nanostructured biological interfaces but do not have access to the infrastructure required for nanofabrication.

  16. Characterization of seed storage protein patterns of Heliotropium digynum

    Directory of Open Access Journals (Sweden)

    Mona Soliman Alwhibi

    2017-09-01

    Full Text Available Heliotropium digynum, is a shrub that has ecological importance. The height of the plant differs from one population to another and the difference in length of the inflorescence can be attributed to environmental factors, such as rainfall or type of soil and temperature. To date, no study has shed light on estimation in seed samples of H. digynum in Saudi Arabia. So, the aim is to evaluate and characterize the protein patterns of seed storage proteins of H. digynum to be used as fingerprint of this plant in Saudi Arabia. It is collected from different locations in the central region of Saudi Arabia and total protein extraction from plant was compared in SDS-PAGE. The genetic relationships among all cultivars were analyzed using UPGMA and NJ using Total Lab TL and in the same way using Jaccard Similarity Coefficient dendrogram using STATISTICA (ver.8 software. Results, our data show that amounts of protein are different, although they are of the same type or from the same geographical region. Amounts ranged between 22 and 1.5 mg/g of dry weight. Less amount of protein was obtained from the group of samples collected from Dir’iyah area, and the highest amount of protein was from the group of samples collected from Dyrab area in general.

  17. A genetic electrophoretic variant of high-sulfur hair proteins for forensic hair comparisons. I. Characterization of variant high-sulfur proteins of human hair.

    Science.gov (United States)

    Miyake, B

    1989-02-01

    In a survey of the proteins from human hair, a genetic electrophoretic variant has been observed in the high-sulfur protein region. S-carboxymethylated proteins were examined by 15% polyacrylamide gel electrophoresis at pH 8.9. Out of 150 unrelated samples of Japanese head hairs analyzed, 107 showed 6 major high-sulfur protein bands (normal) and the remaining 43 samples showed an additional high-sulfur protein band (variant). Of 21 Caucasian samples analyzed only one variant sample was found. Characterization of the proteins by two-dimensional electrophoresis evidenced a variant protein spot which showed an apparent molecular weight of 30 k Da. Isoelectric points of the high-sulfur proteins ranged from 3.25-3.55 and that of variant protein band from 3.3-3.4. Family studies of 21 matings resulting in 49 children indicated that this variant was inherited in an autosomal fashion.

  18. Identification of domains of the v-crk oncogene product sufficient for association with phosphotyrosine-containing proteins.

    OpenAIRE

    Matsuda, M; Mayer, B J; Hanafusa, H

    1991-01-01

    The oncogene product of the avian sarcoma virus CT10, P47gag-crk, contains the SH2, SH2', and SH3 domains and binds proteins in a phosphotyrosine (ptyr)-dependent manner. In this study, we have determined the region of P47gag-crk essential for binding to ptyr-containing proteins. Mutant P47gag-crk proteins expressed in Escherichia coli that have the intact SH2 and SH2' regions retained the capacity to bind ptyr-containing proteins obtained from cells transformed by crk and src. The deletion o...

  19. Functional Anthology of Intrinsic Disorder. III. Ligands, Postranslational Modifications and Diseases Associated with Intrinsically Disordered Proteins

    Science.gov (United States)

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Obradovic, Zoran; Uversky, Vladimir N.

    2008-01-01

    Currently, the understanding of the relationships between function, amino acid sequence and protein structure continues to represent one of the major challenges of the modern protein science. As much as 50% of eukaryotic proteins are likely to contain functionally important long disordered regions. Many proteins are wholly disordered but still possess numerous biologically important functions. However, the number of experimentally confirmed disordered proteins with known biological functions is substantially smaller than their actual number in nature. Therefore, there is a crucial need for novel bioinformatics approaches that allow projection of the current knowledge from a few experimentally verified examples to much larger groups of known and potential proteins. The elaboration of a bioinformatics tool for the analysis of functional diversity of intrinsically disordered proteins and application of this data mining tool to >200,000 proteins from Swiss-Prot database, each annotated with at least one of the 875 functional keywords was described in the first paper of this series (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic Z., Uversky V.N. (2006) Functional anthology of intrinsic disorder. I. Biological processes and functions of proteins with long disordered regions. J. Proteome Res.). Using this tool, we have found that out of the 711 Swiss-Prot functional keywords associated with at least 20 proteins, 262 were strongly positively correlated with long intrinsically disordered regions, and 302 were strongly negatively correlated. Illustrative examples of functional disorder or order were found for the vast majority of keywords showing strongest positive or negative correlation with intrinsic disorder, respectively. Some 80 Swiss-Prot keywords associated with disorder- and order-driven biological processes and protein functions were described in the first paper (Xie H., Vucetic S., Iakoucheva L.M., Oldfield C.J., Dunker A.K., Obradovic

  20. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    International Nuclear Information System (INIS)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-01-01

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  1. Non-degradative Ubiquitination of Protein Kinases.

    Directory of Open Access Journals (Sweden)

    K Aurelia Ball

    2016-06-01

    Full Text Available Growing evidence supports other regulatory roles for protein ubiquitination in addition to serving as a tag for proteasomal degradation. In contrast to other common post-translational modifications, such as phosphorylation, little is known about how non-degradative ubiquitination modulates protein structure, dynamics, and function. Due to the wealth of knowledge concerning protein kinase structure and regulation, we examined kinase ubiquitination using ubiquitin remnant immunoaffinity enrichment and quantitative mass spectrometry to identify ubiquitinated kinases and the sites of ubiquitination in Jurkat and HEK293 cells. We find that, unlike phosphorylation, ubiquitination most commonly occurs in structured domains, and on the kinase domain, ubiquitination is concentrated in regions known to be important for regulating activity. We hypothesized that ubiquitination, like other post-translational modifications, may alter the conformational equilibrium of the modified protein. We chose one human kinase, ZAP-70, to simulate using molecular dynamics with and without a monoubiquitin modification. In Jurkat cells, ZAP-70 is ubiquitinated at several sites that are not sensitive to proteasome inhibition and thus may have other regulatory roles. Our simulations show that ubiquitination influences the conformational ensemble of ZAP-70 in a site-dependent manner. When monoubiquitinated at K377, near the C-helix, the active conformation of the ZAP-70 C-helix is disrupted. In contrast, when monoubiquitinated at K476, near the kinase hinge region, an active-like ZAP-70 C-helix conformation is stabilized. These results lead to testable hypotheses that ubiquitination directly modulates kinase activity, and that ubiquitination is likely to alter structure, dynamics, and function in other protein classes as well.

  2. Accessory Proteins at ERES

    DEFF Research Database (Denmark)

    Klinkenberg, Rafael David

    membrane targeting and association with ERES. We determine the localization of Sec16B by transient expression in HeLa cells, and find that the protein is evenly distributed throughout the cell except the nucleus at 37°C, as is also observed with mSec16A. When the temperature is lowered to 15°C, mSec16B...... proteins. Together these components co‐operate in cargo‐selection as well as forming, loading and releasing budding vesicles from specific regions on the membrane surface of the ER. Coat components furthermore convey vesicle targeting towards the Golgi. However, not much is known about the mechanisms...... that regulate the COPII assembly at the vesicle bud site. This thesis provides the first regulatory mechanism of COPII assembly in relation to ER‐membrane lipid‐signal recognition by the accessory protein p125A (Sec23IP). The aim of the project was to characterize p125A function by dissecting two main domains...

  3. Computational identification of MoRFs in protein sequences.

    Science.gov (United States)

    Malhis, Nawar; Gsponer, Jörg

    2015-06-01

    Intrinsically disordered regions of proteins play an essential role in the regulation of various biological processes. Key to their regulatory function is the binding of molecular recognition features (MoRFs) to globular protein domains in a process known as a disorder-to-order transition. Predicting the location of MoRFs in protein sequences with high accuracy remains an important computational challenge. In this study, we introduce MoRFCHiBi, a new computational approach for fast and accurate prediction of MoRFs in protein sequences. MoRFCHiBi combines the outcomes of two support vector machine (SVM) models that take advantage of two different kernels with high noise tolerance. The first, SVMS, is designed to extract maximal information from the general contrast in amino acid compositions between MoRFs, their surrounding regions (Flanks), and the remainders of the sequences. The second, SVMT, is used to identify similarities between regions in a query sequence and MoRFs of the training set. We evaluated the performance of our predictor by comparing its results with those of two currently available MoRF predictors, MoRFpred and ANCHOR. Using three test sets that have previously been collected and used to evaluate MoRFpred and ANCHOR, we demonstrate that MoRFCHiBi outperforms the other predictors with respect to different evaluation metrics. In addition, MoRFCHiBi is downloadable and fast, which makes it useful as a component in other computational prediction tools. http://www.chibi.ubc.ca/morf/. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Taking advantage of local structure descriptors to analyze interresidue contacts in protein structures and protein complexes.

    Science.gov (United States)

    Martin, Juliette; Regad, Leslie; Etchebest, Catherine; Camproux, Anne-Claude

    2008-11-15

    Interresidue protein contacts in proteins structures and at protein-protein interface are classically described by the amino acid types of interacting residues and the local structural context of the contact, if any, is described using secondary structures. In this study, we present an alternate analysis of interresidue contact using local structures defined by the structural alphabet introduced by Camproux et al. This structural alphabet allows to describe a 3D structure as a sequence of prototype fragments called structural letters, of 27 different types. Each residue can then be assigned to a particular local structure, even in loop regions. The analysis of interresidue contacts within protein structures defined using Voronoï tessellations reveals that pairwise contact specificity is greater in terms of structural letters than amino acids. Using a simple heuristic based on specificity score comparison, we find that 74% of the long-range contacts within protein structures are better described using structural letters than amino acid types. The investigation is extended to a set of protein-protein complexes, showing that the similar global rules apply as for intraprotein contacts, with 64% of the interprotein contacts best described by local structures. We then present an evaluation of pairing functions integrating structural letters to decoy scoring and show that some complexes could benefit from the use of structural letter-based pairing functions.

  5. The crystal structure of the Split End protein SHARP adds a new layer of complexity to proteins containing RNA recognition motifs.

    Science.gov (United States)

    Arieti, Fabiana; Gabus, Caroline; Tambalo, Margherita; Huet, Tiphaine; Round, Adam; Thore, Stéphane

    2014-06-01

    The Split Ends (SPEN) protein was originally discovered in Drosophila in the late 1990s. Since then, homologous proteins have been identified in eukaryotic species ranging from plants to humans. Every family member contains three predicted RNA recognition motifs (RRMs) in the N-terminal region of the protein. We have determined the crystal structure of the region of the human SPEN homolog that contains these RRMs-the SMRT/HDAC1 Associated Repressor Protein (SHARP), at 2.0 Å resolution. SHARP is a co-regulator of the nuclear receptors. We demonstrate that two of the three RRMs, namely RRM3 and RRM4, interact via a highly conserved interface. Furthermore, we show that the RRM3-RRM4 block is the main platform mediating the stable association with the H12-H13 substructure found in the steroid receptor RNA activator (SRA), a long, non-coding RNA previously shown to play a crucial role in nuclear receptor transcriptional regulation. We determine that SHARP association with SRA relies on both single- and double-stranded RNA sequences. The crystal structure of the SHARP-RRM fragment, together with the associated RNA-binding studies, extend the repertoire of nucleic acid binding properties of RRM domains suggesting a new hypothesis for a better understanding of SPEN protein functions. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Positive modulator of bone morphogenic protein-2

    Science.gov (United States)

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2009-01-27

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  7. Positive modulator of bone morphogenic protein-2

    Energy Technology Data Exchange (ETDEWEB)

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Kazuyuki, Takahashi

    2017-06-06

    Compounds of the present invention of formula I and formula II are disclosed in the specification and wherein the compounds are modulators of Bone Morphogenic Protein activity. Compounds are synthetic peptides having a non-growth factor heparin binding region, a linker, and sequences that bind specifically to a receptor for Bone Morphogenic Protein. Uses of compounds of the present invention in the treatment of bone lesions, degenerative joint disease and to enhance bone formation are disclosed.

  8. Mapping protein-RNA interactions by RCAP, RNA-cross-linking and peptide fingerprinting.

    Science.gov (United States)

    Vaughan, Robert C; Kao, C Cheng

    2015-01-01

    RNA nanotechnology often feature protein RNA complexes. The interaction between proteins and large RNAs are difficult to study using traditional structure-based methods like NMR or X-ray crystallography. RCAP, an approach that uses reversible-cross-linking affinity purification method coupled with mass spectrometry, has been developed to map regions within proteins that contact RNA. This chapter details how RCAP is applied to map protein-RNA contacts within virions.

  9. Optimization of translation profiles enhances protein expression and solubility.

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Hess

    Full Text Available mRNA is translated with a non-uniform speed that actively coordinates co-translational folding of protein domains. Using structure-based homology we identified the structural domains in epoxide hydrolases (EHs and introduced slow-translating codons to delineate the translation of single domains. These changes in translation speed dramatically improved the solubility of two EHs of metagenomic origin in Escherichia coli. Conversely, the importance of transient attenuation for the folding, and consequently solubility, of EH was evidenced with a member of the EH family from Agrobacterium radiobacter, which partitions in the soluble fraction when expressed in E. coli. Synonymous substitutions of codons shaping the slow-transiting regions to fast-translating codons render this protein insoluble. Furthermore, we show that low protein yield can be enhanced by decreasing the free folding energy of the initial 5'-coding region, which can disrupt mRNA secondary structure and enhance ribosomal loading. This study provides direct experimental evidence that mRNA is not a mere messenger for translation of codons into amino acids but bears an additional layer of information for folding, solubility and expression level of the encoded protein. Furthermore, it provides a general frame on how to modulate and fine-tune gene expression of a target protein.

  10. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  11. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  12. Stable intermediates determine proteins' primary unfolding sites in the presence of surfactants

    DEFF Research Database (Denmark)

    Petersen, Steen Vang; Andersen, Kell kleiner; Enghild, Jan J.

    2009-01-01

    Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and catio......Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS......) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant-robust broad-specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS-PAGE and N-terminal sequencing. We observe well-defined cleavage fragments, which suggest......, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded...

  13. Proteins in growth regulation during early development. Comprehensive three year report, 1974--1977

    Energy Technology Data Exchange (ETDEWEB)

    Klein, N.W.

    1977-08-01

    Progress is reported on the following research projects: response of embryo regions to nutrition; synthesis of serum proteins by the yolk-sac; serum protein synthesis in relation to protein nutrition, protease secretion, teratogenic agents, genetic abnormalities, yolk-sac cell cultures, and cell free systems; and effects of serum proteins on rat embryos, chick embryos without yolk-sacs, and isolated brains. (HLW)

  14. Chaperone activity of human small heat shock protein-GST fusion proteins.

    Science.gov (United States)

    Arbach, Hannah; Butler, Caley; McMenimen, Kathryn A

    2017-07-01

    Small heat shock proteins (sHsps) are a ubiquitous part of the machinery that maintains cellular protein homeostasis by acting as molecular chaperones. sHsps bind to and prevent the aggregation of partially folded substrate proteins in an ATP-independent manner. sHsps are dynamic, forming an ensemble of structures from dimers to large oligomers through concentration-dependent equilibrium dissociation. Based on structural studies and mutagenesis experiments, it is proposed that the dimer is the smallest active chaperone unit, while larger oligomers may act as storage depots for sHsps or play additional roles in chaperone function. The complexity and dynamic nature of their structural organization has made elucidation of their chaperone function challenging. HspB1 and HspB5 are two canonical human sHsps that vary in sequence and are expressed in a wide variety of tissues. In order to determine the role of the dimer in chaperone activity, glutathione-S-transferase (GST) was genetically linked as a fusion protein to the N-terminus regions of both HspB1 and HspB5 (also known as Hsp27 and αB-crystallin, respectively) proteins in order to constrain oligomer formation of HspB1 and HspB5, by using GST, since it readily forms a dimeric structure. We monitored the chaperone activity of these fusion proteins, which suggest they primarily form dimers and monomers and function as active molecular chaperones. Furthermore, the two different fusion proteins exhibit different chaperone activity for two model substrate proteins, citrate synthase (CS) and malate dehydrogenase (MDH). GST-HspB1 prevents more aggregation of MDH compared to GST-HspB5 and wild type HspB1. However, when CS is the substrate, both GST-HspB1 and GST-HspB5 are equally effective chaperones. Furthermore, wild type proteins do not display equal activity toward the substrates, suggesting that each sHsp exhibits different substrate specificity. Thus, substrate specificity, as described here for full-length GST

  15. Regional differences of the urinary proteomes in healthy Chinese individuals

    OpenAIRE

    Qin, Weiwei; Wu, Jianqiang; Pan, Li; Zhang, Fanshuang; Wang, Xiaorong; Zhang, Biao; Shan, Guangliang; Gao, Youhe

    2017-01-01

    Urine is a promising biomarker source for clinical proteomics studies. Although regional physiological differences are common in multi-center clinical studies, the presence of significant differences in the urinary proteomes of individuals from different regions remains unknown. In this study, morning urine samples were collected from healthy urban residents in three regions of China and urinary proteins were preserved using a membrane-based method (Urimem). The urine proteomes of 27 normal s...

  16. Conserved CPEs in the p53 3' untranslated region influence mRNA stability and protein synthesis

    DEFF Research Database (Denmark)

    Rosenstierne, Maiken W; Vinther, Jeppe; Mittler, Gerhard

    2008-01-01

    CaT skin and MCF-7 breast cancer cell lines were established. Quantitative PCR and an enzymatic assay were used to quantify the reporter mRNA and protein levels, respectively. Proteins binding to the CPEs were identified by RNA-immunoprecipitation (IP) and quantitative mass spectroscopy. RESULTS: The wild...... irradiation. Several proteins (including GAPDH, heterogeneous nuclear ribonucleoprotein (hnRNP) D and A/B) were identified from the MCF-7 cytoplasmic extracts that bound specifically to the CPEs. CONCLUSION: Two conserved CPEs in the p53 3'UTR regulate stability and translation of a reporter mRNA in non...

  17. Comparison of immune responses against foot-and-mouth disease virus induced by fusion proteins using the swine IgG heavy chain constant region or β-galactosidase as a carrier of immunogenic epitopes

    International Nuclear Information System (INIS)

    Li Guangjin; Chen Weizao; Yan Weiyao; Zhao Kai; Liu Mingqiu; Zhang Jun; Fei Liang; Xu Quanxing; Sheng Zutian; Lu Yonggan; Zheng Zhaoxin

    2004-01-01

    Previously, we demonstrated that a fusion protein (Gal-FMDV) consisting of β-galactosidase and an immunogenic peptide, amino acids (141-160)-(21-40)-(141-160), of foot-and-mouth disease virus (FMDV) VP1 protein induced protective immune responses in guinea pigs and swine. We now designed a new potential recombinant protein vaccine against FMDV in swine. The immunogenic peptide, amino acids (141-160)-(21-40)-(141-160) from the VP1 protein of serotype O FMDV, was fused to the carboxy terminus of a swine immunoglobulin G single heavy chain constant region and expressed in Escherichia coli. The expressed fusion protein (IgG-FMDV) was purified and emulsified with oil adjuvant. Vaccination twice at an interval of 3 weeks with the emulsified IgG-FMDV fusion protein induced an FMDV-specific spleen proliferative T-cell response in guinea pigs and elicited high levels of neutralizing antibody in guinea pigs and swine. All of the immunized animals were efficiently protected against FMDV challenge. There was no significant difference between IgG-FMDV and Gal-FMDV in eliciting immunity after vaccination twice in swine. However, when evaluating the efficacy of a single inoculation of the fusion proteins, we found that IgG-FMDV could elicit a protective immune response in swine, while Gal-FMDV only elicited a weak neutralizing activity and could not protect the swine against FMDV challenge. Our results suggest that the IgG-FMDV fusion protein is a promising vaccine candidate for FMD in swine

  18. Computational analysis of protein-protein interfaces involving an alpha helix: insights for terphenyl-like molecules binding.

    Science.gov (United States)

    Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A

    2013-06-14

    Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.

  19. Protein aggregation studied by forward light scattering and light transmission analysis

    Science.gov (United States)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  20. The spliceosome-associated protein Mfap1 binds to VCP in Drosophila.

    Directory of Open Access Journals (Sweden)

    Sandra Rode

    Full Text Available Posttranscriptional regulation of gene expression contributes to many developmental transitions. Previously, we found that the AAA chaperone Valosin-Containing Protein (VCP regulates ecdysone-dependent dendrite pruning of Drosophila class IV dendritic arborization (c4da neurons via an effect on RNA metabolism. In a search for RNA binding proteins associated with VCP, we identified the spliceosome-associated protein Mfap1, a component of the tri-snRNP complex. Mfap1 is a nucleolar protein in neurons and its levels are regulated by VCP. Mfap1 binds to VCP and TDP-43, a disease-associated RNA-binding protein. via distinct regions in its N- and C-terminal halfs. Similar to vcp mutations, Mfap1 overexpression causes c4da neuron dendrite pruning defects and mislocalization of TDP-43 in these cells, but genetic analyses show that Mfap1 is not a crucial VCP target during dendrite pruning. Finally, rescue experiments with a lethal mfap1 mutant show that the VCP binding region is not essential for Mfap1 function, but may act to increase its stability or activity.

  1. The Use of Recombinant Hemagglutinine Protein of Rinderpest Virus in Enzyme Immunoassay

    OpenAIRE

    BULUT, Hakan; BOLAT, Yusuf

    2003-01-01

    In this study, Rinderpest virus (RPV) recombinant hemagglutinine protein (rH) fused with protein A region of Staphylococcus aureus was expressed in Escherichia coli and purified by IgG affinity chromatography. rH protein was also used to establish enzyme immunoassay. Therefore, to prevent IgG binding to the protein A the wells coated with the rH proteins were blocked by human serum. Afterwards, RPV antigens were added to the wells to evaluate this assay. To this end, serum from mice immunized...

  2. Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk.

  3. Bacterial S-layer protein coupling to lipids

    DEFF Research Database (Denmark)

    Weygand, M.; Wetzer, B.; Pum, D.

    1999-01-01

    structure before and after protein recrystallization shows minimal reorganization of the lipid chains. By contrast, the lipid headgroups show major rearrangements. For the B. sphaericus CCM2177 protein underneath DPPE monolayers, x-ray reflectivity data suggest that amino acid side chains intercalate......The coupling of bacterial surface (S)-layer proteins to lipid membranes is studied in molecular detail for proteins from Bacillus sphaericus CCM2177 and B. coagulans E38-66 recrystallized at dipalmitoylphosphatidylethanolamine (DPPE) monolayers on aqueous buffer. A comparison of the monolayer...... the lipid headgroups at least to the phosphate moieties, and probably further beyond. The number of electrons in the headgroup region increases by more than four per lipid. Analysis of the changes of the deduced electron density profiles in terms of a molecular interpretation shows...

  4. Dynamics of the Peripheral Membrane Protein P2 from Human Myelin Measured by Neutron Scattering--A Comparison between Wild-Type Protein and a Hinge Mutant.

    Directory of Open Access Journals (Sweden)

    Saara Laulumaa

    Full Text Available Myelin protein P2 is a fatty acid-binding structural component of the myelin sheath in the peripheral nervous system, and its function is related to its membrane binding capacity. Here, the link between P2 protein dynamics and structure and function was studied using elastic incoherent neutron scattering (EINS. The P38G mutation, at the hinge between the β barrel and the α-helical lid, increased the lipid stacking capacity of human P2 in vitro, and the mutated protein was also functional in cultured cells. The P38G mutation did not change the overall structure of the protein. For a deeper insight into P2 structure-function relationships, information on protein dynamics in the 10 ps to 1 ns time scale was obtained using EINS. Values of mean square displacements mainly from protein H atoms were extracted for wild-type P2 and the P38G mutant and compared. Our results show that at physiological temperatures, the P38G mutant is more dynamic than the wild-type P2 protein, especially on a slow 1-ns time scale. Molecular dynamics simulations confirmed the enhanced dynamics of the mutant variant, especially within the portal region in the presence of bound fatty acid. The increased softness of the hinge mutant of human myelin P2 protein is likely related to an enhanced flexibility of the portal region of this fatty acid-binding protein, as well as to its interactions with the lipid bilayer surface requiring conformational adaptations.

  5. Characterization of hepatitis C virus recombinants with chimeric E1/E2 envelope proteins and identification of single amino acids in the E2 stem region important for entry

    DEFF Research Database (Denmark)

    Carlsen, Thomas H R; Scheel, Troels K H; Ramirez, Santseharay

    2013-01-01

    The hepatitis C virus (HCV) envelope proteins E1 and E2 play a key role in host cell entry and represent important targets for vaccine and drug development. Here, we characterized HCV recombinants with chimeric E1/E2 complexes in vitro. Using genotype 1a/2a JFH1-based recombinants expressing 1a....../release. Studies of E1/E2 heterodimerization showed no differences in intracellular E1/E2 interaction for chimeric constructs with or without E2 stem region mutations. Interestingly, the E2 stem region mutations allowed efficient entry, which was verified in 1a-E1/1b-E2 HCV pseudoparticle assays. A CD81 inhibition...

  6. Identification of a novel receptor-like protein kinase that interacts with a geminivirus nuclear shuttle protein

    International Nuclear Information System (INIS)

    Mariano, Andrea C.; Andrade, Maxuel O.; Santos, Anesia A.; Carolino, Sonia M.B.; Oliveira, Marli L.; Baracat-Pereira, Maria Cristina; Brommonshenkel, Sergio H.; Fontes, Elizabeth P.B.

    2004-01-01

    Despite extensive studies in plant virus-host interactions, the molecular mechanisms of geminivirus movement and interactions with host components remain largely unknown. A tomato kinase protein and its soybean homolog were found to interact specifically with the nuclear shuttle protein (NSP) of Tomato golden mosaic virus (TGMV) and Tomato crinkle leaf yellows virus (TCrLYV) through yeast two-hybrid screening and in vitro protein binding assays. These proteins, designated LeNIK (Lycopersicon esculentum NSP-Interacting Kinase) and GmNIK (Glycine max NIK), belong to the LRR-RLK (leucine rich-repeat receptor-like kinase) family that is involved in plant developmental processes and/or resistance response. As such, NIK is structurally organized into characteristic domains, including a serine/threonine kinase domain with a nucleotide binding site at the C-terminal region, an internal transmembrane segment and leucine-rich repeats (LRR) at the N-terminal portion. The potential significance of the NSP-NIK interaction is discussed

  7. Charge Segregation and Low Hydrophobicity Are Key Features of Ribosomal Proteins from Different Organisms*

    Science.gov (United States)

    Fedyukina, Daria V.; Jennaro, Theodore S.; Cavagnero, Silvia

    2014-01-01

    Ribosomes are large and highly charged macromolecular complexes consisting of RNA and proteins. Here, we address the electrostatic and nonpolar properties of ribosomal proteins that are important for ribosome assembly and interaction with other cellular components and may influence protein folding on the ribosome. We examined 50 S ribosomal subunits from 10 species and found a clear distinction between the net charge of ribosomal proteins from halophilic and non-halophilic organisms. We found that ∼67% ribosomal proteins from halophiles are negatively charged, whereas only up to ∼15% of ribosomal proteins from non-halophiles share this property. Conversely, hydrophobicity tends to be lower for ribosomal proteins from halophiles than for the corresponding proteins from non-halophiles. Importantly, the surface electrostatic potential of ribosomal proteins from all organisms, especially halophiles, has distinct positive and negative regions across all the examined species. Positively and negatively charged residues of ribosomal proteins tend to be clustered in buried and solvent-exposed regions, respectively. Hence, the majority of ribosomal proteins is characterized by a significant degree of intramolecular charge segregation, regardless of the organism of origin. This key property enables the ribosome to accommodate proteins within its complex scaffold regardless of their overall net charge. PMID:24398678

  8. Extreme sequence divergence but conserved ligand-binding specificity in Streptococcus pyogenes M protein.

    Directory of Open Access Journals (Sweden)

    2006-05-01

    Full Text Available Many pathogenic microorganisms evade host immunity through extensive sequence variability in a protein region targeted by protective antibodies. In spite of the sequence variability, a variable region commonly retains an important ligand-binding function, reflected in the presence of a highly conserved sequence motif. Here, we analyze the limits of sequence divergence in a ligand-binding region by characterizing the hypervariable region (HVR of Streptococcus pyogenes M protein. Our studies were focused on HVRs that bind the human complement regulator C4b-binding protein (C4BP, a ligand that confers phagocytosis resistance. A p